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c©Devran Uğurlu 2018

All Rights Reserved



to my family



Acknowledgments

First and foremost I would like to express my gratitude to my advisor Prof. Dr. Gozde

Unal. She was a good mentor who gave very valuable advice and guidance and knew how

to motivate me to aim for greater accomplishments.

I would like to thank Zeynep Fırat and Prof. Dr. Uğur Türe for their invaluable
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Abstract

White matter fibers connect and transfer information among various gray matter re-

gions of the brain. Diffusion Magnetic Resonance Imaging (DMRI) allows in-vivo estima-

tion of fiber orientations. From the estimated orientations, a 3D curve representation of

the trajectory of fibers can be reconstructed in a process known as tractography. Auto-

matic classification of these “tracts” into classes of anatomically known fiber bundles is a

very important problem in neuroimage computing.

In this thesis, three automatic fiber classification methods are proposed. The first two

are based on combining neuroanatomical priors with density-based clustering. The first

method includes brainstem heuristics but the second is more general and can be applied to

any fiber pathway in the brain. Further, the second method introduces a novel fiber rep-

resentation, Neighborhood Resolved Fiber Orientation Distribution(NRFOD), that rep-

resents a tract as a set of histograms that encode the distribution of fiber orientations

in its neighborhood. The third method utilizes the NRFOD representation to directly

map a tract to a probability estimate for each bundle class in a supervised classification

framework. A practical training and validation set creation methodology is proposed.

Additionally, the thesis includes statistical significance tests to investigate whether the



structural change between pre-operative and post-operative fiber bundles after a tumor

resection operation are related to the change in patient’s cognitive performance scores.

To this end, a fiber bundle to fiber bundle registration method and various quantitative

measures of the structural change are proposed. We present results over DMRI data with

clinical evaluations of 30 patients with brainstem tumors.
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BEYİNDEKİ BEYAZ CEVHER LİFLERİNİN DİFÜZYON MRG GÖRÜNTÜLERİ

KULLANILARAK ANALİZİNDE YENİ MATEMATİKSEL YÖNTEMLER

Devran Uğurlu

CS, Doktora Tezi, 2018

Tez Danışmanı: Gözde ÜNAL

Anahtar Kelimeler: difüzyon MRG (DMRG), beyaz cevher lifleri, lif

kümeleme, lif sınıflandırma, komşu lif yönleri dağılımı(KFYD)

Özet

Beyindeki beyaz cevher lifleri, çeşitli gri cevher bölgelerinin birbiriyle iletişimini sağlar.

Difüzyon Manyetik Rezonans Görüntüleme (DMRG), hayatta olan deneklerin beyaz cevher

liflerinin oryantasyonlarının kestirilmesini mümkün kılar. Kestirilen oryantasyonlar kul-

lanılarak, liflerin yörüngelerinin 3B eğri temsilleri oluşturulabilir. Bu işlem trakrografi

olarak bilinmektedir. Yolak olarak da adlandırılan bu 3B eğri temsillerinin bilinen anatomik

lif kümelerine otomatik olarak sınıflandırılması, sinirgörüntü işlemede çok önemli bir prob-

lemdir.

Bu tezde, üç yeni otomatik yolak sınıflandırma yöntemi önerilmiştir. İlk iki metot, sini-

ranatomik önbilginin, yoğunluk tabanlı danışmansız kümeleme metoduyla birleştirilmesine

dayanmaktadır. İlk metot, beyinsapına özel buluşsal yöntemler içermekle beraber, ikinci

metot daha genel bir metot olup, beyindeki her lif kümesi için uygulanabilir. Ayrıca,

ikinci metotta yeni bir lif temsili önerilmiştir. Komşu lif yönleri dağılımı (KLYD) adını

verdiğimiz bu temsil, her yolağı, komşuluğundaki lif oryantasyon dağılımını kodlayan his-

togramlarla temsil etmektedir. Üçüncü metot, KLYD temsilini kullanarak, danışmanlı

öğrenme yaklaşımı çerçevesinde, her yolağı, doğrudan, ilgilenilen lif küme sınıflarına ait

olma olasılık kestirimlerine haritalar. Pratik bir eğitim ve doğrulama kümesi oluşturma



metodolojisi de önerilmiştir.

Bunlara ek olarak, tümör çıkarılma ameliyatı öncesi ve sonrası lif yapıları arasındaki

değişim ile hastanın klinik bilişsel bulguları arasında istatistiksel olarak anlamlı bir ilişki

olup olmadığı araştırılmıştır. Bu bağlamda, bir yolak kümesinden yolak kümesine çakıştırma

metodu ve lifler arasındaki değişimi sayısallaştırmaya yönelik çeşitli ölçütler önerilmiştir.

Beyinsapında tümör bulunan 30 hastanın DMRG görüntüleri ve klinik değerlendirme

puanları üzerinde elde edilen sonuçlar sunulmuştur.
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Chapter 1

Introduction

1.1 Motivation of the Thesis

White matter fibers connect and transfer information among gray matter regions of

the brain which are involved in all kinds of sensory and cognitive processes in the brain.

Thus, the study of white matter fibers is essential in understanding brain’s structural

connectivity networks and how brain functionality is affected by pathologies disrupting

the network. One specific problem we tackle in this thesis involves quantification and

analysis of the structural changes in the major white matter pathways in the brainstem of

patients with a brainstem lesion prior to the resection surgery and after the surgery. Our

main clinical motivation is to investigate whether the clinically observed changes in the

patient’s cognitive functions has a statistically significant relationship to the structural

changes to the white matter tracts estimated from the pre-op and post-op imaging data.

This clinical motivation also provided us the initial motivation for this thesis. Next, we

expand on our initial work towards a more general framework of white matter analysis

because we notice that the mathematical and computational tools required for the initial

task could be generalized and be used in other clinical applications such as population

studies or the analysis of other pathologies.

Brain white matter analysis consists of several steps. First step is the acquisition of

images in the hospital using a Magnetic Resonance Imaging (MRI) machine. For imaging

of white matter fibers, diffusion MRI (DMRI) is used. The second step is the recon-
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struction of fiber orientations at each voxel using the DMRI data. The third step is the

reconstruction of a digital representation of white matter fibers. This process is known as

tractography. It is known however that without any anatomical constraints, tractography

algorithms produce a very large number of fibers that do not correspond to any real path-

way. Hence, the tractography either has to be anatomically constrained or the produced

tracts have to be cleaned up by removing spurious fibers. In clinical practice, each major

pathway of interest are separately extracted. The tractography algorithm is constrained

using manually selected regions of interest (ROIs) by a neuroanatomy expert and if there

are still spurious fibers, they are removed by the expert by either changing the ROIs ac-

cordingly or adding regions of avoidance (ROAs). This process is very time consuming,

requires expertise in neuroanatomy and is prone to operator bias and error. Hence, the

automation of this process is of tremendous importance in neuroimage computing and

constitutes the main focus of this thesis.

After accurate digital representation of white matter fibers are achieved, meaningful

clinical analysis can be performed. We carried out such an analysis in our TUBITAK

Project No. 112E320 titled “Novel Computational Methods in the Analysis of Changes in

White Matter Tracts in the Brainstem between Pre-Operative and Post-Operative Images

Using Diffusion Tensor Imaging”.

1.2 Contributions of the Thesis

The main contributions of the thesis are three automatic fiber classification methods

that are briefly described below:

1. The first fiber classification method was developed specifically for TUBITAK Project

No. 112E320 and hence it is designed to work on Diffusion Tensor Imaging (DTI)

images and includes some heuristics specific to brainstem fibers. It combines auto-

matic anatomic constraints, a density-based unsupervised clustering algorithm, and

a cluster selection methodology to classify the fiber clusters. In order to use unsu-

pervised clustering, a novel fiber-to-fiber dissimilarity measure based on Euclidean

distances between points and local fiber orientations is defined.
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2. The second fiber classification method can be seen as a generalization of the first

method in the sense that it is also based on the principal of combining automatic

anatomic constraints, a density-based unsupervised clustering algorithm and a clus-

ter selection methodology but is fundamentally different in several aspects. First,

this method is designed for higher-order diffusion orientation models, that is, models

that can resolve more than one orientation at each voxel. Second, a novel fiber rep-

resentation called Neighborhood Resolved Fiber Orientation Distribution(NRFOD)

is introduced that uses only the distribution of resolved fiber orientations in the

neighborhood along a fiber. Since the representation does not include the spatial

position of points on a fiber, it is translation-invariant which makes it more robust

when calculating a dissimilarity measure between fibers defined in different spaces,

e.g. images of different patients or the same patient taken at different times. This

study is published in:

• Devran Ugurlu, Zeynep Firat, Ugur Ture, Gozde Unal, “Neighborhood resolved

fiber orientation distributions (NRFOD) in automatic labeling of white matter

fiber pathways”, Medical Image Analysis, Volume 46, Pages 130-145, 2018.

3. The third fiber classification method is a supervised classification method that out-

puts a set of class probabilities for each input fiber. The advantage of this method

compared to the previous two is that it does not require the computation of fiber-

to-fiber dissimilarity measures and is hence much faster if we disregard the training

time and also scales better as the number of input fibers increases. The downside

is the requirement for a good training set and a robust fiber representation that

is consistent across different spaces. The previously proposed translation-invariant

NRFOD representation is utilized to overcome the latter drawback and a method

to create a training set with minimal effort is also proposed. This work will be

presented in:

• Devran Ugurlu, Zeynep Firat, Ugur Ture, Gozde Unal, “Supervised Classi-

fication of White Matter Fibers Based on Neighborhood Fiber Orientation

Distributions Using an Ensemble of Neural Networks”, MICCAI Workshop
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CDMRI’18, Granada Spain, September 2018.

In addition to the three fiber classification methods, the thesis also includes a fiber

bundle to fiber bundle registration method in order to quantify the structural change

between pre-op and post-op bundles on a set of 30 patients with brainstem tumors. Sta-

tistical analysis is performed to investigate if the structural changes in the bundles have a

statistically significant relationship to the change in patient’s cognitive functions. A part

of this work was presented in the proceedings of:

• Riza Alp Guler, Devran Ugurlu, Zeynep Firat, Ugur Ture, Gozde Unal, “Shape

deformation measures for white matter fibers”, in 2016 24th Signal Processing and

Communication Application Conference (SIU), pages 1277-1280, May 2016.

Organization of the thesis is as follows: Chapter 2 presents the necessary background in

neuroanatomy, MRI, DMRI, image registration, fiber tractography; and a literature review

of fiber clustering and classification methods. Chapters 3-5 present the three proposed

automatic fiber classification methods. Chapter 6 describes our method of the analysis

of structural changes on the corticospinal tract (CST) and the medial lemniscus (ML)

from prior to a tumor resection operation and after. Statistical significance tests are

performed between various measures of the structural change and neurological assessment

of the patient. Chapter 7 concludes the thesis and includes comments on potential future

directions.
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1.3 List of Abbreviations

Here is the list of mostly used abbreviations in this thesis:

MRI Magnetic Resonance Imaging

DMRI Diffusion Magnetic Resonance Imaging

WM White Matter

DTI Diffusion Tensor Imaging

GQI Generalized Q-sampling Imaging

ODF Orientation Distribution Function

3D 3-Dimensional

2D 2-Dimensional

ROI Region of Interest

ROA Region of Avoidance

CST Corticospinal Tract

ML Medial Lemniscus

ICP Inferior Cerebellar Peduncle

SCP Superior Cerebellar Peduncle

MCP Middle Cerebellar Peduncle

NRFOD Neighborhood Resolved Fiber Orientation Distribution

NRFODD Neighborhood Resolved Fiber Orientation Distribution Distance
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Chapter 2

Background

In this chapter, we present the necessary background information for this thesis, in-

cluding the anatomy of the brain, MRI, diffusion MRI, image registration and fiber trac-

tography. We also give a literature review of fiber clustering and classification methods.

2.1 Neuroanatomy

In this section, which is mainly based on [1], we give a brief introduction to neu-

roanatomy.

The human nervous system consists of the brain, spinal cord, nerves and ganglia. There

are two types of cells in the nervous system: neurons and glia. Neurons carry information

from one place to another using electrical or chemical signals. Glia perform various support

tasks to help the nervous system function. Neurons have three main parts: a dendritic

tree, a cell body and an axon (Figure 2.1). The dendritic tree receives input from other

cells, the cell body contains the nucleus and produces proteins and enzymes necessary for

the cell, and the axon transmits information to other neurons. The speed of information

transfer along a neuron is determined by the degree of myelination. Myelin is a fatty

sheath that insulates the axon, allowing electrical signals to jump along the axon and

hence travel faster. Myelin is produced by a class of glia cells knows as oligodendrocytes.

Since myelin is fatty, it is white. Hence, concentrations of highly myelinated neurons are

knows as white matter and concentrations of unmyelinated neurons are known as gray
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matter. Gray matter neurons tend to form a high number of connections to other gray

matter neurons and can be thought of as computational cells whereas white matter neurons

are specialized for transmitting information quickly over long distances. When a group of

axons connect to the same place, they are known as a fiber tract. This grouping usually

occurs for neurons that transmit information to long distances and as a result, fiber tracts

tend to be white matter. If we make an analogy to conventional computers, gray matter

regions are like processing units (e.g. CPU or GPU cores) and fiber tracts are like buses

or network cables.

Figure 2.1: Examples of some nervous system cells (not to scale). Figure reproduced from

[1] with permission.

2.1.1 Anatomical Directions and Planes

This subsection introduces the terminology for anatomical directions and planes. The

front of the brain is called anterior or rostral and the back is called posterior or caudal.

The top of the brain is referred to as superior or dorsal and the bottom as inferior or
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ventral. Outside of the brain, dorsal and ventral can have different meanings but this is

not important for this thesis. Left and right are still referred to as left and right. Areas

near the center of the brain are called medial and areas towards the outside of the brain

are called lateral. In order to get 2D images, the brain is usually sliced using one of

three planes. These planes are the following: Coronal plane slices from ear to ear and

separates the front from the back, sagittal plane slices from front to back, separating left

and right sides and axial (also can be referred to as transverse or horizontal) plane

slices horizontally to separate the top and bottom (Figure 2.2). Another term we will use

is contralateral which means on the opposite side with respect to the left-right direction

whereas ipsilateral means on the same side. For example, the right hand is contralateral

to the left ear but ipsilateral to the right ear.
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Figure 2.2: The main planes for viewing the brain. Figure reproduced from [1] with per-

mission.

2.1.2 Major Subdivisions of the Central Nervous System

The central nervous system is comprised of the brain and the spinal cord. The other

parts of the nervous system, such as the nerves sending information to or receiving infor-

mation from muscles are known as the peripheral nervous system. The central nervous

system can be subdivided into seven main parts: (1) the spinal cord, (2) the medulla,

(3) the cerebellum, (4) the pons, (5) the midbrain, (6) the hypothalamus and thala-

mus(diencephalon), and (7) the cerebral cortex. A depiction is shown in Figure 2.3 and
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brief descriptions for each subdivision are given below:

Figure 2.3: A sagittal view of the major subdivisions of the human brain. The medulla,

pons and midbrain together are called the brainstem. Figure reproduced from [1] with

permission.

Spinal Cord: The information sent to the brain by the sensory neurons and the motor

commands from the brain to the muscles mostly pass through the spinal cord.

Medulla: Medulla is directly superior to the spinal cord and contains many of the cell

bodies of the 12 cranial nerves. The functions and entry and exit locations of the

cranial nerves are illustrated in Figure 2.4. Second, medulla is the region where

most of the motor neurons cross to the contralateral side. This crossing is why

motor function is contralateral, meaning the left side of the brain controls the motor

function of the right side of the body and the right side of the brain controls the

left side of the body. Third, the medulla controls many vital functions and reflexes,

such as respiration and heart rate. Fourth, the medulla contains neurons of the

reticular activating system which is important for overall arousal and attention and
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the regulation of sleep-wake cycles.

Cerebellum: The cerebellum is posterior to the medulla and is important for the regula-

tion of muscle tone and guidance of motor activity. Damage to the cerebellum does

not cause paralysis but causes unbalanced and imprecise movement.

Pons: Pons is directly superior to the medulla and anterior to the cerebellum. It is the

main bridge that connects the cerebellum to the rest of the brain. It also connects

most of the cranial nerves to the brain. In addition, it is involved in the control of

eye movements and balance.

Midbrain: Midbrain is superior to the pons. It contains the inferior colliculus, the supe-

rior colliculus and the nuclei of the cells that form some of the cranial nerves. The

inferior colliculus plays a role in orienting us to auditory stimuli and the superior

colliculus plays a role in orienting us to visual stimuli.

Hypothalamus: Hypothalamus is part of the diencephalon and its main function is to

help maintain the body’s equilibrium.

Thalamus: Thalamus is part of the diencephalon and superior to the midbrain. It is

a large relay center that sends sensory information coming from the body to the

appropriate parts of the cerebral cortex and similarly, sends the motor commands

coming from the cortex to the appropriate parts of the body.

Cerebral Cortex: The cerebral cortex is the outer layer of the cerebrum and is mostly

made up of highly concentrated gray matter. It can be thought of as the primary

computation center of the brain and is responsible for most of the functions asso-

ciated with being human like speech and decision making. The cortex has many

bumps with valleys between them. The purpose of these bumps is to increase the

surface area so that more cells can be packed into a small space. Each bump is called

a gyrus (plural: gyri) and each valley is called a sulcus (plural: sulci). A particularly

deep valley is called a fissure. The cortex has three major fissures called the central

fissure, the Sylvian (lateral) fissure and the longitudinal fissure. The cortex is phys-

ically divided into a left and a right half and these are called cerebral hemispheres.
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The three major fissures divide each hemisphere into four major parts and these are

called the frontal lobe, the temporal lobe, the parietal lobe and the occipital lobe

(Figure 2.5).

Figure 2.4: Functions of the 12 cranial nerves and their entry and exit locations. Figure

reproduced from [1] with permission.
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Figure 2.5: An illustration of the cerebral cortex. Figure reproduced from [1] with permis-

sion.

2.1.3 Major Fiber Tracts in the Brainstem

While many of the methods proposed in this thesis are applicable to any fiber tract

in the brain, the validations were performed on the major fiber tracts in the brainstem

because of the effort involved in the manual extraction of fiber tracts. Therefore, we will

only describe the major fiber tracts in the brainstem in this section.

Recent literature describes five major white matter (WM) pathways of interest for the

brainstem: (i) corticospinal tract (CST); (ii) medial lemniscus (ML); (iii) middle cerebel-

lar peduncle (MCP); (iv) inferior cerebellar peduncle (ICP) and (v) superior cerebellar

peduncle (SCP) [8, 9, 10].

The CST is a major efferent (transmitting away from the central nervous system) pro-

jection pathway originating mainly from the primary motor cortex, primary somatosensory

13



cortex and premotor and supplementary motor areas. It descends from the cortex to the

spinal cord passing through the posterior limb of the internal capsule and then the brain-

stem [11] (p. 687).

The ML is a major afferent (transmitting to the central nervous system) sensory path-

way and is mainly associated with tactile and proprioceptive functions. It ascends from

the spinal cord into the medulla where it decussates to cross to the contralateral side and

ascends medially through the brainstem and midbrain and terminates at the thalamus. It

is posterior to the CST at pons level. In neuroanatomical literature, ML is usually said to

project from the thalamus to mainly the primary somatosensory cortex [11] (pp. 587-589),

[12, 13], however some recent studies mention its projections to the primary motor cortex

as well [14, 15, 16].

The SCP is a major efferent pathway that emerges from the deep cerebellar nuclei and

travels through the brainstem to the contralateral motor areas of the cerebral cortex via

the thalamus [17, 18]. MCP, which has a “horse-shoe” appearance, is a major afferent

pathway to the cerebellum, and carries fibers from the contralateral cerebral cortex across

the midline of the cerebellum via pontine nuclei to the cerebellar cortex. The ICP is a

major afferent pathway connecting fibers from the spinal cord and the olivary nucleus to

the cerebellum [17]. The ICP also makes efferent connections from the cerebellum toward

the vestibular nuclei along the border of the pons and medulla [19].

2.2 Magnetic Resonance Imaging (MRI)

MRI is fundamentally based on manipulating the magnetic moment of hydrogen atoms

in the body. This is done in a specific way to create an oscillating magnetic field which,

due to Faraday’s law, produces a current on a receiver coil. While this sounds simple, it

is actually quite complicated because the behavior of an atom cannot be predicted by the

classical mechanical perspective and requires a quantum mechanical analysis. Fortunately,

when it comes to practical aspects of MRI, an oversimplified classical picture leads to

conclusions that are also predicted by the quantum mechanical analysis. In this section,

the physical principles of MRI will be explained from the classical mechanics perspective
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in a simplified manner but a brief mention of quantum mechanics will be made when

appropriate. For a detailed coverage of MRI principles and the quantum mechanical

perspective, the reader is referred to [2] and [20].

Let us first start by thinking of a proton as a spinning ball. Under this analogy, which

is actually inaccurate, the proton has an angular momentum and a magnetic moment

parallel to its rotation axis. When a constant external magnetic field is present, similar

to the behavior of a spinning top under the influence of gravity, the proton’s rotation axis

and hence its magnetic moment vector will precess around the direction of the external

magnetic field (Figure 2.6). The frequency of this precession is known as the Larmor

frequency and is directly proportional to the strength of the external magnetic field:

ω0 = γB0 (2.1)

where ω0 is the Larmor frequency in megahertz(MHz), γ is the gyromagnetic ratio of the

specific particle and B0 is the strength of the constant external magnetic field in tesla (T).

Note that the gyromagnetic ratio is sometimes defined such that its unit is rad/s/tesla

but we are using MHz/tesla. It can be converted to rad/s/tesla easily by multiplying with

2π which will also convert the Larmor frequency to rad/s from MHz.

Figure 2.6: An illustration of the magnetic moment (~µ) of a proton precessing around

the constant magnetic field ~B0.

In practice, it is not possible to measure the magnetic moments of single protons in

an MRI experiment so “net magnetization” is defined as the local magnetic moment per
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unit volume as follows:

MMM =
1

V

∑
i=protons in V

µiµiµi (2.2)

where µiµiµi is the individual magnetic moment of proton i and V is a volume small enough

that the external magnetic field is constant or nearly constant in the volume but big

enough to contain a large amount of protons. Under a constant external magnetic field

B0B0B0, the net magnetization is parallel to the external magnetic field because the perpen-

dicular components of individual magnetic moments cancel each other out as they are

randomly distributed on the perpendicular plane. The reality is different from the clas-

sical picture. In quantum mechanics, spin is an intrinsic property of many particles and

it is an angular momentum that is not caused by a rotation. It simply always exists and

the direction of the spin angular momentum is the same as the direction of the magnetic

moment for particles with a positive gyromagnetic ratio. The proton is one such particle.

