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Abstract Research on dynamics and stability of machin-

ing operations has attracted considerable attention. Cur-

rently, most studies focus on the forward solution of

dynamics and stability in which material properties and the

frequency response function at the tool tip are known to

predict stable cutting conditions. However, the forward

solution may fail to perform accurately in cases wherein

the aforementioned information is partially known or var-

ies based on the process conditions, or could involve sev-

eral uncertainties in the dynamics. Under these

circumstances, inverse stability solutions are immensely

useful to identify the amount of variation in the effective

damping or stiffness acting on the machining system. In

this paper, the inverse stability solutions and their use for

such purposes are discussed through relevant examples and

case studies. Specific areas include identification of process

damping at low cutting speeds and variations in spindle

dynamics at high rotational speeds.

Keywords Inverse stability � Machining dynamics � High
speed milling � Process damping � Spindle dynamics

1 Introduction

The analysis and simulation of machining dynamics and

stability constitutes one of the mostly widely examined

topics in machining research since the first cutting tests by

Taylor [1]. In machining, chatter is a major limitation that

is handled and avoided by identifying stable cutting con-

ditions. Stability analysis is the most widely used analytical

tool in extant studies [2, 3] in which the prediction of

stable cutting conditions leads to significant improvements

in machining performance and part quality. Most previous

studies rely on the forward solution of the stability problem

in which the frequency response function (FRF) at the tool

tip and the material properties are well known.

The first effort to predict stable cutting conditions

commenced with studies on the simplest case of orthogonal

cutting by Tlusty and Polacek [4], and Das and Tobias [5].

In an early study on modeling dynamics and stability of flat

end milling, Koenigsberger and Tlusty [6] utilized the

orthogonal cutting stability model on milling by defining

an average cut direction and average number of teeth in the

cut. Although this was a rough estimate for general milling

conditions, it provided a better understanding of a solution

for milling stability. Opitz and Bernardi [7] subsequently

improved on the approach by introducing a varying

directional coefficient that accounted for the sinusoidal

variation in the oriented FRFs along the chip thickness and

tangential directions. The first attempt to predict stability

limits in end milling was presented by Sridhar et al. [8]. It

provided details on the fundamentals of the modern milling

stability model in the frequency domain in which they

included the effect of different harmonics of the dynamic

milling forces [8]. They used the correct orientation of

cutting forces as opposed to applying an average direction.

In order to accurately predict the stability limits in end
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milling, Floquet’s theorem and Nyquist stability criterion

were used by Minis et al. [9], and this was followed by the

first analytical solution to the milling stability problem by

Altintas and Budak [2]. With respect to complicated end

milling cases in which irregular cutting edges were uti-

lized, Insperger and Stepan [3] proposed the successful

application of the semi-discretization method.

Process damping phenomenon is mostly emphasized as

the most common reason for variation and uncertainties in

machining dynamics at low cutting speeds [10]. In early

studies, the process damping forces were modeled as a

function of the dynamic cutting force coefficients [10], and

this led to inconsistent data and analysis. Subsequently, it

was related to the indentation between the tool flank face

and the workpiece undulations were indicated as the main

source of process damping [11, 12]. This approach led to

more consistent modeling efforts. Nevertheless, the

dynamics and stability problem is handled by using the

forward solution in most extant studies. The first inverse

stability solution for modeling the process damping was

proposed by Budak and Tunc [13], and the average process

damping coefficients were calculated in terms of experi-

mental stability limits.

Generally, tool tip FRF is measured at the idle state of

the spindle. This may lead to inaccuracies to predict chatter

stability limits given variations in spindle dynamics and

especially if elements with high inertia rotate at high

spindle speeds. Under such operational conditions, bearing

stiffness and damping may change due to gyroscopic

moments, centrifugal forces, and thermal expansions

[14–16]. Variations in bearing parameters result in devia-

tions in the tool point FRF, and thereby in the stability of

machining operations. Additionally, spindle shaft, holder,

and tool dynamics may change due to the centrifugal forces

and gyroscopic moments, and each mode may separate into

backward and forward modes [17, 18]. Furthermore, the

drawbar mechanism is also affected by high rotational

speed conditions [19], and the drawbar force decreases due

to the centrifugal force leading to decreases in the contact

stiffness at the spindle-holder interface. Therefore, it is

necessary to consider the variations in the dynamics of

each component in modeling to accurately predict in-pro-

cess FRFs. In an early study, Kruth et al. [20] proposed an

inverse stability solution to identify the FRF (especially at

high frequency components) and obtain stability lobes at

high speed milling conditions without measuring FRF. In

addition to this identification method, they proposed an

approach to select optimal cutting parameters for chatter-

free material removal. Kilic et al. [21] used an inverse

stability solution approach to extract the modal parameters

of machine tools that could vary due to thermal issues and

rotational affects. They focused on investigating the effects

of tool wear on milling stability. They considered several

cases including the single mode and symmetrical modes.

