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by Oğuzcan Zengin

Submitted to the Graduate School of Sabancı University

in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

July, 2018
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Abstract

In this thesis, we present a new joint image enhancement and reconstruction

method and a software processing tool for SAR Interferometry. First, we propose

a sparsity-driven method for coupled image formation and autofocusing based on

multi-channel data collected in interferometric synthetic aperture radar (IfSAR).

Relative phase between SAR images contains valuable information. For example,

it can be used to estimate the height of the scene in SAR Interferometry. However,

this relative phase could be degraded when independent enhancement methods are

used over SAR image pairs. Previously, Ramakrishnan, Ertin, and Moses proposed

a coupled multi-channel image enhancement technique, based on a dual descent

method, which exhibits better performance in phase preservation compared to

independent enhancement methods. Their work involves a coupled optimization

formulation that uses a sparsity enforcing penalty term as well as a constraint ty-

ing the multichannel images together to preserve the cross-channel information. In

addition to independent enhancement, the relative phase between the acquisitions

can be degraded due to other factors as well, such as platform location uncertain-

ties, leading to phase errors in the data and defocusing in the formed imagery. The

performance of airborne SAR systems can be affected severely by such errors. We
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propose an optimization formulation that combines Ramakrishnan et al.’s coupled

IfSAR enhancement method with the sparsity-driven autofocus (SDA) approach

of Önhon and Çetin to alleviate the effects of phase errors due to motion errors in

the context of IfSAR imaging. Our method solves the joint optimization problem

with a Lagrangian optimization method iteratively. In our preliminary experimen-

tal analysis, we have obtained results of our method on synthetic SAR images and

compared its performance to existing methods. As a second contribution of this

thesis, we have developed a software toolbox for end-to-end interferometric SAR

processing. This toolbox is capable of performing the fundamental steps of SAR

Interferometry Processing. The thesis contains the detailed explanation of the al-

gorithms implemented in the SAR Interferometry Toolbox. Test results are also

provided to demonstrate the performance of the Toolbox under different scenarios.
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Özet

Bu tezde, yeni bir düzenlileştirmeye dayalı görüntü oluşturma yöntemi ve SAR

İnterferometrisi için bir yazılım işleme aracı sunduk. İlk olarak, interferometrik

sentetik açıklıklı radarda (IfSAR) toplanan çok kanallı verilere dayanarak, eşleşmiş

görüntü oluşumu ve otomatik odaklama için bir yöntem önermekteyiz. SAR

görüntüleri arasındaki göreli faz değerli bilgiler içerir. Örneğin, SAR İnterferometrisinde

sahnenin yüksekliğini tahmin etmek için kullanılabilir. Bununla birlikte, SAR

görüntü çiftleri üzerinde bağımsız iyileştirme yöntemleri kullanıldığında, bu nispi

faz bozulabilir. Daha önce, Ramakrishnan, Ertin ve Moses, bağımsız iyileştirme

yöntemleri ile karşılaştırıldığında, faz korunmasında daha iyi başarım sergileyen

ikili bir iniş yöntemine dayanan, birleşik çok kanallı görüntü geliştirme tekniğini

önermişlerdir. Çalışmaları, çapraz-kanal bilgisini korumak için çok kanallı görüntüleri

birbirine bağlayan bir kısıtlamanın yanı sıra bir seyreklik cezası terimi kullanan

birleştirilmiş bir eniyileme kurgusu içermektedir. Bağımsız iyileştirmeye ek olarak,

görüntüler arasındaki göreceli faz, platform konum belirsizlikleri, verilerin faz hata-

larına yol açması ve oluşan görüntülerde bulanıklaştırma gibi diğer faktörlere bağlı

olarak da bozulabilir. SAR sistemlerinin başarımı, bu tür hatalardan ciddi şekilde
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etkilenebilir. Ramakrishnan ve Ertin’in ortak seyreklik odaklı IfSAR görüntü

oluşturma yöntemini, Önhon ve Çetin’in seyreklik odaklı odaklama (SDA) yaklaşımı

ile birleştirerek, IfSAR görüntüleme bağlamında hareket hatalarından kaynaklanan

faz hatalarının etkilerini hafifletmek için bir eniyileme kurgusu öneriyoruz. Bizim

yöntemimiz, ortak eniyileme problemini yinelemeli olarak Lagrange eniyileme yöntemiyle

çözmektedir. Ön deneysel analizimizde, sentetik SAR görüntüleri üzerinde yöntemimizin

sonuçlarını elde ettik ve performansını mevcut yöntemlerle karşılaştırdık. Bu tezin

ikinci katkısı olarak, SAR İnterferometrisi için bir yazılım aracı geliştirdik. Bu

araç, SAR İnterferometrisi işlem sürecinin temel adımlarını gerçekleştirebilecek

şekilde tasarlanmıştır. Son ürün olarak görüntülenen alanın 3 boyutlu bir mod-

elini oluşturabilir. Bu tezde, SAR İnterferometry Algoritması’nda uygulanan al-

goritmaların detaylı açıklaması verilmiştir. Ayrıca, Algoritma’nın test sonuçları,

Algoritma’nın başarımı farklı senaryolar altında gösterecek şekilde tanıtılmıştır.
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Chapter 1

Introduction

In this thesis we develop new tools and methods for processing inferferometric

synthetic aperture radar (SAR) data. The first contribution of this thesis is a

sparsity-driven method for coupled interferometric SAR imaging and autofocus-

ing that achieves interchannel information preservation while correcting for model

errors. The second contribution of this thesis is a software toolbox for end-to-end

interferometric data processing starting from image registration and ending with

terrain height estimation. The purpose of this chapter is to: 1) give a quick sum-

mary of SAR and Multichannel SAR imaging; 2) underline the problems we solved;

3) introduce the solution we propose to these problems, 4) present the outline of

this thesis.

1.1 Motivation

Synthetic Aperture Radar (SAR) is one of the most widely used imaging techniques

in remote sensing. Due to many advantages of this imaging modality, SAR has been

extensively used for military and civilian purposes. For example, the classification

of military vehicles [34], the estimation of the yield of crops [26] and the detection
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of earth deformations [5] are some examples of the utilization of SAR imaging

systems.

In SAR imaging, a radar platform mounted on an airplane or a satellite, trans-

mits waveforms periodically and collects the reflected signals as it moves along a

trajectory. After processing the reflected signals, a 2-D image of the scene can be

formed from the collected signals. Imaging quality of SAR systems is getting close

to optical systems with advanced sensing and processing methodologies. SAR sys-

tems maintain well-known advantages over optical systems. For example, SAR

imaging systems are capable to work during day and night under all-weather con-

ditions. SAR systems usually work as active radar systems, so they illuminate the

scene by transmitting electromagnetic waves from the radar antenna. Therefore,

they do not need an illumination source to work. Plus, microwave radiation which

SAR systems use can penetrate through cloud cover, haze, dust, and all but the

heaviest rainfall as the longer wavelengths are not susceptible to atmospheric scat-

tering which affects shorter optical wavelengths. In addition to these advantages,

more information about the scene can be obtained with SAR compared to optical

imaging, such as elevation information of the scene or under-foliage structures.

On the other hand, there are some problems and limitations of SAR imaging

systems as well. Imaging of limited-extent data limits the resolution. Further-

more, common SAR processing result in causes considerable amount of sidelobes ,

especially when some frequencies are blocked. This problem can be addressed by

with image-regularization and reconstruction algorithms. These algorithms form

SAR images that are consistent with collected data. In addition, the data are reg-

ularized through a prior information term. By experience, it is demonstrated that

the most common prior information is the sparsity of the scene in some domain.

Another common problem about SAR imaging is the autofocus problem. In

radar systems, the round-trip time of the transmitted waveform, i.e., demodulation

2



Figure 1.1: Simple illustration of SAR imaging operation. Image is taken from the
web site of Sandia National Laboratories.

time, is very important for SAR image processing. Error in the demodulation time

cause blurring in SAR images. This problem is called the autofocusing problem in

SAR literature. In SAR literature, many autofocusing algorithms were proposed

to solve this problem [28] [30].

Recently, Multichannel SAR imaging, such as Tomographic SAR (TomoSAR)

and Interferometric SAR (IfSAR), has been of interest in SAR literature. While

SAR imaging systems create a 2-D projection of the scene, the purpose of mul-

tichannel SAR imaging is to form a 3-D model of the scene. Multichannel SAR

imaging modalities use two or more SAR images to create a 3-D model of the area

of interest. When the images used in multichannel SAR imaging processes are

formed by independent image reconstruction algorithms, the interchannel infor-

mation across the image acquisitions, such as relative phase between SAR images,

may degrade. This reduces the precision of the 3-D model of the scene. There-

fore, there emerged a need for an image formation method which can preserve
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the interchannel information between acquisitions for multichannel SAR applica-

tions. Lately, joint image reconstruction algorithms were proposed to address this

issue [23] [29].

Up to this point, we have drawn attention to two problems encountered in

the SAR imaging process. These are the autofocusing problem and preserving

interchannel information between SAR images. In the literature, there are different

solutions to each of the problems we posed. On the other hand, there is the

deficiency of an algorithm which can solve the autofocusing problem and preserving

interchannel information for multichannel SAR imaging modalities at the same

time. This constitutes the main motivation for our work.

The main objective of this work is to develop an imaging algorithm to solve

autofocusing problem of SAR imaging and to preserve interchannel information

between SAR acquisitions at the same time. Besides that it is aimed to produce

a SAR Interferometry Toolbox which is capable to produce 3-D height maps from

SAR images within the content of the project supported by ASELSAN.

1.2 Contribution of the Thesis

Instead of solving the problems we have described in the previous section inde-

pendently, we propose a sparsity-driven method for coupled image formation and

autofocusing (SDCIA) based on multi-channel data collected in interferometric

synthetic aperture radar (IfSAR). SDCIA is a joint image reconstruction and reg-

ularization algorithm. Basically, the combination of SDA by Önhon and Çetin [20]

and Joint Enhancement by Dual Descent by Ramakrishnan and Ertin [23] consti-

tutes SDCIA.

Our coupled optimization formulation involves a sparsity enforcing penalty

term for each image. In addition to that, it contains a term penalizing differences
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of reflectivity magnitudes at pairs of pixels in the IfSAR images as well. The image

acquisitions for IfSAR are done in a close formation, so the supports of these signals

are expected to be same. The phase as an explicit variable of optimization in the

observation matrix is updated to eliminate phase errors caused by demodulation

time uncertainties.

SDCIA solves this coupled optimization problem iteratively. Each iteration has

two major steps. In the first step, a Lagrangian method is used to optimize the cost

function with respect to image fields, as described in [23]. Then, the cost function

is optimized with respect to the phases, as in [20]. In order to demonstrate the

effectiveness of our method, SDCIA has been tested in different scenarios, and the

results of the simulations are presented.

In addition, SAR Interferometry Toolbox was created within the master project

financed by ASELSAN, one of the leading defence companies in Turkey. The

toolbox is capable to perform the major steps of SAR Interferometry processing,

from registration to height map generation.

1.3 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, preliminary information is given

to provide a basis for the rest of the thesis. Three different subjects are summarized

in Chapter 2. First, the fundamentals and mathematical description of spotlight

mode of SAR is presented, since spotlight mode of SAR is our main focus among

SAR imaging modalities due to the reasons given in the next chapter. Then, prin-

ciples and applications of Interferometric SAR are explained. As we mentioned

earlier, Interferometric SAR is a multichannel SAR imaging modality. As distinc-

tion from SAR, the purpose of IfSAR is to create 3-D models of the scene. In

Chapter 2, a brief summary of Interferometric SAR literature and mathematical
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foundations of this imaging modality are introduced. Lastly, regularization-based

SAR imaging is discussed in this chapter.

The proposed method, Sparsity-driven for Coupled Imaging and Autofocusing,

is introduced in Chapter 3. SDCIA has been tested for different cases in order to

show its effectiveness. The results are presented in this chapter as well.

The fourth chapter is a summary of the project we carried out in collaboration

with ASELSAN, one of the biggest defence companies in the Turkey. In addition

to my research studies, I worked on a project, SAR Interferometry Algorithm

Development Project, sponsored by ASELSAN. The main objective of this project

was to produce a software toolbox which can process IfSAR data. In this chapter,

a brief summary of the work we have done for this project and the outcomes of

the project are presented. Finally, potential future directions and comments are

discussed in Chapter 5.
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Chapter 2

Preliminaries

The purpose of this chapter is to present the necessary background information

to understand the research we have done and the SAR Interferometry Toolbox

Project. Within this context, SAR imaging, SAR Interferometry and regulariza-

tion based image reconstruction are briefly summarized in this chapter.

2.1 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is a radar technique used to obtain a 2-D pro-

jection of the scene. Radar systems work based on the principle of measuring the

round trip travel time of the transmitted electromagnetic waveform. Therefore,

the distance between the radar antenna and the objects can be estimated from

the reflected waveforms. However, the reflected waveforms provide only one di-

mensional information about the position of the objects, radial distance between

radar antenna and objects.