Without an external magnetic field, the direction of the spin angular momentum is random

and hence the net magnetization is zero. Under a constant external magnetic field B0B0B0, at

thermal equilibrium, the spin angular momentum vectors will exhibit an anisotropic dis-

tribution, slightly favoring the direction of B0B0B0. This produces a net magnetization parallel

to B0B0B0. Note that this is the same conclusion predicted by the incorrect classical picture.

The magnitude of the net magnetization at thermal equilibrium is predicted by quantum

mechanics as

M0 =
ρ0γ

2~2

4kT
B0 (2.3)

where ρ0 is the spin density, ~ is the Planck constant, k is the Boltzmann constant and T

is the temperature in Kelvin (see the quantum mechanical discussion in [2]). The behavior

of net magnetization, which is produced by a huge number of protons, can be studied using

classical mechanics. An ensemble of spins that behave similarly are sometimes called a

spin-isochromat and when discussing spin in the context of MRI from a classical mechanics

perspective, spin usually refers to a spin-isochromat, not individual spins which can only

be discussed with a quantum mechanics perspective. The component of net magnetization

that is parallel toB0B0B0 cannot be measured because it is very small compared to the external

16



field B0B0B0. Hence, at equilibrium under B0B0B0, there is no MRI signal. In order to receive a

signal, the net magnetization vector must be flipped away from B0B0B0. This can be done by

introducing a second external magnetic field B1B1B1 that precesses around B0B0B0 with the Larmor

frequency ω0. In practice, this is done by a radiofrequency (RF) pulse perpendicular to

B0B0B0 with frequency ω0. Flipping the net magnetization using an RF pulse is illustrated in

Figure 2.7 on a rotating reference frame that rotates around the z-axis with frequency ω0.

In the stationary frame (from the perspective of someone standing in the imaging room),

the net magnetization vector will spiral down to the transverse plane precessing around

the z-axis. Once the net magnetization has components on the transverse (xy) plane, the

net magnetization vector on the transverse plane will precess with frequency ω0 around

the z-axis in the stationary frame. The oscillating magnetic field induces a current on a

receiver coil due to Faraday’s law, creating an MRI signal. Flipping the magnetization

vector 90 degrees so that it is entirely on the transverse plane is usually preferred as this

provides the maximum signal. The RF pulse that achieves this is called a 90◦RF pulse.

Another commonly used pulse is the 180◦pulse, the purpose of which will be explained

later. Flipping the magnetization vector using an RF pulse is also called excitation. In the

human body, the most abundant nuclei with a high gyromagnetic ratio is hydrogen and

therefore, the MRI signal is dominated by hydrogen. Hydrogen has a gyromagnetic ratio

of 42.58 MHz/T so in a 3T MRI machine, assuming the machine applies a constant B0B0B0

with magnitude 3T, the Larmor frequency of hydrogen nuclei at equilibrium will be 127.74

MHz which is in the radiofrequency range. This is why the excitation pulses are called RF

pulses. Since MRI requires only magnetic fields and RF pulses, it is safer than imaging

methods like computed tomography (CT) and positron-emission tomography (PET) that

require ionizing radiation.
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Figure 2.7: An illustration of the net magnetization vector being flipped from the z-direction

into the transverse plane using an RF pulse. The primed reference frame is a rotating

frame that rotates with frequency ω0 around the z-axis.

2.2.1 Relaxation

Right after the application of a 90◦pulse to the system at equilibrium, the net magne-

tization is entirely on the transverse plane with magnitude equal to the net magnetization

at equilibrium M0M0M0. This situation creates the highest intensity signal. After this moment,

the signal starts decaying due to two interactions: spin-lattice and spin-spin.

2.2.1.1 Spin-lattice Interaction and T1 Relaxation

The equilibrium state is the minimum energy state and the RF pulse introduces energy

into the system hence moving it out of equilibrium. The system will gradually return back

to the minimum energy state by transferring away energy. The spin energy is transferred

to the lattice of nearby atoms and this is known as spin-lattice interaction. Let us call the

net magnetization component parallel to B0B0B0 the longitudinal magnetization and denote

it MzMzMz = Mzzzz and similarly, let us call the net magnetization component on the xy-plane

the transverse magnetization and denote it MxyMxyMxy = Mxxxx + Myyyy. The magnitude of the

longitudinal magnetization will increase with time until it reaches M0 at the equilibrium

state and hence the transverse magnetization will decay with time, decreasing the intensity

of the MR signal. The growth rate of the longitudinal magnetization is proportional to
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the difference between M0 and Mz as follows:

dMz

dt
=

1

T1

(M0 −Mz) (2.4)

where T1 is an experimental parameter and is dependent on tissue type. The decay of the

MR signal due to the increase of longitudinal magnetization is called T1 relaxation and

its tissue dependence is the basis of contrast in “T1 images”.

2.2.1.2 Spin-spin Interaction and T2 Relaxation

In addition to the external magnetic field, the spins are also affected by the local fields

of their neighbors. This leads to slight variations in the precession frequencies of individual

spins. As a result of this spin-spin interaction, individual magnetic moments “dephase”.

In the rotational frame, this can be seen as individual moments having the same direction

at first but then “fanning out” with time. Since the transverse magnetization is the sum

of individual moments on the transverse plane, “dephasing” reduces the magnitude of the

transverse magnetization (Figure 2.8). The decay rate of the transverse magnetization

can be written in the rotating frame as

(
dMxyMxyMxy

dt

)′
= − 1

T2

MxyMxyMxy (2.5)

where T2 is an experimental parameter dependent on tissue type and prime denotes the

rotating frame. The decay of transverse magnetization due to spin-spin interactions is

called T2 relaxation and its tissue dependence is the basis of contrast in “T2 images”.
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Figure 2.8: Illustration of T2 relaxation. Individual magnetic moments are illustrated in

the up row and the net magnetization is illustrated in the bottom row. Left is the equilibrium

state, middle is the state right after a 90◦pulse and right shows how the magnetization

decays due to individual moments having different phase on their precession around the

z-axis. Figure reproduced from [2] with permission.

2.2.2 Signal Acquisition with Basic Pulse Sequences

2.2.2.1 Free Induction Decay (FID)

The simplest MRI experiment is to receive a signal from the whole sample. After a

90◦RF pulse is used, the precessing magnetization on the transverse plane induces a current

on a properly placed RF receiver coil due to Faraday’s law. The signal oscillates with

frequency ω0 in the stationary (laboratory) frame so in practice, the signal is demodulated

to remove the oscillation which is equivalent to measuring the signal in the rotating frame

(Figure 2.9). This experiment is called free induction decay (FID) and is usually used

to tune the MRI machine. MRI experiments are generally repeated to achieve better

signal-to-noise ratio and the time it takes for one “cycle” is known as repetition time (TR).
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Figure 2.9: (a) The FID signal in laboratory frame. (b) The FID signal in rotating

frame. (c) The demodulated FID signal when the demodulation is not exactly at the Larmor

frequency. (d) The total demodulated FID signal from several ensembles each with slightly

different Larmor frequencies. Figure reproduced from [2] with permission.

2.2.2.2 The Spin-Echo

In section 2.2.1.2, the T2 relaxation was introduced. In reality, MRI machines are not

perfect and the B0B0B0 field is not constant and has small inhomogeneities. This is a second

cause of dephasing and is known as T ′2 relaxation. The combined effect of T2 and T ′2 is
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known as T ∗2 relaxation and they are related as

1

T ∗2
=

1

T2

+
1

T ′2
. (2.6)

T ′2 is reversible and the spin-echo experiment is designed to do just that and hence measure

T2 decay. In the spin-echo experiment, after the initial 90◦pulse along the x′-axis, the spins

will dephase due to T ∗2 relaxation. After a time τ , a 180◦pulse along the y′-axis is used

to invert the sign of the phases. As a result, after another time τ , the spins will rephase,

creating signal again. This second signal is called an echo and 2τ is called echo time (TE).

A sequence diagram and the corresponding MRI signal is illustrated in Figure 2.10 and

the dephasing and rephasing of spins is illustrated on the rotating frame in Figure 2.11.

Figure 2.10: The sequence diagram and corresponding MRI signal in a spin-echo experi-

ment. Figure reproduced from [2] with permission.
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Figure 2.11: Illustration of the dephasing and rephasing of spins on the rotating frame in

a spin-echo experiment. Figure reproduced from [2] with permission.

2.2.2.3 Inversion Recovery

Inversion recovery experiment is designed to measure T1. The longitudinal magnetiza-

tion is first reversed by applying a 180◦pulse and then after a time TI , a 90◦pulse is used.

Since the magnetization will change from −M0M0M0 to M0M0M0 after the 180◦pulse, assuming the

imaged sample has uniform T1, there exists a time TI such that the signal will be zero

after the 90◦ pulse. By varying the time TI and determining when the signal vanishes, T1

can be determined. More specifically, the longitudinal magnetization after the 180◦pulse
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is

Mz(t) = −M0e
−t/T1 +M0(1− e−t/T1) = M0(1− 2e−t/T1), 0 < t < TI (2.7)

which is zero when TI = T1ln2. The sequence diagram for an inversion recovery experiment

is given in Figure 2.12.

Figure 2.12: The sequence diagram for an inversion recovery experiment. ADC stands for

analog-to-digital converter and converts the analog MRI signal to digital. Figure reproduced

from [2] with permission.

2.2.3 Spatial Encoding and k-space

In the previous section, some basic sequences to acquire signal from a sample globally

were introduced. However, in order to create a meaningful image, we need contrast between

different volume elements of the sample. If we think of a classical grayscale 2D image,

it is a rectangular matrix with values between 0 and 255. Similarly in MRI, we want to

construct a 3D image where the volume is divided into a 3D matrix of volume cells (called

“voxels”) with some intensity value in each voxel. Let us first see how this can be done in

1D and then generalize to the 3D case.

Suppose a constant linear magnetic field gradient, or shortly “gradient”, G is added

along the z-axis. The z-component of the external magnetic field can then be written as

Bz(z) = B0 + zG. (2.8)
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Due to (2.1), we then have

ω(z) = ω0 + γzG. (2.9)

Using a gradient to establish a relationship between the position of spins along a certain

direction and their precession frequencies in this manner is called frequency encoding along

that direction. Since the frequency of precession now varies along the z-axis, the phase

will be shifted as well depending on how long the gradient is applied. After a time t, the

accumulated phase due to the gradient can be written as

φG(z, t) = −2πγzGt (2.10)

where the phase unit is radians, or equivalently

φG(z, t) = −2πkz (2.11)

where

k(t) = γGt (2.12)

is the spatial frequency. In 1D, the k-space is the 1D space of possible k values so it is also

known as the spatial frequency domain. Since the MRI signal is the sum of all magnetic

moments, ignoring relaxation effects, the demodulated signal (with ω0) can be written as

s(k) =

∫
ρ(z)e−i2πkzdz (2.13)

where ρ(z) is the spin density. This equation shows a very important result. Under a

constant linear gradient and ignoring relaxation effects, the MRI signal is the Fourier

transform of the spin density. So if we have the signal for all k, the inverse Fourier

transform gives us the 1D spin density image. Since spin densities of different tissues are

different, the spin density image is an image with tissue contrast. The aim of a pulse

sequence then would be to sample “enough” values of k to allow a good reconstruction of

the spin density. An example pulse sequence to achieve this is known as the gradient echo

and is illustrated in Figure 2.13. The generalization to 3D is straightforward. The signal

will now be the 3D Fourier transform of the spin density:

s(kx, ky, kz) =

∫ ∫ ∫
ρ(x, y, z)e−i2π(kxx+kyy+kzz)dxdydz (2.14)
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and as in the 1D case, we want to use a pulse sequence that allows sufficient coverage of

the now 3D k-space. The simplest solution is to apply separate linear gradients on the

3 dimensions and use a 1D gradient echo sequence multiple times to sample one line of

the k-space each time. For example, if we want to create a 256 × 256 × 128 image, we

could repeat a 1D gradient echo sequence for the x-direction 256 × 128 times for every

combination of ky and kz values. Of course the downside compared to the 1D case is that

the imaging time required has now increased 256× 128 times.

26



Figure 2.13: Illustration of a 1D MRI experiment where a hypothetical 1D “cylinder”

with random spin distribution is imaged. (a) The thermal equilibrium condition. With no

gradient or rf pulse, there is no signal. (b) A 90◦RF pulse is applied but no gradient. The

signal gradually decays due to relaxation. (c) After a 90◦RF pulse, a gradient is applied.

Since the gradient will also dephase the spin in addition to relaxation, the signal decays

more rapidly. Note that only positive k values can be sampled here. (d) A gradient echo

sequence. First, a negative gradient is applied and after some time (t2 − t1), the gradient

is reversed. As a result, the dephasing due to the gradient will cancel out after (t2 − t1)

time and we get an “echo”. Note that if the signal is sampled during time t3 to t4, both

negative and positive values of k are sampled. Figure reproduced from [2] with permission.
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2.2.4 Diffusion Magnetic Resonance Imaging (DMRI)

So far, we have seen that the MRI signal can be used to estimate spin density and that

the MRI signal is dominated by hydrogen nuclei which are very abundant in the body and

have a high gyromagnetic ratio. Since most of the hydrogen resides in water, a spin density

image is approximately a water density image. If we can measure the density of water, can

we measure its motion as well? The answer is yes and diffusion MRI is a technique that

allows measuring the diffusion of water. The diffusion of water provides very valuable

information because the diffusion is anisotropic when it is constrained by surrounding

tissue. In the brain, white matter tracts restrict water diffusion perpendicular to their

trajectory so in principle, by measuring water diffusion anisotropy, the local orientation of

white matter tracts can be estimated. In this section, how water diffusion can be measured

by MRI is briefly explained. For more details, the reader is referred to [3].

In section 2.2.3, the dephasing and rephasing effect of gradients were explained but the

nuclei were assumed to be stationary in space. This is actually not true because hydrogen

atoms can move. Of course, when designing a pulse sequence to obtain a spin density

image, we try to minimize the effect of motion but if we are trying to detect motion, we

can sensitize the signal to motion by using an appropriate pulse sequence. In diffusion-

weighted MRI or shortly diffusion MRI (DMRI), the signal is sensitized to the diffusion of

water. This is done as follows: first, a dephasing gradient is applied. This gradient “tags”

the hydrogens with a specific phase. It is easier to understand the concept on a 2D plane

so let us say the gradient is applied along the x-axis. Then, the phase will change along

the x-axis but will be the same along the y-axis. Then, we wait for a while to give water

time to diffuse. As a result, hydrogen atoms will change location and any movement along

the x-axis will result in an “out of phase” spin, that is, a spin that has different phase than

the other spins on the same position on the x-axis. The more diffusion along the x-axis,

the more the spins will dephase, leading to signal loss. After we wait for a certain time

τ , a rephasing gradient is applied to bring the spins back to the same phase. However,

only the spins that have not moved along the x-axis will come back to the same phase.

This is illustrated in Figure 2.14. Thus, if there is a high amount of water diffusion along

the x-axis, the signal loss due to diffusion will be high. It is important to mention that
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the diffusion along the y-axis will not lead to phase incoherence and will not affect the

signal. This means that only diffusion along a specific direction can be measured at a time.

Hence, increasing the number of directions the diffusion is measured in will increase scan

time. This is a significant problem in practice because even with modern MRI machines,

measuring more than 100 directions at an acceptable spatial resolution and field of view

(FOV) can take more than 30 minutes and as a result, most clinical data includes only 16

or 32 directions.

Figure 2.14: Illustration of how water diffusion can lead to signal loss after a dephasing

and a subsequent rephasing gradient. Each circle should be considered a spin-isochromat,

not individual spins and the vectors show the magnetic moment direction on the rotating

frame. Note that only diffusion along the gradient axis will lead to signal loss (yellow

boxes). Diffusion along the y-axis does not lead to phase incoherence (green box). Figure

reproduced from [3] with permission.
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Let us now derive in more detail how the signal intensity changes due to diffusion under

the assumption of Gaussian diffusion. Accumulated phase due to a gradient was given in

(2.10). If we call the length of the gradient δ, length meaning the duration the gradient is

applied, equation 2.10 can be written as

φG(z) = e−2πiγzGδ. (2.15)

If we assume that a hydrogen atom at z = 0 on time t = 0 exhibits Brownian motion

along the z-axis, the probability that it resides on z after time t is given by

P (z, t) =
1√

4πDt
e−z

2/4Dt (2.16)

which is the Gaussian distribution with standard deviation σ =
√

2Dt where D is the

diffusion coefficient [21]. P (z, t) can also be thought of as the density of water molecules

at position z after time t, of water molecules that were on z = 0 on time t = 0. The MRI

signal intensity is determined by the sum of all magnetic moments so we can write

S ∝
∫
P (z, t)φG(z)dz =

1√
4πDt

∫
e−z

2/4Dte−2πiγzGδdz = e−γ
2G2δ2Dt (2.17)

where S is the signal intensity. If we assume that the dephasing and rephasing gradients

can be considered instantaneous, in other words, that diffusion during gradient application

is negligible, and call the time elapsed between the application of the dephasing and

rephasing gradients τ , we have

S = ce−γ
2G2δ2Dτ (2.18)

where c is some constant that depends on a variety of parameters like spin density dis-

tribution, filtering effects etc. Notice that G, τ and δ are all parameters we set for the

experiment and γ is the gyromagnetic ratio. The only unknowns in the equation are the

constant c and the diffusion constant D that we are trying to estimate. This shows that

D cannot be estimated by only one measurement. However, c can be estimated by taking

a measurement without applying diffusion-weighting. If we call the signal intensity with

no diffusion-weighting S0, we then have

S = S0e
−γ2G2δ2Dτ . (2.19)
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It can be shown that under certain realistic gradients (non-instantaneous), e.g. the square-

shaped gradient, the equation becomes (see [3] for details)

S = S0e
−γ2G2δ2(τ−δ/3)D (2.20)

which is the famous Stejskal-Tanner equation [22]. Letting

b = γ2G2δ2(τ − δ/3) (2.21)

yields

S = S0e
−bD. (2.22)

This equation tells us that the diffusion coefficient cannot be estimated by signal intensity,

but it can be estimated by the signal loss compared to another measurement. In practice,

diffusion MRI datasets all include a “B0 image”. The name comes from b = 0 but it should

be noted that b = 0 is impossible in practice so the “B0 image” is the image acquired with

as little diffusion-weighting as possible. This image can be used for comparison with

diffusion-weighted images to estimate D. The estimated D is called “apparent diffusion

coefficient”, or shortly ADC, because the Brownian motion assumption does not hold in

real biological tissue.

2.2.4.1 Diffusion Tensor Imaging(DTI)

Diffusion Tensor Imaging [23] is one of the first practical applications of DMRI in

medical imaging and is still the most widely used method in the clinic. It is based on

estimating an ellipsoid that represents the diffusion anisotropy of water at each voxel.

The direction and length of the three axes define the ellipsoid, therefore only 6 parameters

have to be estimated at each voxel. (2.22) is valid for 1D or isotropic diffusion. In 3D and

assuming Gaussian but anisotropic diffusion, it can be written as

S = S0e
−
√
b
√
b
√
bDDD
√
b
√
b
√
b
T

(2.23)
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whereDDD, called the diffusion tensor, is a 3×3 symmetric tensor and
√
b
√
b
√
b = γGGGδ

√
(τ − δ/3)

where GGG is the gradient vector. The eigenvectors of DDD and the corresponding eigenvalues,
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 =
(
v1 v2 v3

)T

λ1 0 0

0 λ2 0

0 0 λ3

(v1 v2 v3

)
, (2.24)

define an ellipsoid that characterizes the anisotropy of diffusion. The equation has seven

unknowns (one from S0 and six from DDD) and hence DDD can be solved for if we have the

B0 image and diffusion-weighted images acquired with 6 different gradient directions. In

practice, data is taken with more gradient directions, usually 16, and a least squares fitting

is used to estimate DDD. This is done to reduce the effect of noise. After D is estimated,

some quantitative measures that describe the anisotropy can be derived. The most popular

measure is the fractional anisotropy:

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)2

. (2.25)

FA takes a value between 0 and 1. When all the eigenvalues are equal, corresponding to

isotropic diffusion, it is 0, and when one of the eigenvalues is much higher than the others,

corresponding to diffusion restriction along the directions of the other eigenvectors, it is

close 1. Hence, high FA is expected in voxels that contain a single fiber population with

coherent direction and the principal eigenvector will coincide with the direction of the

fiber.

The limitations of DTI are apparent from the tensor model. In addition to relying on a

Gaussian diffusion assumption which is not true in biological tissue, it also cannot represent

multiple fiber orientations in one voxel. With the image resolutions used in typical DTI

experiments, a high percentage of voxels contain multiple fiber populations with different

orientations. A recent study reported that multiple fiber populations can be detected in

around 90% of WM voxels [24]. The limitations of DTI are very serious. Not only does

DTI fail to estimate all the directions of multiple fiber populations within a voxel, it can

fail to estimate the correct direction of any of them. For example, if there are two fiber

tracts crossing perpendicular to each other within a voxel, DTI will estimate a disk-like

ellipsoid, suggesting isotropic diffusion on the disk which is a complete misrepresentation
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of reality. Despite its limitations, DTI is still the most widely used method in routine

clinical scanning due to its short scanning time. When working with DTI data, one must

be aware of its limitations and be extremely careful when conducting subsequent analysis.

2.2.4.2 Methods That Can Detect Multiple Fiber Populations In a Voxel

Due to the importance of DMRI as the only non-invasive method that can estimate

WM orientation in vivo, a large number of improvements to DTI have been proposed to

better estimate the orientation of fibers when multiple fiber pathways are present in one

voxel. A more general representation of diffusion that removes the Gaussian assumption

is the diffusion propagator P (r′r′r′ − rrr, τ) which is the probability of a spin traveling from

position rrr to r′r′r′ in diffusion time τ . The diffusion propagator is related to the signal

intensity as

S(kkk,qqq) =

∫
ρ(rrr)ei2πkkk·rrr

∫
P (r′r′r′ − rrr, τ)ei2πqqq·(r

′r′r′−rrr)dr′r′r′drrr. (2.26)

where qqq = γδggg [25]. qqq is called the diffusion wave-vector, γ is the gyromagnetic ratio,

δ is the length of the gradient and ggg is the gradient direction. An ensemble average of

the conditional probability density function P (r′r′r′ − rrr, τ) is called the ensemble average

diffusion propagator (EAP). Similar to how the average spin density in a voxel could be

recovered from the signal by sampling the k-space, the EAP can be recovered by sampling

both the k-space and the q-space. This approach known as q-space imaging is thus in

essence a 6D imaging method. This method that was initially used for inanimate material

is not immediately applicable to medical imaging due to gradient field and scan time

requirements. Applications to medical imaging are known as diffusion spectrum imaging

(DSI) [26, 27]. DSI method is not practical for routine clinical scans because it uses

multiple b-values that can go up to 17000s/mm2 and samples the q-space on a Cartesian

grid, requiring a high amount of samples. As a result, DSI suffers from very long scan

times that can exceed an hour.