Subsequently, Suzuki et al. [22] extended the approach to

miniature milling tools with small diameters, such as

6 mm, in which the direct measurement of tool tip

dynamics through impact hammer tests might not be

practically feasible. They used chatter tests to identify the

tool tip dynamics in these cases.

Finite element (FE) is the most commonly used method

for the modeling of spindle units. In FE models, the spindle

shaft, tool holder, and tool are modeled by using Timosh-

enko beam elements and coupled with the nonlinear bear-

ing models in which the effects of centrifugal forces and

gyroscopic moment are included. Although several spin-

dle-bearing models are proposed in extant studies

[19, 23–25], accurate prediction continues to constitute a

challenge, and may not be possible in a few cases. One of

the main reasons for this is that several machine tool users

do not possess necessary information such as the spindle

geometry and bearing preload amounts and their variations

with speed. Furthermore, the bearing dynamics can change

at some time during the operation.

Due to the limitations in modeling approaches, there are

several experimental studies that focus on identifying the

aforementioned variations leading to uncertainties in

machine tool dynamics under operational conditions

[26–32]. A similarity of these experimental studies is that

they require complicated experimental setups and the

solution of signal processing problems. However, all these

limitations are eliminated in a recent study proposed by

Ozsahin et al. [33] in which chatter tests are directly used

for the identification of tool point FRF under operational

conditions. They implemented the inverse stability solution

method to identify tool point FRF and showed that tool

point FRF under operational conditions could be accurately

identified without complicated experimental setups.

Following a summary of the efforts on modeling and

simulation of dynamics and stability of machining opera-

tions, the sources for uncertainties are also indicated. The

major factors leading to uncertainty in machining dynamics

correspond to process damping, and varying spindle

dynamics, which may require either complicated test setups

or complicated process models in forward stability solution

approaches. However, the use of inverse stability solutions

may lead to significant simplifications in both experimental

and modeling efforts. In this study, previously proposed

inverse stability approaches are summarized in a compre-

hensive manner for this purpose. Although, the study does

not provide any new experimental results, the aim of the

study is to provide an understanding on the use of an

inverse stability solution in dynamics and stability analysis.

Henceforth, the study is organized as follows. The

dynamics and stability of turning and milling processes are

summarized in the next section. This is continued with the
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use of an inverse stability solution in a low cutting speed

region. Subsequently, the inverse stability solution is used

to identify uncertainties in high rotational speed regions

due to the variations in spindle dynamics. The conclusions

are then discussed.

2 Dynamics and stability of machining operations

The dynamics and stability of machining operations are

mostly examined with respect to two main groups, namely

turning and milling in which the fundamental difference

involves the periodicity of the cutting process. In this

section, the dynamics and stability of the aforementioned

machining processes are briefly discussed to emphasize the

use and importance of inverse stability solutions to deal

with uncertainties.

2.1 Orthogonal turning

A single degree of freedom (SDOF) orthogonal cutting

system is represented in Fig. 1 in which the modal stiffness

k, structural damping c, and modal mass m, are depicted in

conjunction with basic cutting parameters such as the

cutting speed V and feed rate.

The equation of motion for the SDOF orthogonal cutting

system is expressed in terms of the modal parameters as

m€x tð Þ þ c _x tð Þ þ kx tð Þ ¼ Fx tð Þ;
Fx tð Þ ¼ Kfb h0 � x tð Þ þ x t � sð Þð Þ;

�
ð1Þ

where h0 is the static chip thickness, x(t) the instantaneous

displacement, Fx(t) the instantaneous cutting force in chip

thickness direction. In orthogonal cutting, low spindle

speeds are typically utilized, and thus the absolute stability

limit is of primary interest. Following mathematical

manipulations and converting the equation of motion from

time domain to the frequency domain, the absolute stability

limit alim, of the orthogonal cutting process is derived in

terms of the cutting force coefficient Kf , and the minimum

of the real part of the complex frequency response function

Re(G)min, as follows

alim ¼ � 1

2KfRe Gð Þmin

: ð2Þ

After re-writing the real part of the frequency response

function in Eq. (2) in terms of the modal parameters, the

absolute stability limit is approximated for low damping

systems, i.e., f\10%, and is expressed as

alim � 2kf
Kf

: ð3Þ

In Eq. (3), the absolute stability evidently changes when

either the cutting force coefficient or the modal parameters

change. The variation in the cutting force coefficient may

depend on the cutting speed or the feed rate based on the

cutting conditions, and this may be calibrated. It may not

be straightforward to predict and account for any variation

in the stiffness or the damping ratio. Furthermore, given the

uncertainty or lack of knowledge of the aforementioned

parameters, the accurate prediction of the absolute stability

limit is almost impossible.

