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Micro swimmers have a great potential to realize minimally invasive medical procedures 
to detect and treat diseases. They are promising candidates for achieving targeted drug 
delivery, which can reduce the side effects of potent drugs and minimize the secondary 
complications of dangerous treatments. However, swimming at low Reynolds number 
environments such as bodily fluids requires breaking the time reversal symmetry to 
achieve propulsion, therefore swimming of micro structures in viscous environments 
presents a challenge. In this thesis, swimming characteristics and performance of both 
chiral and magnetically actuated axisymmetric structures swimming inside cylindrical 
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conduits at low Reynolds numbers are investigated using computational and numerical 
models, as well as experimental studies. Computational tools that predict the swimming 
performance of both chiral and axisymmetric swimmers are presented to provide a 
comprehensive analysis that considers both types of swimmers used in this research field. 
Effects of geometric parameters on the swimming performance of chiral structures are 
analyzed and guidelines for designing helical tails for optimized velocity or efficiency are 
established using a computational fluid dynamics model. Symmetry breaking with 
axisymmetric particles is achieved by exploiting their hydrodynamic interactions with 
confining boundaries. A numerical model based on the resistive force theory that can 
predict their trajectories with high accuracy is reported. Non-inertial focusing and 
controlled motion of rigid spheres inside cylindrical channels are experimentally 
demonstrated. The findings presented contribute to our understanding of the swimming 
characteristics of both symmetric and asymmetric micro swimmers and pave the way for 
new applications. 
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1   INTRODUCTION 

 

 

 

 

Targeted drug delivery is one of the most coveted applications of modern medicine. 

Delivering potent drugs (e.g. chemotherapeutic drugs) only to the disease-ridden parts of 

the body instead of using them systemically has the advantage of eliminating side effects 

and possibly allowing an increase of dosage due to the fact that only the targeted tissues 

or organs would be majorly affected. Furthermore, such an application could be life 

saving for the patients that have multiple symptoms that require opposite treatments. For 

example, tumors are known for throwing blood clots that cause organ or respiratory 

failures and are one of the most significant secondary causes of mortality. However, the 

majority of cancer patients receiving chemotherapy or radiation therapy develop 

thrombocytopenia, which significantly increases the risk of internal bleeding. Therefore, 

such patients cannot be treated with anticoagulants and need invasive treatments to 

dissolve or dislodge a simple blood clot, which is again life threatening in their delicate 

state. Thus, targeted drug delivery might be the answer that decreases the mortality rate 

in diseases where the treatment itself can be as dangerous as the disease.  

A wide range of techniques have been explored towards achieving this aim and 

some attempts produced promising results. Among these, applications featuring bio-

inspired artificial micro swimmers (AMS) dominate the literature and are considered to 

be one of the best candidates for this task. The idea is to introduce swimmers into the 

circulatory system and use them to navigate the drugs only to the targeted organs or 

tissues. Nonetheless, navigating artificial swimmers inside blood vessels accurately

where the blood flow velocity can reach 45 cm/sec is not an easy task (Figure 1.1). Blood 

vessels with smaller diameters have the slowest blood flow due to their higher relative 
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cross-sections (Figure 1.1). For this reason and to be able to reach remote body parts, the 

swimmer that can be used for such applications must be miniaturized. This requirement 

brings about another challenge.  

 

Figure 1.1 Blood vessels of various cross-sectional areas and corresponding blood flow 
velocity inside different types of vessels. 

 

Due to their miniature sizes, AMS swim in low Reynolds number (Re) regime, 

where prevalent propulsion methods are rendered useless. [1] Scallop Theorem 

explains that the kinematic reversibility of the fluid flow at low Reynolds number regime 

due to the disappearance of the time relation in the Navier-Stokes equation results in zero 

net displacement when the motion performed by the swimmer is reciprocal. Small 

swimmers in low Re environments must adapt strategies to break the symmetry of the 
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motion, or the fluid flow with respect to time. Bacteria, microbes, spermatozoa swim in 

low Re conditions and propel themselves with ease, therefore, scientists look at the nature 

for an answer to this problem. It is observed that the small organisms propel themselves 

by means of flagella, cilia or complex body deformations. This is how, inspired by nature, 

creating such appendages artificially or designing swimmers that can propel themselves 

via surface or body deformations became a wide research area and a promising solution 

to the drug delivery problem.  

Figure 1.2 -inspired solutions [1] 

 

As the research on this area gained momentum, the application area of the artificial 

swimmers expanded accordingly. Micro swimmers are now used as diagnostic tools and 

help in medical imaging [2]. Researchers found new ways the break the symmetry and 

escape the Scallop Theorem by surface engineering or by using alternative fluidic 

environments [3-4]. Artificial helical flagella and self-propelling spherical particles are 

in abundance in the literature. However, there are still many unknowns about their 

swimming performances in different environments.  
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Figure 1.3 Artificial transporter picks the targeted molecule, transports it, tags it and 
releases it [2]. 

 

In the first chapter of the thesis, a literature review to construct a comprehensive 

background is presented. Following the literature review, motivation of the work covered 

in this thesis is discussed. 

In the second chapter of this thesis, a computational study that aims to fill one of 

these gaps is presented. Swimming performance of helical structures swimming at low

Re environments inside cylindrical conduits are largely dependent on their geometric 

properties. Identification of the geometric parameters that enhance the velocity or 

efficiency of a swimmer may become crucial in the accuracy of the desired applications.

However, an extensive analysis of the geometric parameters constructing the helix and a 

guideline to manipulation of geometric proportions to a specific end is missing. Helices 

are hard to produce in small scales, therefore, predicting their performance prior to 

production is also important. The work presented in chapter two demonstrates a very 

efficient and highly accurate computational fluid dynamics (CFD) model that can be used 

to analyze the performance of a helical swimmer of arbitrary cross-section. 

Comprehensive results obtained using the CFD model proposed are also presented to 

serve as a guideline. 

The third chapter focuses on the swimming behavior of spherical particles in 

cylindrical channels. First, the experimental study conducted to identify different 

swimming modes is presented. Then, implementation of a numerical model that can be 
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used to predict the behavior of magnetically actuated rigid spheres inside cylindrical 

conduits is explained. Accuracy of the model in various actuation modes is discussed and 

problems to be solved for improvement are identified. 

The two chapters together establish a comprehensive analysis of swimming 

behavior of micro swimmers swimming in low Re environments regardless of their shape, 

whether they are chiral or axisymmetric. The tools proposed in this thesis can be applied 

to chiral and axisymmetric structures of alternative shapes and cross-sections. It is 

demonstrated that through identification of key parameters and governing dynamics, 

computationally efficient and highly accurate models can be constructed.  

 

 

 

1.1.Literature Review 
 

 

 

Artificial micro swimmers (AMS) present a huge potential for medical applications, 

such as drug delivery and minimally invasive surgical operations [5 9].  Various 

approaches for the design of AMS are inspired by microorganisms, such as bacteria or 

spermatozoa, that move by means of beating or rotary motion of cilia and flagella in 

aqueous solutions [10 12]. Advances in fabrication techniques allow producing a diverse 

range of shapes that serve as bio-mimetic artificial propellers [8, 9, 13 18]. External 

magnetic fields have been used extensively for the actuation of AMS with helical tails. 

Ghosh and Fischer [19] manufactured micron long SiO2 helical micro swimmers, actuated 

by Helmholtz coils and navigated to demonstrate controllable trajectories. Li et al. [20]

demonstrated the swimming of helical nano swimmers, which are as small as 100 nm in 

diameter and 600 nm in length based on the electro-deposition of Pd/Cu nanorods into 

nanoporous membranes as described by Liu et al. [21]. Gao et al. [22] deposited Ti and 

Ni layers directly onto the spiral water-conducting vessels obtained from various plants, 

and tested the swimming performance of these magnetically actuated helical swimmers 

at different frequencies using Helmholtz coils. Zhang et al. [23] employed micro 

manufacturing techniques to produce 4



6 
 

microns in diameter are manufactured by Qiu et al. [24] and used for temperature 

controlled, targeted drug administration. Maier et al. [25] demonstrated swimming of 

DNA-based flagellar bundles featuring magnetic beads. In another study featuring 

multiple flagella, Beyrand et al. [14] examined different swimming modes such as 

tumbling, rolling, and wobbling along with the capability of the AMS in cargo transport. 

Lastly, magnetotactic bacteria are utilized as self-propelled natural micro robots and 

controlled by time-varying magnetic fields [26] to perform complex micro assembly tasks 

[27]. Further examples on various fabrication and actuation methods of micro swimmers 

are reviewed by Peyer et al. [28]. Advances in drug delivery featuring artificial micro 

swimmers are reported by Gao and Wang [29].  

 

Figure 1.4 Various artificial helical micro swimmers. Ghosh and Fisher [19] presented 
the use of glancing angle deposition method to produce helical swimmers and 

demonstrated their accurate control, Temel and Yesilyurt [30] created swimmers with 
Cu wire and permanent magnets and magnetically actuated them, Zhang and Nelson 

[31] manufactured helical ribbon by multilayer deposition. 
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In addition to experiments that demonstrate the efficacy of helical swimming, helical 

tails have been studied by several authors theoretically and computationally. Sir James 

[32] predicts the swimming velocity accurately 

approximate perturbative solution (APS) [33] includes the effect of confinement for 

infinitely long cylinders with helical perturbations, and solves for the velocity and 

efficiency correctly for small helical amplitudes compared to the confinement radius. 

Man and Lauga [34] used resistive force coefficients to analyze the wobbling behavior of 

helices that rotate with an external magnetic field and showed that swimming is more 

efficient for larger wavelengths and number of waves due to decreasing wobbling of the 

swimmer. Koens and Lauga [35]  report the development of slender ribbon theory (SRT) 

and resistance coefficients for helical ribbons which are defined by two length scales for 

the cross-section, namely, thickness and width, for only slender geometries, whose 

thickness is much smaller than other dimensions.   

Computational studies on helical swimmers have utilized mostly the boundary 

element method (BEM).  Liu et al. [36] investigated helical filaments swimming inside a 

circular channel with BEM by varying the helical pitch angle and the ratio of the filament 

thickness to the arc length of one helical turn, and reported the swimming characteristics 

under constant torque and constant angular velocity applications with respect to the 

confinement. Spagnolie and Lauga [37] presented a numerical study to predict the optimal 

shape for elastic flagella of both finite and infinite sizes in terms of hydrodynamic 

[38]. The 

authors [37] concluded that for infinitely-long flagella, helical shapes are the optimal in 

three dimensions, whereas modified saw-tooth profiles are found to be more efficient in 

two dimensions, which are variations on the geometries suggested by Lighthill [38]. 

Spagnolie et al. [39] demonstrated that the effect of viscoelasticity on the swimming 

characteristics is dependent on the shape of the helical tails. Performance of confined 

helical tails with different cross-sections and pitch angles is studied by Li and Spagnolie 

[40]  to determine optimum helical shapes for efficient swimming and pumping. 

Montenegro-Johnson et al.[41] developed a BEM tailored for ribbons and sheets, that 

accurately captures the swimming dynamics of slender swimmers with lengths 

comparable to their widths. Keaveny and Shelley [42] investigated propagating helices 

with elliptic cross-sections by calculating the tractions on the swimmer body using 
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numerical solutions of the boundary integral equations. Keaveny et al. [43] also utilized 

the boundary integral formulations to replicate the swimming speeds measured 

experimentally for various helical swimmers, and suggest variations on the design (such 

as centerline optimization) to maximize speed. In addition to BEM, Acemoglu and 

Yesilyurt [44] used a CFD model to study swimming of a model microorganism with a 

helical tail in cylindrical channels and reported effects of geometric parameters of  the 

helical tail on the swimming velocity and efficiency. 

In addition to swimming of helical tails, various studies are conducted to understand 

and predict the behavior of spherical particles swimming inside conduits or near 

boundaries, both in the presence of a flow and in a quiescent fluid. Brenner and Happel 

[45] investigated the frictional drag on a sphere subjected to a Poiseuille flow using the 

method of reflections. They concluded that an optimum distance between the sphere 

center and central axis of the cylindrical conduit exists, where the drag is minimized. 

However, their results are valid in asymptotic cases where the distance between the sphere 

and the channel wall is much larger than the sphere radius. Goldman et al. [46] took near 

wall effects of nearly planar wall, their results can only apply when the channel radius is 

considerably greater than the sphere radius. Bungay and Brenner [47] studied the motion 

of spherical particles in a tightly fitting cylindrical conduit and proposed an improvement 

on the existing lubrication theories, which is still widely used in cases the sphere and the 

channel wall are in close proximity. Higdon and Muldowney [48] used spectral boundary 

element method to obtain friction coefficients of spheres swimming inside cylindrical 

conduits. They presented tabulated results for a range of Dch/Dsph ratios, which can be 

used to predict swimming behavior of spheres that swim under zero net torque condition, 

at any distance from the channel wall. For the cases when sphere is too close to the 

channel wall, they employed the lubrication theory. As zero torque conditions are applied, 

rotational friction coefficients and coupling friction coefficients are not reported. 

More recently, Bhattacharya et al. [49] reported a basis transformation model that 

overcomes the limitations of the asymptotic models. They presented translational, 

rotational and translation-rotation coupling friction coefficients for spheres at an arbitrary 

radial position, and for various Dch/Dsph ratios. The model predicts that based on the 

Dch/Dsph ratio and the distance of the sphere from the channel wall, a sphere rotating at a 

constant angular velocity might roll in one direction or slide in the opposite direction due 

to the adverse pressure gradient. Zhu et al. [50] opted for boundary element method to 
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study the motion of spherical squirmers in capillary tubes. They focused more on the 

work necessary to swim, trajectory followed by the particles, and on the comparison of 

pusher and puller type swimmers. They concluded that the puller type swimmers are 

following a more stable trajectory, and that the presence of a confinement increases the 

amount of work done to achieve swimming. 

