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My Masters was funded by the TÜBİTAK1. Scholarship, and I would like to

especially thank them for providing me this platform to show case my talents and

realize my potential. I honestly believe that TÜBİTAK is doing a commendable job
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Abstract

Segmentation is usually the first step in image processing and directly impacts

the success or failure of the image analysis algorithm. It turns into a very challenging

problem when the observed image suffers from insufficiencies, such as high level of

noise, clutter, data loss and, occlusion. The effect of prior knowledge has been widely

studied in the curve evolution-based models and it has been proved that utilization

of some kind of prior information obtained by exploiting the known features of the

object to be segmented, can aid the result of the segmentation process.

In this thesis, shape, which is a favorable attribute of the object to be segmented,

is used to form the prior information. The proposed method has been developed

based on a sampling approach using sequential Monte Carlo (Particle Filters) and

In order to enrich the segmentation model, a new term is introduced which we refer

to as coupled shape priors. By involving a curve evolution step into the sampling

process, the coupled shape prior term, takes part in the proposed energy functional

defined for the curve evolution step and incorporates the temporal shape depen-

dencies. The proposed method has been evaluated on three different datasets, a

deforming synthetic dataset, hand gesture dataset and 2-photon microscopy images
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of dendritic spines and, according to both visual and quantitative results, it has

been demonstrated that it has a successful performance in segmentation of deform-

ing objects whose shapes come from multi-modal shape densities. Also it has been

shown that the proposed method is able to handle low quality images, highly noisy

images, images with data loss, and occluded images.
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ZAMAN SERİSİ GÖRÜNTÜLERİNDEKİ DEFORME OLAN NESNELERİN
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ÖNSELİ KULLANILARAK BÖLÜTLENMESİ
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olan nesnelerin bölütlenmesi, zaman serisi görüntülerinin bölütlenmesi, parçacık

süzgeci, etkin çevritler

Özet

Bölütleme, genellikle bir görüntü işlem algoritmasının başarımını doğudan etk-

ileyen bir adımdır. Yüksek seviye gürültü, veri kaybı ve nesnelerin üst üste gelmesi

gibi durumlarda bölütleme problemi daha zorlu bir problem haline gelir. Şekil ön

bilgisini kullanmanın etkisi eğri geliştirme tabanlı yöntemlerde çok çalışılmış olup,

bu tür yöntemlerin bölütleme sonuçlarını önemli ölçüde iyileştirildiği kanıtlanmıştır.

Bu tezde, bölütlenecek olan nesneye ait önemli bir özellik olan şekil, bölütleme

sürecinde bir ön bilgi olarak kullanılmaktadır. Önerilen yöntem, örnekleme ta-

banlı sıralı Monte Carlo (parçacık filtresi) yöntemlerine dayanmaktadır. Bölütleme

sonuçlarını iyileştirmek için birlştirilmiş şekil ön bilgisini kullanan bir terim önerilmiştir.

Örnekleme sürecine eğri geliştirme süreci eklenerek, birleştirilmiş şekil önseli terimi,

zamansal şekil bağlantılarını içeren enerji fonksiyonuna eklenir. Önerilen yöntem

şu üç farklı veri kümesinde test edilmiştir: zaman içinde deforme olan sentetik

veri kümesi, el hareketleri veri kümesi ve 2-foton mikroskop veri kümesidir. Görsel

ve sayısal sonuçlara göre önerilen yöntem, zaman icinde şekil değiştiren ve önsel

dağılımı çok doruklu olan veri kümelerinde başarılı bölütleme sonuçları üretmiştir.

Bunun yanında önerilen yöntemin düşük kaliteli, yüksek gürültülü ve veri kaybı olan
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görüntülerde yüksek başarım sağladığı gösterilmiştir.
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Chapter 1

Introduction

In this thesis, we consider the problem of segmentation of objects with dynam-

ically evolving shapes from observed image sequences. We propose a principled

dynamic segmentation approach that involves ideas from shape priors and Sequen-

tial Monte Carlo sampling and demonstrate its effectiveness on several potential

applications. In this chapter we define and motivate the problem addressed, list the

technical contributions of this thesis, and provide its outline.

1.1 Motivation

Image segmentation is a classic problem in computer vision and among the most

studied problems in image understanding and computer vision. In a broad sense, it

is defined as the process of partitioning the image pixels into meaningful groups with

homogeneous attributes. The typical goal of image segmentation is to distinguish

between background and objects in the foreground or delimit object boundaries.

Generally, segmentation is the first task in image analysis and in many applications,

the success or failure of the segmentation algorithm has a direct impact on the

success or failure of the image analysis algorithm.

Image segmentation has been widely applied in many disciplines and machine

vision tasks such as object detection (e.g., pedestrian detection, localization of ob-

jects in satellite images), recognition (e.g., face recognition, fingerprint recognition,

license plate recognition), medical imaging, occlusion boundary estimation within

motion or stereo systems, image compression, image editing, image retrieval and

is a building block for many applications such as self-driving cars, robotics, and

human-computer interaction.
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There are many scene attributes based on which, the segmentation is usually

performed, such as intensity, color, or texture similarities, pixel continuity, and

higher level knowledge about the object model. Many existing segmentation ap-

proaches exploit either the discontinuities (which are called edge-based methods) or

homogeneity (which are called region-based methods) in the image.

Particularly, early approaches for image segmentation were based on detecting

edges using filters, such as the Sobel filter [1] and the Canny filter [2]. Object

boundaries were identified by classifying the pixels as edge/non-edge pixels based

on a threshold. Region growing, split-and merge, and certain histogram-based tech-

niques were also among the developed schemes for image segmentation [3]. A more

comprehensive list can be found in [4] and [5].

There are factors that can affect the results of a segmentation method, such as

object orientation, shape variability, the presence of extraneous details, degradations

due to poor illumination, noise, occlusions, and sampling artifacts. Unfortunately,

generic low-level segmentation algorithms often do not provide accurate and desired

segmentation results, since purely low-level assumptions such as intensity or texture

homogeneity and strong edge contrast are not sufficient to separate objects from

the background in a scene. Thus, when we are dealing with noisy images, weak or

missing edges, cluttered data, and occlusions, these approaches are not successful.

Curve evolution-based image segmentation models are one of the developed

methods for image segmentation and have been used extensively for image segmen-

tation since their introduction in [6]. In curve evolution-based approaches, image

segmentation is posed as an optimization problem and an energy functional is de-

fined based on features of the image. Minimizing the energy refines the curve and

captures the boundary of the object of interest. These methods are effective over a

broad class of images. In order to define the energy function, some methods have

used boundary information for the object of interest [7],[8] and some have used

regional information, such as intensity statistics [9], [10], [11].

In many recent active contour models, some type of prior knowledge is used to

enrich their models and generate more accurate results. This makes the segmen-

tation algorithm more robust to imperfections in the observed image data. Prior

knowledge can be formed by exploiting known features of the object of interest.
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One of these features that have been utilized in many works is the shape, to

which we refer as the geometric outline of an object in 2D or 3D.

One can distinguish various kinds of shape knowledge [12].

� low-level shape priors which favor smaller boundary length.

� mid-level shape priors which favor thin and elongated structures.

� high-level shape priors which favor similarity to previously observed shapes.

There are numerous existing automated segmentation methods that enforce con-

straints on the underlying shapes.

In [13] a mathematical formulation to constrain an implicit surface to follow

global shape consistency while preserving its ability to capture local deformations

is proposed. In [14] and [15], an average shape and modes of variation through

principal component analysis (PCA) is used in the model which captures the vari-

ability of shapes. However, this technique can handle only unimodal, Gaussian-like

shape densities. As a solution to this limitation, [16] and [17] have introduced

methods based on nonparametric shape densities learned from training shapes. In

these works, the assumption is that the training shapes are drawn from an unknown

shape distribution and this distribution is estimated by extending a Parzen density

estimator to the space of shapes. They formulate the segmentation problem as a

maximum a posteriori (MAP) estimation problem, where they use a nonparametric

shape prior.

Another challenge that arises in some applications is to segment an object which

is not static, in particular, objects that show variation in their shapes in different

cases. For instance, a human liver has a different shape depending on the subject

and their age. We also can define non-static object as one whose shape evolves

over time. An example for this case can be left ventricle of the heart which goes

through deformation across a cardiac cycle. Consequently, difficulties are faced

when we want to model and infer its shape. In order to provide promising results in

these challenging tasks, many segmentation approaches have been proposed in the

literature which can be found in [18] in a categorized form.

However, typical active contour based algorithms are set in a static framework,

therefore this can be a major drawback when segmenting or tracking a dynamically

3



deforming contour over time is desired, since they do not incorporate the deformation

dynamics into their segmentation or tracking approach.

1.2 Problem Statement and Thesis Contribution

In this thesis, the problem that we focus on is the segmentation of deforming

objects in time series images. In other words, the objects that we deal with undergo

deformation over time and we propose a new method to segment the object of

interest in the presence of high level of noise and data loss. Another challenge that

we address in our approach is to effectively model multi-modal shape densities. In

many applications, object shapes come from multiple classes. For example, the

presence of different objects in a natural scene which includes cars, planes, trees,

etc. poses a difficult segmentation task and the algorithm should ideally be able to

recognize the class of the object in the scene in order to exploit information about

the shape of that particular object type. Our approach considers segmentation

problems that involve limited and challenging image data together with complex

and multi-modal shape densities.