A more clinically practical method based on q-space imaging is high angular resolution

diffusion imaging (HARDI) that samples the q-space on a single shell on a sphere, that is,

gradients are applied along a high number of uniformly distributed directions on a sphere

using a single b-value [28]. Typical b-values for HARDI are in the 2000 − 5000s/mm2

33



range. HARDI data was initially used to estimate multi-tensor or higher-order tensor

diffusion models [28, 29]. Model-free approaches were later developed. In q-ball imaging

(QBI), a diffusion orientation distribution function (dODF or ODF) that represents only

the angular structure of the EAP is reconstructed from HARDI data [30]. The EAP is

formulated as P (rrr) where rrr refers to the relative displacement r′r′r′−rrr in (2.26) and is called

the diffusion probability distribution function (PDF) or shortly, the diffusion function.

The ODF is defined as the radial projection of the diffusion function as:

ψ(uuu) =
1

Z

∫ ∞
0

P (ruuu)dr (2.27)

where Z is a normalization constant. In generalized q-sampling imaging (GQI), the spin

density function (SDF) which represents the quantitative distribution of the spins under-

going diffusion is estimated [31]. The spin density function is defined as

Q(rrr,RRR) = ρ(rrr)P (rrr,RRR) (2.28)

where RRR is the relative displacement r′r′r′ − rrr in (2.26). Normalizing the SDF yields the

ODF. The SDF can be calculated from the diffusion weighted images W (rrr, qqq) using

Q(rrr,RRR) =

∫
W (rrr, qqq)cos(2πqqq ·RRR)dqqq. (2.29)

The quantity of spins that undergo diffusion in a particular direction uuu is then given by

ψQ(rrr,uuu) =

∫ L∆

0

Q(rrr, Luuu)dL (2.30)

= L∆

∫
W (rrr, qqq)sinc(2πL∆qqq · uuu)dqqq (2.31)

where L∆ is the diffusion sampling length and sinc(x) = sin(x)/x for all x except 0, and

sinc(0) = 1.

The ODF and the orientation distribution of underlying fibers are of course closely

related due to the diffusion being restricted by the fiber structure. However, it is impor-

tant to remember that they are not the same. The peaks of the ODF are assumed to

correspond to the orientations of fiber populations but this is not always the case. For

two crossing fiber populations, it was shown that the peaks of the ODF correspond to the

fiber orientations when the crossing angle is 90◦, however the peaks of the ODF deviate
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from true fiber orientations as the crossing angle of fibers becomes smaller [32]. Some

methods attempt to directly estimate the fiber orientation distribution function (fODF)

without estimating the ODF. One of the most popular approaches that directly estimate

the fODF is known as spherical deconvolution [33, 34, 35]. The signal attenuation due to

a single coherently oriented fiber population is represented by a response function R(θ)

where θ is the elevation angle in spherical coordinates and the signal is assumed to be

given by the sum of the response functions of all distinct fiber populations weighted by

their respective volume fractions. Then the signal is written as S(θ, φ) = F (θ, φ) ⊗ R(θ)

where F (θ, φ) is the fODF, φ is the azimuthal angle in spherical coordinates and ⊗ is

the convolution operator. F (θ, φ) is then estimated by deconvolution of the signal using

spherical harmonics.

2.2.4.3 Discussion on Tradeoffs Between Different DMRI Methods

As we have seen in the preceding section, there are a large variety of proposed im-

provements to DTI that aim to detect the orientation of multiple fiber populations in a

voxel and it can be overwhelming to study all the different methods and decide which is

best. There are however some principles that are true for any method and these principles

can help guide the decision. First of all, the ability to detect multiple fiber populations

increases with higher b-values and higher angular resolution. The reason is obvious for

angular resolution and the reason for requiring high b-values is illustrated in Figure 2.15.

The problem is, higher b-value means longer scan time and lower SNR because the echo

will be weaker when we increase the wait time τ between the gradient pulses. Higher

angular resolution requires longer scan time as well since gradients will have to be applied

along more directions. Similarly, image resolution has a tradeoff with scan time. Longer

scan time not only reduces the amount of patients that can be scanned per day, it also

increases patient discomfort and may lead to lower image quality due to artifacts caused

by patient motion. Hence, before deciding to use one method over another, one must think

of what is being sacrificed. For example, if we fix the scan time and increase the b-value

and angular resolution, we must reduce the image resolution so that the scan time remains

the same. In addition, the SNR will be lower due to higher b-value. The tradeoffs need to

35



be carefully considered and the imaging method should be chosen based on the goals and

requirements of the specific study. This is the main reason DTI is still the most widely

used method in routine clinical scans despite its severe limitations. However, it can be

expected that the advanced methods will become more common in routine clinical scans

in the future as MRI machines improve.

Figure 2.15: Illustration on a hypothetical example of why high b-values are required to

detect multiple fiber populations. (A) and (B) show two different fiber populations by

themselves and the signal attenuation in 3 different gradient directions. (C) shows the

situation when both of these fibers are present. The signal attenuation is now the sum of

the attenuations caused by each fiber and as it is seen, it is not possible to distinguish the

separate fiber populations from the signal for low b-values. Figure reproduced from [3] with

permission.

2.3 Image Registration

Image registration is the process of aligning two or more images that are not defined

on the same space. This is a common situation in medical imaging because the images

obtained from scans of different patients or different scans of the same patient are not

aligned. Rigid registration refers to limiting the transformation between the different
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coordinate systems to translation, rotation, scale and shear. Rigid-body transformation

is defined by 12 parameters which are optimized to maximize/minimize a cost function.

Let us denote two misaligned images as functions I(xxx) and J(yyy) where I(xxx) is the image

intensity of image 1 at point xxx and similarly J(yyy) is the image intensity of image 2 at point

yyy. The goal of rigid registration is to find a transformation TTT that relates the positions in

the two images as yyy = TTTxxx, or more openly:
y1

y2

y3

1

 =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

0 0 0 1




x1

x2

x3

1

 . (2.32)

Since we want the relation to be meaningful, some cost function based on the values I(TxTxTx)

and J(yyy) is maximized/minimized. If the imaging modalities are the same, a simple cost

function such as sum square error can give satisfactory results but for different modalities,

information theoretical cost functions such as mutual information or correlation ratio are

used.

If the true transformation between image spaces is not rigid, then non-linear regis-

tration methods are utilized. Non-linear registration is an important area of study and

research is ongoing to improve the methods. While sophisticated non-linear registration

methods may improve the performance of certain types of fiber classification algorithms,

the methods developed on this thesis do not rely on very accurate registration. Hence,

rigid registration was used in all experiments in this thesis due to its simplicity and speed.

2.4 Tractography

Tractography is the process of reconstructing digital representations of white matter

fiber pathways from DMRI data. The earliest and simplest form of tractography is deter-

ministic streamline tractography based on DTI data [36, 37, 38, 39]. First, a seed region

is selected either manually or automatically and seeds are randomly placed inside the seed

region. From each seed, a tract is grown by following the principle (largest) eigenvector

of the diffusion tensor (eq. 2.24) in both positive and negative direction until a set of
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termination criteria are met. Some of the most common criteria are the angle between the

previous and current step and the FA value. The growth of the tract is terminated when

the angle is higher than a threshold, corresponding to an unrealistic tract trajectory or

when FA is below a threshold, corresponding to low diffusion anisotropy according to the

tensor model in the voxel. The output of streamline tractography is a set of tracts. Each

tract is a set of ordered 3D points, hence a “streamline” that represents an approximation

to the trajectory of a population of underlying fibers. For other models like ODF and

fODF, deterministic streamline tractography can still be used in a similar manner. The

tract is then grown in the direction where the ODF or fODF attain their highest value

within a certain maximum angle threshold.

Since there is uncertainty regarding the estimated fiber orientations in any model,

methods that randomly choose a path to follow based on a probability density function

were also proposed [40, 41, 42, 39]. Compared to deterministic methods, probabilistic

methods are better at following fibers through noisy or low anisotropy regions and regions

that contain multiple fiber orientations. However, they are more prone to false positives,

i.e. creating tracts that do not correspond to real fibers. The results of a deterministic

and a probabilistic method are visualized in Figure 2.16. It should be noted that even the

deterministic method results in a large number of false positive tracts. It is well established

that this is a common problem with tractography [43]. Removal of spurious tracts and

classification of tracts into anatomically meaningful pathways is the main topic of this

thesis and will be discussed in detail in subsequent sections.
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Figure 2.16: Visualization of 10000 fiber tracts extracted by seeding the brainstem. Tracts

are colored according to local orientation where superior-inferior direction is blue, left-

right is red and anterior-posterior is green. Left: Result of a deterministic method. Right:

Result of a probabilistic method.

2.5 Literature Review of Fiber Clustering and Clas-

sification

Fiber clustering is the process of grouping “similar” fiber tracts together. The set of

input tracts is the output of the tractography method. The similarity may be defined as

geometrical, anatomical or a combination of both. Fiber classification entails labeling all

tracts into known anatomical pathways that are defined by e.g. in vitro fiber dissection

techniques [44]. Most of the methods in literature cluster the fibers first and then if needed,

assign labels to the clusters for classification. Directly classifying individual tracts is an

area that remains largely unexplored as there are only a few recent methods that use this

approach.

Fiber clustering methods in literature can be generally classified into three main cat-

egories: (i) ROI (region of interest)-based; (ii) similarity-based; (iii) hybrid approaches
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which combine (i) and (ii). ROI-based methods cluster or directly classify fibers according

to the regions they pass or do not pass through. ROIs are selected based on known trajec-

tories of major bundles of interest. Similarity-based methods rely on a similarity measure

defined between fiber tracts or bundles. The measure can be geometrical, anatomical or

both.

2.5.0.4 ROI-based methods

ROI-based methods can be further classified into two categories as manual or auto-

matic. In manual methods, ROIs are interactively placed by a WM anatomy expert who

can interpret images derived from diffusion MRI data [8, 45, 46, 47, 48, 49, 50, 51, 52,

17, 53]. Manual ROI approach is very popular due to few spurious tracts and guaranteed

anatomically known clusters. The disadvantage is that manually selecting multiple ROIs

(mROIs) is time consuming and subject to user expertise, bias, or error. Therefore, au-

tomation is a desired feature for the fiber clustering/labeling problem, while maintaining

robustness of the automatic technique. Automatic ROI-based methods attempt to mimic

the manual ROI placement by defining the ROIs on a template space and bringing the

ROIs to the subject space using an estimated transformation between the template and

subject spaces [54, 55, 56, 57, 58]. The disadvantage of this approach is that it relies

heavily on the accuracy of template-subject registration. A further problem is that ideal

placement of ROIs can vary between individuals, especially for pathological data, and this

can lead to inaccurate clustering results. On the other hand, when there are no registra-

tion errors or pathology, clusters produced by automatic ROI methods are anatomically

meaningful and contain few or no spurious fibers. Another advantage is that they are fast

and their result can be used as initialization to more sophisticated methods, e.g. [59].

“The White Matter Query Language”, which was recently proposed in [60], enables a user

to select tracts by using logical operations, anatomical terms and relative position terms.

In essence, it is a semi-automatic ROI-based method. This method is also reliant on the

accuracy of template-subject registration.
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2.5.0.5 Similarity-based methods

Most similarity-based methods define a fiber (dis)similarity metric and use it within a

known data clustering algorithm. The metric is usually chosen such that fibers that are

geometrically close are put into the same bundle, hence this approach often emphasizes

geometric properties of fibers instead of neuroanatomical knowledge. Some geometry-

based metrics proposed in literature are fiber length and mean Euclidean distance [61],

a measure based on distance between endpoints [62], Hausdorff distance, mean closest

point distance [63, 64, 65], a dynamic time-warping-based distance [66], longest common

subsequence [67], total square loss (with fibers modeled as Gaussian Mixture Models) [68].

Although most similarity metrics are geometric, neuroanatomy-based metrics have also

been proposed [69, 59]. These techniques utilize clustering algorithms such as k -nearest

neighbors clustering [61, 63], spectral clustering [62, 65], agglomerative hierarchical clus-

tering [64], hierarchical total Bregman soft clustering [68], density-based clustering [66, 67]

and expectation-maximization [59]. Lacking prior anatomical information, geometric or

pure feature-based fiber clustering algorithms may produce artificially split or merged

fiber clusters, which do not correspond to known anatomical bundles. In an alternative

similarity-based approach, an atlas is created from clusters extracted with the manual

ROI method and a similarity-to-atlas measure is used to cluster new subjects. The atlas

can consist of sets of fiber tracts in the atlas space [70, 4] or be a probability map for each

bundle of interest [71]. Similarity-based approaches utilizing an atlas have disadvantages

similar to those of automatic ROI methods since both approaches rely on registration of

an atlas to subject images. Recobundles [72], which also utilizes manually created bundle

models, register the fibers instead of the images to reduce the errors from registration.

While similarity-based methods are relatively more robust to registration errors and in-

dividual variability due to incorporation of a similarity-based score, they are more prone

to spurious fibers because they are not as restrictive as ROI-based methods. Clustering

normally requires computation of all pairwise distances but since this can be very compu-

tation intensive, either a random subset of streamlines or a faster clustering method such

as QuickBundles [73] is used in practice.

41



2.5.0.6 Hybrid methods

Hybrid methods combine ROI-based and similarity-based approaches. [74] use auto-

matic ROIs as a first step and then refine the resulting clusters with a geometric similarity-

based method. [75] combine manual ROIs and a geometric similarity-based approach. The

geometric similarity is used only for bundles that cannot be reliably separated by regions.

[6] model fiber bundles as Gaussian processes and define a bundle-to-bundle geometric

similarity measure. Agglomerative hierarchical clustering is then performed and anatom-

ically meaningful clusters are selected from a dendrogram based on atlas ROIs. [76] use a

multiple-step method that involves atlas-based ROIs, fiber-to-fiber and bundle-to-bundle

geometric similarity measures with agglomerative hierarchical clustering. [77] first create

multiple tract atlases by a manual ROI method, then for automatic clustering of new sub-

jects, make an initial clustering based on automatic ROIs and finally refine further with a

similarity-based label fusion approach making use of the multiple atlases. [78] presented

a method for an atlas based fiber clustering as well as for setting up correspondences be-

tween subjects for population studies. A connectivity-based fiber representation is utilized

in a Gaussian mixture model with an online training scheme.

In this thesis, we propose two different hybrid fiber classification methods that first

constrain the input tract sets with loose ROIs, then cluster the remaining tracts and fi-

nally classify the clusters by comparison to manually reconstructed fiber models. The first

method is designed for DTI and brainstem fibers and hence contains certain heuristics for

that task. The second method is more general and utilizes a novel translation-invariant

fiber representation called Neighborhood Resolved Fiber Orientation Distribution (NR-

FOD).

2.5.0.7 Direct Supervised Classification of Individual Tracts

Methods that are based on supervised classification of individual fiber tracts, that is,

methods based on learning a mapping from fiber features to class probabilities using a

labeled training set of fibers, have started appearing in literature only very recently and

this area remains largely unexplored. To our knowledge, there are only three published

methods. In [79], the authors used heuristic geometric fiber features and a Viola-Jones
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object detection framework to classify fibers into three classes of bundles. In [80] and

[81], a convolutional neural network (CNN) based fiber classification scheme is proposed.

However, the number of training subjects is only four and the method for creating the

training set requires a significant amount of manual work and is highly subjective. It is

also unclear how the test set was created.

In a different supervised approach, that can be called a direct volumetric segmentation

of fiber bundles, the authors take tractography out of the process and train an encoder-

decoder fully connected convolutional neural network (FCNN) to segment binary volume

masks for each fiber tract of interest [82]. This method is very fast and volumetrically

accurate compared to previous fiber clustering approaches but if streamlines representation

of tracts is desired, additional steps are required to construct the fiber tracts. Using a

similar network architecture, the authors later created tract orientation maps (TOM) for

each bundle [83]. This approach is more suitable for constructing streamlines as the voxels

now contain fiber-specific orientation information.

In this thesis, we propose a neural network based supervised classification method that

utilizes the NRFOD representation. A practical training and validation dataset creation

scheme is also proposed to reduce the human effort and bias in the creation of these sets.
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Chapter 3

Automatic Labeling of Brainstem

Fiber Pathways Using

Anatomically-Constrained

Density-Based Clustering1

3.1 Materials and Methods

We describe the proposed automatic method that extracts and labels five major WM

tracts that go through the human brainstem. Our approach is based on a density-based

clustering technique, which is adapted to the fiber clustering problem. Here, we explain

the details of the proposed brainstem fiber clustering method.

3.1.1 Dataset

Diffusion MRI (D-MRI) and corresponding datasets are obtained from two sources: (i)

20 unrelated subjects from Human Connectome Project (HCP)’s publicly available “WU-

Minn 500 Subjects + MEG2 dataset”(http://www.humanconnectome.org/documentation/

S500/). (ii) Yeditepe DATA: 3D T1 TFE (Turbo field echo) and DTI data acquisition of

1The contents of this chapter were included in the project report of our TUBITAK Project No.

112E320.
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10 subjects were performed on a 3T MR scanner (Philips Ingenia, Netherlands) with 16

channel head coil. 3D T1 TFE was acquired on a sagittal plane using a TR/TE 99/4.5ms,

FA 8, TI 1000ms, image matrix 300x768, slice thickness 0.8mm, gap 0mm, acquisition

time 6 minutes. DTI was acquired on axial plane, using TR/TE 3440/93ms, EPI factor

45, image matrix 90x128, slice thickness 2.5mm, gap 0mm. 16 diffusion directions at b =

800s/mm2 were acquired in addition to b = 0 images (B0), acquisition time 7 minutes.

This study was approved by the Ethics Review Committee of Yeditepe University Hospital

(YUH).

3.1.2 Pre-processing and tractography

HCP preprocessed diffusion data is in NIFTI format and already eddy current cor-

rected. For Yeditepe data, raw subject D-MRI images are in DICOM format and are first

converted to NIFTI format using dcm2nii tool of mricron (http://www.mccauslandcenter.

sc.edu/mricro/mricron/). Then, eddy current correction (only for YUH data), BET

brain extraction and diffusion tensor estimation is performed in FSL (http://fsl.fmrib.

ox.ac.uk/fsl/fslwiki/) to obtain a DTI volume. Initial tractography is performed

with tensor deflection streamline method ([38]) using the following parameters: f = 0.9,

g = 0.7, step size = 0.75mm, FA threshold = 0.15, max angle = 30, step size = 0.75mm,

length constraint = 30 − 200mm. Seeding is done in the brainstem region which is ob-

tained by an affine registration of Harvard-Oxford subcortical structural atlas (http:

//fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) to the subject’s B0 image. To account

for the affine transformation between the MNI152 standard space [84, 85] and the B0

space, T1-weighted image of the subject is registered to the MNI152 structural template

image (1mm) using FSL’s FLIRT tool. The output of the tractography step is a set of

fibers where each individual fiber is a set of points in 3D space. Throughout the text, the

terms fiber and tract are used interchangeably to refer to a single fiber curve, whereas a

fiber bundle refers to a collection of fibers.
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3.1.3 Clustering algorithm overview

An overview of proposed method is given as a flowchart in Figure 3.1. First, a trac-

tography is performed seeding the whole brainstem region and the MCP is extracted by

running the OPTICS algorithm on the set of fibers and then selecting the most similar

cluster to the MCP mask. A reason to why only MCP is extracted in this first step is that

its shape is very different from other fiber bundles in the brainstem, hence it leads to the

most clear-cut labeling. Moreover, as the MCP is relatively large, it is highly likely that

many of the fibers created by the tractography acquired by seeding the whole brainstem

belong to MCP. Thus, the extracted cluster is expected to contain a sufficient number

of fibers. Smaller bundles like the ICP on the other hand, may not be sufficiently repre-

sented in such whole brainstem fiber sets. Another significant advantage of extracting the

MCP is that it is later used to aid in separation of the CST and the ML, which cannot

be reliably extracted with a bundle-to-bundle similarity score like the one proposed here

without additional constraints.

For extraction of the SCP and the ICP, manually defined ROIs/ROAs in the standard

space are brought to the specific individual’s D-MRI space and tractography is performed

using those as constraints. These ROIs/ROAs are chosen large enough to account for

registration error and individual variability since false positives are expected to be removed

later by similarity-based parts of the framework. Thus, two fiber sets, one for the ICP

and one for the SCP, are created. These are then separately clustered by the OPTICS

algorithm and clusters corresponding to ICP left, ICP right, SCP left and SCP right

are selected by using the bundle-to-bundle similarity score against corresponding bundle

masks. As a final step for the SCP, fibers extending to the sensorimotor cortex are removed

using an ROA at internal capsule defined on the standard space.

Due to geometrical and spatial proximity of the CST and the ML, ROI constraints play

a relatively more important role in their extraction. Defining a large ROI on the standard

space would fail and a higher precision is required for their ROIs to be positioned correctly

on the individual D-MRI data. In fact, these two bundles can only be reliably separated

at the brainstem [14], and even there, the ROIs they are expected to pass through are

spatially close. Fortunately, a neuroanatomical prior based on the MCP can aid in their
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separation because at the pons level, the ML passes posterior to posterior pontocerebellar

fibers while CST passes between the posterior and anterior pontocerebellar fibers. ROIs

for the CST and the ML are located using an algorithm based on that prior information. In

addition to these ROIs, automatically selected ROIs on medulla and sensorimotor cortex

are also used to constrain tractography when extracting the CST and the ML. As a result,

four sets of candidate fiber tracts for CST left, CST right, ML left and ML right are

obtained, which are then separately clustered using the OPTICS, and the final bundles

are extracted using the bundle-to-bundle similarity score as before.
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Figure 3.1: Flowchart overview of the proposed brainstem fiber clustering framework.
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3.1.4 Fiber Bundle Mask Creation

Although there are already available WM atlases like e.g. ICBM-DTI-81 white-matter

labels atlas (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), they are not suitable

for our proposed scheme because these atlases only label the bundles over voxels at which

they are clearly separable from other bundles. However, in areas like the internal capsule

where ML and CST are practically inseparable, no separate labels but a common label is

used for them in the atlas. Thus, defining a similarity measure between possible bundles

obtained from the OPTICS and bundle regions obtained from such atlases is not ideal.

