
Design of a Co-simulation Environment for the Docking Maneuver of an Autonomous

Underwater Vehicle using Radio Frequency and Acoustic Hybrid Communication

by

Oytun Erdemir

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Electronics Engineering

Sabanci University

2018

c© Oytun Erdemir 2018

All rights reserved.

to my beloved wife Begüm...

v

ACKNOWLEDGEMENTS

First and foremost, I would like to express by gratitude to my supervisor Dr.

Ahmet Onat for his constant guidance, knowledge and support.

I am thankful to my thesis jury members, Dr. Özgür Gürbüz and Dr. Sandor

Markon for accepting to be part of thesis jury and their valuable feedback.

I would like to thank my family for their constant support and encouragements.

I would like to thank my wife Begüm for her constant love and support during my

studies and thesis. I will forever be grateful for that.

I thank my fellow project mates and collegues Saeed Nourizadeh Azar and Gökalp

Çetin, for their support in this thesis. Also I thank my friends, Alper Güner, Didem

Koçhan, Emrecan Durmaz, Abdurrahman Burak, Başak Tavşanoğlu for the fun envi-

ronment they have created during my years in Sabancı University.

This survey has been done as part of the work that is being undertaken for the

SWARMs (Smart and Networking Underwater Robots in Cooperation Meshes) research

project (ECSEL project number: 662107).

vi

ABSTRACT

Design of a Co-simulation Environment for the Docking

Maneuver of an Autonomous Underwater Vehicle using Radio

Frequency and Acoustic Hybrid Communication

OYTUN ERDEMİR

M.Sc. Thesis, July, 2018

Supervisor: Assoc. Prof. Dr. Ahmet Onat

In today’s world, more research is needed on both underwater communication networks

and autonomous underwater vehicle control. The main reason for this is, most of the

modern technologies lose its function, partially or completely, due to negative condi-

tions in the underwater environment. In this thesis, the starting point is to create

a networked control system (NCS) using acoustic and Radio Frequency (RF) hybrid

communication. Acoustic communication can be used even in long ranges, up to kilo-

meters, but it offers low data rate and high propagation delays. On the other hand, RF

communication provides high data rates and low delays, however, due to high attenua-

tion, it can only be used in a 10-meter range in the modern technology. The proposed

hybrid communication system uses RF communication in 10-meter range and acoustic

communication in outside of that range. A co-simulation environment with Gazebo, a

realistic physics simulator of the vehicle dynamics, and TrueTime, a realistic simulator

of the real-time computer and physical characteristics and protocols of the communica-

tion channel, has been created for this purpose. However, since the selected simulators

both have dynamic time step solvers, the time difference between simulation times

vii

causes excessive time skew which can lead to instability of control loops of the NCS.

Thus, a time synchronization is applied between the two simulation environments. The

main contributions of this thesis are creating the co-simulation environment, solving

the time synchronization problem and characterizing the synchronization delays and

lowering the delays to ensure it will not affect the simulation realism.

viii

ÖZET

Bir Otonom Sualtı Aracının Radyo Frekans ve Akustik

Karma Haberleşme Kullanarak Kenetlenme Manevrası

Uygulaması için Eşzamanlı Benzetim Ortamı Tasarlanması

OYTUN ERDEMİR

Yüksek Lisans Tezi, Temmuz, 2018

Danışman: Doç. Dr. Ahmet Onat

Günümüzde hem haberleşme hem de kontrol alanlarında sualtı robotlarıyla ilgili araştırmalar

yapılmasına önemli ölçüde gerek duyulmaktadır. Bu durumun başlıca nedeni ise su-

altındaki olumsuz koşullar nedeniyle halihazırdaki birçok teknolojinin işlevlerini tam

veya kısmi olarak kaybetmesidir. Bu tez, bir karma sualtı haberleşme sisteminin bir

kontrol uygulamasında kullanılarak bir ağ bağlantılı kontrol sistemi oluşturmasıyla or-

taya çıkmıştır. Akustik haberleşme, yüksek mesafelerde, kilometreler mertebesinde,

kullanılabilmesine rağmen, düşük veri hızına ve yüksek yayılma gecikmesine sahiptir.

Diğer yandan, radyo frekans (RF) haberleşme, yüksek veri hızına ve düşük gecikmelere

sahip olsa da suyun özellikleri sebebiyle yüksek sönümlenmeye maruz kalmakta ve 10

metre menzilini aşamamaktadır. Önerilen karma haberleşme sistemi, 10 metre men-

zilde RF haberleşme, bu menzilin dışında ise akustik haberleşme kullanılarak tasar-

lanmıştır. Bu amaçla, araç dinamiklerinin gerçekçi fizik benzetimini yapan Gazebo ile

gerçek zamanlı bilgisayar ve haberleşme kanalının fiziksel karakteristiklerinin ve pro-

tokollerinin benzetimini yapan TrueTime ile bir eşzamanlı benzetim sistemi oluşturulmuştur.

Ancak, iki benzetim aracı da dinamik zaman adımlarına sahip oldukları için, ar-

ix

alarında zaman sapması oluşarak, ağ bağlantılı kontrol sisteminin kontrol çevrimlerinde

kararsızlığa yol açabilmektedir. Bu sebeple, iki benzetim aracı arasında bir zaman

senkronizasyonu yöntemi uygulanmıştır. Bu tezin ana katkıları, eşzamanlı benzetim

sistemini oluşturmak, zaman senkronizasyonu problemine çözüm bularak, bu çözüm

sonucunda ortaya çıkacak zaman farklarının karakterize edilerek, sistemin gerçekçiliğini

etkilememesini sağlayacak seviyeye indirmektir.

x

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . v

ABSTRACT . vi

ÖZET . viii

LIST OF FIGURES . xiii

LIST OF TABLES . xiv

LIST OF SYMBOLS . xv

LIST OF ACRONYMS/ABBREVIATIONS . xvi

1. INTRODUCTION . 1

2. BACKGROUND . 3

2.1. Co-Simulation Approaches . 3

2.2. Models of the Communication Channels for

Networked Control Systems . 4

2.2.1. Acoustic Communication . 4

2.2.1.1. Acoustic Path Loss Model 4

2.2.1.2. Acoustic MAC Protocols 6

2.2.2. RF Communication . 6

2.2.2.1. RF Path Loss Model 6

2.2.3. RF MAC Protocols . 7

2.3. Realistic Simulation of Underwater Networked Control Systems 7

2.3.1. Gazebo . 8

2.3.2. Robot Operating System . 9

2.3.3. Unmanned Underwater Vehicle Simulator 11

2.3.3.1. Thruster Manager . 11

2.3.3.2. Controllers . 11

2.3.3.3. Vehicle Models . 12

2.3.3.4. World Models . 12

2.3.4. TrueTime . 12

2.3.4.1. Network Block . 12

2.3.4.2. Kernel Block . 13

xi

3. PROBLEM DEFINITION . 15

3.1. Hybrid Communication . 15

3.2. Docking Maneuver . 15

3.3. Co-Simulation . 16

4. CO-SIMULATION ENVIRONMENT . 17

4.1. Time Synchronization . 19

4.1.1. Proposed Method for Synchronization 20

4.1.2. Modifications on Real-Time Pacer Block 21

4.2. Control Method . 22

4.2.1. PID parameter selection . 23

4.2.2. Waypoint Management . 26

4.2.3. Heading Reference Calculation 28

4.3. Networked Control Architecture . 28

4.4. Communication Protocols . 30

4.4.1. Medium Access Scheme for Acoustic Mode 30

4.4.1.1. Time-Division Multiple Access 30

4.4.1.2. Frame Time for Acoustic Mode 31

4.4.2. Medium Access Scheme for RF Mode 32

4.4.3. Packet Structure . 33

4.4.4. Adaptive Power Control . 34

5. EXPERIMENTS AND RESULTS . 35

5.1. EXPERIMENTAL DESIGN . 35

5.1.1. AUV Thruster Controller . 35

5.1.2. Tasks Performed within the AUV Real-Time Computer 38

5.1.3. Tasks Performed within the Docking Station Real-Time Computer 40

5.1.4. Application of the Calculated Force to the AUV 41

5.1.5. TrueTime Model for Experiments 43

5.1.6. Implementation of TDMA . 44

5.2. Simulation Results . 44

5.2.1. Control Delay Characterization 44

5.2.2. Experiment Results . 47

xii

5.2.3. Approach to the Docking Station in Still Water 49

5.2.4. Docking Maneouvre with Water Currents 51

6. CONCLUSION . 54

REFERENCES . 55

APPENDIX A: MODIFIED REAL-TIME PACER CODE 59

xiii

LIST OF FIGURES

2.1 Gazebo Simulation Screen . 8

2.2 TrueTime Network Block Settings Screen. 13

4.1 Block diagram overview and the detail of the Simulink model for

the proposed system implementation 17

4.2 Real-Time Pacer Library Blocks. 21

4.3 Closed Loop of the Control System. 25

4.4 Waypoint Management. 27

4.5 Block diagram of AUV and docking station navigation systems.

The acoustic and RF communication links are shown in red and

blue respectively. 29

4.6 TDMA in both downstream and upstream periods 31

4.7 Packet structure from the docking station (downstream) packets . 34

4.8 Packet structure for AUV messages 34

5.1 Root locus analysis of the simplified linear model. 37

5.2 Step responses of Model versus Simulation. 38

5.3 World Frame and Body Frame. 42

5.4 TrueTime model used in the Experiments. 43

5.5 Time difference between Gazebo and Simulink simulation clocks. . 45

5.6 A representative screen-shot of the simulation environment in Gazebo. 48

5.7 AUV time to dock for acoustic only and hybrid. 50

5.8 Motive power for acoustic only and proposed hybrid. 51

5.9 Time to dock w.r.t. different current velocities. 52

5.10 Cumulative error w.r.t different current velocities. 53

xiv

LIST OF TABLES

5.1 Standard Deviation with respect to Real-Time Update Rate and

Maximum Step Size . 46

5.2 Simulation Parameters. 48

5.3 Communication Channel Parameters. 49

xv

LIST OF SYMBOLS

r Distance

k Spreading Factor

f Frequency

R Rayleigh Fading Random Variable

Pc Circuit power

tds Docking Station Packet time

Kp Proportional gain

Ki Integral gain

Kd Derivative gain

Tp Derivative time

Ts Sampling Period

α Absorption Coefficient

ω Frequency in rad/s

µ Permeability of space

ε Permittivity of water

σ Conductivity of water

xvi

LIST OF ACRONYMS/ABBREVIATIONS

AUV Autonomous Underwater Vehicle

NCS Networked Control System

RF Radio Frequency

ROS Robot Operating System

SIL Software-In-the-Loop

UUVSim Unmanned Underwater Vehicle Simulator

DoF Degree of Freedom

API Application Programming Interface

MAC Medium Access Protocol

SNR Signal to Noise Ratio

TDMA Time Division Multiple Access

CSMA Carrier-Sense Multiple Access

CSMA/CD Carrier-Sense Multiple Access with Collision Detection

FDMA Frequency Division Multiple Access

USBL Ultra Base Short Line

PID Proportional Integral Derivative

1

1. INTRODUCTION

Leveraging the possibilities of swarms of underwater robots has attracted signifi-

cant attention since it helps to avoid sending divers to hazardous underwater missions.

