
GENERATING EXPLANATIONS
FOR COMPLEX BIOMEDICAL QUERIES

by

Umut Öztok

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August, 2012

GENERATING EXPLANATIONS
FOR COMPLEX BIOMEDICAL QUERIES

APPROVED BY:

Asst. Prof. Dr. Esra Erdem
(Dissertation Supervisor)

Assoc. Prof. Dr. Hans Tompits

Asst. Prof. Dr. Hüsnü Yenigün

Assoc. Prof. Dr. Uğur Sezerman

Asst. Prof. Dr. Volkan Patoğlu

DATE OF APPROVAL:

c© Umut Öztok 2012

All Rights Reserved

GENERATING EXPLANATIONS
FOR COMPLEX BIOMEDICAL QUERIES

Umut Öztok

Computer Science and Engineering, MS Thesis, 2012

Thesis Supervisor: Esra Erdem

Keywords: answer set programming, biomedical query answering,
explanation generation

Abstract

Recent advances in health and life sciences have led to generation of a large amount

of biomedical data. To facilitate access to its desired parts, such a big mass of data has

been represented in structured forms, like databases and ontologies. On the other hand,

representing these databases and ontologies in different formats, constructing them in-

dependently from each other, and storing them at different locations have brought about

many challenges for answering queries about the knowledge represented in these ontolo-

gies and databases.

One of the challenges for the users is to be able to represent such a biomedical

query in a natural language, and get its answers in an understandable form. Another

challenge is to extract relevant knowledge from different knowledge resources, and inte-

grate them appropriately using also definitions, such as, chains of gene-gene interactions,

cliques of genes based on gene-gene relations, or similarity/diversity of genes/drugs. Fur-

thermore, once an answer is found for a complex query, the experts may need further

explanations about the answer. The first two challenges have been addressed earlier us-

ing Answer Set Programming (ASP), with the development of a software system (called

BIOQUERY-ASP). This thesis addresses the third challenge: explanation generation

in ASP.

iv

In this thesis, we extend the earlier work on the first two challenges, to new forms

of biomedical queries (e.g., about drug similarity) and to new biomedical knowledge re-

sources. We introduce novel mathematical models and algorithms to generate (shortest

or k different) explanations for queries in ASP, and provide a comprehensive theoret-

ical analysis of these methods. We implement these algorithms and integrate them in

BIOQUERY-ASP, and provide an experimental evaluation of our methods with some

complex biomedical queries over the biomedical knowledge resources PHARMGKB,

DRUGBANK, BIOGRID, CTD, SIDER, DISEASEONTOLOGY and ORPHADATA.

v

KARMAŞIK BİYOMEDİKAL SORGULAR İÇİN
AÇIKLAMA ÜRETME

Umut Öztok

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2012

Tez Danışmanı: Esra Erdem

Anahtar Kelimeler: çözüm kümesi programlama, sorgu cevaplama,
açıklama üretme

Özet

Özellikle son yıllarda sağlık ve yaşam bilimleri alanlarındaki gelişmeler çok büyük

miktarda bir veri üretimine yol açmıştır. Bu verinin gerekli kısımlarına ulaşımı kolay-

laştırmak amacıyla, veritabanları ve ontolojiler gibi veri saklama yöntemleri kullanıl-

maktadır. Öte yandan, veritabanlarının ve ontolojilerin farklı formatlarda ve birbirinden

bağımsız şekilde oluşturulması ve farklı yerlerde saklanması, bu veritabanları ve ontolo-

jilerde gösterilen bilgi ile ilgili karmaşık sorguları cevaplamayı farklı açılardan zorlaştır-

mıştır.

Bu zorluklardan biri, biyomedikal bir sorguyu doğal bir dilde göstermek ve cevap-

larını anlaşılabilir bir biçimde uzmanlara sunmaktır. Başka bir zorluk ise, farklı bilgi

kaynaklarından ilgili bilginin çıkartılıp, uygun bir şekilde biraraya getirilmesidir. Farklı

bilgi kaynaklarının entegrasyonu sırasında, genler arası ilişkilerden oluşan zincirler, gen-

ler arası ilişkilere bağlı olan klikler, birbirine benzer veya birbirinden farklı genler ya da

ilaçlar gibi tanımların da göz önünde bulundurulması gerekmektedir. Bunlara ek olarak,

bir başka zorluk ise karmaşık bir sorgu için bulunan yanıt hakkında ilgili açıklamaların

üretilmesidir. Yukarıda bahsedilen ilk iki problem daha önce Çözüm Kümesi Program-

lama (ÇKP) kullanılarak çalışılmıştır. Bu çalışmaların sonucu BIOQUERY-ASP adı ver-

vi

ilen bir yazılım sistemi geliştirilmiştir. Bu tez çalışması, yukarıda bahsedilen üçüncü

problem üstündedir: açıklama üretme.

Bu tez kapsamında, ilk iki problemle alakalı olarak önceden yapılan çalışmalar,

ilaç benzerlikleri hakkında sorgular gibi yeni biyomedikal sorgulara da uygulanacak şek-

ilde ve yeni biyomedikal bilgi kaynaklarından da faydalanacak şekilde genişletilmiştir.

ÇKP’de gösterimi yapılan sorgulara (en kısa veya k tane farklı) açıklama üretebilmek

için, yeni matematiksel modeller ve algoritmalar geliştirilmiştir. Bu algoritmaların

kapsamlı olarak teorik analizi yapılmış, yazılımları BIOQUERY-ASP ile bütünleştir-

ilmiştir. ÇKP’ye dayanan bu yöntemlerimizin, PHARMGKB, DRUGBANK, BIOGRID,

CTD, SIDER, DISEASEONTOLOGY ve ORPHADATA gibi biyomedikal bilgi kaynakları

üzerinden bazı karmaşık biyomedikal sorguları yanıtlayarak deneysel bir değerlendirmesi

de yapılmıştır.

vii

Acknowledgements

I want to thank my supervisor, Esra Erdem, without whose invaluable support this

work would have been of much lesser quality. I have learned a lot from her about writing

academic papers and presenting theoretical results.

I thank Alev Topuzoğlu for keeping me in contact with the beautiful world of math-

ematics during my master’s studies.

I thank the members of my thesis committee, Hans Tompits, Hüsnü Yenigün, Uğur

Sezerman, and Volkan Patoğlu, for their valuable comments and suggestions.

I thank the Scientific and Technological Research Council of Turkey (TUBITAK)

for the financial support provided to me through the BIDEB scholarship during my mas-

ter’s studies.

I would like to thank Aysu Okbay and Firat H. Tahaoğlu, who showed me that I can

live anywhere, even in Tuzla, if I am surrounded with my awesome friends.

I would like to give special thanks to Erdi Aker and Suha O. Mutluergil for the

“humorous” moments we had in the gloomy aura of FENS 2014 late in the nights.

I furthermore thank İnanç Arın, Uğur Bağcı, and Yaşar Tüzel for their exceptional

friendships.

I wish to thank Doğa Gizem Kısa who made me to see the world through rose-

colored glassess again as in my childhood. With her, the grass is always greener.

Obviously, the most important supporters of not just this work but anything related

to me are my parents, Gülçin and Necdet Öztok, and my lovely sister, Başak Öztok. I am

indebted to them for their unprecedented endurance, endless support and unconditional

love for me. Without them, it would have been impossible for me, such a lazy boy, to

complete this work.

viii

TABLE OF CONTENTS

Page

1 INTRODUCTION 1
1.1 Contributions of the Thesis . 3

1.2 Thesis Outline . 5

2 ANSWER SET PROGRAMMING 6
2.1 Programs . 7

2.2 Generate-And-Test Representation Methodology with Special ASP Con-

structs . 9

2.3 Presenting Programs to Answer Set Solvers 11

2.4 Example: Graph Coloring Problem . 12

3 EXTENDING BIOQUERY-ASP TO ANSWER NEW QUERIES 15
3.1 New Types of Biomedical Queries . 15

3.1.1 Negation in Queries . 15

3.1.2 Queries about Symptoms of Diseases 17

3.1.3 Similarity/Diversity of Drugs . 17

3.1.4 Finding Close/Distant Drugs to a Given Drug 19

3.2 New Biomedical Knowledge Resources 23

3.3 New Experiments . 23

4 EXPLANATION GENERATION IN ASP 28
4.1 Explanations in ASP . 28

4.2 Generating Shortest Explanations . 34

4.3 Generating k Different Explanations . 39

4.4 Presenting Explanations in a Natural Language 44

4.5 Experiments with Biomedical Queries 45

4.6 Implementation of Explanation Generation Algorithms 48

5 RELATING EXPLANATIONS TO JUSTIFICATIONS 50
5.1 Offline Justifications . 51

ix

5.2 From Justifications to Explanations . 57

5.3 From Explanations to Justifications . 60

6 PROOFS 63
6.1 Generating Shortest Explanations . 63

6.1.1 Proof of Proposition 2 – Termination of Algorithm 2 63

6.1.2 Proof of Proposition 3 – Soundness of Algorithm 2 64

6.1.3 Proof of Proposition 4 – Complexity of Algorithm 2 73

6.2 Generating k Different Explanations . 74

6.2.1 Proof of Proposition 5 – Termination of Algorithm 6 74

6.2.2 Proof of Proposition 6 – Soundness of Algorithm 6 74

6.2.3 Some Properties of Algorithm 6 77

6.2.4 Proof of Proposition 8 – Complexity of Algorithm 6 81

6.3 Relations between Explanations and Justifications 81

6.3.1 Proof of Proposition 10 – Soundness of Algorithm 8 81

6.3.2 Proof of Proposition 11 – Soundness of Algorithm 9 85

7 DISCUSSION AND CONCLUSION 89

A SHORTEST EXPLANATIONS FOR BIOMEDICAL QUERIES 93

BIBLIOGRAPHY 102

x

LIST OF TABLES

Page

1.1 A list of complex biomedical queries. 2

2.1 Applications of ASP. 7

2.2 ASP solvers. 8

3.1 Grammar of BIOQUERY-CNL*. 16

3.2 Special functions used in BIOQUERY-CNL*. 17

3.3 Knowledge resources and their relations. 24

3.4 Experimental results (using CLASP). 25

3.5 Experimental Results (using DLV). 26

3.6 Experimental results for closeness/distantness queries. 27

4.1 Predicate look-up table used while expressing explanations in natural lan-

guage. 45

4.2 Experimental results for generating shortest explanations for some biomed-

ical queries, using Algorithm 2. 46

4.3 Experimental results for generating different explanations for some biomed-

ical queries, using Algorithm 6. 48

7.1 Comparison of SLAP and our greedy method for finding closest drugs. . . 90

xi

LIST OF FIGURES

Page

1.1 System overview of BIOQUERY-ASP. 4

2.1 Presenting COLORING to GRINGO. 13

2.2 Presenting a COLORING instance to GRINGO. 14

3.1 ASP program Π∆S
grdy(i, d). 22

4.1 The and-or explanation tree for Example 2. 32

4.2 Explanation trees for Example 3. 33

4.3 Explanations for Example 4. 33

4.4 (a) The and-or explanation tree for a and (b) an explanation for a. 34

4.5 An explanation for Q8. 35

4.6 Another explanation for Q8. 36

4.7 A generic execution of Algorithm 2. 37

4.8 An explanation for Q5. 39

4.9 Another explanation for Q5. 40

4.10 A generic execution of Algorithm 6. 43

4.11 A shortest explanation for Q8. 44

4.12 A shortest explanation for Q1. 47

4.13 A snapshot of BIOQUERY-ASP showing its explanation generation facility. 49

5.1 An offline justification for Example 7. 50

5.2 An e-graph for Example 9. 53

5.3 An offline justification for Example 14. 57

5.4 (a) An offline justification and (b) its corresponding explanation tree ob-

tained by using Algorithm 8. 60

5.5 (a) An explanation tree and (b) its corresponding offline justification ob-

tained by using Algorithm 9. 62

6.1 Part of the recursion tree for createTree(Π, X, d, ∅). 67

xii

A.1 A shortest explanation for Q1 . 93

A.2 A shortest explanation for Q2 . 94

A.3 A shortest explanation for Q3 . 95

A.4 A shortest explanation for Q4 . 96

A.5 A shortest explanation for Q5 . 97

A.6 A shortest explanation for Q8 . 98

A.7 A shortest explanation for Q10 . 99

A.8 A shortest explanation for Q11 . 100

A.9 A shortest explanation for Q12 . 101

xiii

List of Algorithms

1 Generating n Closest Drugs . 21

2 Generating Shortest Explanations . 37

3 createTree . 38

4 calculateWeight . 39

5 extractExp . 40

6 Generating k Different Explanations . 41

7 calculateDifference . 42

8 Justification to Explanation . 58

9 Explanation to Justification . 61

xiv

CHAPTER 1

INTRODUCTION

Recent advances in health and life sciences have led to generation of a large amount

of biomedical data. To facilitate access to its desired parts, such a big mass of data has

been represented in structured forms, like databases and ontologies. On the other hand,

representing these databases and ontologies in different formats, constructing them in-

dependently from each other, and storing them at different locations have brought about

many challenges for answering queries about the knowledge represented in these ontolo-

gies and databases.

One of the challenges for the users is to be able to represent such a biomedical query

in a natural language, and get its answers in an understandable form. Another challenge

is to extract relevant knowledge from different knowledge resources, and integrate them

appropriately using also definitions, such as, chains of gene-gene interactions, cliques of

genes based on gene-gene relations, or similarity/diversity of genes/drugs. Furthermore,

once an answer is found for a complex query, the experts may need further explanations

about the answer.

For instance, consider the query Q6 in Table 1.1 which displays a list of complex

biomedical queries that are important from the point of view of drug discovery.1 New

molecule synthesis by changing substitutes of parent compound may lead to different bio-

chemical and physiological effects; and each trial may lead to different indications. Such

studies are important for fast inventions of new molecules. For example, while develop-

ing Lovastatin (a member of the drug class of statins, used for lowering cholesterol) from

Aspergillus terreus (a sort of fungus) in 1979, scientists at Merck derived a new molecule

named Simvastatin (a hypolipidemic drug used to control elevated cholesterol). There-

fore, identifying genes targeted by a group of drugs automatically by means of queries

like Q6 may be useful for experts.

Once an answer to a query is computed, the experts may ask for an explanation to

1In Table 1.1, drug-drug interactions present negative interactions among drugs. Gene-gene interactions

present both negative and positive interactions among genes.

1

Table 1.1: A list of complex biomedical queries.
Q1 What are the drugs that treat the disease Asthma and that target the gene ADRB1?
Q2 What are the side effects of the drugs that treat the disease Asthma and that target the

gene ADRB1?
Q3 What are the genes that are targeted by the drug Epinephrine and that interact with the

gene DLG4?
Q4 What are the genes that interact with at least 3 genes and that are targeted by the

drug Epinephrine?
Q5 What are the drugs that treat the disease Asthma or that react with the drug Epinephrine?
Q6 What are the genes that are targeted by all the drugs that belong to the category Hmg-coa

reductase inhibitors?
Q7 What are the cliques of 5 genes, that contain the gene DLG4?
Q8 What are the genes that are related to the gene ADRB1 via a gene-gene interaction chain of

length at most 3?
Q9 What are the 3 most similar genes that are targeted by the drug Epinephrine?

Q10 What are the genes that are related to the gene DLG4 via a gene-gene interaction chain of

length at most 3 and that are targeted by the drugs that belong to the category Hmg-coa

reductase inhibitors?
Q11 What are the drugs that treat the disease Depression and that do not target the gene ACYP1?

Q12 What are the symptoms of diseases that are treated by the drug Triadimefon?
Q13 What are the 3 most similar drugs that target the gene DLG4?
Q14 What are the 3 closest drugs to the drug Epinephrine?

have a better understanding. For instance, an answer for the query Q3 in Table 1.1 is

“ADRB1”. A shortest explanation for this answer is computed as follows.

The drug Epinephrine targets the gene ADRB1 according to CTD.

The gene DLG4 interacts with the gene ADRB1 according to BIOGRID.

Most of the existing biomedical querying systems (e.g., web services built over the

available knowledge resources) support keyword search but not complex queries like the

queries in Table 1.1. Some of these complex queries, such as Q3 or Q6, can be represented

in a formal query language (e.g., SQL/SPARQL) and then answered using Semantic Web

technologies. However, queries, like Q8, that require auxiliary recursive definitions (such

as transitive closure) cannot be directly represented in these languages; and thus such

queries cannot be answered directly using Semantic Web technologies. The experts usu-

ally compute auxiliary relations externally, for instance, by enumerating all gene-gene

interaction chains or gene cliques, and then use these auxiliary relations to represent and

answer a query like Q7 or Q8. Similarity/diversity queries, like Q9 or Q13, cannot be

represented directly in these languages either, and require a sophisticated reasoning algo-

rithm. Also, none of the existing systems can provide informative explanations about the

2

answers, but point to related web pages of the knowledge resources available online.

To address the challenges described above, novel methods and a software system,

called BIOQUERY-ASP [36] (Figure 1.1), have been developed using Answer Set Pro-

gramming(ASP) [63, 16]. In particular, the following studies have been completed for the

first two challenges:

• Erdem and Yeniterzi [39] developed a controlled natural language, BIOQUERY-CNL,

for expressing biomedical queries related to drug discovery. For instance, queries

Q1–Q10 in Table 1.1 are in this language. They also developed an algorithm to

translate a given query in BIOQUERY-CNL to a program in ASP.

• Bodenreider et al. [11] introduced methods to extract biomedical information from

various knowledge resources and integrate them by a rule layer. This rule layer not

only integrates those knowledge resources but also provides definitions of auxiliary

concepts.

• Erdem et al. [35] have introduced an algorithm for query answering by identifying

the relevant parts of the rule layer and the knowledge resources with respect to a

given query.

The focus of this thesis is about the last challenge: generating explanations for biomedical

queries.

1.1 Contributions of the Thesis

The contributions of the thesis can be summarized in two parts.

• Extension of the earlier work on BIOQUERY-ASP to new forms of queries and new

knowledge resources:

– We have extended the grammar of BIOQUERY-CNL to construct negative

queries (e.g., query Q11), queries about symptoms of diseases (e.g., query Q12)

and similarity/diversity queries about drugs (e.g., query Q13). We call this ex-

tended controlled natural language as BIOQUERY-CNL*.

– We have modified the system BIOQUERY-ASP to allow users for construct-

ing such new queries as well. We have also extended BIOQUERY-ASP to

most recent biomedical knowledge resources about drugs, genes, and diseases,

3

Answer

User Interface Databases/Ontologies

Query in BioQuery-CNL

Query in ASP

Relevant Part of ASP Program

Explanation in ASP

Explanation in Natural Language

Rule Layer in ASP

Query in ASP

Query Answering

Explanation Generation Related Webpages

Figure 1.1: System overview of BIOQUERY-ASP.

such as PHARMGKB2 [67], DRUGBANK3 [55], BIOGRID4 [89], CTD5 [22],

SIDER6 [57], DISEASEONTOLOGY7, and ORPHADATA8.

– To study queries about similarity of drugs (e.g., finding the closest/distant

drugs to a given drug), we have introduced new distance measures for drugs

and naive/greedy algorithms to compute queried drugs. We have also related

the problem to the problem similar/diverse solutions studied in [29].

2http://www.pharmgkb.org/
3http://www.drugbank.ca/
4http://thebiogrid.org/
5http://ctd.mdibl.org/
6http://sideeffects.embl.de/
7http://disease-ontology.org
8http://www.orphadata.org/cgi-bin/index.php/

4

http://www.pharmgkb.org/
http://www.drugbank.ca/
http://thebiogrid.org/
http://ctd.mdibl.org/
http://sideeffects.embl.de/
http://disease-ontology.org
http://www.orphadata.org/cgi-bin/index.php/

• Adding a new feature to BIOQUERY-ASP: Explanation Generation.

– We have formally defined “explanations” in ASP, utilizing properties of pro-

grams and graphs. We have also defined variations of explanations, such as

“shortest explanations” and “k different explanations”.

– We have introduced novel generic algorithms to generate explanations for

biomedical queries. These algorithms can compute shortest or k different ex-

planations. We have analyzed the termination, soundness, and complexity of

those algorithms.

– We have developed a computational tool, called EXPGEN-ASP, that imple-

ments these explanation generation algorithms.

– We have showed the applicability of our methods to generate explanations for

answers of complex biomedical queries.

– We have embedded EXPGEN-ASP into BIOQUERY-ASP so that the experts

can obtain explanations regarding the answers of biomedical queries, in a nat-

ural language.

1.2 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we provide a summary

of Answer Set Programming. Next, in Chapter 3, we give an overview of BIOQUERY-

ASP, the earlier work done, and the new extensions in the scope of this thesis. Then, in

Chapter 4, we describe explanation generation in ASP. After discussing related work in

Chapter 5, we provide in Chapter 6 the proofs of the theorems stated throughout the thesis

and conclude the thesis in Chapter 7 by summarizing our contributions and pointing out

some possible future work.

5

CHAPTER 2

ANSWER SET PROGRAMMING

Answer Set Programming (ASP) [7, 63, 16] is a form of declarative programming

paradigm oriented towards solving, in general ΣP
2 , combinatorial search and knowledge-

intensive problems. The idea is to represent a problem as a “program” whose models

(called “answer sets” [50]) correspond to the solutions. The answer sets for the given pro-

gram can then be computed by special implemented systems called answer set solvers.

ASP has an high-level representation language that allows recursive definitions, aggre-

gates, weight constraints, optimization statements, and default negation.

ASP also provides efficient solvers (see Table 2.2), such as CLASP [46], which has

won first places at competitions like ASP’07/09/11/12, PB’09/11/12, and SAT’/09/11/12.

Due to the continuous improvement of the ASP solvers and highly expressive representa-

tion language of ASP which is supported by a strong theoretical background that results

from a years of intensive research, ASP has been applied fruitfully to a wide range of

areas (see Table 2.1). Here are, for instance, three applications of ASP used in industry:

• Decision Support Systems: An ASP-based system was developed to help flight con-

trollers of space shuttle solve some planning and diagnostic tasks [73] (used by

United Space Alliance).

• Automated Product Configuration: A web-based commercial system uses an ASP-

based product configuration technology [92] (used by Variantum Oy).1

• Workforce Management: An ASP-based system is developed to build teams of em-

ployees to handle incoming ships by taking into account a variety of requirements,

e.g., skills, fairness, regulations [80] (used by Gioia Tauro seaport).

Let us briefly explain the syntax and semantics of ASP programs and describe how

a computational problem can be solved in ASP.

1http://www.variantum.com/en/

6

http://www.variantum.com/en/

Table 2.1: Applications of ASP.
Area References
planning [24] [62] [87]
theory update/revision [54]
preferences [83] [15]
diagnosis [30] [6] [27]
learning [81]
description logics and semantic web [17] [32] [91]
probabilistic reasoning [8]
data integration and question answering [2] [59]
multi-agent systems [87] [88] [96]
wire routing [38] [26]
decision support systems [73]
bounded model checking [53]
game theory [66] [97]
logic puzzles [42]
phylogenetics [28] [19] [37] [33]
combinatorial auctions [9]
haplotype inference [34] [95]
systems biology [93] [43] [82] [48]
automatic music composition [13] [12]
verification of cryptographic protocols [23]
assisted living [68] [69]
context [27]
scheduling [5]
team-building [80]
package-configuration [45]
e-tourism [79]
indoor positioning [70]
ontologies [76]
information extraction [71]

2.1 Programs

Syntax The input language of ASP programs are composed of three sets namely con-

stant symbols, predicate symbols, and variable symbols where intersection of constant

symbols and variable symbols is empty. The basic elements of the ASP programs are

atoms. An atom p(~t) is composed of a predicate symbol p and terms ~t = t1, . . . , tk where

each ti (1 ≤ i ≤ k) is either a constant or a variable. A literal is either an atom p(~t) or its

negated form not p(~t).

An ASP program is a finite set of rules of the form:

A← A1, . . . , Ak, not Ak+1, . . . , not Am (2.1)

where m ≥ k ≥ 0 and each Ai is an atom; whereas, A is an atom or ⊥.

For a rule r of the form (2.1), A is called the head of the rule and denoted by H(r).

The conjunction of the literals A1, . . . , Ak, not Ak+1, . . . , not Am is called the body of r.

7

Table 2.2: ASP solvers.
Solver Year University Reference
SMODELS 1996 Helsinki University of Technology [72]
DLV 1997 University of Calabria [60]
CMODELS 2002 University of Texas-Austin [51]
ASSAT 2003 Hong Kong University of Science and Technology [64]
PBMODELS 2005 University of Kentucky [65]
DLVHEX 2006 Vienna University of Technology [31]
CLASP 2006 University of Potsdam [46]
ASPERIX 2008 University of Angers [58]
SUP 2008 University of Kentucky [61]
WASP 2011 University of Calabria [25]

The set {A1, ..., Ak} of atoms (called the positive part of the body) is denoted by B+(r),

and the set {Ak+1, ..., Am} of atoms (called the negative part of the body) is denoted

by B−(r), and all the atoms in the body are denoted by B(r) = B+(r) ∪B−(r).

We say that a rule r is a fact if B(r) = ∅, and we usually omit the← sign. Further-

more, we say that a rule r is a constraint if the head of r is ⊥, and we usually omit the ⊥
sign.

Semantics (Answer Sets) Answer sets of a program are defined over ground programs.

We call an atom, rule, or program ground, if it does not contain any variables. Given

a program Π, the set UΠ represents all the constants in Π, and the set BΠ represents all

the ground atoms that can be constructed from atoms in Π with constants in UΠ. Also,

Ground(Π) denotes the set of all the ground rules which are obtained by substituting all

variables in rules with the set of all possible constants in UΠ.

A subset I of BΠ is called an interpretation for Π. A ground atom p is true with

respect to an interpretation I if p ∈ I; otherwise, it is false. Similarly, a set S of atoms is

true (resp., false) with respect to I if each atom p ∈ S is true (resp., false) with respect to I .

An interpretation I satisfies a ground rule r, if H(r) is true with respect to I whenever

B+(r) is true and B−(r) is false with respect to I . An interpretation I is called a model

of a program Π if it satisfies all the rules in Π.

The reduct ΠI of a program Π with respect to an interpretation I is defined as

follows:

ΠI = {H(r)← B+(r) | r ∈ Ground(Π) s.t. I ∩B−(r) = ∅}

An interpretation I is an answer set for a program Π, if it is a subset-minimal model

for ΠI , and AS(Π) denotes the set of all the answer sets of a program Π.

For example, consider the following program Π1:

p← not q (2.2)

8

and take an interpretation I = {p}. The reduct ΠI
1 is as follows:

p (2.3)

I is a model of the reduct (2.3). Let us take a strict subset I ′ of I which is ∅. Then, reduct

ΠI′
1 is again equal to (2.3); however, I ′ does not satisfy (2.3). Therefore, I = {p} is a

subset-minimal model; hence an answer set of Π1. Note also that {p} is the only answer

set of Π.

The not in ASP programs is called negation as failure and is different from classical

negation in SAT [10] in terms of its non-monotonicity. Let the conclusion of a program

be the intersection of its all answer sets. To understand the non-monotonicity of ASP

programs, we need to observe the changes in the conclusion of programs when we extend

them.

Consider the following program Π2:

p← not q

q ← not p
(2.4)

Note that Π2 has one extra rule compared to Π1 and has two answer sets {p} and {q}.
Adding a rule to the program Π1 removes the element in its conclusion; hence decreases

the size of its conclusion from {p} to ∅. Now, consider that we add a constraint to Π2 and

obtain the following program Π3:

p← not q

q ← not p

← p

(2.5)

Π3 has a single answer set {q}. Note that the size of conclusion of Π2 increases from

∅ to {q} when we add the new constraint. We can observe that when we extend an ASP

program by adding new rules, the change in the size of its conclusion is neither monotonic

nor anti-monotonic. This is why the semantics of ASP is considered to be non-monotonic

unlike SAT.

2.2 Generate-And-Test Representation Methodology with

Special ASP Constructs

The idea of ASP [63] is to represent a computational problem as a program whose

answer sets correspond to the solutions of the problem, and to find the answer sets for that

program using an answer set solver.

When we represent a problem in ASP, two kinds of rules play an important role:

those that “generate” many answer sets corresponding to “possible solutions”, and those

9

that can be used to “eliminate” the answer sets that do not correspond to solutions.