Extant studies indicate that the variation of stiffness is

associatedwith the variation in the bearing stiffness [15]while

the variation in the damping coefficient is related to the pro-

cess damping [10] that arises at low cutting speeds. Never-

theless, the quantification of these variations is immensely

important in several studies that may require the inverse

solution of the stability equation as discussed in Sect. 4.

2.2 End milling

In milling, both the absolute stability limit and the stability

pockets are of interest for improved process productivity

given the interrupted cutting nature of the process and since

the diameter of the rotating counterpart, i.e., cutting tool, is

significantly lower. A cross sectional view of a helical end

mill with flexibility in the x and y directions is shown in

Fig. 2.

The corresponding equation of motion in the time

domain for this type of a 2-DOF system is expressed in

terms of the modal parameters and the instantaneous cut-

ting forces in two directions as

mu€uþ cu _uþ kuu ¼ Fu tð Þ; u ¼ x; y; ð4Þ

where ku is the modal stiffness, cu the modal damping

coefficient, mu the modal mass, _u the vibration velocity,

ü the vibration acceleration and Fu(t) the dynamic cutting

force along direction u. In Eq. (4), the equations of motion

are shown as decoupled in x and y directions although they

are coupled along the chip thickness and tangential direc-

tions [2]. Subsequently, they are included in the frequency

domain solution in the form of directional coefficients.
Fig. 1 SDOF orthogonal cutting and flank-wave contact [13]
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In a manner similar to turning stability, after mathe-

matical manipulations on the equation of motion, the sta-

bility limit is analytically derived in the frequency domain

and in terms of the complex eigenvalue of the system, K,
tangential cutting force coefficient Kt, and number of cut-

ting edges N [2]

alim ¼ � 2pKR

NKt

1þ k2ð Þ; ð5Þ

where K ¼ � 1
2a0

a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a0

p� �
; k ¼ KI

KR
; a0 ¼ GxxGyy

axxayy � axyayx
� �

,a1 ¼ axxGxx þ ayyGyy.

In Eq. (5), KR denotes the real part of the complex

eigenvalue K, and a0 and a1 are expressed in terms of the

directional coefficients and the FRF [2]. The complex

eigenvalue is a function of the frequency response function,

and the stability limit at a chatter frequency, xc, is a

function of the frequency response function and thereby the

modal parameters. Therefore, uncertainty in the cutting

force coefficients or in the modal parameters leads to

variations in stability limits.

Gt
uv ixcð Þ ¼ 1� q2uv þ 2iftuvq

2
uv

kuv 1� q2uv
� �2þ 2ftuvquv

� �2� � ; ð6Þ

where quv ¼
xc

xn;uv
; u ¼ x; y; v ¼ x; y:

Thus, at a given spindle speed, when the stability limit

and the corresponding chatter frequency are known, the

unknown parameter can be extracted from the inverse

solution of the stability formulation. Furthermore, in the

case in which the FRF is unknown, it is identified through

the best fitting of the simultaneous solution of the stability

equations expressed by using the multiple spindle speed

and corresponding stability limit pairs. The rest of the

study details aforementioned approaches with relevant

examples.

3 Inverse stability solution at low cutting speeds

In dynamic cutting, undulations develop on the machined

surface due to vibrations. At low cutting speed regions, the

waves become steeper when the cutting speed decreases

and lead to interference between the tool flank face and the

undulation left on the workpiece (see Fig. 3a). Thus, this

leads to an additional damping force that is termed as the

process damping in extant studies on machining. This

phenomenon is valid for both turning and milling opera-

tions given the same fundamental understanding albeit in a

different geometrical fashion. It is crucial to identify theFig. 2 Cross section of a helical end mill [34] a end milling system,

b flank-workpiece interaction

Fig. 3 Effect of the cutting speed process mechanics and dynamics

a tool-workpiece indentation, b absolute stability versus cutting

speed, and c cutting force coefficient versus cutting speed
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amount of the additional process damping acting on the

machining system for modeling purposes, and this can then

be used to predict the amount of process damping by

relating the process damping coefficient to the tool:

workpiece indentation volume. In this section, the use of

inverse stability solutions is discussed by examining the

theory behind it and representative examples.