 

Figure 1.5 Strategies to break symmetry with spherical particles: Lugli et al. [51]
analyse the shape dependence on the performance of the Janus particles that utilize 

asymmetric chemical reactions to achieve propulsion, Dreyfus et al. [52] used DNA to 
bind magnetic particles, Djellouli et. al. [53] exploit surface deformations and Takagi et 

al. [54] break the symmetry using hydrodynamic interactions with the boundaries.
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In addition to general analyses on the motion of spheres inside confinements, 

peculiar behavior such as the anomalous rolling of spheres near inclined planes are 

reported in the literature, namely, the motion of a sphere rotating as though climbing the 

inclined plane despite falling downwards. One of the earliest mentions of a similar 

behavior is reported by Cox et al. [55], where the authors deduct that, sphere should slip 

as it rolls near a boundary, which is demonstrated by Liu et al. [56] experimentally. The 

authors found that, when a sphere is dropped near a planar wall, depending on the nature 

of the fluid used (Newtonian vs. Non-Newtonian) and the angle of inclination of the wall, 

the sphere might perform rolling, sliding or anomalous rolling. When the wall is vertical, 

sphere is found to display anomalous rolling in both Newtonian and Non-Newtonian 

fluids, and that it shies away from the wall. They observed that the sphere transitions to 

normal rolling in Newtonian fluids, once the inclination of the planar wall is beyond a 

critical angle, however, that anomalous rolling still persisted in Non-Newtonian fluids. 

More studies reporting the behavior of the spherical particles approaching a boundary or 

falling near a boundary [52 56], and studies on collective behavior of multiple particles 

[57-58] can also be found in the literature. 

Construction of the equation of motion for a swimming sphere has an extensive trail 

in the literature dating back to 1880s. Basset [64], Boussinesq [65] and Oseen [66] studied 

the motion of a sphere settling under the gravity force in a quiescent fluid. In such a fluid, 

only disturbance to the flow occurs due to the settling motion of the sphere, which of low 

Reynolds number and thus allows deduction of the resulting fluid force on the sphere 

using Stokes equations [67]. Tchen [68] extended their work to include unsteady flows in 

his PhD thesis, which prompted an immense number of studies suggesting corrections to 

his equa [69] remark on the 

[70] correction on the term suggested by [69] should be listed. Soo [71] and Gitterman 

and Steinberg [72] offered their own solutions. In 1982, Maxey and Riley [67] derived

the equation its widely used form to this day with corrections of Auton et al. [73] and 

Maxey himself. However, Maxey-Riley equation lacks the lift term that must be added to 

the equation in the presence of a boundary or rotational motion. 

Expressions of the lift force found in the literature are not applicable to the sphere 

moving inside a cylindrical channel. Majority of the studies pursuing the lift force 

consider spherical particles subjected to Poiseuille flow or linear shear flow. As a rare 
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case considering the motion of a sphere in quiescent fluid, work of Rubinow and Keller 

[74] investigating the motion of a spinning sphere moving in a viscous quiescent fluid at 

low Reynolds numbers can be cited. They calculated the forces and the torques acting on 

the sphere and reported the presence of a lift force acting on the sphere orthogonal to its 

direction of translation, whose magnitude is proportional to . They also argue that 

the lift force is independent of viscosity at small Reynolds numbers. However, due to the 

absence of a confinement, which is an important parameter affecting the lift force, their 

results are not applicable here. 

Saffman [75] reported on the lift force acting on a sphere moving in a very viscous 

fluid and subjected to unbounded linear shear flow. He discussed the contributions to the 

lift force due to the shear and due to the rotation. He also derived an equation for the lift 

force acting on small spheres in linear shear flow, which is valid when the particle 

Reynolds number is much smaller than the square root of the Reynolds number based on 

the velocity gradient, which must be of the same order as the rotational Reynolds number.

All three Reynolds numbers should also be much smaller than unity. Absence of a 

boundary and presence of a flow renders his results inapplicable to our case. Drew [76]

reported that the wall-induced lift force on the sphere moving at low Reynolds number in 

a viscous flow is smaller than the lift that could be created by an unbounded shear flow, 

which indicates that the presence of a boundary affects the lift force acting on the sphere. 

Cox and Brenner [77] studied motion of particles with arbitrary shape, including spheres, 

and explored the effects of the presence of a boundary around the flow field. They 

investigated the lateral migration observed when spherical particles suspended in vertical 

tubes are subjected to laminar flows. The authors reported that Rubinow-Keller equation 

[74] does not apply to this problem, as the disturbances to flow considered by Rubinow 

and Keller [74] are local, and that the force Cox and Brenner calculated [77] is greater 

than the force calculated by Rubinow and Keller [74]. This result also underlines the 

contribution of the confinement to the lift force. Ho and Leal [78] calculated inertia-

induced effects on rigid spheres in 2D. They concluded that such spheres settle in the 

middle of two bounding planes when subjected to simple shear flow, and at 0.6th distance 

from the central axis when subjected to Poiseuille flow. The study is conducted for 

naturally buoyant spheres and the results are valid for spheres sufficiently away from the 

wall. Vasseur and Cox [79] extended this analysis to spheres subjected to Poiseuille flow 

and Couette flow between two flat planes, where they investigated particles that are non-
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neutrally buoyant, neutrally buoyant and almost neutrally buoyant. Non-neutrally 

buoyant particles are observed to move towards the closest boundary if the velocity of the 

Poiseuille flow and the sedimentation velocity of the particle have the same sign. In 

Couette flow, these particles are reported to move towards the moving wall when the 

velocity of the flow and the sedimentation velocity of the particle have opposite signs. 

Equilibrium position of neutrally buoyant particles between two flat planes are reported 

for two cases, where the particles are allowed to freely rotate and where their rotation is 

prevented, and it is demonstrated that the equilibrium position of the spheres depends on 

the presence (or absence) of a rotary motion. For almost neutrally buoyant particles, the 

equilibrium position also depends on the density difference between the fluid and the 

particle. These results are valid for low but finite Reynolds numbers.  

Distance between the spherical particle and the confinement boundary is another 

crucial parameter affecting the lift force. Cox and Hsu [80] considered spheres suspended 

in a laminar flow near a vertical wall. They observed the dependence of particle 

similar to the findings of Vasseur and Cox [79] and report that their results agree with 

Vasseur and Cox [79] when the particle is not far from the wall. Mclaughlin [81] studied 

the sphere moving parallel to a flat wall in linear shear flow with Reynolds number small 

compared to unity. He calculated the lift force acting on such a particle and found an 

expression for the lift force, which is applicable when the particle is sufficiently away 

from the wall, complementing the findings of Cox and Hsu [80]. Cherukat and 

McLaughlin [82] derived a solution for the lift when the gap between the sphere and the 

infinite plane wall is comparable to or even smaller than the radius of the sphere in case 

the sphere is subjected to shear flow. The expression for the sphere rotating and 

translating in contact with a rigid boundary under shear flow is obtained by Krishnan and 

Leighton [83]. Their expression includes contributions from both ambient shear and 

translation-rotation coupling.  

Studies on experimental observation of the lift force are scarce. Leighton and 

Acrivos [84] report that they could observe the lift experimentally in particles between 

two parallel horizontal surfaces at Reynolds numbers smaller than 0.01. They argue that 

even though in the low Reynolds number regime the inertial forces are dominated by the 

viscous forces, the inertial forces are not completely absent ant therefore could be 

accountable for the observed lift. Motivated by that, they studied the lift force on a 
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stationary sphere subjected to shear flow as the sphere is in contact with the wall. They 

concluded that the contribution to the lift from viscous forces are zero, and despite the 

fact that the lift observed in the experiments are of a magnitude that is measurable, its 

true nature could not be determined. Hall [85] experimentally measured the lift force on 

the stationary spherical particles subjected to turbulent flow near a boundary and 

demonstrated that the lift force measured is much greater than the lift forces calculated 

using existing solutions in the literature.  

Some expressions on the lift force are not applicable due to the high Reynolds 

number flows featured in the studies. Schonberg and Hinch [86] investigated spherical 

particles subjected to Poiseuille flow between two infinite plates with the  Reynolds 

number is close to unity. The authors reported that the spherical particle settles closer to 

the wall with an increase in Reynolds number.  [87], which is 

one of the most recent studies, also analyzed the sphere moving near a flat boundary under 

linear shear flow for a Reynolds number range between 1-100. 

 

 

 

1.2. Motivation 
 

 

 

Understanding the swimming characteristics of micro swimmers in low Reynolds 

number environments is crucial to the success and accuracy of medical applications that 

will utilize them. The number of studies featuring chiral and axisymmetric swimmers 

increase at an immense rate. However, there are still many aspects that need to be 

analyzed in great depth to grasp their potentials and shortcomings and design applications 

that could possibly exploit both the advantages and shortcomings. 

Both chiral and axisymmetric particles can be made to break time reversal 

symmetry that is explained in the Scallop Theorem [88] in many ways. Chiral structures 

achieve asymmetry due to their geometry, and axisymmetric particles can be modified to 

produce asymmetric flows around them, interact with boundaries or go through surface 

deformations. To have a grasp of the entirety of the field covering micro swimmers, one 

must investigate both types of structures, and then utilize the one that fits a certain 
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application better. Therefore, researchers should attempt filling any gap of knowledge in 

the field. 

This thesis work attempts to treat two aspects of micro swimmers that needs to be 

studied further. Firstly, effects of geometric parameters on the velocity and efficiency of 

the chiral structures such as helices and ribbons are investigated. Swimming performance 

of confined chiral structures depend on various geometric parameters. Manufacturing 

intricate structures at small scales with desired geometric proportions is hard; it is time 

and money consuming and requires great expertise. One may not always be able to 

acquire the dimensions desired due to the limitations of the techniques available. For 

example, one may have to produce a helix of a certain width, which might decrease its 

velocity performance. Having a guideline in such a case would allow a researcher to 

enhance the velocity by modifying another geometric parameter, such as width.

Furthermore, having a computational tool that could analyze the resulting geometry prior 

to manufacture could help reduce the cost in both time and money. 

Secondly, an alternative to chiral structures is presented by mobilizing a rigid

sphere inside cylindrical conduits. Helical structures convert rotational motion to linear 

translation; therefore, they are very important in micro swimming applications. Spherical 

particles, with their axisymmetric geometry, cannot be mobilized easily in bulk fluids. At 

low Reynolds number, they cannot swim in bulk by rotary motion due to the lack of a 

non-reciprocal motion. They can be pulled by an external force, but the linear drag acting 

on spherical particles is proportional to the length scale, whereas the rotational drag on 

the sphere is proportional to the third power of the length scale, which makes a significant 

difference at small scales. However, it is possible to mobilize spherical particles via rotary 

motion by introducing asymmetric forces using hydrodynamic interactions between the 

spherical particles and confinements. Once the obstacle of moving them effectively is 

overcome, spherical particles become advantageous for they are much easier to produce, 

and they can be very easily miniaturized to fit the application. Therefore, it is important 

to understand their swimming behavior inside confinements. Swimming of spherical 

particles inside cylindrical channels is not observed experimentally at great length. 

Therefore, in the second part of this thesis, an experimental study identifying swimming 

modes of the magnetically actuated spheres inside cylindrical conduits is conducted. The 

experimental results show that a simple, chemically inactive axisymmetric particle can 

also be manipulated to follow trajectories and even be focused non-inertially. A numerical 
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model to predict their trajectories is also prepared. As stated above for helices, being able 

to analyze the system while designing it has great advantages. 

Combination of the two parts of the thesis construct a comprehensive study of 

swimming performance of micro swimmers in cylindrical conduits regardless of their 

shape (chiral vs. axisymmetric). Both parts are applicable to micro swimmers in low 

Reynolds number environments and present computational tools to understand and 

analyze their swimming behavior. Furthermore, both of these tools can be used to analyze 

shapes that are not in the scope of this thesis with minor modifications. Lastly, the results 

of each study deliver novel insights to the field. 
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2   SWIMMING OF HELICAL STRUCTURES 

 

 

 

 

In this chapter, effects of geometric parameters on the swimming performance of 

helical rods, ribbons, filaments and Archimedean screws are demonstrated; wavelength, 

amplitude, radius and eccentricity (for rods), confinement radius, helix thickness and 

width (for ribbons and screws) are included in the study. A CFD model is developed to 

obtain the swimming velocity, torque, angular velocity, and efficiency of the helical 

structures inside circular channels. First, the helical rods are discussed and the swimming 

velocities are compared with the SBT [32], which does not include the wall effects, and 

APS [33], which includes the wall effects only for small amplitudes of the helix. 

Comparisons also serve as a validation of the model with theoretical results. Then, 

ribbons and screws are discussed to demonstrate the effects of thickness and width for the 

structures with rectangular cross-sections. Ribbons are of particular interest due to 

advantages of bulk-micro manufacturing techniques in mass production of such 

structures, as demonstrated by Zhang et al. [23]  -scrolling helic

Effects of ribbon width are compared for the ribbons attached to a magnetic head and 

coated with magnetic materials. Resistance coefficients are obtained for the full 

experimental swimmer [23] with a head attached to the finite length tail, and compared 

with the experimental values and previous numerical results [35, 41, 43] as a validation 

and to understand the effects of the swimmer geometry. Resistance coefficients for the 

helical structures studied in the scope of this work are also reported and used in the 

interpretation of the velocity and efficiency profiles of these structures.  

A fraction of the data reported in this chapter are previously published by Demir 

[89]. 
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2.1. Methodology 
 

 

 

2.1.1. CFD Model 
 

 

In this section, governing equations and boundary conditions applied in the CFD 

model are presented. Mesh convergence analysis of the model is conducted, and the 

process followed in obtaining the resistance coefficients and their validation  is explained. 

 

 

 

2.1.1.1. Governing equations and boundary conditions 
 

 

Low Reynolds number swimming of helical structures is governed by incompressible 

Stokes equations which is given in the non-dimensional form as follows 

 21
0   and    0p

Re
u u  (1-2)

where u and p denote the velocity vector and pressure respectively. The Reynolds 

number, Re, is based on the rotation frequency, f, and a length scale, , such as the 

diameter of the channel: i.e. Re = 2f/

water. 

No-slip boundary conditions are used on the stationary channel wall and on the helical 

body moving with the velocity: 

 0 , Su U  (3)

where U is the swimming velocity,  is the angular velocity, r is the position, r0 is the 

position of the centroid, and S represents the surface of the structure. Lateral and angular 

velocities of the helical body are specified as unknown, except for the angular velocity of 

 -
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simulations, but remained unknown in the constant torque, T, case. Force-free and torque-

free swimming conditions are used to calculate the unknown velocity components:

 0net
S

dAF  (4)

 0( ) 0 0

0
net S

T

dAT r r  (5)

where  is the stress tensor and n is the local surface normal.  