Rules (2.4) are of the former kind: they generate the answer sets {p} and {q}. Constraints

are of the latter kind. For instance, adding the constraint

← p

to program (2.4) as in (2.5) eliminates the answer sets for the program that contain p.

In ASP, we use special constructs of the form

{A1, . . . , An}c (2.6)

(called choice expressions), and of the form

l ≤ {A1, . . . , Am} ≤ u (2.7)

(called cardinality expressions) where each Ai is an atom and l and u are nonnegative

integers denoting the “lower bound” and the “upper bound” [85]. Programs using these

constructs can be viewed as abbreviations for normal nested programs defined in [41].

For instance, the following program

1 ≤ {p, q}c ≤ 1←

stands for program (2.4). The constraint

← 2 ≤ {p, q, r}

stands for the constraints
← p, q

← p, r

← q, r

Expression (2.6) describes subsets of {A1, . . . , An}. Such expressions can be used

in heads of rules to generate many answer sets. For instance, the answer sets for the

program

{p, q, r}c ← (2.8)

are arbitrary subsets of {p, q, r}. Expression (2.7) describes the subsets of the set

{A1, . . . , Am} whose cardinalities are at least l and at most u. Such expressions can

be used in constraints to eliminate some answer sets. For instance, adding the constraint

← 2 ≤ {p, q, r}

to program (2.8) eliminates the answer sets for (2.8) whose cardinalities are at least 2.

Adding the constraint

← not (1 ≤ {p, q, r}) (2.9)

10

to program (2.8) eliminates the answer sets for (2.8) whose cardinalities are not at least 1.

Similarly, adding the constraint

← not ({p, q, r} ≤ 1) (2.10)

to program (2.8) eliminates the answer sets for (2.8) whose cardinalities are not at most 1.

We abbreviate the rules

{A1, . . . , Am}c ← Body
← not (l ≤ {A1, . . . , Am})
← not ({A1, . . . , Am} ≤ u)

by

l ≤ {A1, . . . , Am}c ≤ u← Body.

For instance, rules (2.8), (2.9) and (2.10) can be written as

1 ≤ {p, q, r}c ≤ 1←

whose answer sets are the singleton subsets of {p, q, r}.
In ASP, there are also special constructs that are useful for optimization problems.

For instance, to compute answer sets that contain the maximum number of elements from

the set {A1, . . . , Am}, we can use the following optimization statement.

maximize〈{A1, . . . , Am}〉

2.3 Presenting Programs to Answer Set Solvers

Once we represent a computational problem as a program whose answer sets cor-

respond to the solutions of the problem, we can use an answer set solver to compute the

solutions of the problem. To present a program to an answer set solver, like CLASP, we

need to make some syntactic modifications.

Recall that answer sets for a program are defined over ground programs. Thus,

the input of ASP solvers should be ground instantiations of the programs. For that, pro-

grams go through a “grounding” phase in which variables in the program (if exists) are

substituted by constants. For CLASP, we use the “grounder” GRINGO [44].

Although the syntax of the input language of GRINGO is somewhat more restricted

than the class of programs defined above, it provides a number of useful special constructs.

For instance, the head of a rule can be an expression of one of the forms

{A1, . . . , An}c
l ≤ {A1, . . . , An}c
{A1, . . . , An}c ≤ u

l ≤ {A1, . . . , An}c ≤ u

11

but the superscript c and the sign ≤ are dropped. The body can also contain cardinality

expressions but the sign ≤ is dropped. In the input language of GRINGO, :- stands for

←, and each rule is followed by a period. For facts← is dropped. For instance, the rule

1 ≤ {p, q, r}c ≤ 1←

can be presented to GRINGO as follow:

1{p,q,r}1.

Variables in a program are represented by strings whose initial letters are capital-

ized. The constants and predicate symbols, on the other hand, start with a lowercase letter.

For instance, the program Πn

pi ← not pi+1 (1 ≤ i ≤ n)

can be presented to GRINGO as follows:

index(1..n).

p(I) :- not p(I+1), index(I).

Here, the auxiliary predicate index is a “domain predicate” used to describe the ranges

of variables. Variables can be also used “locally” to describe the list of formulas. For

instance, the rule

1 ≤ {p1, . . . , pn} ≤ 1

can be expressed in GRINGO as follows

index(1..n).

1{p(I) : index(I)}1.

2.4 Example: Graph Coloring Problem

Given a set C = {c1, . . . , cn} of colors and a graph G = 〈V,E〉 where V is the

set of vertices and E is the set of edges, the graph coloring problem, COLORING, is to

decide whether there exists an assignment of colors in C to vertices in V such that the

following hold:

(i) every vertex in V is assigned to exactly one color,

(ii) no two vertices connected by an edge in E are assigned to the same color.

12

% Assign exactly one color to every vertex

1{assign(V,C) : color(C)}1 :- vertex(V).

% Ensure that no two adjacent vertices have the same color

:- assign(V1,C), assign(V2,C), edge(V1,V2), V1 < V2.

Figure 2.1: Presenting COLORING to GRINGO.

To represent COLORING in ASP, we can use the generate-and-test methodology

described above. We can describe a solution by utilizing the atoms of the form assign(v, c);

meaning that a vertex v in V is assigned to a color c in C.

In the “generate” part of the ASP program, we assign exactly one color to every

vertex in V as follows:

1 ≤ {assign(v, c1), . . . , assign(v, cn)}c ≤ 1← vertex(v) (v ∈ V) (2.11)

In the “test” part, we ensure that no adjacent vertices have the same color by using the

following constraints:

← assign(v, c), assign(v′, c), edge(v, v′) (v 6= v′) (2.12)

Then, answer sets of the program consisting of the rules (2.11) ∪ (2.12) (along with a

description of a set of colors and a graph) describe assignments of colors to vertices that

satisfy COLORING.

As an example, the program consisting of the rules (2.11) ∪ (2.12) describing COL-

ORING can be represented in the input language of GRINGO as in Figure 2.1. The ex-

pression {assign(V,C) : color(C)} is an abbreviation for

{assign(v, c1), . . . , assign(v, cn)}

where v ∈ V . To use this program, we need to combine it with a description of a set of

colors and a graph, like in Figure 2.2. The first rule indicates that the input graph has four

vertices. The rules in the second line correspond to the edges of the graph. Rules in the

last line represent the possible colors that can be used in a color assignment, i.e., the set

of colors.

Then, CLASP finds the following answer set for the union of these programs:

{vertex(1), vertex(2), vertex(3), vertex(4),

edge(1, 2), edge(2, 3), edge(3, 4), edge(1, 4),

color(yellow), color(blue), color(white),

assign(4, white), assign(3, yellow), assign(2, blue), assign(1, yellow)}

The vertex and edge predicates correspond to the set of vertices and edges of the given

graph, respectively. The assign predicates correspond to color assignments to vertices.

13

vertex(1..4).

edge(1,2). edge(2,3). edge(3,4). edge(1,4).

color(yellow). color(blue). color(white).

Figure 2.2: Presenting a COLORING instance to GRINGO.

According to this answer set, the color assignment where vertices 1 and 3 are colored to

yellow, and vertices 2 and 4 to blue, satisfies COLORING.

In a variation of this problem, suppose that we want to maximize the number of

vertices colored in blue. In ASP, it can be represented by the program consisting of the

rules (2.11) ∪ (2.12) and the following optimization statement.

maximize〈{v : assign(v, blue)}〉

We represent this problem in the input language of GRINGO by the rules in Figure 2.1 and
the following optimization statement.

#maximize [assign(V,blue)].

Then, CLASP finds following optimal answer set:

{vertex(1), vertex(2), vertex(3), vertex(4),

edge(1, 2), edge(2, 3), edge(3, 4), edge(1, 4),

color(yellow), color(blue), color(white),

assign(4, white), assign(3, blue), assign(2, yellow), assign(1, blue)}

Observe that this answer set contains two vertices colored to blue, whereas the previously

computed one (without optimization statement) has a single vertex colored to blue.

14

CHAPTER 3

EXTENDING BIOQUERY-ASP TO
ANSWER NEW QUERIES

We have earlier developed the software system BIOQUERY-ASP [36] (see Fig-

ure 1.1) that answers complex queries requiring appropriate integration of relevant knowl-

edge from different knowledge resources and auxiliary definitions such as chains of drug-

drug interactions, cliques of genes based on gene-gene relations, or similar/diverse genes.

As depicted in Figure 1.1, BIOQUERY-ASP takes a query in a controlled natural language

and transforms it into ASP. Meanwhile, it extracts knowledge from biomedical databases

and ontologies, and integrates them in ASP. Afterwards, it computes an answer to the

given query using an ASP solver.

We extend BIOQUERY-ASP to answer new types of queries (e.g., negative queries,

queries about symptoms of diseases, similarity/diversity queries about drugs) by incor-

porating new biomedical knowledge resources related to drugs, genes, and diseases (e.g.,

DISEASEONTOLOGY, ORPHADATA).

3.1 New Types of Biomedical Queries

3.1.1 Negation in Queries

BIOQUERY-ASP allows us to construct positive queries such that various positive

relations between instances of drugs, genes and diseases can be answered. Sometimes, an

expert might be interested in discovering negative relations (or combinations of both pos-

itive and negative relations) among those concepts. Consider, for instance, the following

query Q11 from Table 1.1.

Q11 What are the drugs that treat the disease Depression and that do not target the

gene ACYP1?

15

Table 3.1: Grammar of BIOQUERY-CNL*.
QUERY→ WHATQUERY QUESTIONMARK

WHATQUERY→ What are OFRELATIONINSTANCE

WHATQUERY→ What are OFRELATION NESTEDPREDICATERELATION

WHATQUERY→ What are the Type() SIMPLEALLRELATION NESTEDPREDICATERELATION

WHATQUERY→ What are the Type() NESTEDPREDICATERELATION

WHATQUERY→ What are the PositiveInteger() most SD Type()
NESTEDPREDICATERELATION

WHATQUERY→ What are the cliques of PositiveInteger() Type() CONTAIN

NESTEDPREDICATERELATION

CONTAIN→ , that (NEG)? contain the Type() Instance(),
OFRELATIONINSTANCE→ Noun() of Type() Instance()
OFRELATION→ Noun() of Type()
NESTEDPREDICATERELATION→ (that SIMPLERELATION)∗ that PREDICATERELATION

SIMPLERELATION→ (NEG)? V erb() the Type()
SIMPLEALLRELATION→ that V erb() all the Type()
PREDICATERELATION→ INSTANCERELATION (CONNECTOR NESTEDPREDICATERELATION)∗

INSTANCERELATION→ (NEG)? V erb() the Type() Instance()
INSTANCERELATION→ V erb() GENERALISEDQUANTOR PositiveInteger() Type()
INSTANCERELATION→ are related to the Type() Instance() via a Type()-Type()

relation chain of length at most PositiveInteger()
SD→ similar | diverse
CONNECTOR→ and | or
GENERALISEDQUANTOR→ at least | at most | exactly
NEG→ Neg()
QUESTIONMARK→ ?

This type of queries might be important in terms of drug repurposing [21] which has

achieved a number of successes in drug development, including the famous example of

Pfizer’s Viagra [52].
With this motivation, we have incorporated negative queries into BIOQUERY-ASP.

For that, first we have extended the grammar of BIOQUERY-CNL as to allow users to con-
struct negative queries, like the query Q11. The extended grammar, called BIOQUERY-
CNL*, is presented in Table 3.1, where red colored parts reflect the extensions about
negative queries. A detailed description of some special functions to extract knowledge
from the given biomedical databases and ontologies, which are denoted in italic in the
grammar, is given in Table 3.2. Then we can present negative queries as an ASP program
by using negation as failure. For example, we can transform the query Q11 into the fol-
lowing ASP program. The negative queries in BIOQUERY-CNL* (like the other forms of
queries) are automatically translated into ASP.

what_be_drugs(DRG) :- cond1(DRG), cond2(DRG).

cond1(DRG) :- drug_disease(DRG,"Depression").

cond2(DRG) :- drug_name(DRG), not drug_gene(DRG,"ACYP1").

answer_exists :- what_be_drugs(DRG).

:- not answer_exists.

Since the algorithm for identifying relevant parts is able to cover programs with negation

as failure, we do not need to modify query answering part of BIOQUERY-ASP.

16

Table 3.2: Special functions used in BIOQUERY-CNL*.
Type() Returns a suitable type, ex. gene, disease, drug
Instance() Returns a suitable instance according to the given type, ex. Asthma, Epinephrine
V erb() Returns a suitable verb according to the given types, ex. treat, interact, are related to
Noun() Returns a suitable noun according to the given type, ex. side-effect, symptom
Neg() Returns a suitable negation phrase, ex. do not, are not

3.1.2 Queries about Symptoms of Diseases

The earlier work on BIOQUERY-ASP has considered queries about side effects of

drugs, like the query Q2 in Table 1.1. One of the newly added knowledge resources,

DISEASEONTOLOGY, provides information about symptoms of diseases. To exploit this

information, we have further modified the grammar of BIOQUERY-CNL. More specifi-

cally, we have added the word “symptom” to the list of possible nouns that can be returned

by the special function Noun() used in BIOQUERY-CNL, as shown in Table 3.2 with the

blue part. In this way, the users are able to construct queries about symptoms of diseases,

like the query Q12 in Table 1.1.
We then can represent queries about symptoms of diseases in ASP. Similar to the

representation of queries about side effects of drugs in ASP. The only difference is to use
convenient predicates that correspond to symptoms of diseases, instead of side effects of
drugs. For instance, the following program is used to represent the query Q12.

what_be_symptoms(X) :- disease_symptom(DIS,X), cond0(DIS).

cond0(DIS) :- drug_disease("Epinephrine",DIS).

answer_exists :- what_be_symptoms(X).

:- not answer_exists.

3.1.3 Similarity/Diversity of Drugs

Some queries may have too many answers. In such cases, it might be more desirable

to compute a subset of answers which are similar/diverse to each other with respect to

some given distance measure. Motivated by that, similarity/diversity queries related to

genes are studied in [35] by utilizing Online Method 3 of [29]. Similar to that, in this

thesis, we study similarity/diversity queries related to drugs.

First, in order to answer similarity/diversity queries about drugs, one needs to find

a way to measure similarities between drugs. Most of the drugs have side effects and the

number of common side effects among drugs might be a strong indication of how similar

those drugs are [18]. Thus, we have introduced the following distance measure. Assume

that c is a large constant, larger than the number of all side effects of drugs in databases

and ontologies.

17

Definition 1 (the side effect distance). Given two drugs d1 and d2, the distance ∆S(d1, d2)

between d1 and d2 is defined as

∆S(d1, d2) = c− |{s1 | s1 is a sideeffect of d1} ∩ {s2 | s2 is a sideeffect of d2}| (3.1)

Note that ∆S is always positive due to large value of c. Intuitively, having more common

side effects decreases the distance between two drugs, like in Example 1.

Example 1. Let d1, d2 and d3 be pairwise different drugs such that the number of common

side effects is 15 between d1 and d2, and 9 between d1 and d3. Assume that c is 20. Then,

∆S(d1, d2) = 5 and ∆S(d1, d3) = 11. This shows that more common side effects implies

more similar drugs.

Next, we need to define the corresponding similarity/diversity problem in the con-

text of ASP. In [29], the authors define the following problem to finding n solutions which

are k similar with respect to a given distance measure.

Definition 2 (n k-similar (resp., diverse) solutions). Given an ASP program P that for-

mulates a computational problem P , a distance measure δ that maps a set of solutions for

P to a nonnegative integer, and two nonnegative integers n and k, decide whether a set S

of n solutions for P exists such that δ(S) ≤ k (resp., δ(S) ≥ k).

Analogous to n k-similar/diverse solutions, we have defined n k-similar/diverse drugs.

Definition 3 (n k-similar (resp., diverse) drugs). Given an ASP programP that formulates

a drug finding problem P , a distance measure δ that maps a set of drugs for P to a

nonnegative integer, and two nonnegative integers n and k, decide whether a set S of

n drugs for P exists such that δ(S) ≤ k (resp., δ(S) ≥ k).

To compute similar/diverse drugs, we need to define a distance measure δ for a set D of

drugs. We define the distance measure δ for a set D of similar drugs as follows:

δ(D) = max{∆S(d1, d2) | d1, d2 ∈ D}

Similarly, we define the distance measure δ for a set D of diverse drugs as follows:

δ(D) = min{∆S(d1, d2) | d1, d2 ∈ D}

Note that the problems n k-similar/diverse solutions are NP-complete [29], for the kind

of ASP programs considered in this thesis, which are ASP programs where the head of

a rule can be an atom, ⊥ or a choice expression, and the distance function δ(D), which

is computable in polynomial time with respect to the size of D. Therefore, the problems

n k-similar/diverse drugs are inherently intractable.
Finally, we have represented similarity/diversity queries about drugs in ASP. For

instance, let us describe how we can solve the query Q13 from Table 1.1. Take the ASP
program P as follows:

18

1{similardrugs(DRG):cond1(DRG)}1.

cond1(DRG) :- drug_gene(DRG,"DLG4").

answer_exists :- similardrugs(DRG).

:- not answer_exists.

This program generates a single drug that targets the gene “DLG4”. Take the distance

function δ(D) as defined above for similar drugs, i.e., maximum distance over the pair-

wise drug distances in D. Take n = 3 and k = 100. Then, to compute an answer to the

query Q13, we have used CLASP-NK.1 CLASP-NK computes an answer to the query Q13

incrementally. For that, we need an admissible heuristic function that estimates the value

of δ(D) from a partially computed answer set. We take the heuristic function as the dis-

tance function itself. Then, we can compute an answer to the query Q13 using CLASP-NK

with the following command line:

$ gringo Q13.gr | CLASP-NK

where Q13.gr is a file which contains the ASP program P shown above. With a binary

search, one can try to minimize the value of k; however, the underlying online method of

CLASP-NK is not complete (due to the choice of the first answer set).

Also, as the grammar of BIOQUERY-CNL allows to construct similarity/diversity

queries about drugs, we have integrated those queries into BIOQUERY-ASP.

3.1.4 Finding Close/Distant Drugs to a Given Drug

Another type of query, which might be useful in analyzing relations between drugs,

is to finding drugs that are close/distant to a previously computed/known set of drugs. For

that, we are interested in answering queries in the following format.

What are the n closest drugs to the drug d ?

where n is a positive integer and d is a drug name. The query Q14 from Table 1.1 is an

example of such a query. We model such queries mathematically as follows.

Definition 4 (n closest drugs). Given a positive integer n, a drug d and a distance measure

∆ that maps two drugs to a nonnegative integer, n closest drugs to the drug d with respect

to ∆, (n, d,∆)MCD for short, is a set S of n drugs such that
∑
ds∈S

∆(d, ds) is less than or

equal to
∑
d′s∈S′

∆(d, ds′) for any set S ′ of n drugs, where d /∈ S, S ′.

1http://krr.sabanciuniv.edu/projects/SimilarDiverseSolnsInASP

19

http://krr.sabanciuniv.edu/projects/SimilarDiverseSolnsInASP

Note that the queries that ask for distant drugs can be modeled similarly. The only differ-

ence is to maximize the distance function instead of minimizing.

To compute solutions for the above problem, we have developed two methods, one

with a naive approach and the other with a greedy approach. In the former method, we

have solely used ASP to find n closest drugs. The latter method is a greedy algorithm that

makes use of ASP.

Naive Method In this approach, we have applied generate-and-test methodology of

ASP to find n closest drugs to a given drug d. Assume that the predicate drug_name(DRG)

represents a drug DRG and the predicate drug_side(DRG,SE) represents a side effect SE

of the drug DRG. These predicates are defined in the rule layer over biomedical knowledge

resources.
In the ASP formulation, we first generate n drugs, which are potentially the n closest

drugs to the given drug d:

index(1..n).

1 { close_drugs(N,DRG) : drug_name(DRG) : DRG != d } 1 :- index(N).

Here, the predicate close_drugs(N,DRG) represents a potential drug DRG that could be
one of the n closest drugs to d. Then, for each generated drug DRG, we define common
side effects between DRG and d.

common_sideeffect(N,DRG,SE) :- close_drugs(N,DRG),

drug_sideeffect(DRG,SE),

drug_sideeffect(d,SE).

We need to make sure that each generated drug DRG is unique.

:- close_drugs(N1,DRG), close_drugs(N2,DRG), N1 < N2.

Finally, we maximize the number of common side effects to ensure that the generated set
of drugs are the closest drugs to the drug d.

#maximize [common_sideeffect(N,DRG,SE)].

Greedy Method For some problems, the naive method cannot find n closest drugs to a

given drug efficiently, even for small values of n. This is probably due to generation of

n drugs at once, in the program. To increase the computational efficiency in time, and to

find solutions for bigger values of n, we have designed an ASP-based greedy algorithm

(Algorithm 1).
The idea of the algorithm is to generate one drug at a time, instead of generating

n drugs at once, and to ensure that the total number of different common side effects is

20

Algorithm 1: Generating n Closest Drugs
Input: n is the number of drugs, d is a drug name.

Output: N represents a set of n closest drugs to the drug d

N ← ∅1

for i← 1 to n do2

X ← AS(N ∪Π∆S
grdy(i, d))3

N ← X4

return N |drugs/25

maximized while generating a new drug. In other words, in Algorithm 1, at the end of
the ith iteration, X contains i closest drugs to the given drug d. To compute X , we use an
ASP program Π∆S

grdy(i, d) shown in Figure 3.1. This encoding is similar to the one used in
the naive method. It generates a single drug instead of n drugs:

1 { close_drugs(i,DRG) : drug_name(DRG) : DRG != d } 1.

Then, the common side effects between the generated drug and the given drug d is defined:

common_sideeffect(i,DRG,SE) :- close_drugs(i,DRG),

drug_sideeffect(DRG,SE),

drug_sideeffect(d,SE).

Next, we ensure that the generated drug is not the same as the previously generated drugs:

:- close_drugs(i,DRG), close_drugs(N,DRG), i != N.

To guarantee that the union of the previously computed drugs and the generated
drug is (i, d,∆)MCD, i.e., i closest drugs to the drug d, we maximize the number of
common side effects.

#maximize [common_sideeffect(N,DRG,SE)].

Other Possible Methods Recall that computing similar/diverse solutions for a given

problem, in the context of ASP, is studied in [29]. By reducing the problem (n, d,∆)MCD

to some of these problems, we can use computational methods of [29] to solve (n, d,∆)MCD.

One of the problems studied in [29] is the following:

Definition 5 (n most similar solutions). Given an ASP program P that formulates a com-

putational problem P , a distance measure δ that maps a set of solutions for P to a non-

negative integer, and a nonnegative integer n, find a set S of n solutions for P with the

minimum distance δ(S).

21

We can reduce the problem (n, d,∆)MCD to n most similar solutions as follows.
Clearly, n comes from (n, d,∆)MCD. Since there are n drugs in (n, d,∆)MCD and we
look for n solutions, each solution of the computational problem P must consist of a
single drug. Also d cannot be in (n, d,∆)MCD. Then, P can be defined simply as “find a
drug different from d”. This problem can be represented by the following ASP programP .

1 { drug(DRG) : drug_name(DRG) : DRG != d } 1.

In the problem (n, d,∆)MCD, the goal is to find a set S of n drugs such that
∑
s∈S

∆(d, s)

is minimized. Therefore, we define the distance measure δ as follows:

δ(S) =
∑
s∈S

∆(d, s) (3.2)

Notice that this function is valid, since a solution for P consists of a single drug. Then,

with these parameters (P, δ and n), a solution for the problem n most similar solutions

corresponds to a solution for the problem (n, d,∆)MCD.

Another problem studied in [29], which can be related to the problem (n, d,∆)MCD,

is as follows.

Definition 6 (k-close solution). Given an ASP program P that formulates a computa-

tional problem P , a distance measure δ that maps a set of solutions for P to a nonnega-

tive integer, a set S of solutions for P , and a nonnegative integer k, decide whether some

solution s (s /∈ S) for P exists such that δ(S ∪ {s}) ≤ k.

Its optimization version is then described as:

Definition 7 (closest solution). Given an ASP programP that formulates a computational

problem P , a distance measure δ that maps a set of solutions for P to a nonnegative

integer, and a set S of solutions for P , find a solution s (s /∈ S) for P with the minimum

δ(S ∪ {s}).

1 { close_drugs(i,DRG) : drug_name(DRG) :DRG != d } 1.

common_sideeffect(i,DRG,SE) :- close_drugs(i,DRG),

drug_sideeffect(DRG,SE),

drug_sideffect(d,SE).

:- close_drugs(i,DRG), close_drugs(N,DRG), i != N.

#maximize [common_sideeffect(N,DRG,SE)].

Figure 3.1: ASP program Π∆S
grdy(i, d).

22

By carefully defining the inputs of the problem closest solution, one can also show

that the problem (n, d,∆)MCD can be reduced to the problem closest solution.
Let n, d and ∆ be the parameters of the problem (n, d,∆)MCD. Then, the problem

P is defined as “find a set of n drugs, not including d”. This problem can be represented
by the following ASP program P .

index(1..n).

1 { drugs(N,DRG) : drug_name(DRG) : DRG != d } 1 :- index(N).

Given a set S of solutions for P , the distance measure δ is defined as

δ(S) = min{
∑
d′∈s

∆(d, d′) | s ∈ S}. (3.3)

Finally, the parameter S = ∅. Then, a solution s for P with minimum δ(S ∪ {s}) corre-

sponds to a solution for the problem (n, d,∆)MCD.

3.2 New Biomedical Knowledge Resources

The knowledge base of BIOQUERY-ASP is built over large biomedical knowl-

edge resources about drugs, genes and diseases, such as PHARMGKB, DRUGBANK,

BIOGRID, CTD and SIDER. After updating the biomedical information gathered from

these resources, we have also expanded the knowledge base of BIOQUERY-ASP by in-

cluding knowledge extracted from DISEASEONTOLOGY and ORPHADATA. In Table 3.3,

we provide the relations extracted from each knowledge resource together with the num-

ber of corresponding ASP facts.

These knowledge resources are in different formats. For instance, DISEASEON-

TOLOGY keeps the knowledge in OBO format, whereas ORPHADATA keeps the knowl-

edge in XML format. The other knowledge resources use their own formats, which are

generally in text formats where related fields are separated by a delimiter such as the tab

character. In order to transform these knowledge resources to ASP, we have developed

basic parsers for every format accordingly.

3.3 New Experiments

To show the usefulness of our methods with the new extensions, we conducted

experiments on the queries listed in Table 1.1 over large biomedical knowledge resources

about genes, drugs and diseases such as PHARMGKB, DRUGBANK, SIDER, BIOGRID,

CTD, DISEASEONTOLOGY and ORPHADATA. Experiments were run on a workstation

with two 1.60GHz Intel Xeon E5310 Quad-core Processor and 16GB RAM.

23

Table 3.3: Knowledge resources and their relations.
Source Relation # of ASP facts
BIOGRID gene-gene 372.293
CTD disease-gene 8.909.071

drug-disease 704.590
drug-gene 259.048

DISEASEONTOLOGY disease-symptom 1.752
DRUGBANK drug-category 4.743

drug-drug 21.756
ORPHADATA disease-gene 1.452
PHARMGKB disease-gene 9.417

drug-disease 3.740
drug-gene 15.805

SIDER drug-sideeffect 61.102
Total: ≈ 10.3 M

First, we considered the queries that can be generated by the grammar of BIOQUERY-

CNL*. Those queries are the queries Q1–Q13. Among those queries, for the ones that

are not concerned about similarity/diversity of genes/drugs, we used two ASP solvers,

CLASP version 2.0.3 (together with the grounder GRINGO version 3.0.3) and DLV ver-

sion 21.12.2011.2 For similarity/diversity queries, we used the ASP solver CLASP-NK

version 2, a variant of CLASP.

Table 3.4 presents the results of the experiments when CLASP was used. In this

table, the first column consists of the queries we used in the experiments. In the second

column you can find the computation times (in seconds) and program sizes of the corre-

sponding queries in case of using the complete rule layer (i.e., considering all possible

relations extracted from the databases/ontologies).3 To make the computation more effi-

cient, we applied the method described in [35] for answering queries with respect to the

relevant parts of knowledge resources and the rule layer. Essentially, we identified the

relevant predicates that the query-predicates depend on (using a dependency graph), and

considered the rules that contain these relevant predicates. The results obtained after us-

ing that method (i.e., considering only relevant relations with respect to given query) can

be found in the third column. The smallest computation time is shown in bold-face. For

instance, for the query Q2, CLASP takes 249 seconds to find an answer with the complete

program which contains 21 million rules, whereas it takes 12.5 seconds to find an answer

with relevant part of the program which contains 2 million rules. As seen from the other

results, it is advantageous to identify the relevant part of the program while answering

queries.