Synthetic Aperture Radar is a radar imaging technique to solve the cross-range

resolution problem. An example configuration for SAR is demonstrated in Figure

2.1. In this technique, the radar antenna is mounted on a mobile platform, for

7



Figure 2.1: The configuration of Synthetic Aperture Radar. Image is taken from
radartutorial.eu.

example an airplane or a satellite. As this platform moves along its trajectory,

the scene is illuminated with electromagnetic waveforms periodically, and the re-

flected waveforms are collected as well. Basically, a large synthetic aperture is

created to get a resolution in cross-range dimension. After collection of reflected

waveforms from the scene, a 2-D projection of the scene can be formed by using

image formation algorithms.

There are several SAR data collection modes. In this thesis, we provide a brief

overview of a widely used monostatic mode of SAR, namely spotlight mode of

SAR. For the sake of brevity, we do not discuss other modes including bistatic

modes of SAR [17], ScanSAR [2], and Hybrid SAR [4].

2.1.1 Spotlight SAR Imaging Model

Spotlight mode SAR involves observing only a specific area on the ground by

rotating the radar antenna to aim at that area through the flight path, as illustrated

in Figure 2.2. By observing the scene from a larger range of azimuth angles,
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spotlight mode SAR achieves high cross-range resolution [13]. The cross-range

resolution in spotlight mode SAR is usually higher than Stripmap mode of SAR

with a similar flight path, with the tradeoff of smaller area coverage [3].

Figure 2.2: Geometry of spotlight mode SAR.

Majority of SAR systems illuminate the scene with a chirp signal defined as

follows:

s(t) = <(exp(j(ω0t+ αt2))) (2.1)

where ω0, 2α are the center frequency of the transmitted chirp signal and the chirp

rate of the signal, respectively. In spotlight-mode SAR, the relationship between
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the transmitted signal and the reflected signal at observation angle θm after several

pre-processing steps is given by [8]:

Z(U) = r̄m(t) =

∫
|u|≤L2

pm(u)e−jUudu (2.2)

where pm(u) is the projection of the field at the mth aperture position:

pm(u) =

∫∫
x2+y2≤L2

δ(u− x cos θ − y sin θ)F (x, y)dxdy (2.3)

Here, F (x, y) denotes the reflectivity field, L is the scene radius, and τ0 is the

demodulation time of the transmitted signal and c is the speed of light. The spatial

frequency U is given by:

U =
2

c
(ω0 + 2α(t− τ0)). (2.4)

The reflected signal at the mth platform position, i.e., r̄m(t), corresponds to a

spatial Fourier transform. After collecting the reflected signals from all platform

positions and sampling those reflected signals in time, we get a sampled 2-D spatial

Fourier transform of the scene, also called the phase history data. In Figure 2.3,

an illustration of the support of the phase history data of Spotlight mode of SAR

is presented.

When the reflected signal is discretized, the observation kernel and the un-

known scene can be approximated as a matrix and a vector, respectively. Then,

the SAR observation process can be modeled as a matrix-vector product as shown

in Eqns. (2.5) and (2.6).
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Figure 2.3: Graphical representation of phase history data.



ḡ1

ḡ2

ḡM


=



C̄1

C̄2

C̄M


f + v (2.5)

g = Cf + v (2.6)

where r̄m and C̄m denote the reflected signal and the discretized observation

kernel, respectively, at the mth position of the radar platform, f is an N × 1 col-

umn vector representing the discretized scene, and v denotes measurement noise.

Eqn. 2.6 is the overall observation model where g denotes the entire phase history

data and C is the overall observation matrix. A detailed explanation of this for-

mulation can be found in [8]. Given this observation model, image reconstruction

algorithms can be used for forming images from the the collected SAR data.
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Figure 2.4: Interpolation operation on phase history data.

2.1.2 Conventional Image Formation Algorithms

Polar Format Algorithm

Polar Format Algorithm (PFA) is one of the widely used SAR image formation

algorithms.

In Section 2.1.1, it was stated that collected SAR data corresponds to a 2-D

bandpass Fourier transform of the scene. This is called phase history data, and it is

depicted in Figure 2.3 as an annulus. PFA forms SAR images in the following way.

First, PFA interpolates the data from a polar grid to a Cartesian grid as shown in

Figure 2.4. Then, a 2-D inverse Fourier transform is applied to the interpolated

data to get 2-D SAR images.

2.1.3 SAR Autofocus Problem

Autofocusing is one of the important problems in SAR imaging systems. In SAR

imaging, one of the processing steps is the demodulation of the collected waveforms.

To do this operation, the demodulation time of transmitted waveform should be

known precisely. Theoretically, demodulation time is calculated as follows.

τ0 =
2d0

c
(2.7)
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where d0 is the distance between platform and scene center. Basically, demodula-

tion time is the round trip travel time of the transmitted waveform.

Conventionally, d0 is calculated by hardware systems on the SAR platforms,

called as inertial measurement units (IMU’s). However, it is very difficult to esti-

mate d0 with the required precision by high quality IMU’s. This would eventually

lead to errors in demodulation time. As a result, any error in demodulation time

would shows its effect as phase errors in demodulated data. To solve this problem,

many post-processing algorithms were proposed, and they are called autofocusing

algorithms.

Autofocusing algorithms can alleviate phase error problems related to the lim-

ited accuracy of IMUs, as well as related to other factors. Precision of IMU’s can

only decrease the phase errors due to position uncertinities of the imaging plat-

form. On the other hand, there are other factors which can cause phase errors in

the data. Weather conditions and Faraday rotation are some examples to these.

Autofocusing algorithms can handle all phase error types without discriminating.

The model we established in Section 2.1.1 is based on the assumption that

all system parameters are known precisely. If demodulation time is not known

precisely, there will be an error term in delayed in-phase and quadrature versions

of the transmitted chirp signal as shown in Equation (2.8) and (2.9).

cos(w(t− τ0 + ε) + α(t− τ0 + ε)2) (2.8)

− sin(w(t− τ0 + ε) + α(t− τ0 + ε)2) (2.9)

where ε stands for demodulation time error. Therefore, we would get extra error
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terms in the output of the preprocessed SAR data.

Zε(U) = r̄mε(t) = e−jε
2αej

εc
2
U

∫
|u|≤L

pm(u)e−jUudu (2.10)

According to Equation (2.2), a relationship between the phase corrupted data

and error-free data can be established as follows.

Zε(U) = e−jε
2αej

εc
2
UZ(U) (2.11)

Since ε2α << 1, e−jε
2α can be approximated as 1. Then, the relationship

becomes:

Zε(U) = ej
εc
2
UZ(U) (2.12)

If we replace U in Equation (2.12) with Equation (2.4), then we get

Zε(U) = ejεw0eje(2α(t−τ0))Z(U) (2.13)

Usually, the term 2α(t − τ0) is much smaller than w0. Therefore, ejε(2α)(t−τ0)

can be neglected. Then, we obtain

Zε(U) = ejεω0Z(U)

Zε(U) = ejφZ(U)

where φ is the phase error in the data due to demodulation time error. Such

phase errors cause blurring in the cross-range direction [13]. Techniques designed

to alleviate this effect are called autofocus algorithms. Previously, many autofo-

cusing algorithms were proposed to solve this problem. Phase-Gradient Autofocus

(PGA) [28] and Multi-Channel Autofocus (MCA) [18] are some examples to these

algorithms.
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Recently, a regularization based algorithm, Sparsity-Driven Autofocus, was

proposed by Önhon and Çetin [20]. This method eliminates the autofocus problem

by solving the following optimization problem with respect to both the field vector

and observation matrix during the image formation process:

f̂ , φ̂ = argmin
f,φ

‖g − C(φ)f‖2
2 + λ2 ‖f‖pp (2.14)

2.2 SAR Interferometry

In this section, we focus on a particular SAR imaging modality, namely Interfer-

ometric Synthetic Aperture Radar (IfSAR). We provide a coverage of basics of

IfSAR, discuss important technical aspects, and provide pointers to fundamental

and recent literature on the topic.

It is possible to get 2D interpretation of surfaces with basic SAR systems.

Interferometric SAR aims to go beyond that capability to provide 3D information.

To create a digital elevation map, a 3D model of the observation area, by using

phase information is the main idea in IfSAR. In the following sections, we describe

the benefits and main stages of, as well as different approaches for IfSAR sensing

and processing.

2.2.1 Image Resolution Quality Measurements

To determine the quality of an IfSAR observation, there is a quality reference

system called Digital Terrain Elevation Data (DTED). By using this system, we

can classify images in terms of their resolution.

DTED classification system has 6 quality measurement levels, from 0 to 5,

three of them are shown in Table 2.1. For instance, DTED level 1 implies that

pixels have 3 second post spacing, nominally 100 m [1]. The higher levels, such
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Table 2.1: DTED level specifications.

as DTED level 5, correspond to higher resolutions. A system should reach 0.037

sec resolution, nominally around 1 meter, to satisfy the DTED level 5 criterion.

Figure 2.5 contains images of a particular scene obtained at different DTED levels.

Figure 2.5: Sample images of a scene at multiple DTED levels. The numbers in
the images indicate the spatial resolution.

2.2.2 Examples of Operational IfSAR Satellite Systems

RADARSAT (Canada)

RADARSAT is a pair of remote sensing satellites. The first one, RADARSAT-1,

was launched in 1995, and the second one, RADARSAT-2, was launched in 2007.
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This system operates in the C-band [10]. It has the capability to perform tandem

interferometric imaging missions.

Shuttle Radar Topography Mission (USA)

Shuttle Radar Topography Mission (SRTM) is a SAR Interferometry mission which

is carried by the Jet Propulsion Laboratory, NASA. For 11 days in February 2000,

SRTM successfully recorded IfSAR data. The data acquired in C band and X

band have been processed into the first global digital elevation models at 1 arc sec

resolution [22]. This corresponds 30 m × 30 m resolution at the equator. What

distinguishes SRTM from previous interferometric systems is that it is capable of

performing one pass interferometry instead of repeat pass interferometry. This

became possible with specific design of the space shuttle used in this mission as

seen in Figure 2.6. Thus, it minimizes the adverse effects of temporal decorrelation

and dynamic atmospheric events, and also minimizes height errors due to baseline

measurement errors.

ERS, Envisat, TerraSAR-X (Europe)

The field of satellite-based SAR and IfSAR systems is very active in Europe with

many research groups, particularly in Italy and Germany. In this section, brief

information will be provided on their major projects.

ERS 1 and ERS 2 are satellites designed and produced by the European Space

Agency [10]. Just like RADARSAT pairs, they are capable of carrying out tandem

interferometric operations. ERS 1 was lauched in 1991. Then, ERS 2 was launched

in 1995 in order to carry out interferometric SAR operations. One important novel

aspect of this satellite pair is that their orbits are phased to orbit the Earth 24

hours apart [10]. This was quite a short time for this type of operation, and this

short interval provides a good coherence between collections. This increases the
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Figure 2.6: Configuration of SRTM. The radars used in this mission were capable
of operation in X-band and C-band. Two active radar antennas were placed on
the space shuttle, and two passive antennas were placed at the end of the metallic
mast. Here, the metallic mast provides the spatial baseline which is needed for
across-track interferometry.

quality of the resulting interferograms.

Envisat was lauched in 2002. This satellite was more comprehensive than ERS

1 and ERS 2. It was carrying several optical and radar instruments [10]. Its largest

sensor was an advanced synthetic aperture radar operating at C-band. The main

aim of Envisat was to perform more advanced remote sensing missions, such as

ocean observation or ice observation. ENVISAT was able to collect important data

for analyzing climate change.

TerraSAR-X is an earth observation satellite launched in 2007 and operated

by the German Aerospace Agency, DLR [17] [3]. Its twin satellite TanDEM-X was

launched in 2010. TanDEM-X is identical to TerraSAR-X, aimed for operating

interferometric operations.
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2.2.3 Principles of Interferometry

IfSAR involves a combination of SAR imaging and the principle of interferometry.

Synthetic aperture radar is a coherent imaging method and generates a complex-

valued image which involves the magnitude and the phase of the reflectivity at each

point in the scene. What we display and use as a conventional SAR image uses the

magnitudes and not the phases. This motivates the question of how reflectivity

phase can be used to extract further information about the scene.

Figure 2.7: Double slit interferometry experiment.

The principle of a basic two slit interferometry experiment is illustrated in

Figure 2.7. Interferometry involves two wave sources, and we can calculate the

phase difference between the corresponding waves based on the position of the

glitches on the screen.

Interferometric SAR is the combination of SAR imaging and interferometry.

IfSAR uses the relative phase between scene reflectivities corresponding to two data

collections as an additional information source about the scene. As we describe in

the following sections, this can provide information about elevation at each point
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Figure 2.8: SAR Interferometry Imaging Geometry.

in the scene.

2.2.4 Fundamentals of SAR Interferometry

In this section, basic mathematical derivations about IfSAR phase difference calcu-

lations will be given. SAR Interferometry imaging geometry is presented in Figure

2.8. More detailed derivations can be found in [10].

Phase and Height Relationship

SAR Interferometry makes use of the relative phase between the first and the

second SAR acquisition to estimate the height of the scene. The relationship

between phase and height is defined with height sensitivity.

In order to establish a relationship between phase and height, we would start

with expressing height of the scene by system parameters. From Figure 2.8, the
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height of the scene can be expressed as follows:

z = r cosα− r cos θ (2.15)

where α and θ are defined in Figure 2.8.