Underwater applications range from instrument monitoring and climate recording to

control and maintenance. To improve the efficiency of underwater missions, different

types of Autonomous Underwater Vehicles (AUV) need to collaborate and communi-

cate. Hence, there is a growing demand for high-speed communication between AUVs

and also with base stations. However, data transmission in the harsh underwater envi-

ronment poses major challenges, such as a limited bandwidth, long propagation delay

and the unreliability of the environment. Under these conditions, establishing a reliable

high rate data link is a critical task [1] [2].

The acoustic waves used in underwater acoustic communication can travel long

distances for relaying information. However, due to high propagation delays and low

data rates of the acoustic signal, it is not suitable for some applications such as remote

guidance [3] [4]. Leveraging Radio Frequency (RF) communication provides high data

rate and drastically reduced propagation delays, but, is constrained by short range

resulting from high attenuation due to high conductivity and permittivity of water.

We consider the remote guidance task of an AUV which must land on a docking

station anchored to the sea floor. Most AUVs do not have a position measurement

device whereas the docking station has the capability to measure the position of the

remote AUV, and then transmit the information to the AUV. This task can be regarded

as a Networked Control System (NCS), where the position is measured by the docking

station, relayed to the AUV over the communication network, which then makes use

of the received position information for its guidance. The sequence is repeated at a

constant rate, which becomes the sampling time of the discrete time NCS. Considering

the data rate and propagation delay limitations of acoustic communication which may

push the NCS to instability, and the short-range constraint of RF communication, we

propose a novel underwater NCS with hybrid acoustic and RF communication modes

2

for implementing a docking maneuver application for AUVs. The system uses the

acoustic mode for long range, which is greater than a threshold distance, and shifts

to RF mode for shorter range. In the acoustic mode with low data rate and high

latency at long range, low sampling rate and low control gains which are sufficient

only for rough navigation must be used to avoid instability. In the RF mode, which

offers high data rates, high sampling frequency and high control gains can be used

instead, for precise maneuvering of AUVs at close proximity of the docking station.

Since the system contains multiple vehicles, it is also required to implement different

communication methods. However, the communication method is the subject of other

ongoing work in parallel.

In this thesis, we will concentrate on a co-simulation platform designed for inte-

grating the Unmanned Underwater Vehicle Simulator (UUVSim) [5] and a MATLAB

Simulink based simulator named TrueTime [6]. UUVSim provides a realistic dynamic

simulation of the underwater environment, AUV motions and hydrodynamic forces.

TrueTime models and simulates hybrid real-time systems, communication networks

and continuous plant dynamics. Especially, it models the real-time computers of the

docking station and the AUVs in the Software-In-the-Loop (SIL) level, and communi-

cation links in the data transport level.

To the best of our knowledge, this is the first series of work which presents a real-

time simulation of an underwater networked control application, considering both the

full dynamics of the system and hybrid acoustic and RF communication for controlling

AUVs in the networked control framework.

3

2. BACKGROUND

In this chapter, existing methods that are used for using two simulation envi-

ronments together will be given followed by, underwater acoustic and radio frequency

channel models, Medium Access Control (MAC) protocols for underwater communica-

tion channels and the simulation tools used in the thesis.

2.1. Co-Simulation Approaches

Co-Simulation is becoming more popular nowadays, as many different simulation

environments are being developed which specialize in different aspects of a problem.

To create a complex simulator that models a complex system, especially in interdisci-

plinary areas, it is often required to combine different simulators. The co-simulation

environments are capable of modeling more complex systems in a desired level of detail.

There are several aspects that should be examined when a co-simulation environ-

ment is being constructed. In this thesis, the main simulators that will be combined in

a co-simulation are MATLAB TrueTime and Gazebo. The main problem is the time

synchronization between these two environments. Time synchronization is especially

important in an NCS since excessive time skew can lead to instability of control loops

which span different simulators. Extensive identifications and analyses have been con-

ducted in [7]. These analyses have been made for discrete event based co-simulations,

continuous time based co-simulations and hybrid co-simulations. In this thesis, the

continuous time based co-simulation have been conducted.

There are examples of co-simulation environments that have been used in the past

[8], which creates and examines co-simulation tools, for example integration of Modelica

and ns-2. One of the examples of TrueTime being used in a co-simulation is also given

in [9]. However, none of the works extensively handle the time synchronization problem,

apart from several mentions of the time synchronization in [9]. Since the used tools

include “ns-2” simulator in the co-simulation environment in the previous researches, it

4

has tools that enable the time synchronization. Since NS-2 is a batch based simulator,

it is simpler to tackle time skews. However in this thesis, none of the described methods

are applicable, since a closed loop control system needs to be implemented with one

part residing in one simulator environment, and the other part residing on the other.

2.2. Models of the Communication Channels for

Networked Control Systems

In this section, physical models such as path loss characteristics of the acoustic

and RF communication channels will be provided, followed by suitable MAC protocols.

2.2.1. Acoustic Communication

In the underwater communication, the effect of path loss is relatively higher

than the air environment. In the long range, the highest bit rate becomes less than

50kb/s, where a 20dB Signal to Noise Ratio (SNR) is observed in the modern modem

characteristics. There are several reasons for the path loss to be higher in underwater,

such as water characteristics (saltiness, density, temperature), terrain properties and

objects in the water. The characteristics that has been used in this thesis for acoustic

channel data rate and range, was based on the one of the modern modem. The modem

that has been chosen was Evologics S2C R 48/78 Underwater Acoustic Modem [10].

2.2.1.1. Acoustic Path Loss Model. Path loss is the weakening of the signal while

it travels from the transmitter to receiver. There are two elements in underwater

acoustic channel, which are absorption loss and spreading loss [11]. Spreading loss

happens because of the area that the acoustic signal covers at it spreads in the medium.

Spreading loss is found by:

PLsp(r) = k10log(r) (2.1)

5

where r is the distance in meters and k is the spreading factor. The spreading

factor k depends on the geometric pattern of spreading of the acoustic waves. If

the spreading is in spherical form spreading to every direction, then spreading factor

becomes k = 2, and if it is bounded into a cylindrical shape, the spreading factor

becomes k = 1. The spreading factor has been chosen as k = 1.5 in this design, since

the system is neither bounded nor totally unbounded [12].

Absorption loss is caused by the friction and the ionic relaxation as the acoustic

wave spreads in the the water body. Absorption loss is then given by:

PLab(r, f) = 10log(α(f))r (2.2)

where r is the distance in kilometres and α is the absorption coefficient which

depends on the specific body of water considered.

The total path loss is given as sum of spreading and absorption losses as [11]:

PL(r, f) = PLsp(r) + PLab(r, f) (2.3)

Then a Rayleigh fading model is applied on received power. Rayleigh fading

model is generally used to describe the attenuation in the received power of a signal

due to the scattering characteristics of the transmission channel. In most cases it can

be described by a zero mean process with a phase evenly distributed between 0 and

2π, such as (2.5):

Pr(r) =
2r

Ω
e

−r2

Ω (2.4)

r => 0,Ω = E(R2). (2.5)

where R is the random variable. Then the path loss is subtracted from the the signal

6

strength to find the received signal strength, such as (2.6).

Pr(dB) = Pt(dB) + PL (2.6)

where Pr(dB) is the received power in dB and Pt(dB) is the transmitted power in dB.

2.2.1.2. Acoustic MAC Protocols. There are several MAC protocols that have been

used extensively and effective comparisons have been made for underwater acoustics

communication. An extensive research and comparison of underwater acoustic MAC

protocols have been performed before [13]. The MAC protocols are divided into two

categories, as contention-free and contention-based protocols. Since the purpose of this

thesis is to create and analyze the performance of the co-simulation environment, it is

sufficient to use one of the most widely used and relatively easy to implement MAC

protocol in this design. Thus, Time Division Multiple Access (TDMA) protocol has

been chosen among different protocols [14].

2.2.2. RF Communication

In RF communication, the path loss is significantly higher than the acoustic

channel. It compensates greatly for this deficiency by its low propagation delay and

high bandwidth. In freshwater, the data rate at 10 MHz frequency is more than 3

Mbit/s [15]. The RF modem that has been chosen was WFS seatooth R© S300 [16]

underwater RF modem.

2.2.2.1. RF Path Loss Model. RF communication path loss is mostly based on fre-

quency, and the water’s conductivity, permittivity and permeability. Since the system

mostly operates on relatively high depths, the water-air boundary loss is neglected.

The path loss is given in [17] as:

PL = RE(jω

√
µε− j σµ

ω
)

20

ln(α(f))
r (2.7)

7

where RE denotes real part, r is distance, ω is the frequency in rad/s, µ is permeability

of space, ε is permittivity of water, and σ is the conductivity of water [17]. After the

path loss is subtracted from the transmitter power, Rayleigh fading is applied in a

similar way to (2.5), using an exponential distribution, to get the final value of received

power.

2.2.3. RF MAC Protocols

The RF MAC Protocols are in the early stage of development and definitive

research results are not available. An investigation of TDMA for underwater RF com-

munication protocol has been given in [18], and a survey of underwater RF protocols

have been realized in [19]. The most appropriate and easy to use method since it is

available in the TrueTime Network Block, and suitable for this design is Carrier-Sense

Multiple Access (CSMA) protocol [20]. The selected MAC protocol was Carrier-Sense

Multiple Access with Collision Detection (CSMA/CD) in this implementation.

2.3. Realistic Simulation of Underwater Networked Control Systems

There are some underwater simulation tools such as Aqua-Sim [21], which is based

on NS-2 for simulating the underwater acoustic networks. However, they do not support

the continuous time dynamics of the plant and disturbances since NS-2, the popular tool

for analyzing communication channels, is batch processing based and therefore, does

not support modelling of closed loop systems that we need to simulate. Hence to have

a more realistic simulation we used Gazebo [22] which is a well-established simulator

that makes it possible to quickly test algorithms, design robots and perform regression

testing using realistic scenarios. Furthermore, we used Unmanned Underwater Vehicle

Simulator (UUVSim) [5], which is an underwater robotics simulator running on Gazebo.

Using UUV-Sim we can simulate multiple underwater robots with realistic underwater

hydrostatic and hydrodynamic effects, thrusters, sensors, and external disturbances.

In contrast to existing solutions, UUVSim reuses and extends the robotics simulation

platform to underwater environments.

8

2.3.1. Gazebo

Gazebo is a simulation environment for simulating realistic physics and physical

dynamics [22]. It is being developed by Open Source Robotics Foundation (OSRF) and

is an open-source project. Gazebo is a versatile tool, and it has plugin support which

enables significant modifiability. There is a vast community that develops variety of

tools to enhance the Gazebo for different purposes. Moreover, Gazebo has an internal

integration with Robot Operating System (ROS). Gazebo has been chosen for this

work because of the mentioned reasons.

Figure 2.1: Gazebo Simulation Screen

In Gazebo tool, there are different variables that affect the simulation properties,

such as the physics calculations per second, simulation time/real time ratio, etc. In

Figure 2.1, the screen of Gazebo simulation interface example has been given. Some of

the simulation properties can be observed and also accessed from the interface. Real

Time Factor, which has been depicted as 1 in Fig. 2.1, is the ratio of Simulation Time

and the Real Time. It displays the amount of simulation time that would be elapsed

in one second of Real Time. The Simulation Time and Real Time, which has been

9

shown as 2 in Fig. 2.1, are the elapsed times for simulation time and the wall-clock

time since the beginning of the simulation, respectively. Iterations and FPS, which

has been numerated as 3 in Fig. 2.1, show the number of physics calculation iterations

made since the beginning of the simulation, and the number of current frames per

second the graphical interface provides.