2DLV has its own grounder.
3While using CLASP, we take the program size as the number of rules in the ground instantiation of the

ASP program. In case of DLV, structural size is used for the program size.

24

Table 3.4: Experimental results (using CLASP).

Query Complete Relevant
Q1 259.65s 11.69s

Rules : 21.070.086 Rules : 1.964.429
Q2 249.02s 12.50s

Rules : 21.070.672 Rules : 2.087.219
Q3 261.00s 9.37s

Rules : 21.067.622 Rules : 1.567.652
Q4 250.51s 303.64s

Rules : 21.090.279 Rules : 19.476.119
Q5 244.91s 8.26s

Rules : 21.074.836 Rules : 1.465.817
Q6 253.27s 271.23s

Rules : 21.119.996 Rules : 19.515.322
Q7 246.60s 6.33s

Rules : 21.067.721 Rules : 1.020.378
Q8 259.17s 6.92s

Rules : 21.107.280 Rules : 1.060.288
Q9 271.75s 3.35s

Rules : 21.059.597 Rules : 547.545
Q10 246.89s 10.39s

Rules : 21.102.612 Rules : 1.612.128
Q11 255.81s 12.90s

Rules : 21.078.277 Rules : 2.158.684
Q12 255.91s 83.14s

Rules : 21.067.704 Rules : 10.338.474
Q13 258.89s 3.36s

Rules : 21.059.455 Rules : 547.332

Table 3.5 reports the results of the experiments when DLV was used. In this table, the

first column is the same as the first column of Table 3.4. In the second column, results for

the complete rule layer can be found. An advanced query optimization technique for logic

programs (known as dynamic magic-sets [1]) is embedded into DLV. To see whether this

technique can improve computation times for our queries, we applied it on the complete

rule layer. Results when magic sets method applied on the complete rule layer can be

seen in the third column. Also, we applied the method of [35] for answering queries

with respect to the relevant parts of knowledge resources and the rule layer. Results

are depicted in the fourth column. Finally, with the goal of obtaining more efficient

computation times, we applied both optimization methods: we first extracted the relevant

knowledge with respect to the given query, and then we applied the magic sets method on

the relevant part. The results are shown in the fifth column. The magic set method is not

applicable for some ASP programs (the ones containing aggregates, constraints etc.). For

queries that are represented by such programs, we cannot apply the magic set method.

25

Table 3.5: Experimental Results (using DLV).

Query Complete Complete Relevant Relevant
(Magic) (Magic)

Q1 221.93s 91.47s 15.00s 9.60s
Size: 10.364.769 Size: 10.364.769 Size: 983.183 Size: 983.183

Q2 221.76s 91.94s 16.27s 10.82s
Size: 10.364.769 Size: 10.364.769 Size: 1.044.285 Size: 1.044.285

Q3 224.97s 91.81s 13.74s 6.29s
Size: 10.364.769 Size: 10.364.769 Size: 647.146 Size: 647.146

Q4 250.79s NA 231.48s NA
Size: 10.364.769 Size: 9.567.086

Q5 221.86s 91.65s 11.00s 7.34s
Size: 10.364.769 Size: 10.364.769 Size: 730.086 Size: 730.086

Q6 217.79s NA 83.52s NA
Size: 10.364.769 Size: 9.571.829

Q7 233.85s NA 13.95s NA
Size: 10.370.353 Size: 652.730

Q8 238.89s NA 9.49s NA
Size: 10.364.771 Size: 372.295

Q10 238.14s NA 14.57s NA
Size: 10.364.771 Size: 651.891

Q11 226.96s 98.50s 16.33s 16.72s
Size: 10.364.769 Size: 10.364.769 Size: 1.070.784 Size: 1.070.784

Q12 226.00s 97.33s 182.25s 80.09s
Size: 10.364.769 Size: 10.364.769 Size: 9.630.022 Size: 9.630.022

Those ones are shown by “NA”, an abbreviation for “Not Applicable”. The smallest

computation time is shown in bold-face. For instance, for the query Q5, DLV takes 221.8

seconds to find an answer with the complete program which contains 10.3 million rules,

whereas it takes 7.3 seconds to find an answer with the magic set method applied on the

relevant part of the program which contains 730 thousand rules. According to the results,

the most advantageous way of answering queries is to apply magic set method on the

identified relevant part of the program, if applicable.

Among the queries listed in Table 1.1, the only query that cannot be represented

in the grammar of BIOQUERY-CNL* is the query Q14. Notice that it is a query about

close drugs to the drug “Epinephrine”. Thus, we represent the query as an instance of

(n, d,∆)MCD and apply the two methods described in Section 3.1.4.

In our experiments, we used the distance measure ∆S to compute the distance be-

tween two drugs. For the ASP solver, we chose CLASP version 2.0.3. Table 3.6 presents

the results of the experiments. The first column shows the number of closest drugs. The

second (resp., third) column denotes computation times for the naive method (resp., the

greedy method) together with the distances of the drugs in the solution. Observe that the

26

Table 3.6: Experimental results for closeness/distantness queries.

n Naive Greedy
1 11.992s 11.550s

∆S = 18 ∆S = 18
2 900.000s 23.088s

∆S = 35 ∆S = 35
3 900.000s 34.588s

∆S = 50 ∆S = 52
4 900.000s 46.049s

∆S = 55 ∆S = 69
5 900.000s 57.912s

∆S = 64 ∆S = 86
10 900.000s 115.307s

∆S = 113 ∆S = 167

distances are different when n is not equal to 1 and 2. Due to the maximization statement

in the encoding of the naive method, CLASP finds answer sets incrementally towards the

optimized answer sets. Then, although it finds some answer sets, it may not generate the

optimized ones within a reasonable amount of time. Therefore, we put a 10 minutes time

limit for each run of CLASP. In the table, the distances denote the best solutions com-

puted within 10 minutes. In fact, in the greedy method, CLASP is able to find optimized

answer sets for every n. That is, for every n, the results for the greedy method are indeed

the solution of (n,Epinephrine,∆S)MCD. However, in the naive method, CLASP could

not guarantee the optimization of the results for n is equal to 2, 3, 4, 5 and 10. Although

the result for n = 2 is optimized, CLASP continues its search as it could not succeed in

guaranteeing the optimality.

27

CHAPTER 4

EXPLANATION GENERATION
IN ASP

Once an answer is found for a complex biomedical query, the experts may need

informative explanations about the answer. For instance, consider the following query.

What are the drugs that treat the disease Asthma and that targets the gene ADRB1?

An answer for this query is “Xenobiotics”. At this point, it might be useful to explain why

“Xenobiotics” is an answer for the query. The following explanation could help experts

investigate knowledge resources which justify the answer.

The drug Xenobiotics treats the disease Asthma according to PHARMGKB.

The drug Xenobiotics targets the gene ADRB1 according to PHARMGKB.

With this motivation, we study generating explanations for complex biomedical queries.

Since the queries, knowledge extracted from databases and ontologies, and the rule layer

are in ASP, our studies focus on explanation generation within the context of ASP.

In the following, we first introduce definitions regarding explanations in ASP. Next,

we provide a method to generate shortest explanations with respect to given queries. Then,

we present another method which allows to generate k different explanations for a given

query. After that, we discuss how to present explanations to the users in a natural lan-

guage. Finally, we discuss the implementation of these algorithms, and its integration in

BIOQUERY-ASP.

4.1 Explanations in ASP

Let Π be the relevant part of a ground ASP program with respect to a given biomed-

ical query Q (also a ground ASP program), that contains rules describing the knowledge

extracted from biomedical ontologies and databases, the knowledge integrating them, and

28

the background knowledge. Rules in Π ∪ Q generally do not contain cardinality/choice

expressions in the head; therefore, we assume that in Π ∪ Q only bodies of rules con-

tain cardinality expressions. Let X be an answer set for Π ∪ Q. Let p be an atom that

characterizes an answer to the query Q. The goal is to find an “explanation” as to why

p is computed as an answer to the query Q, i.e., why is p in X? Before we introduce a

definition of an explanation, we need the following notations and definitions.

We say that a set X of atoms satisfies a cardinality expression C of the form

l ≤ {A1, . . . , Am} ≤ u

if the cardinality of X ∩ {A1, . . . , Am} is within the lower bound l and upper bound u.

Also X satisfies a set SC of cardinality expressions (denoted by X |= SC), if X satisfies

every element of SC.

Let Π be a ground ASP program, r be a rule in Π, p be an atom in Π, and Y and Z

be two sets of atoms. Let Bcard(r) denote the set of cardinality expressions that appear in

the body of r. We say that r supports an atom p using atoms in Y but not in Z (or with

respect to Y but Z), if the following hold:

H(r) = p,

B+(r) ⊆ Y \Z,
B−(r) ∩ Y = ∅,
Y |= Bcard(r)

(4.1)

We denote the set of rules in Π that support p with respect to Y but Z, by ΠY,Z(p).

We now introduce definitions about explanations in ASP. We first define a generic

tree whose vertices are labeled by either atoms or rules.

Definition 8 (Vertex-labeled tree). A vertex-labeled tree 〈V,E, l,Π, X〉 for a program Π

and a set X of atoms is a tree 〈V,E〉 whose vertices are labeled by a function l that maps

V to Π ∪ X . In this tree, the vertices labeled by an atom (resp., a rule) are called atom

vertices (resp., rule vertices).

For a vertex-labeled tree T = 〈V,E, l,Π, X〉 and a vertex v in V , we introduce the

following notations:

• ancT (v) denotes the set of atoms which are labels of ancestors of v.

• desT (v) denotes the set of rule vertices which are descendants of v.

• childE(v) denotes the set of children of v.

• siblingE(v) denotes the set of siblings of v.

• outE(v) denotes the set of out-going edges of v.

29

• degE(v) denotes the degree of v and equals to |outE(v)|.

• If degE(v) = 0, then v is a leaf vertex.

• leaf (T) denotes the set of leaves of T .

• The root of T is the root of 〈V,E〉.

• T is empty if 〈V,E〉 = 〈∅, ∅〉.

We now define a specific class of vertex-labeled trees which contains all possible

“explanations” for an atom.

Definition 9 (And-or explanation tree). Let Π be a ground ASP program, X be an answer

set for Π, p be an atom in X . The and-or explanation tree for p with respect to Π and X

is a vertex-labeled tree T = 〈V,E, l,Π, X〉 that satisfies the following:

(i) for the root v ∈ V of the tree, l(v) = p;

(ii) for every atom vertex v ∈ V ,

outE(v) = {(v, v′) | (v, v′) ∈ E, l(v′) ∈ ΠX,ancT (v′)(l(v))};

(iii) for every rule vertex v ∈ V ,

outE(v) = {(v, v′) | (v, v′) ∈ E, l(v′) ∈ B+(l(v))};

(iv) each leaf vertex is a rule vertex.

Let us explain conditions (i)− (iv) in Definition 9 in detail.

(i) The root of the and-or explanation tree T is labeled by the atom p. Intuitively, T

contains all possible explanations for p.

(ii) For every atom vertex v ∈ V , there is an out-going edge (v, v′) to a rule vertex

v′ ∈ V under the following conditions: the rule that labels v′ supports the atom that

labels v, using atoms in X but not any atom that labels an ancestor of v′. We want

to exclude the atoms labeling ancestors of v′ to ensure that the height of the and-or

explanation tree is finite (e.g., otherwise, due to cyclic dependencies the tree may

be infinite).

(iii) For every rule vertex v ∈ V , there is an out-going edge (v, v′) to an atom vertex if

the atom that labels v′ is in the positive body of the rule that labels v. In this way,

we make sure that every atom in the positive body of the rule that labels v takes part

in explaining the head of the rule that labels v.

30

(iv) Together with Conditions (ii) and (iii) above, this condition guarantees that the

leaves of the and-or explanation tree are rule vertices that are labeled by facts in

the reduct of the given ASP program Π with respect to the given answer set X .

Intuitively, this condition expresses that the leaves are self-explanatory.

Example 2. Let Π be the program

a← b, c

a← d

d←
b← c

c←

andX = {a, b, c, d}. The and-or explanation tree for a with respect to Π andX is shown

in Figure 4.1. Intuitively, the and-or explanation tree includes all possible “explanations”

for an atom. For instance, according to Figure 4.1, the atom a has two explanations:

• One explanation is characterized by the rules that label the vertices in the left sub-

tree of the root: a is in X because the rule

a← b, c

support a. Moreover, this rule can be “applied to generate a” because b and c, the

atoms in its positive body, are in X . Further, b is in X because the rule

b← c

supports b. Further, c is in X because c is supported by the rule

c←

which is self-explanatory.

• The other explanation is characterized by the rules that label the vertices in the

right subtree of the root: a is in X because the rule

a← d

supports a. Further, this rule can be “applied to generate a” because d is in X . In

addition, d is in X because d is supported by the rule

d←

which is self-explanatory.

31

a

a← b, c

b

b← c

c

c←

c

c←

a← d

d

d←

Figure 4.1: The and-or explanation tree for Example 2.

Proposition 1. Let Π be a ground ASP program and X be an answer set for Π. For every

p in X , the and-or explanation tree for p with respect to Π and X is not empty.

Note that in the and-or explanation tree, atom vertices are the “or” vertices, and rule

vertices are the “and” vertices. Then, we can obtain a subtree of the and-or explanation

tree that contains an explanation, by visiting only one child of every atom vertex and every

child of every rule vertex, starting from the root of the and-or explanation tree. Here is

precise definition of such a subtree, called an explanation tree.

Definition 10 (Explanation tree). Let Π be a ground ASP program,X be an answer set for

Π, p be an atom in X , and T = 〈V,E, l,Π, X〉 be the and-or explanation tree for p with

respect to Π andX . An explanation tree in T is a vertex-labeled tree T ′ = 〈V ′, E ′, l,Π, X〉
such that

(i) 〈V ′, E ′〉 is a subtree of 〈V,E〉;

(ii) the root of 〈V ′, E ′〉 is the root of 〈V,E〉;

(iii) for every atom vertex v′ ∈ V ′, degE′(v
′) = 1;

(iv) for every rule vertex v′ ∈ V ′, outE(v′) ⊆ E ′.

Example 3. Let T be the and-or explanation tree in Figure 4.1. Then, Figure 4.2 illus-

trates the explanation trees in T . These explanation trees characterize the two explana-

tions for a explained in Example 2.

After having defined the and-or explanation tree and an explanation tree for an atom,

let us now define an explanation for an atom.

Definition 11 (Explanation). Let Π be a ground ASP program, X be an answer set for Π,

and p be an atom in X . A vertex-labeled tree 〈V ′, E ′, l,Π, X〉 is an explanation for p

32

a

a← b, c

b

b← c

c

c←

c

c←

a

a← d

d

d←

Figure 4.2: Explanation trees for Example 3.

with respect to Π and X if there exists an explanation tree 〈V,E, l,Π, X〉 in the and-or

explanation tree for p with respect to Π and X such that

(i) V ′ = {v | v is a rule vertex inV };

(ii) E ′ = {(v1, v2) | (v1, v), (v, v2) ∈ E, for some atom vertex v ∈ V }.

Intuitively, an explanation can be obtained from an explanation tree by “ignoring”

its atom vertices.

Example 4. Let Π and X be defined as in Example 2. Then, Figure 4.3 depicts two

explanations for a with respect to Π and X , described in Example 2.

a← b, c

b← c

c←

c←

(a)

a← d

d←
(b)

Figure 4.3: Explanations for Example 4.

So far, we have considered only positive programs in the examples. Our definitions

can also be used in programs that contain negation and aggregates in the bodies of rules.

Example 5. Let Π be the program

a← b, c, not e

a← d, not b

a← d, 1 ≤ {b, c} ≤ 2

d←
b← c

c←

33

andX = {a, b, c, d}. The and-or explanation tree for a with respect to Π andX is shown

in Figure 4.4(a). Here, the rule a ← d, not b is not included in the tree as b is in X ,

whereas the rule a← b, c, not e is in the tree as e is not in X and, b and c are in X . Also,

the rule a ← d, 1 ≤ {b, c} ≤ 2 is in the tree as d is in X and the cardinality expression

1 ≤ {b, c} ≤ 2 is satisfied by X . An explanation for a with respect to Π and X is shown

in Figure 4.4(b).
a

a← b, c, not e

b

b← c

c

c←

c

c←

a← d, 1 ≤ {b, c} ≤ 2

d

d←

(a)

a← d, 1 ≤ {b, c} ≤ 2

d←
(b)

Figure 4.4: (a) The and-or explanation tree for a and (b) an explanation for a.

4.2 Generating Shortest Explanations

As can be seen in Figure 4.3, there might be more than one explanation for a given

atom. Hence, it is not surprising that one may prefer some explanations to others. Con-

sider biomedical queries about chains of gene-gene interactions like the query Q8 in Ta-

ble 1.1. Answers of such queries may contain chains of gene-gene interactions with dif-

ferent lengths. For instance, an answer for this query is “CASK”. Figure 4.5 shows an

explanation for this answer. Here, “CASK” is related to “ADRB1” via a gene-gene chain

interaction of length 2 (the chain “CASK”–“DLG4”–“ADRB1”). Another explanation is

shown in Figure 4.6. Now, “CASK” is related to “ADRB1” via a gene-gene chain inter-

action of length 3 (the chain “CASK”–“ DLG1”–“DLG4”–“ADRB1”). Since gene-gene

interactions are important for drug discovery, it may be more desirable for the experts

to reason about chains with shortest lengths. Motivated by that, we consider generating

shortest explanations. Intuitively, an explanation S is shorter than another explanation S ′

if the number of rule vertices involved in S is less than the number of rule vertices in-

volved in S ′. Then we can define shortest explanations as follows.

Definition 12 (Shortest explanation). Let Π be a ground ASP program, X be an answer

set for Π, p be an atom in X , and S be an explanation (with vertices V) for p with respect

34

what_be_genes("CASK") :- gene_reachable_from("CASK",2).

gene_reachable_from("CASK",2) :- gene_gene("CASK","DLG4"), gene_reachable_from("DLG4",1)...

gene_gene("CASK","DLG4") :- gene_gene_biogrid("CASK","DLG4").

gene_gene_biogrid("CASK","DLG4").

gene_reachable_from("DLG4",1) :- gene_gene("DLG4","ADRB1"), start_gene("ADRB1").

gene_gene("DLG4","ADRB1") :- gene_gene_biogrid("DLG4","ADRB1").

gene_gene_biogrid("DLG4","ADRB1").

start_gene("ADRB1").

Figure 4.5: An explanation for Q8.

to Π and X . Then, S is a shortest explanation for p with respect to Π and X if there exists

no explanation S ′ (with vertices V ′) for p with respect to Π and X such that |V ′| < |V |.

Example 6. Let Π and X be defined as in Example 2. Then, Figure 4.3(b) is the shortest

explanation for a with respect to Π and X .

To compute shortest explanations, we define a weight function that assigns weights

to the vertices of the and-or explanation tree. Basically, the weight of an atom vertex (“or”

vertex) is equal to the minimum weight among weights of its children and the weight of a

rule vertex (“and” vertex) is equal to sum of weights of its children plus 1. Then the idea

is to extract a shortest explanation by propagating up the weights of the leaves and then

traversing the vertices that contribute to the weight of the root. Let us define the weight

of vertices in the and-or explanation tree.

Definition 13 (Weight function). Let Π be a ground ASP program, X be an answer set

for Π, p be an atom in X , and T = 〈V,E, l,Π, X〉 be the and-or explanation tree for p

with respect to Π and X . The weight function WT for T maps vertices in V to a positive

integer and it is defined as follows.

WT (v) =

{
min{WT (c) | c ∈ childE(v)} if v is an atom vertex in V ;

1 +
∑

c ∈ childE(v)WT (c) otherwise.

We develop Algorithm 2 to generate shortest explanations. Let us describe this al-

gorithm. Algorithm 2 starts by creating the and-or explanation tree T for p with respect to

Π andX (Line 1); for that it uses Algorithm 3. If T is not empty, then Algorithm 2 assigns

weights to the vertices of T (Line 4), using Algorithm 4. As the final step, Algorithm 2

extracts a shortest explanation from T (Line 5), using Algorithm 5. The idea is to traverse

35

what_be_genes("CASK") :- gene_reachable_from("CASK",3).

gene_reachable_from("CASK",3) :- gene_gene("CASK","DLG1"), gene_reachable_from("DLG1",2)...

gene_gene("CASK","DLG1") :- gene_gene("DLG1","CASK").

gene_gene("DLG1","CASK") :- gene_gene_biogrid("DLG1","CASK").

gene_gene_biogrid("DLG1","CASK").

gene_reachable_from("DLG1",2) :- gene_gene("DLG1","DLG4"), gene_reachable_from("DLG4",1)...

gene_gene("DLG1","DLG4") :- gene_gene("DLG4","DLG1").

gene_gene("DLG4","DLG1") :- gene_gene_biogrid("DLG4","DLG1").

gene_gene_biogrid("DLG4","DLG1").

gene_reachable_from("DLG4",1) :- gene_gene("DLG4","ADRB1"),start_gene("ADRB1").

gene_gene("DLG4","ADRB1") :- gene_gene_biogrid("DLG4","ADRB1").

gene_gene_biogrid("DLG4","ADRB1").

start_gene("ADRB1").

Figure 4.6: Another explanation for Q8.

an explanation tree of T , by the help of the weight function, and construct an explanation,

which would be a shortest one, by contemplating only the rule vertices in the traversed

explanation tree. If T is empty, Algorithm 2 returns an empty vertex-labeled tree.

The execution of Algorithm 2 is also illustrated in Figure 4.7. First, the and-or

explanation tree is generated, which has a generic structure as in Figure 4.7(a). Here,

yellow vertices denote atom vertices and blue vertices denote rule vertices. Then, this

tree is weighted as in Figure 4.7(b). Then, starting from the root, a subtree of the and-or

explanation tree is traversed by visiting minimum weighted child of every atom vertex

and every child of every rule vertex. This process is shown in Figure 4.7(c), where red

vertices form the traversed subtree. From this subtree, an explanation is extracted by

ignoring atom vertices and keeping the parent-child relationship of the tree as it is. The

resulting explanation is depicted in Figure 4.7(d).

Proposition 2. Given a ground ASP program Π, an answer set X for Π, and an atom p

in X , Algorithm 2 terminates.

Proposition 3. Given a ground ASP program Π, an answer set X for Π, and an atom p

in X , Algorithm 2 either finds a shortest explanation for p with respect to Π and X or

returns an empty vertex-labeled tree.

36

Algorithm 2: Generating Shortest Explanations
Input: Π : ground ASP program, X : answer set for Π, p : atom in X .

Output: a shortest explanation for p w.r.t Π and X , or an empty vertex-labeled tree.

〈V,E, l,Π, X〉 := createTree(Π, X, p, {})1

if 〈V,E〉 is not empty then2

v ← root of 〈V,E〉3

calculateWeight(Π, X, V, l, v, E,WT)4

〈V ′, E ′, l,Π, X〉 := extractExp(Π, X, V, l, v, E,WT , ∅,min)5

return 〈V ′, E ′, l,Π, X〉6

else7

return 〈∅, ∅, l,Π, X〉8

a

R1 R2

a11 a12 a21

R3 R4 R5 R6

a31

R7

(a)

a

R1 R2

a11 a12 a21

R3 R4 R5 R6

a31

R71

1 1 1

1

1 1

2

2

1

3

2

(b)

a

R1 R2

a11 a12 a21

R3 R4 R5 R6

a31

R71

1 1 1

1

1 1

2

2

1

3

2

(c)

R2

R6

(d)

Figure 4.7: A generic execution of Algorithm 2.

Proposition 4. Given a ground ASP program Π, an answer set X for Π, and an atom p

in X , the time complexity of Algorithm 2 is O(|Π||X| × |BΠ|).

37

Algorithm 3: createTree
Input: Π : ground ASP program, X : answer set for Π, d : an atom in X or a rule

in Π, L : set of atoms in X .

Output: A vertex-labeled tree.

V := ∅, E := ∅1

if d ∈ X\L then2

v ← Create an atom vertex s.t. l(v) = d3

L := L ∪ {d}, V := V ∪ {v}4

foreach r ∈ ΠX,L(d) do5

〈V ′, E ′, l,Π, X〉 := createTree(Π, X, r, L)6

if 〈V ′, E ′〉 6= 〈∅, ∅〉 then7

v′ ← root of 〈V ′, E ′〉 s.t. l(v′) = r8

V := V ∪ V ′, E := E ∪ {(v, v′)} ∪ E ′9

if E = ∅ then return 〈∅, ∅, l,Π, X〉10

else if d ∈ Π then11

v ← Create a rule vertex s.t. l(v) = d12

foreach a ∈ B+(d) do13

〈V ′, E ′, l,Π, X〉 := createTree(Π, X, a, L)14

if 〈V ′, E ′〉 = 〈∅, ∅〉 then return 〈∅, ∅, l,Π, X〉15

v′ ← root of 〈V ′, E ′〉 s.t. l(v′) = a16

V := V ∪ V ′, E := E ∪ {(v, v′)} ∪ E ′17

return 〈V,E, l,Π, X〉18

We generate the complete and-or explanation tree while finding a shortest explana-

tion. In fact, we can find a shortest explanation by creating a partial and-or explanation

tree using a branch-and-bound idea. In particular, the idea is to compute the weights

of vertices during the creation of the and-or explanation tree and, in case there exists a

branch of the and-or explanation tree that exceeds the weight of a vertex computed so far,

to stop branching on unnecessary parts of the and-or explanation tree. Then, a shortest

explanation can be extracted by the same method used previously, i.e., by traversing a

subtree of the and-or explanation tree and ignoring the atom vertices in this subtree. For

instance, consider Figure 4.7(b). Assume that we first create the right branch of the root.

Since the weight of an atom vertex is equal to the minimum weight among its children

weights, we know that the weight of the root is at most 2. Now, we check whether it is

necessary to branch on the left child of the root. Note that the weight of a rule vertex is

equal to 1 plus the sum of its children weights. As R1 has two children, its weight is at

38

Algorithm 4: calculateWeight
Input: Π : ground ASP program, X : answer set for Π, V : set of vertices,

l : V → Π ∪X , v : vertex in V , E : set of edges, WT : candidate weight

function.

Output: Weight of v.

if l(v) ∈ X then1

foreach c ∈ childE(v) do WT (c) := calculateWeight(Π, X, V, l, c, E,WT)2

WT (v) := min{WT (c) | c ∈ childE(v)}3

else if l(v) ∈ Π then4

WT (v) := 15

foreach c ∈ childE(v) do6

WT (v) := WT (v) + calculateWeight(Π, X, V, l, c, E,WT)

return WT (v)7

least 3. Therefore, it is redundant to branch on the left child of the root. This improvement

is not implemented and is a future work.

4.3 Generating k Different Explanations

When there is more than one explanation for an answer of a query, it might be useful

to provide the experts with several more explanations that are different from each other.

For instance, consider the query Q5 in Table 1.1. An answer for this query is “Doxepin”.

An explanation for this answer is shown in Figure 4.8. According to this explanation,

“Doxepin” reacts with “Epinephrine”. At this point, the expert may need to learn whether

“Doxepin” also treats “Asthma”. Another explanation shown in Figure 4.9 confirms that

“Doxepin” treats “Asthma”. Motivated by this example, we study generating different

explanations.

We introduce an algorithm (Algorithm 6) to compute k different explanations for an

what_be_drugs("Doxepin") :- drug_drug("Doxepin","Epinephrine").

drug_drug("Doxepin","Epinephrine") :- drug_drug("Epinephrine","Doxepin").

drug_drug("Epinephrine","Doxepin") :- drug_drug_drugbank("Epinephrine","Doxepin").

drug_drug_drugbank("Epinephrine","Doxepin").

Figure 4.8: An explanation for Q5.

39

Algorithm 5: extractExp
Input: Π : ground ASP program, X : answer set for Π, Vt : set of vertices,

l : Vt → Π ∪X , v : vertex in Vt, Et : set of edges, WT : weight function of

T , r : rule vertex in Vt or ∅, op: string min or max.