Swimming of an infinite helical body inside a circular channel is modeled by using 

periodic velocity and stress at the inlet and outlet of the one-wavelength long part of the 

fluid domain in the channel: 

 
0

, ,
x x

u  (6)

A relative metric is specified to assess the efficiency of helical structures with respect 

to the base cases in Table 1. For helical rods, the base case is defined arbitrarily, but for 

helical ribbons and screws the ribbon manufactured by  Zhang et al. [23] is used as the 

base case. Since the rate of work to move an object at the swimmer speed is proportional 

to U U and the required power is T , the relative efficiency is independent of the 

angular velocity or the torque input studies and defined follows: 

 0 0

0 0 0

TU U

T
 (7)

Mobility coefficient for the low Reynolds Number swimmer prescribes the forward 

velocity of the swimmer for a given torque in that direction as a convenient metric for 

comparing the effects of geometric parameters of the swimmer. Similar to the relative 

efficiency, the mobility coefficient is normalized with the reference case: 

0

0 0

Tm U

m T U
 (8)
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2.1.1.2. Simulation parameters 
 

 

Swimming velocity, U, and efficiency, , (7) of helical structures are obtained from 

the solution of governing equations (1)-(2) subject to boundary conditions (3)-(6) with 

the finite-element-method using COMSOL® Multiphysics [90]. Representations of 

helical bodies with circular and rectangular cross-sections are shown in Figure 2.1, where 

the geometric parameters are also depicted. 

In order to identify the physical effects of geometric variables and to obtain 

sensitivities, parametric studies are carried out with respect to each geometric variable 

while others are kept at their base value unless noted otherwise. For the rods, the length 

scale is set to 100 m for which the Reynolds number is 8.3×10-3 for swimmers in water. 

Wavelength, , and amplitude, B, of the helix, radius of the rod, a, and eccentricity of the 

helix, z0, and the diameter of the channel, 2Rch, is used for the nondimensionalization of 

length scales. For ribbons, filaments and screws, dimensional values are adapted from the 

helical ribbon developed by Zhang et al. [23]. In addition to effects of   and Rch,

thickness, d, and width, w, are studied and B is used for the nondimensionalization of the 

length scales. Complete list of geometric parameters and their range of values are given 

in Table 2.1. Since the velocities scale linearly with the frequency, it is kept at the base 

value of 1 Hz for all cases. 

Figure 2.1 (a) Right-handed helical rod with a circular cross-section of diameter 2a; (b) 
Helical ribbon with thickness d and width w. 
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Table 2.1 Base values and test ranges of geometric parameters. 

 Helical rod Helical ribbon 

Parameters 
Base 
Value 

Range 
Dimensions  based 

on Ref [23] 
Base 
Value 

Range

Wavelength,  (= 
Lch) 

1 0.1 - 10  7.89 0.33-20

Amplitude, B 0.1 0.01 - 0.45  1 constant
Channel radius, Rch 0.5 constant - 2 1.1-10
Radius, a 0.04 0.01 - 0.35 - - -
Eccentricity, z0 0 0 - 0.35 - 0 constant
Length scale,  0.1 mm -   -
Frequency, f 1 Hz  1 Hz  
Reynolds number, 
Re 

8.3×10-

3 
-  

1.63×10-

6 
-

Thickness, d0 - - 42 nm 0.03 
0.01-
1.95

Width, w0 - -  1.29 
0.01-

7.71

 

 

 

2.1.1.3. Mesh convergence 
 

 

The CFD model uses P1-P1 type tetrahedral finite elements and brick elements in 

double boundary layer mesh around the helix and on the channel wall in cases where the 

helix is very close the channel wall as shown in Figure 2.2 

Convergence of the mesh is demonstrated on the base configuration chosen for helical 

rods (Table 2.2). Linear system of equations is solved with the PARDISO solver, on a 

high-end workstation. The swimming velocity, CPU time, memory allocation and the 

discrepancy relative to the finest mesh are presented in Table 2.2. It is observed that the 

velocity converges to the reference velocity as the DOF increases even with about 25K 

DOF and further improvement in the mesh does not improve the results. The error in the 

swimming velocity increases as the element size increases and the number of DOF 

decreases. The base mesh, which is adopted in this study, has 253K DOF (Figure 2.2), 

yields a swimming velocity with 0.16% error in significantly lower CPU time with 

reasonable memory requirement (Table 2.2).  
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The same mesh-size combination for automatic triangulation of surfaces and 

generation of tetrahedrals is used for the ribbons as well and mesh convergence is 

observed (Figure 2.3). For helices with much smaller dimensions than the base ribbon, 

such as the ribbon with the smallest thickness (d = 0.01) and 200K-DOF mesh (Figure 

2.4), and the filament with the width and thickness of d = w = 0.03 and 400K-DOF mesh 

(Figure 2.5), error in the velocity is less than 0.35% compared to the finest mesh with 

more than one million DOF for each case. 

 

Figure 2.2 Finite-element meshes for the reference case (a) and (b); mesh refinement at 
the surface for the eccentric swimmer (c) and (d). 
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Table 2.2 Convergence of the finite-element mesh for the base structure. 

Number of DOF U CPU Time (mm:ss) RAM (GB) Error (%)

1096845 0.16697 26:40 65.45 Reference

757096 0.16728 12:08 39.5 + 0.19

407102 0.16623 03:18 17.7 - 0.44 

253761 0.16724 01:31 10.53 + 0.16

120590 0.16708 00:24 5 + 0.07

69439 

43758 

0.16540 

0.16540 

00:08 

00:05 

4.31 

3.6 

+ 0.94

+ 0.94

34622 0.166179 00:04 3.05 +0.47

25900 0.16866 00:03 2.83 -1.01

20148 0.170136 00:02 2.95 -1.9

19704 0.171465 00:02 2.94 -2.69

18576 0.175954 00:02 2.89 -5.38

 

Figure 2.3 Convergence of the finite-element mesh for the ribbon. 
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Figure 2.4 Convergence of the finite-element mesh for the ribbon with minimum 
thickness. 

 

Figure 2.5 Convergence of the finite-element mesh for the filament. 
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2.1.1.4. Validation of resistance coefficients 
 

 

Zhang et al.[23] provide the resistance coefficients for the experimental swimmer, 

which describe the relationship between the velocities and forces according to the 

following relationship: 

 a b

b c

R RF U

R RT
  (9)

In (9), the coefficient Ra describes the drag experienced by the swimmer due to its 

translation, Rb is the resistance between the translational speed and the torque, or the 

angular velocity and the force, and Rc represents the rotational drag.  

Previous theoretical [35] and numerical studies [41, 43] report discrepancies in the 

resistance coefficients as shown in Table 2.3, in part due to uncertainties in the 

dimensions of the experimental ribbon [43]. Koens and Lauga [35] report results from the 

analysis based on the slender ribbon approximation for the same swimmer with a spheroid 

head.  Whereas numerical results with BEM are reported by Keaveny et al. [43] for a 49.7 

microns long swimmer with a payload attached, and RiBEM results are reported 

presented by Montenegro-Johnson et al. [41] for the swimmer with 1.4 microns of helical 

radius and 38 microns axial length with a magnetic head of the same dimensions as the 

experiments. Here, resistance coefficients of the swimmer are obtained from the CFD 

model of the exact swimmer in Ref. [23] placed inside a large channel with a radius and 

length about ten times the length of the swimmer with closed ends. Consistently with 

previous theoretical and numerical work, the length of the helical tail is set to 38 m, 

radius of the helix is taken 1.4 m, and a magnetic head of dimensions 4.5 m x 4.5 m 

[23]) is attached to the helical tail.  

According to Table 4, Ra, which represents the translational resistance, is lower than 

the experimental value for all methods; however, the CFD result lies between the 

experimental and numerical results. In the CFD model, Ra approaches to the experimental 

value as the radius of the channel is increased to mimic bulk swimming conditions. 

Moreover, according to simulations, coupling coefficient Rb is sensitive to the position of 

the magnetic head: as the centerline of the head deviates from the centerline of the helix, 
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Rb increases. The CFD result for Rb is for the case when the centerlines overlap. Lastly, 

Rc values, that represents the rotational drag, from numerical studies are about 4 to 5 times 

as large as the experimentally reported value. According to CFD results the value of the 

Rc decreases as the helix diameter increases as also reported by [35]. 

 

Table 2.3 Values of the resistance coefficients from experimental and numerical studies. 

 Experimental 
[23] 

CFD 
SRT 
[35] 

BEM [43] RiBEM [41] 

Ra [10-7 N s m-

1] 
1.5 1.28 1.04 0.937 0.932 

Rb [10-14 N s] -1.6 -1.75 -1.32 -1.63 -1.47

Rc [10-19 N m 

s] 
2.3 11.81 6.81 10.1 9.91 

 
 

 

 

2.2. Results 
 

 

 

In this section, results obtained from the CFD model are presented. First, the 

circular cross-sections will be considered. Results for these will also be validated using 

existing theoretical models. Then the results for the ribbons and screws are presented. 

The results regarding these are validated by the resistance coefficients reported by Zhang 

et al. [23]. 

 

 

 

2.2.1. Circular Cross-Sections 
 

Swimming performance of the helical rods are investigated for constant angular 

velocity application. Results are presented in this section categorized by the geometric 

parameter in focus. 
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2.1.1.1. Wavelength 
 

 

, swimming velocities from CFD simulations are  

compared against theoretical results from the slender body theory [32] (SBT) and the 

approximate perturbative solution [33] (APS

swimming velocity, U, is shown in Figure 2.6a. First, U increases with  up to a peak 

value, then decreases.  For small (large) wavelengths, the pitch angle of the helix is very 

large (small) and thus there is not enough propulsion from the drag anisotropy as observed 

in previous studies as well, e.g. [91]. Second, CFD results agree with SBT and APS 

asymptotically at small and large wavelengths respectively. Former captures the overall 

trend in the swimming velocity but 

as the theory is based on the force distribution and interactions over a slender body and 

does not account for the confinement. On the other hand, APS is more accurate at large 

wavelengths as expected, since the analysis addresses the swimming of cylindrical rods

with helical perturbations in circular channels; as  increases, helical shape approaches 

to the perturbative limit. In between the two extremes, body-body and body-wall 

hydrodynamic interactions act together.  

Relative external torque, T/T0, that sustains the rotation of the helical rod at  = 2  is 

shown in Figure 2.6b.  Except for small wavelengths, T/T0 increases almost linearly with 

 according to CFD simulations. However, the T/  saturates to a constant value as 

increases following a decline at small as shown in Figure 2.6c. 
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Figure 2.6 U (a), torque (b), 
torque per wavelength (c), and efficiency & mobility (d). 

 

Optimum wavelengths that maximize the efficiency and the mobility are slightly 

different (Figure 2.6d). For constant , the efficiency can be written as the mobility 

multiplied by the velocity, thus we observe that mobility peaks at a lower  than the 

efficiency,  = 0.7 vs. 0.9, where / 0 becomes slightly larger than unity. 

The results can be interpreted with the help of resistance coefficients. Resistance 

coefficients Ra, Rb, and Rc are non-dimensionalized as follows, and depicted in Figure 

2.7: 

 / (6 )a aR R B  (10a)

 2/ ( )b bR R B  (10b)

 3/ (8 )c cR R B  (10c)

Translational resistance coefficient  increases with increasing wavelength, which 

is expected to cause a drop in the translational velocity. However, this effect is 

counteracted by the increase in the magnitude of the translation-rotation coupling 

resistance . The increase in , which is the rotational resistance coefficient, is apparent 

in the increasing amount of torque required to turn the helix as the wavelength increases.
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When the net force on the swimmer is zero, nondimensional form of equation 9 

reduces to: 

 b

a

R
U

R
  (11)

which allows predicting the velocity profile using the resistance coefficients. At constant 

rotational velocity and under zero net force, lateral velocity of the helical rod is 

proportional to negative of the ratio of translation-rotation coupling coefficient to the 

translational resistance coefficient as observed in Figure 2.8, which shows an identical 

trend to the velocity profile observed in Figure 2.6a. 

 

 

Figure 2.7 Translational, translation-rotation coupling, and rotational resistance 
coefficients plotted against normalized wavelength /Dch. 

 

 



29 
 

 

Figure 2.8 Velocity profile with respect to the changing wavelength, obtained using the 
resistance coefficients. 

 

 

 

2.1.1.2. Rod Thickness 
 

 

The effect of the rod thickness, a, on the swimming velocity, U, is shown in Figure 

2.9a.  First, U varies moderately with a, and goes through a minimum at a = 0.15.  Increase 

in U becomes more notable as a increases further; for a = 0.35, U is almost twice as high 

as its minimum value. As a 0, U converges to a non-zero value, which agrees with the 

SBT, and that is slightly greater than the velocity of the base helix. Agreement with the 

SBT theory indicates that wall interactions do not play an important role as a 0. 

Moreover, the offset between the CFD and the APS remains significant due to relatively 

large amplitude of the base helix, B = 0.1, that violates the assumptions of APS. 

Figure 2.9 Effect of the radius of the rod, a, on the swimmer velocity, U (a), normalized 
torque (b), normalized efficiency and normalized mobility (c). 
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As a increases, torque needed to rotate the helical rod at a constant angular velocity 

increases dur to the increased perimeter of the helical structure. Furthermore, the 

clearance between surfaces of the channel and the helix, c, decreases and leads to increase 

in the shear stress proportionally to 1/c, thus the required torque increases as well (Figure 

2.9b). Due to increasing torque, efficiency and the mobility of the helical rod decrease 

sharply as a increases as shown in Figure 2.9c. The two are almost identical since the 

velocity does not change dramatically and the sensitivity of U is very small, i.e. | U/ a| 

~ 0. Thus, for effective helical swimming, the rod diameter must be kept as small as 

possible to reduce the torque requirement and increase the overall efficiency and mobility.