In Gazebo, a world can be created by two different methods. The first approach

is, opening an empty world in the Gazebo graphical user interface, and populating

it manually with models through the interface. After the world has been populated,

the world can be saved and re-opened through a command prompt. Saving the world

with the graphical interface creates a file, which can be edited to alter some variables

to desired values. The second method is to create a world description file. In the

description file, all the models and world variables can be added or altered. With the

description file, a launch file also is required which starts the Gazebo simulation with

the given world description file. The first method is the simpler and more user-friendly;

and the second method is the more reliable but time consuming method to create a

world model among the two methods.

2.3.2. Robot Operating System

ROS is an operating system that has been developed as a robotics middleware [23].

It is an operating system that handles the implemented tasks concurrently. Since

it supports concurrent task running, multiple vehicles can be operated using ROS.

ROS has a low-level messaging system that provides a communication between the

tasks inside a vehicle. Since it can simulate computer systems and handle the tasks

concurrently, it is also a suitable tool for implementing real-time systems. In this work,

ROS has been used for simulating and implementing the AUV dynamics side of the

simulation.

ROS systems are built and compiled as a package. The packages have unique

names and consist of tasks that are called nodes, unique message and service definitions.

Every different node has a unique name and defined inside the ROS package before

10

they are compiled. The nodes are handled independently, and they run inside ROS

concurrently. The messages and services are the corner stones of ROS’s messaging

system. The messages are created as topics inside the ROS system, topic is the unique

name given to a message type when it is initiated. Any node in the system can subscribe

to or publish to a topic, thus making it an anonymous system. On the other hand,

the services are the two-way communication method in the ROS messaging system.

A node can announce that it can handle a type of service, and it creates a callback

function for that service. When an outside node calls the service, it can pass several

variables to the callback function, then when the callback function concludes, it can

return a value to the caller node. Thus, making the service method a two-way system.

The messaging system of ROS ensures the nodes can share information with

each other, however physical communication networks and protocols are not natively

implemented in ROS. Therefore, an additional simulation environment to have the

most realistic combined network and messaging simulation is required. Also, even

though ROS can simulate the real-time computer system part, TrueTime was used in

this thesis, and reasons for that will be more apparent in the proceeding chapters.

Also, ROS is the binding layer that enable the integration of the two simulation

environments that is used in this work, namely Gazebo and TrueTime, which will be

explained next. Gazebo already has a structural integration with ROS. This provides

the user to access Gazebo internal structures through ROS nodes. Gazebo and ROS

also has a feature that enables them to synchronize to the same simulation time.

Because of this feature, if the ROS can be synchronized with TrueTime, then the

complete co-simulation can perform the simulation in a synchronized manner.

ROS also supports a graphical interface called “rviz”. The rviz interface visual-

izes the messages and sensor data in the ROS system. It is mostly used together with

Gazebo. Since Gazebo cannot visualize the sensor data rviz enhances the Gazebo’s

simulation realism. Gazebo, by providing extra data, such as position data and envi-

ronment models, improves the performance of rviz. An example of Gazebo and rviz

working together can be given as: a camera on the vehicle is visualized through rviz,

11

and Gazebo provides the position data, rviz can render the objects in Gazebo which

then appear in the vehicle’s camera.

2.3.3. Unmanned Underwater Vehicle Simulator

Underwater Unmanned Vehicle Simulator (UUVSim) [5], is a custom package that

has been specially developed for simulating the underwater environment and vehicles.

It has different plugins and models to simulate the environment. The most related

plugins that has been utilized in this thesis are given in the below subsections.

2.3.3.1. Thruster Manager. UUVSim has a built-in global thruster manager for the

vehicles to use. To integrate the thruster manager for a vehicle, a Thruster Allocation

Matrix (TAM) should be provided.

τC = (fx, fy, fz, τr, τp, τy)

This vector represents the output of the controller. fi is the force values and

the τi represents the torque values in the vehicle’s body frame in Euler angles. The

thruster manager then translates the output of the controller to the output thruster

forces. It also manages the saturation of the forces, by taking the maximum thruster

forces into account.

2.3.3.2. Controllers. UUVSim has internal controllers for the models. There is a con-

troller module with a superclass for which can be adjusted to control any vehicle. One

can create its own algorithm code and by tying the controller module to the algorithm

code via superclass, and by determining the forces and torques, the vehicles can be

controlled. The controller superclass also uses the thruster manager. RexROV, the

vehicle model which has been used in this thesis, has an already developed controller,

however since we require the communication channel packets, the vehicle cannot be

controlled via this controller.

12

2.3.3.3. Vehicle Models. The model that has been used in this thesis is the RexROV

model inside UUVSim. The models inside the UUVSim are constructed both visually

and physically. Physical parameters are also available inside the model files which can

be used to determine the underwater dynamics of the vehicle.

2.3.3.4. World Models. The world models inside the UUVSim are based on an empty

underwater world. The empty underwater world only contains a water body with 100

meters depth, a flat terrain and a light source. There are different world models that has

been populated with different types of terrains and objects such as windmills. In this

thesis the empty underwater world model has been chosen, since the implementation

does not require object avoidance or other mechanisms related to objects.

2.3.4. TrueTime

TrueTime is a simulation environment designed for real-time computer systems

and the communication network dynamics [6] as a toolbox of MATLAB Simulink.

TrueTime is a pre-built system, however the source codes are also available, should

anyone wishes to modify and use them. There are mainly two blocks that has been

utilized in this thesis as detailed below. There are also different blocks which will not

be explained. Those blocks are send, receive, battery, wireless network and ultrasound

network blocks.

2.3.4.1. Network Block. Network block is the block that is responsible for handling

the communication network dynamics. Network block supports several built-in MAC

protocols. An example of the settings and variables that can be set in Network block is

given in Figure 2.2. This is a relative example, because when the network type changes,

some related variables are added or removed from the block. Also, network block keeps

track of a schedule which maps all of the nodes that are currently connected to the

network block. The schedule shows when a node is transmitting, waiting to transmit

or idle.

13

Figure 2.2: TrueTime Network Block Settings Screen.

In Figure 2.2, network number is the number assigned for this specific network

node. Number of nodes is the number of nodes that are connected to this network.

Data rate is self explanatory. Minimum frame time sets the minimum amount of

transmission that will happen in one transmission instance. Loss probability, is the

chance of a packet to be lost, and initial seed is the seed for the random number

generator of the loss probability.

2.3.4.2. Kernel Block. Kernel block is the block that is responsible for the real-time

computer system simulation in TrueTime. The kernel blocks consist of different tasks.

Two types of tasks can be created inside a kernel block. The first type is asynchronous,

which is not called periodically, however it is tied to an event, such as message arrival.

Asynchronous tasks are The second type is synchronous tasks. Synchronous tasks are

called periodically and can be assigned a start time and a deadline.

Kernel block also has support for three scheduling algorithm. The designer can

14

select one of the scheduling algorithms based on the requirements of the design. The

supported scheduling algorithms are: fixed-priority scheduling, deadline-monotonic

scheduling and earliest-deadline-first scheduling. In this thesis, fixed-priority schedul-

ing was used.

15

3. PROBLEM DEFINITION

In this thesis, we will implement a realistic simulation of the docking maneuver

using the proposed hybrid communication networked control method with realistic

physics simulator for the vehicle dynamics as well as realistic simulation of the real-time

computer in the firmware source code level and physical characteristics and protocols

of the communication channel in the transport level.

3.1. Hybrid Communication

The starting point of this work was to implement a hybrid network controller

scheme for underwater vehicles to increase the underwater control performance. The

hybrid communication consists of an RF network and an acoustics network. As ex-

plained in 2.2.1, acoustics communication has a low bandwidth and high propagation

delay thus provides a low performance for an NCS. However, it has significantly longer

range with respect to RF communication. Since RF communication has a low range,

it cannot be used as the sole communication method. By combining the high band-

width and high-frequency properties of RF communication, we intend to increase the

performance of the control. This idea has been examined previously in [24] [25] [26].

The underwater docking maneuver system consists a number of vehicles instead of

only one vehicle. Since all of the vehicles would be sending and receiving communication

packets through only one network, Medium Access Control (MAC) protocols will also

have effect on the performance of the docking maneuver. Most appropriate MAC

protocol should be chosen to have the best performance.

3.2. Docking Maneuver

A docking maneuver implementation has been chosen as the main experiment

in this work. The docking maneuver is being performed by the AUV to a docking

station. The vehicle cannot determine its position underwater by its own. The typical

16

technology that is currently used underwater to find the position of a vehicle is the

Ultra Base Short Line (USBL). Since the USBL module is quite heavy and occupies a

rather large space, it is not feasible to attach it to all vehicles. The solution for this

is to have a docking station that hosts the USBL module and determines the position

of any vehicle that is underwater and in the vicinity. By using the communication

network, the docking station periodically sends the position data of the vehicle to the

related vehicle. Then, using this position information, the vehicle applies the control

and performs its task. Since the input information that is used in vehicle guidance

and control is sent through the network, this scenario is an example of a Networked

Control System (NCS).

3.3. Co-Simulation

The goal is to have a simulation environment that is as realistic as possible. To

achieve this, we have selected one of the most realistic underwater physics simulators,

namely Gazebo’s UUVSim package. UUVSim can simulate the underwater dynamics

such as buoyancy, currents, etc. However, to create a realistic NCS simulation, a com-

munication network, protocol simulation and real-time computer system simulations

are also required. Gazebo and ROS do not support a realistic network simulation;

thus, we have selected MATLAB Simulink’s TrueTime to simulate the communication

network and protocol.

Implementing the system with two different simulation environments made the

system a co-simulation. We had to ensure the information exchange between the two

simulations. For this purpose, the MATLAB’s integration library for ROS has been

utilized. By enabling the information exchange between ROS and MATLAB, the con-

nection with Gazebo and MATLAB has also been accomplished. However, having

two different dynamic simulation environments has brought forth the synchronization

problem, and solving the synchronization problem is one of the main contributions of

this thesis.

17

4. CO-SIMULATION ENVIRONMENT

One of our main contributions in this thesis is achieving the co-simulation of the

aforementioned simulation environments. Proposed configuration is depicted in Figure

4.1, with detail on how the Simulink part is implemented. Our objective is to integrate

the different components of the co-simulation environments in a way that we can control

the AUV accurately for accomplishing the tasks. However, there are timing difficulties

for applying co-simulation between TrueTime and Gazebo. The main challenge comes

from the dynamic time steps used in the solvers of the tools, which cause simulation

times of the two simulators to advance in different time increments. This causes the

simulation times to diverge from each other unless precautions are taken, which may

result in the co-simulation to fail and yield unreliable results.

Figure 4.1: Block diagram overview and the detail of the Simulink model for the

proposed system implementation

To provide consistency of the variables across the co-simulation system, messaging

features of ROS are used. For this purpose, Gazebo and ROS are initialized together,

18

and ROS uses the clock of Gazebo for adjusting its timer. Gazebo is able to receive

and send information through ROS, which makes ROS the messaging channel between

Gazebo and TrueTime. We have implemented a position controller in Matlab to control

the vehicle as well as a communication network simulator which take into consideration

the physical conditions of the environment such as the instantaneous distance between

nodes to calculate transmission power loss. As soon as the simulation is started the

controller and communication networks are initiated as well.