Output: A vertex-labeled tree 〈V,E, l,Π, X〉.
V := ∅, E := ∅1

if l(v) ∈ X then2

c← Pick op weighted child of v3

if r 6= ∅ then E := E ∪ {(r, c)}4

〈V ′, E ′, l,Π, X〉 := extractExp(Π, X, Vt, l, c, Et,WT , r, op)5

V := V ∪ V ′, E := E ∪ E ′6

else if l(v) ∈ Π then7

V := V ∪ {v}8

foreach c ∈ childEt(v) do9

〈V ′, E ′, l,Π, X〉 := extractExp(Π, X, Vt, l, c, Et,WT , v, op)10

V := V ∪ V ′, E := E ∪ E ′11

return 〈V,E, l,Π, X〉12

atom p in X with respect to Π and X . For that, we define a distance measure ∆D between

a set Z of (previously computed) explanations, and an (to be computed) explanation S.

We consider the rule vertices RZ and RS contained in Z and S, respectively. Then, we

define the function ∆D that measures the distance between Z and S as follows:

∆D(Z, S) = |RS\RZ |.

In the following, we sometimes use RZ and RS instead of Z and S in ∆D. Also, we

denote by RVertices(S) the set of rule vertices of a vertex-labeled tree S.

Let us now explain Algorithm 6. It computes a set K of k different explanations

iteratively. Initially, K = ∅. First, we compute the and-or explanation tree T (Line 2).

Then, we enter into a loop that iterates at most k times (Line 4). At each iteration i, an

explanation Ki that is most distant from the previously computed i − 1 explanations is

what_be_drugs("Doxepin") :- drug_disease("Doxepin","Asthma").

drug_disease("Doxepin","Asthma") :- drug_disease_ctd("Doxepin","Asthma").

drug_disease_ctd("Doxepin","Asthma").

Figure 4.9: Another explanation for Q5.

40

Algorithm 6: Generating k Different Explanations
Input: Π: ground ASP program, X: answer set for Π, p: atom in X , k : a positive

integer. Assume there are n different explanations for p w.r.t Π and X .

Output: min{n, k} different explanations for p with respect to Π and X .

K := ∅, R0 := ∅1

〈V,E, l,Π, X〉 := createTree(Π, X, p, {})2

v ← root of 〈V,E〉3

for i = 1, 2, . . . k do4

calculateDifference(Π, X, V, l, v, E,Ri−1,WT,Ri−1
)5

if WT,Ri−1
(v) = 0 then return K6

〈V ′, E ′, l,Π, X〉 := extractExp(Π, X, V, l, v, E,WT,Ri−1
, ∅,max)7

Ki ← 〈V ′, E ′, l,Π, X〉8

K := K ∪ {Ki}9

Ri := Ri−1 ∪ {v | rule vertex v ∈ V ′}10

return K11

extracted from T . Let us denote the rule vertices included in the previously computed i−1

explanations by Ri−1. Then, essentially, at each iteration we pick an explanation Ki such

that ∆D(Ri−1,RVertices(Ki)) is maximum. To be able to find such aKi, we need to define

the “contribution” of each vertex v in T to the distance measure ∆D(Ri−1,RVertices(Ki))

if v is included in explanation Ki:

WT,Ri−1
(v) =


max{WT,Ri−1

(v′) | v′ ∈ childE(v)} if v is an atom vertex;∑
v′∈childE(v)

WT,Ri−1
(v′) if v is a rule vertex and v ∈ Ri−1;

1 +
∑

v′∈childE(v)
WT,Ri−1

(v′) otherwise.

Note that this function is different from WT . Intuitively, v contributes to the distance

measure if it is not included in Ri−1. The contributions of vertices in T are computed

by Algorithm 7 (Line 5) by propagating up the contributions in the spirit of Algorithm 4.

Then, Ki is extracted from weighted-T by using Algorithm 5 (Line 7).

The execution of Algorithm 6 is also illustrated in Figure 4.10. Similar to Algo-

rithm 2, which generates shortest explanations, first the and-or explanation tree is created,

which has a generic structure as shown in Figure 4.10(a). Recall that yellow vertices de-

note atom vertices and blue vertices denote rule vertices. For the sake of example, assume

that R = {R2, R6}. Then, the goal is to generate an explanation that contains different

rule vertices from the rule vertices in R as much as possible. For that, the weights of

vertices are assigned according to the weight functionWT,R as depicted in Figure 4.10(b).

Here, the weight of the root implies that there exists an explanation which contains 4 dif-

ferent rule vertices from the rule vertices in R and this explanation is the most different

41

Algorithm 7: calculateDifference
Input: Π : ground ASP program, X : answer set for Π, V : set of vertices,

l : V → Π ∪X , v : vertex in V , E : set of edges, R : set of rule vertices in

V , DR : candidate distance function.

Output: distance of v.

if l(v) ∈ X then1

foreach c ∈ childE(v) do2

DR(c) := calculateDifference(Π, X, V, l, c, E,R,DR)3

DR(v) := max{DR(c) | c ∈ childE(v)}4

else if l(v) ∈ Π then5

if v /∈ R then DR(v) := 16

else DR(v) := 07

foreach c ∈ childE(v) do8

DR(v) := DR(v) + calculateDifference(Π, X, V, l, c, E,R,DR)9

return DR(v)10

one. Then, starting from the root, a subtree of the and-or explanation tree is traversed by

by visiting maximum weighted child of every atom vertex, and every child of every rule

vertex. This subtree is shown in Figure 4.10(c) by red vertices. Finally, an explanation is

extracted by ignoring the atom vertices and keeping the parent-child relationship as it is,

from this subtree. This explanation is illustrated in Figure 4.10(d).

Proposition 5. Given a ground ASP program Π, an answer set X for Π, an atom p in X ,

and a positive integer k, Algorithm 6 terminates.

Proposition 6. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , and k be a positive integer. Let n be the number of different explanations for p with

respect to Π and X . Then, Algorithm 6 returns min{n, k} different explanations for p

with respect to Π and X .

Furthermore, at each iteration i of the loop in Algorithm 6 the distance ∆D(Ri−1, Ki) is

maximized.

Proposition 7. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , and k be a positive integer. Let n be the number of explanations for p with respect

to Π and X . Then, at the end of each iteration i (1 ≤ i ≤ min{n, k}) of the loop in

Algorithm 6, ∆D(Ri−1,RVertices(Ki)) is maximized, i.e., there is no other explanation

K ′ such that ∆D(Ri−1,RVertices(Ki)) < ∆D(Ri−1,RVertices(K ′)).

42

a

R1 R2

a11 a12 a21

R3 R4 R5 R6

a31

R7

(a)

a

R1 R2

a11 a12 a21

R3 R4 R5 R6

a31

R71

1 1 0

1

1 0

2

0

2

4

4

(b)

a

R1 R2

a11 a12 a21

R3 R4 R5 R6

a31

R71

1 1 0

1

1 0

2

0

2

4

4

(c)

R1

R3 R5

R7

(d)

Figure 4.10: A generic execution of Algorithm 6.

This result leads us to some useful consequences. First, Algorithm 6 computes

“longest” explanations if k = 1. The following corollary shows how to compute longest

explanations.

Corollary 1. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , and k = 1. Then, Algorithm 6 computes a longest explanation for p with respect to

Π and X .

Next, we show that Algorithm 6 computes k different explanations such that for every i

(1 ≤ i ≤ k) the ith explanation is the most distant explanation from the previously

computed i− 1 explanations.

Corollary 2. Let Π be a ground ASP program, X be an answer set for Π, p be an

atom in X , and k be a positive integer. Let n be the number of explanations for p

with respect to Π and X . Then, Algorithm 6 computes min{n, k} different explana-

tions K1, . . . , Kmin{n,k} for p with respect to Π and X such that for every j (2 ≤ j ≤
min{n, k}) ∆D(

⋃j−1
z=1 RVertices(Kz), Kj) is maximized.

43

what_be_genes("CASK")← gene_reachable_from("CASK",2)

gene_reachable_from("CASK",2)← gene_gene("CASK","DLG4"), gene_reachable_from("DLG4",1), . . .

gene_gene("CASK","DLG4")←
gene_gene_biogrid("CASK","DLG4")

gene_gene_biogrid("CASK","DLG4")
dummy

gene_reachable_from("DLG4",1)←
gene_gene("DLG4","ADRB1"), start_gene("ADRB1")

gene_gene("DLG4","ADRB1")←
gene_gene_biogrid("DLG4","ADRB1")

gene_gene_biogrid("DLG4","ADRB1")

start_gene("ADRB1")
dummy

Figure 4.11: A shortest explanation for Q8.

The following proposition shows that the time complexity of Algorithm 6 is expo-

nential in the size of the given answer set.

Proposition 8. Given a ground ASP program Π, an answer set X for Π, an atom p in X

and a positive integer k, the time complexity of Algorithm 6 is O(k × |Π||X|+1 × |BΠ|).

4.4 Presenting Explanations in a Natural Language

An explanation for an answer of a biomedical query may not be clear to the experts.

For instance, an answer of the query Q8 in Table 1.1 is “CASK”. A shortest explanation

for this answer is shown in Figure 4.11. As it is seen, the meaning of such an explanation,

which states that “CASK” is related to “ADRB1” via a gene-gene chain interaction of

length 2 (the chain “CASK”–“DLG4”–“ADRB1”), is not obvious for the experts. To this

end, it is better to present explanations to the experts in a natural language.

Observe that leaves of an explanation denote facts. That is, they represent the

knowledge base of the program. In case of an explanation for an answer of a biomed-

ical query, we know that they correspond to some predicates used for representing the

knowledge that are obtained from biomedical knowledge resources. Similar to that, some

internal vertices contain informative explanations such as the position of a drug in a chain

of drug-drug interactions. Thus, we make use of a predicate look-up table, illustrated in

Table 4.1, to express explanations in a natural language. Basically, we perform a depth-

first traversal in an explanation and look for predicates that have a corresponding expres-

sion in the look-up table. For instance, the explanation in Figure 4.11 is expressed in

natural language as follows.

44

The gene CASK interacts with the gene DLG4 according to BIOGRID.

The gene DLG4 interacts with the gene ADRB1 according to BIOGRID.

ADRB1 is the start gene.

The distance of the gene DLG4 from the start gene is 1.

The distance of the gene CASK from the start gene is 2.

4.5 Experiments with Biomedical Queries

Our algorithms for generating explanations are applicable to the queries Q1, Q2,
Q3, Q4, Q5, Q8, Q10, Q11 and Q12 in Table 1.1. The ASP programs for the other queries
involve choice expressions. For instance, the query Q7 asks for cliques of 5 genes. We
use the following rule to generate a possible set of 5 genes that might form a clique.

5{clique(GEN):gene_name(GEN)}5.

Our algorithms apply to ASP programs that contain a single atom in the heads of the

rules, and negation and cardinality expressions in the bodies of the rules. Therefore, our

methods are not applicable to the queries which are presented by ASP programs that

include choice expressions.

In Table 4.2, we present the results for generating shortest explanations for the

queries Q1, Q2, Q3, Q4, Q5, Q8, Q10, Q11 and Q12. In this table, the second column

denotes the CPU timings to generate shortest explanations in seconds. The third column

consists of the sizes of explanations, i.e., the number of rule vertices in an explanation. In

the fourth column, the sizes of answer sets, i.e., the number of atoms in an answer set, are

Table 4.1: Predicate look-up table used while expressing explanations in natural language.
Predicate Expression in Natural Language

gene_gene_biogrid(x,y) The gene x interacts with the gene y according to BIOGRID.
drug_disease_ctd(x,y) The disease y is treated by the drug x according to CTD.

drug_gene_ctd(x,y) The drug x targets the gene y according to CTD.
gene_disease_ctd(x,y) The disease y is related to the gene x according to CTD.

disease_symptom_do(x,y) The disease x has the symptom y according to DISEASEONTOLOGY.
drug_category_drugbank(x,y) The drug x belongs to the category y according to DRUGBANK.

drug_drug_drugbank(x,y) The drug x reacts with the drug y according to DRUGBANK.
drug_sideeffect_sider(x,y) The drug x has the side effect y according to SIDER.

disease_gene_orphadata(x,y) The disease x is related to the gene y according to ORPHADATA.
drug_disease_pharmgkb(x,y) The disease y is treated by the drug x according to PHARMGKB.

drug_gene_pharmgkb(x,y) The drug x targets the gene y according to PHARMGKB.
disease_gene_pharmgkb(x,y) The disease x is related to the gene y according to PHARMGKB.

start_drug(x) The drug x is the start drug.
start_gene(x) The gene x is the start gene.

drug_reachable_from(x, l) The distance of the drug x from the start drug is l.
gene_reachable_from(x, l) The distance of the gene x from the start gene is l.

45

Table 4.2: Experimental results for generating shortest explanations for some biomedical

queries, using Algorithm 2.

Query CPU Time Explanation Size Answer Set Size And-Or Tree Size Calling GRINGO

Q1 52.78s 5 1.964.429 16 0
Q2 67.54s 7 2.087.219 233 1
Q3 31.15s 6 1.567.652 15 0
Q4 1245.83s 6 19.476.119 6690 4
Q5 41.75s 3 1.465.817 16 0
Q8 40.96s 14 1.060.288 28 4

Q10 1601.37s 14 1.612.128 3419 193
Q11 113.40s 6 2.158.684 5528 5
Q12 327.22s 5 10.338.474 10 1

given. The fifth column presents the sizes of the and-or explanation trees, i.e., the number

of vertices in the tree. Before telling what the last column presents, let us clarify an issue

regarding the computation of explanations. Since answer sets contain millions of atoms,

the corresponding grounded programs are also huge. Thus, first grounding the programs

and then generating explanations over those grounded programs is an overkill in terms of

computational efficiency. To this end, we apply another method and do grounding when

it is necessary. To better explain the idea, let us present our method by an example. At the

beginning, we have a grounded atom p for which we are looking shortest explanations.

Assume that p is what_be_genes("ADRB1"). Then, we need to find rules whose heads are

what_be_genes("ADRB1"). Since we work on non-ground programs, we look for rules

whose heads are what_be_genes(GN). Assume that the following rule r exists.

what_be_genes(GN)← drug_gene(DRG,GN)

Then, we propagate the corresponding constants due to what_be_genes("ADRB1") both

in the head and the body of r. In this way, we obtain the following rule r′.

what_be_genes("ADRB1")← drug_gene(DRG,"ADRB1")

Next, we need to process over r′. As r′ is non-ground, we ground it using the grounder

GRINGO and process over the grounded rules. This allows us to deal with a relevant subset

of the rules while generating explanations. If r′ would be grounded after the propagation,

we would not call GRINGO and continue the computation over r′. Then, in the last column

of Table 4.2, we present the number of times GRINGO is called during the computation.

For instance, for the queries Q1, Q3 and Q5, GRINGO is never called. However, GRINGO

is called 193 times during the computation of a shortest explanation for the query Q10.

Shortest explanations for the queries in Table 4.2 can be found in Appendix A. For

instance, for the query Q1, the explanation computed by EXPGEN-ASP is as follows:

46

what_be_drugs("Epinephrine") :- drug_gene("Epinephrine","ADRB1"),

drug_disease("Epinephrine","Asthma").

drug_gene("Epinephrine","ADRB1") :-

drug_gene_ctd("Epinephrine","ADRB1").

drug_gene_ctd("Epinephrine","ADRB1").

drug_disease("Epinephrine","Asthma") :-

drug_disease_ctd("Epinephrine","Asthma").

drug_disease_ctd("Epinephrine","Asthma").

which is essentially the tree in Figure 4.12. It took 52.71 CPU seconds for EXPGEN-ASP

to generate this shortest explanation. As seen from the results presented in Table 4.2, the

computation time is not very much related to the size of the explanation. As also sug-

gested by the complexity results of Algorithm 2 (i.e., O(|Π||X| × |BΠ)|), the computation

time for generating shortest explanations greatly depends on the sizes of the answer set

and the and-or explanation tree. For instance, for the query Q4, the answer set contains

approximately 19 million atoms, the size of the and-or explanation tree is 6690, and it

takes 1245 CPU seconds to compute a shortest explanation, whereas for the query Q8,

the answer set approximately contains 1 million atoms, the and-or explanation tree has

28 vertices, and it takes 40 CPU seconds to compute a shortest explanation. Also, the

number of times GRINGO is called during the computation affects the computation time.

For instance, for the query Q10 the answer set approximately contains 1.6 million atoms,

the and-or explanation tree has 3419 vertices, and it takes 1600 CPU seconds to compute

a shortest explanation.

Table 4.3 shows the computation times for generating different explanations for the

answers of the same queries, if exists. As seen from these results, the time for computing

2 and 4 different explanations is slightly different than the time for computing shortest

explanations.

what_be_drugs("Epinephrine")← drug_gene("Epinephrine","ADRB1"), drug_disease("Epinephrine","Asthma")

drug_gene("Epinephrine","ADRB1")←
drug_gene_ctd("Epinephrine","ADRB1")

drug_gene_ctd("Epinephrine","ADRB1")←

drug_disease("Epinephrine","Asthma")←
drug_disease_ctd("Epinephrine,Asthma")

drug_disease_ctd("DLG4,ADRB1")

Figure 4.12: A shortest explanation for Q1.

47

Table 4.3: Experimental results for generating different explanations for some biomedical

queries, using Algorithm 6.

Query CPU Time
2 different 4 different Shortest

Q1 53.73s - 52.78s
Q2 66.88s 67.15s 67.54s
Q3 31.22s - 31.15s
Q4 1248.15s 1251.13s 1245.83s
Q5 - - 41.75s
Q8 - - 40.96s

Q10 1600.49s 1602.16s 1601.37s
Q11 113.25s 112.83s 113.40s
Q12 - - 327.22s

4.6 Implementation of Explanation Generation Algorithms

Based on the algorithms introduced above, we have developed a computational tool

called EXPGEN-ASP, using the programming language C++. Given an ASP program

and its answer set, EXPGEN-ASP generates shortest explanations as well as k different

explanations.

The input of EXPGEN-ASP are

• an ASP program Π,

• an answer set X for Π,

• an atom p in X ,

• an option that is used to generate either a shortest explanation or k different expla-

nations,

• a predicate look-up table,

and the output are

• a shortest explanation for pwith respect to Π andX in a natural language (if shortest

explanation option is chosen),

• k different explanations for p with respect to Π and X in a natural language (if k

different explanations option is chosen).

For generating shortest explanations (resp., k different explanations), EXPGEN-ASP uti-

lizes Algorithm 2 (resp., Algorithm 6).

48

Figure 4.13: A snapshot of BIOQUERY-ASP showing its explanation generation facility.

To provide experts with further informative explanations about the answers of biomed-

ical queries, we have embedded EXPGEN-ASP into BIOQUERY-ASP by utilizing Ta-

ble 4.1 as the predicate look-up table of the system. Figure 4.13 shows a snapshot of the

explanation generation mechanism of BIOQUERY-ASP.

49

CHAPTER 5

RELATING EXPLANATIONS TO
JUSTIFICATIONS

The most similar work to ours is [78] that study the question “why is an atom p

in an answer set X for an ASP program Π”. As an answer to this question, the authors

of [78] finds a “justification”, which is a labeled graph that provides an explanation for

the truth values of atoms with respect to an answer set.

Example 7. Let Π be the program

a← b, c

a← d

d←
b← c

c←

and X = {a, b, c, d}. Figure 5.1 is an offline justification of a+ with respect to X and ∅.
Intuitively, a is in X since b and c are also in X and there is a rule in Π that supports a

using the atoms b and c. Furthermore, b is in X since c is in X and there is a rule in Π

that supports b using the atom c. Finally, c is in X as it is a fact in Π.

a+

b+

+

c+

>

+

+

+

Figure 5.1: An offline justification for Example 7.

To relate offline justifications and explanations, we need to introduce the following

definitions and notations about justifications defined in [78].

50

5.1 Offline Justifications

First, let us introduce notations related to ASP programs used in [78]. The class of

ASP programs studied is normal programs, i.e., programs that consist of the rules of the

form

A← A1, . . . , Ak, not Ak+1, . . . , not Am

where m ≥ k ≥ 0 and A and each Ai is an atom. Therefore, the programs we consider

are more general. Let Π be a normal ASP program. Then, AΠ is the Herbrand base of Π.

An interpretation I for a program Π is defined as a pair 〈I+, I−〉, where I+ ∪ I− ⊆ AΠ

and I+ ∩ I− = ∅. Intuitively, I+ denotes the set of atoms that are true, while I− denotes

the set of atoms that are false. I is a complete interpretation if I+∪ I− = AΠ. The reduct

ΠI of Π with respect to I is defined as

ΠI = {H(r)← B+(r) | r ∈ Π, B−(r) ∩ I+ = ∅}

A complete interpretation M for a program Π is an answer set for Π if M+ is an answer

set for ΠM . Also, a literal is either an atom or a formula of the form not a where a is an

atom. The set of atoms which appear as negated literals in Π is denoted by NANT (Π).

For an atom a, a+ denotes that the atom a is true and a− denotes that a− is false. Then, a+

and a− are called the annotated versions of a. Moreover, it is defined that atom(a+) = a

and atom(a−) = a. For a set S of atoms, the following sets of annotated atoms are

defined.

• Sp = {a+ | a ∈ S}

• Sn = {a− | a ∈ S}

Finally, the set not S is defined as not S = {not a | a ∈ S}.
Apart from the answer set semantics, there is another important semantics of logic

programs, called the well-founded semantics [49]. Since this semantics is important to

build the notion of a justification, we now briefly describe the well-founded semantics.

We consider the definition proposed in [3], instead of the original definition proposed

in [49], as the authors of [78] considered.

Definition 14 (Immediate consequence). Let Π be a normal ASP program, and S and V

be two sets of atoms from AΠ. Then, the immediate consequence of S with respect to Π

and V , denoted by TΠ,V (S) is the set defined as follows:

TΠ,V (S) = {a | ∃ r ∈ Π, H(r) = a, B+(r) ⊆ S, B−(r) ∩ V = ∅}.

We denote by lfp(TΠ,V) the least fixpoint of TΠ,V when V is fixed.

51

Definition 15 (The well-founded model). Let Π be a normal ASP program, Π+ = {r | r ∈
Π, B−(r) = ∅}. The sequence 〈Ki, Ui〉i≥0 is defined as follows:

K0 = lfp(TΠ+), U0 = lfp(TΠ,K0),

Ki = lfp(TΠ,Ui−1
), Ui = lfp(TΠ,Ki

).

Let j be the first index of the computation such that 〈Kj, Uj〉 = 〈Kj+1, Uj+1〉. Then, the

well-founded model of Π is WFΠ = 〈W+,W−〉 where W+ = Kj and W− = AΠ\Uj .

Example 8. Let Π be the program

a← b, not d

d← b, not a

b← c

c←

Then, the well-founded model of Π is computed as follows:

K0 = {b, c},

U0 = {a, b, c, d},

K1 = {b, c},

U0 = {a, b, c, d}.

Thus, WFΠ = 〈{b, c}, ∅〉.

We now provide definitions regarding the notion of an offline justification. First, we

introduce the basic building of an offline justification, a labeled graph called as e-graph.

Definition 16 (e-graph). Let Π be a normal ASP program. An e-graph for Π is a labeled,

directed graph (N,E), whereN ⊆ Ap
Π∪An

Π∪{assume,>,⊥} andE ⊆ N×N×{+,−},
which satisfies following properties:

(i) the only sinks (i.e., nodes without out-going edges) in the graph are assume,>,⊥;

(ii) for every b ∈ N ∩ Ap
Π, (b, assume,−) /∈ E and (b,⊥,−) /∈ E;

(iii) for every b ∈ N ∩ An
Π, (b, assume,+) /∈ E and (b,>,+) /∈ E;

(iv) for every b ∈ N , if for some l ∈ {assume,>,⊥} and s ∈ {+,−}, (b, l, s) ∈ E,

then (b, l, s) is the only out-going edge originating from b.

According to this definition, an edge of an e-graph connects two annotated atoms or an

annotated atom with one of the nodes in {assume,>,⊥} and is marked by a label from

{+,−}. An edge is called as positive (resp., negative) if it is labeled by + (resp., −).

Also, a path in an e-graph is called as positive if it has only positive edges, whereas it

52

is called as negative if it has at least one negative edge. The existence of a positive path

between two nodes v1 and v2 is denoted by (v1, v2) ∈ E∗,+. In the offline justification, >
is used to explain facts,⊥ to explain atoms which do not have defining rules, and assume

is for atoms for which explanations are not needed, i.e., they are assumed to be true or

false.

Example 9. Let Π be the program:

a← b, c

a← d

d←
b← c

c←

and X = {a, b, c, d}. Then, Figure 5.2 is an e-graph for Π. Intuitively, the true state of a

depends on the true state of b and the false state of c, where b is assumed to be true and c

is assumed to be false.

a+

b+

assume

+

+

c−

assume

−

−

Figure 5.2: An e-graph for Example 9.

In an e-graph, a set of elements that directly contributes to the truth value of an atom

can be obtained through the out-going edges of a corresponding node. This set is defined

as follows.

Definition 17 (support(b,G)). Let Π be a normal ASP program, G = (N,E) be an e-

graph for Π and b ∈ N ∩ (Ap
Π ∪ An

Π) be a node in G. Then, support(b,G) is defined as

follows.

• support(b,G) = {l}, if for some l ∈ {assume,>,⊥} and s ∈ {+,−}, (b, l, s) is

in E;

• support(b,G) = {atom(c) | (b, c,+) ∈ E} ∪ {not atom(c) | (b, c,−) ∈ E}, other-

wise.

Example 10. Let G be the e-graph in Figure 5.2. Then, support(a,G) = {b, not c},
support(b,G) = {assume} and support(c,G) = {assume}.

53

To define the notion of a justification, an e-graph should be enriched with explana-

tions of truth values of atoms that are derived from the rules of the program. For that, the

concept of one step justification of a literal is defined as follows.

Definition 18 (Local Consistent Explanation (LCE)). Let Π be a normal ASP program,

b be an atom, J be a possible interpretation for Π, U ⊆ AΠ be a set of atoms, and

S ⊆ AΠ ∪ notAΠ ∪ {assume,>,⊥} be a set of literals. We say that

• S is an LCE of b+ with respect to (J, U), if b ∈ J+ and

- S = {assume} or

- S ∩ AΠ ⊆ J+, {c | not c ∈ S} ⊆ J− ∪ U , and there is a rule r ∈ Π such that

H(r) = b and B(r) = S. In case, B(r) = ∅, S is denoted by the set {>}.

• S is an LCE of b− with respect to (J, U), if b ∈ J− ∪ U and

- S = {assume} or

- S ∩ A ⊆ J− ∪ U , {c |not c ∈ S} ⊆ J+, and S is a minimal set of literals

such that for every rule r ∈ Π if H(r) = b, then B+(r) ∩ S 6= ∅ or B−(r) ∩
{c | not c ∈ S} 6= ∅. In case, S = ∅, S is denoted by the set {⊥}.

The set of all the LCEs of b+ with respect to (J, U) is denoted by LCEp
Π(b, J, U) and the

set of all the LCEs of b− with respect to (J, U) is denoted by LCEn
Π(b, J, U).

Here, a possible interpretation J denotes an answer set. The set U consists of atoms that

are assumed to be false (which will be called as Assumptions in the notion of justification

later on). The need for U comes from the fact that the truth value of some atoms is first

guessed while computing answer sets. Intuitively, if an atom a is true, an LCE consists

of the body of a rule which is satisfied by J and has a in its head; if a is false, an LCE

consists of a set of literals that are false in J and falsify all rules whose head are a.

Example 11. Let Π and X be defined as in Example 9. Then, the LCEs of the atoms with

respect to (X, ∅) is as follows.

LCEp
Π(a,X, ∅) = {{b, c}, {d}, {assume}}

LCEp
Π(b,X, ∅) = {{c}, {assume}}

LCEp
Π(c,X, ∅) = {{>}, {assume}}

LCEp
Π(d,X, ∅) = {{>}, {assume}}

Accordingly, a class of e-graphs where edges represent LCEs of the corresponding

nodes are defined as follows.

54

Definition 19 ((J, U)-based e-graph). Let Π be a normal ASP program, J be a possible

interpretation for Π, U ⊆ AΠ be a set of atoms and b be an element in Ap
Π ∪ An

Π. A

(J, U)-based e-graph G = (N,E) of b is an e-graph such that

(i) every node c ∈ N is reachable from b,

(ii) for every c ∈ N\{assume,>,⊥}, support(c,G) is an LCE of c with respect to

(J, U);

A (J, U)-based e-graph (N,E) is safe if for all b+ ∈ N, (b+, b+) /∈ E∗,+, i.e., there is no

positive cycle in the graph.