In order to overcome these limitations, we incorporate shape priors into our

active contour-based segmentation method. By forming a training dataset which

contains objects from different classes at different time points, the dynamics of

the deformation is learned and shape prior knowledge is imposed to produce more

accurate results.

In our preliminary work, we introduce a coupled shape prior term that is included

in the energy functional we propose for image segmentation. This term incorporates

the dependence between the shapes of an object in consecutive time points. There-

fore, if information about the shape of the object to be segmented in the previous

time point is provided, the coupled shape prior force can aid the algorithm to evolve

the curve towards the accurate class of the object, exploiting the information from

the previous time point.

As the extension of our work, we concentrate on the problem in a more general

form, considering that the knowledge that we have about the shape of the object

from previous time points is imperfect. In order to construct our method in this

setting, we use particle filters, also known as sequential Monte Carlo (SMC) meth-
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ods. Particle filters enable the estimation of the posterior distribution by generating

samples. In this way, we propose a complete dynamic segmentation approach.

1.3 Thesis Outline

This thesis contains 5 chapters and is organized as follows. Chapter 2 provides

the background and preliminaries that underlie the work presented in subsequent

chapters. It begins with an introduction about deformable models and then a de-

scription of the segmentation problem via Bayesian inference followed by a brief

review of recursive estimation and particle filters. Chapter 3 presents the math-

ematical derivation of our dynamic coupled shape prior model based on particle

filters. Experimental results including visual and quantitative results can be found

in Chapter 4. In Chapter 5 we conclude by summarizing the contributions of this

thesis. We also suggest some possible extensions and future research directions.
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Chapter 2

Background

In this chapter, we provide background material required to develop our al-

gorithm. In Section 2.1, we present a review about deformable models in image

segmentation. In Section 2.2, we provide information about image segmentation

via Bayesian inference, static and dynamic shape priors, and density estimation. In

Section 2.3 we present an overview of recursive estimation and particle filters.

2.1 Deformable Models

Deformable models have become a landmark in computer vision and have been

widely used in image segmentation and tracking. Deformable models are capable of

controlling the geometry and smoothness of the segmented boundaries, and allowing

variabilities of the objects. In deformable model formulations, energy functions

usually consist of two terms which are responsible to evolve the curve. The external

energy term is obtained from the image information, such as intensity level and

intensity gradient so that the curve or surface is driven towards the desired images

features, such as strong edges within an image. The internal energy term is designed

to enforce the smoothness of the curve or surface during deformation.

Deformable models can be generally divided into two classes, depending on the

definition of the curve and surface [19]. The classes are as follows:

� parametric deformable models through which the contour is represented ex-

plicitly.

� non-parametric deformable models that represent the surface implicitly as the

level set of a higher dimensional scalar function.
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Active contours or snakes [6] is one of the most popular deformable models,

which is usually used in 2D piecewise continuous and smooth contour segmentation.

In the Snake algorithm, the contour is defined as a parameterized curve with a fixed

topology and the contour or the surface is represented by a finite set of parameters

explicitly, such as the spatial positions of points on the curve. There are some

disadvantages regarding this approach. One is that the connectivity of the points

on the surface is difficult to maintain and they can change during the evolution, also

they may cross each other if they come too close. Another concern is that in order

to reconstruct the surface, the discretization should be fine enough. A solution that

can be proposed to deal with such problems is to redistribute, add or remove the

points if required after few time steps. However, this turns into a complicated task,

especially in three dimensions. Moreover, in general, the parametric approach is not

capable of handling topology changes. To overcome this problem, some constraints

are imposed for detecting possible merging and splitting of contours [20].

Level set [21] is another important deformable model and it was developed to

overcome major drawbacks of the classical explicit curve evolution models. It im-

plicitly represents shape as the zero level of a level set function. In particular, the

boundaries are embedded in a higher dimensional space. Then the higher dimen-

sional level set function is evolved rather than the boundary itself. In this way, level

set achieves flexible topological changes.

In the following we discuss Active Contours and Surfaces and Level set methods

in more detail.

2.1.1 Active Contours and Surfaces

Considering explicit representation, a parametric curve is represented using a

function C(s) = (x(s), y(s)), where x, y denote the coordinates and s ∈ [0, 1] is the

arc-length parameter. Given an initialization, the parameterized curve deforms in

order to minimize the following energy function [19]:

E(C) = Eint(C) + Eext(C) (2.1)

where:

7



Eint(C) = α

∫ 1

0

‖C ′(s)‖2ds

β

∫ 1

0

‖C ′′(s)‖2ds

(2.2)

Eext(C) = γ

∫ 1

0

‖∇I(C(S))‖ds (2.3)

where I is the image intensity and α, β, γ are corresponding weighting coefficients for

each energy term. α and β control the tension and rigidity of the curve respectively.

As it can be seen in Equation (2.2) and (2.3), the internal energy Eint(C) charac-

terizes the tension or the smoothness of the contour and the external energy Eext(C)

is responsible for attracting the curve towards the object appearing in the image

[19], [22].

Parametric deformable models have the following advantages:

� They are capable of handling closed or open parametric curves or surfaces.

� They have low computational complexity.

� They can integrate prior knowledge.

On the other hand, requiring an initialization is a disadvantage of this approach.

Balloons proposed in [23] use a pressure force to increase the attraction range which

makes the model less sensitive to initialization. The approach was extended this

approach by defining the external energy using a distance map in [24].

However, the most important limitation of parametric models is their weakness

in coping with topological changes.

2.1.1.1 Geodesic Active Contours

As we discussed before, there is a possibility that contour points intersect or

overlap while evolving the curve and to a way to avoid that is to generate a new curve

with a similar geometry but with a new parameterization. Geodesic active contours

(GAC), also called Geometric active contours, were introduced in [7] and [25] based

on implicit representation, in order to overcome the need of re-parameterization.

Being independent of parameterization is the reason which makes this model capable

8



of handling topological changes automatically. The energy functional of this method

is given by:

E(C) =

∫ 1

0

g(I(C(s)))ds (2.4)

and:

g =
1

1 + ‖∇Gσ(s) ∗ I(s)‖2
(2.5)

where Gσ(s) ∗ I(s) is the convolution of the image I with a Gaussian filter and

the function g ,which is an edge indicator function, contains information about the

gradient of the image and I and serves as a stopping function.

The main idea of GAC is to couple the speed of deformation with the image data,

so that the evolution of the curve stops at object boundaries. A problem with this

model is that if the object boundary has gaps or does not provide high gradient, the

curve passes through the boundary and cannot be fitted to the accurate boundary.

Moreover, these method is still sensitive to local minima, since it is based on the

image gradient.

An alternative approach is to use image region characteristics. Earlier, energy-

based segmentation frameworks ,such as [26], define a functional which measures the

consistency of the segmented regions. Based on these framework, many level sets

approaches have been developed to combine image region statistics with boundary

measurements, such as [9], [15], which we discuss more in Section (2.1.1.2).

2.1.1.2 Active Contours Without Edges

We have mentioned that both the Snakes and GAC models are based on the

object’s edges assuming that sharp gradients at the shape’s boundaries define the

object. To address this problem an alternative approach is to use the information

of the image region. Many level set based approaches have been proposed to com-

bine region characteristics ,such as first and second order intensity statistics, with

boundary information.

Based on this approach, there are methods developed base on Mumford-Shah

functional (MS) [27] which is given as:
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E(f, C) =

∫
Ω

(f − I)2ds+ γ

∫
Ω−C
‖∇f‖2ds+ α‖C‖ (2.6)

where Ω is the image domain and f is the piecewise smooth approximation of the im-

age I. Putting constrains on the smoothness of the curve within the sub-regions and

the length of the curve of the sub-regions, this functional minimizes the difference

between I and f .

Based on a level-set formulation of the piecewise constant variant of MS, methods

in [9] and [28] developed which proposes the following model, considering the image

to be formed of two regions with distinct constant intensities:

min
S,c1,c2

∫
Ω\S
|I(x)− c1|2dx+

∫
S

|I(x)− c2|2dx+ ν|∂S| (2.7)

where S is the object to be segmented, Ω\S denotes the background, ν|∂S| is

weighted boundary length of S, and c1 and c2 are mean intensity values inside

and outside the regions.

Using the level set representation, the resulting model is [9],[28]:

min
φ,c1,c2

∫
Ω

|I(x, y)− c1|2H(φ)dx+

∫
Ω

|I(x, y)− c2|2(1−H(φ))dx+ ν

∫
Ω

|∇H(φ)|dx

(2.8)

where H is the Heaviside function. This model is known as Active Contours Without

Edges (ACWE) or Chan-Vese (CV) and many approaches has been proposed based

on it.

There are many drawbacks related to both edge-based and region-based models,

especially in case of noisy and distorted images. Efforts to address these limitations

are made in [29], [30], [31], [32], [33] which combine edge and region characteristics.

2.1.2 Curve Evolution Using Level Set Method

In this section more detailed information is provided regarding level set method

and its usage in curve evolution.

As we mentioned before, classical parametrized active contours require extra

processing to handle the issues such as overlapping or intersecting of the boundary
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points. Level set theory was first introduced by Osher and Sethian in 1988 [34]

and has been widely used in a variety of applications in computer vision and image

processing and mainly in segmentation. The principal advantage of the level set

method is the fact that it is based on an implicit curve representation and performs

curve evolution regardless of topological changes such as splitting and merging [35].