In Figure 4.1, the real-time computer, network and the synchronization nodes can

be seen in the TrueTime model in the inset. The nodes labeled as Acoustics Network

and RF Network are the network modules that provide the communication network

simulation between the docking station and the vehicles. Also, the real-time computers

of docking station and AUVs are labeled as “AUV (Controller Node)” and “Docking

Station”. These nodes are the kernels of AUV and Docking Station, respectively. The

kernels operate the tasks, such as thruster controllers, sending and receiving commu-

nication packets, etc. The yellow block which is labeled as “Real-Time Pacer” in the

model, is the method we use to synchronize the clocks of the two simulators, which

will be explained further in upcoming sections in detail.

The docking station is responsible for determining the position of the AUV via

using the position sensor and transmitting position data to the AUVs. The posi-

tion data is taken from Gazebo’s ROS messages and sent through the communication

network simulation infrastructure provided by TrueTime, to the AUVs. When the

co-simulation environment is started, we observe that the computer in docking sta-

tion first reads the vehicle position from Gazebo and then transmits vehicle position

through the network node in TrueTime. By receiving the position information, AUV

knows its location and can use it for controlling its thrusters. The thruster powers

are calculated by the real-time embedded system simulator nodes labeled as “AUV

(Controller Node)” in TrueTime, and transferred to Gazebo through ROS messages

to be applied to the physics side of the co-simulation. This cycle iterates until AUV

finishes its docking maneuver and lands on the docking station. By creating such a

design, we have achieved a simulation for a networked control scenario, implementing

19

realistic underwater dynamics, communication networks and real-time computers.

4.1. Time Synchronization

Both Gazebo and MATLAB Simulink are dynamic simulation environments,

which means that, they have differing time steps at each iteration. This causes them

to run at different paces. Because of this reason, when they are in a co-simulation,

there will be time skew between them which will cause problems in terms of causal-

ity and delays in control loops. The latter is a significant problem since a networked

control system is implemented with the plant physics on the Gazebo side and com-

munication network, controller algorithm and real-time computer implemented on the

MATLAB side. To solve the time skew problem, the simulation environments must be

synchronized, and the synchronization must be statistically characterized to show that

its effect on the overall results can be negligible.

The simplest approach is to synchronize both simulation environments with wall-

clock time [27]. This way, both environments would be synchronized with a common

element. Even though both simulation environments can be synchronized with wall-

clock time, using them have different uncertainties. Gazebo can be synchronized to

wall-clock time by setting the Real Time Factor value to one. However, Gazebo does

not guarantee that it will have a constant Real Time Factor. If the computational load

becomes heavy, the system slows down the simulation to deal with the computations,

thus creating a variance in the simulation time and wall-clock time. On the other

hand, TrueTime can also be synchronized to the wall-clock time, however the method

to do so also has variance between the simulation time and wall-clock time in the order

of 10 to 30 milliseconds. When both methods are used together, the synchronization

variance gets enhanced and creates further inconsistencies. Therefore, it was decided

to synchronize one of the environments to the other.

For synchronizing one environment to another, the Real-Time Pacer Block of

MATLAB Simulink has been chosen as the main synchronization method. Modifica-

tions have been made to the Pacer Block to change its function.

20

4.1.1. Proposed Method for Synchronization

Simulink has a built-in pacer block, which is called “Real-Time Pacer Block” [28].

The function of the pacer block is to synchronize the Simulink simulation time to wall-

clock time. The block utilizes the Simulink’s “pause” function to pace the simulation.

Based on the way it operates, the pacer block can only slow down the simulation, i.e.

if the simulation runs slower than the target time, then the pacer block will have not

function correctly. However, Simulink often runs faster than the target time depending

on the complexity of simulated model. This situation makes Real-Time Pacer block to

be useful in most cases.

The pacer block is a MATLAB S-function, which is a system function that is a

description of a Simulink block written in MATLAB, C, C++, or Fortran. In this case,

the pacer block was written in MATLAB language. The update section of the pacer

block code is only called at the major time steps, which happens at every change of

outputs in the rest of the current design. There are two types of steps in the Simulink

simulation environment named as minor and major time steps. Minor step happens

whenever a block’s lower level internal outputs change values. This does not affect

the output values of the actual block at the current step. Major step happens when

a block’s output value changes, which means one can see the change in the current

design level. This influences our approach while using this block.

The library which can be seen in Figure 4.2, shows us the Real-Time Pacer

Library. The library contains the Real-Time Pacer block (left) and Elapsed Real-Time

(right) blocks. The Elapsed Real-Time block outputs the elapsed real time, which can

be understood from the name. However, since we are only interested in the simulation

times of the two simulation environments and not the real time, this block has not

been used in this project.

21

Figure 4.2: Real-Time Pacer Library Blocks.

4.1.2. Modifications on Real-Time Pacer Block

The pacer block has been implemented with some modifications in this design.

The changes to the pacer block shifted its function from synchronizing Simulink with

target time to synchronizing Simulink with the simulation time of Gazebo. At each

synchronization period, the block is called and compares the difference between the

Gazebo simulation time and the Simulink simulation time. It then proceeds to pause

the Simulink environment for an amount of time which is equal to the difference between

the simulation times.

The Real-Time Pacer Block contains an S-function and we have access to the

internal code of the block. The code has been modified such that, instead of checking

the difference between the Simulink simulation time and the real time as originally

designed, it synchronizes to the “/gazebo/clock” topic which provides the simulation

time of the Gazebo environment. The change has been made at the update section

of the block. Instead of using the time difference between “tic” and “toc” operations,

the “/gazebo/clock” message update difference is used to call the pause function of

MATLAB Simulink. The modified code is provided in Appendix A.

22

4.2. Control Method

The AUVs are modelled in UUVSim and have full degree of freedom (DoF).

Even though there are several options for selecting the AUV thruster controller, since

there is no need for an advanced controller to analyze the delay characteristics, the

proportional-integral-derivative (PID) controller has been chosen. The controller is

implemented as separate PID controllers for each orthogonal axis that steers the AUV

while damping its response. A discrete time approximation which is implemented in

the simulations is shown in equations 4.1, 4.2, 4.3 and 4.4 [29].

P (kTs) = Kp(r(kTs)− y(kTs)) (4.1)

D(kTs) = Kd(y(kTs)− y((k − 1)Ts))/Ts (4.2)

I(kTs) = Ki(Ts
(y(kTs) + y((k − 1)Ts))

2
) (4.3)

The control signal is then given as:

u(kTs) = P (kTs) + I(kTs) +D(kTs) (4.4)

The gains (Kp, Ki, Kd) and sampling period Ts of the digital controller are set

according to the communication link used. The control signal for each axis comes from

either of the two controllers; one for the acoustic link and other for RF link. At a long

distance of more than the threshold distance, the acoustic link is used to send location

and due to slow propagation speed and low data rate, the controller gains must be set

small to avoid instability due to delay. When the distance is less than the threshold

distance, high data rate and low propagation delay of RF communication link can be

23

used and controller gains are set to higher values. The controllers get the distance

information via the communication links, sent by the docking station. In this thesis,

threshold range which we consider is 10 meters [30].

4.2.1. PID parameter selection

The PID controller parameters must be calculated based on the linearized char-

acteristics of the overall control system. If the linearized control system response is

similar to the response obtained by the Gazebo simulation, we can calculate the PID

controller parameters using an established method such as root locus. Else, we need to

do hand tuning. The model of the control system in one degree of freedom, can be seen

in Figure 4.3. Besides the plant and the controller, the communication delay is shown

in the feedback loop since the measurement of the position takes time to transmit to

the AUV.

The model’s closed loop transfer function is in the form of:

G(s) = C(s) P (s) e−sTd (4.5)

Where C(s) and P (s) are the transfer functions of the controller and plant, respectively,

and the last term represents the communication time delay.

The plant is the vehicle’s dynamic model, and we have access to its coefficients

from the Gazebo simulation source files. It is in the form of P (s) = Z(s)/Fz(s) (for

the z axis in this example) and to derive this, Fz(s) must be obtained from (for the

example of Z dimension):

fz(t) = az̈ + bż (4.6)

However, fz is in time domain, and it has to be transformed to frequency domain. To

24

achieve this, the Laplace transform is applied.

L(fz(t)) = L(az̈ + bż) (4.7)

Which is equal to:

Fz(s) = as2Z(s) + bsZ(s) (4.8)

Thus the plant equation becomes:

Z(s)

Fz(s)
=

1

as2 + bs
(4.9)

After deriving the plant equation, the next equation is the PID controller. Since the

root locus, which we will see further in this section, can only be used for one variable,

the controller’s I and D variables should be tied to P. The relation becomes Kp = ndKd

and Kp = niKi, respectively, where nd and ni are the relation coefficients.

The controller equation becomes:

Kp
nds

2 + s+ ni

s
(4.10)

Lastly, the delay must be characterized. The Padé approximation is used for this

purpose. The natural response should be found and based on the delay relation to

the natural response of the plant, the order of Padé approximation will be decided. In

section 5.1.1, it has been found that natural response of the plant is relatively close to

the delay, so we apply the first order Padé approximation, which is given by [31]:

e−Tds =
1− Tds/2
1 + Tds/2

(4.11)

The method that is used to find the appropriate controller parameters is the root

25

Figure 4.3: Closed Loop of the Control System.

locus method. The root locus method, places the poles and the zeros in a graphical

manner. It is a method to derive closed loop analysis from the open loop transfer

function. The poles and the zeros are derived from the mathematical model of the

open loop system. The factors of the numerators of the open loop system are the

zeros, and the factors of the denominators are the poles. The final open loop transfer

function is in the form of from the equations 4.5, 4.9, 4.10 and 4.11:

G(s) =
(kds

2 + s+ ki)(1− Tds/2)

s(as2 + bs)(1 + Tds/2)
(4.12)

Then, the zeros and the poles can be obtained from the UUVSim sources and the

actually measured time delay in the simulation etc, and inserted in eq. 4.12 so that

the root locus can be applied. Root locus analysis can be performed using numerical

tools provided by MATLAB, which has libraries for deriving the root locus from the

mathematical model. In this thesis, MATLAB’s tools has been used for root locus

analysis.

MATLAB’s “rlocus” function creates a figure that depicts all the zeros and poles,

and their change with respect to the controller gain. It is an efficient visualizer for root

locus analysis and is used to locate the appropriate controller gains. Also MATLAB’s

“rltool”, can find the nd and ni values which is used in equation 4.10 when the equations

4.11 and 4.9 are provided. Lastly, the “step” function creates the system’s step response

26

with a given value of Kp which has been used to compare the modeled system response

with the simulation response in section 5.1.1.

4.2.2. Waypoint Management

A networked control method is implemented in the docking maneuver. The acous-

tic communication links with relatively large time delays, requires the AUV thruster

controller to have low control gains to maintain the vehicle’s stability. The non-linearity

is caused by the limited available thrust of the motors. The errors can be decreased by

maintaining the error signal small, through providing interim waypoints for the nav-

igation generated on-the-fly. The waypoints lay on the approach trajectory between

the vehicle and the docking station at predetermined intervals. They are then used as

the reference point for the controller.

As mentioned previously, the location of the docking station is sent to the vehicle

within each position update message from the docking station, as the reference position.

However, giving a far away reference position can cause the controller to be less stable

by increasing the position error, considering the output limitation of the thrusters.

Especially in relatively long distances (of more than 50 meters), the position error

becomes drastically large, which causes the controller to be unstable, in some cases,

even with low control gains. To solve this problem, a waypoint management method

has been applied.