We now introduce a special class of (J, U)-based e-graphs where only false ele-

ments can be assumed.

Definition 20 (Offline e-graph). Let Π be a normal ASP program, J be a partial inter-

pretation for Π, U ⊆ AΠ be a set of atoms and b be an element in Ap ∪ An. An offline

e-graph G = (N,E) of b with respect to J and U is a (J, U)-based e-graph of b that

satisfies following properties:

(i) there exists no p+ ∈ N such that (p+, assume,+) ∈ E;

(ii) (p−, assume,−) ∈ E if and only if p ∈ U .

E(b, J, U) is the set of all offline e-graphs of b with respect to J and U .

Here, the roles of J and U are the same as their roles in Definition 18. Observe that true

atoms cannot be assumed due to the first condition and only elements in the set U are

assumed due to the second condition.

We said earlier that in a (J, U)-based e-graph J represents an answer set and U

consists of atoms that are assumed to be false. Here, U is chosen based on some charac-

teristics of J . In particular, we want U to be a set of atoms such that when its elements

are assumed to be false, the truth value of other atoms in the program can be uniquely

determined and leads to J . We now introduce regarding definitions formally.

Definition 21 (Tentative Assumptions). Let Π be a normal ASP program,M be an answer

set for Π and WFΠ =< WF+
Π ,WF−Π > be the well-founded model of Π. The tentative

assumptions T AΠ(M) of Π with respect to M are defined as

T AΠ(M) = {a | a ∈ NANT (Π) ∧ a ∈M−, a /∈ (WF+
Π ∪WF−Π)} (5.1)

55

Example 12. Let Π be the program:

c← a, not d

d← a, not c

a← b

b←

Then, X = {a, b, c} is an answer set for Π and 〈{a, b}, ∅〉 is the well-founded model of

Π. Given that, T AΠ(X) = {d} as d ∈ NANT (Π), d /∈ X and d /∈ (WF+
Π ∪WF−Π).

In fact, tentative assumptions is a set of atoms whose subsets might “potentially” form U .

We provide a definition that would allow one to obtain a program from a given

program Π and a set V of atoms by assuming all the atoms in V as false.

Definition 22 (Negative Reduct). Let Π be a normal ASP program, M be an answer set

for Π, and U ⊆ T AΠ(M) be a set of tentative assumption atoms. The negative reduct

NR(Π, U) of Π with respect to U is the set of rules defined as

NR(Π, U) = Π\{r |H(r) ∈ U} (5.2)

Finally, the concept of assumptions can be introduced formally.

Definition 23 (Assumption). Let Π be a normal ASP program, M be an answer set for

Π. An assumption of Π with respect to M is a set U of atoms that satisfies the following

properties:

(i) U ⊆ T AΠ(M);

(ii) the well-founded model of NR(Π, U) is equal to M .

Assumptions(Π,M) is the set of all assumptions of Π with respect to M .

Example 13. Let Π and X be defined as in Example 12. Let U = {d}. Then, NR(Π, U)

is:
c← a, not d

a← b

b←

and 〈{a, b, c}, ∅〉 is the well-founded model of NR(Π, U). Thus, U is an assumption of Π

with respect to X .

Note that assumptions are nothing but subsets of tentative assumptions that would allow

to obtain the answer set J .

At last, we are ready to define the notion of offline justification.

56

a+

b+

+

c+

>

+

+

+

Figure 5.3: An offline justification for Example 14.

Definition 24 (Offline Justification). Let Π be a normal ASP program, M be an answer

set for Π, U be an assumption in Assumptions(Π,M) and b be an annotated atom in

Ap ∪ An. An offline justification of b with respect to M and U is an element (N,E) of

E(b,M,U) which is safe.

According to the definition, a justification is a (J, U)-based e-graph where J is an answer

set and U is an assumption. Also, justifications do not allow the creation of positive cycles

in the justification of true atoms.

Example 14. Let Π andX be defined as in Example 9. Figure 5.3 is an offline justification

of a+ with respect to X and ∅.

In [78], the authors prove the following proposition which shows that for every atom

in the program, there exists an offline justification.

Proposition 9. Let Π be a ground normal ASP program, X be an answer for Π. Then,

for each atom a in Π, there is an offline justification of with respect to X and X−\WF−Π

which does not contain negative cycles.

5.2 From Justifications to Explanations

We relate a justification to an explanation. In particular, given an offline justifica-

tion, we show that one can obtain an explanation tree whose atom vertices are formed

by utilizing the “annotated atoms” of the justification and rule vertices are formed by uti-

lizing the “support” of annotated atoms. To compute such explanation trees, we develop

Algorithm 8.

Let us now explain the algorithm in detail. Algorithm 8 takes as input a ground

normal ASP program Π , an answer set X for Π, an atom p in X , and a justification

(V,E) of p+ with respect to X and some U ∈ Assumptions(Π, X). Our goal is to

obtain an explanation tree in the and-or explanation tree for p with respect to Π and X

from the justification (V,E). The algorithm starts by creating two sets V ′ andE ′ (Line 1).

Here, V ′ and E ′ corresponds to the set of vertices and the set of edges of the explanation

57

Algorithm 8: Justification to Explanation
Input: Π : ground normal ASP program, X : answer set for Π, p : atom in X ,

(V,E) : justification of p+ w.r.t X and some U ∈ Assumptions(Π, X).

Output: A vertex-labeled tree 〈V ′, E ′, l,Π, X〉.
V ′ := ∅, E ′ := ∅1

v ← Create a vertex v s.t. l(v) = p2

Q← v3

while Q 6= ∅ do4

v′ ← Dequeue an element from Q5

V ′ := V ′ ∪ {v′}6

if l(v′) ∈ Π then // v′ is a rule vertex7

foreach a ∈ B+(l(v′)) do8

v′′ ← Create a vertex v′′ s.t. l(v′′) = a9

E ′ := E ′ ∪ {(v′, v′′)} // edge from rule vertex to atom vertex10

Enqueue v′′ to Q11

else if l(v′) ∈ X then // v′ is an atom vertex12

r ← Create a rule r s.t. H(r) = l(v′) and B(r) = support(l(v′)+, G)13

v′′ ← Create a vertex v′′ s.t. l(v′′) = r14

E ′ := E ′ ∪ {(v′, v′′)} // edge from atom vertex to rule vertex15

Enqueue v′′ to Q16

return 〈V ′, E ′, l,Π, X〉17

tree, respectively. By Condition (ii) in Definition 10 and Condition (i) in Definition 9,

we know that the label of the root of an explanation tree for p with respect to Π and X is

p. Thus, a vertex v with label p is defined (Line 2), and added into the queue Q (Line 3).

Then, the algorithm enters into a “while” loop which executes until Q becomes empty.

At every iteration of the loop, an element v from Q is first extracted (Line 5) and added

into V ′ (Line 6). This implies that every element added into Q is also added into V ′. For

instance, the vertex defined at Line 2 is the first vertex extracted from Q and also added

into V ′, which makes sense since we know that the root of an explanation tree is an atom

vertex with label v. Then, according to the type of the extracted vertex, its out-going

edges are defined. Let v′ be a vertex extracted from Q at Line 5 in some iteration of the

loop. Consider the following two cases.

Case (1) Assume that v′ is an atom vertex. Then, the algorithm directly goes to Line 13.

By Condition (i) in Definition 10, we know that an explanation tree is a subtree of the

58

and-or explanation tree. Hence, we need to define out-going edges of v′ by taking into

account Condition (ii) in Definition 9, which implies that a child of v′ must be a rule

vertex v′′ such that the rule that labels v′′ “supports” the atom that labels v′. Thus, a rule

r that supports the atom that labels v′ is created (Line 13). We ensure “supportedness”

property by utilizing the annotated atoms in the given offline justification which supports

the annotated version of the atom that labels v′. Then, a vertex v′′ with label r is created

(Line 14), and a corresponding child of v′ is added into E ′ (Line 15). By Condition (iii)

in Definition 10, we know that every atom vertex of an explanation tree has a single child.

Therefore, another child of v′ is not created. Then, before finishing the iteration of the

loop, the child v′′ of v′ is added into Q so that its children can be formed in the next

iterations of the loop.

Case (2) Assume that v′ is a rule vertex. Then, the condition at Line 7 is satisfied and

the algorithm goes to Line 8. In this case, while forming the children of v′, we should

consider Condition (iii) in Definition 9, which implies that a child v′′ of v′ must be an

atom vertex such that the atom that labels v′′ is in the positive body of the rule that labels

v′. Also, by Condition (iv) in Definition 10, we should ensure that for every atom a in the

positive body of the rule that labels v′, there exists a child va of v′ such that the atom that

labels va is equal to a. Thus, the loop between Lines 8–11 iterates for every atom a in the

positive body of the label of v′ and a vertex v′′ with label a is created (Line 9). Then, v′′

becomes a child of v′ (Line 10). To form the children of v′′ in the next iterations of the

“while” loop, the child v′′ of v′ is added into Q (Line 11).

When the algorithm finishes processing the elements of Q, i.e., Q becomes empty,

the “while” loop terminates. Then, the algorithm returns a vertex-labeled tree (Line 17).

We now provide the proposition about the soundness of Algorithm 8.

Proposition 10. Given a ground normal ASP program Π, an answer setX for Π, an atom

p in X , an assumption U in Assumption(Π, X), and an offline justification G = (V,E)

of p+ with respect to X and U , Algorithm 8 returns an explanation tree 〈V ′, E ′, l,Π, X〉
in the and-or explanation tree for p with respect to Π and X .

Example 15. Let Π and X be defined as in Example 9. Figure 5.4(a) is an offline justi-

fication of a+ with respect to X and ∅. Figure 5.4(b) shows a corresponding explanation

tree in the and-or explanation tree for a with respect to Π and X that is obtained by using

Algorithm 8.

59

a+

b+

+

c+

>

+

+

+

(a)

a

a← b, c

b

b← c

c

c←

c

c←

(b)

Figure 5.4: (a) An offline justification and (b) its corresponding explanation tree obtained

by using Algorithm 8.

5.3 From Explanations to Justifications

We relate an explanation to a justification. In particular, given an explanation tree

whose labels of vertices are unique, we show that one can obtain an offline justification

by utilizing the labels of atom vertices of the explanation tree. For that, we design Algo-

rithm 9.

Let us now describe the algorithm in detail. Algorithm 9 takes as input a ground

normal ASP program Π, an answer set X for Π, an atom p in X , and an explanation

tree T ′ = 〈V ′, E ′, l,Π, X〉 in the and-or explanation tree for p with respect to Π and X .

Our goal is to obtain an offline justification (V,E) of p+ in ΠX with respect to X and ∅.
The reason to obtain the offline justification in the reduct of Π with respect to X is that

our definition of explanation is not defined for the atoms that are not in the answer set.

Algorithm 9 starts by creating two sets V and E which will correspond to the set of nodes

and the set of edges of the offline justification, respectively (Line 1). Then, the root of

〈V ′, E ′〉 is added into the queue Q (Line 2) and we enter into a “while” loop that iterates

until Q becomes empty. At every iteration of the loop, first an element v is extracted

from Q (Line 4) and l(v)+ is added into V (Line 5). Then, we form the out-going edges

of l(v)+. Due to Condition (iii) in Definition 10, every atom vertex in an explanation

tree has a single child, which is a rule vertex due to Condition (i) in Definition 10 and

Condition (ii) in Definition 9. Then, we extract the child v′ of v at Line 6 and consider

two cases. Note that v′ is a rule vertex.

Case (1) Assume that l(v′) is a fact in ΠX . Then, l(v′) satisfies the condition at Line 7

and we add (l(v)+,>,+) into E at Line 8. The key insight behind that is as follows. Due

to Condition (ii) in Definition 19, support(l(v)+, (V,E)) must be an LCE of l(v)+. Due

60

Algorithm 9: Explanation to Justification
Input: Π : ground normal ASP program, X : answer set for Π, p : atom in X ,

〈V ′, E ′, l,Π, X〉 : an explanation tree in the and-or explanation tree for p

w.r.t Π and X .

Output: (V,E) : justification of p+ w.r.t X and ∅.
V := ∅, E := ∅1

Q← root of 〈V ′, E ′〉2

while Q 6= ∅ do3

v ← Dequeue an element from Q4

V := V ∪ {l(v)+}5

v′ ← child of v in 〈V ′, E ′〉6

if l(v′) is a fact in ΠX then7

E := E ∪ {(l(v)+,>,+)}8

foreach v′′ ∈ childE′(v
′) do9

E := E ∪ {(l(v)+, l(v′′)+,+)}10

Enqueue v′′ to Q11

V := V ∪ {>}12

return (V,E)13

to Condition (i) in Definition 10 and Condition (ii) in Definition 9, the head of l(v′) is

l(v). As l(v′) is a fact in ΠX , i.e., its body is empty in ΠX , {>} becomes an LCE of

l(v)+ with respect to (X, ∅), due to Definition 18. Thus, by adding (l(v)+,>,+) to E,

support(l(v)+, (V,E)) becomes {>}.

Case (2) Assume that l(v′) is not a fact in ΠX . Then, for every child v′′ of v′, we

add (l(v)+, l(v′′)+,+) into E at Line 10. The intuition behind this is to make sure that

support(l(v)+, (V,E)) is an LCE of l(v)+. Due to Condition (i) in Definition 10, an

explanation tree is a subtree of the corresponding and-or explanation tree. Then, due to

Condition (ii) in Definition 9, for every atom vertex v in an explanation tree, the atoms

in the positive body of the rule that labels the child v′ of v are in the given answer set X .

Thus, due to Definition 18, adding (l(v)+, l(v′′)+,+) into E for every child v′′ of v′ en-

sures that support(l(v)+, (V,E)) is an LCE of l(v)+ with respect to (X, ∅). Also, we add

v′′ into V so that its children in V are formed in the next iterations of the “while” loop.

Due to Line 8, there are incoming edges of>. But, > is not added into V inside the

“while” loop. Thus, when the “while” loop terminates, before returning (V,E) at Line 13,

we add > into V .

61

Algorithm 9 creates an offline justification of the given atom in the reduct of the

given ASP program with respect to the given answer set, provided that labels of the ver-

tices of the given explanation tree are unique.

Proposition 11. Given a ground normal ASP program Π , an answer set X for Π, an

atom p inX , and an explanation tree 〈V ′, E ′, l,Π, X〉 in the and-or explanation tree for p

with respect to Π and X such that for every v, v′ ∈ V ′, l(v) = l(v′) if and only if v = v′,

Algorithm 9 returns an offline justification of p+ in ΠX with respect to X and ∅.

Example 16. Let Π be the program:

a← b, c, not d

b← not e

c←

and X = {a, b, c}. Figure 5.5(a) is an explanation tree T in the and-or explanation tree

for a with respect to Π and X . Then, given Π, X, a and T , Algorithm 9 creates an offline

justification of a+ in ΠX with respect to Π and ∅ as in Figure 5.5(b).

a

a← b, c, not d

b

b← not e

c

c←

(a)

a+

b+

>

+

+

c+

>

+

+

(b)

Figure 5.5: (a) An explanation tree and (b) its corresponding offline justification obtained

by using Algorithm 9.

62

CHAPTER 6

PROOFS

In this chapter, we provide proofs of the theoretical results presented throughout the

thesis: the algorithmic analysis for generating shortest explanations (Propositions 2, 3,

and 4), the algorithmic analysis for generating k different explanations (Propositions 5,

6, and 8), and the analysis for the relationship between an explanation and a justification.

(Propositions 10 and 11).

6.1 Generating Shortest Explanations

In Section 4.2, we have analyzed three properties of Algorithm 2, namely termina-

tion, soundness and complexity, resulting in Propositions 2, 3, and 4. In the following, we

show the proofs of these results.

6.1.1 Proof of Proposition 2 – Termination of Algorithm 2

To prove that Algorithm 2 terminates we need the following lemma.

Lemma 1. Given a ground ASP program Π, an answer set X for Π, an atom p in X , and

a set L of atoms in X , Algorithm 3 terminates.

Proof of Lemma 1. It is sufficient to show that the recursion tree generated by Algo-

rithm 3 is finite. That is, the branching factor of the recursion tree and the height of

the recursion tree are finite. Note that each node of the recursion tree denotes a call to

createTree(Π, X, d, L) for some atom or rule d and a set L of atoms.

Part (1) We show that the branching factor of the tree is finite. Branches in the tree are

created in loops at Lines 5 and 13. The loop at Line 5 iterates at most the number of rules

in Π and the loop at Line 13 iterates at most the number of atoms in X . As Π and X are

finite, the branching factor of the tree is finite.

63

Part (2) We show that the height of the recursion tree is finite. Let us first make the

following observation. Consider a path 〈v1, . . .〉 in the recursion tree. For every node vi
that denotes a call to createTree(Π, X, di, Li) where di is an atom in X , the following

holds for vi+2 (if exists): Li ⊂ Li+2. This follows from the two consecutive calls to

createTree: Li increases at every other call, due to Line 4. Now, assume that the height of

the recursion tree is infinite. Then, there exists an infinite path 〈v1, . . .〉 in the recursion

tree. Thus, L1 ⊂ L3 ⊂ . . . ⊂ L(2×|X|)+1 ⊂ L(2×|X|)+3 ⊂ Recall that we add elements

into Lis only from X (Line 4). Thus, L(2×|X|)+1 = X . Then, it is not possible to have

L(2×|X|)+1 ⊂ L(2×|X|)+3. As we reach a contradiction, the height of the recursion tree is

finite.

Now, we show that Algorithm 2 terminates.

Proposition 2. Given a ground ASP program Π, an answer set X for Π, and an atom p

in X , Algorithm 2 terminates.

Proof of Proposition 2. Algorithm 2 terminates only if Algorithms 3, 4 and 5 terminate.

By Lemma 1, we know that Algorithm 3 terminates and that the vertex-labeled tree T

returned by Algorithm 3 is finite. Since Algorithm 4 and Algorithm 5 simply traverse T

(cf. Lines 2 and 6 in Algorithm 4, and Lines 5 and 10 in Algorithm 5), they also terminate.

Thus, Algorithm 2 terminates.

6.1.2 Proof of Proposition 3 – Soundness of Algorithm 2

To show the proof of Proposition 3, we need the following necessary lemmas.

Lemma 2. Let Π be a ground ASP program, X be an answer set for Π, d be an atom inX

or a rule in Π and L be a subset of X . If the vertex-labeled tree 〈V,E, l,Π, X〉 returned

by createTree(Π, X, d, L) is not empty, then the following hold:

(i) the root of 〈V,E〉 is created in createTree(Π, X, d, L) and is mapped to d by l;

(ii) for every rule vertex v ∈ V ,

outE(v) = {(v, v′) | (v, v′) ∈ E, l(v′) ∈ B+(l(v))};

(iii) each leaf vertex is a rule vertex.

Proof of Lemma 2. Let 〈V,E, l,Π, X〉 be the non-empty vertex-labeled tree returned by

createTree(Π, X, d, L). We show one by one that each condition in the lemma holds.

64

(i) Assume that d is an atom in X . Note that d /∈ L because otherwise 〈V,E〉 = 〈∅, ∅〉.
Due to the call createTree(Π, X, d, L), the algorithm, at Line 3, creates a vertex v such

that l(v) = d. We know that E 6= ∅. Then, there exists some out-going edges of v. At

Line 9, the out-going edges of v are formed. Due to Line 8, each vertex v′ in (v, v′) is

the root of a vertex-labeled tree. Moreover, there is no part of the algorithm that adds a

“parent” to a vertex. Therefore, v is the root of 〈V,E〉.
Similar reasoning can be applied for the case where d is a rule in Π.

(ii) Let v ∈ V be a rule vertex. Let Sv = {(v, v′) | (v, v′) ∈ E, l(v′) ∈ B+(l(v))}
denoting the set of out-going edges of v to atom vertices whose labels are in the positive

body of the rule that labels v. We show that outE(v) = Sv.

Let (v, v′) ∈ outE(v). Then, (v, v′) ∈ E. Edges are created at Lines 9 and 17. As v

is a rule vertex, (v, v′) must be created at Line 17. Then, by Line 16 and the condition at

Line 13, l(v′) ∈ B+(l(v)). So, (v, v′) ∈ Sv (i.e., outE(v) ⊆ Sv).

Let (v, v′) ∈ Sv. Then, by the definition of Sv, (v, v′) ∈ E. Thus, (v, v′) ∈ outE(v)

(i.e., Sv ⊆ outE(v)).

(iii) Assume otherwise. Then, there exists an atom vertex v ∈ V such that it is a leaf

vertex. Vertices are created at Lines 3 and 12. As v is an atom vertex, it must be created

at Line 3. Since it is a leaf vertex, condition at Line 7 never holds. But, then condition at

Line 10 holds. Then, the call where v is created returns an empty set of vertices. That is,

v cannot be in V .

Lemma 3. Let Π be a ground ASP program and X be an answer set for Π. For the

two subsequent calls createTree(Π, X, d, L) and createTree(Π, X, d′, L′) on a path in the

recursion tree for some execution of Algorithm 3, the following hold

(i) If d is an atom, then L′ = L ∪ {d};

(ii) If d is a rule, then L′ = L.

Proof of Lemma 3. Let createTree(Π, X, d, L) and createTree(Π, X, d′, L′) be two subse-

quent calls on a path in the recursion tree for some execution of Algorithm 3. We show

one by one that the conditions in the lemma hold.

(i) Assume that d is an atom. Then, createTree(Π, X, d′, L′) is called at Line 6. Due to

Line 4, L′ = L ∪ {d}.

65

(ii) Assume that d is a rule. Then, createTree(Π, X, d′, L′) is called at Line 13. As L is

not modified prior to this call, L′ = L.

Lemma 4. Let Π be a ground ASP program, X be an answer set for Π and

〈V,E, l,Π, X〉 be the vertex-labeled tree returned by execution Exc of Algorithm 3.

Let createTree(Π, X, d, L) and createTree(Π, X, d′, L′) be the two subsequent calls on

a path in the recursion tree for Exc, where each call on the path returns a nonempty

vertex-labeled tree. Let v and v′ be two vertices created by createTree(Π, X, d, L)

and createTree(Π, X, d′, L′), respectively, such that l(v) = d and l(v′) = d′. Then,

(v, v′) ∈ E.

Proof of Lemma 4. Notice that either d is an atom and d′ is a rule or vice versa. We show

that the lemma holds for the former case. The latter case can be shown similarly. As-

sume that d is an atom and d′ is a rule. Then, createTree(Π, X, d′, L′) must be called

at Line 6 within createTree(Π, X, d, L). As none of the calls on the path returns empty

vertex-labeled tree, the condition at Line 7 holds in createTree(Π, X, d, L). Then, an

edge (v, v′) is added to E at Line 9. Note that v is created in createTree(Π, X, d, L)

at Line 3 and l(v) = d. Also, due to Line 8, v′ is the root of the vertex-labeled

tree returned by createTree(Π, X, d′, L′). Then, by Lemma 2, v′ is a vertex created in

createTree(Π, X, d′, L′) and l(v′) = d′.

Lemma 5. Let Π be a ground ASP program, X be an answer set for Π, d be an atom inX

and T = 〈V,E, l,Π, X〉 be the vertex-labeled tree returned by createTree(Π, X, d, ∅).

If T is not empty, then for every node createTree(Π, X, d′, L′) in the recursion tree for

createTree(Π, X, d, ∅), where createTree(Π, X, d′, L′) and its ancestors return nonempty

vertex-labeled trees, L′ = ancT (v) where l(v) = d′.

Proof of Lemma 5. Assume that T is not empty. Then, we prove the lemma by induction

on the depth of a node in the recursion tree for createTree(Π, X, d, ∅).

Base case: Note that the node at depth 0 in the recursion tree for createTree(Π, X, d, ∅)
returns a nonempty vertex-labeled tree and it has no ancestors. By Lemma 2, the root v

of 〈V,E〉 is mapped to d by l, i.e., l(v) = d = d′. As the root of a tree does not have any

ancestors, ancT (v) = ∅ = L′.

Induction step: As an induction hypothesis, assume that for every node

createTree(Π, X, d′, L′) at depth less than n in the recursion tree for

createTree(Π, X, d, ∅), where createTree(Π, X, d′, L′) and its ancestors return nonempty

66

Depth

createTree(Π, X, d, ∅)

...

...

createTree(Π, X, p, Lp)

createTree(Π, X, d′, L′)

...

...

...

...
...

0

n− 1

n

Figure 6.1: Part of the recursion tree for createTree(Π, X, d, ∅).

vertex-labeled trees, L′ = ancT (v) where l(v) = d′. Let createTree(Π, X, d′, L′)

be a node at depth n in the recursion tree for createTree(Π, X, d, ∅), where

createTree(Π, X, d′, L′) and its ancestors return nonempty vertex-labeled trees. We

show that L′ = ancT (v) where l(v) = d′. For that, we need to consider two cases: d′ is an

atom and d′ is a rule. Let createTree(Π, X, p, Lp) be the parent of createTree(Π, X, d′, L′),

as illustrated in Figure 6.1.

Case (1) Assume that d is an atom. Then, pmust be a rule. By Lemma 3, L′ = Lp.

Notice that the depth of the parent node is n − 1. Then, by the induction hypothesis,

Lp = ancT (v) where l(v) = p. Also, by Lemma 4, (v, v′) ∈ E where l(v′) = d′. Since v

is a rule vertex, ancT (v) = ancT (v′). Thus, L′ = ancT (v′) where l(v′) = d′.

Case (2) Assume that d is a rule. Then, p must be an atom. By Lemma 3,

L′ = Lp ∪ {p}. Notice that the depth of the parent node is n− 1. Then, by the induction

hypothesis, Lp = ancT (v) where l(v) = p. Also, by Lemma 4, (v, v′) ∈ E where

l(v′) = d′. Since v is an atom vertex, ancT (v) ∪ {l(v)} = ancT (v′). Thus, L′ = ancT (v′)

where l(v′) = d′.

Proposition 12. (Soundness of Algorithm 3) Let Π be a ground ASP program, X be an

answer set for Π, d be an atom in X and T = 〈V,E, l,Π, X〉 be the vertex-labeled tree

returned by createTree(Π, X, d, ∅). If T is not empty, then T is the and-or explanation

tree for d with respect to Π and X .

67

Proof of Proposition 12. Suppose that T is not empty. We want to show that T is the

and-or explanation tree for d with respect to Π and X . For that, T must satisfy conditions

(i) − (iv) in Definition 9. As T is not empty, conditions (i), (iii) and (iv) hold due to

Lemma 2. To complete the proof, we show condition (ii) also holds in the sequel.

Let Sv = {(v, v′) | (v, v′) ∈ E, l(v′) ∈ ΠX,ancT (v′)(l(v))}. Our goal is to show that

for every atom vertex v ∈ V , outE(v) = Sv. To do so, we show that outE(v) ⊆ Sv and

that Sv ⊆ outE(v).

Let v be an atom vertex in V . Now, we show that outE(v) ⊆ S. Take an arbitrary

element (v, v′) ∈ outE(v). Then, (v, v′) ∈ E. Throughout the algorithm edges are created

at Lines 9 and 17. Since v is an atom vertex, (v, v′) must be created at Line 9. Then, due

to the condition at Line 5 and Lemma 5, l(v′) ∈ ΠX,ancE(v′)(l(v)). Thus, (v, v′) ∈ Sv. As

the last step, we show that Sv ⊆ outE(v). Let (v, v′) ∈ Sv be an arbitrary element. Then,

by the definition of Sv, (v, v′) ∈ E. Thus, trivially, (v, v′) ∈ outE(v).

Lemma 6. Let Π be a ground ASP program, X be an answer set for Π, d be an atom

in X , T = 〈VT , ET , l,Π, X〉 be the and-or explanation tree for d with respect to Π

and X , v be the root of T and 〈V,E, l,Π, X〉 be the vertex-labeled tree returned by

extractExp(Π, X, VT , l, v, ET ,WT , ∅,min). Then, for each v′ ∈ V , we have

WT (v′) ≤ min{WT (s) | s ∈ siblingET
(v′)}.