This result can be found by using geometric identities. In order to establish a

relationship between phase and height, we would continue with calculating range

difference between the acquisitions. As it is shown in Figure 2.8, a small range

difference between image acquisitions is expected due to their position differences.

This range difference, δr, can be calculated by Equation (2.16).

δr = −b sin(θ − αb) (2.16)

Usually, the distance between platforms, i.e. baseline, is relatively too small

compare to slant range. Therefore, ∆θ, incidence angle difference between acqui-

sitions, is expected to be very small.

As shown in Figure 2.8, any change in the position of the scatterer in range

or elevation dimension would change the geometry of the acquisition. This would

change range difference between image acquisitions as well. Geometrically, it is

easy to see a change in the position of the scatterer in z dimension would create a

change in range difference. Mathematically, this relation can be formulated as the

ratio of their partial derivatives with respect to θ as follows:

∂δr

∂z
=

∂δr

∂θ
∂z

∂θ

(2.17)
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These partial derivatives are given as follows:

∂δr = −b cos(θ − αb) (2.18)

∂z = R sin(θ) (2.19)

The ratio of the derivatives of z and δr constitutes the relationship between

range difference between acquisitions and the height of the scene.

∂δr

∂z
= −b cos(θ − α)

r sin θ
= − b⊥

r sin θ
(2.20)

The effect of any difference in slant range distances of the image acquisitions is

a phase shift in transmitted waveforms. The amount of phase shifts due to range

difference is determined as shown in Equation (2.21). Here, the round trip distance

of the transmitted waveform is taken into account. Therefore, this formula gives

the amount of phase shifts due to 2δr slant range difference.

δr = − λ

4π
ψ (2.21)

Then, δr term in Equation 2.20 is replaced with Equation 2.21.

∂ψ

∂z
=

4π

λ

B⊥
R sin θ

(2.22)

The relationship we found is called height sensitivity in SAR Interferometry

literature. The amount of phase shift between first and second SAR images due

to any height change in the scene is determined with this relation.
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Relative Phase Calculation

Relative phase differences between SAR images can be obtained by multiplying

the first, or master, SAR image with the complex conjugate of the second, or slave,

image (or vice versa):

ϕML = ∠

( N∑
n=1

u∗1u2

)
(2.23)

Since phase exhibits statistical behaviour, this multiplication yields only a

maximum likelihood(ML) estimation of the phase difference between two SAR

images [25]. In order to increase the precision of this estimate, an averaging oper-

ation can be performed. In the SAR interferometry literature, this is often called

complex multilooking. Basically, the precision of the phase estimate increases

with the size of the window used in multilooking. The number of pixels used in

multilooking can be increased insofar as the resolution criterion permits.

Interferogram Flattening

The phase difference between two interferometric SAR image pairs has two main

geometric contributions. These are range and elevation. In other words, the phase

difference between observations depends on the range values as well. Therefore,

we observe a fringe pattern in the range direction that has nothing to do with

elevation. A sample interferogram that exhibits such fringes in the range direction

is shown in Figure 2.9.

In order to obtain height information, fringes caused by range should be elim-

inated. This operation is called interferogram flattening. After this operation,

fringe patterns become a direct indicator of height change in the scene. The flat-

tened version of the interferogram in Figure 2.9 is shown in Figure 2.10.
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Figure 2.9: A sample raw interferogram based on ERS 1/2 data. Note the fringe
pattern that continues along the range dimension (y axis). Also, fringes due to
elevation can be interpreted. Image was taken from Synthetic Aperture Radar
Interferometry [3].

Figure 2.10: Flattened interferogram example. Frequency of fringes represents the
slope of the area. Image was taken from Synthetic Aperture Radar Interferometry
[3].
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2-D Phase Unwrapping

Since unwrapped phase is the key for revealing height information, the accuracy of

this step has crucial importance for the SAR Interferometry process. As shown in

Figure 2.10, only the principal value of phase, i.e., wrapped phase, can be observed

due to its periodic nature. In order to reach the height information of the scene,

the real phase value should be found via 2-D phase unwrapping algorithms.

ψreal = ψwrapped + 2πn n ∈ Z (2.24)

The phase unwrapping process involves algorithms for converting the wrapped

phase estimate to the actual unwrapped phase estimate. Although this seems like

a straightforward operation, 2-D phase unwrapping is a hard engineering problem.

Although there exists effective and efficient algorithms for phase unwrapping,

we cannot say it is a standardized process at this point. Consequently, it is still

an active research area. If we assume that there is no phase discontinuity, called

residues [3], the phase unwrapping problem becomes much easier. Nevertheless,

this is usually not satisfied in real data, because of phase shifts due to sharp

elevation changes. There are a large number of phase unwrapping algorithms,

including, e.g. Unweighted Least Mean Squares method [12] and the Minimum

Cost Flow method [9].

2.2.5 SAR Interferometry Baseline Problem

Several factors can impact height accuracy of SAR Interferometry systems. How-

ever, orbit determination, in particular baseline estimation, is the dominant error

source among systematic errors according to [10]. Baseline estimation is a particu-

larly important problem for repeat-pass IfSAR, because any error in the estimated

baseline may result in much higher height errors than errors due to other parame-
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ter imperfections. Just as an example, the same numerical error in the position of

the platform would constitute a much larger percentage error on the baseline than

say on the altitude of the platform. Usually, altitudes of space-borne SAR systems

are on the order of kilometers. Any deviation from this value would be negligible

unless this deviation is on the order of 10 or 100 meters. Fortunately, altitude

precision of the current systems is far better. On the other hand, baselines are on

the order of few hundred meters. As a consequence, baseline errors would have a

higher impact on height accuracy.

Height errors due to baseline estimation consists of two component, the error

due to ∆B⊥, the perpendicular component of baseline, and that due to ∆B||,

the component of the baseline parallel to range. There are different consequences

of these two types of baseline estimation errors. ∆B⊥ causes a bias in height

estimation. The derivation of height errors due to perpendicular baseline errors is

provided below.

Let ∆ψtotal denote the total phase difference. Then we have:

∆ψtotal =
4π

λ

B⊥ + ∆B⊥
R sin(θi)

(2.25)

where B⊥ is the nominal baseline and ∆B⊥ is the perpendicular baseline error.

Accordingly, the phase difference caused by the perpendicular baseline error is

given by:

∆ψ =
4π

λ

∆B⊥
R sin(θi)

(2.26)

If we convert this phase error to height error by using Equation 2.22, we obtain:

∆h = h
∆B⊥
B⊥

(2.27)

which says height errors due to perpendicular baseline errors only depend on to-
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pographic height and the ratio of B⊥ error and B⊥.

Similarly, parallel baseline error causes some height errors in DEM. Height

error due to ∆B|| is given by [14]:

∆h = r sin(θi)
∆B||
B⊥

(2.28)

where h, r, θi and B⊥ are topografic height, range, incidence angle, and perpen-

dicular baseline, respectively. A parallel baseline error will furthermore cause a

tilt of the DEM which is given by [14]:

ψtilt =
∆B||
B⊥

(2.29)

Baseline determination is a very important problem for interferometric SAR

missions. In TanDEM-X, 1-2 mm platform position accuracy was achieved [15] [14].

On the other hand, the systems used in ERS-1 were not able to achieve this level

accuracy. Baseline estimates were accurate to within 30 cm. Thus, a calibration

process was adopted by determining tie points in the scene in order to alleviate

height errors due to baseline errors [31]. In addition, by using GPS points on the

earth instead of random tie points, it was possible to decrease height estimation

errors due to baseline variations to 5 m rms value when decorrelation was small.

This was sufficient for DTED-II level performance. Also, some alternative baseline

estimation techniques are presented in [27], such as measuring fringe frequency in

flat areas. Novel satellite systems have shown that better position accuracy is

possible without using these types of techniques. In Tables 2.2 , 2.3, and 2.4, a

baseline error analysis for the ERS-1 interferometric mission is presented.
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Normal Baseline
Tilt Errors

∆B‖ (1mm) ∆B‖ (10mm) ∆B‖(10cm)
∆h/∆s (tilt) ∆h/∆s (tilt) ∆h/∆s (tilt)

40.4m 2.47cm/km 24.75cm/km 2.47m/km
201.2m 0.49cm/km 4.97cm/km 49.7cm/km

Table 2.2: Tilt errors due to parallel baseline estimation errors. Baseline values
are taken from the ERS-1 Toolik, Alaska mission.

Normal Baseline
Height Errors

∆B‖ (1mm) ∆B‖ (10mm) ∆B‖(10cm)
∆h ∆h ∆h

40.4m 7.95m 79.5m 795m
201.2m 1.597m 15.97m 159.7m

Table 2.3: Height errors due to parallel baseline estimation errors. Baseline values
are taken from the ERS-1 Toolik, Alaska mission.

Normal
Baseline

Height Errors
∆B⊥ (1cm) ∆B⊥ (1cm) ∆B⊥ (10cm) ∆B⊥ (10cm)

∆h(h = 9km) ∆h(h = 4.5km) ∆h(h = 9km) ∆h(h = 4.5km)

40.4m 2.22m 1.11m 22.2m 11.2m
201.2m 0.44m 0.22m 4.4m 2.2m

Table 2.4: Height errors due to perpendicular baseline estimation errors. Baseline
values are taken from the ERS-1 Toolik, Alaska mission.
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2.3 Regularization Based Image Reconstruction

Previously we talked about the polar format algorithm as a conventional SAR

image formation approach. More modern approaches to the SAR image recon-

struction problem include regularization-based methods. Such methods have been

used to solve inverse problems in a variety of applications. Here we focus on

regularization-based SAR imaging, built on a discretized observation model as we

describe below. In that sense, this type of approaches can be applied to many

engineering problems. An observation system in discrete form can be formulated

as follows.

g = Cf + n (2.30)

where C, g, f , and n are the observation kernel based on the system parameters,

the collected data vector from indirect observations, the unknown reflectivity field

and measurement noise, respectively. As an easy solution, an estimate of the field

vector, f̂ , can found by multiplying g vector with the inverse of the observation

matrix C. However, this solution may not be feasible always. Basically, there are

4 problems which we have to handle to use this type approach.

First, due to the observation noise, there may not exist any f which solves this

equation exactly. Second, if the null-space of C is nonempty which means that

there are not as many independent observations as unknowns, then the solution

is not unique. Third, there is a stability problem. The estimate of f is desired

to remain stable in the presence of perturbations in the observations. The fourth

issue is that the need to incorporate any prior knowledge of f to the solution [7].

In order to overcome these problems, different solution methods were used,

such as Least Squares Solution or Tikhonov Regularization.
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2.3.1 Non-Quadratic Regularization

Non-Quadratic Regularization is one of the image regularization and reconstruc-

tion methods. Mathematical formulation of a particular non-quadratic regulariza-

tion method is given below.

f̂ = argmin
f
‖g − Cf‖2

2 + λ2 ‖f‖pp (2.31)

It incorporates prior information about the scene f through a term added to the

original least squares cost function. Here, the first term ensures the consistency of

the solution with the observed data. The second term is called a side constraint.

The prior information about the field is imposed by this term. The effect of this

term is adjusted by the regularization parameter λ.

While some engineering problems needs smooth solutions, sparse solutions, i.e.,

solutions in which there are only few non-zero pixels in the field vector, may fit

better in some engineering applications, such as radar imaging. In this case, a

great energy concentration is needed. Studies showed that non-quadratic regular-

ization shows greater energy concentration then Tikhonov regularization. As the

side constraint, a variety of terms with different regularization functionals can be

selected. One of them is the general family of `p-norm constraints, as show in

Equation (2.32).

‖f‖pp =

(
N∑
i=1

|fi|p
)

(2.32)

In spectral analysis, `p-norm constraints, where p < 2, have been shown to

result in higher resolution spectral estimates compared to the `2-norm case. More-

over, smaller value of p implies less penalty on large pixel values as compared to

larger p. Based on these observations, `p-norm constraints with p < 2 are good

choices to obtain sparse solutions.
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2.3.2 Joint Enhancement Problem in IfSAR

Relative phase between SAR images contains valuable information. As we men-

tioned in earlier sections, it can be used to estimate the height of the scene in SAR

interferometry. However, this relative phase could be degraded when independent

enhancement methods, such as Tikhonov or Non-quadratic regularization, are used

over SAR image pairs to enhance their resolutions [23].

For preservation of the inter-channel information in IfSAR, several joint image

enhancement algorithms were proposed. Some of them are listed below.

Existing Solutions to the Joint Enhancement Problem

Joint Enhancement by Dual Descent Previously, Ramakrishnan et al. in-

troduced Joint Enhancement by Dual Descent Method [23], a joint image enhance-

ment method with a pixel-level equality constraint on reflectivity magnitudes of

IfSAR image pairs. This image reconstruction algorithm enables the use of inter-

channel information with this constraint while using sparsity penalties on each

image. However, this technique does not provide a solution to the autofocusing

problem. Mathematical formulation of this technique is given as follows.

min
f1,f2,φ1,φ2

L(f1, f2) (2.33)

where

L(f1, f2) = ‖g1 − C1f1‖2
2 + ‖g2 − C2f2‖2

2 + λ2
1 ‖f1‖1

1 + λ2
2 ‖f2‖1

1

subject to |(f1)i| = |(f2)i| i = (1...N)

Iterative Hard Thresholding Another algorithm, joint image enhancement

by iterative thresholding [19], was proposed by Muirgrew et al. In this approach,
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the enhancement problem over interferometric images is solved by iterative hard

thresholding [6] and the autofocus problem is solved by an observation matrix

update. The field vector update of this method is given below.

fn+1
s,m = HΓn(fns,m + µCH

m (gs,mΨ(ψm)CmX
n
s,m)) (2.34)

where fs,m, gs,m, Cm are the field vector, the data vector and the observation

matrix for the mth acquisition.