Similar to the case of increasing wavelength,  increases with increasing 

thickness, effect of which is observed in the increasing torque demand (Figure 2.10). 

and  increase in magnitude, but they do so at different rates, thus a minimum velocity 

is observed ((Figure 2.10). Figure 2.11 shows the velocity profile obtained using the 

resistance coefficients and equation 11, which is observed to be identical to the profile 

seen in Figure 2.9a. 
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Figure 2.10 Translational, translation-rotation coupling, and rotational resistance 
coefficients plotted against normalized rod thickness a/Dch. 

 

 

Figure 2.11 Velocity profile with respect to the changing rod thickness obtained using 
the resistance coefficients. 
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2.1.1.3. Helix Radius 
 

 

As shown in Figure 2.12a, U reaches its maximum value when B is about 0.43, or 

when the rod is very close to the wall, i.e. c = 1/2 - B - a = 0.03. For small amplitudes, 

theoretical results are very close to CFD results as both theories predict that the swimming 

velocity would be zero as B 0. However, as shown in Figure 2.12b for B < 0.05, U from 

the CFD model is closer to the APS than SBT, as the wall interactions are more important 

in this asymptotical limit.  

For small values of B, torque increases slowly (Figure 2.12c) as B increases. 

However, as the helical rod approaches to the channel wall, required torque to sustain 

constant rate of rotation increases sharply to overcome the shear on the body near the 

wall, which grows with inverse clearance, 1/c. Efficiency peaks around a moderate 

amplitude, B = 0.15 (Figure 2.12d), when the rod is sufficiently away from the channel 

wall, and the relative mobility peaks at B = 0.09 with a value only slightly over unity. 

Therefore, amplitudes in the range of 0.1 to 0.25 are beneficial from efficiency point of 

view, but mobility-wise optimal B is about 0.1. 

Figure 2.12 Effect of the helical amplitude, B, on the swimming velocity, U (a-b), 
normalized torque (c), normalized efficiency and normalized mobility (d). 
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Figure 2.13 Translational, translation-rotation coupling, and rotational resistance 
coefficients plotted against normalized helix radius B/Dch. 

 

 

Figure 2.14 Velocity profile with respect to the changing helix radius, obtained using 
the resistance coefficients. 

 

Resistance coefficients calculated for increasing values of B show remarkably 

similar trends to the coefficients calculated for increasing a values however, all resistance 

coefficients are observed to be of higher magnitudes (Figure 2.13). Increase in the torque 
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requirement with increasing B is captured by the increase in the rotational resistance 

coefficient  (Figure 2.13).  and  both increase in magnitude (Figure 2.13) but the 

difference in their rate of increase produces a velocity profile with a peak around B = 0.43 

is observed as depicted in Figure 2.14. 

 

2.1.1.4. Eccentricity 
 

Helical rod is placed with an offset, z0, from the center of the channel in CFD 

simulations.  In Figure 2.15a, swimming velocity, U, follows an increasing trend as the 

helical rod gets closer to the channel wall. Due to eccentricity in the z-direction, a slight 

change in the lateral velocity in the y-direction, V, is also observed (Figure 2.15a). The 

swirling flow due to the rotation of the body inside the circular channel exerts a force on 

the body itself in the counter-clockwise direction such that a force-free body would orbit 

around the center of the channel. Thus, at a fixed position, z0, in the z-direction, a negative 

y-velocity, V, is observed for small z0 values. Moreover, for larger values of z0 the traction 

force from the rotation of the body overcomes the push from the swirling flow and the 

lateral velocity changes direction. Increase in the torque is not very sharp as the helical 

rod approaches to the wall as shown in Figure 2.15b due to counteracting forces that lead 

to changing direction of the lateral velocity. Further increase in z0 results in sharply 

increasing torque. Efficiency increases as the helical rod is set closer to the wall and

decreases sharply when the swimmer is too close to the wall as shown in Figure 2.15c, 

with a peak around z0 = 0.325 (Figure 2.15c).  Mobility increases very slightly as z0

increases but drops sharply near the wall. 

Increase in the coupling resistance coefficient  with increasing z0 indicates that 

the helical rod obtains better traction due to its increased proximity to the wall (Figure 

2.16). Due to this increased contribution to lateral velocity, velocity profile depicted in 

Figure 2.17 shows that the rod achieves higher velocities when it swims near the wall.
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Figure 2.15 Effect of eccentricity on the velocity U and on the lateral velocity in the y-
direction, V (a), normalized torque (b), normalized efficiency and normalized mobility 

(c). 

 

Figure 2.16 Translational, translation-rotation coupling, and rotational resistance 
coefficients plotted against normalized eccentricity z0/Dch. 

 



36 
 

 

Figure 2.17 Velocity profile with respect to the changing eccentricity, obtained using 
the resistance coefficients. 

 

 

 

2.2.2. Rectangular Cross-Sections 
 

 

In lengths of 10-

medical procedures in the circulatory system [5, 6]. At those scales, bulk micro-

manufacturing techniques favor production of helical structures with a width, w, much 

larger than its thickness, d, as demonstrated by Zhang et al. [23]. Understanding of the 

effects of the geometric parameters on the swimming velocity and torque, bears 

importance on the optimal design of such artificial flagella. Geometric parameters of the 

helical ribbon are shown in Figure 2.1b and their base values are provided in Table 2.1. 

Moreover, in addition to ribbons with based on the definitions in Figure 2.1b, thin 

filaments with , and Archimedean screws with are also included in 

this study for the sake of completeness.  

Helical swimmers are actuated typically by a rotating magnetic field that exerts a 

magnetic torque either on the magnetic head as demonstrated by [23], or on the whole 

tail, which is coated by a magnetic material as demonstrated by [19]. First method implies 

that the applied torque is constant for the whole swimmer regardless of the tail geometry, 

and the second method implies that the torque is proportional to the surface area of the 

tail. For swimmers with a constant total length, both conditions are considered here: as 

constant torque per helical wave, T/  = constant, and constant torque per surface area, 

T/w , respectively. Swimming velocity, torque and efficiency are normalized 

with the values obtained for the st
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, inside a channel of radius twice as much as the amplitude of the base ribbon.  Under 

constant torque, swimming velocities of helices can be also viewed as the mobility 

coefficients 

 

2.2.2.1. Wavelength 
 

 

2.2.2.1.1. Constant  
 

 

As  is varied other dimensions are kept at the base values: B = 1, Rch = 2, d = 0.03 

and w = 1.29, for the ribbon and the filament, and d = 1.29, w = 0.03 for the screw. Figure 

2.18 depicts the effect of  on the normalized swimming velocity U/U0, torque, T/T0, and 

/ 0, with respect to the standard ribbon as the base case. Swimming 

velocity of filaments and ribbons are similar but significantly slower than screws, which 

Figure 

2.18a

Figure 2.18b

[23] is optimal inside a circular channel with a radius twice the amplitude of the 

helix while other dimensions are kept the same.  

Figure 2.18c and Figure 2.18d

  

  Figure 2.18d

 

 he effect of  on the convergence of T is an 

indicator of the hydrodynamic interactions between the successive helical turns. 

On 
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the other hand, hydrodynamic interactions between the helical turns is the strongest for 

screws followed by ribbons. 

Figure 2.18 Effect of wavelength on the swimming velocity (a) efficiency (b), torque (c) 
blue line with round markers for the 

ribbon, green line with triangle markers for the filament and the red line with inverted 
triangle markers for the screw. 

 

 

 

2.2.2.1.2. Constant T/  
 

 

For constant T/ , the thin filament outperforms the ribbon and the screw, and 

achieves swimming velocities almost as four times as the velocities of the screw and the 

ribbon (Figure 2.19a), due to having smaller cross-section and achieving higher  under 

the same torque compared to screws and ribbons as shown in Figure 2.19b. Albeit the 

fastest at constant , the screw swims only slightly faster than the ribbon at constant T/

for small  and even slightly slower with increasing  as the angular velocity decreases 

due to increased rotational drag.  Velocity of the ribbon remains almost constant as 

increases due to slowly increasing . 
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Figure 2.19 Effect of wavelength on the swimming velocity (a), and angular velocity (b) 
for constant torque per length. 

 

 

Figure 2.20 Translational, translation-rotation coupling, and rotational resistance 
coefficients plotted against the normalized wavelength / 0. 
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Figure 2.20 depicts the resistance coefficients for all three types of helical structures 

with rectangular cross-sections, namely, ribbons, filaments and screws. It is observed that 

the translational resistance coefficient  is the highest for the screw type due to its 

increased cross-sectional area, which causes the inferior swimming performance of the 

screw type structure under constant T/ . However, while swimming at constant angular 

velocity and under zero net force, screws achieve higher velocities due to the higher 

magnitude of - /b aR R  ratio compared to the filaments and ribbons (Figure 2.21). 

values are very similar for the ribbon and the filament, however, due to the lower 

translational resistance experienced by the filament compared to the ribbon, - /b aR R ratio 

of the filament is slightly higher, thus its lateral velocity at constant angular velocity is 

higher than that of the ribbon. Furthermore,   and  are the lowest for the filament, 

therefore, it outperforms both the screws and ribbons under constant T/  application.

Figure 2.21 Velocity profile with respect to the changing wavelength, obtained using 
the resistance coefficients. 
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2.2.2.2. Channel radius 
 

 

2.2.2.2.1. Constant  
 

 

In Figure 2.22, are plotted against Rch as ; d and w are kept 

constant at the base values (Table 2.1). Since the pre-set value of d for the screw is the 

same as the value of w for the ribbon, the smallest value of Rch is 1.65 for screws and 1.07 

for the ribbon and the filament. At constant , the Archimedean screw swims the fastest 

compared to the ribbon and the thin filament for all Rch values. As Rch increases, 

ecrease, and the velocity of the ribbon 

increases for up to Rch  1.7 and decreases for larger Rch. Positive influence of the 

confinement on the swimming velocity has been reported for helical swimmers by other 

studies [36, 40, 44, 98, 99] in the literature as well. Typically, as Rch  1, the U is 

expected to approach to the corkscrew limit, ( /2 ) , due to increased traction from the 

wall, whereas the torque increases to the traction-limit as well due to increasing shear 

with 1/c, where c = Rch  d/2  1 is the clearance between the surface of the helical body 

and the channel wall.  Increase in the traction is apparent in the increasing magnitude of 

 with respect to decreasing channel radius (Figure 2.23). For Rch > 2, T does not vary 

significantly for the ribbon and the filament, as the rotational drag, saturates beyond 

this value of channel radius (Figure 2.23). According to Figure 2.22c, order of helical 

structures from the highest to the lowest efficiency does not change and the maximum 

efficiency is attained for Rch  2, i.e. twice the amplitude of the helix. Magnitude of the

- /b aR R ratio is the highest for the screw type helix, therefore, at constant angular 

velocity it outperforms the ribbon and filament type helices (Figure 2.24). 
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Figure 2.22 Effect of the channel radius on the swimming velocity (a), torque (b), and 
 

 

Figure 2.23 Translational, translation-rotation coupling, and rotational resistance 
coefficients plotted against channel diameter Rch. 
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Figure 2.24 Velocity profile with respect to the changing channel radius, obtained using 
the resistance coefficients. 

 

 

 

2.2.2.2.2. Constant T 
 

 

In Figure 2.25a, U increases with Rch and saturates for Rch >2.5 for all helices, 

however the thin filament swims almost 3 times faster than the ribbon and the screw due 

to its lower translational and rotational drag (Figure 2.23). Ribbon and screw type helices 

attain very close velocity values with a cross-over at Rch  2; for Rch < 2, ribbons are 

slightly faster than screws due to their decreased resistance to translation and rotation 

compared to the screws (Figure 2.23).  increases monotonically with and Rch saturate 

for Rch > 4 (Figure 2.25b) demonstrating that hydrodynamic interactions between the 

body and the channel wall are weaker when Rch is sufficiently large. For constant T, 

filaments rotate about 2.5 times faster than ribbons, and about 5 times faster than screws 
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for which the hydrodynamic resistance is the largest. Ribbons rotate slower than filaments 

because of larger shear force at the surface. 

Figure 2.25 Effect of the channel radius on the swimming velocity (a), and angular 
velocity (b) for constant torque. 

 

2.2.2.3. Thickness 
 

 

2.2.2.3.1. Ribbons 
 

 

For constant velocity of the swimmer increases for all wavelengths as d increases 

up to d/Rch 0.75, and the maximum velocity is slightly above 2.5 times the reference 

value as shown in Figure 2.26a. U is / 0 = 0.5 than for / 0 > 1 

/ 0 for large wavelengths as also 

discussed in section 2.2.2.1 for ribbons. As the thickness increases, swimming velocity is 

larger for larger wavelengths similarly to screws as shown in Figure 2.18a. 
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Figure 2.26 Effects of thickness and wavelength of the ribbon on the swimming velocity 

angular velocity for constant torque (d); and efficiency (e). 

 

Increasing the thickness of ribbons is beneficial for swimming velocity as - /b aR R

ratio increases with increasing wavelength (Figure 2.28), however T/  increases 

monotonically for all wavelengths as shown in Figure 2.26b due to the increase in 

resistance to rotation with increasing thickness (Figure 2.27). The monotonic increase of

T/  indicate that swimming velocity and the angular velocity decrease with increasing 

thickness of the ribbon when T/  is kept constant (Figure 2.26c and 2.26d).  Decreasing 

with the thickness, U is insensitive to  for / 0 > 1 as shown in Figure 2.26c. As shown 

in Figure 2.26e, efficiency is slightly above unity for / 0 = 1 for d/Rch ~ 0.1, which is 

almost 70 times as thick as the original design [23]. Overall, efficiencies of ribbons with 

larger wavelengths peak at higher values of d/Rch and exceed the efficiencies of ribbons 

with smaller wavelengths, but / 0 remains below unity. It is observed that the coupling 

resistance coefficient increases with increasing wavelength (Figure 2.27). 
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Figure 2.27 Translational, translation-rotation coupling, and rotational resistance 
coefficients plotted against normalized thickness d/Rch for various wavelengths of the 

ribbon type swimmer. 