Proof of Lemma 6. Let v′ ∈ V . Vertices are added to V at Line 8. Then, due to Line 7,

v′ is a rule vertex. Also, each vertex added to V corresponds to the 5th parameter of the

algorithm. Note that recursive calls are made at Lines 5 and 10. Since the 5th parameter

is a rule vertex only in the call at Line 5, the call where v′ is added to V must be initiated

at Line 5. Then, due to Line 3, WT (v′) = min{WT (s) | s ∈ siblingET
(v′)}.

Lemma 7. Let Π be a ground ASP program, X be an answer set for Π, d be an atom

in X , T = 〈VT , ET , l,Π, X〉 be the and-or explanation tree for d with respect to Π

and X , v be the root of T , and 〈V,E, l,Π, X〉 be the vertex-labeled tree returned by

extractExp(Π, X, VT , l, v, ET ,WT , ∅,min). Let v1, v2 ∈ V . If (v1, v), (v, v2) ∈ ET for

some v ∈ VT , then (v1, v2) ∈ E.

Proof of Lemma 7. Since v1 ∈ V , it is added to V at Line 8. Then, for each child

of v1, the algorithm is recursively called at Line 10. As (v1, v) ∈ ET , we make a

call extractExp(Π, X, VT , l, v, ET ,WT , v1,min). Inside that call, we add (v1, c) to E (at

Line 4) where c is a minimum weighted child of v (due to Line 3). As (v, v2) ∈ ET and v2

is a minimum weighted child of v due to Lemma 6, c is equal to v2. Thus, (v1, v2) ∈ E.

68

Lemma 8. Let Π be a ground ASP program, X be an answer set for Π, d be an atom

in X , T = 〈VT , ET , l,Π, X〉 be the and-or explanation tree for d with respect to Π and

X , and op be a string min. Then, Algorithm 5 returns an explanation 〈V,E, l,Π, X〉 for

d with respect to Π and X .

Proof of Lemma 8. Let v be the root of T and S = 〈V,E, l,Π, X〉 be the output of

extractExp(Π, X, VT , l, v, ET ,WT , ∅,min). To prove that S is an explanation for d with

respect to Π and X , we need to show that there exists an explanation tree 〈V ′, E ′, l,Π, X〉
in T which satisfies Conditions (i) and (ii) in Definition 11. That is, the following hold.

(i) V = {v | v is a rule vertex inV ′};

(ii) E = {(v1, v2) | (v1, v), (v, v2) ∈ E ′ for some atom vertex v ∈ V ′}.

To do so, we construct a vertex-labeled tree and show that it is an explanation tree

in T which satisfies above conditions. Thus, let us define a vertex-labeled tree T ′ =

〈V ′, E ′, l,Π, X〉 where

V ′ = V ∪ {v | v ∈ VT s.t. (v, v′) ∈ ET for some v′ ∈ V } (6.1)

E ′ = {(v, v′) | v, v′ ∈ V ′ s.t. (v, v′) ∈ ET} (6.2)

We now show that T ′ is an explanation tree in T , i.e., T ′ satisfies Conditions (i)–(iv)

in Definition 10.

(i) Due to Line 8 and that v ∈ VT , V ⊆ VT . So, by (6.1), V ′ ⊆ VT . Also, by (6.2),

E ′ ⊆ ET .

(ii) In the first call of Algorithm 5, v is the root of T . Then, at Line 5, the algorithm is

called with a child c of v. Note that c is a rule vertex. Due to Line 8, for some v′ ∈ V ,

(v, v′) ∈ ET .

(iii) Let v′ be an atom vertex in V ′. Then, by (6.1) and (6.2), (v′, v′′) ∈ E ′ for some

v′′ ∈ V . This ensures that deg′E(v′) ≥ 1. Assume that deg′E(v′) > 1. Then, for some

v′′′ ∈ V ′ (v′′ 6= v′′′), (v′, v′′′) ∈ E ′. Then, v′′′ ∈ V . This is not possible due to Line 3.

Thus, degE(v′) = 1.

(iv) Let v′ be a rule vertex in V ′. Then, by (6.1) v′ ∈ V and v is added into V at Line 8.

Due to Line 9 and (6.1), every child c of v is in V ′. Then, by (6.2), (v, c) ∈ E ′. That is,

outET
(v) ⊆ E ′.

As a last step, we show that T ′ satisfies Conditions (i) and (ii) in Definition 11.

69

(i) Note that every element in the set {v | v ∈ VT s.t. (v, v′) ∈ ET for some v′ ∈ V } is

an atom vertex. Then, by (6.1), V = {v | v is a rule vertex inV ′};

(ii) Let S = {(v1, v2) | (v1, v), (v, v2) ∈ E ′ for some atom vertex v ∈ V ′}. We show

that E = S.

Let (v1, v2) ∈ E. Then, (v1, v2) is added into E at Line 4. So, due to Lines 2 and 3,

we know that there exists an atom vertex v ∈ VT such that (v, v2) ∈ ET . Then, by (6.1),

v ∈ V ′ and, by (6.2), (v, v2) ∈ E ′. Also, by Line 9, we know that (v1, v) ∈ ET . Then,

by (6.2), (v1, v) ∈ E ′. Thus, (v1, v2) ∈ S. That is, E ⊆ S.

Let (v1, v2) ∈ S. Then, for some atom vertex v ∈ V ′, (v1, v), (v, v2) ∈ E ′. By (6.2),

v1, v2 ∈ V and (v1, v), (v, v2) ∈ ET . Then, due to Lemma 7, (v1, v2) ∈ E. That is,

S ⊆ E.

Lemma 9. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , T = 〈V,E, l,Π, X〉 be the and-or explanation tree for p with respect to Π and X ,

T ′ = 〈V ′, E ′, l,Π, X〉 be an explanation tree in T and v be a rule vertex in V ′. Then, the

following inequality holds for the weight of v

WT (v) ≤ 1 + |{u′ |u′ ∈ desT ′(v)}|. (6.3)

Proof of Lemma 9. We prove the lemma by induction on the height of a rule vertex in the

explanation tree.

Base case: Let u be a rule vertex in V ′ at height 0. Then, u is a leaf vertex. By the

definition of the weight function, WT (u) = 1. Then, (6.3) holds.

Induction step: As an induction hypothesis, assume that for every rule vertex i ∈ V ′

at height less than n, (6.3) holds. We show that (6.3) holds for every rule vertex w ∈ V ′

at height n + 1. Let w be a rule vertex at height n + 1. Then, by the definition of the

weight function, WT (w) = 1 +
∑

w′∈childE(w)
WT (w′). Let w′ be a child of w. Note that

w′ is an atom vertex. By the definition of an explanation tree, w′ ∈ V ′ and w′ has exactly

one child w′′ ∈ V ′ which is a rule vertex. Then, by the definition of the weight function,

WT (w′) = min{WT (c) | c ∈ childE(w′)} and thus WT (w′) ≤ WT (w′′). On the other

hand, as the height of w′′ is n − 1, by the induction hypothesis, WT (w′′) ≤ 1 + |{d | d ∈
desT ′(w′′)}|. Since w′ has exactly one child w′′ ∈ V ′, we have

1 + |{d | d ∈ desT ′(w′′)}| = |{u |u ∈ desT ′(w′)}|.

70

That is, WT (w′) ≤ |{u |u ∈ desT ′(w′)}|. Then, we have

WT (w) = 1 +
∑

w′∈childE(w)
WT (w′)

≤ 1 +
∑

w′∈childE(w)
|{u |u ∈ desT ′(w′)}|

= 1 + |{u′ |u′ ∈ desT ′(w)}|.

Lemma 10. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , T be the and-or explanation tree (with edges E) for p with respect to Π and X , v

be the root of T , and T ′ be an explanation tree (with vertices V ′) in T . Then,

WT (v) ≤ |{u |u is a rule vertex inV ′}|.

Proof of Lemma 10. We want to show that the weight of v, WT (v), is at most the number

of rule vertices in V ′. Note that v is the root of T ′ and there exists exactly one vertex

v′ ∈ V ′ such that v′ ∈ childE(v) (due to Definition 10). Then, we have

WT (v) = min{WT (c) | c ∈ childE(v)} (by Definition 13)

≤ WT (v′) (as v′ ∈ childE(v))

≤ 1 + |{v′′ | v′′ ∈ desT ′(v′)}| (by Lemma 9)

= |{u |u is a rule vertex inV ′}|. (as v′ is the only child of v in T ′)

Lemma 11. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , T be the and-or explanation tree for p with respect to Π and X , v be the root of T ,

and 〈V,E, l,Π, X〉 be an explanation for p with respect to Π and X . Then, WT (v) ≤ |V |.

Proof of Lemma 11. We show that the weight of v, WT (v), is at most |V |. By the

definition of an explanation, there exists an explanation tree T ′ (with vertices V ′)

of T such that |V | = |{v′ | v′ is a rule vertex inV ′}|. By Lemma 10, WT (v) ≤
|{v′ | v′ is a rule vertex inV ′}|. Thus, WT (v) ≤ |V |.

Lemma 12. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , T = 〈V,E, l,Π, X〉 be the and-or explanation tree for p with respect to Π and X ,

and T ′ = 〈V ′, E ′, l,Π, X〉 be an explanation tree in T . If we have

WT (v) ≤ min{WT (s) | s ∈ siblingE(v)}. (6.4)

for every rule vertex v ∈ V ′, then the following holds for every rule vertex v ∈ V ′.

WT (v) = 1 + |{u′ |u′ ∈ desT ′(v)}|. (6.5)

Proof of Lemma 12. Assume that (6.4) holds for every rule vertex v ∈ V ′. Then, we

prove the lemma by induction on the height of a rule vertex in the explanation tree.

71

Base case: Let u be a rule vertex in V ′ at height 0. Then, u is a leaf vertex. By the

definition of the weight function, WT (u) = 1. As u has no descendants, (6.5) holds.

Induction step: As an induction hypothesis, assume that for every rule vertex i ∈ V ′

at height less than n, (6.5) holds. We show that (6.5) holds for every rule vertex w ∈ V ′

at height n + 1. Let w ∈ V ′ be a rule vertex at height n + 1. Then, by the definition

of the weight function, WT (w) = 1 +
∑

w′∈childE(w)
WT (w′). Let w′ be a child of w.

Note that w′ is an atom vertex. By the definition of an explanation tree, w′ ∈ V ′ and

w′ has exactly one child w′′ ∈ V ′, which is a rule vertex. Then, by the definition of the

weight function, WT (w′) = min{WT (c) | c ∈ childE(w′)}. Also, by (6.4), WT (w′′) ≤
min{WT (s) | s ∈ siblingE(w′′)}. Then, WT (w′′) = min{WT (c) | c ∈ childE(w′)}. Thus,

WT (w′) = WT (w′′). As the height of w′′ is n−1, by the induction hypothesis, WT (w′′) =

1 + |{u |u ∈ desT ′(w′′)}|. As w′′ is the only child of w′, WT (w′) = |{u |u ∈ desT ′(w′)}|.
Then, we have

WT (w) = 1 +
∑

w′∈childE(w)
WT (w′)

= 1 +
∑

w′∈childE(w)
|{u |u ∈ desT ′(w′)}|

= 1 + |{u′ |u′ ∈ desT ′(w)}|.

Lemma 13. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , T be the and-or explanation tree (with edges E) for p with respect to Π and X , v

be the root of T , and T ′ be an explanation tree (with vertices V ′) in T . If we have

WT (v′) ≤ min{WT (s) | s ∈ siblingE(v′)} (6.6)

for every rule vertex v′ ∈ V ′, then, the following holds

WT (v) = |{u |u is a rule vertex inV ′}|.

Proof of Lemma 13. Assume that (6.4) holds for every rule vertex v′ ∈ V ′. Then, we want

to show that the weight of v, WT (v), is equal to the number of rule vertices in V ′. Note

that v is the root of T ′ and there exists exactly one vertex v′ ∈ V ′ such that v′ ∈ childE(v)

(due to Definition 10). Then, we have

WT (v) = min{WT (c) | c ∈ childE(v)} (by Definition 13)

= WT (v′) (by (6.6))

= 1 + |{u′ |u′ ∈ desT ′(v′)}| (by Lemma 12)

= |{u |u is a rule vertex inV ′}|. (as v′ is the only child of v in T ′)

72

We are now ready to prove Proposition 3.

Proposition 3. Given a ground ASP program Π, an answer set X for Π, and an atom p

in X , Algorithm 2 either finds a shortest explanation for p with respect to Π and X or

returns an empty vertex-labeled tree.

Proof of Proposition 3. Algorithm 2 has two return statements; Lines 6 and 8. At Line 8,

it returns an empty vertex-labeled tree. We show that what Algorithm 2 returns at Line 6,

S = 〈V ′, E ′, l,Π, X〉, is an explanation for p with respect to Π and X and that there is no

other explanation for p with respect to Π and X , with vertices V ′′, such that |V ′′| < |V ′|.
Due to the condition at Line 2, the vertex-labeled tree found at Line 1 is not empty.

Then, by Proposition 12, we know that T is the and-or explanation tree for p with respect

to Π and X . Then, by Lemma 8, we know that 〈V ′, E ′, l,Π, X〉 found at Line 5 is an

explanation for p with respect to Π and X .

Now, suppose that there exists another explanation for p with respect to Π and X ,

with vertices V ′′, such that |V ′′| < |V ′|. Let v be the root of T . Then, by Lemma 11,

WT (v) ≤ |V ′′|. Also, since S is an explanation for p with respect to Π and X , there exists

an explanation tree with vertices V ′′′ in T such that V ′ = {u |u is a rule vertex inV ′′′}.
Due to Lemma 6, WT (v′) ≤ min{WT (s) | s ∈ siblingE(v′)} for each v′ ∈ V ′. Then,

by Lemma 13, WT (v) = |{u |u is a rule vertex inV ′′′}|. This implies that |V ′| ≤ |V ′′|.
Since this is a contradiction, S is a shortest explanation for p with respect to Π and X .

6.1.3 Proof of Proposition 4 – Complexity of Algorithm 2

We prove Proposition 4 which shows that the time complexity of Algorithm 2 is

exponential in the size of the given answer set.

Proposition 4. Given a ground ASP program Π, an answer set X for Π, and an atom p

in X , the time complexity of Algorithm 2 is O(|Π||X| × |BΠ|).

Proof of Proposition 4. In Algorithm 2, all the lines, expect 1, 4 and 5, take constant

amount of time. At Lines 1, 4 and 5, three different algorithms are called. At Line 1,

Algorithm 3 is called. This algorithm creates the and-or explanation tree recursively.

As shown in Proof of Lemma 1, the branching factor of a vertex in the recursion tree

is O(max{|X|, |Π|}) and the height of the tree is O(|X|). Also, at Line 5, for an atom

d ∈ X , we check whether a rule in Π supports d in O(|BΠ|). Thus, the time complexity

of Algorithm 3, in the worst case, is O(max{|X|, |Π|}|X| × |BΠ|). As |X| ≤ |Π|, it is

O(|Π||X|×|BΠ|). At Lines 4 and 5, Algorithm 4 and Algorithm 5 are called, respectively.

Algorithm 4 and Algorithm 5 simply traverse the tree T created by Algorithm 3 (cf.

73

Lines 2 and 6 in Algorithm 4, and Lines 5 and 10 in Algorithm 5). By Proposition 12,

we know that T is the and-or explanation tree for p with respect to Π and X . Since the

height of T is O(|X|) and the branching factor of a vertex in T is max{|X|, |Π|}, the time

complexity of Algorithm 3 dominates the time complexities of others. Thus, the time

complexity of Algorithm 2, in the worst case, is O(|Π||X| × |BΠ|).

6.2 Generating k Different Explanations

In Section 4.3, we have first analyzed three properties of Algorithm 6, namely ter-

mination, soundness and complexity, resulting in Propositions 5, 6, and 8. Then, we show

some characteristics of its output, resulting in Proposition 7, Corollary 1 and Corollary 2.

In the following, we show the proofs of these results.

6.2.1 Proof of Proposition 5 – Termination of Algorithm 6

We now prove Proposition 5 which shows that Algorithm 6 terminates.

Proposition 5. Given a ground ASP program Π, an answer set X for Π, an atom p in X ,

and a positive integer k, Algorithm 6 terminates.

Proof of Proposition 5. Algorithm 6 calls Algorithm 3 at Line 2. By Lemma 1, we know

that Algorithm 3 terminates. Then, to show that Algorithm 6 terminates, we need to show

that the loop between Lines 4–10 terminates. Due to Line 4, the loop iterates at most k

times. If it iterates less than k times, it means that it is terminated at Line 6. Thus, assume

that it iterates k times. Then, it is enough to show that every iteration of the loop termi-

nates. Consider the ith (1 ≤ i ≤ k) iteration of the loop. First, at Line 5, Algorithm 7 is

called. Observe that this algorithm simply traverses the and-or explanation tree T created

at Line 2 (cf. Lines 2, 3, 8 and 9 in Algorithm 7). Since T is finite, Algorithm 7 terminates.

Next, Algorithm 5 is called at Line 7. Similar to Algorithm 7, this algorithm also simply

traverses a portion of T (cf. Lines 3, 5, 9 and 10 in Algorithm 5). Hence, Algorithm 5

also terminates. As the rest of the loop consists of some assignment statements, the ith

(1 ≤ i ≤ k) iteration of the loop terminates. Since every iteration of the loop terminates,

Algorithm 6 terminates.

6.2.2 Proof of Proposition 6 – Soundness of Algorithm 6

Before showing the soundness property of Algorithm 6, we provide some necessary

lemmas.

74

Proposition 13. (Completeness of Algorithm 3) Let Π be a ground ASP program, X be

an answer set for Π, p be an atom in X . Let T be the and-or explanation tree p with

respect to Π and X . Then, createTree(Π, X, p, {}) returns T .

Proof of Proposition 13. Let 〈V,E, l,Π, X〉 be the output of Algorithm 3. By Condi-

tion (i) in Definition 9, the root of T is an atom vertex with label p. Since p is in X and

L = ∅ at the beginning of Algorithm 3, a vertex v with label p is created at Line 3 and

added into V at Line 4.

Take an atom vertex v ∈ V . Then, there should be an out-going edge (v, v′) of v

such that l(v′) ∈ ΠX,ancT (v′)(l(v)) (due to Condition (ii) in Definition 9). Note that, the

set L in Algorithm 3 is essentially ancT (v′), and l(v′) ∈ ΠX,L(l(v)) is checked at Line 5.

Moreover, we need to ensure that v′ is a rule vertex. This condition is checked at Line 6

by recursive calls.

Take a rule vertex v ∈ V . Then, for every atom a in B+(l(v)), there should be an

out-going edge (v, v′) of v such that l(v′) = a (due to Condition (iii) in Definition 9).

This is satisfied by the condition at Line 13. Moreover, we need to make sure that v′ is

atom vertex. For that, there is a recursive call at Line 14.

Take a leaf vertex v ∈ V . Then, v must be a rule vertex (due to Condition (iv) in

Definition 9). Assume that v is an atom vertex. Thus, no out-going edge is defined for v

at Line 9. Then, when the loop at Line 5 terminates, the condition at Line 10 is satisfied.

This implies that v is not in V . As it is a contradiction, v must be a rule vertex.

By this proposition and Proposition 1, we know that Algorithm 3 returns the and-or expla-

nation tree. Thus, at Line 1 of Algorithm 6, the and-or explanation tree for p with respect

to Π and X is created. We prove our statements by keeping this in mind.

Lemma 14. Let Π be a ground ASP program, X be an answer set for Π, p be an atom in

X , and k be a positive integer. Let n be the number of different explanations for p with

respect to Π and X . Then, for the root vr of T , at each iteration i (1 ≤ i ≤ min{n, k}) of

the loop in Algorithm 6, WT,Ri−1
(vr) = |RVertices(Ki)\Ri−1|.

Proof of Lemma 14. Consider the ith (1 ≤ i ≤ min{n, k}) iteration of the loop. At

Line 5, we call Algorithm 7 and calculate WT,Ri−1
for every vertex v in V . Ac-

cording to Algorithm 7, for an atom vertex v ∈ V , due to Line 4, WT,Ri−1
(v) =

max{WT,Ri−1
(v′) | v′ ∈ childE(v)} and for a rule vertex u, due to Lines 6–9,

WT,Ri−1
(u) = xu+

∑
u′∈childE(u) WT,Ri−1

(u′) where xu = 1 if u /∈ Ri−1, xu = 0 otherwise.

Let v be an atom vertex in V . Let {v′1, . . . , v′vz} be a set of rule vertices that “contribute”

to WT,Ri−1
(v), i.e., rule vertices that appear in the expanded formula of WT,Ri−1

(v). This

implies that WT,Ri−1
= xv′1 + . . . + xv′vz where xv′j = 1 if v′j /∈ Ri−1, xv′j = 0 otherwise,

75

for 1 ≤ j ≤ vz. Also, at Line 7 in Algorithm 6, we extract an explanation using Algo-

rithm 5. Then, at Line 8, we assign the output 〈V ′, E ′, l,Π, X〉 of Algorithm 5 to Ki. Let

RVertices(Ki) = {v1, . . . , vz}. Observe in Algorithm 5 that for every atom vertex, we

process its maximum weighted child recursively (Line 3), and for every rule vertex we

choose every child of it recursively (Line 9). Then, due to the observation and the cal-

culation of WT,Ri−1
, RVertices(Ki) is a set of rule vertices that contribute to WT,Ri−1

(vr).

Then, WT,Ri−1
(vr) = x1 + . . . + xz where xj = 1 if vj /∈ Ri−1, xj = 0 otherwise, for

1 ≤ j ≤ z. That is, WT,Ri−1
(vr) = |RVertices(Ki)\Ri−1|.

Now, we prove Proposition 6.

Proposition 6. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , and k be a positive integer. Let n be the number of different explanations for p with

respect to Π and X . Then, Algorithm 6 returns min{n, k} different explanations for p

with respect to Π and X .

Proof of Proposition 6. First, assume that n ≥ k. Then, we show that Algorithm 6 returns

at Line 11 a set K of k different explanations for p with respect to Π and X . Note that

an element is added into K at each iteration of the loop between Lines 4–10. Since that

loop iterates k times, we need to show that two properties hold: (i) for every iteration i

(1 ≤ i ≤ k), Ki (the element added into K at the ith iteration) is an explanation for p with

respect to Π and X . (ii) for all iterations i, j (1 ≤ i < j ≤ k), Ki and Kj are different. In

the following, we consider those two properties.

(i) For every iteration i (1 ≤ i ≤ k), Ki is formed at Line 8. According to Line 7, Ki is

an output of Algorithm 5. Then, due to Lemma 8, we conclude that Ki is an explanation

for p with respect to Π and X .

(ii) Assume otherwise. Then, there exists i, j (1 ≤ i < j ≤ k) such that Ki = Kj . Con-

sider the jth iteration of the loop. At Line 5, we call Algorithm 7 and calculate WT,Rj−1

for every vertex v in V . Then, at Line 7, we extract an explanation using Algorithm 5.

Let Kj = 〈V ′, E ′, l,Π, X〉, vr be the root of 〈V ′, E ′〉 and RVertices(Kj) = {v1, . . . , vl}.
Then, by Lemma 14, WT,Rj−1

(vr) = x1 + . . . + xl where xz = 1 if vz /∈ Rj−1, xz = 0

otherwise, for 1 ≤ z ≤ l. Since Ki = Kj , {v1, . . . , vl} = RVertices(Ki). Due to

Line 10, we know that RV ertices(Ki) ⊆ Rj−1. Then, for 1 ≤ z ≤ l, vz ∈ Rj−1. Thus,

WT,Rj−1
(vr) = 0. This implies that for every vertex v ∈ V , WT,Rj−1

(v) = 0. That is,

every rule vertex in V is also in Rj−1. However, as we are at the jth iteration and at each

iteration one explanation is computed, Rj−1 might contain rule vertices for at most j − 1

76

explanations. We know that n ≥ k. Thus, for some v′ ∈ V , the following should hold:

v′ /∈ Rj−1. As we reach a contradiction, Ki 6= Kj .

Now, assume that n < k. Then, we show that Algorithm 6 returns at Line 6 a set

K of n different explanations for p with respect to Π and X . Note that at the end of

nth iteration of the loop, K contains n different explanations (due to the same reasoning

above). Then, in the next iteration, WT,Rn+1(v) = 0. This is because Rn contains the rule

vertices of n different explanations and the total number of explanations for pwith respect

to Π and X is n. Thus, the condition at Line 6 is satisfied and n different explanations are

returned.

6.2.3 Some Properties of Algorithm 6

Before presenting some characteristics of the output of Algorithm 6, we provide

some necessary definitions and lemmas.

Definition 25 (WT,R). Let Π be a ground ASP program, X be an answer set for Π, p be

an atom in X , T = 〈V,E, l,Π, X〉 be the and-or explanation tree for p with respect to Π

and X , and R be a set of rule vertices in V . Then, WT,R is a function that maps vertices

in V to nonnegative integers as follows.

WT,R(v) =


max{WT,R(v′) | v′ ∈ childE(v)} if v is an atom vertex;∑

v′∈childE(v)
WT,R(v′) if v is a rule vertex and v ∈ R;

1 +
∑

v′∈childE(v)
WT,R(v′) otherwise.

Lemma 15. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , T = 〈V,E, l,Π, X〉 be the and-or explanation tree for p with respect to Π and X ,

T ′ = 〈V ′, E ′, l,Π, X〉 be an explanation tree in T and R be a set of rule vertices in V .

Then, for every rule vertex v in V ′, the following holds

WT,R(v) ≥
{

1 + |{u′ |u′ ∈ (desT ′(v)\R)}| if v /∈ R;

|{u′ |u′ ∈ (desT ′(v)\R)}| otherwise.
(6.7)

Proof of Lemma 15. We prove the lemma by induction on the height of a rule vertex in

the explanation tree.

Base case: Let v be a rule vertex in V ′ at height 0. Then, v is a leaf vertex. By Def-

inition 25 , WT,R(v) = xv where xv = 1 if v /∈ R, xv = 0 otherwise. Then, (6.7)

holds.

77

Induction step: As an induction hypothesis, assume that for every rule vertex i ∈ V ′ at

height less than n+ 1, (6.7) holds. We show that (6.7) holds for every rule vertex v ∈ V ′

at height n + 1. Let v be a rule vertex in V ′ at height n + 1. Then, by Definition 25,

WT,R(v) = xv +
∑

v′∈childE(v)
WT,R(v′) where xv = 1 if v /∈ R, xv = 0 otherwise.

Let v′ be a child of v. Note that v′ is an atom vertex. By Conditions (iii) and (iv) in

Definition 10, v′ ∈ V ′ and v′ has exactly one child v′′ ∈ V ′ which is a rule vertex.

Then, by Definition 25, WT,R(v′) = max{WT,R(c) | c ∈ childE(v′)} and thus WT,R(v′) ≥
WT,R(v′′). On the other hand, as the height of v′′ is n − 1, by the induction hypothesis,

(6.7) holds for v′′. Thus, we obtain the following.

WT,R(v′) ≥
{

1 + |{u′ |u′ ∈ (desT ′(v′′)\R)}| if v′′ /∈ R;

|{u′ |u′ ∈ (desT ′(v′′)\R)}| otherwise.
(6.8)

Since v′ has exactly one child v′′ ∈ V ′, we derive

{v′′} ∪ {d | d ∈ desT ′(v′′)} = |{u |u ∈ desT ′(v′)}|. (6.9)

Then, due to (6.8) and (6.9),

WT,R(v′) ≥ |{u |u ∈ (desT ′(v′)\R)}|. (6.10)

Then, to conclude the proof, we consider two cases.

Case (1) Suppose that v /∈ R. Then, we can derive the following.

WT,R(v) = 1 +
∑

v′∈childE(v)
WT,R(v′) (by Definition 25)

≥ 1 +
∑

v′∈childE(v)
|{u |u ∈ (desT ′(v′)\R)}| (by (6.10))

= 1 + |{u′ |u′ ∈ (desT ′(v)\R)}|. (as every child of v is an atom vertex)

Case (2) Suppose that v ∈ R. Then, we can derive the following.

WT,R(v) =
∑

v′∈childE(v)
WT,R(v′) (by Definition 25)

≥
∑

v′∈childE(v)
|{u |u ∈ (desT ′(v′)\R)}| (by (6.10))

= |{u′ |u′ ∈ (desT ′(v)\R}|. (as every child of v is an atom vertex)

Lemma 16. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , T = 〈V,E, l,Π, X〉 be the and-or explanation tree for p with respect to Π and X , v

be the root of T , T ′ be an explanation tree (with vertices V ′) in T , and R be a set of rule

vertices in V . Then,

WT,R(v) ≥ |{u |u ∈ (RVertices(T ′)\R)}|.