To overcome this problem, we created a bundle mask representing an “average bundle”

in the standard space, which is a binary image, for each bundle of interest using clusters

obtained with the manual ROI method of 10 brains over a training dataset. This is done

by setting to non-zero all voxels for which the probability of the bundle passing through

the voxel is greater or equal to 0.2. This way, a dissimilarity measure can be conveniently

defined between a bundle mask and a possible bundle in order to select neuro-anatomically

known bundles matching the output of the OPTICS algorithm according to a geometric

bundle-to-bundle distance measure. For SCP, fibers extending to the cortex are included

for creating the mask to aid in the selection algorithm to distinguish left SCP from right

SCP. This is required because the courses of the left and right SCP are close and similar

in shape in the midline over the midbrain level.

3.1.5 Dissimilarity measure between fibers

To use a geometric clustering approach, a fiber dissimilarity measure must be defined.

We design a dissimilarity measure such that geometrically close fibers that have similar

orientation give a small dissimilarity value. To formally define the proposed measure, let

us first define a fiber as a set of 3D points: Ai, i = 1, 2, ..., N where N is the number of

points that make up the fiber A. Let A and B be two fibers with number of points N and

M respectively. The dissimilarity between A and B is calculated in 6 steps. For the sake

of simplicity, let us assume N ≤M (B is the longer fiber) and that d(A1, B1) ≤ d(A1, BM)

where d(Ai, Bj) denotes the Euclidean distance between ith point of A and jth point of
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B. This assumption can be enforced by changing fiber names and/or point ordering so

there is no loss of generality. Let us use the notation Ai ↔ Bj to denote that the ith

point on A is matched with the jth point of B. In the first step, the start and end points

of B are matched to the closest point on A, that is, we find i, j ∈ {1, 2, ..., N} such that

d(Ai, B1) and d(Aj, BM) are minimized and then set Ai ↔ B1 and Aj ↔ BM . In the

second step, all points on A that come before i are matched to B1 and all points that

come after j are matched to BM , that is, set Ak ↔ B1, k = 1, ..., i− 1 and Ak ↔ BM , k =

j+ 1, ...,M . The third step is simply long fiber to short fiber closest point matching, that

is, ∀k ∈ {2, 3, ...,M − 1}: find Al, l ∈ {1, 2, ..., N} such that d(Al, Bk) is minimized and

set Al ↔ Bk. These first three steps are illustrated in Figure 3.2-a,b,c. In the fourth step,

a preliminary dissimilarity between fibers A and B is calculated as follows:

Dspatial(A,B) =

∑
i,j d(Ai, Bj)

K
s.t. Ai ↔ Bj,

i ∈ {1, 2, .., N}, j ∈ {1, 2, ...,M}, (3.1)

whereK is the total number of matches. This simply takes the mean of Euclidean distances

between all matching points found in the first three steps. The fifth step is the comparison

of fiber orientation. First, the fibers are represented as a set of c vectors, obtained by

uniformly sampling points on a fiber and drawing vectors between consecutive points.

Fiber A is thus represented as

ai = Aki+1
− Aki , kl+1 = 1 + b(N − 1)l

c
c, l = 0, 1, ..., c,

b.c:floor operation, i = 1, 2, ..., N − 1. (3.2)

and fiber B is also similarly represented. This is illustrated in Figure 3.2-d for c = 6.

Then, an orientation penalty term is calculated as follows:

orientationPenalty(A,B) =

c∑
i=1

pi

c
, where (3.3)

pi =
γ − 1

1 + e−
cosθi−β

α

+ 1 and cosθi =
ai · bi
||ai||||bi||

, (3.4)

where γ, α and β are user-defined parameters. The idea is as follows. If the angle between

corresponding directions are close to 0◦, we should have pi ≈ 1 and if it is close to 180◦,
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we should have pi ≈ γ. So basically, for each direction i, the range of cosθi is mapped to

the interval [γ, 1] using a sigmoid function for smoothness. The final orientation penalty is

calculated by taking the mean of penalties for each pair of corresponding directions. This

term greatly helps in situations like shown in Figure 3.2-e,f, to make the defined measure

regard orientational similarity in line with human perception. The sixth and final step just

combines Dspatial with the orientation penalty term to get the final dissimilarity measure

as

D(A,B) = Dspatial(A,B)× orientationPenalty(A,B). (3.5)

Figure 3.2: (a,b,c) An illustration of the three steps involved in matching points between

two fibers in the definition of the fiber dissimilarity measure. (d) Representation of the

same two fibers as sets of c vectors each (c = 6 here). (e,f) A toy example illustrating

the advantage of the orientation term. Both tract pairs here would give small dissimilarity

values with the mean closest point distance and the end point distance. With the addition

of the orientation term, similarity of the fibers in (e) is higher than that of the fibers in

(f). This is in agreement with human perception of fiber dissimilarity.

3.1.6 Geometry-based clustering algorithm

For geometry-based clustering, we use OPTICS [86], which is a density-based clustering

algorithm that does not directly output a clustering but a specific ordering of the fibers

from which possible clusters can be extracted. From here on, the distance between fibers

refers to the proposed dissimilarity measure between them.
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We will first briefly summarize OPTICS from a fiber clustering point of view in order to

explain how our bundle-to-bundle similarity measure will make use of the OPTICS output.

The OPTICS algorithm requires a set of fibers and two user-defined input parameters ε

and minFiber. ε is chosen as the greatest expected intra-cluster distance and minFiber

indicates the minimum number of fibers required to form a fiber bundle. If we have a set

of N fibers, the output of OPTICS is a list of N distances given in a specific ordering.

The concepts of core-distance and reachability-distance are defined next.

Definition 1 Let t be a fiber trajectory, represented as a 3D curve, uniformly sampled

over its length. Let ε be a distance parameter, Nε(t) the ε-neighborhood of t, minFiber a

positive integer and minFiberDistance(t) the distance from t to its minFiberth neighbor

(the neighbor that has the minFiberth smallest distance from t). Then the coreDistance

of t is defined as

coreDistance(t) =

 ∞ : |Nε(t)| < MinFiber

minFiberDistance(t) : otherwise

where |Nε(t)| denotes the number of fibers in the ε-neighborhood of fiber t.

Definition 2 Let t1 and t2 be two fibers. Then, the reachabilityDistance of t2 with respect

to t1 is defined as

reachabilityDistance(t1, t2) = ∞ : |Nε(t1)| < MinFiber

max(coreDistance(t1), distance(t1, t2)) : otherwise

(3.6)

Let us denote the output of OPTICS as an ordered list l = (d1, d2, ..., dN) where di is

the distance associated with fiber ti. This distance di is the smallest reachability distance

from all predecessors of ti, that is, t1, t2, ...ti−1, to ti. We refer the interested reader to [86]

for further details of the OPTICS algorithm. To illustrate how the output of OPTICS

reflects the clustering structure of fibers, we created an example fiber set by using the

manual mROI method to pick 1000 fibers each from CST, SCP and MCP. A visualization

of output list l and input fibers are given in Figure 3.3-a. Each valley in the visualization

of l corresponds to a cluster. It can be noticed however that even in this simple example,
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many different possible hierarchical clusterings exist due to smaller valleys inside larger

valleys. Thus, an extraction scheme is required to extract clusters from l. The simplest

way is to cut the graph with a horizontal line at some user-defined height y and take the

created valleys as output clusters.

Although this could be quite useful in a few simple cases, it can be difficult, even

impossible to choose a satisfactory y value in other cases as this scheme cannot capture

clusters with varying density. This scheme is illustrated in Figure 3.3-b with y = 10

and Figure 3.3-c with y = 2 on the example fiber set. A more advanced scheme, which

is capable of extracting clusters with varying densities is given in [86], which selects all

possible clusters. In a typical dataset containing fibers passing through the brainstem,

hundreds of clusters, which usually are not pairwise disjoint, are extracted. Thus, manually

selecting neuro-anatomically meaningful clusters from this set of geometrically close fibers

is impractical. On the other hand, having a set of all possible clusters instead of clusters

that satisfy a user-defined criteria, as in cutting the graph with a horizontal line method,

eliminates robustness issues and provides a richness of information. In order to take

advantage of this in practice, an automatic algorithm for extracting meaningful clusters

is required, which is explained next.
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Figure 3.3: (a)-Left: Input fibers colored according to local diffusion direction. (a)-Right:

OPTICS output: ordered reachability distances (y) versus fiber indices (x). (b)-Left: Fibers

colored according to clustering done with horizontal line cut method with y = 10. (b)-Right:

OPTICS output with colored areas corresponding to clusters in (b), indicated with the same

color. (c)-Left: Fibers colored according to clustering done with horizontal line cut method

with y = 2. (c)-Right: OPTICS output with colored areas corresponding to clusters in (c),

indicated with the same color.
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3.1.7 Cluster Selection from OPTICS output

In order to automatically extract anatomically meaningful clusters from OPTICS out-

put, we define a bundle-to-bundle dissimilarity measure that compares a candidate bundle

to a bundle mask, which is described previously. We use a symmetrized Chamfer distance

between volumes corresponding to the bundles divided by the logarithm of the number

of fibers in the candidate bundle. The weighting with the logarithm here is used as a

“tie-breaker” to prefer clusters that contain more fibers as two bundles with a different

number of fibers may have the same volume.

Simply selecting the candidate cluster that minimizes the bundle-to-bundle dissimilar-

ity to the corresponding bundle mask usually works fine, however, fibers belonging to the

same bundle may not always form a single cluster. For example, due to D-MRI limitations,

FA values may be significantly reduced at voxels on the transverse fibers of the MCP. This

leads the MCP to be fragmented, usually as two clusters, one in each hemisphere. In order

to overcome this issue, ideally, instead of selecting one cluster, we would select a union of

a subset of possible clusters that minimizes the dissimilarity measure. Finding the exact

solution of this problem is unfortunately computationally intractable as the search space

involves all possible subsets of all possible clusters extracted from OPTICS. Therefore,

we use a simple greedy algorithm to make an approximately optimal selection as follows:

The algorithm first finds the best two-element subset and then adds one more element at

a time until the dissimilarity score cannot be reduced further.

3.1.8 Extraction of MCP

Extraction of MCP is straightforward as MCP is one of the largest bundles and its

shape is quite distinct from nearby bundles. The brainstem region is already automatically

selected (Section 3.1.2). By seeding the whole brainstem, the initial fiber set is obtained,

on which the OPTICS algorithm is then run. The final MCP bundle is extracted by

using the proposed selection algorithm (Section 3.1.7). The steps involved in the MCP

extraction are illustrated in Figure 3.1: top row.

In cases where there is signal loss or noise in voxels that contain transverse fibers of the
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MCP, the proposed algorithm can give even a better result than that of drawing manual

ROIs on two hemispheres, as is usually done by an expert when extracting the MCP. Such

an example is shown in Figure 3.4. This is thanks to the ability of the proposed algorithm

to merge clusters creating a larger bundle that agrees with the bundle mask.

Figure 3.4: (a): MCP obtained with the proposed method. (b): MCP obtained with

the mROI method. Green: Seed region. Red: ROI. It is seen that when the MCP is

fragmented because of signal loss on D-MRI data, the proposed method gives better results

than an mROI approach (using typical ROIs shown) for extracting MCP.

3.1.9 Extraction of SCP and ICP

ICP and SCP are extracted in a similar manner where for both of them, two ROIs are

used for the initial tractography and no left-right discrimination is made. Extraction of

SCP and ICP is illustrated in Figure 3.5. A coronal region in the cerebellum is used as one

of the automatic ROIs for both bundles. For ICP, an axial ROI is automatically determined

on medulla level and for SCP, a coronal ROI is automatically determined on thalamus.

After the initial tractography, the OPTICS algorithm is run separately for both fiber sets

and two clusters are chosen from each set according to the bundle-to-bundle similarity

to match corresponding bundle masks to obtain the four desired clusters: SCP left, SCP

right, ICP left and ICP right. As a final step for SCP, fibers extending to the cortex are

removed using a loosely placed automatic ROA in the internal capsule (Figure 3.5 and
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Figure 3.1).

Figure 3.5: Illustration of steps involved in extraction of the SCP and the ICP.

3.1.10 Extraction of CST and ML

Extraction of the CST and the ML is the most difficult because these bundles have

high shape similarity and spatial proximity. They are observed to be separable only at

the brainstem level and indistinguishable at the suprathalamic level [14]. To tackle this

difficult task, we design an algorithm for determining CST and ML ROIs at the pons

level as follows: First, we specify five distinctive points (p1, p2, ..., p5) on an axial slice at

the pons level on the MNI152 space. Figure 3.6 illustrates how these points define two

rectangular ROIs for the CST and ML. It can be observed however that the separation

of CST and ML ROI is quite sensitive to the position of p2 and thus simply transforming

the points defined on the standard space to the individual space is not adequate due to

possible registration errors and individual variability. The ROIs specific to the individual

brain should be obtained more precisely. To this end, the automatically extracted MCP

and the DTI data of the subject are used.
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Figure 3.6: (a): Five points (p1,...,p5) manually chosen on an axial slice at the pons

level on the standard space that define ROIs for CST and ML. Background image is JHU-

ICBM-DTI-81 atlas colored according to labels. Red: MCP, Green: transverse pontine

fibers (considered part of MCP) and ML and CST are annotated on the image (R: right,

L: left). Other colors (SCP and ICP) are not relevant for CST, ML extraction. (b): An

axial slice at the pons level from an individual brain with diffusion tensors visualized as

ellipsoids illustrating how the rectangle ROIs defined in (a) would ideally look like on an

individual brain.

Let us call an affine transformation matrix from the MNI152 space to the individual’s

B0 space T a, let qi = T api, and similarly define the corresponding rectangles in the B0

space using points qi. Note that the rectangles on the MNI space may not lie on a single

axial slice in B0. As a first step in refinement, we register the extracted MCP to the MCP

mask and use the transform to reposition the points qi. Even a pure translation model is

adequate here as the MNI152 to B0 transformation already handles most of the rotation.

Let us call the transformation matrix found in this second step T b and let T = T bT a and

ri = Tpi. These ri’s are positioned better than qi’s. The location of these ROIs are sensitive

to only the anteroposterior axis, and the dominant fiber orientation in the neighbourhood

of r1 and r2 on the coronal plane is mainly mediolateral. Based on that, the positions of r1

and r2 are further refined as follows: First, along each line over a set of mediolateral lines

on the anteroposterior axis, number of voxels along the line in which the dominant diffusion

direction is mediolateral is counted and recorded as the mediolateral diffusion dominance

value. Then, the two lines, i.e. the most-anterior and the most-posterior lines, are chosen
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such that their calculated mediolateral diffusion dominance values achieve a peak and is

above a threshold relative to the highest mediolateral diffusion dominance value among

all lines. The two selected lines ideally correspond to the posterior and anterior lines of

the rectangle which contains the ROIs for the CST as depicted in Figure 3.6. Finally,

using the two determined rectangles, the ROIs for the CST and the ML are selected as all

voxels that are both in the corresponding rectangle and have superior-inferior dominant

diffusion.

In addition to the ROIs at the pons level, two more ROIs, one on the sensorimotor

cortex and one on the medulla are utilized. These are chosen on the standard space

and brought to the individual space through registration. For those datasets, where the

lower part of the CST or the ML from the pons to the medulla cannot be constructed

with tractography due to noise and partial volume effects on the D-MRI volume, the

ROI on the medulla is not used. The automatic algorithm detects such cases via a user-

defined threshold on the ratio of the number of constructed fibers to number of seeds

(< 1%). Finally, the corpus callosum template is brought from the ICBM-DTI-81 white-

matter labels atlas (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) and dilated

and used as an ROA to prevent crossing between hemispheres (depicted in Figure 3.1 and

Figure 3.7). Using these constraints, four sets of fibers are constructed: each for CST left,

CST right, ML left and ML right. Finally, the OPTICS algorithm is run separately on

those fiber sets, and the final bundles are extracted using the proposed selection algorithm

as described previously. Overview of the process of extracting the CST and the ML is

illustrated in Figure 3.7.
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Figure 3.7: Illustration of steps involved in extraction of the CST and the ML.

3.2 Results

3.2.1 Implementation Details

Like other clustering techniques, a few number of important parameters has to be

specified by the user to run the OPTICS algorithm. Throughout the experiments, we

fix the epsilon and minFiber parameters to ε = 20,minFiber = 30. The γ, α, β in

the sigmoid function definition is fixed to γ = 20, α = −0.04, β = 0.9. As the results

are satisfactory for both the HCP dataset and the YUH dataset, we have not optimized

the parameter selection, which can be done through an exhaustive parameter tuning, if

desired. The YUH dataset was used in training (creating the bundle masks) and the HCP

dataset was used in testing. Computation time was between 40 minutes and 70 minutes
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on a desktop computer with AMD FX-8350 processor for the HCP data. The code was

not optimized for performance.

3.2.2 Comparison of the Proposed Method to Manual ROI Method

We validate the proposed method by comparing it to the manual ROI method which

is considered the most reliable but time-consuming approach. The bundles reconstructed

by the two methods are compared quantitatively in terms of Cohen’s Kappa values and

qualitatively by visual inspection of two expert raters (Rater 1: ZF- radiology specialist;

Rater 2: UT - neurosurgeon). A visualization of all bundles created by both methods are

given in Figure 3.8. Mean and standard deviation of Kappa values for each bundle are

given in Table 3.1 and a visualization is given for each bundle when they achieve their

best and worst Kappa scores in Figure 3.9. Mean and standard deviation of qualitative

scores given by experts after visual inspection are given in Table 3.2.

We performed Wilcoxon signed-rank test on the visual scores to test for statistical

significance between means of manual and automatic results for each bundle and the

results are given in Table 3.3. At 1% significance level, there is no statistical evidence

to reject the null hypothesis, i.e. to suggest that the means are different for manual and

automatic results of all bundles for both raters. At 5% significance level, this is also valid

for 14 out of 18 bundle evaluation experiments. For the left SCP and MCP (Rater 1) and

the left and right SCP (Rater 2), manual ROI results were rated higher than results of

the proposed method.
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Figure 3.8: Visualization of clustering results for all 20 test subjects. A: Manual ROI

method for subjects 1-5; B: Proposed method for subjects 1-5; C: Manual ROI method for

subjects 6-10; D: Proposed method for subjects 6-10; E: Manual ROI method for subjects

11-15; F: Proposed method for subjects 11-15; G: Manual ROI method for subjects 16-20;

H: Proposed method for subjects 16-20.
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Figure 3.9: Visualization of bundles created with the manual ROI method vs. the proposed

method for best and worst Kappa scores achieved among the 20 test subjects.
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Table 3.1: Mean and standard deviation of Cohen’s Kappa values between bundles recon-

structed by the manual ROI method and the proposed method.

CST L CST R ML L ML R ICP L ICP R SCP L SCP R MCP

Kappa 0.85± 0.11 0.86± 0.10 0.74± 0.14 0.77± 0.12 0.55± 0.14 0.60± 0.18 0.79± 0.10 0.79± 0.10 0.62± 0.10

Table 3.2: Visual scoring by two experts. Score is given based on how well the reconstructed

bundle agrees with known neuroanatomy. 1: Very poor; 2: Poor; 3: Mediocre; 4: Good; 5:

Very good. R1 refers to Rater 1; R2: Rater 2; M: Bundle reconstructed with the manual

ROI method; A: Bundle reconstructed with the proposed automatic method.

CST L CST R ML L ML R ICP L ICP R SCP L SCP R MCP

R1 M 4.45± 0.51 4.30± 0.57 3.50± 0.51 3.45± 0.60 4.05± 0.69 4.15± 0.75 4.25± 0.72 4.25± 0.72 4.30± 0.80

R1 A 4.40± 0.50 4.25± 0.79 3.45± 0.69 3.45± 0.60 3.65± 0.67 3.75± 0.72 3.75± 0.64 3.80± 0.70 4.05± 0.76

R2 M 4.20± 0.62 4.20± 0.77 3.55± 0.60 3.50± 0.69 3.75± 0.44 3.85± 0.37 3.80± 0.52 3.80± 0.52 4.05± 0.60

R2 A 4.30± 0.57 4.10± 0.79 3.35± 0.59 3.45± 0.60 3.60± 0.68 3.90± 0.45 3.50± 0.51 3.60± 0.60 3.55± 0.60

Table 3.3: p-values for Wilcoxon signed-rank test on the visual scores for difference of

means between manual and automatic results for each bundle.

CST L CST R ML L ML R ICP L ICP R SCP L SCP R MCP

Rater 1 p-values 0.5000 0.6250 0.2891 1.0000 0.5488 1.0000 0.0313 0.3594 0.0107

Rater 2 p-values 1.0000 1.0000 1.0000 1.0000 0.0869 0.0723 0.0107 0.0156 0.2734
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3.3 Discussion and Conclusion

The proposed method makes use of both similarity-based and ROI-based clustering

to minimize the disadvantages of these two approaches. It is more robust to registration

errors and individual variability compared to pure automatic ROI methods because larger

template ROIs can be used as the subsequent similarity-based part of the method is

expected to remove spurious fibers. Further, the proposed method contains fewer spurious

fibers compared to pure similarity-based methods due to its use of ROI constraints to

eliminate fibers that are too far from expected bundle trajectories. Finally, as with any

automatic method, it eliminates the user bias and required human effort that plagues

manual ROI methods. The quality of resulting bundles is usually comparable to that of

manual ROI method. Despite being designed specifically for clustering brainstem bundles,

the framework can be generalized to full-brain clustering albeit with some effort.

An important limitation of the proposed method is that automatic selection of the

ROIs on the pons level for the CST and the ML may fail to give satisfactory results in

pathological or noisy data. Such conditions can be checked from the implausible ROIs

produced by the algorithm and corrected manually or can be considered for further devel-

opment.