Complex Approximate Message Passing Different solution is `1 regulariza-

tion via complex approximate message passing algorithm [29]. This algorithms

solves a joint optimization problem with a joint sparsity penalty term by using

complex approximate message passing.
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Chapter 3

Sparsity-driven Coupled Imaging

and Autofocusing for

Interferometric SAR

The purpose of this chapter is to introduce the joint image enhancement method,

Sparsity-driven Coupled Imaging and Autofocusing (SDCIA) for Interferometric

SAR. In this chapter, we explain the fundamentals of our method, SDCIA, and

present the results of our experiments evaluating this method.

3.1 Introduction

Synthetic Aperture Radar (SAR) is a widely used imaging technique in remote

sensing. In SAR imaging, a radar platform mounted on an airplane or a satel-

lite, transmits waveforms periodically and collects the reflected signals as it moves

along a trajectory. After processing the reflected signals, a 2-D image of the scene

can be formed from the collected signals. As in other imaging modalities, there

are many factors that can degrade the performance of SAR systems. One such
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factor affecting the performance of SAR imaging systems is platform location un-

certainties. Any error in the location of the imaging platform during SAR imaging

causes an error in the demodulation time of the reflected echo, leading to phase

errors in the collected data. The effect of such phase errors appears as defocusing

in the formed imagery. These motion errors do not only degrade the resolvability

of the objects in the scene, but they also degrade the phase information in SAR

images. SAR images are complex-valued images, and the phase information of

SAR images is valuable for some SAR applications, such as SAR Interferometry.

In SAR Interferometry, the relative phase between SAR images of the scene col-

lected by platforms at slightly different positions is used for estimating the height

of the scene.

Many techniques were proposed to solve the autofocusing problem in SAR

imaging [28] [30]. Recently, Sparsity-Driven Autofocus [20] (SDA) was proposed

as a solution to autofocusing. SDA is a regularization-based image reconstruction

technique. In addition to using `1-norm regularization to enforce scene sparsity,

it solves the phase error problem due to motion errors by updating the initially

assumed observation matrix with an estimated phase during image formation.

The effectiveness of SDA was shown in terms of autofocusing. SDA works on

individual data collections, and does not have a mechanism for taking into account

inter-channel information between interferometric image pairs, such as common

sparsity.

For preservation of the inter-channel information in IfSAR, several joint image

enhancement algorithms were proposed. One such approach is `1 regularization

via complex approximate message passing [29]. This algorithms solves a joint opti-

mization problem with a joint sparsity penalty term by using complex approximate

message passing. Previously, Ramakrishnan et al. introduced the Joint Enhance-

ment by Dual Descent Method [23], a joint image enhancement method with a
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pixel-level equality constraint on reflectivity magnitudes of IfSAR image pairs.

This image reconstruction algorithm enables the use of inter-channel information

with this constraint while using sparsity penalties on each image. However, neither

of these techniques provides a solution to the autofocusing problem. Another al-

gorithm, joint image enhancement by iterative thresholding [19], was proposed by

Muirgrew et al. In this approach, the enhancement problem over interferometric

images is solved by iterative hard thresholding [6] and the autofocus problem is

solved by an observation matrix update.

In order to deal with autofocusing while preserving the inter-channel infor-

mation across acquisitions, we propose a new approach, Sparsity-Driven Coupled

Imaging and Autofocusing (SDCIA). Our technique consists of a combination of

the Joint Enhancement by Dual Descent Algorithm [23] and Sparsity-Driven Aut-

ofocus. [20] Our coupled optimization formulation involves a sparsity enforcing

penalty term for each image, a term penalizing differences of reflectivity magni-

tudes at pairs of pixels in the IfSAR images, as well as the phase as an explicit

variable of optimization in the observation matrix to eliminate phase errors caused

by demodulation time uncertainties.

3.2 Proposed Method

In this section, we present our proposed technique, Sparsity-driven Coupled Imag-

ing and Autofocusing (SDCIA), which involves a combination of the ideas in-

volved in Joint Enhancement by Dual Descent Method [23] and Sparsity Driven

Autofocus [20]. As mentioned previously, Joint Enhancement by Dual Descent

Method [23] enables the preservation of inter-channel information in IfSAR by

adding an equality constraint on image reflectivity magnitudes within the context

of an `1 optimization problem for image enhancement. As a solution to the autofo-
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cusing problem, Özben and Çetin introduced Sparsity Driven Autofocus [20]. This

method handles phase errors by updating the observation matrix during sparsity-

driven image reconstruction. It has been shown that this method alleviates the

defocusing problem due to phase errors successfully. The method we present in

this paper can handle both of these problems simultaneously.

SDCIA is a regularization-based image reconstruction and autofocusing tech-

nique that couples the two interferometric channels. Mathematically, it solves the

following optimization problem:

min
f1,f2,φ1,φ2

L(f1, f2, φ1, φ2) (3.1)

where

L(f1, f2, φ1, φ2) = ‖g1 − C1(φ1)f1‖2
2 +‖g2 − C2(φ2)f2‖2

2 +λ2
1 ‖f1‖1

1 +λ2
2 ‖f2‖1

1 (3.2)

subject to a pixel-based equality constaint on the magnitudes of the reflectivities

of the two SAR images |(f1)i| = |(f2)i| where i = (1...N) where N is the number

of pixels. Here g1, g2, and C1, C2 are the observed data and the observation

matrices, respectively, for the first and the second acquisitions. The observation

matrices depend on unknown phases φ1 and φ2 to be optimized for autofocusing.

λ1 and λ2 are sparsity regularization parameters. The images involved in SAR

Interferometry are expected to belong to the same scene and it is assumed they

are registered images. Therefore, we set the two sparsity parameters as equal in

our experiments.

Our procedure to solve the optimization problem in Eqn. (3.1) consists of two

major steps in each iteration. In the first step, the Lagrangian method described

in [23] is used to optimize the cost function in terms of f1 and f2. Then, in the

second step, the unknown phases are updated by using the corresponding steps
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in the Sparsity Driven Autofocus method [20]. The overall process is summarized

in Algorithm 1. The details of the two major update steps are described in the

following two subsections.

Algorithm 1 Sparsity-driven Coupled Imaging and Autofocusing

Initilize n = 0, f
(0)
1 = CH

1 g1, f
(0)
2 = CH

2 g2, C1(φ
(0)
1 ) = C1, C2(φ

(0)
2 ) = C2, β(0) = 0

1. Update f1 and f2 as follows:
f1

(n+1), f2
(n+1) = argminf1f2 L(f1, f2, φ1

(n), φ2
(n))

2. Update φ1 and φ2 as follows:
φ1

(n+1) = argminφ1 L(f1
(n+1), φ1)

φ2
(n+1) = argminφ2 L(f2

(n+1), φ2)

3. Update C1(φn+1
1 ) and C2(φn+1

2 ) by using φn+1
1 , φn+1

2 , C1, and C2

4. Update β as shown in Equation (3.21)

5. Set n = n + 1, and repeat the procedure

Continue until relative changes in f1 and f2 are lower than predetermined thresholds, δ1 and δ2.

3.2.1 Updating the Images

In each iteration of Algorithm 1 we update the SAR images by optimizing the

cost function, L(f1, f2, φ1, φ2), with respect to f1 and f2. Mathematically, this is

expressed as follows:

f1
(n+1), f2

(n+1) = argmin
f1,f2

L(f1, f2, φ
(n)
1 , φ

(n)
2 ) (3.3)

subject to the constraint |(f1)i| = |(f2)i|. As described in [23], this constrained

optimization problem can be converted into an unconstrained optimization prob-

lem, as we briefly discuss below. In this formulation, the constraints are included
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in the objective function as Lagrange multiplier terms. Then, the optimization

problem becomes:

argmax
β

argmin
f1,f2

L(f1, f2, φ
(n)
1 , φ

(n)
2 , β) (3.4)

where β = [β1, ..., βN ]T . The cost function, L(f1, f2, φ
(n)
1 , φ

(n)
2 , β) is given by:

L(f1, f2, φ
(n)
1 , φ

(n)
2 , β) =

∥∥∥g1 − C1(φ
(n)
1 )f1

∥∥∥2

2
+
∥∥∥g2 − C2(φ

(n)
2 )f2

∥∥∥2

2
+

λ2
1 ‖f1‖1

1 + λ2
2 ‖f2‖1

1 +
N∑
n=1

βi(|(f1)i|2 − |(f2)i|2) (3.5)

As shown by Ramakrishnan et al. [23], the derivative of this cost function with

respect to f1 and f2 can be written as follows:

∇L(f1, f2)f1 = [2C1(φ
(n)
1 )HC1(φ

(n)
1 ) + pλ2

1Λ1 + 2B]f1 − 2C1(φ
(n)
1 )Hg1 (3.6)

∇L(f1, f2)f2 = [2C2(φ
(n)
2 )HC2(φ

(n)
2 ) + pλ2

2Λ2 − 2B]f2 − 2C2(φ
(n)
2 )Hg2 (3.7)

where the matrices used in Eqns. (3.6) and (3.7) are given by:

B =

β1

. . .

βN

 Λ1 = diag

{
1

(|(f1)i|2+ε)1−
p
2

}
i = 1, 2, ..., N

Λ2 = diag

{
1

(|(f2)i|2+ε)1−
p
2

}
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where the parameter, ε, used in Λ1 and Λ2 is a small constant, usually 10−5,

to avoid problems due to nondifferentiability of the `1 norm at the origin. To

solve for f1 and f2, given a particular value of β(n) at iteration n, one can write

the following fixed-point iterations, which can be shown to be equivalent to a

quasi-Newton algorithm:

[
2C1(φ

(n)
1 )HC1(φ

(n)
1 ) + pλ2

1Λ
(n)
1 + 2B(n)

]
f

(n+1)
1 = 2C1(φ

(n)
1 )Hg1 (3.8)[

2C2(φ
(n)
2 )HC2(φ

(n)
2 ) + pλ2

2Λ
(n)
2 − 2B(n)

]
f

(n+1)
2 = 2C2(φ

(n)
2 )Hg2 (3.9)

In order to solve the linear sets of equations in Eqns. (3.8) and (3.9), the conjugate

gradient method can be used.

3.2.2 Updating the Phases and the Observation Matrices

After updating f1 and f2 in each iteration of Algorithm 1, the phase errors for each

aperture position m of the two data acquisitions are updated. Mathematically, this

can be expressed as follows:

∆φ
(n+1)
1m = argmin

∆φ1m

L(f
(n+1)
1 ,∆φ1m) (3.10)

∆φ
(n+1)
2m = argmin

∆φ2m

L(f
(n+1)
2 ,∆φ2m) (3.11)

These equations can be rewritten as follows:

∆φ
(n+1)
1m = argmin

∆φ1

∥∥∥g1m − exp(j∆φ1)C1m(φ
(n)
1 )f

(n+1)
1

∥∥∥2

2
(3.12)

∆φ
(n+1)
2m = argmin

∆φ2

∥∥∥g2m − exp(j∆φ2)C2m(φ
(n)
2 )f

(n+1)
2

∥∥∥2

2
(3.13)
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where ∆φ
(n+1)
1m and ∆φ

(n+1)
2m are the phase error estimates at iteration n + 1 cor-

responding to the mth aperture position of the first and second acquisitions, re-

spectively. Similarly, g1m, g2m, C1m(φ(n)), C2m(φ(n)) are the parts of the collected

data and observation matrix which are related to the mth position of the first and

second acquisitions. The cost functions in Eqns. (3.12) and (3.13) can also be

written as follows(see Appendix A for detailed explanation): [20]

∆φ
(n+1)
1m = argmin

∆φ1

(
gHmgm − 2

√
R2

1 + I2
1 cos[∆φ1 + arctan(

−I1

R1

)]

+ f
(n+1)H
1 C1m(φ

(n)
1 )HC1m(φ

(n)
1 )f

(n+1)
1

)
(3.14)

∆φ
(n+1)
2m = argmin

∆φ2

(
gHmgm − 2

√
R2

2 + I2
2 cos[∆φ2 + arctan(

−I2

R2

)]

+ f
(n+1)H
2 C2m(φ

(n)
2 )HC2m(φ

(n)
2 )f

(n+1)
2

)
(3.15)

where

R1 = Re
{
f

(n+1)H
1 C1m(φ

(n)
1 )Hg1m}, R2 = Re

{
f

(n+1)H
2 C2m(φ

(n)
2 )Hg2m

}
(3.16)

I1 = Im
{
f

(n+1)H
1 C1m(φ

(n)
1 )Hg1m}, I2 = Im

{
f

(n+1)H
2 C2m(φ

(n)
2 )Hg2m

}
(3.17)

These minimization problems can be solved by maximizing the cosine term

inside the cost functions. This can be achieved by setting ∆φ1 and ∆φ2 as follows,

because cosine reaches its maximum when its argument is equal to 0.