Earlier, we showed the explicit representation of a curve in the plane as the

function C(p) = (x(p), y(p)), where x, y denote the coordinates and p ∈ [0, 1]. Each

value of p corresponds to a unique point on the curve (See Figure 2.1) and if C is

a closed curve we have C(0) = C(1). There are some basic properties of C listed

below. basic properties of the parameterized curve C is listed below [36]:

Figure 2.1: Explicit representation of a curve on the plane: C(p) is a point on the

curve C. Cs and Css represent the tangent vector and normal vector respectively

� The unit tangent vector T , which is defined as:
−→
T = Cp

|Cp| , where Cp = ∂C
∂p

� the curvature k, which is defined as: Css = k
−→
N

Curvature is a measurement which shows the change in direction of Cs

Another representation of a curve can be by means of the level set of a function

φ, which is

C = {(x, y)|φ(x, y) = 0} (2.9)
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One of the alternative functions which can be defined as φ is the signed distance

function, meaning that the value of φ is set as the positive distance of (x, y) to the

curve C if the point is enclosed by the curve, and as the negative distance of the

point to the curve C if the point is outside the curve (see Figure 2.2).

Figure 2.2: Implicit representation of a curve on the plane.

Tangent, normal and curvature are computed in the implicit framework using φ

as follows [36]:

−→
N = − ∇φ

|∇φ|
(2.10)

−→
T =

∇φ
|∇φ|

(2.11)

where the bar stands for:

a
b

 =

b
a

 (2.12)

k = div(
∇φ

|∇φ|
) (2.13)

Now the curve evolution in the implicit setting is formulated as follows defining

the curve as C := {(x(s, t), y(s, t)) : φ(x(s, t), y(s, t), t) = 0} , φ(x, y, t) : R2 −→ R :

The equation below demonstrates the relationship between the velocity V of

points on the curve C at the time t:
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dC

dt
= V
−→
N (2.14)

And:

dφ

dt
= V |∇φ| (2.15)

Using all the obtained equations based on φ enables us to formulate the curve

evolution according to φ. Thus, each point on the curve moves under the velocity

V which is related to the level set by Equation (2.15).

2.2 Image Segmentation via Bayesian Inference and Shape Priors

Bayesian inference has been widely used in data analysis problems over the last

decades. The Bayesian approach provides the means to incorporate prior knowledge

in data analysis. The focus of Bayesian analysis is the posterior probability, which

summarizes the degree of certainty about a given situation. Bayes’ law states that

the posterior probability is proportional to the product of the likelihood and the

prior probability. The likelihood encompasses the information contained in the new

data and the prior expresses the degree of certainty concerning the situation before

the data are taken.

Although the posterior probability completely describes the state of certainty

about any possible image, it is often necessary to select a single image as the re-

sult or reconstruction. A typical choice is the image that maximizes the posterior

probability density, which is called the MAP estimate. Other choices for the esti-

mator maybe more desirable, such as, the mean of the posterior density function.

In situations where only very limited data are available, the data alone may not be

sufficient to specify a unique solution to the problem. The prior introduced with

the Bayesian method can guide the result toward a preferred solution. Choosing the

prior is one of the most critical aspects of Bayesian analysis, since the MAP solution

differs from the maximum likelihood (ML) solution solely because of the prior. In

this section a variety of possible priors appropriate for image analysis are discussed.

Given an input image I : Ω −→ R on a domain Ω ⊂ R2, a segmentation C of

the image can be found as a MAP estimation of the posterior probability as [12]:
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P (C|I) =
P (I|C)P (C)

P (I)
(2.16)

where P (I|C) denotes the data likelihood for a given segmentation C and P (C)

denotes the prior probability. In order to maximize the posterior distribution in

Equation(2.16), the following energy function is minimized:

E(C) = Edata(C) + Eshape(C) (2.17)

where Edata(C) = − logP (I|C) and Eshape(C) = − logP (C) are known as the data

fidelity term and the shape prior term. As mentioned earlier, rather than maximizing

the posterior distribution, mean of this distribution or as in particle filtering [37],

the whole posterior can be utilized.

Now, the data fidelity and the shape prior term need to be specified to proceed.

There are various data terms proposed in literature. A data term proposed in [26]

based on intensity statistics as:

Edata(C) =
k∑
i=1

∫
Ωi

(I(x)− ci)2dx (2.18)

where I is the image intensity, Ω1, . . . ,Ωk are pairwise disjoint regions separated by

the boundary C and ci is the average of intensities over ωi.

There are more sophisticated data terms proposed in the literature which use

the texture or the color information of the regions as likelihood (see [38], [39], [40],

[35], [41]).

2.2.1 Static Shape Priors

Many prominent image segmentation methods are based on rather simple geo-

metric shape priors, in which a penalty on the length of the curve to be segmented

is used [26], [6]. In many applications, more specific knowledge about the shape

of the object is provided. Various approaches of incorporating higher-level shape

priors have been proposed in the literature.

In the parametric presentation framework, a training set of shapes can be con-

structed, represented by a spline curve of a fixed number of control points. Statistical
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shape prior learned from this training dataset can be imposed in the segmentation

problem, which ensures the similar shape family as the result.

An alternative to go about is to assume that the training shapes are from a

Gaussian distribution. This assumption is quite popular considering the desirable

properties of Gaussian distribution, which is defined as [12]:

P (z) =
1

|2πΣ⊥|1/2
exp(−1

2
(z − z)tΣ−1

⊥ (z − z)) (2.19)

where z denotes the mean control point vector and
∑
⊥ is a regularized covariance

matrix introduced in [42]. Now the shape energy is given as:

Eshape(z) = − log p(ẑ) (2.20)

where ẑ is the shape vector upon similarity alignment with respect to the training

shapes. As it can be seen, Equation (2.20) is invariant to similarity transformations.

Examples of works using Gaussian shape priors can be seen in [43], [44], [42].

The assumption that the training shapes are Gaussian distributed is not valid in

many real applications, which motivates using nonlinear shape density estimators.

Here, nonlinear means that the permissible shapes are not simply given by a weighted

sum of eigenmodes [12]. A classical approach for estimating nonlinear distributions

is based on the Gaussian mixture model or the Parzen-Rosenblatt kernel density

estimator (which we discuss more later). Authors in [45] propose a novel method

for density estimation for computing the nonlinear statistics which is an extension of

kernel PCA. The training shapes are approximated to a higher-dimensional feature

space Y using a Gaussian distribution, on transformation ψ : R2 −→ Y :

pψ(z) ∝ exp(−1

2
(ψ(z)− ψt0)Σ−1

ψ (ψ(z)− ψ0)) (2.21)

which results in the following energy:

E(z) = log pψ(ẑ) (2.22)

where ψ0 and
∑

ψ are the mean and covariance matrix of the transformed shapes

as:
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ψ0 =
1

m

m∑
i=1

ψ(zi) (2.23)

and

∑
ψ

=
1

m

m∑
i=1

(ψ(zi)− ψ0)(ψ(zi)− ψ0)> (2.24)

The energy E(z) in (2.22) can be found by defining the corresponding Mercer

kernel [46], [47] without explicitly specifying the nonlinear transformation ψ [45].

Learning the statistical priors can also be derived in the implicit representation

framework benefiting from level sets’ properties.

As the first step, a distance or dissimilarity measure for two shapes represented

implicitly using L2 − distance over Ω can be defined as [14]:

∫
Ω

(φ1 − φ2)2dx (2.25)

where φi, i = 1, 2 is the signed distance function. As it can be seen in Equation

(2.25), the measurement is dependent on the Ω, which is a drawback.

An alternative can be the methods proposed and used in [48] and [49] as:

d2(φ1, φ2) =

∫
Ω

(Hφ1(x)−Hφ2(x)2dx (2.26)

which uses the area of the symmetric difference.

Since the measure in Equation (2.26) is not dependent on the image size, it is

more favorable in general case. Dealing with shapes of same size in our work, we

have used the distance measure in Equation (2.25) for the sake of simplicity. These

measures can be used as shape prior as well.

Specifying the dissimilarity measurement, we concentrate on the shape represen-

tation and kernel density estimation in the level set domain.

Regarding explicitly represented shapes, principal component analysis (PCA)

is used in [43] to reconstruct a the space of familiar shapes using a set of training

shapes. Selecting corresponding landmarks between shapes is challenging in this ap-
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proach. Initially landmarks were selected manually. Automated landmark selection

was proposed in [50] afterwards which was not efficient though.

Desirable properties of implicit-based shape representations led to the develop-

ment of methods using level sets pioneered by [14], which constructs shape priors

out of a set of training shapes using signed distance functions. In order to address

the problem regarding the signed distance function, which is not being closed under

linear operations, [32] proposed a method which reduces the shape distance from

sample shape along with its distance from the space of signed distance functions.

Therefore, preserving a reasonable signed distance function, a variational framework

is generated using maximum likelihood estimation.

Assuming Gaussian distribution as the shape distribution makes these methods

perform poorly while dealing with more complex shape variation. Alternatively,

non-parametric density estimation approaches are developed to address this issue

which learn an unknown density function using a set of samples without enforcing

any structure on the density to be estimated.

Considering a finite-dimensional density estimation and given a set of sample

shapes Xii=1...N , Parzen-Rosenblatt kernel density estimator is defined as [51], [52]:

P (x̃) =
1

N

N∑
i=1

k(x− xi,Σ) (2.27)

where k(x,Σ) is a m-dimensional Gaussian kernel with covariance matrix Σ.