 

Figure 2.28 Velocity profile with respect to the changing thickness (ribbon type 
swimmer), obtained using the resistance coefficients. 
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2.2.2.3.2. Screws 
 

 

Based on the definition in Figure 2.1, d is called thickness for the Archimedean 

screws also for the sake of consistency. Combined effects of  and d on swimming 

performance of screws including the filament limit are shown in Figure 2.29. For constant 

, U increases with d starting from the filament limit, and reaches to the maximum at the 

limit of the range, d/Rch = 0.75 for / 0 = 2 (Figure 2.29a). As d increases, U is higher for 

larger values of , but multiple cross-overs of velocity curves indicate that optimum 

varies with d. T/  increases with thickness for all wavelengths (Figure 2.29b), however it 

does not vary monotonically with  as also shown in Figure 2.18d for the base screw that 

has d/Rch = 0.65. For constant T/ , swimming velocity increases with decreasing thickness 

of the screw for all wavelengths. As d/Rch T/ ngle value for all 

wavelengths and spreads out for different wavelengths as d/Rch increases. Angular 

velocity is the maximum for / 0 = 1 and decreases with thickness (Figure 2.29d). Lastly, 

efficiency peaks around d / Rch  0.025, with the reference wavelength as the optimum 

(Figure 2.29e). 

Figure 2.29 Effects of thickness and wavelength of the screws on the swimming 
stant torque (c); torque per wavelength for 
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Figure 2.30 Translational, translation-rotation coupling, and rotational resistance 
coefficients plotted against normalized thickness d/Rch for various wavelengths of the 

screw type swimmer. 

 

Figure 2.31 Velocity profile with respect to the changing thickness (screw type 
swimmer), obtained using the resistance coefficients. 
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2.2.2.4. Width 
 

 

Effects of w are considered for constant , constant T/

magnetic head, and constant T/w [19]. At the limit 

of w/ 0 = 1, helical ribbon becomes a hollow cylinder having no means of propulsion as 

the fluid cannot be displaced axially to achieve locomotion, hence monotonically 

decreases to zero with w as shown in Figure 2.32a. As w d0, the ribbon converges to the 

filament, hence the velocity increases for constant-  and constant-T/  cases, but U 0 

for the constant-T/w w/ 0 is 0.25, which is also the 

point where the magnitude of the coupling resistance coefficient peaks (Figure 2.33). T 

increases monotonically with w for constant  area (Figure 

2.32b). Angular velocity decreases with increasing width for constant-T/ Figure 2.32c) 

but increases with the width in the case of constant-T/w

improvement in the swimming velocity as well.  However, as w/ 0  swimming 

mechanism of the ribbon is greatly compromised, and propulsion cannot be achieved. 

Efficiency decreases sharply from the filament limit to zero with increasing width (Figure 

2.32d). 

Figure 2.32 Effect of changing width, w, on swimming velocity (a), torque (b), angular 
velocity (c), and efficiency (d). 
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Figure 2.33 Translational, translation-rotation coupling, and rotational resistance 
coefficients plotted against normalized width w/ 0. 

 

Figure 2.34 Velocity profile with respect to the changing width, obtained using the 
resistance coefficients. 
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2.3. Discussion 
 

 

 

Effects of geometric parameters on the swimming performance of infinite helical 

structures are studied with a CFD model. Results are validated with theoretical studies 

reported in literature for helical rods and compared to experimental and previous 

numerical results for helical ribbons. Torque, angular velocity, mobility, and efficiency 

comparisons are presented for rods, ribbons, filaments and screws.  

For helical rods, swimming velocity from the CFD model converges to results from 

the slender-body-theory [32] (SBT) for /Dch < 1/2 and to results from the approximate 

perturbative solution [33] (APS) for /Dch > 3.5. It is important to emphasize that SBT 

does not include the wall effects but the hydrodynamic force distribution only on the 

helical body and APS is valid only for cylindrical rods with a small-amplitude-helical 

wave inside circular channels. Therefore, results indicate that body-body hydrodynamic 

interactions are dominant for small wavelengths, and body-wall interactions for large 

wavelengths. Moreover, CFD results agree better with SBT especially for thin filaments 

as a 0 and the flow field becomes more localized, and with APS as B 0 as the flow 

between the rod and the channel is predicted very well with the theory. Furthermore, 

overall results show that confinement improves the velocity and efficiency at constant 

unless the clearance, c, between the surface of the helix and the channel wall is very small, 

typically for c < 0.05. As c 0, shear stress and the torque increases proportional to 1/c, 

hence the efficiency drops sharply.  However, improvement in the velocity continues as 

the radius of the rod or the eccentricity increases. Swimming velocity has a maximum 

with respect to B, and a minimum with respect to a.  

In addition to helical rods, effects of thickness, d, width, w,  and Rch are 

investigated while B is used as the length scale in the nondimensionalization for helical 

ribbons with w d, thin filaments with d 0 and w 0 and Archimedean screws with d

w. In addition to constant , constant torque per length of the swimmer, T/  = constant, 

and per surface area of the swimmer, T/w  = constant, are considered in the study for 

swimmers rotated by a magnetic head and by magnetic coating on the surface 
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respectively. Helical thin filaments are found to be the most efficient swimmers with the 

highest velocities for constant T/ . Archimedean screws are the second in efficiency, but 

they are the fastest swimmers at constant . As confinement increases, or Rch decreases: 

U increases for screws and filaments at constant U is followed 

by a sharp decrease for ribbons. At constant T/ , U decreases for all helices with the 

increasing confinements. As the width of the ribbon increases, U decreases for constant-

-T/  cases but has a maximum for the constant-T/w  case for w/ 0  0.25. 

Efficiency of ribbons decreases with increasing w. Lastly, performance of helical ribbons 

is not too sensitive to thickness, in fact thicker ribbons are slightly slower but more 

efficient than the thinner ones. The thickness of the ribbon can be decided based on the 

manufacturing constraints for optimal width, wavelength and amplitude rather than the 

hydrodynamic performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

 

 

 

 

 

 

3   SWIMMING OF RIGID SPHERES 

 

 

 

 

Spherical particles can be used in various medical applications as modified cells and 

as colloids in bulk and inside channels. However, mobilizing them by an external force 

is not easy, as their linear drag is high. Especially at small scales, it is easier to move them 

via rotation, as their rotational drag is scaled with the third power of the length scale, 

whereas their linear drag is proportional to the length scale. Due to this disadvantage of 

the spherical particles, helical structures, which have the ability to convert rotary motion 

to linear translation are preferred in micro-swimming applications. However, the same 

conversion is possible for spherical particles alone if one takes advantage of the 

anisotropic hydrodynamic forces due to rotation of a sphere close to a wall. Due to the 

fact that spherical particles are less intricate structures than helical structures, which 

makes them easier to manufacture and miniaturized, spherical particles can be more 

advantageous compared to the helical structures once the mobility problem is solved.

In order to investigate the mobility of rotating spheres inside cylindrical channels, an 

experimental study is conducted. Neodymium spheres of diameters 1 mm and 1.9 mm are

placed inside cylindrical glass channels of diameters 1.6 mm, 3 mm, and 5.7 mm such 

that  which are of length 10 cm and filled with silicone oils of viscosity 1 Pa.s and 0.5 

Pa.s . Sphere is rotated magnetically at different frequencies using two Helmholtz coil 

pairs and the motion of the sphere is recorded. Velocity profiles and trajectories of the 

spheres swimming inside channels of different radii at various frequencies are obtained 

by analyzing the recordings using image processing techniques. It is shown that the 

motion of the sphere is affected by the ratio of the channel/sphere radii greatly. The 

distance between the sphere and the channel wall plays a significant role on the motion 
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and the velocity of the swimmer. Experimental results are interpreted utilizing a 

resistance-based model and the coefficients presented by Bhattacharya et al. [6] and a 

CFD model that complements their findings. A kinematic model of the system is prepared 

and implemented to predict the velocity and trajectories of the spheres. 

 

 

 

3.1. Methodology 
 

 

 

3.1.1. Experimental Study 
 

 

This section reports the experimental methodology adopted in the analysis of 

rotating and swimming spheres inside capillary tubes. 

 

 

 

3.1.1.1. Experimental setup and operational parameters 
 

 

Neodymium spheres of diameters 1 mm and 1.9 mm are placed into glass channels 

of diameters 1.6 mm, 3 mm and 5.7 mm (Table 3.1). The channels are filled with silicone 

oil of viscosities µ=1 Pa.s and µ=0.5 Pa.s (Figure 3.2). The tubes are placed into a vacuum 

chamber (0 PSIA, measured with Omega DPG5600B-30A PSIA) to fully degas the fluid, 

after which they are sealed. One tube at a time is placed horizontally inside the 

experimental setup consisting of three Helmholtz coil pairs connected to Maxon drivers 

controlled via LabVIEW software (Figure 3.3). 

Two of the coil pairs (x and z pairs, Figure 3.3) are activated with sinusoidal out-

of-phase currents to create a magnetic field rotating about the y-axis whereas the axis of 

the cylindrical channel is placed along the x-direction. The distance between the centers 
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of the sphere and the axis of the cylindrical channel is measured along the z-axis. 

Magnetic fields applied by individual coils are measured using Phidgets 1108 Magnetic 

Field Sensors to assure equal magnetic field strengths in both directions. The magnetic 

sphere is actuated at different magnetic field rotation rates ranging between [0.1-20 Hz] 

and its motion is recorded using a digital microscope from above to observe the 

movement in the xy-plane and response to the magnetic field. Movement in the xz-plane 

is captured with the help of a mirror, that is placed at a 45° angle next to the glass channel.

As a rotating magnetic field is applied to the magnetic sphere, its magnetic dipole 

moment tries to align with the direction of the applied magnetic field, which causes the 

rotation of the sphere. When the magnetic torque acting on the sphere is balanced by the 

viscous torque, the sphere rotates with the same rate as the rotating magnetic field and

translates along x-axis. 

the rotating magnetic field and the ratio of the channel diameter to sphere diameter. An 

example of the motion of the sphere inside the channel and coordinate system are given 

in Figure 3.1. The relationship between the magnetic dipole moment, m, the magnetic 

field, B, and the magnetic torque, m is given by the following equation: 

 0mag = m×B = M B  (12)

where 0 denotes the permeability of the free space and H is the magnetic field strength. 

As implied by the cross-product, actual magnetic torque acting on the sphere at any given 

instance depends on the sinus of the angle between the magnetic dipole moment vector 

of the sphere and the magnetic field vector, and the angle depends on the net torque acting 

on the sphere, taking both viscous and magnetic torques into account.  

 

Figure 3.1 Coordinate system in the lab frame and an example of spher  motion.
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Table 3.1 Experimental parameters 
 

Dsph [mm] Dch [mm] 

 = 1 Pa.s 

1 1.6 

1 3 

 = 0.5 Pa.s 

1.9 3 

1.9 5.7 

 

 

 

 

Figure 3.2 Cylindrical glass channels filled with silicone oil and magnetic spheres 
placed inside the channels. 
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Figure 3.3 Experimental setup consisting of three Helmholtz Coil pairs, 6 Maxon 
drivers to control each of the coils separately using LabView, a high-resolution

microscopic camera to record the experiments for image processing. 

 

 

 

3.1.1.2. Image processing 
 

 

To obtain the velocities of the spheres in three-dimensional space, an image 

processing code written in MATLAB is employed. The image processing code extracts a 

single frame of the experiment video and filters out the background in the first step. 

Afterwards, the image is converted to black and white in the second step. In the third and 

most crucial step, it increases contrast using the specified filtering parameters, after which 

only a black sphere against a black background is visible. The code then calculates the 

centroid of the sphere. This process is repeated in a loop until every frame of the video is 

processed. Position data of the centroid is stored in a file, which can be used to visualize 

the data in plots. 

While the microscopic camera -plane, a mirror 

placed at a 45° angle next to the cylindrical glass channel allows recording the motion of 
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the sphere on the xz-plane simultaneously. For the case of the helical motion, image 

recorded from the mirror 

are obtained to plot the helical trajectory. Both images are processed separately using the 

image processing code and the stored data is used to plot 3D trajectories of the spheres.

 

 

 

3.1.2. RFT Study 
 

 

This section presents the kinematic model that is used to predict the swimming 

characteristics of the rigid spheres moving inside cylindrical channels. 

 

 

 

3.1.2.1. Kinematic model 
 

 

In order to predict the trajectories of the rigid spheres, we need the linear and 

angular velocities, U and , which can be obtained from the force balance. Instantaneous 

velocity of the sphere in the cylindrical coordinate frame can be deduced from the time 

derivative of its position defined in the channel frame as follows: 

 
d

dt

r
u  (13)

To track the direction of the magnetic dipole moments and their alignment with the 

external magnetic field, time derivative of the sphere position in this sphere frame can be 

determined from the equation: 

 , 1, 2,3
d

k
dt

k
k

e
e   (14)
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Figure 3.4 Visualization of the sphere inside the channel and coordinate frames in the 
channel and on the sphere 

 

Governing equations for this motion based on the force and torque balances are 

used to identify u and . The sphere performs force-free and torque free swimming, 

where inertial and external forces will be counteracted by the viscous forces and torques 

respectively. While identification of some of the components defining the force acting on 

the sphere are straight forward, a few of them require careful treatment.  

Construction of the equation of motion for a swimming sphere has an extensive trail 

in the literature dating back to 1880s. Basset [64], Boussinesq [65] and Oseen [66] studied 

the motion of  sphere settling under gravity in a quiescent fluid. In such a fluid, only 

disturbance to the flow occurs due to the settling motion of the sphere, which of low 

Reynolds number and thus allows deduction of the resulting fluid force on the sphere 

using Stokes equations [67]. Tchen [68] extended the works of Basset, Boussinesq and 

Osseen [64 66] to include unsteady flows in his PhD thesis, which prompted an immense 

number of studies suggesting corrections to his equations. Among the notable corrections, 

C [69] remark on the contribution of the pressure gradient on the net 

force acting on the particle [70] correction on the term suggested by [69]

should be listed. Soo [71] and Gitterman and Steinberg [72] offered their own solutions. 

In 1982, Maxey and Riley [67] gave the equation its widely used form to this day with 

corrections of Auton et al. [73] and Maxey himself, and can be implicitly expressed as 

follows [94]: 

 
 p added mass visc hist buoyancy weight

sph sphm a f f f f f f   (15)

There are two important remarks that need to be made here: 1) Maxey-Riley 

equation does not consider the effects on the sphere due to the sphere-channel interactions 
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as the equation is for a sphere in a nonuniform flow, moving in bulk; and as a

consequence, 2) there is no term that describes the lift force that the sphere experiences 

due to rotary motion in the presence of a boundary. A summary of important works on 

the lift force observed in the presence of a boundary or a flow is provided in the literature 

survey [74-94]. Throughout the extensive review, no expression for the lift force acting 

on the spheres moving inside cylindrical conduits could be found. However, for the 

inertial regime, lift force is necessary to predict the trajectory of the spheres accurately,  

which will be discussed further in the results section. 