The main idea of the applied waypoint management method is to create a new

waypoint at each position update message. The waypoint is determined by creating

a vector from the vehicle’s center point to the reference position, and selecting the

waypoint to lie on this vector, at 2m distance from the vehicle center point. This

creates waypoints which are 2 meters away from the vehicle’s center, laying on the

direction of the reference point, as shown in Figure 4.4. The calculation has been

made in x, y, z dimensions and only the x component is shown in eq. 4.13:

xwp = xv + (2 ∗ (xref − xv))/r (4.13)

27

Figure 4.4: Waypoint Management.

Where xwp is the x coordinate of the waypoint, xv is the x coordinate of the

vehicle, xref is the x coordinate of the reference and r is the distance between reference

point and the vehicle position. The Euclidean distance is used in the calculations.

Before applying this method, the vehicle was unstable at relatively long distances

(more than 50 meters). It could be observed that, the vehicle was shaking due to

high controller gains because of the relatively large position errors. The waypoint

management method limited the errors to not exceed a boundary value, which enabled

the AUV thruster controller to perform in a consistent manner, both in short and

long distances. After applying the waypoint management, it could be seen that the

vehicle was stable, and the shaking motion was ceased, at relatively long distances.

The waypoint management is not applied in RF mode, since the RF mode only works

on short range (less than 10 meters), the waypoint management is not required for

stability.

28

4.2.3. Heading Reference Calculation

The heading reference calculation is required to make the motion of the vehicle

more natural and avoid skidding. Since the vehicle movement will be from its current

position to the reference point, it is a good practice for the vehicle to head towards the

reference direction. To accomplish this, the heading reference is calculated as:

ψref = arctan(
yref − y
xref − x

) (4.14)

Where ψref , yref and xref are the reference values for heading, y and x axes,

respectively. Also y and x represent the current position of the vehicle in terms of y

and x axes, in that order.

4.3. Networked Control Architecture

In this section, how the physical components of the problem map into the different

simulators will be shown, as well as the description of the components of the networked

control system. An accurate depiction of the NCS that has been built in this thesis

can be seen in Figure 4.5. It also shows which parts of the system are simulated in

which simulation environment in the co-simulation.

The AUV vehicle consists of the physical component (vehicle body, thrusters

etc., subject to hydrodynamic forces) and the electronics; the real-time computer, the

communication network interface system (acoustic and RF transmitters and receivers)

and the position control algorithm (which is handled by the real-time computer). It is

shown in purple in Fig. 4.5, labeled as “AUV”. The docking station side on the other

hand, consists of the real-time computer, the position sensor and the communication

network interface system. It is shown in green in Fig. 4.5, labeled “Docking Station”.

29

Figure 4.5: Block diagram of AUV and docking station navigation systems. The

acoustic and RF communication links are shown in red and blue respectively.

Different parts of the two entities are implemented in different simulation en-

vironments depending on their specialization. The Physical component of the AUV

and the distance measurement part of the docking station are implemented in Gazebo,

whereas the remaining components are implemented in MATLAB TrueTime.

The position measurement of the AUVs in the vicinity are done by the docking

station. Then the docking station computer decides whether to send the measurement

data by acoustic transmitter or RF transmitter. Based on the decision, the AUV’s

acoustic or RF receiver, receive the transmitted packet. If the packet has been received

by the acoustic receiver, the controller uses the low gains to control the vehicle, and if

the packet has been received by the RF receiver the controller uses the high gains to

apply the control. Since the position data is measured by the docking station, sent to

the vehicle and received by the vehicle via the communication channel, the system is

defined as a networked control system (NCS).

30

4.4. Communication Protocols

It is necessary to arbitrate the data transmissions by the docking station and the

AUVs’. Several protocols are possible. As an example, we have selected Time Divi-

sion Multiple Access (TDMA) protocol in acoustic communication and Carrier Sense

Multiple Access with Collision Detection (CSMA/CD) protocol in RF communication.

In the first part we will explain the communication protocol which we used for data

transmission. After that we will describe different packet types which we designed for

the data and control transmission in the system.

4.4.1. Medium Access Scheme for Acoustic Mode

For the acoustic mode transmission, the frame time is divided into two parts,

where the first period is for the broadcast downstream channel from the docking station

to the AUVs, and the second period is for the upstream channel shared by the AUVs,

for which we propose to implement TDMA protocol, described next.

For the control system to implement docking maneuver successfully, the docking

station needs to send the location information to all AUVs reliably, hence the collision-

free TDMA scheme has been chosen for the downstream acoustic channel. In this

period, the docking station broadcasts AUVs’ locations to all the AUVs sequentially.

There is no need to include propagation time in slot time as packets are sent

one after the other from same source eliminating any chance of collision. The AUVs

communicate with the docking station over the upstream channel, only when they have

to send a “power control message” as explained in section 4.4.4. The AUVs transmit

these messages in the AUV portion of the frame as can be seen in Figure 4.6.

4.4.1.1. Time-Division Multiple Access. In this scheme, the acoustic upstream chan-

nel, i.e., AUV period is allocated separately to each AUV via TDMA, so they can send

packets to the docking station in a collision free fashion, as shown in Figure 4.6. The

31

time slot length is selected to include the propagation delay at the beginning of each

slot to avoid collisions. Total slot time is equal to the sum of propagation delay and

packet transmission time. Here the number of slots N = VMAX .

Figure 4.6: TDMA in both downstream and upstream periods

4.4.1.2. Frame Time for Acoustic Mode. The acoustic communication takes a long

time due to the acoustic propagation delays. Since the docking maneuver is imple-

mented as a networked control system, the communication delay must be considered

as a source of phase delay and incorporated in the design of the control loop. In this

section, the time duration of the communication frame where the position of several

AUVs at the same time can be relayed, is calculated so that it can be incorporated in

the control design as delay.

The frame times for AUVs and Docking Station have been selected to support a

maximum of VMAX vehicles. To calculate the docking station’s frame time, we should

consider its message length. The length of the messages of the docking station are

MDS bits long and the acoustic modem data rate is RAC . The slot time TSL, is then

calculated as TSL = MDS/RAC . The total docking station frame time TFDS, is then

the slot time multiplied by the maximum number of vehicles; TFDS = TSLVMAX . In

this case, we take: VMAX = 8, MDS = 512bits, RAC = 10kbps and therefore the total

frame time for docking station becomes TFDS = 0.4096s.

To calculate the slot times and total frame time for AUVs; TFAUV , we again

consider their message length. The message length of each vehicle is MV bits. However,

for the AUVs, we also should consider the propagation delay of the underwater acoustic

wave which is calculated by dividing the average distance to the docking station xAV G

by the speed of underwater acoustic wave vAC . The slot time for each vehicle is then

32

calculated as: TSV = MV /RAC + xAV G/vAC . This must be multiplied by the number

of maximum vehicles, VMAX . In this case we take MV = 64bits, xAV G = 50m, vAC =

1500m/s, the total frame time for the AUVs is then calculated as TFAUV = 0.3152s.

We have calculated the total frame times of Docking Station and the AUVs, which

are TFDS = 0.4096s and TFDS = 0.3152s , respectively. Then the total frame time of the

MAC Protocol, and messaging period then, is the sum of the two; TF = TFDS +TFAUV

which is TF = 0.7248s. This value is appropriate, considering only the data rate of

the acoustic communication. However, since this value also determines the sampling

time of the control loop TS, it is desirable that it is also a multiple of 0.02s; the

orientation controller period, to ensure that there is no delay caused by the mismatch

of the periods of the controller and the messages. Since the calculated value of TF

is already minimum value, we decided to round it up to the closest multiple of 0.02,

which is 0.74s. Therefore in the simulations we take TF=0.74s.

To be able to round up the frame time, the AUV slot times have been increased

by adding a guard time, which can be considered as a safety margin. The time dif-

ference is divided by VMAX and added to TSV , so that now TSV = 0.0413s. The total

AUV frame time becomes TFAUV = 0.3304s. Then the total frame time of the MAC

protocol becomes TF = 0.74s as desired. In the simulations, the described timing was

implemented on the TrueTime Toolbox using custom code written as part of the AUV

control software.

4.4.2. Medium Access Scheme for RF Mode

Since the RF channel has high data rate and small propagation delay, we have

chosen to use the CSMA/CD type access for both downstream and upstream channels

in RF mode. In CSMA/CD, the node with packet to send first senses the medium

and sends only if it is free. If the network is busy by another node, the node with a

packet to send waits for a random amount of time and tries again. For downstream

channel, the docking station starts sending its messages through the communication

channel via CSMA/CD periodically, every 0.04 seconds. For the AUV transmissions,

33

a small number of AUVs share the upstream channel via CSMA/CD. Since only the

AUV nodes that are within RF range of the docking station operate in RF mode (hence

at the late part of the docking maneuver), the number of contending AUVs is typically

only one. Furthermore, since the data rate is high, packet transmission times are small.

Due to both facts, the probability of collisions is low, which makes CSMA/CD efficient

during RF mode.

4.4.3. Packet Structure

The packets carry the control information between the multiple AUVs in the

vicinity and the docking station, for implementing the docking maneuver by the un-

derwater control system. The structure of the broadcast packet, for all protocols, sent

by the docking station is shown in Figure 4.7. The packet length is 512 bits, including

the following fields:

• Receiver ID: The messages originating from the docking station are broadcast

containing the ID number of the intended recipient. The AUV with the matching

ID uses the contents for position control. Note that, all AUVs can hear the

packets intended for other AUVs, and hence they are aware of the location of

each other. This way, AUVs can avoid physically colliding with other AUVs.

This field is 16 bits long.

• Position (x, y, z): The current position of the AUV which is measured by the

docking station’s USBL. The field is 112 bits long.

• Reference Position (x, y, z): The position of the docking station. This field is 112

bits long.

• Time stamp: The time which is recorded before transmitting the message. This

field is 64 bits long.

The position field contains the location information for the AUVs, obtained by the

underwater positioning system. This information is used by the AUVs to calculate

the control signal for its thrusters. Figure 4.8 shows the structure of the AUV packet,

sent from the AUVs to the docking station. This packet is 64 bits long, involving the

34

Figure 4.7: Packet structure from the docking station (downstream) packets

node ID and data fields. The message carries the “power control” information, which

contains the transmission power level in the data field. AUVs recognize packets from

other AUVs based on packet size and discard them, as they only transmit and receive

packets from the docking station. Note that, the packet structures are the same in

Figure 4.8: Packet structure for AUV messages

both RF and acoustic modes, but packet transmission durations are different because

of different data rates supported by RF and acoustic modes.

4.4.4. Adaptive Power Control

The same transmission power control mechanism is employed in both acoustic

and RF communication modes. The docking station sends the first packet with a

predefined initial transmission power. The signal at the receiver is attenuated due to

path loss and fading in the channel. The receiving node calculates the received power

and compares it to a predefined threshold level. If the received power level is below the

threshold level, it does not reach the AUV. If the AUV does not receive a message by

next sampling time, it calculates a new transmission power level to compensate for the

path loss and sends this power level to the docking station. The docking station, upon

receiving the power control message, increases its transmission power so that reliable

packet reception is guaranteed.

35

5. EXPERIMENTS AND RESULTS

5.1. EXPERIMENTAL DESIGN

The proposed method has been implemented in both UUVSim and TrueTime

environments using the appropriate tools provided by each. In TrueTime, a Simulink

model of the real-time computer, communication network and control method was

created. The firmware for the real-time computer was written, and the controller

parameters were adjusted for discrete time operation with the appropriate sampling

time. The connection with UUVSim was prepared using the ROS API of MATLAB

to draw the simulation variables into the TrueTime model. In the UUVSim side, the

simulation time parameters were adjusted and a world model as described before was

created containing the AUV and docking station.