In applications which multiple random variables density estimation is desired,

multivariate version of the Parzen-Rosenblatt kernel density estimator is applied.

Let us assume a N-dimensional random vector as X = (Xi1, Xi2, . . . , XiN) where

Xij(i=1,...,N),(j=1,...,M) is an one dimensional random variables which denotes ith ob-

servation of jth random variable. The joint PDf of X is given as:

f(X) =
1

N

N∑
i=1

k(x−Xi, σM) (2.28)

which means:

f(X) =
1

N

N∑
i=1

k((x1 −Xi1, ..., xM −XiM), σM) (2.29)

where k is a multivariate kernel. The resulting kernel forms can be a multiplication

of separate kernels and written as:
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f(X) =
1

N

N∑
i=1

M∏
j=1

k(d(xj − xji ), σj) (2.30)

Applying the Parzen-Rosenblatt kernel density estimator on the space of signed

distance functions, the following is obtained:

p(φ) ∝ 1

N

N∑
1

exp(− 1

2σ2
d2(Hφ,Hφi)) (2.31)

where different shape distances can be integrated in the above equation, such as the

measurement in Equation (2.26).

2.2.2 Gradient Descent Evolution

Learning statistical distribution using Equation (2.31) can be used to enhance

the level set based segmentation process. Modeling the level set-based segmentation

problem using Bayes’ rule as [12]:

p(φ|I) =
p(I|φ)p(φ)

p(I)
(2.32)

where I denotes the image and φ denotes the level set function. MAP estimation of

the posterior distribution in Equation(2.32) amounts to minimizing the following:

E(φ) = Edata(φ) + Eshape(φ) (2.33)

with

Eshape(φ) = − log p(φ) (2.34)

This segmentation model allows the statistical density estimator to incorporate

the similarity between the evolving curve and the training shapes.

In order to minimize the Equation (2.33) results in the evolution below using

gradient descent [12]:

∂φ

∂t
= − 1

α

∂Edata
∂φ

− ∂Eshape
∂φ

(2.35)

where:
∂Edata
∂φ

= −
∑
αi

∂
∂φ
d2(Hφ,Hφi)

2σ2
∑
αi

(2.36)
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and:

αi = exp(− 1

2σ2
d2(Hφ,Hφi)) (2.37)

The shape force in Equation(2.36), is based on weighted training shapes by αi,

which itself is related to the dissimilarity between te evolving curve and each training

shapes.

2.2.3 Dynamic Shape Priors

Shape priors are developed and utilized in order to improve the segmentation

results of a known class of objects, especially in presence of noise, clutter, and

occlusion. Static shape priors are not desired when dealing with deformable ob-

jects though, since they do not consider temporal coherence between object’s shape.

Here, the concept of dynamic shape priors emerges. The idea behind dynamic shape

priors is exploiting the temporally deforming dynamics and integrating the infor-

mation of the shape of the object in preceding frames, rather than considering each

frame independently. In order to incorporate the temporal information as prior, the

segmentation problem can be modeled within the Bayesian framework for implicitly

represented shapes and curve evolution can be obtained by gradient descent, which

results in a data force based on the image intensity and a shape force based on the

previous segmentation results.

A temporal statistical shape model is introduced in [53], which performs the

Bayesian inference in a low-dimensional formulation within the subspace spanned

by the largest principal eigenmodes of a set of sample shapes [12]. Using PCA,

approximation of N implicitly represented training shapes are provided by a shape

vector, α. Additionally, a transformation parameter has been introduced as θ.

Based on these parameters, for consecutive images It−1 and It, a Bayesian model

is proposed to compute the most likely deformation and transformation parameters

at time t, given the deformation and the transformation parameters at time t − 1,

which is:

p(αt, θt|It, α̂1:t−1, θ̂1:t−1) =
p(It|αt, θt)p(αt, θt|α̂1:t−1, θ̂1:t−1)

p(It|α̂1:t−1, θ̂1:t−1)
(2.38)
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In this work, a single Gaussian parametric model is used for estimating the

shape distribution, which enforces a smooth, unimodal distribution for the joint

likelihood. Therefore, it performs poorly in case of complicated shape distributions.

On the other hand, PCA is able to just handle small shape deformations and is

quite inadequate when shape variations if the object being tracked undergoes large

deformations.

Senegas et al. introduced dynamical shape model to the segmentation of cardiac

images in order to model cardiac dynamics using Sequential Monte Carlo sampling

[54]. The proposal distribution used in this work is only based on the observation

model. Therefore, it does not incorporate the transition model. Sun et al. proposed

learning the cardiac dynamics [55] which utilizes a statistical shape model trained

by a set of representative left ventricle shapes observed in cardiac MRI images. The

limitation regarding this approach is that the introduced proposal distribution is

based on the transition model and it does not take into account the observation

model.

There are algorithms for tracking which form the shape prior using kernel PCA

rather than linear PCA, such as [56] and [57] and improvement in their performances

have been demonstrated.

The segmentation model proposed in [58] uses multiple shape priors and mini-

mizes a joint energy which is defined based on image and a labeling function. In this

way, the shape information based on the object’s class is chosen. In case of tracking

deforming objects, this method can not provide shape priors dynamically, though.

In Chapter 3, we will discuss how to learn the relationships of shapes across

temporal frames and use it as a shape prior to segment the deformable objects in

time series images based on Sequential Monte Carlo sampling.

2.3 Recursive Estimation and Particle Filtering

Particle filtering methods that incorporate shape information of the object to be

segmented are widely used in the field of image analysis. They are used in different

tasks such as, tracking in clutter, tracking multiple targets and segmentation. Isard

and Blake in [59] and [60] used particle filtering for contour tracking using the

CONDENSATION filter. In these works, CONDENSATION means conditional
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density propagation. The conditional pdf or posterior pdf is represented by the

weights of N samples and is propagated over time. Particle filters also fit well to

multiple target tracking problems because they are capable of handling multi-modal

densities. This chapter provides a brief overview of recursive Bayesian filtering

followed by information about particle filtering and its application in computer

vision.

In general, state estimation is the process of estimating quantities which are not

directly observable, but can be inferred using data from other observable quantities

called measurements [61].

Let us assume xt the state of a system at time point t. In some cases there is

no direct way to acquire information about xt and a related observed measurement,

yt, is provided. Also let us assume that xt is stochastically generated from the state

xt−1.

A dynamic system can be modeled using two approaches. First approach models

the dynamic system using two probability distributions: transition probability and

measurement probability which are respectively given as [61]:

p(xt|x0:t−1, y0:t−1) (2.39)

and

p(yt|x0:t, y0:t−1) = p(yt|xt) (2.40)

Assuming that the system is a Markov Model (or a Hidden Markov Model, since

the states are estimated from the measurements) we can rewrite Equation(2.39):

p(xt|x0:t−1, y0:t−1) = p(xt|xt−1) (2.41)

The second approach is to define the dynamic system as a set of two equations:

the state transition equation and the measurement equation.

xt = f(xt−1, µt−1) (2.42)

and

yt = g(xt, εt) (2.43)
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where µt−1 is the state noise and εt is measurement noise.

In order to estimate the states recursively, the following two steps are followed

alternately at each time point:

Predict: The next state is predicted as:

p(xt−1|y0:t−1) −→ p(xt|y0:t−1) (2.44)

Update: The current measurements are imposed:

p(xt|y0:t−1) −→ p(xt|y0:t) (2.45)

This approach is the main idea behind the recursive filters. Bayes Filter is the

most general recursive filter, which estimates a state using the previous state and the

measurements. The prediction step in Bayes Filter is finding the prior distribution

of the state at time t without knowing the new measurement and can be modeled

by the Chapman-Kolmogorov equation as:

p(xt|y0:t−1) =

∫
p(xt|xt−1)p(xt−1|y0:t−1)dxt−1 (2.46)

In the update step, the posterior distribution is computed from the predicted

density and the new measurement is imposed as well.

p(xt|y0:t) =
p(y0:t|xt)p(xt)

p(y0:t)

=
p(yt, y0:t−1|xt)p(xt)

p(yt, y0:t−1)

=
p(yt|y0:t−1, xt)p(y0:t−1|xt)p(xt)

p(yt|y0:t−1)p(y0:t−1)

=
p(yt|y0:t−1, xt)p(xt|y0:t−1)p(y0:t−1)p(xt)

p(yt|y0:t−1)p(y0:t−1)p(xt)

=
p(yt|xt)p(xt|y0:t−1)

p(yt|y0:t−1)

(2.47)

and:

p(yt|y0:t−1) =

∫
p(yt|xt)p(xt|y0:t−1)dxt (2.48)

The drawback of the Bayes Filter is that in many cases the integrals involved

are intractable, therefore it is far from being practical. In order to address this

issue sampling-based techniques have been developed for estimation purposes. One
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popular example is the Sequential Importance Sampling or Particle Filters. This

technique is capable of estimating a hidden state of a dynamical system, Xt, given

observations by generating a set of samples or particles, {xit}i=1,...,N , approximating

the posterior density by the set of particles. A particle can be consider as a hypoth-

esis regarding the state to be estimated. In order to delineate the amount of the

samples’ contribution in the estimation process, a weight, {wit}i=1,...,N , is assigned

to each. Particle filters consist of three steps which are prediction, update, and

re-sampling.