As with any clustering algorithm, the accuracy of the proposed method is heavily in-

fluenced by the tractography method as well as the resolution and quality of the DTI

image. Thus, the limitations associated with DTI and the chosen tractography method

will apply. Multiple fiber populations within a voxel is a tricky issue in processing Diffu-

sion MRI data. Recently proposed high angular resolution diffusion MR approaches such

as HARDI [28], QBI [30], spherical deconvolution [33], and DSI [28, 27] create multi-peak

fiber orientation distributions to enable representation of underlying multiple fiber popu-

lations in a voxel. Advanced imaging systems and protocols as those in the latest brain

research initiative Human Connectome Project (HCP) provide high-resolution diffusion

MRI data, but those systems are not yet available in routine clinical practice. DTI is still

the common choice for clinical scanning routine in hospitals due to demanding acquisition

times and complex computations required for the high-resolution diffusion MRI. Since in
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this study, we mainly aimed to ease the routine clinical medical image processing workflow

by providing the expert with subject-specific fiber clusters of the five main bundles in the

brainstem at an acceptable quality, the experiments were done only on DTI. It should be

noted that the proposed method is largely independent of the diffusion MRI method. The

only part that is dependent on DTI is the selection of the ROIs for the CST and the ML

at pons level regarding dominant fiber orientations. This part can be naturally adapted

to other types of diffusion MR images. Similarly, the proposed method is not dependent

on a specific tractography method, it only requires that the output of the tractography

method is a set of fibers, each fiber defined as a set of points. Thus, in the future, more

advanced diffusion MR techniques and tractography methods can be utilized as desired.

Although the SCP, the ML, and the CST decussate at midbrain and medulla, respec-

tively, majority of fibers in the reconstructed trajectories are constrained to the same

hemisphere due to the nature of fiber reconstruction and tracking techniques. This limi-

tation causes physically crossing fibers to produce kissing fiber trajectories as also pointed

out by [9]. At the pons level, both the MCP and the CST frequently occupy the same

set of voxels. This can lead the CST to fail to reach the medulla or to follow the MCP.

Similarly, some MCP fibers may fail to cross to the other hemisphere or follow the CST

to the cortex. At the internal capsule level, the ML and the CST are not distinguishable

on DTI data. Hence the thalamocortical continuation of those bundles, particularly the

ones projecting to the primary somatosensory cortex which are thought to be associated

with both the CST and the ML, may in reality belong to either of them.

To conclude, the proposed brainstem fiber clustering technique automates the process

of construction and labeling of subject-specific major brainstem white matter pathways,

hence relieves the operators from that tedious manual task. To our knowledge, this is the

first study that presents such a solution customized to the brainstem. The designed fiber

dissimilarity measure and the neuroanatomical knowledge-based ROI placements coupled

with a density-based clustering scheme are shown to work comparable to the manual ROI

method through both quantitative scores and qualitative expert scores against the latter.

Therefore, the proposed method is expected to be of use in planning of brainstem surgery as

well as analysis of white matter fibers related to brainstem. Furthermore, after addition of
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a step to set up correspondences among fiber bundles of different subjects, it can facilitate

various population-based connectivity studies on neurological and developmental diseases

that relate to the structural organization of fiber pathways traversing the brainstem.
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Chapter 4

Neighborhood Resolved Fiber

Orientation Distributions (NRFOD)

in Automatic Labeling of White

Matter Fiber Pathways2

4.1 Materials and Methods

An overview of the proposed method is illustrated for left projection fibers (CST and

ML) in Figure 4.1. Similar steps are used for all bundles of interest. We use fiber and

tract interchangeably to refer to a single 3D curve representing a fiber, whereas a bundle

refers to a collection of fibers.

2This chapter appeared as a journal article in Medical Image Analysis, Volume 46, pages 130-145,

May. 2018. The introduction section of the journal article is not repeated here because a more detailed

background is given in Chapter 2.
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Figure 4.1: Illustration of the proposed method on the left CST and ML bundles.

4.1.1 Dataset

Diffusion MRI (D-MRI) and corresponding datasets are obtained from 30 unrelated

subjects from Human Connectome Project (HCP)’s publicly available “WU-Minn 500 Sub-

jects + MEG2 dataset”(http://www.humanconnectome.org/documentation/S500/). Due

to significant time requirements for manual clustering which is needed for quantitative

evaluation of the proposed method, 30 subjects are included from the dataset.

4.1.2 Reconstruction of Orientation Distribution Functions

Generalized q-sampling imaging (GQI) method, which has the practical advantage of

being able to reconstruct ODFs from a large variety of diffusion MRI datasets including

multi-shell data, is used coupled with an ODF decomposition method [87] to resolve at

most three fiber orientations per voxel. A diffusion anisotropy value (QA) [31] that quan-

tifies the spin population in each resolved orientation is also obtained. The reconstruction
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is performed by DSIStudio (http://dsi-studio.labsolver.org).

4.1.3 Manual ROI Selection on Standard Space

If a whole brain tractography output was used as input to the density-based clustering

algorithm, majority of the fibers in the input set would not correspond to any of the

bundles we are interested in. Thus, in order to reduce computation time and increase the

likelihood that a sufficient number of fibers are reconstructed for each bundle of interest,

the initial fiber sets passed to the density-based clustering algorithm are constrained by

ROIs that are selected on the standard MNI152 space [84, 85] and transformed to the

subject space. The transformation is assumed to be affine and the transformation matrix

is obtained by registering the subject T1 image to the MNI152 T1 image. It is important to

emphasize that the ROIs are not meant to obtain a good clustering by themselves, their

main purpose is to reduce the number of fibers passed to the density-based clustering

algorithm. The ROIs are thus selected large enough to account for registration errors,

individual variability and possible pathologies. We have defined ROIs for the following

sets of fibers: left projection fibers (left CST and ML), right projection fibers (right CST

and ML), SCP, ICP and MCP (Figure 4.2).
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Figure 4.2: The ROIs defined on the standard MNI space to constrain initial fiber sets that

will be passed to the density-based clustering algorithm. Yellow: Axial ROI on medulla

for left, right projection fibers and ICP; Pink: ROI on left sensorimotor cortex for left

projection fibers; Teal: ROI on right sensorimotor cortex for right projection fibers; White:

Coronal ROI on cerebellum for ICP and SCP; Green: Coronal ROI on cerebellum on the

left hemisphere for MCP; Dark Green: Coronal ROI on cerebellum on the right hemisphere

for MCP; Blue: Coronal ROI near thalamus for ICP and SCP. Note that the ROIs are

selected very large to account for individual variability and possible registration error.

4.1.4 Tractography

A simple probabilistic streamline tractography algorithm is implemented to construct

the initial fiber sets that will be utilized by the density-based clustering step. The ROIs

defined on the standard space in the previous step are brought to the subject space using

an affine registration and the tractography algorithm starts from randomly generated seed

points inside one of these ROIs and grows a fiber as follows: First, a direction is randomly

selected from the set of resolved fiber orientations present in voxels closest to the current

point. The chance of a direction being selected depends on its corresponding QA value,

the distance of current point on the fiber to the voxel center and the angle between the

previous direction taken by the fiber and the current candidate direction (details are given
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in 4.A). Once a direction is chosen, a step of stepSize = 0.75 millimeters is taken in that

direction. The process terminates when the fiber is out of image bounds or there is no

possible direction whose angle with the previous direction chosen by the fiber is less than

maxAngle = 20 degrees and its QA value is larger than minQA = 2. This fiber generation

process is repeated until a desired number of fibers are constructed that pass through all

the ROIs and have length between minLength = 30 mm and maxLength = 200 mm. The

tractography parameters are empirically set.

We construct five initial fiber sets for the brainstem: left projection fibers (left CST

and ML), right projection fibers (right CST and ML), SCP, ICP and MCP. We note that

the tractography step can be carried out by any other method existing in current tools

such as DSIStudio.

4.1.5 Neighborhood Resolved Fiber Orientation Distribution (NR-

FOD) of a Fiber and the Fiber-to-fiber Distance Measure

(NRFODD)

For clustering a collection of fibers, first a fiber representation should be selected.

We define a descriptive fiber representation, NRFOD, which relies on the distribution of

orientations of fibers in the neighborhood of a given fiber. Next, based on the NRFOD,

we utilize a fiber-to-fiber distance measure that is independent of Euclidean distances

between points on a fiber, thanks to the new fiber representation. Let us first describe

and motivate our novel fiber representation that will allow such a measure to be defined

between fibers.

Using GQI with a subsequent diffusion decomposition method [87], the resulting image

is a set of voxels in 3D space where each voxel contains a set of resolved fiber orientations

and corresponding quantitative anisotropy (QA) values that represent the spin population

in the corresponding orientation [31, 87]. In order to segment bundles from such an

image, neuroanatomy experts typically rely on slices of the volume on which resolved fiber

orientations are visualized with lines colored and oriented according to their voxel-wise

diffusion orientation or in the case of DTI, FA maps colored according to the principal
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direction of the diffusion tensor. An example axial slice at the pons level is illustrated

in Figure 4.3. The human approach to identifying the area of for instance the left CST

bundle on such a slice is as follows: in the neighborhood of the left CST, mostly green

lines (or colors) are expected to the left; similarly mostly reds (lines) are above and

below, and mostly blue and some reds to the right. The NRFOD representation is an

attempt at mathematically capturing this human approach in 3-dimensions where a fiber

is distinguished by the resolved fiber orientation distributions in the neighborhoods of

points sampled on the fiber. The fiber-to-fiber distance measure based on the NRFOD,

which we will call NRFODD, is then based on the intuition that the aggregated similarity

of distributions of white matter fiber orientations in the neighbourhood of all points on

two fibers should be large in order to cluster those fibers together.

Figure 4.3: An axial slice of a GQI image at the pons level. Each resolved orientation on

a pixel is represented by a line color-coded according to the resolved orientation where red

is left-right , green is anterior-posterior and blue is inferior-superior orientation.

Formally, let T = {t1, t2, · · · , tK} be a fiber where K is the number of points that

define the fiber. A NRFOD is a set of MxK histograms that represent the distribution

of resolved fiber orientations around each point tk of the fiber for M probing directions.

Each histogram is defined to contain N bins, each bin representing an orientation, and

the count in each bin is determined by the number of resolved fiber orientations that fall

into a certain bin, in a cylinder along the probing direction (see Figure 4.4). We aim to

probe a roughly spherical region around each point tk, hence the M probing directions are

chosen using a spherical covering with M points. The spherical coverings were calculated
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by [88]. Cylinders were selected as probing regions for simplicity. Other probing shapes

could have been used to a similar effect, e.g. rectangular prisms or cones. N may be

smaller than the number of sampling directions used in the GQI scheme in which case a

resolved fiber orientation is simply assigned to the bin that minimizes the angle between

the fiber orientation and the orientation represented by a histogram bin. Similarly, M

need not be the same as the number of sampling directions of the GQI scheme. In fact, we

recommend choosing M and N smaller than the number of sampling directions of the GQI

scheme in order to reduce computational load and the impact of noise in fiber orientations.

Finally, we obtain a KxMxN -dimensional representation of each fiber, which includes a

probing of local neighborhood diffusion profiles around the fiber.

Figure 4.4: Illustration of construction of the NRFOD representation of a fiber. At each

point on the fiber, the neighborhood is probed with cylinders in M directions and a histogram

of resolved fiber orientations in the cylinders are computed.

Now that we have a fiber representation in terms of local diffusion orientation his-

tograms around each fiber point, we devise a fiber-to-fiber distance measure as follows.

Generally, two histograms can be compared using a measure such as the Chi-Square his-

togram distance ([89]). Let G = {g1, g2, · · · , gN} and H = {h1, h2, · · · , hN} be two his-
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tograms with N bins. The Chi-Square distance between G and H is defined as

χ2
G,H =

1

2

N∑
i=1

(gi − hi)2

gi + hi
. (4.1)

Let T = {t1, t2, · · · , tK} and U = {u1, u2, · · · , uK} be two fibers that both have K

uniformly sampled points. If the input fibers do not satisfy this condition, the fibers

are simply resampled such that the condition is satisfied. Further, let P and R be the

NRFOD representations of fibers T and U . Then, the proposed neigborhood resolved fiber

orientation distribution distance (NRFODD) between the two fibers is defined as

NRFODD(T, U) = min(ddirect(T, U), dflipped(T, U)) (4.2)

where

ddirect(T, U) =

∑K
k=1

∑M
m=1 χ

2
Pkm,Rkm

KM
, (4.3)

and

dflipped(T, U) =

∑K
k=1

∑M
m=1 χ

2
P(K−k+1)m,Rkm

KM
. (4.4)

where Pkm is the histogram at the kth point of the fiber T for the probing direction m and

similarly, Rkm is the histogram at the kth point of the fiber U for the probing direction m.

Calculating a flipped distance is necessary due to the ambiguity in start and end points

of fibers.

Notice that the proposed fiber-to-fiber distance measure is independent of Euclidean

distances between the points defining the fibers and is instead solely determined by the

fiber orientation distributions around them. This property makes the proposed measure

more reliable than Euclidean-distance based measures when comparing fibers that are orig-

inally defined on different spaces and registered to a common space because the proposed

measure is translation invariant. It is however still affected by errors in the rotational

component of the registration which is why N , the number of bins in the histograms,

should be chosen carefully such that it is large enough that the orientation space is not

undersampled but small enough that the distance measure is insensitive to small rotations

(see Section 4.2.1).
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4.1.6 Density-based Clustering with OPTICS

The aim of the clustering step is to separate the initial set of projection fibers into two

bundles as ML and CST, the SCP fibers into left and right SCP and ICP bundles into

left and right ICP and to remove any spurious fibers in MCP as well as in other bundles.

Density-based clustering is based on the intuition that data points within a cluster will

be densely packed compared to outside of the cluster. This approach is suitable for fiber

clustering as evidently a fiber bundle consists of densely packed fibers.

OPTICS ([86]) is a density-based clustering algorithm that outputs not a set of clus-

ters but a reordering of the fibers and a “reachability distance” that together encode their

hierarchical clustering structure. The nature of this output is illustrated in Figure 4.5.

Each possible “valley” in the output is a cluster. The OPTICS method has several ad-

vantages compared to other clustering methods. It has only two parameters that can

be set relatively easily compared to a method like spectral clustering; it contains an in-

herent noise removal mechanism which is very useful for fiber clustering (fibers that are

less densely packed with other fibers have higher reachability distances); it encodes the

hierarchical clustering structure in a way that is easily visualized as in Figure 4.5 3; and

the hierarchical information allows incorporation of neuroanatomical priors to select neu-

roanatomically meaningful clusters from all candidate clusters. Although disjoint clusters

can be extracted from the output with a simple horizontal cut method as illustrated in

(b,c), this scheme is incapable of detecting clusters of varying density and it is not clear

what value one should cut at to capture a specific bundle. Instead, we propose to select the

most anatomically meaningful cluster from all possible clusters encoded in the output. In

order to do so, reference bundles are previously reconstructed in a set of subjects which we

will call the “training set”. Then, when performing clustering on new subjects, the most

anatomically meaningful cluster is determined by comparing all clusters encoded in the

OPTICS output to the reference bundles in the training set. The details of the creation

of the reference bundle set and the cluster selection scheme are given in Section 4.1.7. In

the experiments, minPts = 30, ε = 200 were used as OPTICS paramaters and ξ = 0.001

was used for the extraction of all possible clusters.

3Figure 4.5 is same as Figure 3.3, it is replicated here for convenience
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Figure 4.5: (a)-Left: Input fibers colored according to local diffusion direction. (a)-Right:

OPTICS output: ordered reachability distances (y) versus fiber indices (x). (b)-(c)-Left:

Fibers colored according to clustering done with horizontal line cut method with y = 10

and y = 2, respectively. (b)-(c)-Right: OPTICS output with colored areas corresponding

to clusters on the left, indicated with the same color.

4.1.7 Reference Bundle Creation and Cluster Selection from

OPTICS Output

The training set is an initial fixed set of S subjects selected for creating the reference

bundles. The following nine bundles are extracted from each subject in the training set

using the manual ROI method: left CST, right CST, left ML, right ML, left SCP, right

SCP, left ICP, right ICP and MCP. The reference bundles are created on the subject

native space and then transformed to the MNI152 space using the affine registration of

T1-weighted MR image of subjects to MNI152 T1 template with 1mm resolution. Those

manually extracted bundles, which are now defined on the MNI152 space, are used as

a reference to guide the selection of anatomically meaningful clusters from the OPTICS

output when clustering new subjects. We note that a different training set is not required

for a different dataset that includes new subjects.

When performing clustering on a new subject, i.e. a subject from the test set, the ref-

erence fiber bundles are transformed to the subject space with affine registration. Then, a
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bundle-to-bundle similarity measure, Bundle-based Minimum Distance (BMD) [90], which

is based on an average of minimum fiber-to-fiber distances between bundles, is used to

compare each candidate cluster in the OPTICS output to all reference bundles. The

minimum average direct-flip (MDF) distance that is used in the BMD calculation in the

original article is based on an average of Euclidean distances between points of the two

given fibers. Here, the fiber-to-fiber distance in BMD is replaced with the proposed dis-

tance NRFODD. Let us call this distance BMDNRFODD, the set of all possible clusters

C = {C1, C2, · · · , Cn}, and the set of reference bundles brought to subject space after a

registration step R = {R1, R2, · · · , RS} (S = 10 in our case). Then, Ci is selected as the

best cluster by simply solving

arg min
Ci

S∑
j=1

BMDNRFODD(Ci, Rj), for i = 1, ..., n. (4.5)

Finally, using the proposed clustering and cluster selection scheme, each fiber bundle

of interest is extracted from the corresponding initial fiber collection. It is important

to emphasize that BMDNRFODD is translation-invariant and hence invariant both to the

translational component of the computed affine transformation between the subject spaces

and the translation of bundles due to individual variability. Hence, the proposed method is

expected to perform better than simple atlas-based approaches on spatially close bundles.

4.2 Results

4.2.1 Selection of NRFOD Parameters

As explained in a previous section, constructing the NRFOD representation involves

the following parameters: K: the number of points per tract, M : the number of probing

directions at each point on a tract, N : the number of bins in the histograms, h: the

height of probing cylinders and r: the radius of cylinders. It is not clear what values

would be best for these parameters. As testing all possible parameter settings was not

time-wise feasible, we used the following approach: First, K is fixed to 50 because the

longest expected length for the bundles of interest is around 200 mm and 50 sample points
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are deemed sufficient to both probe the neighborhood and achieve a good representation.

Next, as the neighborhood probing is introduced analogous to a human’s approach, r was

fixed to h/2 for a “reasonably-shaped” cylinder. Then, in the first step of parameter

selection, we fixed N = M/2 because M is the number of probing directions sampled on a

full sphere and N is the number of orientation bins sampled on a half-sphere. Varying only

M and h on the training set of 10 subjects, the proposed algorithm was used to extract

each bundle of interest in the brainstem using the different parameter settings. The BMD

[90] with the original Euclidean-based fiber-to-fiber distance MDF was used to compare

the closeness of the bundles obtained with manual extraction and the proposed algorithm.

The mean BMD values across all training subjects for various different parameter settings

are given in Figure 4.6. No significant improvement was observed for higher M and h

values compared to M = 20 and h = 6, hence these parameter values are considered as a

good tradeoff between the score and computation cost. Finally, we fixed M = 20, h = 6

and varied N which showed no significant improvement for higher values than N = 10.

It is important to set N as small as possible because in addition to a less computation

cost, smaller values of N will make the representation less sensitive to rotation. On the

other hand, very small values like N = 5 do not sufficiently sample the orientation space

and significantly reduce accuracy. Guided by these experiments, the parameters are set

as K = 50,M = 20, N = 10, h = 6, r = 3 for further tests and results in the subsequent

sections. With the selected parameter values, the runtime of the proposed method was

approximately 30 minutes on a workstation with 4 Intel Xeon E5-2690 v3 @ 2.60GHz

processors (the code is not optimized for performance nor implemented on GPU).
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Figure 4.6: Mean BMD values between manually extracted bundles and bundles extracted

by the proposed method for various parameter settings. K = 50, r = h/2 for all plots.

Mean is taken across all 10 training subjects and all bundles of interest.

4.2.2 Sensitivity of NRFODD to Registration Errors Compared

to MDF

In order to illustrate the sensitivity of the proposed fiber-to-fiber distance measure to

registration errors, a subject was randomly selected from the training set and 250 tracts

from each bundle of interest were first extracted in the original space using the manual

ROI method. Then, the diffusion-weighted images (DWI) of the subject were rotated

around all 3 axes with θ = 0.05, 0.10, 0.15, 0.20 radians and translated in all directions by

2.5, 5.0, 7.5 and 10.0 millimeters. The manually placed ROIs utilized for the extraction of

bundles of interest in the original space were also transformed with the same transform and

used to extract the bundles in the transformed spaces. The fiber-to-fiber distances from

all tracts in the original space to all tracts in the transformed space are then computed for

each transformation with both the proposed distance measure and the MDF. Heat maps

of the resulting distance matrices are given in Figure 4.7. In the heat maps, heat colors

corresponding to low distances are desired in 250 × 250 square blocks on the diagonal
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since those distances are between fibers representing the same bundle. Similarly, heat

colors corresponding to high distances are desired outside of the 250× 250 square blocks

on the diagonal since those distances are between fibers representing different bundles.

Note the difference in the ranges of the distance values for the MDF and NRFODD. It can

be observed in the translation experiments (first two rows) that the MDF distance starts to

produce lower distances between fiber pairs from different bundles than between fiber pairs

from the same bundle as soon as the translations exceed a few mm’s when the bundles

in question are spatially close like e.g. CST and ML. As the NRFODD is translation-

invariant, the distance matrices for different amounts of translation are very similar. Note

that the matrices are not exactly the same because the fiber sets in transformed spaces

are not the original fibers that are transformed, rather, the ROIs and the DMRI space are

transformed and new fibers are extracted in each new space. Moreover, NRFODD performs

better than the MDF distance in distinguishing between the ML and CST, as the MDF

distance matrices have very similar colors on the ML-ML, CST-CST and CST-ML blocks

whereas in NRFODD matrices, CST-ML blocks are more distinguishable from ML-ML and

CST-CST blocks. Further, as can be observed from the rotation experiments (third and

fourth rows), although the proposed measure is based solely on the orientation distribution

of local fiber populations, its sensitivity to rotation is lower than that of the MDF. The only

disadvantage of the proposed method compared to the MDF seems to be in the separation

of the left and the right SCP when there is very small or no transformation. This is likely

caused by the fact that there are no major bundles surrounding the neighborhood of SCP,

thus lowering the distinctiveness of the NRFOD representation. In order to quantify the

discriminative power of the two different distances under registration errors, we use the

error rate, i.e. the number of times the nearest neighbor of a fiber comes from a different

bundle divided by the total number of fibers in the distance matrices. The error rates

of the different distances are given in Table 4.1 and demonstrate the invariance of the

NRFODD to translation and its insensitivity to small rotations compared to the MDF.
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Table 4.1: The error rate of the distances NRFODD and MDF under various registration

errors (no error, translations from 2.5 to 10.0 mm and rotations from 0.05 to 0.20 radi-

ans). The error rate is defined as the number of times the nearest neighbor of a fiber comes

from a different bundle (i.e. the number of rows for which the minimum is not achieved

on the 250 × 250 diagonal blocks) divided by the total number of fibers on the distance

matrices.