5.1.1. AUV Thruster Controller

As explained in Section 4.2, the chosen method for AUV thruster control is the

PID controller. Also the parameter selection method is explained in the same chap-

ter. To create the transfer function of the AUV, three different equations should be

identified, these are the controller, the plant and the delay functions.

To create the plant equation, model data should be extracted from Gazebo, since

the dynamics of the vehicle is handled in Gazebo simulator. The vehicle model that is

used in this thesis is RexROV, and the characterization variables are taken from [32].

The added mass matrix is given as:

36



779.79 −6.8773 −103.32 8.5426 −165.54 −7.8033

−6.8773 1222 51.29 409.44 −5.8488 62.726

−103.32 51.29 3659.9 6.1112 −386.42 10.774

8.5426 409.44 6.1112 534.9 −10.027 21.019

−165.54 −5.8488 −386.42 −10.027 842.69 −1.1162

−7.8033 62.726 10.775 21.019 −1.1162 224.32


These values represent the cross coupling in x, y, z axes and, roll(φ), pitch(θ),

yaw(ψ), respectively. Since the off diagonal elements in this matrix are comparatively

small and PID control has difficulty in incorporating such cross coupling effects, it

is desired to have a simpler model, the system is simplified by omitting them, which

means that cross coupling is neglected.

Also, the linear and quadratic damping vectors are also available in [32], which

are used to create the plant model. Since we are creating a linear model, only the

linear damping vector has been taken into account. The linear damping vector is given

as [74.82, 69.48, 728.4, 268.8, 309.77, 105].

For our first model, the Z dimension has been chosen. The plant variables from

eq. 4.9 are a and b. In the case of Z dimension, a is 3659.9 and b is 728.4.

The next equation that has to be created is the delay equation. Our delay is 0.74

for the acoustic control, and 0.04 for the RF control. For analyzing this, the plant’s

time constant must be observed and compared to the delay of the controller. The

time constant can be found from the characteristic equation of the plant; in this case

as τz = 728.4/3659.9=̃0.2s. The comparison of 0.74s, which is the highest expected

communication delay, with the natural response time gives us that, the first order

Padé approximation can be used, which we found in eq. 4.11. We set Td = 0.74s in

the equation and find our delay function.

After obtaining the overall control transfer function, we can find the controller

characteristics. In this thesis, the MATLAB’s “rltool” and “rlocus” functions have

37

been used to obtain PID controller equation as mentioned in Section 4.2. Appropriate

PID gains for damping factor ζ = 0.7 and time constant tr = 1s were selected (The

pole at s = −0.02 was attempted to be cancelled by a matching zero). The resulting

values for Kp = 995, nd = 2.65 (the ratio between Kp and Kd), and ni = 0.0094 (the

ratio between Kp and Ki), respectively, as in (4.10). With this controller, “rlocus”

function provides Figure 5.1.

Figure 5.1: Root locus analysis of the simplified linear model.

The next step is to compare the step responses of the model and the simulation

environment with the same controller. The model’s step response can be acquired

by using the “step” function of MATLAB. Also, the discretized version of the same

controller is applied to the co-simulation environment, and 1 meter reference response

is observed and plotted. The comparison of the two plots can be seen in Fig. 5.2.

It can be observed that the simplified and linearized model does not mimic the

simulation environment. Thus, it can be concluded that this model cannot be used

for calculating the gains of the controller for this experiment. The reason for this can

be explained by the nonlinearities in the physics simulator, Gazebo. The effect of the

correlations in the added mass matrix and quadratic elements in the simulation are

38

Figure 5.2: Step responses of Model versus Simulation.

also causing the nonlinearities.

The proposed solution is to tune the PID controller gains by trial and error.

By observing the motion response of the vehicle while changing the PID coefficients,

acceptable controllers for all axes were determined. The values that have been chosen

with the experimental method are given in Section 5.2.

5.1.2. Tasks Performed within the AUV Real-Time Computer

In acoustic mode, to increase the efficiency of the orientation control of the AUV,

an orientation controller has been developed with a lower period. With a separate ori-

entation controller that operates faster than the acoustic thruster controller, the AUV

becomes more stable in terms of orientation. It is safe to assume that the orienta-

tion controller can perform faster because the orientation information can be measured

inside the AUV using inertial sensors. The thruster controller for the acoustic mode

has a period of 0.74 seconds based on the message arrival period to the AUV from the

docking station. The orientation controller has been implemented with a period of 0.02

39

seconds.

The tasks implemented within the real-time computer module of the AUV will

be described next. True-Time provides a real-time kernel, which simulates actual code

written in the ’C’ language. The execution time for each code segment is specified by

the designer. Each vehicle has a kernel that facilitates 3 tasks. These tasks handle the

communication and the AUV thruster control. The tasks are named as the acoustic

task, orientation task and RF task.

The acoustic task is an asynchronous task, which means it is called as a response

to an event. The event that calls the acoustic task in this implementation is the arrival

of a message packet through the simulated acoustic communication channel. When

such a message is received by the acoustic task, it first checks if the message has been

sent to the task’s corresponding node. If the message is not for this node, then it

terminates. And if the message is for this node, it checks the transmission power and

decides whether to accept the message or not, based on the acoustic path loss model

that has been explained in Section 2.2.1. If the message is accepted, the task updates

the vehicle’s internal position variables and calculates the AUV thruster forces with

the designed PID controller with coefficients selected for acoustic mode as explained

in this section. In this task, the thruster forces are not applied to the vehicle directly,

instead, the forces are passed to the orientation controller to be used in the thruster

manager message as stated above. If the message is not accepted, a new transmission

power is calculated and sent as a message to the docking station, to be used by the

docking station as the next message’s transmission power based on the acoustic path

loss model.

The RF task is also an asynchronous task, performing a similar function. The

event that calls this task is the message arrival through the simulated RF commu-

nication channel to the vehicle from the docking station. This task first checks the

transmission power of the arrived message and decides whether to accept the message

or not based on RF path loss model that has been explained in Section 2.2.2. If the

message is accepted, then both the position and orientation control forces and torques

40

are calculated by the PID controller with coefficients for the RF mode. If the arrived

communication packet is not accepted, the RF task recalculates a new transmission

power based on the RF path loss model and sends this information to the docking

station.

Finally, the orientation task is a synchronous task with a fixed period of 0.02 sec-

onds. Orientation task is responsible for calculating the control torques for orientation

and applying the force and torque vector to the vehicle by sending an input message

to the thruster manager of the physics simulator at the Gazebo side. The force values

come to this task from the acoustic task, and this task only functions if the vehicle is

in acoustic mode.

5.1.3. Tasks Performed within the Docking Station Real-Time Computer

The docking station’s real-time computer contains two different tasks. As have

been mentioned in 4.3, the real-time computer takes the measurement messages from

Gazebo, then decides whether to send this information via RF network or acoustic

network to the vehicle, based on the distance of the target vehicle. If the packet is

decided to be sent by the acoustic network, the acoustic transmission task is called and

if the packet is decided to sent by RF network, the RF transmission task is called.

The acoustic transmission task works periodically. It first handles all the incoming

packets from the vehicles and adjust the transmission power of their next packet that

will be transmitted based on the information taken with the incoming packet. After

adjusting the transmission powers, all vehicle position data is read from the Gazebo

messages. The waypoint management is also applied here, since the docking station

also sends the reference positions to the vehicles, the waypoint is created and sent from

this node. From the position and reference point data, the transmission packet is then

prepared and sent to the vehicles in an order. There is no priority among the vehicles,

the packets are sent in an orderly manner. The transmission times are also handled in

this node, each frame time is fixed and the docking station waits for the beginning of

the frame time to send the next message.

41

The RF transmission task also works periodically. It first handles the incoming

packets from the vehicles in the RF region and applies the power management scheme as

explained in section 4.4.4. It then adjusts the power levels of next transmission, creates

the packet by getting the position data and the reference position from Gazebo. The

waypoint management is not applied in RF mode. After the packet is constructed, it

is sent through the RF network.

5.1.4. Application of the Calculated Force to the AUV

To apply a force to the vehicle from MATLAB, there are two available methods.

One of them is to use the “applyforce” function of MATLAB’s ROS API. This function

applies the forces and torques to any object in the Gazebo world, for the given duration

of time. The second method is using the thruster managers in UUVSim that have been

developed for the vehicles, as explained in section 2.3.3. In this thesis, the chosen

method for applying the force is using the thruster manager. There are two reasons

for this decision. The first reason is, “applyforce” function takes relatively long time

to complete, which slows down TrueTime simulator and limits the maximum call rate

at 25Hz. The second reason is, “applyforce” function is an imaginary force with no

physical counterpart, whereas using the thruster manager is a more realistic method,

since the vehicle navigates using the thrusters in the real world, and each vehicle will

have a thruster configuration implemented for it in UUVSim.

In UUVSim, the thruster manager applies the forces and torques in the body

frame. Therefore, the controller forces should be calculated in the body frame. How-

ever, Gazebo provides the position data of an AUV in world frame. An example of the

body frame and world frame can be seen in Figure 5.3. The black lines represent the

world frame X, Y and Z dimensions, where the red lines represent the body frame X,

Y and Z dimensions. Thus, a transformation must be made from world frame to the

body frame.

The orientation data are given in body frame of the vehicle, however, the format

of orientation data is quaternion, to be able to calculate the PID output torques we

42

must convert the quaternion values to Euler format. The method that is used in this

thesis to convert a quaternion to Euler is the MATLAB’s “quat2eul” function. The

function’s default settings change quaternion dimensions ordered as WZYX into Euler

dimensions ordered as XYZ. We then calculate the orientation torques by applying the

PID controller to the XYZ Euler variables.

Figure 5.3: World Frame and Body Frame.

The UUVSim thruster manager as mentioned in Section 2.3.4, takes a ROS mes-

sage as input at fixed intervals. However, the thruster manager takes only the newest

input into consideration. As the AUV have two different controllers in acoustic mode,

namely orientation controller, and position controller, both controllers would be op-

erating at the same time. Then, while applying the forces and torques, they would

overwrite each other’s messages. To solve this, only the orientation controller, which

has the shorter period, has been selected to apply the forces and torques. The position

controller in the acoustic mode solely updates the forces that the orientation controller

sends periodically. The same case also happens in the RF mode, however since the RF

control has sufficiently low period, there is no requirement of additional orientation

controller in RF mode.

43

5.1.5. TrueTime Model for Experiments

In this section, the TrueTime, model which the experiments have been performed

on, will be explained. All the results given in the section 5.2 have been taken by using

this system.

Figure 5.4: TrueTime model used in the Experiments.

In Figure 5.4, it can be seen that there are additional 4 dummy vehicle nodes

inside the system. Dummy vehicle nodes, in this system, only work in acoustic mode,

since there can be only one vehicle that can perform the docking maneuver at a time,

and the other vehicles would not enter the RF range while a docking maneuver is

happening. The dummy nodes are only used to create a traffic to exercise the MAC

protocol. The dummy nodes, keep their fixed position, and create an acoustic com-

munication load in the network. Since the packet accepting is based on the path loss

model and the path loss contains a random distribution from the Rayleigh fading, as

has been explained in section 2.2.1, the nodes will send a packet through the acoustic

network based on the random distribution. The nodes labeled as “Docking Station”

and “Vehicle (Controller Node)” work as explained previously in this section. The

44

node labeled as “Real-Time Pacer” is the modified version that has been created in

this thesis, and works as explained in section 4.1.1.