In the prediction step, a new predicted particle, x̂t+1, is generated from the

current state estimate xt. To this end, a transition function f is defined based on

xt. This step can be written as:

x̂t+1 = f(xt) + µt (2.49)

where µt is the state noise.

For the update step, an update function, g, is defined to compute the distance

between the measurement and the generated particle and based on that the corre-

sponding weights are defined as:

wt+1 = g(x̂t+1, yt) + εt (2.50)

where εt is the measurement noise.

In addition to classical prediction and update steps, the re-sampling step is

introduced to address the weight degeneracy problem, which means concentration

of the weights on a small number of particles compared to the rest after a relatively

small number of iterations. Therefore, re-sampling is a step by which the samples

are replaced with a new set of equally weighted samples generated from the highly

weighted samples. Therefore, by generating samples more similar to samples with

large weights, the particle set is more concentrated on the sub-region of the state

space with high probability of being the true state [62].
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Chapter 3

Methodology

In this chapter we describe our dynamic time series image segmentation approach

in detail. First, the motivation of our proposed approach is introduced in Section

3.1. In Section 3.2, we present our general framework for dynamic segmentation

model by introducing a new term, coupled shape priors. The coupled shape prior

term enables the model to learn the dynamics of the object’s deformation from a

training dataset.

In the following sections, we start with a preliminary version of the work assum-

ing that in our time series segmentation model, the information about the exact

shape of the object’s contour in the previous time point is provided. Based on this

assumption, a cost function is constructed which incorporates the coupled shape

prior as well. Afterwards, we upgrade our approach to a more generalized version

considering that the information we have about the shape of the object in the pre-

vious time point is imperfect. We formulate a sampling algorithm by means of

Sequential Monte Carlo (particle filters) and impose the coupled shape prior while

estimating the shape of the object to be segmented dynamically.

3.1 Motivation for the proposed approach

Image segmentation can turn into a very complicated task in some applications.

One of the challenges that is faced, is to segment regions with boundary insuffi-

ciencies, i.e., missing edges or lack of texture contrast between regions of interest

and background. Presence of high noise or missing data are among the difficulties

that must be dealt with in the segmentation process. Biomedical images are an

example of challenging images for the segmentation task. The reason is that, gener-
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ally biomedical images are low quality images and have low intensity contrast. For

instance, we can mention images of dendritic spines or brain tissues. In order to

deal with these challenges, prior information can be incorporated to obtain more

promising results and improve the segmentation process.

The statistically learned shape prior seems to be vital for handling deficiencies

such as noise, clutter, and occlusion during the segmentation process. However, it

may not be sufficient in case of evolving objects in a sequence of images, since it

does not take the temporal shape dependencies into account. Therefore, an effective

segmentation algorithm should be capable of engaging the dynamics of the system

if the object goes through a deformation over time.

In this thesis, our aim is to address these issues through our presented approach.

We concentrate on the problem of segmenting objects with dynamically evolving

shapes over time. Thus, prior knowledge which has been obtained from the past

time points seems to be a reasonable choice to benefit from in the segmentation

algorithm. The information that we want to include in our approach is the shape of

the object. If a dependence is noticed between the shapes of the object over time,

shape information will be of great assistance based on which we build an estimate

about the shape of the object in the future.

In the following sections, we formulate our approach integrating the shape prior

knowledge into the dynamic segmentation framework for deformable objects in time

series images. We introduce a new term - to which we refer as the coupled shape prior

term - that appears as part of the cost function and imposes the system dynamics.

In order to construct the cost function, we start with the assumption that we are

provided with the segmentation of the object in the previous time point and this

assumption leads us to two different scenarios.

� We are provided with perfect segmentation of the object in the previous time

point (preliminary version).

� We are provided with imperfect segmentation of the object in the previous

time point (generalized version).

Now we proceed to the development of two different versions of our approach for

these scenarios separately.
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3.2 Mathematical formulation

3.2.1 Preliminary version

Let us assume that we have m training shapes C(t−1) = {C(t−1)
1 , C

(t−1)
2 , . . .

, C
(t−1)
m } at time (t − 1). Let us also assume that we have m training shapes

C(t) = {C(t)
1 , C

(t)
2 , . . . , C

(t)
m } at time (t), where C

(t−1)
i and C

(t)
i are boundaries of

the same object in two consecutive time points for each i ∈ 1, . . . ,m. In this prelim-

inary approach, we assume a sequence with two time points only, for simplicity. It

is also assumed that the shapes in both C(t−1) and C(t) have already been aligned so

that the shape variations due to pose differences are removed. Then, the posterior

probability of C(t) given intensity images y(t−1) at time point (t−1) and y(t) at time

point (t) is written as

p(C(t)|y(t−1), y(t)) =

∫
p(C(t), C(t−1)|y(t−1), y(t))dC(t−1) (3.1)

Using Bayes’ rule and the assumption that y(t−1) and y(t) are independent con-

ditioned on the corresponding boundaries, we get

p(C(t)|y(t−1), y(t))

∝
∫
p(y(t−1), y(t)|C(t), C(t−1))p(C(t), C(t−1))dC(t−1)

=

∫
p(y(t−1)|C(t−1))p(y(t)|C(t))p(C(t)|C(t−1))p(C(t−1))dC(t−1)

∝ p(y(t)|C(t))

∫
p(C(t)|C(t−1))p(C(t−1)|y(t−1))dC(t−1).

(3.2)

As it can be seen in Equation (3.2), there are three probability densities to be

calculated and one can proceed with various assumptions on these densities. As a

preliminary approach, we continue with the following set of assumptions:

� p(C(t)|C(t−1)) is learned non-parametrically from the training dataset.

� The data term proposed in [9] is used to obtain p(y(t)|C(t)).

� Considering that we are provided with the perfect segmentation of the object

in the previous time point, p(C(t−1)|y(t−1)) is substituted with a delta function.

(Of course this is not a realistic assumption in practice. We use it to derive a
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preliminary version of our approach here and we relax this assumption later

in the thesis.)

Let us explain the items above in detail. As we mentioned earlier, we assume

that the posterior density p(C(t−1)|y(t−1)), is a delta function, which can be written

as follows:

p(C(t−1)|y(t−1)) = δ(C(t−1) − C ′) (3.3)

where δ(.) is the Dirac delta function and C ′ is the perfect segmentation of the

object at time point (t − 1) which we assume that we already have. Thus, we can

rewrite the Equation (3.2) as:

p(C(t)|y(t−1), y(t)) ∝ p(y(t)|C(t))p(C(t)|C ′). (3.4)

Eventually, we define the energy function to be minimized by taking the negative

logarithm of Equation (3.4) as

E(C(t)) = − log p(y(t)|C(t))− log p(C(t)|C ′). (3.5)

For the first term − log p(y(t)|C(t)) in Equation (3.5), we use the piecewise-

constant version of the Mumford functional [26] proposed in [9] which is given by:

− log p(y(t)|C(t)) =

∫
C

(t)
in

(I(x)−min)2dx

+

∫
C

(t)
out

(I(x)−mout)
2dx

(3.6)

where min (mout) are the mean intensities inside (outside) of curve C(t). We learn

the second term p(C(t)|C ′) in Equation (3.5) nonparametrically from the training

dataset using Parzen density estimation as follows:

p(C(t)|C ′) ∝ 1

m

m∑
i=1

k(dL2(C
(t), C

(t)
i ), dL2(C

′, C
(t−1)
i ), σ) (3.7)

where k(·, ·, σ) is a 2D Gaussian with standard deviation σ and dL2(·, ·) is the L2

distance metric.

We minimize the energy function in Equation (3.5) using gradient descent. In

order to propagate the curve, we use the level set representation of binary shapes
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which we denote by φ. We use the sign convention φ < 0 for inside the curve and

φ > 0 for outside the curve. The overall gradient flow of the energy function is

the sum of the two terms, one based on the data term and the other based on the

coupled shape prior term. The partial derivative of the data term is computed as

follows:

−∂ log p(y(t)|φ(t))

∂φ(t)
= β

[
− (I(x)−min)2 + (I(x)−mout)

2
]
~N (3.8)

where ~N is the outward curve normal. Also, the partial derivative of the coupled

shape prior term is given by

∂ log p(φ(t)|φ′)
∂φ(t)

=
1

p(φ(t)|φ′)
1

σ2

1

n
n∑
i=1

k(dL2(φ
(t), φ

(t)
i ), dL2(φ

′, φ
(t−1)
i ), σ)(φ

(t)
i − φ(t)).

(3.9)

We start the segmentation with the level set representation of an initial curve

and update the curve with the gradient of the energy function in Equation (3.5).

Finally, when the curve converges at some point, C(t) can be found from φ(t) by

thresholding at zero.

3.2.2 Generalized version

In the previous section, we developed a preliminary approach which was mo-

tivated by incorporating shape information from previous time points to segment

an object in the current time point. In particular, a coupled shape prior term has

been constructed (learned from manually segmented training data) for providing

the shape force in the curve evolution process and the resulting energy function has

been minimized using gradient descent and level sets.

Up to this point, we had the assumption that we are provided with the perfect

segmentation of the shape of the object in the previous time point. This assumption

led to the elimination of p(C(t−1)|y(t−1)) term from our formulation, where C(t−1) is

the boundary of the object at time t−1 and y(t−1) is the intensity image of the object

at time t − 1. However, this assumption is clearly not applicable in practice. We

now describe how we extend our preliminary study by using imperfect segmentations

28



from previous time points and characterizing the posterior distribution of the curve.