Proof of Lemma 16. We want to show that WT,R(v) is equal to at least the number of rule

vertices in V ′ but R. Recall that v is the root of T ′ and there exists exactly one vertex

v′ ∈ V ′ such that v′ ∈ childE(v) (due to Condition (iii) in Definition 10). Then, we

consider two cases.

78

Case (1) Assume that v′ /∈ R. Then, we can derive the following.

WT,R(v) = max{WT,R(c) | c ∈ childE(v)} (by Definition 25)

≥ WT,R(v′) (as v′ ∈ childE(v))

≥ 1 + |{v′′ | v′′ ∈ (desT ′(v′)\R)}| (by Lemma 15)

= |{u |u ∈ (RVertices(T ′)\R)}|. (as v′ is the only child of v in T ′)

Case (2) Assume that v′ ∈ R. Then, we can derive the following.

WT,R(v) = max{WT,R(c) | c ∈ childE(v)} (by Definition 25)

≥ WT,R(v′) (as v′ ∈ childE(v))

≥ |{v′′ | v′′ ∈ (desT ′(v′)\R)}| (by Lemma 15)

= |{u |u ∈ (RVertices(T ′)\R)}|. (as v′ is the only child of v in T ′)

Lemma 17. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , T be the and-or explanation tree (with vertices V) for p with respect to Π and X , v

be the root of T , T ′ = 〈V ′, E ′, l,Π, X〉 be an explanation for p with respect to Π and X ,

and R be a set of rule vertices in V . Then, WT,R(v) ≥ |RVertices(T ′)\R|.

Proof of Lemma 17. We show that WT,R(v) is equal to at least |RVertices(T ′)\R|. By

Definition 11, there exists an explanation tree T ′′ (with vertices V ′′) in T such that V ′ =

{v′ | v′ is a rule vertex inV ′′}. That is, RVertices(T ′) = RVertices(T ′′). By Lemma 16, we

know that WT,R(v) ≥ |{u |u ∈ (RVertices(T ′′)\R)}|. Thus, we conclude that WT,R(v) ≥
|RVertices(T ′)\R|.

We can now prove our main result which simply indicates that at each iteration i of

the loop in Algorithm 6 the distance ∆D(Ri−1, Ki) is maximized.

Proposition 7. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , and k be a positive integer. Let n be the number of explanations for p with respect

to Π and X . Then, at the end of each iteration i (1 ≤ i ≤ min{n, k}) of the loop in

Algorithm 6, ∆D(Ri−1,RVertices(Ki)) is maximized, i.e., there is no other explanation

K ′ such that ∆D(Ri−1,RVertices(Ki)) < ∆D(Ri−1,RVertices(K ′)).

Proof of Proposition 7. The proof is by contradiction. Assume that there exists an ex-

planation K ′ such that ∆D(Ri−1,RVertices(Ki)) < ∆D(Ri−1,RVertices(K ′)). That is,

|RVertices(K ′)\Ri−1| > |RVertices(Ki)\Ri−1|. Let vr be the root of T . Then, by

79

Lemma 17, WT,Ri−1
(vr) ≥ |RVertices(K ′)\Ri−1|. Also, by Lemma 14, we know that

WT,Ri−1
(vr) = |RVertices(Ki)\Ri−1|. Therefore, we obtain that |RVertices(Ki)\Ri−1| ≥

|RVertices(K ′)\Ri−1|. But, that contradicts the assumption |RVertices(K ′)\Ri−1| >
|RVertices(Ki)\Ri−1|. Thus, there is no K ′ such that ∆D(Ri−1,RVertices(Ki)) <

∆D(Ri−1,RVertices(K ′)), i.e., ∆D(Ri−1,RVertices(Ki)) is maximized.

Now, we provide the proof of the corollary that shows how to compute longest

explanations.

Corollary 1. Let Π be a ground ASP program, X be an answer set for Π, p be an atom

in X , and k = 1. Then, Algorithm 6 computes a longest explanation for p with respect to

Π and X .

Proof of Corollary 1. Since k = 1, the loop in Algorithm 6 iterates once. At that it-

eration, by Proposition 6, we know that an explanation K1 for p with respect to Π

and X is computed. By Proposition 7, we also know that ∆D(R0,RVertices(K1)) is

maximized. That is, there exists no explanation K ′ for p with respect to Π and X

such that |RVertices(K ′)\R0| > |RVertices(K1)\R0|. Note that R0 is an empty set.

Therefore, there exists no explanation K ′ for p with respect to Π and X such that

|RVertices(K ′)| > |RVertices(K1)|. As every vertex of an explanation is a rule vertex,

we conclude that K1 is a longest explanation for p with respect to Π and X .

Next, we indicate the proof of the corollary that shows Algorithm 6 computes

min{n, k} different explanations such that for every i (1 ≤ i ≤ min{n, k}) the ith expla-

nation is the most distant explanation from the previously computed i− 1 explanations.

Corollary 2. Let Π be a ground ASP program, X be an answer set for Π, p be an

atom in X , and k be a positive integer. Let n be the number of explanations for p

with respect to Π and X . Then, Algorithm 6 computes min{n, k} different explana-

tions K1, . . . , Kmin{n,k} for p with respect to Π and X such that for every j (2 ≤ j ≤
min{n, k}) ∆D(

⋃j−1
z=1 RVertices(Kz), Kj) is maximized.

Proof of Corollary 2. By Proposition 6, we know that K1, . . . , Kmin{n,k} are min{n, k}
different explanations for p with respect to Π and X . Also, by Proposition 7, for every i

(2 ≤ i ≤ min{n, k}), we obtain that ∆D(Ri−1, Ki) is maximized. Due to Lines 1 and 10

of Algorithm 6, Ri−1 =
⋃i−1

j=0 RVertices(Kj). Since R0 is an empty set, we conclude that

∆D(
⋃i−1

j=1 RVertices(Kj), Ki) is maximized.

80

6.2.4 Proof of Proposition 8 – Complexity of Algorithm 6

We prove Proposition 8 which shows that the time complexity of Algorithm 6 is

exponential in the size of the given answer set.

Proposition 8. Given a ground ASP program Π, an answer set X for Π, an atom p in X

and a positive integer k, the time complexity of Algorithm 6 is O(k × |Π||X|+1 × |BΠ|).

Proof of Proposition 8. Algorithm 6 calls Algorithm 3 at Line 2. In the proof of Proposi-

tion 4, it is shown that the worst case time complexity of Algorithm 3 is O(|Π||X| × BΠ).

Moreover, Algorithm 6 has a loop between Lines 4–10, which iterates at most k times.

In every iteration of the loop, Algorithm 7 and Algorithm 5 are called at Lines 5 and 7.

Algorithm 7 simply traverses the and-or explanation tree T recursively (cf. Lines 2, 3, 8

and 9 in Algorithm 7). The height of T isO(|X|) and the branching factor of a vertex in T

is O(|Π|). Also, at Line 8 in Algorithm 7, we check whether a rule vertex in V is in R.

As R is a subset of the rule vertices in V , this check can be done in O(|Π| × |BΠ|) time.

Thus, the time complexity of Algorithm 7, in the worst case, is O(|Π||X| × |Π| × |BΠ|).

Similar to Algorithm 7, Algorithm 5 just traverses a portion of T (cf. Lines 3, 5, 9 and 10

in Algorithm 5). Thus, the time complexity of every iteration of the loop in Algorithm 6

is O(|Π||X|+1 × |BΠ|). As the loop iterates at most k times, the time complexity of Algo-

rithm 6, in the worst case, is O(k × |Π||X|+1 × |BΠ|).

6.3 Relations between Explanations and Justifications

In Chapter 5, we have related explanations to justifications, resulting in Proposi-

tions 10 and 11. In the following, we show the proofs of these results.

6.3.1 Proof of Proposition 10 – Soundness of Algorithm 8

In the proof of Proposition 10, the idea is to show that Algorithm 8 returns at Line 17

an explanation tree T ′ in the and-or explanation tree for p with respect to Π and X .

That is, T ′ satisfies Conditions (i)–(iv) in Definition 10. Before providing the proof

of Proposition 10, we consider some useful lemmas and corollaries.

Lemma 18. Let Π be a ground normal ASP program, X be an answer set for Π, p be

an atom in X , U be an assumption in Assumptions(Π, X), G = (V,E) be an offline

justification of p+ with respect to X and U , T = 〈V ′, E ′, l,Π, X〉 be an output of Algo-

rithm 8 and P = 〈v1, . . . , vn〉 be a path in T . Take any three consecutive elements vi, vi+1

81

and vi+2 in P such that vi and vi+2 are atom vertices and vi+1 is a rule vertex. Then,

(l(vi)
+, l(vi+2)+,+) ∈ E holds.

Proof of Lemma 18. As vi is an atom vertex, its out-going edges are formed at Line 15 of

Algorithm 8. Then, due to Lines 13 and 14, vi+1 is a rule vertex such that B(l(vi+1)) =

support(l(vi)
+, G). As vi+1 is a rule vertex, its out-going edges are formed at Line 10.

Then, due to Lines 8 and 9, vi+2 is an atom vertex where l(vi+2) ∈ B+(l(vi+1)).

Since B(l(vi+1)) = support(l(vi)
+, G) and l(vi+2) ∈ B+(l(vi+1)), by Definition 17,

(l(vi)
+, l(vi+2)+,+) ∈ E holds.

Corollary 3. Let Π be a ground normal ASP program, X be an answer set for Π, p be an

atom in X , U be an assumption in Assumptions(Π, X), G = (N,E) be an offline justi-

fication of p+ with respect to X and U , T = 〈V ′, E ′, l,Π, X〉 be an output of Algorithm 8

and P = 〈v1, . . . , vn〉 be a path in T where v1 and vn are atom vertices. Then, l(vn)+ is

reachable from l(v1)+ by a positive path in G.

Proof of Corollary 3. Note that an edge in E ′ is either defined from an atom vertex to a

rule vertex or vice versa due to Lines 10 and 15 of Algorithm 8. By this observation, in

P , as v1 is an atom vertex, vi is an atom vertex (resp., rule vertex) if i is an odd number

(resp., a even number). Then, by Lemma 18, for 1 ≤ i ≤ n − 2 and i mod 2 6=
0 (i.e., i is an odd number), (l(vi)

+, l(vi+2)+,+) ∈ E. Thus, there exists a positive

path
〈
l(v1)+, l(v3)+, l(v5)+, . . . , l(v+

n−2), l(vn)+
〉

in G. That is, l(vn)+ is reachable from

l(v1)+ by a positive path in G.

Lemma 19. Let Π be a ground normal ASP program, X be an answer set for Π, p be an

atom in X , U be an assumption in Assumptions(Π, X), G = (N,E) be an offline justi-

fication of p+ with respect to X and U , T = 〈V ′, E ′, l,Π, X〉 be an output of Algorithm 8

and v be an atom vertex in V ′ such that v is the first element added into the queue Q in

Algorithm 8. Consider a sequence S = 〈v1 = v, v2, . . . , vn〉 of n elements where vi ∈ V ′

for 1 ≤ i ≤ n such that vj+1 is added into Q right after vj for 1 ≤ j < n. Then, every

vertex vi ∈ V ′ (1 < i ≤ n) is reachable from v by a path in T .

Proof of Lemma 19. The proof is by induction on the length of S.

Base case: Assume that S has two elements, i.e., S = 〈v1 = v, v2〉. Since v is the first

vertex added into Q by definition, it is the first vertex dequeued from Q at Line 5. Then,

since v is an atom vertex by definition, the second vertex is added into Q at Line 16. By

definition of S, v2 is the second vertex added into Q. Thus, by Line 15, (v, v2) ∈ E ′, i.e.,

v2 is reachable from v by a path in T .

82

Induction step: As an induction hypothesis, assume that for a sequence S ′ =

〈v1 = v, v2, . . . , vk〉 of k elements, where vi ∈ V ′ for 1 ≤ i ≤ k such that vj+1 is added

into Q right after vj for 1 ≤ j < k, every vertex vl ∈ V (1 < l ≤ k) is reachable from v

by a path in T . Let S ′′ = 〈v1 = v, v2, . . . , vk+1〉 be a sequence of k + 1 elements, where

vi ∈ V ′ for 1 ≤ i ≤ k + 1 such that vj+1 is added into Q right after vj for 1 ≤ j < k + 1.

We show that v reaches every vertex in S ′′ by using edges inE ′. Consider the subsequence

S ′′sub of S ′′ that consists of the first k elements of S ′′, i.e., a prefix of S ′′ with length k. By

the induction hypothesis, every vertex vi ∈ S ′′sub is reachable from v by a path in T . Now,

we show that vk+1 is reachable from v by a path in T . We consider two cases.

Case (1) Assume that vk+1 is an atom vertex. Then, vk+1 is added into V ′ at

Line 11. So, by Line 10, there exists a vertex v′ such that (v′, vk+1) ∈ E ′. But, due to

Line 5, v′ must be added into Q prior to vk+1. That is, v′ ∈ S ′′sub. So, by the induction

hypothesis, v reaches v′ by a path P in T . Thus, by P and (v′, vk+1), vk+1 is reachable

from v by a path in T .

Case (2) Assume that vk+1 is a rule vertex. Then, vk+1 is added into V ′ at Line 16.

So, by Line 15, there exists a vertex v′ such that (v′, vk+1) ∈ E ′. But, due to Line 5, v′

must be added into Q prior to vk+1. That is, v′ ∈ S ′′sub. So, by the induction hypothesis, v

reaches v′ by a path P in T . Thus, by P and (v′, vk+1), vk+1 is reachable from v by a path

in T .

We now prove Proposition 10 that shows the soundness of Algorithm 8.

Proposition 10. Given a ground normal ASP program Π, an answer setX for Π, an atom

p in X , an assumption U in Assumption(Π, X), and an offline justification G = (V,E)

of p+ with respect to X and U , Algorithm 8 returns an explanation tree 〈V ′, E ′, l,Π, X〉
in the and-or explanation tree for p with respect to Π and X .

Proof of Proposition 10. We show what Algorithm 8 returns at Line 17, T ′ =

〈V ′, E ′, l,Π, X〉, is an explanation tree in the and-or explanation tree T =

〈VT , ET , l,Π, X〉 for p with respect to Π and X . That is, T ′ satisfies Conditions (i)–(iv)

in Definition 10. In the following, we study each condition separately.

(ii) To show that the root of 〈V ′, E ′〉 is a vertex whose label is p, we need to show three

cases hold; (1) there exists a vertex v in V ′ with label p, (2) every vertex v′ ∈ V ′ is

reachable from v by a path in T ′. (3) v has no in-going edge. In the following, we show

that each case holds.

Case (1) Observe that a vertex is in V ′ if and only if it is added into the queue Q.

Then, due to Lines 2 and 3, there exists a vertex v ∈ V ′ such that l(v) = p.

83

Case (2) The first element added into Q is an atom vertex v with l(v) = p, due

to Lines 2 and 3. Note that a vertex is in V ′ if and only if it is added into Q. Then, as v

is added into Q, by the observation, v ∈ V ′. Now, pick a vertex v′ ∈ V ′. By the same

observation, v′ is also added into Q. Since v is the first element queued in Q, v′ is queued

in V ′ later on. Thus, by Lemma 19, v′ is reachable from v by a path in T ′.

Case (3) Assume otherwise. That is, (v′, v) ∈ E ′ for some vertex v′ ∈ V ′. The

edges in E ′ are constructed at Lines 10 and 15. Then, as v is an atom vertex, v′ is a rule

vertex. Observe that a vertex is in V ′ if and only if it is added into Q. Then, since v′

is a rule vertex in V ′, it is added into Q at Line 16. So, due to Line 15, there exists an

atom vertex v′′ ∈ V ′ such that (v′′, v′) ∈ E ′. Thus, as (v′′, v′), (v′, v) ∈ E ′, there exists a

path 〈v′′, v′, v〉 in T ′. Then, by Corollary 3, l(v)+ is reachable from l(v′′)+ by a positive

path P in G. Moreover, as shown in Case (2) above, v′′ is reachable from v by a path

〈v1 = v, v2, . . . , vn = v′′〉 in T ′. So, by Corollary 3, l(v′′)+ is reachable from l(v)+ by a

positive path P ′ in G. Then, by P and P ′, a positive cycle exists in G. As every offline

justification is a safe offline e-graph due to Definition 24, we reach a contradiction.

(i) By Condition (ii) in Definition 10, we know that the root of 〈V ′, E ′〉 is a vertex v

with l(v) = p. Then, if we show that for every vertex v′ ∈ V ′, outE′(v′) is a subset of ET ,

then we can conclude that 〈V ′, E ′〉 is a subtree of 〈VT , ET 〉. Now, pick a vertex v′ ∈ V ′.
We consider two cases:

Case (1) Assume that v′ is an atom vertex. Take an out-going edge (v′, v′′) of

v′ in E ′. To show that (v′, v′′) ∈ ET , we need to show that l(v′′) ∈ ΠX,ancT ′ (v′′)(l(v
′)),

due to Condition (ii) in Definition 9. For that, we should show that H(l(v′′)) = l(v′),

B+(l(v′′)) ⊆ X\ancT ′(v′′), B−(l(v′′)) ∩ X = ∅ and X |= Bcard(l(v
′′)), due to (4.1)

in Section 4.1. As Π is a ground normal ASP program, it does not contain cardinality

expressions in its body. Thus, X |= Bcard(l(v
′′)) trivially. In Algorithm 8, out-going

edges of atom vertices are formed at Line 15. Then, due to Lines 13 and 14, H(l(v′′)) =

l(v′) and B(l(v′′)) = support(l(v′)+, G). Since G is an offline justification, G is an

offline e-graph by Definition 24, Then, by Definition 20, G is an (X,U)-based e-graph.

So, by Definition 19, support(l(v′)+, G) is an LCE of l(v′)+ with respect to (X,U), so

does B(l(v′′)). According to Definition 18, as B(l(v′′)) 6= {assume}, B+(l(v′′)) ⊆ X

and B−(l(v′′)) ∩ X = ∅. To complete this part, it remains to show that B+(l(v′′)) ⊆
X\ancT ′(v′′). Since B+(l(v′′)) ⊆ X , it is enough to show that B+(l(v′′)) ∩ ancT ′(v′′) =

∅. For that, assume B+(l(v′′)) ∩ ancT ′(v′′) 6= ∅. Let a ∈ B+(l(v′′)) ∩ ancT ′(v′′).

Since a ∈ B+(l(v′′)) and B(l(v′′)) = support(l(v′)+, G), (l(v′)+, a+,+) ∈ E holds.

As a ∈ ancT ′(v′′), there exists a vertex u ∈ V ′ where l(u) = a such that a path P =

〈v1 = u, . . . , vn = v′〉 in T ′ exists. Then, due to Corollary 3, l(v′)+ is reachable from a+

84

by a positive path in G. But, as (l(v′)+, a+,+) ∈ E, (a+, a+) ∈ E∗,+ holds, i.e., there is

a positive cycle in the offline justification, which is a contradiction, due to Definition 24.

Case (2) Assume that v′ is a rule vertex. Take an out-going edge (v′, v′′) of v′

in E ′. To show that (v′, v′′) ∈ ET , we need to show that l(v′′) ∈ B+(l(v′)), due to

Condition (iii) in Definition 9. Out-going edges of v′ are formed at Line 10 which is

reached only by satisfying the condition at Line 8. Then, due to Line 9, l(v′′) ∈ B+(l(v′)).

(iii) Observe that an element is added into Q once. Thus, we dequeue each atom vertex

only once. Then, due to Lines 12–16, every atom vertex v′ ∈ V ′ has exactly one out-going

edge, i.e., degE′(v
′) = 1.

(iv) Take a rule vertex v′ ∈ V ′. Its edges are formed at Line 10. Then, due to the

condition at Line 8 and the statement at Line 9, for every a ∈ B+(l(v′)), there exists a

vertex v′′ such that l(v′′) = a. Then, the condition holds.

Also, we can show that the and-or explanation tree exists for every atom in an

answer set.

Proposition 1. Let Π be a ground ASP program and X be an answer set for Π. For every

p be in X , the and-or explanation tree for p with respect to Π and X is not empty.

Proof of Proposition 1. By Proposition 9, we know that there exists an offline justification

of p+ with respect to X and X−\WF−Π . Then, by Proposition 10, there is an explanation

tree in the and-or explanation tree for p with respect to Π and X . That is, the and-or

explanation tree for p with respect to Π and X is not empty.

6.3.2 Proof of Proposition 11 – Soundness of Algorithm 9

Before proving Proposition 11, we provide the necessary lemmas.

Lemma 20. Let Π be a ground normal ASP program, X be an answer set for Π, p be an

atom inX , T = 〈V ′, E ′, l,Π, X〉 be an explanation tree in the and-or explanation tree for

p with respect to Π and X such that for every v, v′ ∈ V ′, l(v) = l(v′) if and only if v = v′,

(V,E) be the output of Algorithm 9 called with inputs Π, X, p and T , and 〈v1, v2, v3〉 be

a path in T such that l(v1)+ ∈ V . Then, (l(v1)+, l(v3)+,+) ∈ E and l(v3)+ ∈ V .

Proof of Lemma 20. All of the nodes, except the one with label >, are added to V at

Line 5 of Algorithm 9. As l(v1)+ ∈ V , v1 is extracted from the queue Q at Line 4. Then,

since 〈v1, v2, v3〉 is a path in T and every atom vertex in V ′ has exactly one child due to

85

Condition (iii) in Definition 10, v2 is obtained at Line 6. By the condition at Line 9, every

child of v2 is considered in the loop. Accordingly, at Line 10, the edge (l(v1)+, l(v3)+,+)

is added into E. Also, v3 is added into Q at Line 11. Then, due to the condition at Line 3

and the statements at Lines 4 and 5, l(v3)+ ∈ V .

Corollary 4. Let Π be a ground normal ASP program, X be an answer set for Π, p be an

atom inX , T = 〈V ′, E ′, l,Π, X〉 be an explanation tree in the and-or explanation tree for

p with respect to Π and X such that for every v, v′ ∈ V ′, l(v) = l(v′) if and only if v = v′,

(V,E) be the output of Algorithm 9 called with inputs Π, X, p and T , and 〈v1, v2, . . . , vn〉
be a path in T such that l(v1)+ ∈ V . Then, 〈l(v1)+, l(v3)+, l(v5)+, . . . , l(vn)+〉 is a path

in (V,E).

Proof of Corollary 4. Since 〈v1, v2, v3〉 is a path in T and l(v1)+ ∈ V , by Lemma 20,

(l(v1)+, l(v3)+,+) ∈ E and l(v3)+ ∈ V . Similarly, (l(v3)+, l(v5)+,+) ∈ E

and l(v5)+ ∈ V . Then, this incremental application of Lemma 20 leads that

〈l(v1)+, l(v3)+, l(v5)+, . . . , l(vn)+〉 is a path in (V,E).

We now prove Proposition 11 which shows that Algorithm 9 creates an offline justi-

fication of the given atom in the reduct of the given ASP program with respect to the given

answer set, provided that labels of the vertices of the given explanation tree are unique

labels, i.e., no two different vertices labels the same entity.

Proposition 11. Given a ground normal ASP program Π , an answer set X for Π, an

atom p in X , and an explanation tree 〈V ′, E ′, l,Π, X〉 in the and-or explanation tree for

p with respect to Π and X such that for every v, v′ ∈ V ′, l(v) = l(v′) if and only if v = v′,

Algorithm 9 returns an offline justification of p+ in ΠX with respect to X and ∅.

Proof of Proposition 11. To show that the output (V,E) of Algorithm 9 at Line 13 is an

offline justification of p+ in ΠX with respect to X and ∅, one needs to show that the

following conditions hold.

(1) ∅ ∈ Assumptions(ΠX , X);

(2) (V,E) is an e-graph for ΠX ;

(3) (V,E) is a (X, ∅)-based e-graph of p+;

(4) (V,E) is an offline e-graph of p+ with respect to X and ∅.

86

Condition (1) We show that ∅ ∈ Assumptions(ΠX , X). As ΠX is a positive program,

i.e., it does not contain any negative atoms, by Definition 21, T AΠX (X) = ∅. Also, due to

Definition 22, NR(ΠX , X) = ΠX . Then, by Definition 23, ∅ ∈ Assumptions(ΠX , X).

Condition (2) We show that (V,E) is an e-graph for ΠX . For that, (V,E) should satisfy

Conditions (i)− (iv) in Definition 16.

(i) Consider two cases.

Case 1. Take a node b+ ∈ V \{>}. It is added to V at Line 5. Then, there exists

an atom vertex v ∈ V ′ such that l(v) = b. By Condition (iii) in Definition 10, v has

exactly one child v′ in 〈V ′, E ′〉, which is a rule vertex. Then, depending on whether

l(v′) is a fact or not, an out-going edge of b+ in E is formed at Line 8 or 10. So, b+

is not a sink.

Case 2. Let l be >. Then, it is added to V at Line 12. The edges in E are formed

at Lines 8 and 10. Accordingly, l has no out-going edge, i.e., it is a sink.

Therefore, (V,E) is an e-graph for ΠX .

(ii) Due to Lines 8 and 10, clearly, for every b ∈ V there is no edges in the form of

(b, assume,−) and (b,⊥,−) in E.

(iii) Similar to (ii), for every b ∈ V there is no edges in the form of (b, assume,+) and

(b,>,+) in E.

(iv) Let b+ ∈ V such that (b+,>,+) ∈ E. As out-going edges are created at Lines 8

and 10, (b,>,+) must be formed at Line 8. Then, there exists an atom vertex v ∈ V ′

such that l(v) = b and the label of the child v′ of v is a fact (Line 7). Then, since the

condition at Line 9 is not satisfied, it is not possible that b+ has another out-going

edge.

Condition (3) We show that (V,E) is an (X, ∅)-based e-graph of p+. By Condition (1)

above, we know that (V,E) is an e-graph. To show that (V,E) is an (X, ∅)-based e-graph

of p+, we need to show that Conditions (i) and (ii) in Definition 19 hold.

(i) Take a node c+ ∈ V . It is added to V at Line 5. Then, there exists an atom vertex

v′ ∈ V ′ such that l(v′) = c. By Condition (ii) in Definition 10, we know that the

root of 〈V ′, E ′〉 is a vertex v where l(v) = p. So, v′ is reachable from v by a path

〈v1 = v, v2, v3, . . . , vn = v′〉 in 〈V ′, E ′〉. Also, as v is added into Q at Line 2, we

know that l(v)+ ∈ V by Line 5. Then, by Corollary 4, 〈l(v)+, l(v3)+, . . . , l(v′)+〉
is a path in (V,E). That is, c+ is reachable from p+.

87

(ii) Let G = (V,E). Take a node c+ ∈ V \{>}. Then, support(c+, G) =

{a | (c+, a+,+) ∈ E} or support(c+, G) = {>}.

Assume that support(c+, G) = {a | (c+, a+,+) ∈ E}. As c+ ∈ V \{>}, there

exists an atom vertex v ∈ V ′ such that l(v) = c. By Condition (iii) in Definition 10,

there exists exactly one child v′ of v in 〈V ′, E ′〉. Then, due to the condition at Line 9,

for each a ∈ support(c+, G), (v′, v′′) ∈ E ′ where v′′ ∈ V ′ with l(v′′) = a. Thus,

B+(l(v′)) = support(c+, G). By Condition (ii) in Definition 9, H(l(v′)) = c and

B+(l(v′)) ⊆ X . Hence, support(c+G) is an LCE of (X, ∅).

Condition (4) We show that (V,E) is an offline e-graph of p+ with respect to X and

∅. By Condition (3) above, we know that (V,E) is an (X, ∅)-based e-graph of p+. Then,

to show that (V,E) is an offline e-graph of p+ with respect to X and ∅, we need to show

that (V,E) satisfies Conditions (i) and (ii) in Definition 20. As edges in E are formed

at Lines 8 and 10, for every b ∈ V there are no edges in the form of (b, assume,+) and

(b, assume,−) in E. Then, conditions are trivially satisfied.