In the case where all the forces are determined, and zero force condition is applied, 

force balance can be summarized with the equation: 

 0, { , , , ,  , }m
m

m viscous gravity magnetic history added mass liftf  (16)

The viscous force, counteracting all other forces acting on the sphere, can be 

calculated by utilizing resistive force theory (RFT). Resistive force theory relates the 

translational and rotational velocities of the sphere to the forces and torques experienced 

by it with a linear system of equations as follows: 

 
visc

tt tr

rt rr

F F u f

F F
 (17)

where Ftt, Ftr, and Frr are 3x3 matrices consisting of translational, translation-rotation 

coupling and rotational resistance coefficients of the sphere respectively, and Frt is the 

transpose of the matrix Ftr. F, T, u and  are 3x1 vectors containing the viscous force, 

viscous torque, velocity and angular velocity components in x, y, and z-directions. fp and 

p are the forces and torques experienced by the sphere due to the pressure gradients 

created in the presence of a flow, which are set to zero in this case as this study is restricted

with the motion of the sphere inside quiescent fluids. fex and ex represent all other forces

that are either externally applied or inertial in nature. 

Resistance coefficients are calculated from the CFD solution of Stokes equation 

with no-slip boundary condition as explained in the next section. Here it should be noted 

that the nonlinear lift force discussed in detail above, cannot be absorbed into the 

resistance coefficients as equation 17 is a linear expression of relationship between the 

resistance coefficients, velocities, forces and torques. 
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Gravitational force acting on the sphere when the cylindrical conduit is inclined is 

with x-axis, msph is the mass of the magnetic sphere and g is the gravity vector in -z-

direction: 

 (sin )g sphmf = g  (18)

Only external force applied to the sphere is the magnetic force due to the magnetic 

fields applied to actively mobilize the sphere. Magnetic force on the sphere is calculated 

using the equation: 

 ( )magf = m B  (19)

Unsteady forces such as the history force and added mass force play an important 

role in the swimming of microorganisms. They use sudden velocity jumps or directional 

changes to attack preys or escape immediate threats. Jakobsen [95] reports that Balonion 

comatum,  a ciliate plankton, increases its velocity five-fold in a time period shorter than 

the time needed to advance the organism more than one body length. Such motions create 

unsteady disturbances in the flow field that can affect the velocity and the trajectory of 

the swimmers even after the motion causing the disturbance ceases. However, in the scope 

of the study reported here, these unsteady forces can be neglected, as the density of the 

particle used in this study is not comparable to the density of the fluid used in the 

experiments [96]. Wang and Ardekani [97] model a spherical unsteady swimmer and 

show that the Boussinesq-Basset history term and the added mass term can be neglected 

when the product of Strouhal and Reynolds number is smaller compared to unity: 

 
1

0, / 6 1
2hist mass f s sphSlRe m m rf f  (20)

In this study, highest angular velocity Highest SlRe that occurs throughout the 

experiments is 0.1886, which is obtained when the viscosity of the silicone oil is 1 Pa.s, 

magnetic field rotation frequency is 20 Hz and rsph is 0.95 mm. However, as this rotation 

frequency is above the step-out frequency, above which the sphere rotation loses 

synchronicity with the rotating magnetic field, angular velocity of the sphere does not 

reach 20 Hz. Therefore, actual SlRe value is below 0.1886 for this motion. Thus, the

effects of history and added mass are not included in the kinematic model. 

Torque swimming condition of the spheres is described by the expression: 
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 0, { , }m
m

m viscous magnetic  (21)

where the viscous torques balance the external torques.  

Instantaneous position of the sphere is calculated using Crank-Nicholson method at 

time intervals of   1/1000 /t f for high accuracy. 

 

 

 

3.1.2.2. CFD model 
 

 

A CFD model of the of the sphere moving inside the cylindrical channel is 

developed, which solves incompressible Stokes equations, that are given as follows in 

non-dimensional form: 

 21
0   and    0p

Re
u u  (22)

where u and p denote the velocity vector and pressure respectively. The Reynolds 

number, Re, is based on the rotation frequency of the sphere, f, and a length scale, , such 

as the diameter of the channel: i.e. Re = 2f/

of the fluid. 

No-slip boundary conditions are used on the channel wall and on the sphere surface 

moving with the velocity: 

 S0u = U + × r - r , r   (23)

where U is the velocity,  is the angular velocity of the sphere, r is the position, r0 is the 

position of the centroid, and S represents the surface of the body. 

COMSOL Multiphysics [90] software is used to solve incompressible Stokes 

equations with finite element method. P1+P1 discretization of the fluids and MUMPS 

direct solver is employed for the simulations. Triangular surface mesh is applied to the 

sphere surface and tetrahedral elements are used to mesh all domains. Smaller mesh 
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elements are used in the region where sphere gets close to the channel to capture the more 

complex dynamics in this region. 

To validate the use of the CFD model in predicting the resistance coefficients, a 

comparison with the resistance coefficients reported by Higdon and Muldowney [48] is 

conducted. Higdon and Muldowney [48] calculated diagonal elements of the resistance 

matrix for the force free swimming condition for various Dsph/Dch ratios using the 

following relationship: 

 

0

0 0 0

0 0 0

0 0

tt
xxx x

tt
y sph yy y sph p

tt
z zzz

FF U

F C r F U C r R

UF UF

 (24)

In the scope of this thesis, second term on the right-hand side becomes zero since 

the fluid is quiescent. Zhu et al. [50] studied the motion of spherical particle in capillary 

tube using boundary element method and they used the resistance coefficients reported 

by Higdon and Muldowney [48] for the eccentric sphere-cylindrical channel 

configuration with Dsph/Dch = 0.4 to validate their results. Resistance coefficients for the 

same configuration are calculated using the CFD model and validated against the same 

set of solutions reported by Higdon and Muldowney [48]. Results are plotted against , 

which quantifies the sphere-wall proximity with the following equation: 

 
ch sph

R

r r
 (25)

where R is the distance measured from the center of the sphere to the central axis of the 

cylindrical channel. Average degrees of freedom (DOF) for the results reported in Figure 

3.5 is 500K as mesh convergence of the results are observed beyond this value (Figure 

3.6). Percentage errors for all three components of the drag force are found to be less than 

0.5 at 500K DOF. 
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Figure 3.5 Relative error between the resistance coefficients calculated using the CFD 
[48] work for  Dsph/Dch = 0.4 as chosen in Zhu et 
[50] for comparison. 

Figure 3.6 Mesh convergence study for the CFD model used in calculating the 
resistance coefficients. Results are represented with the error in Rz. 
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Following the validation, the CFD model is used to obtain full matrices of 

translation, rotation, and rotation-translation coupling resistance coefficients of the 

spheres in configurations Dch/Dsph =1.6 and Dch/Dsph =3,  Work 

reporting the entries of full matrices of resistance coefficients, including the translation-

rotation coupling coefficients in the literature is limited to Bhattacharya et al. [49], where 

the authors used separable basis solutions to calculate translational, rotational and 

coupling resistance coefficients of a spherical particle swimming inside cylindrical 

conduits of various Dch/Dsph ratios. Resistance coefficients calculated in this study are 

validated against the results reported by Bhattacharya et al. [49]. CFD solutions are 

obtained for the sphere whose center is positioned at (0, 0, Rch-Rsph- ). The reference 

position is matched to ( , , x) in cylindrical coordinates (Figure 3.7). 

 

Figure 3.7 Cartesian coordinate axes used in the CFD model vs. cylindrical coordinate 
axes (bold) used by Bhattacharya [49]. - -axis to avoid confusion 

5. 

 

The CFD study showed that the translation in directions (and rotation about those) 

other than the direction of the principal axes are negligible. Therefore, only the diagonal 

elements of the translational and rotational resistance matrices are considered. Significant 

rotation-translation coupling is observed only for translation along -axis and rotation 

about -axis (and vice versa). With only the dominant terms, the resistance matrix takes

the form: 
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0 0 0 ' 0

0 0 0 0

0 0 00 0

0 00 0

' 0 0 0 0

0 0 0 0 0

tt

tt

tt
xx x x

rr

rr

rr x x visc
xx

F G U F
F G U F

F U F

TFG
TG F
T

F

 (26)

The resistance coefficients are obtained from the CFD model by using the boundary 

conditions listed in Table 3.2. Coefficients obtained for the channel diameter to sphere 

diameter ratio of 3 are plotted against various  values and compared to the values 

reported in Bhattacharya et al. [49] in Figure 3.8 after being normalized using equations 

27-30: 

 / (6 )
tt tt

sphF F r  (27)

 3/ (8 )
rr rr

sphF F r  (28)

 2/ ( )
tr tr

sphF F r  (29)

 
rt tr
ij jiF F  (30)

All of the resistance coefficients calculated using the CFD model except for G are 

in perfect agreement with the coefficients reported in Bhattacharya et al. [49]. This 

coefficient relates rotation about x-axis to the force experienced in y-direction and relates 

the torque experienced in x-direction due to translation in y-direction. Bhattacharya et al. 

[49] attribute their results to the tug-of-war between the lubrication stresses increasing 

with the increased proximity to the wall as  increases and the force created in the 

azimuthal direction (y-direction) due to the angular variation in the pressure fields. The 

coefficients calculated using the CFD model, however, are found to be in good agreement 

with the lubrication theory at very high  values and its application demonstrated by 

Higdon [48]. Furthermore, the kinematic model explained in the previous section predicts 

the experimental results presented in the next section very accurately. Therefore, this 

discrepancy between the two results remains to be explained. Resistance coefficients for 

both channel diameter to sphere diameter ratios adopted in the scope of this thesis are 

depicted in Figure 3.9. 
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Table 3.2 Operational parameters used to obtain the resistance coefficients from the 
CFD model. Left column indicates the prescribed translational and angular velocities 

applied to the sphere surface as a moving wall boundary condition. Right column 
presents the equations obtained with the applied condition. 

  

       

      ttF F 'G T  

      ttF F G T  

      tt
xx xF F  

      G F
rrF T  

      'G F rrF T  

      rr
xx xF T  

 

 

Figure 3.8 Comparison of the resistance coefficients obtained from the CFD model to 
[49] for Dch/Dsph = 3. Direct 

comparison for the case Dch/Dsph = 1.6 is not possible as Bhattacharya [49] did not 
provide data for this ratio. 
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Figure 3.9 Resistance coefficients obtained using CFD model for Dch/Dsph = 1.6 and 
Dch/Dsph = 3. 

 

 

 

3.2. Results 
 

 

 

3.2.1. Experimental Results 
 

 

This section reports the velocities and trajectories of the spheres obtained through 

image processing. Average lateral velocities of the spheres inside cylindrical channels are 

plotted against the frequency. Spheres are subjected to magnetic fields rotating about 

either x-axis or y-axis. Upon rotation about y-axis, sph

i.e. translating in positive x-direction as they are rotated clockwise about y-axis when 

Dch/Dsph = 3. Translation in opposite to the rolling direction, which is referred to as 

is observed as a response to clockwise rotation about y-axis when Dch/Dsph =

1.6. When magnetic field rotating about x-axis is used to actuate the spheres, depending 
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on the strength of the magnetic field gradient along x-axis, the sphere either orbits the 

central axis of the cylindrical channel or translates along x-axis following a helical 

trajectory. In the tighter configuration, spheres are observed to be sliding along the 

channel wall while following a helical path. At small frequencies, the spheres in Dch/Dsph

= 1.6 configurations are observed to migrate towards the channel axis, i.e. move in the 

negative radial direction. As the frequency of the rotating magnetic field is increased and 

magnetic field gradient along the x-axis is modified, spheres are successfully focused on 

the central axis of the cylindrical channel.  

 

 

 

3.2.1.1. Rotation about y-axis 
 

 

Velocity of the (Usph) sphere with 1mm diameter translating along x-axis inside the 

cylindrical channel of diameter 3 mm is plotted against the magnetic field rotation 

frequency in Figure 3.10a. Blue curve (with star markers) depicts the results for silicon 

oil with viscosity 1 Pa.s, and the red curve (circular markers) is for µ= 0.5 Pa.s. At higher 

viscosity, the velocity increases linearly with increasing rotation frequencies up to 8 Hz, 

where it reaches the maximum velocity of 1.16 mm/s. As the rotation frequency is 

increased beyond this value, magnetic moment of the sphere fails to rotate synchronously

with the rotating magnetic field, thus the sphere decelerates almost linearly with 

increasing frequency up to 16 Hz. Above 16 Hz, the decrease in the velocity slows down, 

and the velocity converges to zero around 50 Hz.  

In the lower viscosity silicone oil, lateral velocity increases linearly up to the 

frequency of 3 Hz, however, the increase becomes slower after this point and continues 

up to 16 Hz, where the maximum velocity of 1.09 mm/s is reached. Beyond 16 Hz, 

velocity drops slowly to zero as the frequency increases. Up to 3 Hz, velocities achieved 

in silicone oil of two different viscosities are similar. 
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Figure 3.10 Swimmer velocity vs. magnetic field rotation frequency plotted for the 
silicone oil viscosities of µ= 1 Pa.s and µ= 0.5 Pa.s for the configurations a) Dsph = 1 

mm, Dch = 3 mm, and b) Dsph = 1.9 mm, Dch = 5.7 mm where Dch/Dsph ratio is 3

 

Figure 3.10b depicts the velocity profile for the 1.9 mm sphere inside the channel 

with 5.7 mm diameter, for two different viscosities of the silicone oil. Similar velocity 

profiles compared to Figure 3.10a are observed, however, it must be noted that the bigger 

sphere (Figure 3.10b) achieves higher lateral velocities despite the similar Dch/Dsph ratio 

due to its weight. Highest velocity is reached at 10 Hz, with Usph = 2.16 mm/s in higher 

viscosity silicone oil. Maximum velocity in 0.5 Pa.s silicone oil is 2.15 mm/s and 

observed at 18 Hz. Effect of different viscosity becomes observable at frequencies higher 

than 4 Hz.  

rsph at all frequencies. In fact, they are 

one tenth of the contact rolling velocities at the highest (Figure 3.11). This behavior is 
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attributed to the lost traction due to the increasing pressure difference between the front 

and the wake of the sphere. As the sphere rotates faster, pressure builds up and pushes the 

sphere back, however, due to the relatively larger Dch/Dsph ratio, it does not reach levels 

that would change the direction of translation (Figure 3.12). 