This extends our framework to a complete dynamic estimation setting.

To have a set of more comprehensive assumptions, let us redefine our training

dataset as C(t) = {C(t)
1 , C

(t)
2 , . . . , C

(t)
m }, where C

(t)
i is the boundary of the ith training

shape at time t and m is the number of the shapes. Note that, as mentioned before,

the training shapes in all time points have already been aligned to remove the shape

variations due to pose differences.

Similar to our derivation in the preliminary work, we can construct the posterior

probability density function of C(t) given y1:(t−1) and y(t), where y1:(t−1) denotes all

the intensity images from time point 1 to (t−1) and y(t) denotes the intensity image

at time point t, using Bayes’ rule and assuming that y1, . . . , y(t) are independent

conditioned on the corresponding shape boundaries. Now we can write:

p(C(t)|y1:(t))

= p(C(t)|y1:(t−1), y(t))

=
p(y(t)|C(t))p(C(t)|y1:(t−1))

p(y(t)|y1:(t−1))

(3.10)

We also can write:

p(C(t)|y1:(t−1)) =

∫
p(C(t), C(t−1)|y1:(t−1))dC(t−1)

=

∫
p(C(t)|C(t−1))p(C(t−1)|y1:(t−1))dC(t−1)

(3.11)

p(y(t)|y1:(t−1)) can also be computed by:

p(y(t)|y1:(t−1)) =

∫
p(y(t), C(t)|y1:(t−1))dC(t)

=

∫
p(y(t)|C(t))p(C(t)|y1:(t−1))dC(t)

(3.12)

By plugging in the Equation (3.11) and (3.12) in Equation (3.10), we obtain:

p(C(t)|y1:(t))

=
p(y(t)|C(t))

∫
p(C(t)|C(t−1))p(C(t−1)|y1:(t−1))dC(t−1)∫

p(y(t)|C(t))p(C(t)|y1:(t−1))dC(t)

(3.13)
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which is the more general version of the formulation we had in Equation (3.2).

In the new setting, our aim is to estimate the probability density obtained in

Equation (3.13). The framework of particle filtering enables us to approximate a

state distribution, p(x) , using a set of weighted samples and update to a new state

distribution at each time step using a recursive model. However, it is usually difficult

or even impossible to directly and efficiently sample from the posterior distribution.

Therefore, an importance density, q(x), is proposed which is easier to sample from.

Let us assume that the sample-based representation of the posterior distribution

in Equation (3.13) at time point t− 1 is provided. In other words, a set of samples

(particles) as C(t−1) = {C(t−1)
1 , C

(t−1)
2 , . . . , C

(t−1)
n } are drawn from the posterior dis-

tribution in Equation (3.13) at time point t−1, where C
(t−1)
i denotes the ith sample

at time t− 1, i ∈ 1, . . . , n. In order to approximate p(C(t)|y1:(t)) we can propose an

importance density such that it factorizes as:

q(C(t)|y1:(t)) =

q(C(t)|C(t−1), y1:(t))q(C(t−1)|y1:(t−1))
(3.14)

Therefore, the particle set at time t can obtained by augmenting particles set

at t − 1 with the particles drawn from the importance density q(C(t)|C(t−1), y1:(t))

[63]. By weighting the newly obtained particles, we can provide an estimate for the

posterior density p(C(t)|y1:(t)) which is expressed as follows:

p(C(t)|y1:(t)) =
n∑
i=1

W
(t)
i δ(C(t) − C(t)

i ) (3.15)

where W
(t)
i is the normalized importance weights of the ith particle is defines as:

W
(t)
i = W

(t−1)
i

p(y(t)|C(t)
i )p(C

(t)
i |C

(t−1)
i )

q(C
(t)
i |C

(t−1)
i , y(t))

(3.16)

This equation provides the weights of each particle in the particle set C(t−1) in

a recursive fashion.
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Notice that the recursive weight in Equation (3.16) is derived assuming the

boundaries to be a hidden Markov process, the observations to be independent

conditioned on the corresponding shape boundaries, and the importance density to

be dependent only on the previous boundary and current observation.

Now we can update from p(C(t−1)|y1:(t−1)) to p(C(t)|y1:(t)) by sampling C
(t)
i from

q(.|C(t−1)
i , y(t)) and calculating the weights using Equation (3.16).

We now have a recursive model to estimate the desired posterior distribution.

An issue that needs to be considered at this point, is the choice of the importance

density which is critical to design a successful particle filter. One of the approaches

that is useful to do this is to propose a Gaussian density with a mean dependent on

the current observation [64]. We proposed this density as a Gaussian distribution

with a standard deviation σ below:

q(C(t)|C(t−1), yt) = N(f(C(t−1), y(t))), σ) (3.17)

where f(C(t−1), y(t)) is defined as a function of C(t−1) and y(t) and represents a curve

evolution operation on each sample at time point t− 1.

As mentioned before, in order to estimate the posterior density at t generating

samples from q(.|C(t−1)
i , y(t)) is required. Our proposed importance density suggests

that each sample at time point t − 1 (which is a binary image) will be refined to

a curve using the observation (the intensity image) at time point t and yields to

samples at time point t.

In order to implement it we perform L iterations of gradient descent on the

energy function we introduced in Equation (3.5), where the sample at time point

t − 1 and observation at time point t are served as the segmented boundary in

the previous time point and the test image in the current time point, respectively.

The energy function in Equation (3.5) employs the coupled shape priors. Thus,

the dynamics of the model is exploited through our proposed importance density.

Adding the step of curve evolution, enriches our method in generating more likely

particles.

Another issue that arises in designing our particle filter based approach is to

generate samples in the first time point, in other words, estimating p(1). To address

this issue, we use the approach proposed by [65] which introduces a MCMC based
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sampling approach.

Now we describe how our overall algorithm works.

� Generating sufficiently many samples for the posterior density in the first time

point (sample from p(1)), using the method in [65].

� Computing weights for generated samples as p(1)

q(1)
, which indicates the amount

of contribution that each sample has in the estimation process.

� Providing an estimation for p(1) using Equation (3.15).

� Applying curve evolution to each samples by minimizing the energy function

proposed in [66] and described in Section (3.2.1) using gradient descent.The

gradient flow of this energy function is the sum of the two terms, one based on

the data term and the other based on the coupled shape prior term. Therefore,

temporal dynamic evolution of the shapes is considered in generating samples

for approximating the posterior distribution in the next time point.

� Calculating the weights for the newly generated samples using the recursive

relationship in Equation (3.16).

� Estimating the posterior distribution based on the weighted samples.

The sampling, weight computation, and posterior density estimating steps can

be repeated up to the desired time points. It should be noted that, in practice,

the estimation step mentioned in the above algorithm is performed by obtaining

the weighted average of the samples. The reason of choosing weighted averaging

rather than MAP estimation is that our proposed algorithm is able to distinguish

the shape class of the object to be segmented and samples are generated within the

detected shape class. Therefore, weighted averaging is more preferable.
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Chapter 4

Experimental Results

In this chapter we evaluate the performance of our proposed segmentation algo-

rithm which we described in Chapter 3. We perform two sets of experiments based

on preliminary version and generalized version of our work described in the previous

chapter and present the results on three different datasets, a synthetic dataset, a

hand gesture dataset, and a dendritic spine dataset. In the experiments, we demon-

strate the effects of coupled shape priors which we introduced as dynamic shape

priors in comparison with the Chan and Vese force in [9] and the static shape pri-

ors proposed in [17]. In order to demonstrate the performance of our method, we

provide visual results along with quantitative analysis.

In the following sections, first we introduce our datasets and then we present the

experimental results.

4.1 Datasets

As we already stated, there are three datasets on which the performance of our

approach has been evaluated. The following is the description of each dataset.

� Synthetic dataset: This dataset includes 35 intensity images and their cor-

responding binary images in 4 consecutive time points. There are 4 classes of

shapes, 8 shapes in class 1, 8 shapes in class 2, 11 shapes in class 3 and 8 shapes

in class 4. The objects go through deformation in the future time points and

turn into a different shape by the end of the 4th time point. In order not to

face any pose difference, the dataset has been created such that images are

aligned. some examples of this dataset are shown in Figures (4.1), (4.2), (4.3),

and (4.4).
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Figure 4.1: Samples of binary images in the synthetic dataset (class 1): each row

depicts a shape of a single object in 4 different time points.

Figure 4.2: Samples of binary images in the synthetic dataset (class 2): each row

depicts a shape of a single object in 4 different time points.
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Figure 4.3: Samples of binary images in the synthetic dataset (class 3): each row

depicts a shape of a single object in 4 different time points.

Figure 4.4: Samples of binary images in the synthetic dataset (class 4): each row

depicts a shape of a single object in the 4 different time points.
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As it can be in Figures (4.1), (4.2), (4.3), and (4.4), the difference between

shapes within each class is their thickness.

Corresponding to each binary image, we generate its intensity image by adding

noise. We have manipulated some of the instances further in order to represent

occlusion and data loss. The challenge that we need to overcome in this

dataset is the high level of noise, highly deforming shapes, multi-modal shape

distribution, occlusion, and data loss. Later on we show the performance of

the proposed algorithm on this generated test dataset. Figures (4.5), (4.6),

(4.7), and (4.5) show some samples of the test dataset.