3.1 Inverse stability solution in turning operations

In orthogonal cutting, the minimum of the real part of the

FRF can be approximated in terms of the modal parameters

[13], the absolute stability limit is derived in terms of the

modal parameters as given in Eq. (3). It is assumed that k and

Kf remain almost constant (see Fig. 3c) with decreases in

cutting speed, and thus it is known that the main source of

stability increase corresponds to the increase in the damping

ratio. Hence, the difference between the absolute stability

limits at high cutting speeds, i.e., ahilim, and low cutting speeds

(i.e., alowlim ) can be used to identify the difference between the

total damping ratio and the structural damping ratio, thereby

leading to the process damping ratio.

After re-writing Eq. (3), the total process damping

coefficient ct, is expressed as given below in which the

cutting force coefficient and natural frequency xn, do not

change with respect to the cutting speed.

ct ¼
Kfa

low
lim

xn

; ð7Þ

where xn ¼
ffiffiffi
k
m

q
.

The inverse stability solution is given in Eq. (7) of the

orthogonal turning stability and provides an excellent

method to quantify the average process damping coeffi-

cient by subtracting the structural damping from the total

damping ratio as

cp ¼
Kfa

low
lim

xn

� cs: ð8Þ

After a simple mathematical manipulation, Kf is

expressed in terms of the structural damping. Thus, the

process damping coefficient is simplified as given in

Eq. (9). This provides an extremely practical inverse

solution to calculate the amount of average process

damping coefficient acting on the system when the struc-

tural damping, absolute stability limit at the corresponding

low cutting speed, and absolute stability limit at a relatively

high cutting speed are known

cp ¼ cs
alowlim

ahilim
� 1

� 	
: ð9Þ

The experimental process damping coefficients obtained in

Eq. (9) are further used for the modeling of process

damping coefficients to simulate absolute stability limits

under various other cutting conditions, and this eliminates

the need to test each case. This is performed by introducing

the indentation coefficient that is extracted by the damping

energy analysis as detailed in Ref. [13].

3.2 Inverse stability solution in milling operations

In end milling, given the two degrees of freedom and

directional interaction, the stability limit cannot be expressed

by a simple equation involving the modal parameters and

cutting force coefficient as in orthogonal cutting. However,

the inverse stability solution approach can be still used in end

milling when the spindle speed, stability limit at the low

cutting speed, chatter frequency, and stability limit at high

cutting speeds (where process damping is negligible) are

known. Given that the stability lobes can be realized in

milling, in the experimental phase, it is important to select

the spindle speeds corresponding to the same chatter fre-

quency at consecutively increasing lobe numbers. Hence,

each spindle speed and stability limit pair can be analyzed at

the same chatter frequency, thereby leading to increases in

comparable ratios of the stability limit.

With respect to the identification of process damping

coefficients, the inverse solution of the analytical stability

expression [2] given in Eq. (5) is used. It is solved itera-

tively by considering the implicit form of the stability

expression given in Eq. (5) [34]. It is assumed that average

process damping coefficients act on the end milling system

in two orthogonal directions due to the instantaneous flank-

wave indentation, and thus the overall FRFs are expressed

by including the effect of the virtual damping pots due to

the process Eq. (6). When the experimental stability limit,

alowlim , at the corresponding low cutting speed and the chatter

frequency xc, are known, the experimental eigenvalue

Kexp, is calculated by using the experimental values by re-

writing Eq. (5) as given below. Subsequently, it is equated

to the analytical eigenvalue that relates the overall FRF to

the stability limit

Kexp ¼ Kanalytical;
alimNKt 1� cosxcTð Þ

4p
� alimNKtsinxcT

4p
¼ � 1

2a0
a1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a0

q� 	
:

8<
:

ð10Þ

The solution of the nonlinear Eq. (10) leads to the total

damping ratios in the x and y directions acting on the

system. However, an explicit solution for this equality is

not available, and thus it is solved through an iterative

solution based on the golden section search algorithm.

Finally, the process damping coefficients are identified as

c
p
i ¼ 2 fti � fsi

� � ffiffiffiffiffiffiffiffi
kimi

p
; i = x,y; ð11Þ
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where c
p
i , f

t
i and fsi denote the process damping coefficient,

total damping ratio, and structural damping ratio, along

direction i, respectively.