 

Figure 3.11 Swimmer velocity normalized with contact rolling velocity vs. magnetic 
field rotation frequency plotted for the silicone oil viscosities of µ= 1 Pa.s and µ= 0.5 

Pa.s for the configurations a) Dsph = 1 mm, Dch = 3 mm, and b) Dsph = 1.9 mm, Dch = 5.7 
mm where Dch/Dsph ratio is 3 
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Figure 3.12 Close up visualization of the wall-sphere separation and effect of the 
pressure gradient between the front and the wake of the sphere 
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In our study, a decrease in velocity with decreasing viscosity is reported. This 

behavior is attributed to the dependence of P depicted in Figure 3.12 on viscosity and .  

 msphg and it is inversely proportional to both these quantities. 

 increases. The rolling sphere loses 

more traction, hence a decrease in velocity is observed with decreasing viscosity. 

In the literature, this behavior is also attributed to the difference in the apparent 

(measured) viscosity and the viscosity experienced by the swimmer, when the fluid 

medium is a polymer solution. Berg and Turner [98] argue that the solute in the polymeric 

f -

The authors report the results of experiments with two different fluid media with the same 

apparent viscosities to demonstrate the difference of the apparent viscosity from the actual 

viscosity experienced by the swimmer. Magariyama and Kudo [99] prepared a 

mathematical model of Be

in calculating the translational and rotational drag forces require a correction. Namely 

they suggest that the perceived viscosity is not different only from the measured viscosity, 

but that it changes also for translational and rotational motions of the same swimmer in 

the same fluid. The slight decrease in the velocity with decreasing viscosity observed in 

our experiments can be thus attributed to two other reasons: 1) Our fluid medium is 

silicone oil, which is a solution of polydimethylsiloxane (PDMS) polymer; thus, the 

sphere might experience a different rotational viscosity than the measured viscosity 

according to Magariyama and Kudo [99], and 2) the change in distance between the 

sphere and the channel wall, , might be the cause for the similar velocities if the lift force 

experienced by the sphere due to the hydrodynamics interactions that occur due to the 

proximity to the wall (which is not quantified for the spheres inside cylindrical conduits 

yet) is dependent on the viscosity. 
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Figure 3.13 Swimmer velocity vs. magnetic field rotation frequency plotted for the 
silicone oil viscosities of µ= 1 Pa.s and µ= 0.5 Pa.s for the configurations a) Dsph = 1 

mm, Dch = 1.6 mm, and b) Dsph = 1.9 mm, Dch = 3 mm where Dch/Dsph ratio is 1.6

 

Lateral velocities of the spheres of diameters 1 mm and 1.9 mm, in cylindrical glass 

channels of diameters 1.6 mm and 3 mm respectively, are plotted against frequency for 

two different viscosities of silicone oil in Figure 3.13. All lateral velocities are observed 

to be negative, except for the velocities obtained at very small frequencies under 0.5 Hz. 

Highest speed in the negative x-direction achieved by the 1 mm sphere is -2.31 mm/s, 

which occurs at 10 Hz and in 1 Pa.s silicone oil (Figure 3.13a). Velocity profile is linear 

up to 10 Hz, similar to the trend observed in Figure 3.11a. In 0.5 Pa.s silicone oil the 

maximum speed attained opposite to rolling direction is 1.09 mm/s for the sphere of 

diameter 1 mm. It is observed that the velocities are very similar for both viscosities, as 
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also observed for the rolling spheres. Velocity profile of the sphere with 1.9 mm diameter 

is depicted in Figure 3.13b. It is observed that step out occurs for frequencies above 10 

Hz in both viscosities. Maximum speeds reached are 4.40 mm/s and 3.33 mm/s for 1 Pa.s 

and 0.5 Pa.s silicone oils respectively. An almost linear increase in the speed is observed 

with the increase in frequency up to the step-out frequency. Velocities obtained by the 

larger sphere with diameter 1.9 mm are almost double the velocities obtained by the 

smaller sphere of diameter 1 mm. 

work, is attributed to the large pressure difference between the front and the wake of the 

sphere. Contrary to the experiments with Dch/Dsph = 3 where 2/3 of the channel cross-

section is not blocked by the sphere, at the ratio Dch/Dsph = 1.6 more than 2/3 of the 

channel cross section is blocked. In the case of a larger ratio, pressure build up still occurs 

due to the asymmetry of the distances between the sphere and the channel wall in z = Rch

and z = -Rch coordinates, but it is partially and easier relieved compared to the 

configuration with the tighter confinement. At very low frequencies, the pressure build-

 at Dch/Dsph = 1.6 

configuration. However, as the sphere rotates faster, P (depicted in Figure 3.12) 

increases to a point where it effectively pushes the spheres opposite to the rolling 

direction. 

Figure 3.14 depicts Usph rsph. Similar 

to the rolling spheres, an almost linear decrease in the magnitude is observed. 
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Figure 3.14 Swimmer velocity normalized with contact rolling velocity vs. magnetic 
field rotation frequency plotted for the silicone oil viscosities of µ= 1 Pa.s and µ= 0.5 

Pa.s for the configurations a) Dsph = 1 mm, Dch = 3 mm, and b) Dsph = 1.9 mm, Dch = 5.7 
mm where Dch/Dsph ratio is 3 

 

 

 

3.2.1.2. Rotation about x-axis 
 

 

To understand the dynamics of the sphere rotating inside the cylindrical channel, 

its motion while rotating about the x-axis is observed. The results reported in this section 

are observed for the spheres of 1 mm and 1.9 mm both, with the channel diameter to 

sphere diameter ratio of Dch/Dsph = 1.6. 

In the first case, the sphere is rotated about x-axis as demonstrated in Figure 3.15

by activating the Helmholtz coil pairs along y-axis and z-axis with 90° phase difference

as explained in section 3.1.1.1. Starting from 0.25 Hz, frequency is increased until a stable 

and observable trajectory is obtained. At and above the frequency of 6 Hz, it is observed 

that the sphere follows a circular trajectory by sliding along the channel wall as shown in

Figure 3.15. No magnetic field in x-direction is applied in this experiment. For the 
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frequencies including and above 6 Hz, both smaller and larger spheres follow and repeat 

full circular trajectories without translating in x-direction. It is noted that the frequency at 

which the sphere central axis of the cylindrical channel is different from the 

frequency of the magnetic field rotating about x-axis. 

 

 

 

Figure 3.15 Visualization of the rotation of the sphere about x-axis under a magnetic 
field rotation frequency 6 Hz. No magnetic field gradient along x-axis is applied in this 

experiment. 

 

After this observation, motion of the sphere rotating about x-axis is studied under 

the presence of a magnetic field gradient in x-direction. Both coils along x-axis are 

activated to apply 1 mT magnetic field (measured at the center) for this experiment and a 

magnetic field strength along x-axis that peaks at the center of the channel is obtained as 

shown in red in Figure 3.16. The experiments showed that in this case the sphere translates 

in x-direction following a helical trajectory by sliding along the channel walls towards 

the center of the channel. Wavelength of the helical trajectory gets smaller as the sphere 
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approaches the center and once the center is reached, the sphere starts to follow a circular 

trajectory as translation velocity in x-direction approaches zero. This behavior is 

attributed to the stronger synchronization of the magnetic dipole moment the sphere and 

the applied magnetic field at the center, where the magnetic field strength peaks. This 

behavior is highly desirable for drug delivery applications. The spheres settle where the 

magnetic field gradient is zero, therefore one can exploit this behavior to accumulate the 

spheres in the targeted region. 

 

 

 

Figure 3.16 Visualization of the rotation of the sphere about x-axis under a magnetic 
field rotation frequency 6 Hz. Parabolic magnetic field along x-axis is applied in this 

experiment. 

 

After establishing that the sphere following a circular path along the channel wall 

can be made to translate in x-axis, magnetic field in x-axis is modified such that the sphere 

can swim the full length of the channel. It is observed that a constant magnetic field should 

be applied in x-direction. As demonstrated in Figure 3.17, the sphere is made to traverse 

the entire length of the channel. Another observation made during this experiment is that 

the radius of the helical trajectory decays over time. A slight but noticeable change in the 

helical trajectory radius towards the end of the channel indicates that the magnetic field 

gradient plays an important role in the characteristics of this motion. 
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Figure 3.17 Visualization of the rotation of the sphere about x-axis under a magnetic 
field rotation frequency 6 Hz, following a helical trajectory under constant magnetic 

field application along x-axis. 

 

swimming characteristics are studied. A set of three experiments are conducted. Rotating 

magnetic field about the x-axis is set to the frequency of 6 Hz for each case (at which the 

helical trajectory is starts to be observed) while the magnetic field applied in x-direction 

is provided by only one of the coils along the x-axis, thus creating a decaying magnetic 

field strength as the sphere moves away from the coil. Namely, in this case, the sphere is 
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-axis. The strength of the 

magnetic field along x-axis is set to 1 mT, 2 mT and 3 mT respectively for each case, 

measured in the immediate vicinity of the activated coil. As expected, translation of the 

sphere along x-axis slows down as the sphere moves away from the coil applying the 

magnetic field in x-direction (Figure 3.18,  

Figure 3.19 and Figure 3.20). Rotation rate of the sphere about the cylinder axis, , 

is entirely different from the rotation rate of the magnetic field about x-axis (Figure 3.22). 

Two significant observations are made at the light of the results of these three 

experiments: 1) The translation velocity of the sphere along x-axis does not show a linear 

dependency on the strength of the magnetic field applied in x-direction (Figure 3.21), and 

2) a stronger magnetic field in translation direction causes a more rapid decay in the radius 

of the helical trajectory, i.e. the amount of decay per distance travelled in x-direction is 

higher for the higher magnetic field strength application in translation direction (Figure 

3.21). However, rate of radial migration towards the central axis of the cylinder does not 

show a linear dependency on the magnetic field strength along x-axis. Beyond applied 

magnetic field strength of 3 mT along x-axis, the sphere experiences a chaotic 

combination of angular velocities in three axes, and as such it fails to follow an observable 

and plottable trajectory as it vibrates without translating in any particular direction.

Velocities depicted in Figure 3.21 and Figure 3.22 are obtained as follows: For the 

velocity in x-direction, only the linear region of the position vs. time curve is considered. 

For the velocities in y and z-directions, maximum displacement in the chosen direction 

up to the saturation is considered. To estimate , number of turns the sphere performs 

about the center axis of the cylinder are counted for the region where the velocity in x-

direction is constant. 
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(a) 

 

 

(b) (c)

(d) (e)

 

Figure 3.18 Visualization of the rotation of the sphere about x-axis under a magnetic 
field rotation frequency 6 Hz, following a helical trajectory under magnetic field along 

x-axis applied at 1 mT from the wake of the sphere only. Following the decay in the 
radius of the helical trajectory, the sphere starts to follow a circular path once the 
distance from the coil applying magnetic field in x-direction is sufficiently great.



82 
 

(a) 

 

 

(b) (c) 

(d) (e) 

 

Figure 3.19 Visualization of the rotation of the sphere about x-axis under a magnetic 
field rotation frequency 6 Hz, following a helical trajectory under magnetic field along 
x-axis applied at 2 mT from the wake of the sphere only. A decay in the radius of the 

helical trajectory is observed as the sphere migrates towards the center of the cylindrical 
channel. 
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(a) 

 

(b) (c) 

(d) (e) 

 

Figure 3.20 Visualization of the rotation of the sphere about x-axis under a magnetic 
field rotation frequency 6 Hz, following a helical trajectory under magnetic field along 
x-axis applied at 3mT from the wake of the sphere only. A decay in the radius of the 

helical trajectory is observed as the sphere migrates towards the center of the cylindrical 
channel. The sphere does not settle into a circular trajectory at the end of the workspace 

where the magnetic field applied in x-direction is still effective due to the greater 
magnitude applied. 
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Figure 3.21 Velocities obtained by the sphere following a helical trajectory under 
different magnetic field gradients along x-axis. 

 

 

 

Figure 3.22  is depicted for the test cases presented in Figure 3.18Figure 3.19,Figure 
3.20 andFigure 3.23. 
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Lastly, the effect of the magnetic field rotation frequency on the motion of the 

sphere rotating about x-axis under applied magnetic field gradient along x-axis is studied. 