Figure 4.5: Samples of intensity images in the synthetic dataset (class 1): each row

depicts a shape of a single object in 4 different time points.
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Figure 4.6: Samples of intensity images in the synthetic dataset (class 2): each row

depicts a shape of a single object in 4 different time points.

Figure 4.7: Samples of intensity images in the synthetic dataset (class 3): each row

depicts a shape of a single object in 4 different time points.
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Figure 4.8: Samples of intensity images in the synthetic dataset (class 4): each row

depicts a shape of a single object in the 4 different time points.

� Hand gesture dataset: In order to construct this dataset, we have used

Thomas Moeslund’s Gesture Recognition Database which is used in [67]. In

this dataset we have chosen 77 images in 2 time points and 2 image classes. 40

images belong to class 1 and 37 belong to class 2. The deformation dynamics

are defined by us in this dataset. In each image a hand gesture is depicted and

it is assumed that if a hand shows a specific gesture in the first time point, it

will show a corresponding gesture in the next time point. We also generated a

training dataset including the binary images of the images in the database. All

the images have been aligned manually to prevent pose differences. Examples

of this dataset are depicted in Figure (4.9).
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(a) Shape class 1 (b) Shape class 2

Figure 4.9: Samples of binary images (training dataset) in the hand dataset: each

row depicts a shape of a single object in 2 different time points.

Figure (4.10) shows samples from the test dataset.

(a) Shape class 1 (b) Shape class 2

Figure 4.10: Samples of intensity images (test dataset) in the hand dataset: each

row depicts a shape of a single object in 2 different time points.

� Dendritic spine dataset: Dendritic spines are small protrusions covering

the surface of a dendrite and have two main parts, spine head and spine neck

[68]. To construct this dataset we have used 2-photon microscopy images

of a dendrite in consecutive time points an example of which is shown in

Figure (4.11). These images have been provided by the Neuronal Structure and

Function Laboratory of the Champalimaud Neuroscience Foundation, Lisbon.

The spines are detected by a domain expert in temporal images, and we center-

crop and align them manually to generate our test dataset. The training

dataset is also constructed using the manually segmented spines by the expert.
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Some examples are shown in Figure (4.12). Figure (4.12a) and (4.12b) present

samples from the training and the test dataset, respectively. In this dataset we

deal with challenging real data which can provide a more realistic evaluation of

our proposed method. 2-photon microscopy images are low quality images and

very challenging to deal with in a segmentation task. The reason is that, the

dendrite and the spine appear to have similar intensity range in these images.

Moreover, in the case of spines with neck, the spine neck does not exhibit

strong contrast in comparison to the background. Therefore, a segmentation

method can fail to capture the actual boundary of the spine.

Figure 4.11: 2-photon microscopy images of a dendrite in consecutive time points.
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(a) Binary images (training dataset) (b) Intensity images (test dataset)

Figure 4.12: Samples of corresponding binary and intensity images in the dendritic

spine dataset: each row depicts a shape of a single object in the 2 different time

points.

4.2 Experimental results

In the following sections we provide experimental results, both visual and quan-

titative, in order to demonstrate the performance of our algorithm. We perform two

set of experiments, which are based on preliminary and generalized version of the

work described in the 3 and presented in Section (4.2.1) and (4.2.2), respectively.

We obtain quantitative results based on the Dice Score measurement [69]. Dice

score measures the similarity between two sets X and Y . These sets are binary

images representing the ground truth and segmentation results of the segmentation

algorithm. Dice score outputs values between 0 and 1 where 1 indicates perfect

match between X and Y . Dice score is computed as follows:
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D(X, Y ) =
2|X ∩ Y |
|X|+ |Y |

. (4.1)

4.2.1 Results based on preliminary work

Our preliminary approach has been evaluated on the spine dataset. In Table

(4.1), we present the quantitative (Dice Score) results obtained by applying our

proposed approach on the spine dataset and compare these results with Kim’s ap-

proach [17].
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Table 4.1: Dice Score results on the spine dataset

Preliminary Method Kim et al. [17]

Spine 1 0.6386 0.6379

Spine 2 0.7520 0.7470

Spine 3 0.6343 0.6366

Spine 4 0.7847 0.6727

Spine 5 0.6627 0.6655

Spine 6 0.7937 0.6673

Spine 7 0.6689 0.6906

spine 8 0.7905 0.6789

Spine 9 0.7488 0.6414

Spine 10 0.7414 0.6643

Spine 11 0.7536 0.6693

Spine 12 0.7299 0.6435

Spine 13 0.7703 0.6753

Spine 14 0.7523 0.5977

Spine 15 0.6872 0.7057

Spine 16 0.6908 0.7145

Spine 17 0.6965 0.5955

Spine 18 0.8041 0.7352

Spine 19 0.8079 0.6626

Spine 20 0.7230 0.6473

Spine 21 0.7963 0.6566

Spine 22 0.7903 0.7696

Spine 23 0.7162 0.6700

Average 0.7362 0.6715

We also provide some visual results obtained by the proposed approach and the

approach of Kim et al. [17] (see Figure 4.13). Also the ground truth can be found

in the same figure to have a more precise comparison between the performances.
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Figure 4.13: Examples of visual segmentation results: The first row is obtained by the preliminary version. The second row is obtained

by Kim’s method. The third row is the ground truth.
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The visual results also demonstrate that the proposed approach is more successful

in firstly, identifying the shape class, secondly providing a better representation of

the spine’s shape and obtaining the boundaries.

4.2.2 Results based on generalized work

We present the results obtained by the generalized version of our work on the

three datasets.

4.2.2.1 Synthetic dataset

As we mentioned earlier, the challenges we face in this dataset is the high level of

noise which causes the boundaries of the object not to appear clearly in the image.

In this section we present the results obtained by applying our proposed approach

on the synthetic dataset. We compare these results with Chan and Vese algorithm

[9] and Kim et al. [17]. The quantitative results are provided in the Tables (4.2)

and (4.3) :
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Table 4.2: Dice Score results on synthetic dataset

Chan and vese [9] Kim et al. [17] Generalized Method

image 1 0.1045 0.5747 0.6453

image 2 0.0721 0.6378 0.6166

image 3 0.1323 0.5926 0.6365

image 4 0.0994 0.7205 0.7051

image 5 0.1681 0.7553 0.6950

image 6 0.2311 0.6205 0.6150

image 7 0.2574 0.7569 0.7038

image 8 0.6633 0.1942 0.6907

image 9 0.2412 0.5021 0.7268

image 10 0.1077 0.7112 0.7294

image 11 0.1044 0.7421 0.7588

image 12 0.1859 0.8486 0.8076

image 13 0.2481 0.7411 0.8807

image 14 0.2386 0.9102 0.8200

image 15 0.2517 0.8912 0.6582

image 16 0.3141 0.8079 0.8370

image 17 0.1888 0.5815 0.6243

image 18 0.6269 0.0821 0.6169

image 19 0.6344 0.0869 0.6223

image 20 0.0805 0.6856 0.6316

image 21 0.0987 0.7074 0.6484

image 22 0.6374 0.1191 0.6758

image 23 0.6907 0.1357 0.7097
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Table 4.3: Dice Score results on synthetic dataset

Chan and vese [9] Kim et al. [17] Generalized Method

image 24 0.4327 0.5291 0.8213

image 25 0.1498 0.6034 0.8661

image 26 0.2846 0.6737 0.8668

image 27 0.4327 0.4322 0.7983

image 28 0.1367 0.5542 0.6930

image 29 0.1178 0.4021 0.6938

image 30 0.2326 0.7083 0.7273

image 31 0.1627 0.7162 0.8212

image 32 0.1995 0.7462 0.8859

image 33 0.2246 0.7248 0.8599

image 34 0.1814 0.7629 0.7517

image 35 0.7517 0.2964 0.8532

Average 0.282 0.5341 0.7407

Here, visual results are provided in Figure (4.14). In these figures, we provide

the results obtained by the Chan and Vese followed by the result obtained by the

Kim et al.. Later on, the results of our proposed approach are presented. Lastly,

the ground truth is provided.
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(a) The results obtained by Chan and Vese method

(b) The results obtained by Kim et al.’s method

(c) The results obtained by the proposed method

(d) The ground truth

Figure 4.14: Examples of visual segmentation results on 4 different test images in

the synthetic dataset

By comparing the provided results, we can see that the Chan and Vese method

can not handle the high level of noise in the images and terminates the curve evolving

process after a few iterations (approximately 50 iterations in our case). The Kim’s

approach can continue evolving the curve using the shape priors, however, it fails

to evolve the curve towards the true class of the shape. The proposed approach is

successful in detecting the shape class and handling noise.

In order to demonstrate more advantages of our proposed algorithm, we have

performed more experiments based on different scenarios which are provided in the

following.
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� Scenario 1

In this problem, we consider that we are provided with a test image with missing

data. An example of such test image and its corresponding ground truth can be

seen in the Figure (4.15).

Figure 4.15: Sample test image with data loss and its corresponding ground truth

The result of the proposed algorithm and is shown in the Figure (4.16):

Figure 4.16: The result of the proposed algorithm on a test image with data loss :

from left images are estimated curves for the shape in 2nd, 3rd, and 4th time points,

respectively.

As it can be seen, the proposed approach is successful in capturing the missing

part of the shape.