No Transform 2.5 mm 5.0 mm 7.5 mm 10.0 mm 0.05 rad 0.10 rad 0.15 rad 0.20 rad

NRFODD 0.0009 0.0013 0.0013 0.0004 0.0009 0.0027 0.0133 0.0524 0.1418

MDF 0.0022 0.0751 0.1787 0.2933 0.3564 0.0222 0.1996 0.3671 0.4378

Figure 4.7: Heat maps of the distance matrices between tracts on the original space and

the transformed spaces. There are 250 tracts from each bundle of interest in the following

order: CST left, CST right, ICP left, ICP right, MCP, ML left, ML right, SCP left, SCP

right.
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Table 4.2: Quantitative comparison of the proposed method (P NRFODD), the proposed

method with MDF fiber-to-fiber distance (P MDF), the näıve maximal overlap method

(MaxOverlap) spectral clustering [4, 5] with added cluster selection: (S+CS); and Tract

Querying (TQ): [6]. Bundles created by the manual ROI method are used as “ground

truth” and the mean ± standard deviation of BMD and Cohen’s Kappa values between the

bundles created by the automatic methods and the “ground truth” are given for each fiber

bundle of interest. The best results for both measures are highlighted in bold. Note that

BMD is a dissimilarity measure and Cohen’s Kappa is a similarity measure, hence higher

values represent better accuracy for Cohen’s Kappa and lower accuracy for BMD.

CST L CST R ML L ML R SCP L SCP R ICP L ICP R MCP

P NRFODD BMD 2.13 ± 2.33 1.15 ± 0.49 3.10± 3.87 6.73 ± 9.18 10.68± 14.27 6.88 ± 4.94 3.33 ± 5.54 2.82 ± 3.86 7.20 ± 4.14

P MDF BMD 3.28± 6.20 6.08± 10.53 9.15± 23.97 13.03± 26.57 10.53 ± 15.77 8.14± 8.31 4.88± 6.80 3.78± 5.21 9.01± 11.06

MaxOverlap BMD 2.40± 1.36 2.49± 1.81 3.04 ± 2.06 9.92± 30.32 11.98± 5.37 23.75± 20.56 14.71± 21.40 19.31± 13.49 12.02± 4.88

(TQ) BMD 24.36± 21.43 24.39± 27.84 12.89± 14.85 14.47± 8.95 29.19± 26.68 30.02± 19.61 17.49± 25.76 11.63± 8.76 31.79± 14.54

(S+CS) BMD 2.62± 1.72 4.33± 5.80 6.40± 7.84 7.29± 9.30 13.68± 12.95 13.06± 9.42 4.78± 4.97 7.02± 6.34 9.85± 9.92

P NRFODD Kappa 0.70± 0.19 0.77± 0.08 0.58± 0.16 0.51± 0.20 0.58 ± 0.18 0.56 ± 0.12 0.61 ± 0.18 0.67 ± 0.08 0.70 ± 0.09

P MDF Kappa 0.71± 0.17 0.69± 0.16 0.57± 0.17 0.46± 0.22 0.53± 0.12 0.56 ± 0.14 0.57± 0.17 0.62± 0.16 0.68± 0.15

MaxOverlap Kappa 0.72± 0.08 0.78 ± 0.04 0.59± 0.05 0.62± 0.04 0.32± 0.11 0.24± 0.12 0.23± 0.08 0.19± 0.06 0.56± 0.06

(TQ) Kappa 0.14± 0.04 0.15± 0.06 0.20± 0.06 0.24± 0.11 0.19± 0.10 0.17± 0.08 0.34± 0.15 0.30± 0.12 0.13± 0.04

(S+CS) Kappa 0.74 ± 0.04 0.76± 0.06 0.69 ± 0.06 0.64 ± 0.09 0.50± 0.12 0.46± 0.11 0.47± 0.14 0.45± 0.12 0.68± 0.11

Table 4.3: Visual scoring by two experts. Score is given based on how well the reconstructed

bundle agrees with known neuroanatomy. 1: Very poor; 2: Poor; 3: Mediocre; 4: Good;

5: Very good. R1 refers to Rater 1; R2: Rater 2; Manual: Bundle reconstructed with the

manual ROI method; Auto: Bundle reconstructed with the proposed automatic method.

CST L CST R ML L ML R ICP L ICP R SCP L SCP R MCP

R1 Manual 4.95± 0.22 4.95± 0.22 4.80± 0.41 4.75± 0.44 4.90± 0.31 4.95± 0.22 4.60± 0.60 4.60± 0.60 4.80± 0.41

R1 Auto 4.75± 0.55 4.90± 0.31 4.20± 1.00 4.35± 0.81 4.50± 0.51 4.50± 0.51 3.55± 0.89 3.65± 0.59 4.25± 0.64

R2 Manual 4.75± 0.44 4.85± 0.37 4.75± 0.55 4.80± 0.41 4.85± 0.37 4.95± 0.22 4.25± 0.55 4.40± 0.50 4.90± 0.45

R2 Auto 4.35± 0.75 4.65± 0.49 4.20± 0.83 4.20± 0.70 4.60± 0.60 4.50± 0.51 3.40± 0.82 3.95± 0.60 4.10± 0.45

83



4.2.3 Comparison of the Proposed Method to the Manual ROI

Method

We validate the proposed method by comparing it to the manual ROI method which is

considered the most reliable but time-consuming approach. The bundles are reconstructed

on the 20 test subjects using the two methods and are compared quantitatively in terms

of Cohen’s Kappa and BMD values, and qualitatively by visual inspection of two expert

raters (Rater 1: ZF- radiology specialist; Rater 2: UT - neurosurgeon). The raters were

blinded for the evaluation, i.e. they were not told which bundles are manually extracted

and which ones are automatically extracted. The ROIs for manual extraction were drawn

by a senior PhD candidate after receiving training from the raters. In order to calculate

Cohen’s Kappa values, the bundles are converted to binary 3D volumes where each voxel

is assigned a true or false value based on whether the voxel contains a point from the

bundle. Figure 4.8 shows visualizations of fiber clusters created by the proposed method

and the manual method. Mean and standard deviation of Kappa and BMD values for

each bundle are given in Table 4.2 and a visualization is given for each bundle when they

achieve their best and worst BMD scores in Figure 4.9. Mean and standard deviation of

qualitative scores given by experts after visual inspection are given in Table 4.3. While

the proposed method is not quite as accurate as the manual ROI method, it achieves

good to very good evaluations by the experts on all bundles except the SCP in which the

average evaluation is between good and mediocre. The relatively poor performance on SCP

compared to other bundles were expected by the fiber-to-fiber distance matrices discussed

in the previous section (Figure 4.7). While the proposed method does not confuse the

SCP fibers with other bundles, it performs poorly at distinguishing between the right and

left SCP bundles. Thus, in a practical implementation, utilizing a heuristic to separate

the two hemispheres for instance through a brain hemisphere mask will certainly improve

the method’s performance on SCP.
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Figure 4.8: Visualization of clustering results from the set of test subjects. A: Manual

ROI method for subjects 1-5; B: Proposed method for subjects 1-5; C: Manual ROI method

for subjects 6-10; D: Proposed method for subjects 6-10. Tracts are colored according to

assigned bundle as follows: CST Left: orange; CST Right: dark green; ML Left: teal;

ML Right: pink; ICP Left: white; ICP Right: yellow; SCP Left: green; SCP Right: blue;

MCP: red.
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Figure 4.9: Visualization of bundles created with the manual ROI method vs. the proposed

method for best and worst BMD values achieved among the test subjects. Tracts are colored

according to local direction.

4.2.4 Comparison of the Proposed Method to Other Automatic

Methods

The proposed method is compared to four other automatic approaches:

1. The proposed method which is modified to use the MDF fiber-to-fiber distances

instead of NRFODD.

2. A näıve method where each fiber acquires the label of the reference bundle with

which it maximally overlaps (MaxOverlap);

3. The spectral clustering method by [4, 5] with an addition of a cluster selection step

(S+CS);
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4. The tract querying method which is based on agglomerative hierarchical clustering

and selection from the resulting dendrogram by [6] (TQ).

The codes of the spectral clustering and tract querying methods were kindly provided

by the authors. In order to make a fair comparison, the step of the proposed method that

constrains the initial fiber sets as candidate left projection fibers (left CST and ML), right

projection fibers (right CST and ML), SCP, ICP and MCP is used for the other methods

as well. The same training set as the proposed method is used to create the cluster atlases

required by the spectral clustering method for each of the five different fiber sets. For

the querying step of the tract querying method, the ICBM-DTI-81 white-matter labels

atlas (http://www.loni.usc.edu/ICBM/Downloads/Downloads_DTI-81.shtml) is used

to extract the nine bundles of interest. In order to quantitatively compare the automatic

methods, bundles extracted with the manual ROI method are used as “ground truth”.

Two different quantitative measures are used: BMD, a Euclidean-based bundle-to-bundle

distance measure, and Cohen’s Kappa, a volumetric similarity measure. The bundles are

converted to a binary volumetric mask using nearest neighbor method for the calculation

of Kappa values. Since the spectral clustering method does not classify the clusters into

anatomically known bundles and instead only clusters based on fiber distances, a cluster

selection scheme must be incorporated to obtain a classification of the bundles in order

to allow a quantitative comparison. We implemented the following procedure for this

selection: the same reference bundles used for the proposed method were brought to

subject spaces of the test data through affine registration. Then, the k clusters are sorted

in ascending order according to their average BMD values with respect to the reference

bundles. Finally, the clusters are iteratively merged starting from the cluster with the

lowest BMD until adding a new cluster would increase the BMD value of the final bundle.

In order to set k, the method was first tested with k = 2, 4, 6, 8, 10, 20 final clusters. The

k value for which the mean BMD value across all bundles was minimum is selected, and

all the test results are hence obtained with k = 10 in the spectral clustering method.

All five methods are run on the same test set of 20 subjects. Kappa and BMD values

between resulting clusters of automatic methods and the clusters acquired by the manual

ROI method are given in Table 4.2. A visualization of the clustering results for each
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method on one of the test subjects is given in Figure 4.10. One can argue that the tract

querying methodology described in [6] results in a traversal of the hierarchical tree which

is too conservative and that, albeit good for tractography algorithms generating lots of

false positive tracts, it might result in an underrepresentation of the extracted bundles 4.

Therefore, it was observed that the results lead to clusters that are much thinner than

what is expected. The tract querying method, which is dependent on accurate registration,

might be useful when the subject-standard space registration error is insignificant and

the bundles of interest are thin bundles that are very prone to false positives, however,

based on its available implementation, it apparently underperforms in the quantitative

evaluations for the major brainstem bundles. According to the quantitative measures, the

näıve maximal overlap method achieves surprisingly high accuracy for the CST and ML

bundles where it is competitive with both the proposed method and the spectral clustering.

However, it performs mediocrely in MCP and quite poorly on the SCP and ICP. Overall,

the proposed method performs better than all other methods for the SCP, ICP and MCP.

This may have two reasons: First, the input fiber sets to the SCP, ICP and MCP contain

more spurious fibers compared to the projection fiber sets due to the nature of the ROIs

that are used to constrain the initial sets. Hence, density-based clustering that has an

inherent noise removal mechanism performs better when the proportion of noisy fibers

in the input set is higher. Second, as the main theoretical advantage of the proposed

method is the translation-invariance of the NRFODD, it can be hypothesized that the

selection of the ICP, SCP and MCP is more significantly affected by the translation error

in transforming the reference bundles into the subject spaces of the test set. It should

be noted that the Kappa and BMD values are not very sensitive to the separation of

geometrically close bundles like ML and CST or left and right SCP. As a result, the

quantitative analysis may not reflect how qualitatively well the separation of these bundles

is achieved. For example, despite the high accuracy of the maximal overlap method on

CST and ML with respect to quantitative measures, it can significantly confuse CST and

ML bundles in some subjects as shown in Figure 4.11. Right SCP and ICP are also given

in Figure 4.11 to give better insight into why the maximal overlap method performs poorly

4Personal communication with Dr. D. Wassermann, 19 Apr 2017

88



on those bundles. The initial fiber sets for those bundles contain many spurious fibers that

cannot be removed by the maximal overlap method.

Figure 4.10: Visualization of clustering results for the proposed method (middle left), the

näıve maximal overlap method (middle right), tract querying method (bottom left) and

spectral clustering with additional cluster selection (bottom right) on one of the subjects in

the test set. Fiber sets used as input to the clustering algorithms are shown at the top and

are colored according to local direction. Clustered tracts are colored according to assigned

bundle as follows: CST Left: orange; CST Right: dark green; ML Left: teal; ML Right:

pink; ICP Left: white; ICP Right: yellow; SCP Left: green; SCP Right: blue; MCP: red.
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Figure 4.11: A comparison of the proposed method (left) to a näıve maximal overlap ap-

proach (right) using the reference bundles for right CST (red) and ML (yellow) fibers

(top row) and right SCP (green) and ICP (purple) fibers (bottom row) on one of the sub-

jects in the test set. The maximal overlap approach can confuse spatially close bundles

like CST and ML and can have many spurious fibers when the initial fiber set cannot be

well-constrained by automatic ROIs as in the case of the SCP and ICP.

4.2.5 Sensitivity of the Proposed Method to the Reference Bun-

dles

In order to test the sensitivity of the proposed method to the reference bundles, we

experiment with three different training-test set configurations. Training set 1 includes

the original set, which is used in all the experiments in previous sections. Training set

2 includes subjects 11-20 and test set 2 becomes subjects 1-10 and 21-30; training set

3 includes subjects 21-30 and test set 3 becomes subjects 1-20. To compare the results
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Table 4.4: The mean and standard deviation of BMD and Cohen’s Kappa values between

results of the proposed method and manual bundles using different training and test sets.

Training Set 1 includes subjects 1-10 and its test set includes subjects 11-30; Training Set

2 includes subjects 11-20 and its test set, subjects 1-10 and 21-30; Training Set 3 includes

subjects 21-30 and its test set, subjects 1-20.

CST L CST R ML L ML R SCP L SCP R ICP L ICP R MCP

Training Set 1 BMD 2.13± 2.33 1.15± 0.49 3.10± 3.87 6.73± 9.18 10.68± 14.27 6.88± 4.94 3.33± 5.54 2.82± 3.86 7.20± 4.14

Training Set 2 BMD 1.70± 1.21 1.64± 2.15 4.14± 3.92 8.40± 8.89 16.12± 19.93 7.27± 5.51 3.57± 5.62 3.28± 3.26 8.63± 4.75

Training Set 3 BMD 1.93± 1.10 1.37± 0.54 3.31± 3.53 7.44± 12.10 11.66± 12.47 8.55± 10.90 4.15± 6.01 2.65± 2.89 7.91± 4.42

Training Set 1 Kappa 0.70± 0.19 0.77± 0.08 0.58± 0.16 0.51± 0.20 0.58± 0.18 0.56± 0.12 0.61± 0.18 0.67± 0.08 0.70± 0.09

Training Set 2 Kappa 0.75± 0.10 0.79± 0.07 0.56± 0.17 0.51± 0.18 0.53± 0.18 0.55± 0.13 0.59± 0.20 0.65± 0.13 0.68± 0.08

Training Set 3 Kappa 0.69± 0.14 0.77± 0.11 0.58± 0.15 0.50± 0.21 0.55± 0.18 0.56± 0.16 0.59± 0.17 0.64± 0.14 0.69± 0.09

with these different configurations, we use the same approach as in Section 4.2.4. The

mean BMD and Cohen’s Kappa values with respect to manual bundles achieved with the

different configurations are reported in Table 4.4. From this table, the inter-reference set

average over BMD differences between each pair of fiber bundles is 1.0087 mm, and the

standard deviation of the maximum inter-reference difference across bundles is 1.553 mm.

Similarly, the inter-reference set Kappa value differences on the average is 0.017 over all

bundles, with the standard deviation of maximum differences being 0.0166.

4.3 Discussion

We introduced a new descriptive fiber representation based on the resolved fiber orien-

tation distributions around a fiber. This representation is inspired by the human approach

to differentiating which neuroanatomical bundle a fiber belongs to and allows the definition

of a fiber-to-fiber distance measure that is translation-invariant, making the measurement

of fiber-to-fiber distances across subjects in different spaces more robust. Utilizing the ad-

vantages of the new fiber representation, we proposed an automatic fiber clustering method

that combines ROI-based and similarity-based clustering. As with other automatic fiber

clustering methods, the aim is to reduce or ideally eliminate the need for human effort

and the potential for human bias and error for the task of meaningful clustering of fibers.
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Computation time for the proposed automatic method is on the order of minutes, po-

tentially a few minutes with a GPU implementation, whereas a manual method typically

takes half an hour to an hour as reported by the collaborating experts.

The proposed NRFOD-based method has better overall performance than the other

automatic clustering methods we have tested in terms of Cohen’s Kappa and BMD values

with respect to manually extracted bundles, which are used as “ground truth”. Visu-

ally, the NRFOD method usually creates anatomically meaningful bundles with close to

expected thickness and trajectories. According to the quantitative measures, the perfor-

mance of different methods can significantly vary between different bundle classes. Es-

pecially of interest is the unexpected performance of the näıve maximal overlap method

on the CST and ML. This has important implications: Our idea of using reference bun-

dles manually extracted on a “training set” to guide the clustering of new subjects is a

valid approach that can both be used as part of a clustering framework or in some cases

even be sufficient by itself. Hence, the investigation of more sophisticated ways than the

näıve maximal overlap approach of classifying the fibers using the reference bundles such

as supervised machine learning methods seems to be an important future direction. The

validity of using reference bundles may however depend on a variety of factors such as the

registration errors between the “training” and “test” subjects; the nature of the bundle of

interest, e.g. its shape, its closeness to other bundles and its variability across different in-

dividuals; and the degree of shape deformations of the bundles when pathology is involved.

As a consequence, it may be desirable to use different clustering methodologies based on

these factors. For example, an unsupervised clustering step may not be necessary for

certain bundle classes when the subject is healthy and the registration error to “training”

subjects is small. Similarly, the advantage of using the proposed NRFOD representation

and the associated NRFODD fiber-to-fiber distance becomes more pronounced as the fiber

collection input to the algorithm become noisier, i.e. involves spurious fibers, and as the

amount of registration error increases. The effect of each of the aforementioned factors on

different clustering approaches requires further investigation in order to better understand

which type of methods would be more appropriate for a given application.

While the proposed method achieved the best overall performance on our experiments,
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it is important to note that the experiments were only performed on healthy subjects

and the robustness of the method to shape changes of the fibers due to pathologies is

unknown. Robustness analysis and evaluation for pathological data is difficult for several

reasons: The deformation due to tumors largely depends on the size and type of the

tumor. Different types of tumors produce different types of deformations and in order to

analyze the robustness to these deformations, ideally, a database of subjects with different

sizes and types of tumors is required. In some cases, the tumor may push spatially close

bundles into appearing as one bundle (e.g. CST and ML). In other cases, the distortion

of the water diffusion due to the tumor may prevent bundle extraction in a region in

and around the tumor, resulting in the bundle of interest to appear fragmented in the

tract reconstruction. Sometimes, a bundle of interest cannot be extracted at all. As a

consequence, the manual reconstruction becomes highly dependent on the experience and

bias of the neuroanatomy expert. Creating manual bundles consistent across operators

is thus very challenging when pathology is involved and it is not clear how an automatic

method is to be evaluated quantitatively in these situations. Further, using a healthy

training set could be inappropriate if the bundles of interest are significantly deformed by

a tumor. Reference bundles based on the type and degree of the tumor may need to be

constructed for such cases. Another approach would be to use a tumor mask to exclude

histograms calculated near the tumor to make the selection based on reference bundles

more robust to local deformations. If a large portion of the fibers is unchanged and only a

small part is deformed due to a tumor, reference bundles constructed on healthy subjects

could still be utilized. Due to the aforementioned difficulties with experimental analysis

on pathological data, this analysis is left as future work.

Although the proposed clustering method was tested on brainstem fiber bundles for

the current study, it is generalizable to all bundles in the brain. The only obstacle is the

manual work required for creating a training set. The NRFOD representation and the

NRFODD measure can be readily used for other bundles without other additional effort.

Validation of automatic fiber clustering results is an open research problem. [64] pre-

sented a study where they used the results of the manual ROI method as ground truth and

showed that the agreement between opinion of physicians and a quality measure called
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Adjusted Rand Index are low. They proposed a new measure called Normalized Rand

Index that was designed to agree better with physicians’ perspective. It can be seen from

our results that a similar disagreement is present between Kappa values, BMD values

and our raters (see Table 4.2 and Table 4.3 ). For example, for the proposed method,

the Kappa value for the MCP is higher than ICPs but expert ratings for the automatic

results are lower for the MCP than the ICP. The BMD value agrees with raters in this

case but the BMD difference between the right and the left ML is not reflected in rater

scores. This phenomenon also makes it hard to tune the parameters of an automatic

clustering algorithm since maximizing a quantitative measure such as Cohen’s Kappa or

BMD clearly may not be ideal from a physician’s perspective. Conversely, optimizing

according to a physician’s perception is prone to user bias, error and properties of the

human visual system. For example, a human may overestimate the importance of false

positives compared to false negatives as they are far easier to notice especially when ex-

amining a direction-colored visualization of a set of fibers. Thus, it is more plausible to

tune the automatic algorithm according to the given application. If the clusters are to be

used for assistance in surgical planning, it is reasonable to tune the method according to

the physician’s preferences while it may be preferable to tune according to a quantitative

measure if the bundles are to be used in correlational population studies. Furthermore,

it should be noted that the “ground truth” itself is solely the result of the manual ROI

method and prone to user bias and expertise.

4.3.1 Limitations

There are two important limitations of the proposed fiber representation NRFOD. (i)

It requires the construction of ODFs and subsequently resolved fiber orientations in each

voxel. The accuracy of the representation is thus dependent on the reconstruction method

and it is not clear which reconstruction method should be chosen for a given DMRI data.