The analytical identification procedure relies on the

inverse stability solution of the average process damping

coefficients in orthogonal turning and end milling opera-

tions and is summarized based on extant studies in this

section. In turning, the main interest involves the absolute

stability limits since the stability lobes cannot be realized at

lower spindle speed regions. An explicit analytical

approximation of the absolute stability limit in terms of the

modal parameters is used to express the process damping

coefficients in terms of the structural damping and ratio of

the stability limit at low cutting speed to that obtained in

the high cutting speed region. However, in milling, the

explicit analytical expression for the stability limit in terms

of the modal parameters is not available due to the exis-

tence of the two orthogonal modes. In these cases, the

inverse stability equation is solved through iteration, and

the process damping coefficients are calculated in the x and

y directions. Henceforth, this section demonstrates the use

of the summarized procedures in case studies.

3.2.1 Orthogonal cutting

The inverse stability solution in orthogonal cutting is

demonstrated with respect to the turning of a 100-mm

diameter tube composed of AL7075 in dry conditions with

triangular carbide inserts involving a hone radius of 60 lm
and a clearance angle of 3� at the flank face as given in

Table 1. Absolute stability limits are experimentally iden-

tified at decreasing cutting speeds by analyzing the sound,

tool vibration, and the resulting surface. Subsequently, the

absolute stability limits are used in Eq. (9) to calculate the

average process damping coefficients. The details of the

test conditions are given in Ref. [13].

Figure 4a shows the variation in the absolute stability

limit with the cutting speed and corresponding process

damping coefficients. In Test 1, the stability limit at rela-

tively high speed of 150 m/min corresponds to 3 mm, and

this tends to increase nonlinearly when the cutting speed is

decreased to 75 m/min. The increase in the stability limit is

observed for a lower cutting speed region in Test 2. This is

due to the low natural frequency of the system used in Test

2. At low vibration frequencies, the undulations on the

workpiece surface become smoother, thereby leading to

less tool-workpiece indentation.

The process damping coefficients as calculated by using

Eq. (9) are plotted in Fig. 4b in which the variation in the

process damping coefficient is significantly nonlinear. The

calculated process damping coefficients can be used for a

curve fit to predict the stability limits at other cutting

speeds while ensuring that the cutting tool and workpiece

are identical. The use of inverse stability solution is

demonstrated for orthogonal cutting through two experi-

mental cases, and this is further extended to end milling in

the next section.

3.2.2 End milling

The end milling case is illustrated for the conditions and

milling system listed in Table 2. The milling system

demonstrates almost symmetrical dynamic properties in the

two directions.

Figure 5 shows a comparison of the analytical stability

diagrams calculated for the system (by ignoring the process

damping effect) and experimental absolute stability limits.

In Fig. 5, the dots and continuous curve represent the

experimental data and the analytical stability lobes,

respectively. In the design of experiments to determine the

experimental spindle speeds, it is necessary to eliminate the

lobing effect to clearly identify the process damping

coefficients. Hence, the spindle speeds corresponding to the

consecutive lobes should exhibit the same epsilon value

(see Eq. (5)), and this affects the stability limit by gener-

ating the lobing effect. Thus, the spindle speeds along the

stability diagram are selected such that each spindle speed

corresponds to the minimum, i.e., absolute, stability limit

of the corresponding lobe as shown in Fig. 5.

As shown in Fig. 5, the analytical absolute stability limit

is significantly lower than 0.5 mm. The experimental

results are considered, and decreases in the spindle speed

from 3 750 r/min (140 m/min) to 2 070 r/min (78 m/min)

leads to an increase of stable cutting depth from 0.5 mm to

2 mm. At a specific cutting experiment point of 2

070 r �min�1 and 1.75 mm, the observed chatter frequency

is 3 113 Hz. The experimental eigenvalue of the system is

calculated as Kexp ¼ �1:1314� 106 þ i2:0836� 106 by

Eq. (10). The experimental eigenvalue and the theoretical

eigenvalue are equated to simultaneously solve the real and

imaginary parts. Subsequently, the equations relating the

total damping ratios to the experimental data are iteratively

solved.

� 1

2a0
a1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a0

q� 	
¼ �1:1314� 106 þ i2:0836

� 106: ð12Þ

For this specific case, the solution of the above equation

yields total damping ratios of 6.09% and 8.56% in the x and

y directions, respectively. Finally, the average process

damping coefficients are easily calculated by subtracting

the structural damping ratio from the total damping ratio as

cpx ¼ 45:8 Ns=m; cpx ¼ 72:9 Ns=m: ð13Þ
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4 Inverse stability solution at high cutting speeds

In most stability analyses, the tool tip FRF is measured at

the idle and even at the cold state of the spindle. However,

at high rotational speeds and under operational conditions,

the dynamics contributed by the bearings may change and

lead to changes in the spindle dynamics when compared to

that at the idle state. The aforementioned changes could be

due to factors such as temperature increases, gyroscopic

effects, and variation in the spindle preload with the

spindle speed. The resulting variation may be due to the

weighted combination of the aforementioned sources.