� Scenario 2

Let us assume that we have two test images with missing parts and they are

similar to each other in terms of shape and size. An example of this case in shown

in Figure (4.17). The result of our algorithm on the similar looking images are

provided in Figure (4.18).
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Figure 4.17: Similar looking test images after data loss, which belong to different

shape classes and their corresponding ground truth. First and second row are shape1

and shape 2, respectively

Figure 4.18: The result of the proposed algorithm on Similar looking test images

after data loss, which belong to different shape classes. First and second row are

shape1 and shape 2, respectively. Their estimated curves in the previous time points

are also provided.

As it can be seen in Figure 4.18, despite the similarity in the data, our proposed

algorithm can identify the class of each object in the test images and evolve the

curve towards the corresponding shape class.
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� Scenario 3

In this section, our aim is to evaluate the performance of the algorithm when we

have data loss in two or more consecutive time points in the test images.

Let us assume that segmenting the shape in 4th time point is desired and the

data is partially missed. Also, the data that we are provided with in the 3d time

point is partially missed. An example of this scenario is provided in Figure (4.19).

Figure 4.19: A test image with data loss in two consecutive time points: The first

and second rows represent the data of the same object in 3d and 4th time point

beside their corresponding ground truth

According to the results shown in Figure (4.20) obtained by our algorithm, the

proposed method is successful in segmenting the test data in 4th time point, although

the data loss occurred in consecutive time points.

Figure 4.20: The segmentation result on a test image with data loss in two consecu-

tive time points. Its estimated curves the in previous time points are also provided.

51



� Scenario 4

In this scenario, we deal with occluded test images. Examples are shown in the

Figure 4.21

Figure 4.21: Examples of partially occluded the test images beside their correspond-

ing ground truth

Figure 4.22, presents the results produced by our proposed method, which demon-

strates the capability of the proposed method in coping with occluded images.

Figure 4.22: The segmentation result on partially occluded test images. Their

estimated curves in the previous time points are also provided.
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4.2.2.2 Hand dataset

The hand dataset is a real dataset, the deformation dynamics are defined syn-

thetically though, and evaluating the proposed algorithm’s performance on real data

is beneficial. As already shown in Figure 4.10a and 4.10b, we do not deal with very

noisy images in this dataset. Therefore, we expect other algorithms such as Chan

and Vese or Kim et al. to be capable of delivering promising results, yet they fail

to capture the accurate boundary of the hand in case of data loss. The proof of

our assumption is provided in Figure (4.23) and Figure (4.24) . In Figure (4.23), all

three methods (Chan and Vese, Kim et al. , and the proposed method) segment the

hand shape successfully. The Figure (4.24) depicts a test image of which some parts

are lost and its corresponding ground truth. Despite the similarity of the shape to

the hand gestures in class 1, the test dataset is coming from class 2. The results of

all the three methods are shown in Figure (4.25) and as expected the shape class

of the object to be segmented is indistinguishable for Chan and Vese and Kim et

al. However, the proposed method evolved the curve towards the right shape class

using the dynamic shape priors.
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Figure 4.23: Examples of visual segmentation results on the hand dataset. First and

second rows are obtained by Chan and Vese and Kim et al. method respectively.

Each row represents a single hand in two different time points. The last row is the

corresponding ground truth.

Figure 4.24: A test image with a missing data in the hand dataset and the corre-

sponding ground truth
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Figure 4.25: Visual segmentation results on a test image with missing data in the

hand dataset: First, second and third images from left to right are obtained by Chan

and Vese, Kim et al, and the proposed method respectively.

4.2.2.3 Dendritic Spine dataset

We have performed experiments based on our generalized formulation on the

spine dataset. The goal is to we can demonstrate a better evaluation of our pro-

posed dynamic method on real data with real dynamics. Moreover, it can provide

a comparison between the preliminary and the generalized approach. However, a

significant difference between their performance is not expected, since the general

idea behind them is similar and they meant to be developed for distinct scenarios

and applications (as mentioned earlier, the preliminary approach has access to the

perfect segmentation in the previous time point and the generalized approach does

not). The main difference that is expected to result in better performance of gener-

alized version is that it employs the particle filtering which empowers it to exploit

the shape variations and provide a better estimation of the shape of the object to

be segmented. Table (4.4) and Figure (4.26) present the results which verify of our

discussion as well.
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Table 4.4: Dice Score results on the spine dataset

Preliminary Method Generalized Method

Spine 1 0.6386 0.6379

Spine 2 0.7520 0.7870

Spine 3 0.6343 0.5367

Spine 4 0.7847 0.7321

Spine 5 0.6627 0.6621

Spine 6 0.7937 0.8213

Spine 7 0.6689 0.7541

spine 8 0.7905 0.8123

Spine 9 0.7488 0.7611

Spine 10 0.7414 0.7533

Spine 11 0.7536 0.7892

Spine 12 0.7299 0.7961

Spine 13 0.7703 0.8369

Spine 14 0.7523 0.8191

Spine 15 0.6872 0.7057

Spine 16 0.6908 0.7694

Spine 17 0.6965 0.7855

Spine 18 0.8041 0.8566

Spine 19 0.8079 0.8712

Spine 20 0.7230 0.7325

Spine 21 0.7963 0.7721

Spine 22 0.7903 0.8035

Spine 23 0.7162 0.7584

Average 0.7362 0.7632
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Figure 4.26: Examples of visual segmentation results: The first row is obtained by the preliminary version of the work. The second row

is obtained by the generalized version of the work. The third row is the ground truth.
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Chapter 5

Conclusion

5.1 Summary

The problem of segmenting deformable objects in time series images is encoun-

tered in many automated image analysis algorithms. It can turn into a very chal-

lenging task in cases of the high level of noise, weak exhibition of contrast between

the foreground region of interest and the background, missing data and occlusion.

Such challenges motivate the incorporation of prior knowledge into the segmentation

algorithm.

In case of deformable objects, using a prior which just favors the length of the

curve or a static shape prior appears to be insufficient. Imposing a prior based on

the deformation dynamics should be provided in order to obtain promising results.

Also, there are many applications in which the object to be segmented belongs to

different shape categories. Thus, an effective segmentation algorithm should be

capable of handling multi-modal prior shape densities as well.

In this thesis, we developed a methodology to address these issues. We have pro-

posed a segmentation algorithm for deformable objects that employs the shape of the

object in the previous time point, which we refer to as couple shape priors. Proposed

coupled shape prior can learn the dynamics of the deformation non-parametrically

and enhance the segmentation results by incorporating it in an active contour-based

segmentation process. Also, it assists in evolving the curve towards the right class

of shapes. In order to generalize our approach, we have proposed a sampling based

algorithm using Sequential Monte Carlo (Particle Filters). By involving curve evo-

lution, we generate samples based on the current observation in order to obtain

the most accurate samples representing the posterior distribution. Afterwards, an
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estimation of the posterior distribution is provided using weighted samples.

5.2 Future Work

In the following, we introduce some potential topics on which one can focus on

taking this work further and suggest ways to increase the accuracy of the segmen-

tation outputs.

As the main contribution of our work, we have proposed a dynamic shape prior

which is capable of utilizing the dynamics of temporal shape deformation. Alterna-

tive shape priors can be introduced in order to learn and incorporate these dynamics

into the segmentation process. This would lead to more sophisticated importance

densities in the framework of particle filters as well.

As discussed in Chapter (4), training data imposes some constraints regarding

learning the prior information. By introducing a training data augmentation ap-

proach, one can improve the ability of modeling the dynamics.

In our approach, L2 distance between level set representation of the shapes has

been used in order to find the distances between shapes. L2 distance can be re-

placed by any other distance measure which is more sophisticated in computing the

similarities between shapes.

Incorporating other kinds of prior knowledge than shapes is another way of

improving the proposed algorithm. The intensity information in the previous time

points can be favorable in some applications and can increase the robustness of the

segmentation algorithm.

One can consider upgrading this work to a complete tracking algorithm by adding

motion modeling as well. Since the proposed algorithm can handle the occlusion

issue and benefits from the temporal deformation dynamics, it can easily fit in a

tracking framework.

In the present work, the issues related to the effect of pose difference is not

addressed and all the test and training images are assumed to be aligned to remove

the shape variations for sake of simplicity. There have been approaches proposed to

address this problem such as [70], which incorporates pose priors. This approach or

similar ones can be integrated in our algorithm to update the pose of the evolving

curve in each iteration.
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Introducing statistical shape knowledge into the mumford-shah functional,”

International journal of computer vision, vol. 50, no. 3, pp. 295–313, 2002.

[43] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape

models-their training and application,” Computer vision and image understand-

ing, vol. 61, no. 1, pp. 38–59, 1995.

[44] C. Kervrann and F. Heitz, “Statistical deformable model-based segmentation

of image motion,” IEEE Transactions on Image Processing, vol. 8, no. 4, pp.

583–588, 1999.

[45] D. Cremers, T. Kohlberger, and C. Schnörr, “Shape statistics in kernel space
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mumfordshah based segmentation,” in European Conference on Computer Vi-

sion. Springer, 2002, pp. 93–108.

[57] Y. Rathi, S. Dambreville, and A. Tannenbaum, “Statistical shape analysis using

kernel pca,” in Image processing: algorithms and systems, neural networks, and

65



machine learning, vol. 6064. International Society for Optics and Photonics,

2006, p. 60641B.

[58] D. Cremers, N. Sochen, and C. Schnörr, “Multiphase dynamic labeling for
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