Figure 3.23 depicts the trajectory of the sphere subjected to magnetic field rotating about 

x-axis with a frequency of 30 Hz and a magnetic field in x-direction of strength 1 mT 

generated by a single coil pushing the sphere away from itself. Under these conditions, 

the sphere is observed to perform several helical turns of decaying radii before eventually 

settling down to the center of the cylindrical channel (Figure 3.23). After the sphere is 

focused on the center, a significant decrease in its velocity is observed, however, it is 

confirmed that the sphere keeps translating along x-axis. 

is determined to be stable and responsive to changes in direction of applied magnetic field 

along the x-axis. Namely, once the sphere is settled on the centerline of the cylindrical 

conduit, it translates along the central axis even when a sudden change in the direction of 

applied magnetic field along the x-axis occurs. Spontaneous changes in direction causes 

the perturbation. This observation proves that the focusing behavior does not stem from 

unsteady effects and in fact that it occurs due to hydrodynamic interactions between the 

sphere and the channel and rotary motion of the sphere near channel boundaries. Even

though the circular and helical trajectories described in Figure 3.18,  

Figure 3.19 and Figure 3.20 can be obtained in the configurations where Dch/Dsph = 

3, focusing behavior could not be achieved despite numerous modifications to the applied 

magnetic fields. This behavior will be elaborated on in the following section, where the 

results obtained from the kinematic model are compared to the experimental results 

reported in this section. In none of the reported experiments that result in circular or 

helical trajectories the frequency at which the sphere orbits the x-axis matches the 

frequency of the magnetic field rotating about the x-axis. It is also noteworthy that the 

sphere does not experience step-out at frequencies higher than 10 Hz as it did in the 

experiments where the magnetic field rotating about y-axis is applied. This behavior can 

be attributed to the decreased resistance to rotation compared to the resistance to 

translation. Linear drag on the sphere is proportional to the length scale, whereas 

rotational drag of a sphere is proportional to the cube of the length scale. Therefore, the 

sphere is easier to move with rotational motion, thus it can achieve synchronous motion 

with the rotating magnetic field at higher magnetic field rotation frequencies. 
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(a) 

 

(b) (c) 

(d) (e) 

 

Figure 3.23 Visualization of the rotation of the sphere about x-axis under a magnetic 
field rotation frequency 30 Hz, following a helical trajectory under magnetic field along 
x-axis applied at 1 mT from the wake of the sphere only. Radius of the helical trajectory 

quickly converges to zero as the sphere settles down onto the central axis of the 
cylindrical channel. 
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3.2.2. Numerical Results 
 

 

3.2.2.1. Rotation about y-axis 
 

 

Kinematic model described in section 3.1.2.1. is used to analyze the swimming 

behavior of magnetically actuated spheres inside cylindrical conduits. Each of the 

conditions used in the experimental studies reported in the previous section are applied 

to the kinematic model at the initialization. In Figure 3.24, predicted translation velocities

of the spheres inside cylindrical channels with channel diameter to sphere diameter ratios 

of Dch/Dsph = 3 are plotted against the magnetic field rotation frequency. Blue curves with 

star markers show the experimental results whereas the red curves with circular markers 

depict the numerical results. Figure 3.24a and Figure 3.24c depict the results obtained for 

the spheres of diameter 1 mm and 1.9 mm moving in the silicone oil with a viscosity of 1 

Pa.s respectively. Predicted velocities obtained using the kinematic model are in excellent 

agreement with the experimental results for both before and after the step-out occurs, 

considering that slight differences in the magnitudes are expected as the motion after

region is highly irregular. 

Even though the numerical results agree with the experimental results, it is observed 

to be less accurate at predicting the velocities of the spheres moving in silicone oil with a 

viscosity of 0.5 Pa.s (Figure 3.24b and 3.24d). These results are explained as follows: It 

is not possible to determine the distance between the sphere and the channel wall, , 

the minimum distance the sphere can be located from the channel wall at any given time.

This setting is not adjusted during the simulation, namely  can change during the 

simulation only if the forces and torques experienced by the sphere induce a movement 

along radial direction. Initial setting is determined by a preliminary study where the 

minimum distance to the sphere wall is adjusted until the velocities of the spheres are 

predicted accurately at very low frequencies. This approach is based on the following 

reasoning: Even though an explicit expression for the lift force experienced by a sphere 

swimming inside a cylindrical conduit is not reported in the literature yet, existing models 

for spheres swimming in bulk or at higher Reynolds numbers point to a strong suggestion 

between an increasing angular velocity and increasing lift force. Furthermore, in the 
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experimental studies reported in the previous section, it is observed that the sphere moves 

towards the center of the channel more rapidly at higher frequencies, which suggests that 

the missing expression for the lift force on the spheres swimming in cylindrical conduits 

will have a proportional dependence on the angular velocity as well. It is expected for the 

kinematic model to predict the coordinates of the sphere based on the linear and rotational 

velocities that depend on forces and torques on the sphere. Less accurate prediction of the 

velocities for a smaller viscosity points to the importance of determining the correct 

expression for the lift force. 

Figure 3.24 Comparison of the experimental results to the numerical predictions for 
Dch/Dsph = 3 for two different silicone oil viscosities of µ = 1 Pa.s and µ = 0.5 Pa.s.

 

Numerical results for the confined spheres with Dch/Dsph = 1.6 are compared to the 

experimental results in Figure 3.25. Overall, it can be observed that the results predicted 

by the kinematic model are in a better agreement with the experimental results for the 

 This could be attributed to the preeminence of the forces driven by the 

pressure gradient in this case. 

the contact and proximity between the sphere and the channel wall, therefore, the 

predictions are more sensitive to the changes in . Results for the sphere of diameter 1 

mm swimming in 1 Pa.s silicone oil and for the sphere of diameter 1.9 mm swimming in 
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0.5 Pa.s silicone oil are remarkably accurate in both linear regime and after the step-out 

occurs (Figure 3.25a and 3.25d). For the sphere with 1.9 mm diameter, the velocities are 

observed to be in very good agreement in the linear regime. Slope of the velocity vs. 

frequency plot in the linear regime for the sphere of diameter 1 mm swimming in silicone 

oil of viscosity 0.5 Pa.s is slightly off compared to the experimental results (Figure 3.25b). 

Further adjustment of the maximum proximity condition might be necessary for this case.

Figure 3.25 Comparison of the experimental results to the numerical predictions for 
Dch/Dsph = 1.6 for two different silicone oil viscosities of µ = 1 Pa.s and µ = 0.5 Pa.s.

 

 

 

3.2.2.2. Rotation about x-axis 
 

 

As demonstrated so far, kinematic model is accurate in predicting the results when 

the sphere is actuated by a magnetic field rotating about y-axis. Qualitatively, the model 

can predict helical trajectories. But, translational velocities of the spheres following 

helical paths cannot be predicted accurately with this model. This lack of accuracy stems 

from the missing lift force term in the model. Even though the sphere does not migrate 
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towards the center of the channel in each case, slight movement in radial direction is 

observed every time, except for the experiments with spheres in Dch/Dsph = 3 

configuration. With the omission of history and added mass terms, the net force balance 

becomes: 

 0visc mag g liftf f f f  (31)

where the viscous forces and torques balance external and inertial forces and torques. As 

explained in section 3.1.2.1. in the construction of the kinematic model, even though a 

formula for the lift force on the sphere in close proximity of another curved boundary is 

reported, the lift force is most likely to be proportional to the ever-recurring term   

( ) . The reasoning behind this argument is visualized in Figure 3.26. If the lift force 

is proportional to ( ) , it becomes apparent why the sliding spheres can be focused

while rolling spheres cannot be manipulated the same way. For the lift force to point 

towards the center of the cylindrical channel, x and U must have the same sign, which 

only happens when the sphere is in the sliding mode. If the sphere were to roll along the 

channel wall, the resulting force calculated with this formula would be pushing the sphere 

further towards the channel wall. Hence, the experimental results which report that the 

hydrodynamic focusing can be achieved only with spheres in sliding mode would be 

consistent with the force balance.  

Despite the experimental and numerical data supporting the relevance of the term

( )  to the lift force, coefficients found in the literature need adjustment for the 

special case of a sphere inside a cylindrical channel having a boundary with a curvature.

Kinematic model presented in this study is used to estimate the order of magnitude of the 

lift force required to hydrodynamically focus the sphere on the central axis of the 

cylindrical channel. Lift force reported by Rubinow and Keller [74] is included in the 

kinematic model as: 

 
3

lift sphC rf  (32)

It is observed that the sphere follows a helical trajectory without experiencing lift when 

C = 1. After this result, C is gradually increased until the lift can be observed. The 

trajectory depicted in Figure 3.26 is obtained when the Rubinow-Keller lift is multiplied 

by 90, which is the smallest magnitude of the lift force where focusing is observed at all.
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However, focusing takes place suddenly after the central axis is orbited by the sphere a 

few times, as opposed to the behavior seen in the experimental results, where the sphere 

slowly migrated towards the center at each turn. 

(a) 

(b)  

 

 

 

Figure 3.26 Trajectory of the 1.9 mm sphere inside the channel with 3 mm diameter 
predicted by the kinematic model when the lift force is applied 90 times the lift force 

suggested by Rubinow and Keller [74] for spheres swimming in bulk. It is observed that 
the radius of the helical trajectory decays suddenly under such a force as opposed to the 

incremental decay observed in the experiments. 

With C( ) 

term, rotation 

about x-axis 

and sliding-

mode would 

lead to 

focusing! 
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3.3. Discussion 

 

 

Magnetic spheres of two different diameters are rotated by means of an external 

field. Cylindrical glass channels of two different Dsph /Dch ratios, in fluid medium 

consisting of silicone oils at two different viscosities. Depending on the ratio Dsph /Dch, 

magnetic field rotating about y-axis. Rotation about x-axis resulted in various swimming 

trajectories depending on the magnetic field gradients and Dsph /Dch. Sliding spheres are

successfully focused along the channel axis, and they can follow helical trajectories. 

Numerical model is very accurate in predicting the velocities for the spheres 

rotating about y-axis. However, the absence of the lift force term prevents capturing the 

focusing behavior and the translational velocity of spheres following helical trajectories.

As the first demonstration of the swimming behavior and focusing of the rotating

rigid spheres inside cylindrical channels, this study makes novel contributions to the field 

of micro swimmers. However, finding the lift force on rotating spheres inside cylindrical 

conduits in the absence of a flow is crucial for predicting the focusing behavior and 

possibly modifying the position at which the spheres will be focused. 

Table 3.3 Motion of the sphere based on actuation mode and frequency 
 

Rotation Magnetic Field 

Motion  x y grad(Bx) Frequency

Rolling  0   0  30 Hz

Sliding  0   0.5  30 Hz 

Circle   0 0 1  30 Hz

Helical Trajectory  0  1  5 Hz 

Focusing   0 > 0 6  30 Hz
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4   CONCLUSION 

 

 

 

 

Swimming characteristics of both helical structures and rigid spheres are 

investigated and following conclusions are made: 

Swimming performance of helical structures are affected by the proportion of their 

geometric parameters greatly. Regardless of their cross-sectional shape. The wavelength 

presents with an optimum value that maximizes the velocity under both constant angular 

velocity and constant torque per wavelength applications. Increasing the helical radius 

results in faster swimmers up to an optimum value. However, optimum value of B for 

efficiency is much smaller. Therefore, one must decide on the magnitude of B considering 

the requirement of higher velocity or efficiency. Increased thickness almost always leads 

to better performance under constant torque applications. Despite that, at constant angular 

velocity applications, thinner structures are more beneficial due to the reduced drag.

Presence of a confinement increases the swimming performance unless the confinement 

is too tight, so there is an optimum value. In case of swimmers with large width, coating 

them magnetically yields better results, as the increase in width always decreases the 

performance. 

Axisymmetric particles such as spheres can also swim inside cylindrical channels 

despite their geometry. Hydrodynamic interactions between the sphere and the channel 

walls break the symmetry, thus the sphere becomes mobile. Dsph/Dch ratio, rotation 

direction of the magnetic field and the frequency at which the sphere is actuated is crucial 

in determining the mode of swimming that can be achieved using spherical particles. It is 
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spheres are capable of focusing to the central axis of the channel. Spheres are observed 

towards the region in the channel where the magnetic field gradient is zero, and they 

prefer to stay in this region. This is one of the most important findings in this study, as 

one can take advantage of this behavior for successful targeted drug delivery applications. 

Spheres can be accumulated in the targeted regions inside the body with the application 

of correct magnetic field gradients. 

Trajectory and the velocity of the spherical particle rolling or sliding inside 

cylindrical conduits can be accurately predicted using the kinematic model. However, 

prediction of helical trajectories requires identifying the lift force acting on the sphere.

Resistance coefficients for the helical structures are functions of geometric 

parameters, namely, R = f ( , B, a, z0, d, w, Rch ). Resistance coefficients of the spheres 

are highly dependent on the distance of the spherical particle from the channel wall as 

well as the ratio of the diameters of the channel and the spherical particle: R = f (

Dch/Dch,). 

To compare the swimming performance of the helical structures and rigid spheres, 

one can consider the distance travelled by the swimmer per rotation as follows: 

 * / (sw swU U L  (31)

Zhang et al. [23] report that the maximum speed their ribbon attained is achieved 

under 2 mT magnetic field strength with 18 µm/s at 30 Hz magnetic field rotation 

frequency. Length of the swimmer at the time of the experiment is 38 µm. Highest speed 

recorded in our experiments is 4.40 mm/s at 10 Hz, achieved by 1.9 mm sphere in sliding 

mode, with magnetic field strength 1.5 mT. Zhang et al. [23] used water in the 

experiments, which has the same viscosity as the silicone oil with 1 Pa.s viscosity used 

in our experiment. Therefore, we can compare the results reported by Zhang [23] for the 

ribbon to the performance of the spherical particle.  

For the ribbon, we can choose the length scale as the length of the ribbon or the 

radius of the helical tail (1.4 µm): 

 * / (ribbon ribbon ribbonU U L  (33a)

 * / (ribbon ribbon ribbonU U B   (33b)
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For the sphere, we can choose the length scale as the diameter or the perimeter:

 
* / (sph sph sphU U D  (34a)

 
* / (sph sph sphU U P   (34b)

As demonstrated in equations 33-34, swimming performance of the helical tails and 

the rigid spheres are comparable. Rigid spheres also have the added advantage of being 

easier to manufacture and miniaturize, which makes them better candidates for small 

scale applications. 
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5   FUTURE WORK 

 

 

 

 

The results obtained during the course of this thesis work indicate that identifying 

the lift force acting on a spherical particle swimming inside cylindrical conduits is crucial, 

therefore, CFD and experimental studies to this end will be conducted. To this end, an 

advanced CFD model solving Navier-Stokes equations will be constructed. Effect of 

various parameters such as , channel and sphere diameters, viscosity of the working fluid 

on the lift force will be examined. Based on the results, an expression for the lift force 

acting on the spherical particles swimming inside cylindrical conduits will be derived as 

a function of the parameters investigated. 

Visualization of the flow field might help understanding the dynamics better. To 

this end, PIV study with hollow glass particles can be carried on. Tests on non-Newtonian 

fluids will be performed to compare the results with the tests done in Newtonian fluids 

and construct a full dynamic model.  

3D active control of the spherical particles will be studied. A complex channel 

system along which magnetic field gradients will vary can be constructed to implement 

targeted accumulation of spherical particles at desired regions. Helical swimmers with 

flexible tails and a spherical head will be manufactured and tested in both tight and loose 

confinements as a part of 3D trajectory control study. Non-magnetic particles of different 

sizes will be introduced to the system in order to test for mixing, sorting and focusing 

capabilities. Further applications such as virus enrichment and cargo transport will be 

explored. 
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