The GQI method [31, 87] produced good results on the Connectome data we used in our

experiments but may not be ideal for different scanning parameters, especially on clinical

data with lower amount of gradient directions because the resolved fiber orientations can

be different for different number of gradient directions [31]. (ii) When the amount of
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major bundles passing through the neighborhood of a fiber is low, the descriptive power

of NRFOD decreases as seen on the SCP.

In addition to the limitations of the NRFOD representation, the proposed clustering

method itself requires the manual creation of a training set of the bundles of interest.

Further, as with any clustering algorithm, the accuracy of the proposed method is also

heavily influenced by the tractography method.

It should be noted that the proposed method does not require a specific tractography

or an ODF reconstruction method, it only requires a volume of resolved fiber orientations

and that the output of the tractography method is a set of fibers, each fiber defined as a set

of points. Thus, in the future, more advanced diffusion MR techniques and tractography

methods can be utilized as desired.

4.4 Conclusion

The proposed fiber representation based on neighborhood resolved fiber orientation

distributions (NRFOD) is a more expressive representation than the simple fiber repre-

sentation as a set of points in 3D space and allows the definition of a translation-invariant

fiber-to-fiber distance measure (NRFODD). Hence, it improves robustness to registration

errors compared to fiber distance measures based on Euclidean distances when working

with fibers extracted from different subject spaces. This advantage is utilized in a fiber

clustering framework by incorporating prior neuroanatomical information in the form of

training sets of manually extracted bundles, improving the anatomical meaningfulness of

resulting clusters. Furthermore, the proposed method is demonstrated on labeling five

major white matter fiber bundles in the brainstem, which are relatively less analyzed.

While the proposed method achieved closer results to the manual ROI method com-

pared to the other automatic methods in terms of Cohen’s Kappa and BMD values, it was

rated as less accurate than manual results by our expert raters. Hence, while the proposed

method cannot fully relieve the experts from the tedious task of manual ROI placement,

it can downscale the required effort if used in a semi-automatic framework. It can reduce

human bias and errors caused by human expertise and fatigue by providing an initial
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point or second opinion. Furthermore, the NRFOD representation and the corresponding

fiber-to-fiber distance measure NRFODD can facilitate analysis in population-based con-

nectivity studies on neurological and developmental diseases that relate to the structural

organization of fiber pathways in the brain.

4.A The determination of the probability of following

a direction in tractography

Let p = (px, py, pz) be the point we are currently on, N = {n1,n2, ...,n8} the set of

neighboring voxel centers and C = {c1, c2, ..., cK} the set of candidate directions. The

set C consists of the following directions: negative and positive signed directions of all

resolved fiber orientations in the neighboring voxels such that the angle between the di-

rection the tractography has taken in the previous step and the resolved fiber direction is

below the maxAngle threshold and that the corresponding QA value is above the minQA

threshold. K is the number of these directions. After C is determined, let us also define

Q = {q1, q2, ..., qK} as the set of QA values corresponding to the candidate directions,

D = {d1, d2, ..., dK} as the Euclidean distances between p and each of the center of the

neighbor voxels that contain the resolved fiber orientations corresponding to the directions

included in the set C, and A = {a1, a2, ..., aK} as the set of angles between the previous

direction taken by the tractography and the corresponding candidate direction. Next,

three functions are defined that assign a weight to each candidate based on distance, QA

and angle separately are defined respectively as follows:

fd(x) =

 1
x

x ≥ 0.01mm

100 otherwise,
(4.6)

fq(x) = x, (4.7)

fa(x) = cos(x). (4.8)

Finally, the separate weights are combined using a weight for each different measure and

the final probability of choosing a direction ck is calculated as

Pk = wd
fd(dk)∑K
i=1 fd(di)

+ wq
fq(qk)∑K
i=1 fq(qi)

+ wa
fa(ak)∑K
i=1 fa(ai)

. (4.9)
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In our experiments, wd = 0.4, wq = 0.2, wa = 0.4 are used.
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Chapter 5

Supervised Classification of White

Matter Fibers Based on

Neighborhood Fiber Orientation

Distributions Using an Ensemble of

Neural Networks 5

5.1 Materials and Methods

5.1.1 Dataset, Reconstruction of ODFs and Tractography

Diffusion-weighted images (DWI) and corresponding T1 images are from 30 unrelated

subjects in the Human Connectome Project (HCP)’s publicly available “WU-Minn 500

Subjects + MEG2 dataset”6. The preprocessed data is used. The ODF (Orientation

Distribution Function) reconstruction is performed by DSIStudio7) with the general q-

sampling imaging (GQI) method [31]. At most three orientations are resolved per voxel

5This chapter will be presented in the MICCAI Workshop CDMRI’18, Granada Spain, September

2018.
6www.humanconnectome.org/documentation/S500/
7dsi-studio.labsolver.org
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using an ODF decomposition method [87] and a diffusion anisotropy value (QA) that quan-

tifies the spin population in each resolved orientation is also obtained. For tractography,

the method presented in [7] is utilized.

5.1.2 Manual ROI Selection on Standard Space to Constrain

Input Tract Sets

As typically, a whole brain tractogram contains millions of streamlines that may not

correspond to any true tract, it is generally a good idea to use a rough preprocessing step

to reduce the size of the streamline set to be input to a more sophisticated classification

algorithm. Five sets of ROIs are defined on the standard MNI152 space [84] to reconstruct

a collection of streamlines that will include the following sets of tracts: left projection fibers

(left CST and ML), right projection fibers (right CST and ML), SCP, ICP and MCP.

Naturally, the ROIs are chosen large enough to account for possible registration errors

and individual variations, since this is a preprocessing step meant to reduce computation

cost and does not aim to achieve an accurate classification by itself.
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5.1.3 Construction of the Training and Validation Sets

Figure 5.1: Illustration of the proposed training set creation scheme. For every subject in

the training set, Step 1: manually created streamlines for each fiber tract are converted to

a volumetric mask. Depicted tract masks are colored as follows: Red: MCP, Blue: CST,

Green: ML, Yellow: ICP, Pink: SCP. Step 2: A collection of streamlines are constructed

by tractography using automatic ROIs. In step 3 and later, the process is illustrated for

one streamline. This is repeated for every streamline created in step 2.

Figure 5.1 depicts an illustration of a crucial procedure in our supervised fiber classifi-

cation method, which inserts an “invalid” class that represents the class of invalid stream-

lines that do not belong to any true bundle. We reconstruct the following nine bundles of

interest in the brainstem using the manual method for the 30 subjects in the dataset: left

CST, right CST, left ML, right ML, MCP, left ICP, right ICP, left SCP and right SCP.
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ROIs and ROAs are selected by the help of the radiology and neuroanatomy experts. An

important issue that needs to be addressed when implementing a streamline-based super-

vised classification method is how to deal with invalid streamlines. Due to the existence of

invalid streamlines, the classification problem is an “open set” recognition problem [91],

which means that during the test phase, we expect to encounter streamlines that do not

belong to any of the bundles the classifier has been trained on. Our approach in this study

is to create a class of invalid streamlines in addition to the true bundles of interest, hence

turning the problem into “closed set” recognition. Of course, the problem of how to create

a training set for the “invalid” class remains. One way would be to use the streamlines

that were deleted by the ROAs during manual classification, as in [92]. However, this

would capture only a small subset of invalid streamlines that are likely to be present in

an input set of streamlines encountered during the test phase because the ROIs used in

manual reconstruction are much stricter and more accurate than the automatic ROIs used

to constrain the streamline sets for the automatic classification. Another approach would

be to use the automatic ROIs and many ROAs in the manual reconstruction, however this

has the downside of requiring an extreme amount of time and adding additional human

bias to the training set as well as being specific to the automatic ROIs chosen for this

particular study, hence limiting the generalizability of the approach. Instead, we propose

the following practical and important component to creating the training set which is also

illustrated in Figure 5.1:

1. Convert the 9 bundles created with the manual classification method to binary vol-

ume masks.

2. Create an automatic streamline set using the automatic ROIs defined in Section 5.1.2.

3. Convert each streamline in the automatic input streamline set to a binary volume

mask and calculate the one-way overlap to each bundle mask representing the true

bundles and calculate the maximum overlap.

4. If the maximal overlap to true classes is higher than threshold Th, assign to the

streamline the class label of the true class for which the maximum overlap is achieved.
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5. Otherwise, if the maximal overlap to true classes is lower than threshold Tl, assign

to the streamline the label of the invalid class.

Notice that streamlines for which the maximal overlap is between Tl and Th will not be

assigned any label. This is on purpose, as we do not want to assign a label to streamlines

for which it is unclear whether they are invalid or not. These streamlines are removed from

the training set, for the purpose of avoiding potential false positives in the classification.

The above procedure is repeated for every subject data in the training set.

Using this approach, we create six different training and validation sets using all com-

binations of threshold parameters Tl = {0.70, 0.75, 0.80}, Th = {0.85, 0.90}. These pa-

rameters are selected heuristically. The first 20 subjects of the 30 subjects are used for

the training set and the next 5 subjects are used for the validation set, leaving the last

5 subjects for the testing phase. A maximum of 200 streamlines per positive class per

subject and 2000 streamlines per negative class per subject are used.

5.1.4 Network Architectures and Training

Since the NRFOD representation proposed in [7] is found to be an expressive feature

vector, a simple neural network classifier is used with 3 fully connected layers and ReLU

activation functions. The network architecture is illustrated in Figure 5.2. The NRFOD

representation of a fiber is a set of orientation histograms calculated at each fiber point and

accumulated over multiple directions on an approximately spherical region centered at the

given point. NRFOD parameters were set as K = 50,M = 20, N = 10, h = 6, r = 3 same

as in [7]. Since we have 6 different training sets, as described in Section 5.1.3, we train one

classifier using each training set to obtain a total of 6 different classifiers. The networks

are implemented in PyTorch8, stochastic gradient descent is used for optimization with

learning rate 0.001, and momentum 0.9. Loss function is chosen as the cross entropy loss.

The 6 classifiers are separately trained for 5 epochs with a batch size of 10 on all the

training data. After each epoch, accuracy on the validation set is calculated and the final

model of each classifier in the ensemble is selected as the model that achieves the best

8pytorch.org
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accuracy.

Figure 5.2: The architecture of the classifiers in the ensemble.

5.1.5 Testing

The test set consists of streamlines reconstructed from 5 subjects using the automatic

ROIs. During the testing phase, we require unanimity from all 6 classifiers on the class

assignment of an input streamline for that streamline to be assigned a label of a true fiber

bundle. If there is no unanimity, the streamline is considered invalid.

5.2 Results and Discussion

The performance of the proposed method is quantitatively compared to the method

in [7] which exemplifies a recent fiber-to-fiber distance based clustering method. Two

quantitative measures, Bundle-based Minimum Distance (BMD) [90] and Cohen’s Kappa

are used to assess the “closeness” of the bundles created by the automatic methods to

the manually created bundles. Since manual bundles are regarded to be the closest ap-

proximation to the ground truth, which is unknown, they are used as “ground truth” for

comparing automatic methods. For calculation of Cohen’s Kappa values, all bundles are

converted to binary volume masks using nearest neighbors. The quantitative comparison

results are given in Table 5.1. Visualization of the bundles extracted with the proposed

method and the manual method are given in Figure 5.3 for qualitative comparison. In

addition, separate visualizations of each bundle, the input set of streamlines and stream-
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lines classified as invalid for one subject in the test set are visualized in Figure 5.4. Note

that the difference between the input set and streamlines classified as invalid is hard to

see in the visualization despite the fact that the input set contains 25000 streamlines and

the invalid set contains 12433 streamlines. There are two main reasons for this. One is

that small variations of individual streamlines from the true tract are very difficult to see

because of the clutter caused by thousands of streamlines. The second reason is that some

streamlines may be falsely classified as invalid because the proposed classifier is quite strict

with the unanimity requirement from the ensemble. We made this choice because false

negatives are not really a problem as long as enough streamlines are classified as valid

to reconstruct the tracts with their true thickness. Even one false positive on the other

hand, can significantly change the volume of the bundle and is also easily noticeable on

the visualization.
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Table 5.1: Quantitative comparison of the proposed method and Ugurlu’s method [7]. Man-

ually created bundles are used as “ground truth” and the mean ± standard deviation of

BMD and Cohen’s Kappa values over the test set between the bundles created by the auto-

matic methods and the manual bundles are given for each positive bundle class. The best

results for both measures are highlighted in bold. Note that BMD is a dissimilarity measure

and Cohen’s Kappa is a similarity measure, i.e. higher values represent better accuracy

for Cohen’s Kappa and lower accuracy for BMD.

Proposed BMD Ugurlu BMD Proposed Kappa Ugurlu Kappa

CST Left 1.49 ± 0.28 3.12± 3.62 0.81 ± 0.03 0.62± 0.22

CST Right 1.26± 0.22 1.07 ± 0.23 0.84 ± 0.01 0.80± 0.02

ML Left 1.80± 0.58 1.40 ± 0.47 0.77 ± 0.02 0.68± 0.11

ML Right 2.92 ± 1.76 4.62± 7.37 0.72 ± 0.13 0.62± 0.14

SCP Left 4.64 ± 2.41 6.40± 4.90 0.73 ± 0.10 0.64± 0.12

SCP Right 4.43 ± 1.72 6.67± 5.70 0.71 ± 0.08 0.63± 0.17

ICP Left 2.08 ± 1.76 2.11± 1.23 0.71 ± 0.08 0.63± 0.14

ICP Right 1.92± 0.90 1.46 ± 0.77 0.68± 0.09 0.70 ± 0.05

MCP 5.46 ± 2.05 6.19± 1.70 0.74 ± 0.05 0.73± 0.05
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Figure 5.3: Visualization of bundles of interest extracted from the 5 test subjects. A:

Manual method for subjects 1-3; B: Proposed method for subjects 1-3; C: Manual method

for subjects 4-5; D: Proposed method for subjects 4-5. Tracts are colored according to their

bundle label as follows: CST Left: blue; CST Right: purple; ML Left: pink; ML Right:

teal; ICP Left: yellow; ICP Right: green; SCP Left: brown; SCP Right: white; MCP: red.
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Figure 5.4: Visualization of input streamlines and results of the proposed method on one

subject in the test set. In top-bottom, left-right order: The input set of streamlines created

with the automatic ROIs; invalid streamlines; MCP; left CST; right CST; left ML; left

SCP; right SCP; right ML; left ICP; right ICP.
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Despite the simplicity of the proposed method, it generally outperforms a recent state-

of-the-art fiber classification method based on clustering with respect to the quantitative

measures. Moreover, visual comparison with manually created bundles indicate that the

proposed method indeed usually produces anatomically meaningful classifications. Since

the proposed method does not require pairwise fiber-to-fiber distances unlike most previous

clustering approaches, it is faster on the online classification phase in comparison and

scales better with increasing number of fibers in the input set. These results have two

important implications: i) classical supervised classification approach is suitable for the

fiber classification task and should be investigated further. ii) Representing a fiber based

on the orientation distributions in its neighborhood is a powerful approach that allows

robust comparison of fibers extracted from different subject spaces.

5.3 Conclusion

We presented a novel fiber classification method that applies the classical supervised

classification approach, which maps an input vector to class probabilities, to the fiber

classification task. The proposed method quantitatively outperformed a recent exemplary

fiber clustering method, and was also shown to be visually satisfactory. The proposed

training set creation method that includes labeling a wide variety of invalid streamlines,

combined with the ensemble of networks that utilizes the created training sets; (i) works in

disfavor of false positives; (ii) allows the usage of bundles constructed by a routine manual

extraction without requiring any extra manual effort. This makes it easier to extend the

training data to include more subjects and more bundle classes in the future. Future work

involves comparing the proposed method to a greater variety of other methods in literature

and for more classes of tracts. Furthermore, one direction our work will be extended is to

train deeper networks that directly use the orientation information in the ODF volume,

rather than use the NRFOD feature vector.
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Chapter 6

Analysis of Structural Changes on

Major White Matter Fiber Pathways

Passing Through The Brainstem

Between Pre-Operative and

Post-Operative Diffusion MRI

Images For Patients With Brainstem

Lesions9

In this chapter, we present a clinical application of fiber tractography and classification.

The CST and ML bundles of patients are extracted prior to and after a tumor resection

operation and various measures that aim to quantify the structural change between the

pre-op (pre-operative) and post-op (post-operative) bundles are computed. Statistical

analysis is performed to see whether some of the proposed measures can predict the clinical

outlook of the patient. Pre-op and post-op DMRI spaces are rigid registered to the MNI152

9The contents of this chapter were included in the project report of our TUBITAK Project No.

112E320.
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standard space before the measures are computed.

6.1 Measures that are not Based on a Deformation

Field

The measures introduced in this section do not require a deformation field to be esti-

mated between the pre-op and post-op bundles. Some of these measures computed from

8 subjects in our dataset were published in [93].

6.1.1 Translation of Center of Mass (NDM1)

Let xxx denote a point on a tract in standard space and Ω, the set of all points on all

tracts belonging to a certain bundle. The center of mass is then given by

E(Ω) =
∑
xxx∈Ω

1

|Ω|
xxx (6.1)

where |Ω| is the number of points in the bundle. The first non-deformation measure

(NDM1) is simply the difference between the center of mass of two bundles (pre-op and

post-op reconstruction of the same bundle):

NDM1(Ω1,Ω2) = ||E(Ω1)− E(Ω2)||2. (6.2)

6.1.2 Change in Principal Direction (NDM2)

The principal direction of a bundle is extracted using principal component analysis.

The covariance matrix CCC of a bundle is computed as follows:

CCC =

|Ω|∑
k=1

(xkxkxk − E(Ω)) (xkxkxk − E(Ω))T . (6.3)

C is a symmetric positive-definite matrix and can be diagonalized using singular value

decomposition:

CCC = UUUΛΛΛUUUT (6.4)

110



where UUU is the eigenvector matrix and ΛΛΛ is the diagonal eigenvalue matrix. The angular

difference between the principal eigenvectors u1u1u1,u2u2u2 of two bundles is chosen as a measure:

NDM2(u1u1u1,u2u2u2) = 1− u1u1u1 · u2u2u2

||u1u1u1||||u2u2u2||
. (6.5)

6.1.2.1 Orientation Histograms in Spherical Coordinates (NDM3)

For all tracts, the local orientation of the tract on each point is calculated. The

orientation is the difference between two consecutive points. The difference vector has

x, y, z coordinates in Cartesian space. Since we are interested in orientation, not direction,

the vectors for which the sign of z coordinate is negative are multiplied by −1. After

that, the vector is transformed to spherical coordinates. The length of the vectors are

not important so each orientation vector can be represented with two parameters θ and

φ where θ is the polar angle (colatitude) and φ is the azimuthal angle. In order to

empirically determine the probability distribution of all orientations in a bundle, the range

of θ, ([0, 2π]), is divided into 36 bins of 10◦and similarly, the range of θ, ([0, π]), is divided

into 9 bins of 20◦. Then, the appropriate bin is incremented for each orientation to compute

a histogram H, which is a 36× 9 matrix. The L2 distance between two histograms gives

the third measure:

NDM3(Ω1,Ω2) =

√∑
θ,φ

H(θ, φ)1 −H(θ, φ)2)2 (6.6)

6.1.3 Local Mean Orientation Maps (NDM4, NDM5)

Unlike orientation histograms that are a global representation of orientations, orien-

tation probability maps are local representations. For each voxel, the mean of all local

orientations on that voxel of all fibers passing through the voxel is computed and nor-

malized so that it has length 1. Three maps of mean local orientations are created from

the (x, y, z) components and smoothed with a Gaussian filter. Two measures are defined

based on these maps. The first is computed by summing the cosine distances between

mean orientation vector pairs in all voxels in the brainstem region (ΩBS) where the cosine

distance is defined as ((1− cos(vvv1, vvv2))) where vvv is the mean orientation vector on voxel xxx.
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NDM4(Ω1,Ω2) =
∑

xxx∈ΩBS

(
1− cos(vvv1(xxx), vvv2(xxx))

)
=
∑

xxx∈ΩBS

(
1− vvv1(xxx) · vvv2(xxx)

||vvv1(xxx)|| · ||vvv2(xxx)||

)
. (6.7)

The second measure is computed by summing the correlation distances between mean

orientation vector pairs in all voxels in the brainstem region (ΩBS):

NDM5(Ω1,Ω2) =
∑

xxx∈ΩBS

(
1− (vvv1(xxx)− vvv1(xxx))(vvv2(xxx)− vvv2(xxx))′√

(vvv1(xxx)− vvv1(xxx))(vvv1(xxx)− vvv1(xxx))′
√

(vvv2(xxx)− vvv2(xxx))(vvv2(xxx)− vvv2(xxx))′

)
(6.8)

where the prime denotes the transpose.

6.1.4 Measures Based on Symmetry Axis (NDM6, NDM7)

The ROSA curve-skeleton [94] is a 1D symmetry axis model that can be computed

from a point cloud. In order to compute the skeletons of bundles, they are first converted

to tract density maps where each voxel’s intensity is determined by the number of points

the bundle has on that voxel. The tract density map is then smoothed with a Gaussian

filter and thresholded. The points on the surface are then pulled to the symmetry axis by

iteratively using the Laplace operator.

The first measure derived from the symmetry axis is the Hausdorff distance between

two bundles:

NDM6(A,B) = max

{
sup
aaa∈A

inf
bbb∈B

d(aaa, bbb), sup
bbb∈B

inf
aaa∈A

d(aaa, bbb)

}
(6.9)

where A and B denote the set of points defining the symmetry axis for the two bundles

and d(aaa, bbb) is the Euclidean distance between points aaa and bbb. Hausdorff distance is the

largest of the smallest distances from each point on one set to all other points in another

set so it is sensitive to local changes on the bundle’s symmetry axis.

The second symmetry axis based measure is the distance between log-polar histograms

that are derived from the symmetry axes. Shape Context ([95]) is a popular shape analysis

method that creates log-polar histograms centered around sampled points from a shape.

We create log-polar histograms S i(θ, φ, log(r)) for all symmetry axis points xxxi. 15 bins

112



are used for θ, 15 bins for φ and 10 bins for log(r) for a total of 2250 bins. The measure

NDM7 is defined as the sum of all L2 distances between histograms:

NDM7(S1,S2) =
N∑
i=1

||S i1 − S i2||2 (6.10)

where N is the number of points on the symmetry axis.

6.1.5 Dice Score (NDM8)

The dice score is a simple but popular measure of volumetric overlap between two

volumes. The dice score between the volumes Ω1 and Ω2 corresponding to a pair of pre-op

and post-op bundles is calculated as

Dice(Ω1,Ω2) =
2|Ω1 ∩ Ω2|
|Ω1|+ |Ω2|

(6.11)

where | · | denotes the number of voxels in a volume.