∆φ
(n+1)
1m = − arctan

(−I1

R1

)
, ∆φ

(n+1)
2m = − arctan

(−I2

R2

)
(3.18)

Next, the phases and observation matrices will be updated by adding ∆φ1 and
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∆φ2 to the current phase estimates:

φ
(n+1)
1m = ∆φ

(n+1)
1m + φ

(n)
1m , φ

(n+1)
2m = ∆φ

(n+1)
2m + φ

(n)
2m (3.19)

C
(n+1)
1m (φ1) = exp(j∆φ1m)C

(n)
1m(φ1) , C

(n+1)
2m (φ2) = exp(j∆φ2m)C

(n)
2m(φ2) (3.20)

As another minor step in each iteration, the Lagrange multiplier vector β(n) is

updated as follows:

β(n+1) = β(n) + α∇ξ(β(n)) (3.21)

where α is the step size specified by the user. ∇ξ(β(n)) is the gradient of the cost

function Eqn. (3.5):

∇ξ(β(n)) = |f̂ (n)
1 |2 − |f̂

(n)
2 |2. (3.22)

This iterative process will continue until a convergence criterion is satisfied.

In our experiments, the relative change in the reconstructed image reflectivities is

considered as a stopping metric. The relative change is calculated as follows:

∣∣∣∣∣∣f (n+1)
1 − f (n)

1

∣∣∣∣∣∣2∣∣∣∣∣∣f (n)
1

∣∣∣∣∣∣2 < δ1 ,

∣∣∣∣∣∣f (n+1)
2 − f (n)

2

∣∣∣∣∣∣2∣∣∣∣∣∣f (n)
2

∣∣∣∣∣∣2 < δ2 (3.23)

When this change goes below a pre-determined threshold for each image, the al-

gorithm stops. We define the stopping threshold as 0.001 in our experiments.
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3.3 Simulation Results

In order to show the effectiveness of our algorithm, the results of experiments done

on synthetic scenes are presented. The purpose of the first two experiments is to

compare the performance of Joint Enhancement by Dual Descent Algorithm [23],

SDA [20], and SDCIA when both acquisitions are affected by motion errors. The

synthetic scene used in Test 1 and Test 2 can be seen in Figure 3.1a. This scene

consists of several point and geometric objects as well as minor clutter in the

background. The reflectivities of the objects were set to 1, and a phase of 180

degrees, was added to the reflectivities of the objects in the scene used for the

second image. Therefore, a phase difference between the first and the second

images is expected to be observed in the reconstructions. The parameters used in

this synthetic imaging experiment are shown in Table 3.1. We distort the phase

history data of the first and second acquisitions by adding random phase errors as

well as Gaussian noise to these phase histories resulting in an SNR of 25 dB. The

images reconstructed by the polar format algorithm (PFA) are shown in Figures

3.1b and 3.1c.

Table 3.1: The values of the imaging parameters used in the simulations.

Parameters Values

Center Frequency (ω0) 2π ∗ 1010 rad/sec
Bandwidth 400 MHz

Pulse Duration 4 ∗ 104 sec
Chirp Rate 2π ∗ 1012 rad/sec
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(a) Synthetic scene used in the experiments.

(b) The first image generated by PFA. (c) The second image generated by PFA.

Figure 3.1: Synthetic scene used in the first two experiments and the SAR images
generated by the Polar Format Algorithm.

The results our approach as well as the two existing methods can be seen in

Figures 3.2 and 3.3. Here, the enhanced first and second images of the algorithms

and the relative phase plots are presented. The relative phase plots are generated

as follows. Since the exact location of the scatterers is known, we applied a mask

over the enhanced images to keep only the pixel values corresponding to object

scatterer locations. Then, the relative phase was calculated by multiplying the first

images with complex conjugate of the second images. The relative phase values

are plotted with respect to their downrange locations.

In Figure 3.2, the results of the first experiment are shown. The algorithm

parameters, λ2
1, λ2

2, and step size α, are selected as 2, 2, 0.000005. Here, the

blurring in the cross-range direction, due to phase errors in the data, is observed
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in the output images of the Joint Enhancement by Dual Descent Algorithm and

the Sparsity-Driven Autofocus Algorithm. Such degradation in the formed imagery

also affect the relative phase information between the images as shown in Figures

3.2c and 3.2f. On the other hand, SDCIA obtains relatively better results than

the other two algorithms with the same parameters both in terms of focusing and

relative phase information preservation.
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(a) The enhanced first im-
age by Dual Descent.

(b) The enhanced second
image by Dual Descent.

(c) Phase difference between
enhanced images by Dual
Descent.

(d) The enhanced first im-
age by SDA.

(e) The enhanced second
image by SDA.

(f) Phase difference between
enhanced images by SDA.

(g) The enhanced first im-
age by SDCIA.

(h) The enhanced second
image by SDCIA.

(i) Phase difference between
enhanced images by SDCIA.

Figure 3.2: The results of the first experiment. The parameters λ2
1, λ2

2, and α are
chosen empirically as 2, 2, and 0.000005. In the relative phase plots, true phase
difference values are shown as red points, and phase differences estimated by each
algorithm are shown as blue points.
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The results of the second experiment can be seen in Figure 3.3. In this experi-

ment, λ2
1, λ2

2, and α are set to 3, 3, and 0.000005. With these parameters, we can

easily see that SDA exhibits better performance in terms of focusing compared to

the previous experiment. Its performance with regard to preserving relative phase

information also approaches that of SDCIA. As the value of the sparsity regular-

ization parameters, λ1 and λ2, increase, we force the algorithm to find more sparse

solutions. If the sparsity terms are increased too much, the cost due to the equality

constraint will have a smaller effect on the total cost function. Therefore, SDA and

SDCIA may produce similar outputs when strong sparsity constraints are imposed.

Whether such parameter values are desirable depends on the scene, because the

assumption of strong spatial sparsity may not be valid for all scenes. The scene

may contain features that are not spatially sparse. In such cases, the equality

constraint can provide additional and useful information. Therefore, parameter

choices should be based on prior information about the scene.
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(a) The enhanced first im-
age by Dual Descent.

(b) The enhanced second
image by Dual Descent.

(c) Phase difference between
enhanced images by Dual
Descent.

(d) The enhanced first im-
age by SDA.

(e) The enhanced second
Image by SDA.

(f) Phase difference between
enhanced images by SDA.

(g) The enhanced first im-
age by SDCIA.

(h) The enhanced second
image by SDCIA.

(i) Phase difference between
enhanced images by SDCIA.

Figure 3.3: The results of the second experiment. The parameters λ2
1, λ2

2, and
α are chosen empirically as 3, 3, and 0.000005. In the relative phase plots, true
phase difference values are shown as red points, and phase differences estimated
by each algorithm are shown as blue points.
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(a) Original Scene.
(b) The first image formed
by PFA.

(c) The second image
formed by PFA.

(d) The enhanced first im-
age by SDA.

(e) The enhanced second
Image by SDA.

(f) Phase difference between
enhanced images by SDA.

(g) The enhanced first im-
age by SDCIA.

(h) The enhanced second
image by SDCIA.

(i) Phase difference between
enhanced images by SDCIA.

Figure 3.4: The results of the third experiment. The parameters λ2
1, λ2

2, and α
are chosen empirically as 2, 2, and 0.00005. In the relative phase plots, true phase
difference values are shown as red points, and phase differences estimated by each
algorithm are shown as blue points.
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(a) Phase error estimates for the first image
in Test 3.

(b) Phase error estimates for the second im-
age in Test 3.

Figure 3.5: The phase error estimates for Test 3. The blue solid curve represents
the true phase error. The red dashed and green dash-dotted curves represent the
phase error estimates obtained by SDCIA and SDA, respectively.
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(a) Original Scene.
(b) The first image formed
by PFA.

(c) The second image
formed by PFA.

(d) The enhanced first im-
age by SDA.

(e) The enhanced second
Image by SDA.

(f) Phase difference between
enhanced images by SDA.

(g) The enhanced first im-
age by SDCIA.

(h) The enhanced second
image by SDCIA.

(i) Phase difference between
enhanced images by SDCIA.

Figure 3.6: The results of the fourth experiment. The parameters λ2
1, λ2

2, and α
are chosen empirically as 3, 3, and 0.00005. In the relative phase plots, true phase
difference values are shown as red points, and phase differences estimated by each
algorithm are shown as blue points.
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(a) Phase error estimates for the first image
in Test 4.

(b) Phase error estimates for the second im-
age in Test 4.

Figure 3.7: The phase error estimates for Test 3. The blue solid curve represents
the true phase error. The red dashed and green dash-dotted curves represent the
phase error estimates obtained by SDCIA and SDA, respectively.
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In the next two experiments, Test 3 and 4, we compare SDCIA and SDA in

term of their phase error estimates. For this purpose, we use the images shown

in Figures 3.4b and 3.4c. Each of them are equally degraded by motion errors.

We reconstruct the scenes with SDCIA and SDA. The parameters λ2
1, λ2

2, and α

are chosen empirically as 2, 2, and 0.00005. The results are presented in Figure

3.4. In addition, the phase error estimates of the methods are presented in Figure

3.5. When we take a look at Figures 3.4 and 3.5, the results of SDCIA are better

than SDA both in terms of focusing and in terms of phase error estimation. We

repeat this scenario with a different set of parameter selections. In Test 4, The

parameters λ2
1, λ2

2, and α are selected as 3, 3, and 0.00005. The output images and

phase error estimates are shown in Figures 3.6 and 3.7, respectively. With these

parameter choices, we can state that the performances of the methods are very

close. Based on these results, it appears that SDCIA exhibits good performance

with a wider range of sparsity parameters than SDA.

The aim of the fifth and sixth tests is to show the effectiveness of SDCIA in

a different scenario. The scene used for Test 5 and Test 6 can be seen in Figure

3.8a. In this scenario, one of the acquisitions is exposed to more motion and noise

errors than the other one. To exploit this information, we modify SDCIA so that it

updates only the image with higher error and keeps the other image fixed through

its iterations. The idea is that through the equality constraint, the image with low

error may provide useful information for enhancing the image with higher error.

In other scenarios, one might similarly consider keeping a subset of the variables

constant and updating the others in SDCIA. For example, if we know that the

first acquisition is not degraded by motion errors, but only by measurement noise,

we might remove φ1 only from the optimization process and update all the other

variables.
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(a) Synthetic Scene.
(b) The first SAR image
formed by PFA.

(c) The second SAR image
formed by PFA.

(d) The enhanced first im-
age by SDA.

(e) The enhanced second
image by SDA.

(f) Phase difference between
enhanced images by SDA.

(g) The enhanced first im-
age by SDCIA.

(h) The enhanced second
image by SDCIA.

(i) Phase difference between
enhanced images by SDCIA.

Figure 3.8: The results of the fifth experiment. The parameters λ2
1, λ2

2, and α
are empirically chosen as 2, 2, and 0.5. In the relative phase plots, true phase
difference values are shown as red points, and phase differences estimated by each
algorithm are shown as blue points.
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In the experiment performed here, random phase errors and noise resulting in 0

dB SNR are added to the phase history data of the first acquisition. In the second

acquisition, SNR is 25 dB an no phase errors are present. The images formed

by PFA from the noisy first acquisition and the less noisy second acquisition are

shown in Figures 3.8b and 3.8c. Other results of Test 5 are presented in the rest

of Figure 3.8. λ2
1, λ2

2, and α are set to 2, 2, and 0.5, respectively. Similar to the

results obtained from Test 1, SDCIA exhibits better performance than SDA in

terms of focusing and relative phase preservation.

In the sixth experiment, the scenario used in Experiment 5 was repeated with

different parameters. λ2
1, λ2

2, and α were set to 40, 40, and 0.5. The results of

Experiment 6 are presented in Figure 3.9. With these parameters, the performance

of SDA approaches that of SDCIA. This is due to the use of relatively higher

sparsity parameters than those used in Experiment 5. In this case, SDA needs

to use higher values to produce accurate sparse outputs. However, SDCIA can

produce focused images with lower sparsity parameters, and in fact with a wide

range of sparsity parameters, with the help of the equality constraint. In order to

quantitatively evaluate the performance in relative phase preservation, the phase

RMSE values of SDA and SDCIA were calculated for different sparsity parameters

and are shown in Figure 3.10. Consistently with the qualitative results presented,

SDCIA performs relatively better than SDA. As the sparsity parameter increases,

the performance of SDA approaches that of SDCIA.
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(a) Synthetic Scene.
(b) The first SAR image
formed by PFA.

(c) The second SAR image
formed by PFA.

(d) The enhanced first im-
age by SDA.

(e) The enhanced second
image by SDA.

(f) Phase difference between
enhanced images by SDA.

(g) The enhanced first im-
age by SDCIA.

(h) The enhanced second
image by SDCIA.

(i) Phase difference between
enhanced images by SDCIA.