Thus, experimental identification methods are required to

accurately identify the variations since extant modeling

efforts may lead to accuracy issues. In this section, the

inverse stability solution approach is briefly explained, and

a representative case study is presented.

Table 1 Tool geometry and modal properties for the chatter tests

Test Holder

length/mm

Modal

stiffness/(MN�m-1)

Modal

mass/kg

Natural

frequency/Hz

Structural

damping ratio/%

1 95 15.9 0.28 1 195 1.49

2 95 15.6 0.85 681 1.25

Fig. 4 Experimental results in orthogonal cutting. a Stability limits. b Process damping coefficient

Table 2 Cutting conditions and milling system for the end milling case [34]

Cutting parameters Modal parameters

k/ (N�lm-1) f/% f/Hz

Material Kt, Kr/MPa Tool diameter/mm # of flutes Mode Radial/% x y x y x y

AL7075 1 050, 300 12 4 Down 50 9.73 10.35 1.42 1.68 3110 3106

Fig. 5 Experimental stability limits for the example case
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4.1 Operational modal analysis for FRF

identification

In this study, the approach proposed by Ozsahin et al. [33]

to identify the tool point FRF under operational conditions

is considered as an inverse stability solution that addresses

the uncertainties at high rotational speeds. In this method,

at a given spindle speed, the stability limit and corre-

sponding chatter frequency are experimentally obtained

and then used in the inverse solution of the stability for-

mulation (see Fig. 6). Analytical expressions for the chatter

frequency and the axial depth of the cut are equated to the

experimentally determined values.

Chatter can be caused by either the flexibility of the

workpiece or the flexibility of the machining system. In the

study, the workpiece is assumed rigid in which all the

dynamic compliance is caused by the machine tool

assembly. Thus, analytical expressions for the stability

limit and chatter frequency contain parameters based on

process dynamics of the machining operation and structural

dynamics of the spindle-holder-tool assembly as given in

Eq. (10). In process dynamics, with respect to a given

radial immersion, the number of tooth, pitch angle, helix

angle, and cutting force coefficients can be determined

analytically or experimentally based on the workpiece

material. However, in structural dynamics variations at the

tool tip, it is difficult to measure or predict the FRF without

speed dependent bearing and assembly dynamics infor-

mation. Therefore, the modal parameters of the dominant

mode in the tool point FRF can be treated as unknown

parameters in analytical expressions for the axial stability

limit and chatter frequency while maintaining the rest of

the modes as corresponding to an idle state. Finally, an

analytically obtained expression can be equated to the

experimentally measured values, and the unknown modal

parameters can be identified by solving nonlinear sets of

Fig. 6 Procedure of the tool point FRF identification
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equations. Additionally, it should be noted that a direct

relation exists between the stiffness of the system and the

natural frequency of the corresponding mode as given in

Eq. (6), and thus only the natural frequency and damping

ratio of the dominant mode are considered as unknowns.

This is a valid approach since the modal mass is assumed

as constant under operational conditions, and the variation

in the stiffness is already reflected in the identified natural

frequencies.

4.2 Case study

The method is demonstrated on a high-speed machining

center by using a relatively rigid end mill with 25 mm

diameter and 4 teeth. The stability diagram is generated by

using the tool point FRF measured at the idle state. The

results of the chatter tests performed at different speeds are

given in Fig. 7 and Table 3. A high difference between the

predicted and actual chatter frequencies indicates that the

shift in the natural frequency corresponds to the dominant

mode.

The natural frequency and damping ratio of the domi-

nant mode that cause chatter can be identified as shown in

Table 4 by using the inverse stability identification proce-

dure. As shown in the identification results given in

Table 4, the dominant mode exhibits a speed dependent

behavior, and deviation in the natural frequency increases

when the spindle speed increases. This is an expected result

since it is known that stiffness values of the bearings

decrease due to the gyroscopic moments and centrifugal

forces. Therefore, the decrease in the bearing stiffness

values results in a decrease in the natural frequencies.

In addition to identification results given in Table 4, the

first tool point FRF is calculated by using the identified

parameters for the 14 000 r/min to quantify the accuracy of

the identified mode. Subsequently, the stability diagram is

calculated by using the idle FRF and updated FRF as

shown in Fig. 8.

As shown in Fig. 8, the use of the recalculated stability

diagrams can predict the actual stability more accurately.