6.1.5.1 Spectral Distance (NDM9)

Spectral distance (ShapeDNA) [96], is computed from the eigenvalues of the Laplace-

Beltrami operator:

∆Ω =
3∑
i=1

∂2

∂x2
i

(6.12)

where xxx is a point in Ω and i is the dimension index. The eigenvalues and eigenvectors of

the Laplace operator are the solutions of the Helmholtz equation with Dirichlet boundary

condition:

∆f + λf = 0

f(x)|x∈∂Ω = 0.
(6.13)

where λ ∈ R are eigenvalues and an infinite number of eigenvalues can be computed. The

ordered eigenvalue series λ1 < λ1 < λ2, . . ., is known as the Dirichlet spectrum of ∆Ω.

The spectrum contains information about the geometry of Ω. The Dirichlet spectrums of

two different shapes can be used to derive a distance measure between the shapes. In our

implementation, the Laplace operator is constructed using 6-neighborhood and the first
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150 elements of the eigenvalue series are used. The L2 distance between the two spectra

gives the measure:

NDM9(λΩ1 , λΩ2) =

( N∑
n=1

(λΩ1
n − λΩ2

n )2

) 1
2

(6.14)

6.1.6 Screened Poisson Hyperfields (NDM10)

Screened Poisson hyperfields [97] is a shape representation method that is based on

the screened Poisson equation:

∆vρi(xxx)− vρi(xxx)

ρi2
= 0

vρi(xxx)|xxx∈∂Ω = 1.

(6.15)

where ρ is a parameter that governs the nature of diffusion or random walk from the shape

boundaries into the shape center via the Laplace operator. When ρ is small, the solution

v field contains local shape information near the boundary, when ρ is large, it captures

more global shape properties. Screened Poisson hyperfields are obtained by solving (6.15)

for all (xxx ∈ Ω) for various values of ρ2, in other words, the hyperfield vρii=1···N is obtained

by screening the ρ2 space. The hyperfield can be represented by a 2-dimensional matrix

Y|Ω|×N as follows:

Y|Ω|×N =


vρ1(xxx1) vρ2(xxx1) . . . vρN (xxx1)

vρ1(xxx2) vρ2(xxx2) . . . vρN (xxx2)
...

...
...

vρ1(xxx|Ω|) vρ2(xxx|Ω|) . . . vρN (xxx|Ω|)

 . (6.16)

In order to achieve a more compact representation, the Y matrix is projected onto a lower-

dimensional space using Principal Component Analysis. The eigenvectors Φj, j = 1, ..., d

of the covariance matrix of Y are calculated by diagonalization as Y TY = ΦΛΦ. Y is

then projected onto the eigenvectors using Pj = Y Φj. We empirically chose to keep the

first d = 6 eigenvectors as they seemed to contain most of the shape information. The

resulting representation is insensitive to isometric deformations and global scale. In order

to reduce the data size, the method proposed in [98] is used. A representative set of
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points C = {ccc1, , . . . , ccck} where ccci ∈ Rd and k = 32 are first chosen as cluster centers using

k-means clustering. The projections of all points on the shape are then assigned to the

nearest cluster center. Then, the difference vectors P(xxx) − ccci are summed to obtain a

residual vector each cluster center:

RRRi =
∑

xxx∈Ω: NN (xxx)=ccci

P(xxx)− ccci. (6.17)

where NN (xxx) = ccci means the nearest cluster center to xxx is ccci. Finally, using these residual

vectors, a shape distance measure between the pre-op and post-op bundle shapes is defined

as the sum of L1 distances between corresponding residual vectors:

NDM10(RRR1,RRR2) =
∑
i

||(RRR1
i −RRR2

i )||1. (6.18)

6.2 Fiber Bundle Registration

Before we can derive measures based on a deformation field that relates the pre-op and

post-op bundles, the deformation field should first be estimated. This is the topic of this

section. Our approach is to formulate the problem as a deformable volumetric registration

of orientation fields derived from tractography results and solve the registration problem

using a Markov Random Field (MRF) model. Since we want to quantify the deformation

between the pre-op and post-op state of a bundle, the pre-op and post-op DMRI spaces

are first affine registered. Then, two corresponsing bundles are converted to binary volume

masks and the orientation fields are defined on these masks. For each voxel in a mask, the

principal direction of the diffusion tensor is assigned as the orientation of the fiber bundle.

6.2.1 Formulation of the Deformable Registration Problem

Let us make the following definitions:

• T is the set of coordinates on which the pre-op diffusion images are defined.

• V = {vvv1, vvv2, ..., vvvm} ⊂ T , is the set of coordinates that are included in the binary

mask for the pre-op bundle.
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• U = {uuu1,uuu2, ...,uuun} ⊂ T , is the set of coordinates that are included in the binary

mask for the corresponding post-op bundle.

Next, let us define the orientation fields for the bundles as: Ivec : V → W , Jvec : U → W

where www ∈ W ⊂ R3 such that www = 1. The vector www represents the fiber orientation in a

voxel. In Figure 6.1, V, U and an axial slice of Ivec and Jvec corresponding to the right ML

are illustrated on one of the subjects.

Figure 6.1: V (red),U (green) volumes depicting the binary mask of pre-op and post-op

ML right bundle of a subject and and an axial slice of corresponding orientation fields Ivec

and Jvec. FA values are used as background intensity and the orientation field is shown as

colored lines on voxels on which they are defined. On voxels where the orientation field is

undefined, black lines are used.

In addition to the orientation fields, let us also define two scalar volumes as Isca : V →

C and Jsca : U → C where C is the interval (0, 255]. The Isca and Jsca volumes are created

such that they take high values near the center of a fiber bundle and low values near the

border of a bundle. An example axial slice of these scalar volumes is shown in Figure 6.2.
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Figure 6.2: An axial slice from the Isca and Jsca volumes.

In order to represent the deformation field in a Markov Random Field (MRF) frame-

work, let D = {ddd1, ddd2, ..., dddi} be the discrete deformation space and L = {l1, l2, ..., li} be

a label set that has a one-to-one correspondence with D. Let us then define a function

f : V → L that assigns a label to each possible vvv. The deformation model with these

definitions is illustrated in Figure 6.3.
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Figure 6.3: Illustration of the deformation model. Red: pre-op bundle mask; Green: post-

op bundle mask.

Let us now define an undirected graph G = (V, E) which represents the volume V and

its neighborhood system. In the MRF framework, an energy function that we want to

minimize is then defined as follows:

E(f) =
∑
vvv∈V

Hv(f(vvv)) +
∑
vvv∈V

∑
vqvqvq∈E

Hvq(f(vvv), f(qqq)) (6.19)

The first term is a data-based term known as the unary potential and measures how well

the labeling fits the data. The second term, which is known as a pairwise potential, is a

regularization term that imposes a smoothness constraint on the deformation field.

We defined the unary potential as

Hv(f(vvv)) =

 510 : vvv + dddf(vvv) /∈ U

||Jsca(vvv + dddf(vvv) − Isca(vvv)||+ 255(1− Jvec(vvv + df(vvv) · Ivec(vvv)) : vvv + dddf(vvv) ∈ U
(6.20)
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This unary potential has the following meaning: When a point v is translated with df(v),

we want the destination it reaches to be an element of U , the difference between corre-

sponding values on the scalar volume to be small and the angle between the corresponding

orientation vectors to be small. The pairwise potential is chosen as

Hvq(f(vvv), f(qqq)) = λ
||dddf(vvv) − dddf(qqq)||2

||vvv − qqq||2
. (6.21)

and the neighborhood system in (6.19) is defined as

E = {(vvv, qqq)|vvv, qqq ∈ V, ||vvv − qqq|| ≤ 6mm} . (6.22)

As can be inferred from (6.21 and 6.22), increasing λ can be seen as strengthening the

bonds that hold the volume together. Hence, if fragmentation is observed on the volume,

λ should be increased. Conversely, if the deformation is too small for the volume to fit

the target volume, λ should be decreased.

6.2.2 Solution of the Deformation Model

Equation (6.19) is a general first order MRF model and the method proposed in [99] and

[100] is used to solve it after integrating our own unary and pairwise potential definition.

The total deformation field was calculated in three iterations. In the first iteration, the

deformation space was defined in the ±18 range with a step size of 3 voxels, in the second

iteration, ±6 voxel range with a step size of 1 voxel and in the final iteration, ±1 voxel range

with a step size of 0.2 voxels. The total deformation is given by the sum of deformations

in the first 3 steps. λ = 8 was empirically chosen.

6.3 Measures based on the Deformation Field

In this section, measures derived from the estimated deformation field between corre-

sponding pre-op and post-op bundles are presented. Here, V = {vvv1, vvv2, ..., vvvm} is the

intersection of the bundle binary volume mask with the brainstem region and D =

{ddd1, ddd2, ..., dddm} are the corresponding deformation vectors at each coordinate of V .
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6.3.0.1 Mean Deformation Magnitude (DM1)

This measure is simply the mean of the magnitudes of deformation vectors:

DM1(D) =

∑m
i=1 ||dddi||
m

. (6.23)

6.3.0.2 Mean of the Invariants of the Lagrange Strain Tensor (DM2, DM3,

DM4)

Largrange strain tensor is used in mechanics as a measure of how different a deformation

is compared to rigid transformation. It is defined as

EEE =
1

2

[
(∇xddd

T ) +∇xddd+ (∇xddd
T ) · (∇xddd)

]
, (6.24)

or in index notation,

eij =
1

2
(dj,i + di,j + dk,idk,j) (6.25)

where ddd is the deformation field [101]. The invariants of a tensor, I1, I2, I3, are calculated

as follows:

I1(EEE) = tr(EEE) = Eii (6.26)

I2(EEE) =
1

2

[
(EEE · III)2 − (EEE ·EEET )

]
=

1

2

[
(E2

ii)− EijEji
]

(6.27)

I3(EEE) = det(EEE). (6.28)

where det() is the determinant operator and the index notation includes Einstein summa-

tion. Lagrange strain tensor invariant were used as a measure of brain deformation for

tumor patients in [102], however were not used as fiber deformation measures before.

For every voxel on which the deformation field is defined, the Lagrange strain tensor

EEEi and its invariants I i1, I
i
2, I

i
3 are calculated and the mean of their absolute values are used

as measures of deformation between pre-op and post-op bundles:

DM2 =
m∑
i=1

||I i1||
m

(6.29)

DM3 =
m∑
i=1

||I i2||
m

(6.30)

DM4 =
m∑
i=1

||I i3||
m

. (6.31)
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6.4 Results and Discussion

6.4.1 Clinical Dataset

The clinical dataset consists of pre-op and post-op MRI and DMRI images and clinical

evaluations of 30 subjects from Yeditepe University Hospital. 3D T1 TFE (Turbo field

echo) and DTI data acquisition of were performed on a 3T MR scanner (Philips Ingenia,

Netherlands) with 16 channel head coil. 3D T1 TFE was acquired on a sagittal plane us-

ing a TR/TE 99/4.5ms, FA 8, TI 1000ms, image matrix 300x768, slice thickness 0.8mm,

gap 0mm, acquisition time 6 minutes. DTI was acquired on axial plane, using TR/TE

3440/93ms, EPI factor 45, image matrix 90x128, slice thickness 2.5mm, gap 0mm. 16

diffusion directions at b = 800s/mm2 were acquired in addition to b = 0 images (B0), ac-

quisition time 7 minutes. One set of images are taken before the tumor resection operation

and another set of images are taken 2 months after the operation. The clinical evaluation

data consists of tumor degrees and neurological performance scores. The performance

scores are the Karnofsky performance scale (KPS) [103] and Zubrod performance scale

[104]. KPS score takes a value between 0 (dead) and 100 (normal, healthy), and Zubrod

score takes a value between 0 (normal, healthy) and 5 (dead). The tumor degree is the

degree defined by the World Health Organization [105]. The degree changes from 1 to 4,

where 4 indicates a very aggressive and malignant tumor. This study was approved by

the Ethics Review Committee of Yeditepe University Hospital (YUH).

It should be noted that in the dataset, only one of the patients had worse performance

scores after the operation compared to before. This is caused by the fact that the operation

is only approved when there is a high likelihood that the patient’s condition will improve

as a result of the operation. The lack of data with patients whose condition worsen after

the operation must be considered when performing statistical analysis.

6.4.2 The Values of Measures

All the measures described in Sections 6.1 and 6.3 are calculated for each patient’s left

and right CST and ML. These values are reported in Figures 6.4, 6.5, 6.6 and 6.7 and the
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sum of the measures for the four bundles in consideration are reported in Figure 6.8.

Figure 6.4: All measures for the left CST of subjects. DM 1-4 are the measures based on

a deformation field and NDM1-10 are the measures that do not require estimation of a

deformation field.

Figure 6.5: All measures for the right CST of subjects. DM 1-4 are the measures based

on a deformation field and NDM1-10 are the measures that do not require estimation of a

deformation field.
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Figure 6.6: All measures for the left ML of subjects. DM 1-4 are the measures based on

a deformation field and NDM1-10 are the measures that do not require estimation of a

deformation field.

Figure 6.7: All measures for the right ML of subjects. DM 1-4 are the measures based on

a deformation field and NDM1-10 are the measures that do not require estimation of a

deformation field.
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Figure 6.8: The sum of the measures of all bundles. DM 1-4 are the measures based on

a deformation field and NDM1-10 are the measures that do not require estimation of a

deformation field.

6.4.3 Statistical Tests

Tests of significance are performed to see whether a statistically meaningful relationship

exists between the proposed measures and KPS, Zubrod scores and tumor grades. Since

we do not have any parametric form assumptions on the probability densities of measures,

non-parametric tests are used.

Since the number of subjects is low and the number of patients that got worse is only 1

for KPS and 3 for Zubrod, the dependent variables were reduced to binary categories. The

neurological scores were separated into categories “patient got better” and “patient did

not get better”. The tumor grades were grouped into 2 groups where grade 1-2 tumors

make one group and grade 3-4 tumors make the other group. 3 of the subjects were

removed from the statistical analysis because some of their tracts had significant problems

with the tractography and fiber classification steps which could not be resolved even with

manual intervention. Hence, statistical tests were performed on 27 subjects.
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The Mann-Whitney U test (also known as Wilcoxon rank-sum test) [106] was performed

for each of the 14 measures derived from the change in each of the four bundles (left CST,

right CST, left ML, right ML) and their sum for KPS score, Zubrod score and tumor

grade. Hence, in total, 14× 5× 3 = 210 significance tests were performed. In the Mann-

Whitney U test, the null hypothesis is that the two samples are drawn from the same

population and the alternative hypothesis is that they are drawn from populations with

different distributions. For example, the null hypothesis of one of the 210 tests will be

that the sample of DM1 measures for CST left for which the patient showed improvement

after the operation and the sample of DM1 measures for CST left for which the patient did

not show improvement, are drawn from the same population. If there is enough evidence

to reject the null hypothesis, that would mean that the probability distribution of DM1

measures for CST left is different for patients that got better and that did not get better.

The p-values for all the tests are given in Figure 6.9.
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Figure 6.9: p-values for all significance tests. (a): Left CST; (b): Right CST; (c): Left

ML; (d): Right ML; (e): Sum of all 4 bundles. p-values between [0.10 0.05] are highlighted

in red and p-values less than 0.05 are highlighted in green.

6.4.4 Discussion

We have described several measures that quantify different characteristics of the struc-

tural change between pre-op and post-op images. NDM4 and NDM5 consistently achieved

p-values below 0.10 for all bundles and their sum for both KPS and Zubrod scores. It is

worthy of noting that both of these measures are based on local orientation differences.

On the other hand, deformation measures and measures based on global properties gave

inconsistent results. The inconsistency in deformation measures may be caused by prob-

lems with the fiber registration algorithm. Measures that are not sensitive to isometric

deformations did not give significant results. Interestingly, while some of the measures

gave significant results for tumor grades on CST, none of them gave significant results for
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ML. It is unclear whether this means that tumor aggressiveness is related to the structural

change in CST after an operation but not to the change in ML or whether this result is

caused by other factors such as the tractography algorithm and limitations of DTI.

While significant relationships with some of the measures and the clinical scores or

tumor grades have been found, some inconsistencies like the same measure being significant

for left CST but not right CST indicate that caution must be exercised before drawing

strong conclusions. There are several problems that may limit the validity of statistical

tests. The tests make the assumption that the sampled values of measures are a random

sample drawn from some population. This assumption may not be valid due to biases in

the imaging or tractography methods or the human interaction which is usually necessary

for pathological data. Further, due to the low number of available subjects (27), we had

to use binary categories for the change in patients’ conditions. It is especially hard to

find data for which the subject gets worse after the surgery because neurosurgeons only

approve surgeries with a high likelihood of improving the patient’s condition. It is thus

unknown whether the measures can differentiate between the patient getting better or

worse. Another limitation of the dataset was that there was no classification of patient’s

symptoms with respect to their associated fiber bundle. For example, if the patient has

trouble moving his right hand, it can be hypothesized that this is caused by damage to

the left CST. However, the available clinical scores in this study, KPS and Zubrod scores,

are both general assessments of the patient’s neurological condition. This can lead to e.g.

the following problem: Let us assume that the patient only had pathology on his left CST

and it healed after the surgery. This would improve the patient’s general condition and

hence this patient would be in the “the patient got better” category for all the statistical

tests. Hence, for tests involving bundles other than the left CST, we have a sample for

which the bundle has little or no change but the patient’s condition has improved. This

may be the reason that the tests for the sum of all bundles have in general achieved lower

p-values compared to tests with individual bundles.

One of the most serious problems in white matter analysis is the difficulty of assessing

the accuracy of tractography, that is, how well the digital tracts represent the trajectories

of real fibers. There are a large variety of possible sources of error like limitations of the
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diffusion model, partial volume effects, motion artifacts, eddy current artifacts, low angu-

lar resolution, errors in the tractography algorithm, errors in the clustering/classification

method and so on. In order to make a meaningful analysis, the variance caused by those

effects should be minimized by following the same analysis protocol for all the data. One

should be aware that the conclusions reached using a certain analysis protocol may be

invalid for a different protocol.

Despite the discussed problems, the fact that statistical significance was found for

many of the tests suggests that it might be possible to predict the change in a patient’s

condition by using measures derived from the change in tractography and fiber classifica-

tion results. This is an important conclusion that supports the claim that tractography

and fiber classification are useful tools for studying human white matter.
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Chapter 7

Conclusion and Future Directions

Diffusion MRI, fiber tractography and fiber classification following tractography pro-

vide valuable information about white matter fibers in vivo and enable unique ways of

their study and analysis. In this thesis, we have presented three novel methods that aim

to automate the fiber classification step in order to reduce the human bias and error asso-

ciated with manual classification and to relieve the experts of this tedious task which can

take up to hours for a single patient.

The first proposed method combines ROI-based and similarity-based approaches to

fiber classification. ROIs are used to impose loose anatomical constraints on the created

fiber tracts which are then clustered according to a fiber distance-based similarity ap-

proach. The clusters are then classified by comparison to bundle models. This method was

designed for DTI and fibers passing through the brainstem and includes certain heuristics

based on that, however, the general framework can be applied to other bundles or diffusion

models.

The second method has a similar structure to the first one but introduces a novel fiber

representation called NRFOD that is based on the orientation distribution of fibers in the

neighborhood of a fiber. Since a fiber is represented by fiber orientations in its neighbor-

hood, this representation is translation-invariant and suitable for comparing fibers from

different spaces in case of translation error in the image registration. The method is also

more general compared to the first one and may be applied to any diffusion or fiber orienta-

tion model. It achieved better performance compared to several other automatic methods
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on brainstem fibers on the dataset we used for for experiments. While experiments were

only performed on brainstem fibers, the method can be applied to any fiber bundle in the

brain.

The third method is a supervised classification method and fundamentally different

from the first two. Whereas the first two methods first perform unsupervised clustering

by using a fiber-to-fiber distance measure and then classify the clusters by comparison to

a bundle model, the third method directly maps a single fiber to class probabilities. This

has the advantage of not requiring computation of fiber-to-fiber distances and hence scales

better as the number of tracts in the set increases. The downside is the requirement of

a labeled training set of tracts. Since the training set of fibers must all be in the same

space, the translation-invariant NRFOD representation proposed for the second method

is utilized here as it offers robustness to registration errors. The offline training of the

classifier can be longer compared to the other methods but on the online test phase, this

method is much faster and is also generally more accurate than the second method on our

experiments.

Finally, we presented a clinical application of fiber tractography and classification.

Fiber bundles were created using tractography and classification methods based on DTI

data taken before and after a brainstem tumor resection operation. The change in corre-

sponding fiber bundles were quantified using various measures and statistically significant

relationships were found between some of the proposed measures and the patient’s neu-

rological functionality. This important result is another evidence that tractography and

fiber classification are useful tools for studying human white matter.

Future directions include creating more varied and larger training and validation sets

for fiber classification methods. More sophisticated classifier architectures should be in-

vestigated. The supervised classification approach still remains largely unexplored and

our initial results show great potential. Considering the recent popularity of deep learning

methods in the computer vision community, significant advances in supervised fiber clas-

sification can be expected in the near future. Based on the novel techniques presented in

this thesis, undertaking the classification of all brain white matter fibers for extraction of

major brain white matter pathways would be a natural extension inspired by this thesis.
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After more reliable tractography and automatic classification methods are developed,

clinical analyses similar to the one presented in Chapter 6 may facilitate different ways

of diagnoses, assessment of success of surgical operations and treatment, prediction of the

progression of a disease or post-operational monitoring of a patient’s condition. Further,

those methods may lead to a better scientific understanding of how the brain communicates

and functions.
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sures for white matter fibers,” in 2016 24th Signal Processing and Communication

Application Conference (SIU), May 2016, pp. 1277–1280.

[94] A. Tagliasacchi, H. Zhang, and D. Cohen-Or, “Curve skeleton extraction from in-

complete point cloud,” in ACM Transactions on Graphics (TOG), vol. 28, no. 3.

ACM, 2009, p. 71.

143



[95] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using

shape contexts,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,

vol. 24, no. 4, pp. 509–522, 2002.

[96] M. Reuter, F.-E. Wolter, and N. Peinecke, “Laplace–beltrami spectra as shape-dna

of surfaces and solids,” Computer-Aided Design, vol. 38, no. 4, pp. 342–366, 2006.

[97] R. Guler, S. Tari, and G. Unal, “Screened poisson hyperfields for shape coding,”

SIAM Journal on Imaging Sciences, vol. 7, no. 4, pp. 2558–2590, 2014.

[98] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into a
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