Figure 3.9: The results of the sixth experiment. The parameters λ2
1, λ2

2, and α
are chosen empirically as 40, 40, and 0.5. In the relative phase plots, true phase
difference values are shown as red points, and phase differences estimated by each
algorithm are shown as blue points.
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Figure 3.10: Phase RMSE values of SDA and SDCIA algrithms for different spar-
sity parameters.
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Chapter 4

SAR Interferometry Toolbox

Project

The purpose of this chapter is to summarize the work done for the SAR Interfer-

ometry Toolbox Project, and the algorithms involved in each component of the

SAR Interferometry Toolbox.

4.1 Project Description

As a part of my master studies, I worked on an industry project, the SAR Inter-

ferometry Toolbox Project.

The main aim of this project was to produce a software toolbox which can

perform SAR Interferometric processing on the data of the Göktürk-3 satellite.

Göktürk-3 satellite project is planned as the first SAR satellite of Turkey. In the

main undertaking of TAI, TUBITAK Space Research Institute and ASELSAN also

served as subcontractors. This satellite is planned to be launched in 2019.

In addition to typical SAR imaging modalities, Göktürk-3 is planned to have

SAR Interferometric imaging capability as well. In order to create a SAR Interfer-
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Figure 4.1: Model of Göktürk-3 displayed at the stand of TAI during the IDEF’15.

ometry processor for Göktürk-3, an effort has been initiated in 2015. Within this

context, I was supported as a master student by ASELSAN. Within the frame-

work of this project, we delivered detailed reports about SAR Interferometry, and

a software toolbox which is capable of performing fundamental steps of SAR In-

terferometry processing.

4.2 SAR Interferometry Toolbox

The main objective of this project was to produce a software tool which can per-

form the fundamental steps of SAR Interferometry processing. In this context,

the first version of this toolbox, SAR Interferometry Toolbox v.1., was delivered

in 2017.

While working on the first version of the toolbox, our main concern has been

to produce an end-to-end interferometric processor which can perform the primary

steps of interferometric SAR processing to generate 3-D height maps as its output.

This section contains comprehensive descriptions of the algorithms involved in each

step of the process together with their input output relationships. In addition, our

experimental results on sample data provide an initial picture of the performance

in terms of product quality.
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4.2.1 Algorithm Design

The this version of the toolbox described in this thesis is capable of performing the

most fundamental steps of interferometric processing. The steps of interferometric

processing we considered in our work are illustrated in Figure 4.2.

Registration
Interferogram

Generation

2-D Phase
Unwrapping

Phase to
Height

Conversion

Figure 4.2: Components of the SAR Interferometry Toolbox.

Algorithm Inputs

The list of inputs required by the toolbox in order to create 3-D height maps is

given in Table 4.1.

The SAR interferometry toolbox needs a pair of images of the scene of interest,

namely the master and slave images, as its main inputs. In addition to data,

some system parameters are also needed for interferometric processing. These

parameters are listed in Table 4.1. In our basic interferometric processor described

here, nominal baseline values specified by the data providers are used.

Name of Input Input Type Unit

Master Image Complex Image -
Slave Image Complex Image -
Wavelength Parameter Meters

Baseline Parameter Meters
Tilt Angle Parameter Degrees

Range Parameter Meters
Incidence Angle Parameter Degrees

Table 4.1: List of the inputs required by the toolbox.

Some algorithmic parameters, such as the dimension of the window used for
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multilooking operation or oversampling factors, are not treated as global input

parameters here. They are mentioned as user-specified inputs in the relevant

sections.

Algorithm Description

In this section we describe the algorithms used in the first version of the SAR

interferometry toolbox for each step illustrated in Figure 4.2. This toolbox is able

to perform the most crucial interferometric processing steps. In this section, we

provide a detailed description of our algorithms for each step.

Registration The registration algorithm we use in the toolbox consists of two

steps: coarse and fine registration. The pseudocode of the algorithm is given in

Algorithm 1.

In coarse registration, relative shifts in range and azimuth directions are deter-

mined approximately by using reference points in the master and slave images. In

the case that input images are geolocated, this step may not be necessary. These

reference points can be determined by visual inspection or by an automated al-

gorithm. In SAR Interferometry Toolbox, manual selection is performed. Even

though this procedure would provide an estimate of relative shifts in both direc-

tions, it would not satisfy the sub-pixel accuracy condition in most scenarios.

After that, fine registration is applied to achieve sub-pixel accuracy. Com-

mon regions determined in coarse registration are captured with windows, of, e.g.,

100 × 100 pixels. Then, these windows are oversampled, usually with a factor of

8 [21]. The size of the windows and oversampling factor can be specified by users as

input parameters. For oversampling, we used a function provided by DLR(German

Aerospace Agency) that performs oversampling through zeropadding in the Fourier

transform domain. The complex correlations of common regions of master and
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slave images are calculated. Locations of the peaks in complex correlations corre-

spond to the amount of shift between images. Although complex cross correlation

techniques provide good results, they are computationally intensive. Using smaller

windows can speed up the process.

Once the amount of shift is determined, the slave image can be transformed by

a two-dimensional translation operation. In this version of the toolbox, we take

into account only shifts in range and azimuth dimensions.
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Algorithm 2 Registration Step (Translation only) for SAR Interferometry

1: procedure Registration
2: Im ← Master Image
3: Is ← Slave Image
4: smi ← Reference Points in master image
5: ssi ← Reference Points in slave image
6: rmi ← Regions in the master image around reference points
7: rsi ← Regions in the slave image around reference points
8: numRef ← Number of reference points.
9: xmid ymid ← Coordinates of centre of reference area

10: M ← Oversampling Factor
11: for i = 1:numRef do
12: si ← Determine reference points manually.
13: end for
for each: si
14: rmi ← Extracting the region around interest points in master image.
15: rsi ← Extracting the region around interest points in slave image.
16: for i = 1:numRef do
17: wmi = fft(rmi)
18: wsi = fft(rsi)
19: omi = zeropad2d(wmi,M)
20: osi = zeropad2d(wmi,M)
21: tmi = ifft(omi)
22: tsi = ifft(osi)
23: pi = crosscorrelation(tmi, tsi)
24: [xi yi]← Coordinates of the peak of cross correlation
25: end for
26: xfine = average(xi − xmid)/8
27: yfine = average(yi − ymid)/8
28: [xcoar ycoar] = average(smi − ssi)
29: xtot = xfine + xcoar
30: ytot = yfine + ycoar
31: [Îs] = register(Is, xtot, ytot)

return ImÎs
32: end procedure

Interferogram Generation As discussed in some resources [16], phase differ-

ences between SAR images can be obtained by multiplying the first, or master,
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SAR image with complex conjugate of second, or slave, image (or vice versa).

First, phase difference between complex images is calculated as shown in Equa-

tion (4.1). Basically, this is a multiplication of the master image and the complex

conjugate of the slave image.

ϕML = ∠

( N∑
n=1

u∗1u2

)
. (4.1)

Since phase exhibits statistical behaviour, this multiplication yields only an

ML estimate of the phase difference between two SAR images.

The step called complex multilooking is implemented by calculating this esti-

mate. The precision and noise sensitivity of the phase estimate depend on the size

of the window used in multilooking. In our simulations, we use a 5 × 5 window

mostly, but this parameter can be changed in our toolbox based on user prefer-

ences.

Lastly, the flat earth component, phase contribution due to range, should be

subtracted. As we stated in previous reports [33] [32], there are two main geometric

parameters which affect phase: range and elevation. In other words, the phase

difference between observations depends on the range values as well. Therefore,

this component should be eliminated to obtain the phase difference due to height

variations over the scene. This term, which is called the flat earth component, was

provided in the dataset used in our initial experiments. In order to obtain initial

results quickly, we directly used it. For real data, it can be calculated based on

system parameters. This phase component is calculated as follows:

δr = δr0 −
b⊥
r0

(r − r0) cot(θi − β) (4.2)

where δr, δr0, b⊥, r0, r, θi, β are range difference between platforms, initial range

difference, perpendicular baseline, range to center, range, incidence angle, and
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local slope. SAR Interferometry Toolbox v.1 is capable of calculating the flat

earth component of the scene.

Algorithm 3 Interferogram Calculation

1: procedure Interferogram Calculation
2: Im ← Registered Master Image
3: Is ← Registered Slave Image
4: N ← Number of pixel used for multilooking operation

5: ϕ̂ = ∠

(∑N
n=1 Î

∗
mÎs

)
6: ϕ̂ = ϕ̂− Flat Earth Component

return ϕ̂.
7: end procedure

Another measure about the scene is the complex correlation coefficient, or

coherence of the two SAR images, which can be estimated as follows:

γMLE =

∑L
n=1 u1[n]u2[n]∗√∑L

n=1 u1[n]2
∑L

n=1 u2[n]2
(4.3)

where u1 and u2 are master and slave images respectively. Its phase is the expected

interferometric phase of the pixel under discussion; its magnitude is related to

phase noise. Receiver noise, for example, may render the two images to be not

fully correlated, i.e. |γ| < 1 [3]. Hence, |γ| can be used as an estimate of the

degree of coherence, to generate a coherence map. We generate such a coherence

map as an additional output of the first version of our toolbox. A 5× 5 window is

used in computing the coherence in our initial experiments.

2-D Phase Unwrapping In this toolbox, we have performed phase unwrap-

ping using a simple procedure. In particular, as an initial attempt, we used an

extended version of a 1-D phase unwrapping algorithm in order to produce initial

3-D models. The pseudocode of the underlying 1-D phase unwrapping algorithm

is given in Algorithm 3.
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The methodology of this simple 1-D phase unwrapping algorithm is as follows.

This algorithms detects the locations in the input vector (1-D image) where wrap-

ping occurs by calculating the phase gradient between neighbourhood pixels. If

there is a phase difference between neighbourhood pixels above the upper or below

the lower threshold (in our case these thresholds are π and −π) this means that

phase is wrapped at this point. Based on the sign of the phase gradient, −2π or

2π phase is added to the phase vector.

Algorithm 4 1-D Phase Unwrapping

1: procedure 1-D Phase Unwrapping Algorithm
2: I ←Wrapped Vector, 1×N
3: U ← Unwrapped Vector, 1×N
4: numCycle← The vector that determines how many cycles should be added.
5: numCycle = zeros(1, N)
6: for j = 1:N-1 do
7: ∆ = I(j)− I(j + 1)
8: if ∆ > π then
9: numCycle(j + 1 : N) = numCycle(j + 1 : N)− 1

10: else if ∆ < π then
11: numCycle(j + 1 : N) = numCycle(j + 1 : N) + 1
12: end if
13: end for
14: U = I + numCycle ∗ 2π return U numCycle.
15: end procedure

For 2-D phase unwrapping, we used an extended version of this 1-D phase

unwrapping algorithm. In Algorithm 4, pseudocode of the algorithm is presented.

There are two different approaches for extending Itoh’s method to the 2-D phase

unwrapping problem. Namely either columns or rows of the 2-D data can be used

as the input of 1-D phase unwrapping algorithm. Then, 2-D unwrapping problem

is reduced to multiple 1-D unwrapping problems which simplifies the problem.
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Algorithm 5 Extension of 1-D Phase Unwrapping Algorithm for 2-D phase un-
wrapping problem

1: procedure 1-D Phase Unwrapping Algorithm
2: I ←Wrapped interferogram
3: Ii ← Columns of wrapped interferogram
4: R1 ← First row of wrapped interferogram
5: T1 ← First row of unwrapped interferogram
6: numCol← Number of columns of interferogram
7: U ← Unwrapped Interferogram
8: Ui ← Unwrapped Column Vector
9: [T1, numCycle] = 1Dphaseunwrapper(R1)

10: for i = 1 : numCol do
11: Ui = 1dphaseunwrapper(Ii)
12: end for
13: for i = 1 : numCol do
14: Ui = Ui + 2π ∗ numCycle(i)
15: end for

return U .
16: end procedure

We should note that this simple method will not produce perfectly unwrapped

interferograms because of the existence of the residue problem. Path following

phase unwrapping algorithms are not immune to path-dependency. Residues make

the unwrapping operation path-dependent, so the locations of residues should be

determined to get consistent results. We plan to implement such an advanced

algorithm for the next version of the toolbox.

Phase to Height Conversion Height conversion can be performed based on

the unwrapped flattened phase.

The relationship between phase and height through phase sensitivity was stated

as follows [3]:
dφ

dh
=

4π

λ

B⊥
R sin(θi)

(4.4)

By rearranging Equation (4.4), relative height can be obtained from the un-
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wrapped phase as follows

h =
λ

4π

R sin(θi)φ

B⊥
(4.5)

where λ, B⊥, θi and R are the wavelength of the transmitted waveform, perpen-

dicular baseline, incident angle, and range.

Figure 4.3: Demonstration of perpendicular baseline change with position of the
scatterer. Perpendicular baseline and incidence angle change slightly with range
and height.

Many interferometric processors utilize the normal baseline model in phase-to-

height conversion. While this is our starting point in this toolbox as well, we aim

to study any potential limitations and assess whether using a more realistic model

is warranted and feasible. See Figure 4.3 for an illustration of this issue.