Additionally, it is noted that the recalculated stability dia-

gram shown in Fig. 8 is calculated by using the tool point

FRF identified at 14 000 r/min, and thus it is valid only for

the corresponding spindle speed. Therefore, to accurately

predict the chatter stability at different spindle speeds, tool

point FRFs should be identified at each considered spindle

speed. Therefore, to obtain a stability diagram that is valid

for a wide range of spindle speeds, tool point FRF should

be separately identified at each spindle speed, and the

obtained results should be separately combined.

The main contribution of the inverse stability solution

for the identification of in-process tool point FRFs is that it

eliminates the need for expensive measurement devices

and complicated experimental setups. The approach pro-

vides a fast, easy, and reliable tool to identify tool point

FRF under operational conditions.

5 Conclusions

Machining processes may demonstrate complicated

dynamics in which stability analysis is of substantial

importance in achieving improvements in part quality and

process performance. Tool tip FRF is required for the

analysis of dynamics and stability. However, in most cases,

either at low cutting speeds or high rotational speeds,

uncertainties may be introduced by either the process-cut-

ting tool interaction or variations in the spindle dynamics.

Although several studies focus on modeling the same, there

is a paucity of research on inverse stability solution

approaches that may be of immense help.

In this study, the approaches developed as an inverse

solution of the stability problem to tackle the uncertainties

in the dynamics of the machining processes are elaborated

based on previous studies. The discussed identification

methods are valid for a wide range of uncertainties that

may be due to several sources. However, a low amount of

uncertainty does not significantly affect the experimental

stability boundaries, and thus the discussed methods

inherently handle the significance issue. The process

damping phenomenon and variation in spindle dynamics

come into effect by classifying the machining processes

into low cutting speed and high rotational speeds. In the

study, the results indicate that the use of an inverse solution

approaches works well in both conditions. At low cutting

speeds, given the assumption that the rest of the parameters

stay almost constant, the increase in the stability limit can

be only attributed to process damping. Given this

assumption, in orthogonal cutting, the process damping

coefficient is directly related to the ratio of the experi-

mental stability limits to the theoretical stability limits.
Fig. 7 Stability diagram predicted by using the idle state FRF and

chatter test results [33]
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Similarly, in milling, the average process damping coeffi-

cients are calculated by using an iterative inverse solution.

At high rotational speeds, the variation in the spindle

dynamics causes the tool tip FRF to change, and this could

be due to several factors. In the study, the findings reveal

that once the experimental stability limit and the corre-

sponding chatter frequency are identified, the inverse

solution of the stability equations leads to the accurate

prediction of the in-process tool tip FRF as opposed to that

measured at the idle state.

Although the study does not propose a new model, the

aim involves discussing the inverse stability solutions for

different cases in a comprehensive manner based on extant

studies. In this aspect, turning and milling case studies are

discussed to elaborate the use of an inverse stability solu-

tion for process damping identification while a milling case

is considered to discuss the use of inverse stability solution

for milling at high rotational speeds.

Acknowledgements The authors acknowledge the support of Turk-

ish National Science Foundation (Grant No. 108M340).

References

1. Taylor FW (1907) On the art of cutting metals. American Society

of Mechanical Engineers, New York

2. Altintas Y, Budak E (1995) Analytical prediction of stability

lobes in milling. Ann CIRP 44(1):357–362

3. Insperger T, Stepan G (2002) Semi-discretization method for

delayed systems. Int J Numer Methods Eng 55(5):503–518

4. Tlusty J, Polacek M (1963) The stability of machine tools against

self-excited vibrations in machining. Int Res Prod Eng 465–474

5. Das MK, Tobias SA (1967) The relation between the static and

the dynamic cutting of metals. Int J Mach Tool Des Res 763:89

6. Koenigsberger F, Tlusty J (1967) Machine tool structures-Vol. I:

stability against chatter. Pergamon Press, Oxford

7. Opitz H, Bernardi F (1970) Investigation and calculation of the

chatter behavior of lathes and milling machines. Ann CIRP

18:335–343

Table 3 Predicted and actual values of the chatter frequency and axial depth of cut [33]

Spindle speed/(r�min-1) Predicted

stability limit

alim/mm

Predicted

chatter frequency

fc/Hz

Actual

stability limit

alim/mm

Actual

chatter frequency

fc /Hz

6 300 3.60 732.0 2.6 697

7 500 2.42 764.4 3.1 728

14 000 4.45 722.8 3.0 616

Table 4 Identified modal parameters in the y direction at various spindle speeds [33]

Spindle speed

/(r min-1)