5.1.6. Implementation of TDMA

There are two available ways to implement the TDMA protocol for acoustic

mode. The first method is to use the TrueTime Network block with TDMA option.

In this case, we would indeed have a TDMA protocol, however, since the TrueTime

Network block does not take the propogation delay into consideration, the packet

transfer times does not match the designed values. This mismatch causes our control

to be unpredictable, since the period of our controller would be different for different

total frame time (as explained in section 4.4) Thus, the proposed method is to create

a custom TDMA protocol by using the TrueTime Network block’s Frequency Division

Multiple Access (FDMA) option, and handling the packet transmission timing in the

real-time computer nodes of both AUVs and Docking Station by extra coding.

For RF mode, the CSMA protocol has been implemented by using the TrueTime

Network block’s CSMA/CD option, since in RF mode there is no significant propa-

gation delay to take into consideration. This situation makes the TrueTime Network

block calculations accurate.

5.2. Simulation Results

5.2.1. Control Delay Characterization

Since it is not possible to obtain zero time skew between the two simulation envi-

ronments, the difference must be characterized to see its effects on the simulation, e.g.

control system, and thus validate the results. To measure the time difference between

two simulation environments, the Gazebo “/clock” message is read and stored in a

Gazebo clock variable, and the TrueTime current simulation time is subtracted from

it. The resulting value is the time difference between the times of the two simulation

environments. This value is then statistically analyzed to see the variance. Ideally it

45

should be constant with no variance.

Figure 5.5 shows an example of the time difference between the two simulation

environments in one second. The horizontal axis is the time (the graph time span

is 1 simulation-second) and the vertical line is the time difference between Gazebo

simulation time and Simulink simulation time. The mean value of the graph is not

important in the simulations, and only the variance has an effect.

Figure 5.5: Time difference between Gazebo and Simulink simulation clocks.

To get the characterization results of synchronization from the Simulink, we have

sampled the simulation time skews over 50000 sample points and calculated the stan-

dard deviation. The target value for twice the standard deviation was chosen as 10%

of the control system sampling period, or the standard deviation should be less than

5% of the sampling period. This value is expected to have minimal effect on the con-

troller behavior. Since the controller runs at 25Hz at RF, the targeted synchronization

standard deviation must be less than 0.002 seconds.

46

Table 5.1: Standard Deviation with respect to Real-Time Update Rate and Maximum

Step Size

Real time Max step size [s] Actual Synchronization

update rate [Hz] Real Time Factor Standard Deviation [s]

1 2000 0.00050 0.61 0.0026

2 2500 0.00040 0.49 0.0023

3 4000 0.00025 0.31 0.0013

4 5000 0.00020 0.24 0.0013

5 8000 0.00013 0.15 0.0010

The performance of the computer that this test was carried out will also af-

fect these values, since the time differences arise from the multicore processors, and

Gazebo’s Real Time Factor which has been explained in section 2.3.1 depends on the

CPU that the simulation environments run on. The specifications of the computer are

presented next.

• Processor: Intel Core i7-8700K CPU @ 3.7GHz x 12

• Graphics: GeForceGTX 1060 3GB/PCIe/SSE2

• Memory: 16 Gb

• Operating System: Ubuntu 16.04.4 LTS 64-bit

The results can be seen in Table 5.1. By increasing the real time update rate while

maintaining the calculated real time factor, the actual real time factor decreases which

causes the Gazebo simulation to slow down. However, our synchronization standard

deviation also decreases which means the synchronization performance is more stable.

By adjusting the real time update rate and maximum step size variables in Gazebo,

we have achieved a more consistent synchronization performance.

The Gazebo “/clock” messages are sent at the same rate as Real time update

rate, and the synchronization function in the Simulink is at 500 function calls per

second due to its period limit. The synchronization function calls per second must be

47

a multiple of Gazebo “/clock” message rate, since if there happens to be a difference,

the synchronization would have a delay by the amount of a “/clock” message period.

This is the reason why the Real Time update rates are chosen as a multiple of 500. Also,

the synchronization function rate cannot be increased, because the function becomes

inoperative if the rate increases.

Finally, the values used for the relevant variables are: Real time update rate

is 4000 Hz and maximum step size is 0.00025 seconds. The actual real time factor

becomes 0.31 for these values, which brings the standard deviation to 0.0013s and

twice the standard deviation to 0.0026s which is not expected to significantly change

the control system characteristics.

5.2.2. Experiment Results

In the simulations, freshwater parameters are used for the communication chan-

nel. For acoustic modem, the parameters of EvoLogics S2C R48/78 [10], and for RF

modem, WFS seatooth R© S300 [16] underwater RF modem were emulated. For motive

energy calculations, parameters of NeuMotors 1925-3Y [33] were assumed.

The docking station is positioned at [0,0,-99.825]. The starting position of the

AUV for the tests is [-20,20,-75]. There are a total of 5 vehicles in the simulation, 4

of them are the dummy vehicles and the fifth is the AUV that performs the docking

maneuver. The dummy vehicles are started at 50 meter away from the docking station

and they keep their position.

The other simulation parameters used are represented in Table 5.2. In order to

simulate the physical underwater channels, the path loss models given in Section 2.2.1

and Section 2.2.2 for acoustic and RF links have been implemented. Table 5.3 shows

the parameters that has been used for calculating the path loss characteristics. After

path loss, Rayleigh fading is applied to obtain the instantaneous received power level.

48

Figure 5.6: A representative screen-shot of the simulation environment in Gazebo.

Table 5.2: Simulation Parameters.

Parameters Acoustic RF

Frequency 100 KHz 10 MHz

Data rate 10 Kbps 3 Mbps

Frame time 0.74 s 0.04 s

Signal power limit 4.5 W 3 W

Circuit power Pc 1.1 W 4.5 W

DS Packet time tds 3.84 ∗ 10−2 s 0.28 ∗ 10−4 s

Sampling period Ts 0.74 s 0.04 s

Proportional gain Kp[x, y, z] [75, 75, 225] [155,155,455]

Integral gain Ki[x, y, z] [10, 10, 10] [195,195,195]

Derivative gain Kd[x, y, z] [65,65,55] [270,270,55]

Derivative time Tp 0.74 0.04

49

Table 5.3: Communication Channel Parameters.

Parameters Acoustic

Acoustic Threshold 0.0019 W

Spreading Factor k 1.5

Max. No. of AUVs 8

RF Threshold 0.002 W

Permitivity ε 80 ∗ (8.854 ∗ 10−12)

Permeability µ 4 ∗ π ∗ 10−7 s

Conductivity σ 0.01 S/m

5.2.3. Approach to the Docking Station in Still Water

The docking maneuver of an AUV to the base station is depicted in Figure 5.6.

The goal is to reach the docking station quickly with no overshoot and small steady

state error despite physics of the water. The final docking must be completed using

other means such as mechanical guides. The distance of the AUV to the docking station

is shown in Figure 5.7; a typical docking maneuver. The results for both conventional

acoustic and proposed hybrid methods are shown. Up to about 95 seconds into the

simulation both perform the same since they are both working only on acoustic com-

munication links. From about 95 seconds onwards, RF communication is established

in the proposed hybrid method, with higher gains providing a faster approach to the

docking station. It can be observed that the docking is accomplished faster. It can be

concluded that using RF links in close range give faster and steadier control. Time to

dock, which denotes the time to reach 2% of the target distance, is reached at the end

of each line, since when docking is complete the simulation stops. It demonstrates that

the AUV using the proposed hybrid acoustic and RF networked control method can

reach the docking station after 110 seconds which is shorter than acoustic-only method

which takes around 138s; a 20% improvement.

In Figure 5.8, the motive power of thrusters with respect to time is shown. The

motive power is calculated by multiplying the motor thrust with the velocity of AUV.

50

The thrust is calculated by multiplying the control signal by a constant, which is

derived from the power of the thrusters and is given as Fm = u/1.17, where u is the

control signal which is divided by a typical constant relating the thrust force to the

control signal. Then the motive power is found by Pm = Fm v where v is the velocity

of AUV. This gives the instantaneous power. The motive energy can also be calculated

by integrating motive power over time.

Figure 5.7: AUV time to dock for acoustic only and hybrid.

It can be seen by the low control effort in Figure 5.8 that initially the low gain con-

troller is used during acoustic communication region. When AUV reaches the threshold

distance from the docking station however, the proposed controller switches to the high

gain controller which is getting position feedback via the RF communication link. The

high gain controller affords faster response and higher control signals, but at the ex-

pense of higher motive power, the AUV approaches the docking station quickly and

more precisely.

51

5.2.4. Docking Maneouvre with Water Currents

On our simulation platform, we have performed experiments to verify the accu-

racy of docking maneuver of the proposed hybrid networked control system in compar-

ison to the acoustic-only system under the more realistic condition of water currents.

From the results shown below, we infer that the proposed hybrid system outperforms

the acoustic-only at the expense of higher motive energy. At the beginning, for both

controllers, the motive power has almost the same values until the vehicle is in RF

range. When the vehicle enters the RF range, motive power rises due to high forces

because of the high control gains.

Figure 5.8: Motive power for acoustic only and proposed hybrid.

Figure 5.9 shows the performance with respect to different water current veloc-

ities. The current applied to the vehicle in these experiments were all head currents.

The reason for selecting the head current is to consider the worst-case conditions. The

results for the Figure 5.9 and Figure 5.10 were obtained by getting the average of 10

experiment results each.

52

Figure 5.9: Time to dock w.r.t. different current velocities.

It can be seen in Fig.5.9 that the time to dock is consistently shorter for the

proposed method under different water current strengths. Also, beyond a water current

velocity exceeding 0.2m/s, the acoustic only method cannot accomplish the docking

maneuver within an acceptable time period. Another measure of the performance of

the maneuver is the time integral of the position error. It can be seen in Fig.5.10

that although the two methods have similar performances, at higher water current

velocities, the proposed method performs better.

53

Figure 5.10: Cumulative error w.r.t different current velocities.

54

6. CONCLUSION

In this work, we have presented an integrated underwater co-simulation environ-

ment of an acoustic and RF hybrid networked control method [24] in a real-life scenario.

This co-simulation environment containing AUVs with online communication networks

and real-time computers has allowed us to study the effects of physics of hydrodynam-

ics on AUV movement in the realistic underwater simulation environment. Using two

simulation environments is beneficial for the precision of the results. However, variable

time step solvers create time skew between the simulation environment which must

be characterized and corrected. In this thesis we have proposed a method for time

synchronization.

We have demonstrated results in the co-simulation environment and showed that

the proposed networked control based on acoustic and RF hybrid communication is

advantageous compared to the traditional acoustic-only method for the control of un-

derwater AUVs. We have observed that under calm water conditions, the hybrid system

takes about 20% less time to dock. Furthermore, the performance of the proposed hy-

brid method under disturbances in the form of water currents with different strengths

was studied in the co-simulation environment. Adding the water currents to the co-

simulation demonstrates that the proposed method performs better in completing the

docking maneuver within a short time, whereas the conventional method fails to dock

even at moderate current velocities.

We are currently working on the implementation of slotted ALOHA and waiting

room MAC protocols to enrich and improve the performance of the proposed method.

55

REFERENCES

1. Rodŕıguez-Molina, J., B. Mart́ınez, S. Bilbao and T. Mart́ın-Wanton, “Maritime

Data Transfer Protocol (MDTP): A Proposal for a Data Transmission Protocol

in Resource-Constrained Underwater Environments Involving Cyber-Physical Sys-

tems”, Sensors , Vol. 17, No. 6, p. 1330, 2017.