67



Algorithm 6 Phase to Height Conversion Algorithm

1: procedure Phase to Height Conversion
2: I ← Unrapped interferogram
3: B⊥ ← Perpendicular Baseline
4: λ←Wavelength
5: θi ← Incidence Angle
6: R← Range
7: H ← Height Map
8: H = heightconverter(I, λ, B⊥, θi, R)

return U .
9: end procedure

4.2.2 SAR Interferometry Toolbox GUI

For ease of use, a graphical user interface was designed for ASELSAN SAR In-

terferometry Toolbox. The configuration of GUI can be seen in Figure 4.4. A

user can perform fundamental SAR Interferometry operations by loading system

parameters using corresponding buttons.

4.2.3 Toolbox Outputs

This toolbox is capable of performing the fundamental steps of interferometric

SAR processing. Even though the main aim is to get a 3-D elevation map of the

area of interested, intermediary products can be useful as well. Here, we define

three main products of this process.

The first one is the wrapped interferogram of the scene. An example wrapped

interferogram generated by the SAR Interferometry Toolbox is shown in Figure

4.13. Master image is demonstrated in Figure 4.5. The only system parameter

provided with the data set is height of ambiguity of the system.

Second, the coherence map of the scene is presented as another product. Coher-

ence maps can provide valuable information about scatterers in the scene [3] [24].

In Figure 4.7, a sample coherence map is given. Again, the DLR dataset was used
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Figure 4.4: Graphical User Interface of SAR Interferometry Toolbox.
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Figure 4.5: Master image of DLR dataset.

Figure 4.6: A flattened interferogram example produced by the SAR Interferom-
etry Toolbox. All processing steps except flat earth calculation for this data is
performed by the SAR Interferometry Toolbox. Each cycle corresponds to 167.89
meter height change.

to produce this coherence map.

As the end product of processing, a 3-D elevation map is delivered to users.

The elevation map given in Figure 4.8 is generated from from the DLR dataset by

the SAR Interferometry Toolbox. This appears to be a reasonable initial result.
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Figure 4.7: A coherence map example produced by the SAR Interferometry Tool-
box.

Figure 4.8: A digital elevation map produced from DLR dataset. All interfero-
metric steps are performed by SAR Interferometry Toolbox Height of ambiguity
is 167.89 m/cycle.

4.2.4 Tests and Analyses

Image Registration

Image registration is an important step for SAR Interferometry processing. The

accuracy of the image registration algorithm has a direct effect on relative phase

preservation. Consequently, the image registration algorithm implemented in SAR
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Interferometry Toolbox has been tested for different scenarios.

Test scenes which we used in our experiments can be seen in Figure 4.9. We

create a synthetic scene that contains some distinct features which image registra-

tion algorithms can use. We carried out our tests over two different version of this

scene, a noise free versions and a noisy version with an SNR of 0 dB. When images

were exposed to higher noise levels, it becomes very hard to select features in the

images. Therefore the images with 0 dB SNR’s were used for testing procedure.

Master and Slave images are shifted by 200 pixels in the horizontal direction and

by 100 pixels in the vertical direction relative to each other.

Our purpose is to measure the accuracy of our image registration algorithm in

estimating the relative shifts between the master and slave images. In this version

of the toolbox, we limit the scope of the registration process to translations only,

and do not consider other rigid registration problems involving rotation or scaling,

as well as non-rigid registration problems involving, e.g., skewing or stretching.
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(a) Synthetic Master Image, no noise is
added

(b) Synthetic Slave Image, no noise is
added

(c) Synthetic Master Image, SNR=0 dB (d) Synthetic Slave Image, SNR=0 dB

Figure 4.9: Synthetic SAR Images for the Image Registration Test.
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Our test procedure basically checks the robustness of the algorithm to human

mistakes and noise. The algorithm needs human involvement. The user should

select several regions of interest from both master and slave images which show

high similarity. However, the user may not be as precise as he or she should

be during this selection. Thus, we have investigated how much the algorithm is

immune to human error. Table 4.2 and 4.3 show the result we have obtained from

our test procedures. The test procedure we have followed for the first table is as

follows. During the selection of control points, we assume that the user makes

the specified amount of error while selecting control points in master and slave

images. Suppose the user has to select two pairs. We assume that the user makes

the same amount of error for the first pair and the second pair. For instance, the

scenario that the user makes a 1 pixel error in X dimension for both of the pairs

fits the procedure given in the first table. For the second table, we assume that

the user selects one of the pairs perfectly, and makes an error for the other pair.

The amounts of the selection error in terms of pixels are given in the table.

We also tested our method on real data. For this task, the Mount Vesuvius

dataset was used. Since the images provided in this dataset are co-registered, we

have intentionally created a shift between those images. Then, we have applied

the same procedure previously used for the synthetic data tests. The results are

presented in Tables 4.4 and 4.5. When we interpret the results of the registration

tests, we can easily state that the registration algorithm works as expected. Unless

the user selects some control points from outside of autocorrelation window used

in the registration algorithm, it is expected that the registration algorithm we

implemented would produce satisfactory results.
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Data Type ∆Xerr ∆Yerr ∆̂X ∆̂Y

1 px 0 px 200 px 100 px
∆X =
200 px

5 px 0 px 200 px 100 px

∆Y =
100 px

10 px 0 px 200 px 100 px

No noise 1 px 1 px 200 px 100 px
5 px 5 px 200 px 100 px
10 px 10 px 200 px 100 px

1 px 0 px 200 px 100 px
∆X =
200 px

5 px 0 px 200 px 100 px

∆Y =
100 px

10 px 0 px 200 px 100 px

0 dB noise 1 px 1 px 200 px 100 px
5 px 5 px 200 px 100 px
10 px 10 px 200 px 100 px

Table 4.2: Registration Test Results for Synthetic SAR dataset shown in Figure
4.9. The test procedure is as follows. We assume that the user makes the specified
amount of error while selecting control points in master and slave image. Suppose
the user has to select two pair, it is assumed that the user makes the same amount
of error while selecting both pairs. Here, we present the amount of shift between
images which the registration algorithm calculated. The amount of shifts between
input master and slave images in X and Y dimension are denoted by ∆X and ∆Y ,
respectively. ∆Xerr and ∆Yerr represent the selection errors between the control
points in master and slave images in X and Y dimensions, respectively.
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Data Type ∆Xerr1 ∆Xerr2 ∆Yerr1 ∆Yerr2 ∆̂X ∆̂Y

1 px 0 px 0 px 0 px 200 px 100 px
∆X =
200 px

5 px 0 px 0 px 0 px 200 px 100 px

∆Y =
100 px

10 px 0 px 0 px 0 p 200 px 100 px

No noise 0 px 1 px 0 px 0 px 200 px 100 px
0 px 5 px 0 px 0 px 200 px 100 px
0 px 10 px 0 px 0 px 200 px 100 px
1 px 1 px 0 px 0 px 200 px 100 px
5 px 5 px 0 px 0 px 200 px 100 px
10 px 10 px 0 px 0 px 200 px 100 px

1 px 0 px 0 px 0 px 200 px 100 px
∆X =
200 px

5 px 0 px 0 px 0 px 200 px 100 px

∆Y =
100 px

10 px 0 px 0 px 0 px 200 px 100 px

0 dB Noise 0 px 1 px 0 px 0 px 200 px 100 px
0 px 5 px 0 px 0 px 200 px 100 px
0 px 10 px 0 px 0 px 200 px 100 px
1 px 1 px 0 px 0 px 200 px 100 px
5 px 5 px 0 px 0 px 200 px 100 px
10 px 10 px 0 px 0 px 200 px 100 px

Table 4.3: Registration Test Results for Synthetic SAR dataset shown in Figure
4.9. The test procedure is as follows. As previous test procedure described in
Figure 4.2, we assume that the user makes the specified amount of error while
selecting control points in master and slave image. However, the user selects one
of the pairs perfectly in this time, and makes error for the other pair. The amount
of the selection error in terms of pixel are defined in the table. Here, we present
the amount of shift between images which the registration algorithm calculated.
The amount of shifts between input master and slave images in X and Y dimension
are denoted by ∆X and ∆Y , respectively. ∆Xerr1 and ∆Xerr2 are the selection
errors between the first and second control pair in master and slave images in X,
respectively. ∆Yerr1 and ∆Yerr2 represent the same type error for Y dimension.
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(a) Shifted Mount Vesuvius Master Image

(b) Shifted Mount Vesuvius Slave Image

Figure 4.10: Mount Vesuvius Data for the the registration test. The control points
are pointed out with red squares.
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Data Type ∆Xerr ∆Yerr ∆̂X ∆̂Y

1 px 0 px 100 px 100 px
∆X =
100 px

5 px 0 px 100 px 100 px

∆Y =
100 px

10 px 0 px 100 px 100 px

1 px 1 px 100 px 100 px
5 px 5 px 100 px 100 px
10 px 10 px 100 px 100 px

Table 4.4: Registration Test Results for the Mount Vesuvius dataset shown in
Figure 4.10. The test procedure is as follows. We assume that the user makes
the specified amounts of error while selecting control points in master and slave
images. Suppose the user has to select two pairs of control points. It is assumed
that the user makes the same amount of error while selecting both pairs. Here,
we present the amount of shift between images which the registration algorithm
calculated. The amounts of shift between input master and slave images in X and Y
dimension are denoted by ∆X and ∆Y , respectively. ∆Xerr and ∆Yerr represents
the selection errors between the control points in master and slave images in X
and Y dimensions, respectively.

Complex Multilooking and 2-D Phase Unwrapping

Complex multilooking and 2-D phase unwrapping are the other steps that affect

the preservation of the interferometric phase. We tried to measure the performance

of these steps with respect to different system parameters and different scenarios.

First of all, we created different height profiles in order to test our system for

different land shapes. These profiles are pyramid, diagonal plane, sheared planes,

parabolic surface and cut pyramid. They can be seen in Figure 4.11.
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Data Type ∆Xerr1 ∆Xerr2 ∆Yerr1 ∆Yerr2 ∆̂X ∆̂Y

1 px 0 px 0 px 0 px 100 px 100 px
∆X =
100 px

5 px 0 px 0 px 0 px 100 px 100 px

∆Y =
100 px

10 px 0 px 0 px 0 p 100 px 100 px

0 px 1 px 0 px 0 px 100 px 100 px
0 px 5 px 0 px 0 px 100 px 100 px
0 px 10 px 0 px 0 px 100 px 100 px
1 px 1 px 0 px 0 px 100 px 100 px
5 px 5 px 0 px 0 px 100 px 100 px
10 px 10 px 0 px 0 px 100 px 100 px

Table 4.5: Registration Test Results for Mount Vesuvius dataset shown in Figure
4.10. The test procedure is as follows. As in the previous test procedure described
in Figure 4.2, we assume that the user makes the specified amount of error while
selecting control points in master and slave images. However, the user selects one
of the pairs perfectly this time, and makes an error for the other pair. The amount
of the selection error in terms of pixels are given in the table. Here, we present the
amount of shift between images which the registration algorithm calculated. The
amounts of shift between input master and slave images in X and Y dimension are
denoted by ∆X and ∆Y , respectively. ∆Xerr1 and ∆Xerr2 are the selection errors
in X between the master and slave images, in the first and the second control pairs,
respectively. ∆Yerr1 and ∆Yerr2 represent the same type error in the Y dimension.
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(a) Pyramid (b) Diagonal Plane

(c) Sheared Planes (d) Parabolic Surface

(e) Cut Pyramid

Figure 4.11: Synthetic Phase Profiles. Here, the five profiles used for 2-D phase
unwrapping test operation are presented. These are pyramid, diagonal plane,
sheared planes, parabolic surface, and cut pyramid.
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Test data were created by doing phase wrapping operation over the phase

profiles shown in 4.11, and adding white Gaussian complex noise.

Here, we tested our algorithm in two different ways. First, the effect of multi-

looking window size on phase error was investigated. Then, the performance of the

2-D phase unwrapping algorithm was tested for different scenarios and parameters.

As it was pointed out in [3] [16], interferometric phase, relative phase in other

terms, is calculated by the formula given by:

ϕML = ∠

( N∑
n=1

u∗1u2

)
(4.6)

In fact, this is maximum likelihood (ML) estimation of the relative phase. In

theory, this estimation should lead to a better phase value with increasing the size

of the multilooking window and increasing coherence values, as it is depicted in

Figure 4.12.

In the interest of validating this relation, we calculated some interferograms

from noisy data with different multilooking window sizes. Several synthetic inter-

ferogram examples are shown in Figure 4.13 and 4.14.
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Figure 4.12: Standard deviation of the phase estimator given in Equation 4.6 with
respect to multilooking and coherence. The image was taken from [3]

(a) Single look interferogram from pyra-
mid phase profile with 0db SNR.

(b) Single look interferogram from
parabolic plane phase profile with 0db
SNR.

Figure 4.13: Synthetic Interferogram Examples.
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In order to see the effect of the multilooking operation, we recreated those in-

terferograms with different multilooking window sizes. After phase unwrapping,

phase RMSE was calculated by using the unwrapped interferograms and the orig-

inal phase profiles. RMSE values with respect to window sizes are presented in

Figure 4.15. Also, height RMSE values are calculated for a system which has 100

meter height of ambiguity, and they are shown in Figure 4.16. In all scenarios,

RMSE values decrease with the increasing size of the multilooking window. This

result is consistent with Figure 4.12.