Spindle speed

6 200-6 300 r/min

Spindle speed

7 400 -7 500 r/min

Spindle speed

13 900-14 000 r/min

Natural frequency/Hz 744 672 642 611

Damping/% 4.11 6.70 3.90 5.70

Fig. 8 Variation in the tool tip FRF and the corresponding stability diagram a tool point FRF at idle and at 14 000 r/min b stability diagrams at

idle and 14 000 r/min [33]

L. T. Tunc, O. Ozsahin

123



8. Sridhar R, Hohn RE, Long GW (1968) A stability algorithm for

the general milling process: contribution to machine tool chatter

research 7. J Eng Ind 90(2):330–334

9. Minis I, Yanushevsky T, Tembo R et al (1990) Analysis of linear

and nonlinear chatter in milling. Ann CIRP 39:459–462

10. Tlusty J (1978) Analysis of the state of research in cutting

dynamics. Ann CIRP 27(2):583–589

11. Sisson TR, Kegg RL (1969) An explanation of low-speed chatter

effects. ASME J Eng Ind 91:558–951

12. Wu DW (1984) A new approach of formulating the transfer

function for dynamic cutting processes. J Eng Ind 111:37–47

13. Budak E, Tunc LT (2009) A new method for identification and

modeling of process damping in machining. J Manuf Sci Eng

131(5):051019

14. Rivin E (1999) Stiffness and damping in mechanical design.

Marcel Dekker Inc., New York

15. Stone BJ (1982) The state of the art in the measurement of the

stiffness and damping of rolling element bearings. CIRP Ann

Manuf Technol 31:529–538

16. Harris TA (2001) Rolling bearing analysis, 4th edn. Wiley, New

York

17. Lee CW (1993) Vibration analysis of rotors. Kluwer, Dordrecht

18. Friswell MI, Penny JET, Garvey SD et al (2010) Dynamics of

rotating machines. Cambridge University Press, Cambridge

19. Jiang JS, Zheng S (2010) A modeling approach for analysis and

improvement of spindle-drawbar-bearing assembly dynamics. Int

J Mach Tools Manuf 50(1):131–142

20. Kruth JP, Liu AMM, Vanherck P et al (2002) A strategy for

selection of optimal cutting parameter in high-speed milling to

avoid chatter vibration. Int J Prod Eng Comput 4(5):35–42

21. Kilic ZM, Iglesias A, Munoa J et al (2010) Investigation of tool

wear on the stability of milling process using an inverse method.

In: CIRP 2nd international conference on process machine

interactions, Vancouver, Canada

22. Suzuki N, Kurata Y, Kato T et al (2012) Identification of transfer

function by inverse analysis of self-excited chatter vibration in

milling operations. Precis Eng 36(4):568–575

23. Cao Y, Altintas Y (2004) A general method for the modeling of

spindle-bearing systems. J Mech Des 126(6):557–566

24. Altintas Y, Cao Y (2005) Virtual design and optimization of

machine tool spindles. CIRP Ann Manuf Technol 54(1):379–382

25. Lin CW, Tu JF, Kamman J (2003) An integrated thermo-me-

chanical-dynamic model to characterize motorized machine tool

spindles during very high-speed rotation. Int J Mach Tools Manuf

43(10):1035–1050

26. Tatar K, Gren P (2007) Measurement of milling tool vibrations

during cutting using laser vibrometry. Int J Mach Tools Manuf

48:380–387

27. Rantatalo M, Aidanpaa JO, Göransson B et al (2007) Milling

machine spindle analysis using FEM and non-contact spindle

excitation and response measurement. Int J Mach Tools Manuf

47:1034–1045

28. Zaghbani I, Songmene V (2009) Estimation of machine-tool

dynamic parameters during machining operation through opera-

tional modal analysis. Int J Mach Tools Manuf 49:947–957

29. Opitz H, Weck MC (1970) Determination of the transfer function

by means of spectral density measurements and its application to

dynamic investigation of machine tools under machining condi-

tions. In: Proceedings of the 10th international MTDR confer-

ence, University of Manchester Institute of Science and

Technology, Manchester

30. Minis IE, Magrab EB, Pandelidis IO (1990) Improved methods

for the prediction of chatter in turning Part 1: determination of

structural response parameters. Trans ASME 112:12–20

31. Ozsahin O, Budak E, Ozguven HN (2011) Investigating

dynamics of machine tool spindles under operational conditions.

Adv Mater Res 223:610–621

32. Bediz B, Kumar U, Schmitz TL et al (2012) Modeling and

experimentation for three-dimensional dynamics of endmills. Int

J Mach Tools Manuf 53(1):39–50

33. Ozsahin O, Budak E, Ozguven HN (2015) In-process tool point

FRF identification under operational conditions using inverse

stability solution. Int J Mach Tools Manuf 89:64–73
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