2. Li, N., J.-F. Mart́ınez, J. M. Meneses Chaus and M. Eckert, “A Survey on Un-

derwater Acoustic Sensor Network Routing Protocols”, Sensors , Vol. 16, No. 3,

2016.

3. Climent, S., A. Sanchez, J. V. Capella, N. Meratnia and J. J. Serrano, “Underwater

Acoustic Wireless Sensor Networks: Advances and Future Trends in Physical, MAC

and Routing Layers”, Sensors , Vol. 14, No. 1, pp. 795–833, 2014, http://www.

mdpi.com/1424-8220/14/1/795.

4. Chitre, M., S. Shahabudeen and M. Stojanovic, “Underwater acoustic communica-

tions and networking: Recent advances and future challenges”, Marine technology

society journal , Vol. 42, No. 1, pp. 103–116, 2008.

5. Manhães, M. M. M., S. A. Scherer, M. Voss, L. R. Douat and T. Rauschenbach,

“UUV Simulator: A Gazebo-based package for underwater intervention and multi-

robot simulation”, OCEANS 2016 MTS/IEEE Monterey , IEEE, sep 2016, https:

//doi.org/10.1109%2Foceans.2016.7761080.

6. Cervin, A., D. Henriksson, B. Lincoln, J. Eker and K.-E. Årzén, “How Does Control

Timing Affect Performance? Analysis and Simulation of Timing Using Jitterbug

and TrueTime”, Control Systems, IEEE , Vol. 23, pp. 16 – 30, 07 2003.

7. Gomes, C., C. Thule, D. Broman, P. G. Larsen and H. Vangheluwe, “Co-simulation:

State of the art”, CoRR, Vol. abs/1702.00686, 2017, http://arxiv.org/abs/

1702.00686.

56

8. Al-Hammouri, A. T., M. S. Branicky and V. Liberatore, “Co-simulation Tools

for Networked Control Systems”, M. Egerstedt and B. Mishra (Editors), Hybrid

Systems: Computation and Control , pp. 16–29, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2008.

9. Heimlich, O., R. Sailer and L. Budzisz, “NMLab: A Co-simulation Framework for

Matlab and NS-2”, 2010 Second International Conference on Advances in System

Simulation, pp. 152–157, Aug 2010.

10. “S2CR 48/78 Product Information”, http://media.wix.com/ugd/417e9a_

732e6502a96b43bb96257f0ed6692be2.pdf, accessed: 2018-07-20.

11. Burrowes, G. and J. Y. Khan, “Short-range underwater acoustic communication

networks”, Autonomous Underwater Vehicles , InTech, 2011.

12. Urick, R. J., Principles of underwater sound for engineers , Tata McGraw-Hill

Education, 1967.

13. Chen, K., M. Ma, E. Cheng, F. Yuan and W. Su, “A Survey on MAC Protocols for

Underwater Wireless Sensor Networks”, IEEE Communications Surveys Tutorials ,

Vol. 16, No. 3, pp. 1433–1447, Third 2014.

14. Sozer, E. M., M. Stojanovic and J. G. Proakis, “Underwater acoustic networks”,

IEEE Journal of Oceanic Engineering , Vol. 25, No. 1, pp. 72–83, Jan 2000.

15. Che, X., I. Wells, G. Dickers, P. Kear and X. Gong, “Re-evaluation of RF electro-

magnetic communication in underwater sensor networks”, IEEE Communications

Magazine, Vol. 48, No. 12, pp. 143–151, 2010.

16. “Wfs seatooth s300”, http://www.wfs-tech.com/, accessed: 2018-07-20.

17. Hattab, G., M. El-Tarhuni, M. Al-Ali, T. Joudeh and N. Qaddoumi, “An un-

derwater wireless sensor network with realistic radio frequency path loss model”,

57

International Journal of Distributed Sensor Networks , Vol. 9, No. 3, p. 508708,

2013.

18. Che, X., I. Wells, G. Dickers and P. Kear, “TDMA frame design for a prototype

underwater RF communication network”, Elsevier Journal of Ad Hoc Networks ,

Vol. 10, No. 3, pp. 317–327, Jul 2011.

19. Yunus, F., S. H. S. Ariffin and Y. Zahedi, “A Survey of Existing Medium Access

Control (MAC) for Underwater Wireless Sensor Network (UWSN)”, 2010 Fourth

Asia International Conference on Mathematical/Analytical Modelling and Com-

puter Simulation, pp. 544–549, May 2010.

20. Li, J., M. Toulgoat, M. Déziel, F. R. Yu and S. Perras, “Propagation Modeling and

MAC-layer Performance in EM-based Underwater Sensor Networks”, Proceedings

of the Fourth ACM International Symposium on Development and Analysis of

Intelligent Vehicular Networks and Applications , DIVANet ’14, pp. 111–117, ACM,

New York, NY, USA, 2014, http://doi.acm.org/10.1145/2656346.2656359.

21. Xie, P., Z. Zhou, Z. Peng, H. Yan, T. Hu, J. Cui, Z. Shi, Y. Fei and S. Zhou,

“Aqua-Sim: An NS-2 based simulator for underwater sensor networks”, OCEANS

2009 , pp. 1–7, Oct 2009.

22. Koenig, N. and A. Howard, “Design and use paradigms for Gazebo, an open-source

multi-robot simulator”, 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Vol. 3, pp. 2149–2154

vol.3, Sept 2004.

23. Quigley, M., K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler and

A. Y. Ng, “ROS: an open-source Robot Operating System”, ICRA Workshop on

Open Source Software, 2009.

24. Soomro, M., S. N. Azar, O. Gurbuz and A. Onat, “Work-in-Progress: Networked

Control of Autonomous Underwater Vehicles with Acoustic and Radio Frequency

58

Hybrid Communication”, 2017 IEEE Real-Time Systems Symposium (RTSS), pp.

366–368, Dec 2017.

25. Soomro, M., Communication and Control of Autonomous Underwater Vehicles

using Radio Frequency-Acoustic Hybrid MAC Schemes , Master’s Thesis, Sabanci

University, Turkey, 2017.

26. Azar, S. N., O. Erdemir, G. Cetin, O. Gurbuz and A. Onat, “Co-Simulation of Net-

worked Control System of AutonomousUnderwater Vehicles Using Hybrid Commu-

nication”, Proc. EMRA 2018 , 2018.

27. Miettinen, T., Synchronized Cooperative Simulation: OPC UA Based Ap-

proach; Synkronoitu yhteissimulointi: OPC UA -pohjainen ratkaisu, G2

pro gradu, diplomityö, Aalto University, 2012, http://urn.fi/URN:NBN:fi:

aalto-201209213138.

28. “Real-Time Pacer for Simulink”, https://www.mathworks.com/matlabcentral/

fileexchange/29107-real-time-pacer-for-simulink, accessed: 2018-07-20.

29. Åström, K. J. and B. Wittenmark, Computer-controlled systems: theory and de-

sign, Courier Corporation, 2013.

30. Lloret, J., S. Sendra, M. Ardid and J. J. Rodrigues, “Underwater wireless sensor

communications in the 2.4 GHz ISM frequency band”, Sensors , Vol. 12, No. 4, pp.

4237–4264, 2012.

31. Ozbay, H., Introduction to feedback control theory , CRC Press, 1999.

32. Berg, V., Development and Commissioning of a DP system for ROV SF 30k ,

Master’s Thesis, Institutt for marin teknikk, 2012.

33. “NeuMotors 1925-3Y”, http://neumotors.com/

1900-series-electric-motor-neumotors/, accessed: 2018-07-20.

59

APPENDIX A: MODIFIED REAL-TIME PACER CODE

function msfun_realtime_pacer(block)

% Help for Writing Level -2 M - File S - Functions :

% web ([docroot ’/ toolbox / simulink / sfg / f7 -67622. html ’]

% http :// www . mathworks . com / access / helpdesk / help /

toolbox / simulink / sfg / f7 -67622. html

% Copyright 2009, The MathWorks , Inc .

global gazebo_clock % % THIS IS THE GAZEBO CLOCK MESSAGE

% instance variables

mySimTimePerRealTime = 1;

myRealTimeBaseline = 0;

mySimulationTimeBaseline = 0;

myResetBaseline = true;

myTotalBurnedTime = 0;

myNumUpdates = 0;

setup(block);

% % ---

function setup(block)

% Register the number of ports .

block.NumInputPorts = 0;

block.NumOutputPorts = 0;

% Set up the states

block.NumContStates = 0;

block.NumDworks = 0;

% Register the parameters .

block.NumDialogPrms = 1; % scale factor

block.DialogPrmsTunable = {’Nontunable ’};

% Block is fixed in minor time step , i . e .,

it is only executed on major

% time steps . With a fixed - step solver , the

block runs at the fastest

% discrete rate .

block.SampleTimes = [0 1];

block.SetAccelRunOnTLC(true); % run block in

interpreted mode even w / Acceleration

% methods called during update diagram / compilation

.

60

block.RegBlockMethod(’CheckParameters ’, @CheckPrms);

% methods called at run - time

block.RegBlockMethod(’Start ’, @Start);

block.RegBlockMethod(’Update ’, @Update);

block.RegBlockMethod(’SimStatusChange ’, @SimStatusChange);

block.RegBlockMethod(’Terminate ’, @Terminate);

end

% %

function CheckPrms(block)

try

validateattributes(block.DialogPrm (1).Data , {’double ’},{’

real’, ’scalar ’, ’>’, 0});

catch % # ok < CTCH >

throw(MSLException(block.BlockHandle , ...

’Simulink:Parameters:BlkParamUndefined ’, ...

’Enter a number greater than 0’));

end

end

% %

function Start(block)

mySimTimePerRealTime = block.DialogPrm (1).Data;

myTotalBurnedTime = 0;

myNumUpdates = 0;

myResetBaseline = true;

if strcmp(pause(’query’),’off’)

fprintf(’%s: Enabling MATLAB PAUSE command\n’, getfullname

(block.BlockHandle));

pause(’on’);

end

end

% %

function Update(block)

if myResetBaseline

myRealTimeBaseline = gazebo_clock;

mySimulationTimeBaseline = block.CurrentTime;

myResetBaseline = false;

else

61

if isinf(mySimTimePerRealTime)

return;

end

elapsedRealTime = gazebo_clock - myRealTimeBaseline;

differenceInSeconds = ((block.CurrentTime -

mySimulationTimeBaseline) / mySimTimePerRealTime) -

elapsedRealTime;

if differenceInSeconds >= 0

pause(differenceInSeconds);

myTotalBurnedTime = myTotalBurnedTime +

differenceInSeconds;

myNumUpdates = myNumUpdates + 1;

end

end

end

% %

function SimStatusChange(block , status)

if status == 0,

% simulation paused

fprintf(’%s: Pausing real time execution of the model (

simulation time = %g sec)\n’, ...

getfullname(block.BlockHandle), block.CurrentTime);

elseif status == 1

% Simulation resumed

fprintf(’%s: Continuing real time execution of the model\n

’, ...

getfullname(block.BlockHandle));

myResetBaseline = true;

end

end

% %

function Terminate(block)

if myNumUpdates > 0

fprintf(’%s: Average idle real time per major time step =

%g sec\n’, ...

getfullname(block.BlockHandle), myTotalBurnedTime /

myNumUpdates);

end

62

end

end