Another important step for the SAR Interferometry Process is 2-D phase un-

wrapping. In SAR Interferometry Toolbox v.1, a path dependent 2-D phase un-

wrapping method, Itoh’s Method, was implemented. This method is quite sensitive

to the phase inconsistencies in the data, i.e., residues. The presence of residues

violate the path independence property of the interferograms. As an example to

this phenomenon, the interferogram and residue map in Figure 4.14 can be ana-

lyzed. Evidently, the number of residues are proportional to the noise level. On

the other hand, there are other factors which affect the presence of the residues,

such as the layover effect.

Here, we tested how the multilooking operation make can the interferogram

better for the 2-D phase unwrapping algorithm. In Figures 4.17, 4.18, and 4.19,

unwrapped interferograms. They were created by using multilooking windows of

different sizes.
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(a) Single look interferogram of parabolic
surface.

(b) Residue map of single look interfero-
gram.

Figure 4.14: A Single look interferogram and its residue map.

(a) Phase RMSE for Pyramid (b) Phase RMSE for Parabolic Surface

(c) Phase RMSE for Diagonal Plane

Figure 4.15: Phase RMSE’s with respect to different multilooking parameters are
presented. Each one of these graphs shows the RMSE in phase estimation for a
different phase profile.
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(a) Height RMSE for Pyramid (b) Height RMSE for Parabolic Surface

(c) Height RMSE for Diagonal Plane

Figure 4.16: Height RMSE’s with respect to different multilooking parameters for
a system has height of ambiguity hamb = 100m. Each one of these graphs are
denotes the RMSE in height estimation for a different phase profile.
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(a) For multilooking window size 1× 1 (b) For multilooking window size 1× 2

(c) For multilooking window size 1× 5 (d) For multilooking window size 2× 5

(e) For multilooking window size 5× 5 (f) For multilooking window size 10× 10

Figure 4.17: Unwrapped interferograms of pyramid. Thay are averaged with dif-
ferent multilooking windows. Clearly, we got better results with the increasing
size of the multilooking window.
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(a) For multilooking window size 1× 1 (b) For multilooking window size 1× 2

(c) For multilooking window size 1× 5 (d) For multilooking window size 2× 5

(e) For multilooking window size 5× 5 (f) For multilooking window size 10× 10

Figure 4.18: Unwrapped Interferograms of parabolic surface. They are averaged
with different multilooking windows. Clearly, we got better results with the in-
creasing size of the multilooking window.
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(a) For multilooking window size 1× 1 (b) For multilooking window size 1× 2

(c) For multilooking window size 1× 5 (d) For multilooking window size 2× 5

(e) For multilooking window size 5× 5 (f) For multilooking window size 10× 10

Figure 4.19: Unwrapped Interferograms of diagonal plane. They are averaged with
different multilooking windows. Clearly, we got better results with the increasing
size of the multilooking window.
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On the other hand, there are height profiles that contains phase inconsistencies

which multilooking operation cannot handle. Sharp and rapid phase changes may

not be resolved by multilooking. In order to test this, we tested our algorithm on

two different phase profiles, sheared planes and cut pyramid. Those profiles are

depicted in Figure 4.11. Those profiles contain sharp phase transitions which are

hard to unwrap.

We tried to unwrap those phase profiles with our 2-D phase unwrapping algo-

rithm. The results are provided in Figures 4.20 and 4.21. The regions which are

incorrectly unwrapped can be seen easily. A phase unwrapping error corresponds

to a phase error at the scale of height of ambiguity which is on the order of tens of

meter. This is much higher than an acceptable error range. Therefore, these re-

gions which have potentially low phase stability are excluded from DEM and error

analysis [11]. The implemented algorithm cannot exclude the areas which show

low phase stability, so the error analysis for this algorithm may not be informative

about the performance. Here, we tried to show that the implemented algorithm is

capable of doing the unwrapping operation successfully in certain cases.
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(a) For multilooking window size 1× 1 (b) For multilooking window size 1× 2

(c) For multilooking window size 1× 5 (d) For multilooking window size 2× 5

(e) For multilooking window size 5× 5 (f) For multilooking window size 10× 10

Figure 4.20: Unwrapped interferograms of cut pyramid plane. They are filtered
with different multilooking windows.
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(a) For multilooking window size 1× 1 (b) For multilooking window size 1× 2

(c) For multilooking window size 1× 5 (d) For multilooking window size 2× 5

(e) For multilooking window size 5× 5 (f) For multilooking window size 10× 10

Figure 4.21: Unwrapped interferograms of sheared plane. They are filtered with
different multilooking windows.
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Even though we increase the size of the multilooking window, we could not get

a satisfactory result. These sharp and quick phase transitions basically breaks the

path independency of the interferograms. Therefore, the implemented 2-D phase

unwrapping algorithm fails eventually.

In the real world, there are many factors that can cause low coherence or

geometric distortions. For example, it is very likely to observe foreshortening or

shadow effect in mountainous regions due to high slope. Eventually, the need of

a better 2-D phase unwrapping algorithm emerges in order to increase the quality

of DEMs.

Discussion

In this section, the outcomes which can be inferred from the test results are dis-

cussed.

By examining the results of the registration tests, we can say that our algo-

rithm is fairly immune to human error. In our trials, we tried all human error

combinations as much as we can, such as selecting one control pair correctly and

selecting the other one with some pixel error. Unless the user error exceeds the size

of the auto-correlation window, the registration algorithm can tolerate this kind

of mistakes. On the other hand, the real data may contain different distortions,

and these distortions may decrease the performance of the registration algorithm,

eventually.

Clearly, we got better results with the increasing size of the multilooking win-

dow. The increasing size of the multilooking window increased the accuracy of

relative phase estimates. However, this smoothing causes a resolution loss as well.

If the scene contains sharp transitions, like rough mountains, then we may lose

the relevant phase information for rough surfaces. Consequently, the size of the

multilooking window is a parameter which should be adjusted based on the scene
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properties and system parameters.

Lastly, we evaluated the 2-D phase unwrapping algorithm. Previously, we

mentioned that the algorithm which we implemented is a path-dependent phase

unwrapping algorithm. As a consequence, we showed that any phase inconsistency,

i.e., residue, can create a phase unwrapping error. In the real world, there are many

factors which create such phase residues in the data. For example, coherence loss

due to large time delays between acquisitions and sharp transitions in the scene can

cause that. Even though, our method produces good results for some scenarios, a

better phase unwrapping algorithm is a must for SAR Interferometry processing

with real data.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we have proposed two tools for SAR Interferometry processing.

First, SDCIA was presented as a new image enhancement method to solve the

autofocusing problem and preservation of relative phase between interferometric

channels. Secondly, we have developed the SAR Interferometry Toolbox for fun-

damental SAR Interferometry processing.

As we stated, Sparsity-driven Coupled Imaging and Autofocusing for Interfero-

metric SAR (SDCIA) is a joint image enhancement and reconstruction algorithm.

In comparison to the existing image reconstruction algorithms, it enhances the

first and second SAR images jointly to preserve the relative phase information

between the first and second acquisitions, and it handles the autofocusing prob-

lem to eliminate the effect of platform motion errors at the same time. To show

the effectiveness of our method, we have performed preliminary tests on synthetic

SAR data. In addition, we compared it with existing methods, Sparsity-driven

Autofocus by Önhon and Çetin [20] and Joint Enhancement by Dual Descent by

Ramakrishnan et al. [23]. Based on the results we got, we discussed the pros and
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cons of SDCIA.

As the second tool, we produced the SAR Interferometry Toolbox within the

content of the ASELSAN SAR Interferometry Project. SAR Interferometry Tool-

box is a software processor for SAR Interferometry. It is capable of performing the

fundamental steps for IfSAR which are registration, interferogram generation, 2-D

phase unwrapping, and phase-to-height conversion. The contents of these steps

are explained in a detailed way, and their performances are demonstrated with the

presented test results.

5.2 Potential Research Directions

The work performed in this thesis can be extended in several directions, which we

discuss briefly in subsequent subsections.

5.2.1 Testing SDCIA on a real world scenario

In our trials, the performance of SDCIA was assessed only on synthetic scenes. It

has been demonstrated that SDCIA has some advantages over existing methods.

Testing SDCIA on real datasets would be a natural next step of this research.

Testing our method on more realistic data may reveal more detailed information

about the capabilities of SDCIA.

5.2.2 Extension of SDCIA to more than two channels

In this study, we have tested the performance of SDCIA when there are two in-

terferometric image acquisitions. In the remote sensing literature, there are image

modalities which needs more than two image acquisitions. One of these image

modalities is Differential Interferometric SAR (DINSAR). The main aim of this
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image modality is to measure the changes on the Earth’s surface. Our approach

can in principle be applied over the images used in Differential IfSAR.

Another image modality for which SDCIA can be useful is Tomographic SAR

(TomoSAR). A 3-D model of the scene with high resolution would be obtained as

the result of TomoSAR processing. TomoSAR needs more than two images of the

scene. Therefore, when SDCIA is used in the context of TomoSAR processing, the

precision of the 3-D model constructed by TomoSAR may increase.

5.2.3 Application of the Proposed Method to other do-

mains

Our method can be adapted to multichannel imaging modalities other than SAR

and application domains other than remote sensing of the earth. For example,

SDCIA can be used in multichannel medical imaging modalities. Motion errors

are a serious problem for medical images as well. During the imaging procedure,

patients can move unintentionally, or the images may degrade due to constant

motion of heart beats. SDCIA can be a solution to produce higher quality images.
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Appendix A

In this appendix, we describe how we get from Eqn. (3.7) to Eqn. (3.8). The cost

function in (3.7) for phase error estimation is as follows:

∆φ
(n+1)
1m = argmin

∆φ1m

L(f
(n+1)
1 ,∆φ1m) (A.1)

∆φ
(n+1)
2m = argmin

∆φ2m

L(f
(n+1)
2 ,∆φ2m) (A.2)

These equations can be rewritten as follows:

∆φ
(n+1)
1m = argmin

∆φ1

∥∥∥g1m − exp(j∆φ1)C1m(φ
(n)
1 )f

(n+1)
1

∥∥∥2

2
(A.3)

∆φ
(n+1)
2m = argmin

∆φ2

∥∥∥g2m − exp(j∆φ2)C2m(φ
(n)
2 )f

(n+1)
2

∥∥∥2

2
(A.4)

where ∆φ
(n+1)
1m and ∆φ

(n+1)
2m are the phase error estimates at iteration n + 1 cor-

responding to the mth aperture position of the first and second acquisitions, re-

spectively. Similarly, g1m, g2m, C1m(φ(n)), C2m(φ(n)) are the parts of the collected

data and observation matrix which are related to the mth position of the first and

second acquisitions.

If we evaluate the norm term in the cost function, we get the following expres-

sion. For simplicity, we will do it for only single acquisitions case.
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∥∥gm − ej∆φCm(φ(n))f (n+1)
∥∥2

2
= (gm−ej∆φCm(φ(n))f (n+1))H(gm−ej∆φCm(φ(n))f (n+1))

= gHmgm − gHme(jφ1D(m))Cmf
(n+1) − f (n+1)HCH

m

e(−jφ1D(m))︷ ︸︸ ︷
(e(jφ1D(m)))H gm+

f (n+1)HCH
m (e(jφ1D(m)))H︸ ︷︷ ︸

e(−jφ1D(m))

e(jφ1D(m))Cmf
(n+1)

If we evaluate the norm expression, we will get the following.

= gHmgm − gHm [cos(φ1D(m)) + j sin(φ1D(m))]Cmf
(n+1)−

f (n+1)HCH
m [cos(φ1D(m))− j sin(φ1D(m))]gm + f (n+1)HCH

mCmf
(n+1)

= gHmgm − 2R{cos(φ1D(m))f (n+1)HCH
mgm}+ 2R{j sin(φ1D(m))f (n+1)HCH

mgm}+

f (n+1)HCH
mCmf

(n+1)

= gHmgm − 2 cos(φ1D(m))R{f (n+1)HCH
mgm}+ 2 sin(φ1D(m))I{f (n+1)HCH

mgm}+

f (n+1)HCH
mCmf

(n+1)

Let R{f (n+1)HCH
mgm} = <, and I{f (n+1)HCH

mgm} = =
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Since we can write sin(φ1D(m)) as cos(φ1D(m)− π
2
), the equation becomes

∥∥gm − ej∆φCm(φ(n))f (n+1)
∥∥2

2
= gHmgm− 2[< cos(φ1D(m)) += cos(φ1D(m)− π

2
)]+

f (n+1)HCH
mCmf

(n+1)

The cosines in the previous equation can be added with phasor addition rule to

a single cosine. The phasors for the terms < cos(φ1D(m)) and = cos(φ1D(m)− π
2
)

can be seen below.

P1 = <ej0 = < P2 = =e−
jπ
2 = −j=

If we add them, we get

P1 + P2 = <+ (−j=) = <− j=

The magnitude and phase of final phasor can be calculated as follows.

magnitude =
2
√
<2 + =2 phase = arctan(

−=
<

)

As final result, we would get the following equation.

∥∥gm − ej∆φCm(φ(n))f (n+1)
∥∥2

2
= gHmgm − 2

2
√
<2 + =2 cos[φ1D(m) + arctan(

−=
<

)]+

f (n+1)HCH
mCmf

(n+1)
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