88

CHAPTER 7

DISCUSSION AND CONCLUSION

Other related work In [20], the authors integrate and annotate biomedical data from

public knowledge resources by using semantic methods, from which they build a hetero-

geneous semantic linked network in relation to drug-target pairs. Then, they develop a

statistical model called Semantic Linked Association Prediction (SLAP) which assess the

association of a drug-target pair by an association score that is obtained through the re-

lation of drug-target pairs with other linked objects in the network.1 Based on that, they

identify 157 drugs from 10 disease areas and calculate the association score of every drug

against 1683 human targets. This results in a drug similarity network where the similarity

of drugs are measured by using a 157× 1683 score matrix. Through the web interface of

SLAP, one can query the similar drugs to a given drug.

We performed experiments to compare the results of SLAP and our greedy method

on finding closest drugs to a given drug. We considered 6 drugs as shown in Table 7.1.

The second (resp., third) column contains the number of closest drugs found by the SLAP

(resp., by the greedy approach). When SLAP found less than 5 drugs for a query, we

used the greedy method to find 5 closest drugs for the same query. Otherwise, we used

the greedy method to find the same number of drugs as SLAP found. The last column

indicates the number of the same closest drugs found by the two methods. Note that

the common drugs are quite few, due to different distance measures. In that sense, both

approaches are complementary to each other.

The most recent work related to explanation generation in ASP are [14, 90, 47,

78, 74, 75], in the context of debugging ASP programs. Among those, [90] studies why

a program does not have an answer set, and [47, 74] studies why a set of atoms is not

an answer set. As we study the problem of explaining the reasons why atoms are in

the answer set, our work differs from those two work. In [14], similar to our work, the

question “why is an atom p in an answer set X for an ASP program Π” is studied. As

1http://chem2bio2rdf.org/slap

89

http://chem2bio2rdf.org/slap

Table 7.1: Comparison of SLAP and our greedy method for finding closest drugs.

Drugs # of drugs # of drugs # of common drugs
(SLAP) (the greedy approach)

Diazoxide 3 5 0
Diclofenac 15 15 0
Epinephrine 2 5 0
Methazolamide 26 26 2
Piroxicam 14 14 4
Tolmetin 15 15 4

an answer to this question, the authors of [14] provide the rule in Π that supports X

with respect to Π; whereas we compute shortest or k different explanations (as a tree

whose vertices are labeled by rules). The authors of [78] introduce the notion of an online

justification that aims to justify the truth values of atoms during the computation of an

answer set. In [75], a framework where the users can construct interpretations through an

interactive stepping process is introduced. As a result, [78] and [75] can be used together

to provide the users with justifications of the truth values of atoms during the construction

of interpretations interactively through stepping.

Contributions In this thesis, we have extended BIOQUERY-ASP to answer new types

of queries and studied explanation generation in the context of ASP. The main contribu-

tions can be summarized as follows.

• We have extended the grammar of BIOQUERY-CNL to construct new types of

queries, such as negative queries, queries about symptoms of diseases and simi-

larity/diversity queries about drugs. For similarity/diversity queries about drugs,

we have considered the distance measure based on the side effects of drugs.

• We have then modified the software system BIOQUERY-ASP to answer such queries.

We have also extended BIOQUERY-ASP to most recent biomedical knowledge re-

sources about drugs, genes, and diseases, such as PHARMGKB, DRUGBANK, BI-

OGRID, CTD, SIDER, DISEASEONTOLOGY and ORPHADATA.

• We have also studied queries that ask for the closest or most distant drugs to a given

drug. We have introduced naive/greedy methods to answer such queries using ASP.

We have also related the problem to the problem similar/diverse solutions studied

in [29].

• We have formally defined explanations in the context of ASP. We have also intro-

duced variations of explanations, such as “shortest explanations” and “k different

explanations”.

90

• We have proposed generic algorithms to generate explanations for biomedical queries.

In particular, we have presented algorithms to compute shortest or k different ex-

planations. We have analyzed termination, soundness and complexity of these al-

gorithms. In particular, the complexity of generating a shortest explanation for an

answer (in an answer set X) is O(|Π||X| × |BΠ|) where |Π| is the number of ASP

rules representing the query, the knowledge extracted from biomedical resources

and the rule layer, and |BΠ| is the number of atoms in Π. The complexity of gen-

erating k different explanations is O(k × |Π||X|+1 × |BΠ|). For k different expla-

nations, we have defined a distance measure based on the number of different ASP

rules between explanations.

• We have developed a computational tool EXPGEN-ASP which implements these

algorithms.

• We have embedded EXPGEN-ASP into BIOQUERY-ASP to generate explanations

regarding the answers of complex biomedical queries. We have proposed a method

to present explanations in a natural language.

• No existing biomedical query answering system is capable of generating explana-

tions; our methods have fulfilled this need in biomedical query answering.

• We have illustrated the applicability of our methods to answer complex biomedical

queries over large biomedical knowledge resources about drugs, genes, and dis-

eases, such as PHARMGKB, DRUGBANK, BIOGRID, CTD, SIDER, DISEASEON-

TOLOGY and ORPHADATA. The total number of the facts extracted from these

resources to answer queries is approximately 10.3 million.

It is important to emphasize here that our definitions and methods for explanation gen-

eration are general, so they can be applied to other applications (e.g., debugging, query

answering in other domains).

Parts of our studies are summarized in [40, 35, 77, 36].

Future work One line of future work is to further extend the grammar of BIOQUERY-

CNL*, and BIOQUERY-ASP to new types of queries. For instance, we may extend it to

answer queries in the following format:

What are the n closest drugs to the drug d ?

where n is a positive integer and d is a drug name.

Another line of future work is to investigate the use of another type of formalism

for representing and answering biomedical queries, like Description Logics (DL) [4, 56],

91

and extend BIOQUERY-ASP to answer queries using relevant DL reasoners, such as

FACT++ [94], HERMIT [84] and PELLET [86].

Also it will be good to generalize the notion of an explanation to generate expla-

nations for programs that contain choice expressions. In this way, explanations can be

generated for a wider range of queries.

92

APPENDIX A

SHORTEST EXPLANATIONS FOR
BIOMEDICAL QUERIES

Query: What are the drugs that treat the disease Asthma and that target the gene ADRB1?

Answer: Epinephrine

A shortest explanation:

what_be_drugs("Epinephrine") :-

drug_disease("Epinephrine","Asthma"),

drug_gene("Epinephrine","ADRB1").

drug_disease("Epinephrine","Asthma") :-

drug_disease_ctd("Epinephrine","Asthma").

drug_disease_ctd("Epinephrine","Asthma").

drug_gene("Epinephrine","ADRB1") :-

drug_gene_ctd("Epinephrine","ADRB1").

drug_gene_ctd("Epinephrine","ADRB1").

Explanation in natural language:

The disease Asthma is treated by the drug Epinephrine according to CTD.

The drug Epinephrine targets the gene ADRB1 according to CTD.

Figure A.1: A shortest explanation for Q1

93

Query: What are the side effects of the drugs that treat the disease Asthma and that target the

gene ADRB1?

Answer: hypertension

A shortest explanation:

what_be_sideeffects("hypertension") :-

drug_disease("Desipramine","Asthma"),

drug_sideeffect("Desipramine","hypertension"),

drug_gene("Desipramine","ADRB1").

drug_disease("Desipramine","Asthma") :-

drug_disease_ctd("Desipramine","Asthma").

drug_disease_ctd("Desipramine","Asthma").

drug_sideeffect("Desipramine","hypertension") :-

drug_sideeffect_sider("Desipramine","hypertension").

drug_sideeffect_sider("Desipramine","hypertension").

drug_gene("Desipramine","ADRB1") :-

drug_gene_pharmgkb("Desipramine","ADRB1").

drug_gene_pharmgkb("Desipramine","ADRB1").

Explanation in natural language:

The disease Asthma is treated by the drug Desipramine according to CTD.

The drug Desipramine has the side effect hypertension according to SIDER.

The drug Desipramine targets the gene ADRB1 according to PHARMGKB.

Figure A.2: A shortest explanation for Q2

94

Query: What are the genes that are targeted by the drug Epinephrine and that interact with the gene DLG4?

Answer: ADRB1

A shortest explanation:

what_be_genes("ADRB1") :-

drug_gene("Epinephrine","ADRB1"),

gene_gene("ADRB1","DLG4").

drug_gene("Epinephrine","ADRB1") :-

drug_gene_ctd("Epinephrine","ADRB1").

drug_gene_ctd("Epinephrine","ADRB1").

gene_gene("ADRB1","DLG4") :- gene_gene("DLG4","ADRB1").

gene_gene("DLG4","ADRB1") :-

gene_gene_biogrid("DLG4","ADRB1").

gene_gene_biogrid("DLG4","ADRB1").

Explanation in natural language:

The drug Epinephrine targets the gene ADRB1 according to CTD.

The gene DLG4 interacts with the gene ADRB1 according to BIOGRID.

Figure A.3: A shortest explanation for Q3

95

Query: What are the genes that interact with at least 3 genes and that are targeted by the drug Epinephrine?

Answer: GNAS

A shortest explanation:

what_be_genes("GNAS") :-

3#count{gene_gene("GNAS","VIPR1"), ... },

drug_gene("Epinephrine","GNAS"),

gene_name("GNAS").

drug_gene("Epinephrine","GNAS") :-

drug_gene_pharmgkb("Epinephrine","GNAS").

drug_gene_pharmgkb("Epinephrine","GNAS").

gene_name("GNAS") :- gene_gene("GNAS","FSCN1").

gene_gene("GNAS","FSCN1") :-

gene_gene_biogrid("GNAS","FSCN1").

gene_gene_biogrid("GNAS","FSCN1").

Explanation in natural language:

The drug Epinephrine targets the gene GNAS according to PHARMGKB.

The gene GNAS interacts with the gene FSCN1 according to BIOGRID.

Figure A.4: A shortest explanation for Q4

96

Query: What are the drugs that treat the disease Asthma or that react with the drug Epinephrine?

Answer: Azacitidine

A shortest explanation:

what_be_drugs("Azacitidine") :- drug_disease("Azacitidine","Asthma").

drug_disease("Azacitidine","Asthma") :-

drug_disease_ctd("Azacitidine","Asthma").

drug_disease_ctd("Azacitidine","Asthma").

Explanation in natural language:

The disease Asthma is treated by the drug Doxepin according to CTD.

Figure A.5: A shortest explanation for Q5

97

Query: What are the genes that are related to the gene ADRB1 via a gene-gene interaction chain of length
at most 3?
Answer: CD53

A shortest explanation:

what_be_genes("CD53") :- gene_reachable_from("CD53",3).

gene_reachable_from("CD53",3) :-

gene_gene("CD53","PRKCA"),

gene_reachable_from("PRKCA",2), ...

gene_gene("CD53","PRKCA") :- gene_gene_biogrid("CD53","PRKCA").

gene_gene_biogrid("CD53","PRKCA").

gene_reachable_from("PRKCA",2) :-

gene_gene("PRKCA","DLG4"),

gene_reachable_from("DLG4",1), ...

gene_gene("PRKCA","DLG4") :- gene_gene("DLG4","PRKCA").

gene_gene("DLG4","PRKCA") :- gene_gene_biogrid("DLG4","PRKCA").

gene_gene_biogrid("DLG4","PRKCA").

gene_reachable_from("DLG4",1) :-

gene_gene("DLG4","ADRB1"),

start_gene("ADRB1").

gene_gene("DLG4","ADRB1") :- gene_gene_biogrid("DLG4","ADRB1").

gene_gene_biogrid("DLG4","ADRB1").

start_gene("ADRB1").

Explanation in natural language:

The gene CD53 interacts with the gene PRKCA according to BIOGRID.

The gene DLG4 interacts with the gene PRKCA according to BIOGRID.

The gene DLG4 interacts with the gene ADRB1 according to BIOGRID.

The gene ADRB1 is the start gene.

The distance of the gene DLG4 from the start gene is 1.

The distance of the gene PRKCA from the start gene is 2.

The distance of the gene CD53 from the start gene is 3.

Figure A.6: A shortest explanation for Q8

98

Query: What are the genes that are related to the gene DLG4 via a gene-gene interaction chain of length
at most 3 and that are targeted by the drugs that belong to the category Hmg-coa reductase inhibitors?
Answer: ABCA1

A shortest explanation:

what_be_genes("ABCA1") :-

gene_reachable_from("ABCA1",2),

drug_gene("Pravastatin","ABCA1"),

drug_category("Pravastatin","Hmg-coa reductase inhibitors").

gene_reachable_from("ABCA1",2) :-

gene_gene("ABCA1","HGS"),

gene_reachable_from("HGS",1), ...

gene_gene("ABCA1","HGS") :- gene_gene_biogrid("ABCA1","HGS").

gene_gene_biogrid("ABCA1","HGS").

gene_reachable_from("HGS",1) :-

gene_gene("HGS","DLG4"),

start_gene("DLG4").

gene_gene("HGS","DLG4") :- gene_gene("DLG4","HGS").

gene_gene("DLG4","HGS") :- gene_gene_biogrid("DLG4","HGS").

gene_gene_biogrid("DLG4","HGS").

start_gene("DLG4").

drug_gene("Pravastatin","ABCA1") :- drug_gene_ctd("Pravastatin","ABCA1").

drug_gene_ctd("Pravastatin","ABCA1").

drug_category("Pravastatin","Hmg-coa reductase inhibitors"):-

drug_category_drugbank("Pravastatin","Hmg-coa reductase inhibitors").

drug_category_drugbank("Pravastatin","Hmg-coa reductase inhibitors").

Explanation in natural language:

The gene ABCA1 interacts with the gene HGS according to BIOGRID.

The gene DLG4 interacts with the gene HGS according to BIOGRID.

The gene DLG4 is the start gene.

The distance of the gene HGS from the start gene is 1.

The distance of the gene ABCA1 from the start gene is 2.

The drug Pravastatin targets the gene ABCA1 according to CTD.

The drug Pravastatin belongs to the category Hmg-coa reductase inhibitors according to DRUGBANK.

Figure A.7: A shortest explanation for Q10

99

Query: What are the drugs that treat the disease Depression and that do not target the gene ACYP1?

Answer: Fluoxetine

A shortest explanation:

what_be_drugs("Fluoxetine") :-

drug_disease("Fluoxetine","Depression"),

drug_name("Fluoxetine"),

not drug_gene("Fluoxetine","ACYP1").

drug_disease("Fluoxetine","Depression") :-

drug_disease_pharmgkb("Fluoxetine","Depression").

drug_disease_pharmgkb("Fluoxetine","Depression").

drug_name("Fluoxetine") :-

drug_sideeffect("Fluoxetine","abdominal pain").

drug_sideeffect("Fluoxetine","abdominal pain") :-

drug_sideeffect_sider("Fluoxetine","abdominal pain").

drug_sideeffect_sider("Fluoxetine","abdominal pain").

Explanation in natural language:

The disease Depression is treated by the drug Fluoxetine according to PHARMGKB.

The drug Fluoxetine has the side effect abdominal pain according to SIDER.

Figure A.8: A shortest explanation for Q11

100

Query: What are the symptoms of diseases that are treated by the drug Triadimefon?

Answer: chest tightness

A shortest explanation:

what_be_symptoms("chest tightness") :-

disease_symptom("Asthma","chest tightness"),

drug_disease("Triadimefon","Asthma").

disease_symptom("Asthma","chest tightness") :-

disease_symptom_do("Asthma","chest tightness").

disease_symptom_do("Asthma","chest tightness").

drug_disease("Triadimefon","Asthma") :-

drug_disease_ctd("Triadimefon","Asthma").

drug_disease_ctd("Triadimefon","Asthma").

Explanation in natural language:

The disease Asthma has the symptom chest tightness according to DISEASEONTOLOGY.

The disease Asthma is treated by the drug Triadimefon according to CTD.

Figure A.9: A shortest explanation for Q12

101

BIBLIOGRAPHY

[1] M. Alviano and W. Faber. Dynamic magic sets and super-coherent answer set pro-

grams. AI Commun., 24(2):125–145, 2011.

[2] M. Alviano, W. Faber, and N. Leone. Disjunctive ASP with functions: Decidable

queries and effective computation. TPLP, 10(4-6):497–512, 2010.

[3] K. R. Apt and R. N. Bol. Logic programming and negation: A survey. J. Log.

Program., 19/20:9–71, 1994.

[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.

The Description Logic Handbook. Cambridge University Press, 2007.

[5] M. Balduccini. Industrial-size scheduling with ASP + CP. In Proc. of LPNMR,

pages 284–296, 2011.

[6] M. Balduccini and M. Gelfond. Diagnostic reasoning with A-Prolog. TPLP, 3(4–

5):425–461, 2003.

[7] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, 2003.

[8] C. Baral, M. Gelfond, and J. N. Rushton. Probabilistic reasoning with answer sets.

TPLP, 9(1):57–144, 2009.

[9] C. Baral and C. Uyan. Declarative specification and solution of combinatorial auc-

tions using logic programming. In Proc. of LPNMR, pages 186–199, 2001.

[10] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiabil-

ity, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS press,

2009.

[11] O. Bodenreider, Z. H. Çoban, M. C. Doğanay, E. Erdem, and H. Koşucu. A prelim-

inary report on answering complex queries related to drug discovery using answer

set programming. In Proc. of ALPSWS, 2008.

102

[12] G. Boenn, M. Brain, M. D. Vos, and J. Fitch. Anton: Composing logic and logic

composing. In Proc. of LPNMR, pages 542–547, 2009.

[13] G. Boenn, M. Brain, M. D. Vos, and J. Fitch. Automatic music composition using

answer set programming. CoRR, abs/1006.4948, 2010.

[14] M. Brain and M. D. Vos. Debugging logic programs under the answer set semantics.

In Proc. of ASP, 2005.

[15] G. Brewka. Preferences, contexts and answer sets. In Proc. of ICLP, page 22, 2007.

[16] G. Brewka, T. Eiter, and M. Truszczynski. Answer set programming at a glance.

Commun. ACM, 54(12):92–103, 2011.

[17] D. Calvanese, T. Eiter, and M. Ortiz. Regular path queries in expressive description

logics with nominals. In Proc. of IJCAI, pages 714–720, 2009.

[18] M. Campillos, M. Kuhn, A. C. Gavin, L.J. Jensen, and P. Bork. Drug target identifi-

cation using side-effect similarity. Science, 321:263–266, 2009.

[19] D. Çakmak, E. Erdem, and H. Erdoğan. Computing weighted solutions in ASP:

Representation-based method vs. search-based method. Ann. Math. Artif. Intell.,

62(3-4):219–258, 2011.

[20] B. Chen, Y. Ding, and D.J. Wild. Assessing drug target association using semantic

linked data. PLoS Comput Biol, 8(7):e1002574, 07 2012.

[21] C. R. Chong and D. J. Sullivan. New uses for old drugs. Nature, 448:645–646, 2007.

[22] A.P. Davis, B.L. King, S. Mockus, C.G. Murphy, C. Saraceni-richards, M. Rosen-

stein, T. Wiegers, and C.J. Mattingly. The comparative toxicogenomics database:

update 2011. Nucleic Acids Res., 2011.

[23] J. P. Delgrande, T. Grote, and A. Hunter. A general approach to the verification of

cryptographic protocols using answer set programming. In Proc. of LPNMR, pages

355–367, 2009.

[24] J. Dix, T. Eiter, M. Fink, A. Polleres, and Y. Zhang. Monitoring agents using declar-

ative planning. Fundam. Inform., 57(2-4):345–370, 2003.

[25] C. Dodaro, M. Alviano, W. Faber, N. Leone, F. Ricca, and M. Sirianni. The birth of

a WASP: Preliminary report on a new ASP solver. In Proc. of CILC, pages 99–113,

2011.

103

[26] D. East and M. Truszczynski. More on wire routing with ASP. In Proc. of ASP,

2001.

[27] T. Eiter, G. Brewka, M. Dao-Tran, M. Fink, G. Ianni, and T. Krennwallner. Com-

bining nonmonotonic knowledge bases with external sources. In Proc. of FroCos,

pages 18–42, 2009.

[28] T. Eiter, E. Erdem, H. Erdoğan, and M. Fink. Finding similar or diverse solutions in

answer set programming. In Proc. of ICLP, pages 342–356, 2009.

[29] T. Eiter, E. Erdem, H. Erdoğan, and M. Fink. Finding similar/diverse solutions

in answer set programming. Theory and Practice of Logic Programming (TPLP),

2011. To appear.

[30] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The diagnosis frontend of the dlv

system. AI Communications, 12(1-2):99–111, 1999.

[31] T. Eiter, G.Ianni, R.Schindlauer, and H.Tompits. Effective integration of declarative

rules with external evaluations for Semantic-Web reasoning. In Proc. of ESWC,

2006.

[32] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-founded semantics

for description logic programs in the semantic web. In Proc. of RuleML, pages 81–

97, 2004.

[33] E. Erdem. PHYLO-ASP: Phylogenetic systematics with answer set programming.

In Proc. of LPNMR, pages 567–572, 2009.

[34] E. Erdem, O. Erdem, and F. Türe. HAPLO-ASP: Haplotype inference using answer

set programming. In Proc. of LPNMR, pages 573–578, 2009.

[35] E. Erdem, Y. Erdem, H. Erdoğan, and U. Öztok. Finding answers and generating

explanations for complex biomedical queries. In AAAI, 2011.

[36] E. Erdem, H. Erdoğan, and U. Öztok. BIOQUERY-ASP: Querying biomedical on-

tologies using answer set programming. In Proc. of RuleML2011@BRF Challenge,

2011.

[37] E. Erdem, V. Lifschitz, and D. Ringe. Temporal phylogenetic networks and logic

programming. Theory and Practice of Logic Programming, 6(5):539–558, 2006.

[38] E. Erdem, V. Lifschitz, and M. F. Wong. Wire routing and satisfiability planning. In

In Proceedings CL-2000, pages 822–836. Springer-Verlag. LNCS, 2000.

104

[39] E. Erdem and R. Yeniterzi. Transforming controlled natural language biomedical

queries into answer set programs. In Proc. of the Workshop on BioNLP, pages 117–

124, 2009.

[40] H. Erdoğan, U. Öztok, Y. Erdem, and E. Erdem. Querying biomedical ontologies in

natural language using answer set programming. In Proc. of the Third International

Workshop on Semantic Web Applications and Tools for Life Sciences (SWAT4LS’10),

2010.

[41] P. Ferraris and V. Lifschitz. Weight constraints as nested expressions. Theory and

Practice of Logic Programming, 5:45–74, 2005.

[42] R. Finkel, V. W. Marek, and M. Truszczynski. Constraint Lingo: A program for

solving logic puzzles and other tabular constraint problems, 2002.

[43] M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and P. Ve-

ber. Repair and prediction (under inconsistency) in large biological networks with

answer set programming. In Proc. of KR, 2010.

[44] M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances in gringo series 3. In

Proc of. LPNMR, volume 6645, pages 345–351, 2011.

[45] M. Gebser, R. Kaminski, and T. Schaub. aspcud: A Linux package configuration

tool based on answer set programming. In Proc. of LoCoCo, volume 65, pages

12–25, 2011.

[46] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven

answer set solver. In Proc. of LPNMR, pages 260–265, 2007.

[47] M. Gebser, J. Pührer, T. Schaub, and H. Tompits. A meta-programming technique

for debugging answer-set programs. In Proc. of AAAI, 2008.

[48] M. Gebser, T. Schaub, S. Thiele, and P. Veber. Detecting inconsistencies in large

biological networks with answer set programming. Theory and Practice of Logic

Programming, 11(2):1–38, 2011.

[49] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general

logic programs. J. ACM, 38(3):620–650, 1991.

[50] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In

Proc. of ICLP, pages 1070–1080. MIT Press, 1988.

[51] E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on

propositional satisfiability. Automated Reasoning, 36:345–377, 2006.

105

[52] T. Gower. Born again. Proto Magazine, Summer:14–19, 2009.

[53] K. Heljanko and I. Niemela. Bounded LTL model checking with stable models. In

Proceedings of the 6th International Conference on Logic Programming and Non-

monotonic Reasoning, pages 200–212. Springer-Verlag, 2003.

[54] K. Inoue and C. Sakama. Abductive framework for nonmonotonic theory change.

In IJCAI, pages 204–210, 1995.

[55] C. Knox, V. Law, T. Jewison, P. Liu, S. Ly, A. Frolkis, A. Pon, K. Banco, C. Mak,

V. Neveu, Y. Djoumbou, R. Elsner, A.C. Guo, and D.S. Wishart. Drugbank 3.0: a

comprehensive resource for ‘omics‘ research on drugs. Nucleic Acids Res., 2011.

[56] Markus Krötzsch, Frantisek Simancik, and Ian Horrocks. A description logic primer.

CoRR, abs/1201.4089, 2012.

[57] M. Kuhn, M. Campillos, I. Letunic, L.J. Jensen, and P. Bork. A side effect resource

to capture phenotypic effects of drugs. Mol Syst Biol., 2010.

[58] C. Lefèvre and P. Nicolas. The first version of a new ASP solver : ASPeRiX. In

Proc. of LPNMR, pages 522–527, 2009.

[59] N. Leone, G. Greco, G. Ianni, V. Lio, G. Terracina, T. Eiter, W. Faber, M. Fink,

G. Gottlob, R. Rosati, D. Lembo, M. Lenzerini, M. Ruzzi, E. Kalka, B. Nowicki,

and W. Staniszkis. The INFOMIX system for advanced integration of incomplete

and inconsistent data. In Proc. of SIGMOD, pages 915–917, 2005.

[60] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The

DLV system for knowledge representation and reasoning. ACM Trans. Comput.

Logic, 7:499–562, 2006.

[61] Y. Lierler. Abstract answer set solvers with backjumping and learning. TPLP, 11(2-

3):135–169, 2011.

[62] V. Lifschitz. Answer set programming and plan generation. Artif. Intell., 138(1-

2):39–54, 2002.

[63] V. Lifschitz. What is answer set programming? In Proc. of AAAI, pages 1594–1597.

MIT Press, 2008.

[64] F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT

solvers. Artif. Intell., 157:115–137, 2004.

106

[65] L. Liu and M. Truszczynski. Pbmodels - software to compute stable models by

pseudoboolean solvers. In Proc. of LPNMR, pages 410–415, 2005.

[66] D. V. Marina and D Vermeir. Logic programming agents and game theory, 2001.

[67] E.M. McDonagh, M. Whirl-Carrillo, Y. Garten, Altman R.B., and T.E. Klein. From

pharmacogenomic knowledge acquisition to clinical applications: the PharmGKB

as a clinical pharmacogenomic biomarker resource. Biomark Med., pages 795–806,

2011.

[68] A. Mileo, D. Merico, and R. Bisiani. Wireless sensor networks supporting context-

aware reasoning in assisted living. In Proc. of PETRA, pages 1–2, 2008.

[69] A. Mileo, D. Merico, and R. Bisiani. Non-monotonic reasoning supporting wireless

sensor networks for intelligent monitoring: The SINDI system. In Proc. of LPNMR,

pages 585–590, 2009.

[70] A. Mileo, T. Schaub, D. Merico, and R. Bisiani. Knowledge-based multi-criteria

optimization to support indoor positioning. AMAI, 62(3-4):345–370, 2011.

[71] M.Manna, E. Oro, M. Ruffolo, M. Alviano, and N. Leone. The HiLeX system for

semantic information extraction. T. Large-Scale Data- and Knowledge-Centered

Systems, 5:91–125, 2012.

[72] I. Niemelä and P. Simons. Smodels - an implementation of the stable model and

well-founded semantics for normal lp. In Proc. of LPNMR, pages 421–430, 1997.

[73] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Prolog

decision support system for the space shuttle. In Proc. of PADL, pages 169–183.

Springer, 2001.

[74] J. Oetsch, J. Pührer, and H. Tompits. Catching the ouroboros: On debugging non-

ground answer-set programs. TPLP, 10(4-6):513–529, 2010.

[75] J. Oetsch, J. Pührer, and H. Tompits. Stepping through an answer-set program. In

LPNMR, pages 134–147, 2011.

[76] M. Ostrowski, G. Flouris, T. Schaub, and G. Antoniou. Evolution of ontologies

using ASP. In Proc. of ICLP, pages 16–27, 2011.

[77] U. Öztok and E. Erdem. Generating explanations for complex biomedical queries.

In AAAI, 2011.

107

[78] E. Pontelli, T. C. Son, and O. El-Khatib. Justifications for logic programs under

answer set semantics. Theory and Practice of Logic Programming, pages 1–56,

2009.

[79] F. Ricca, A. Dimasi, G. Grasso, S. M. Ielpa, S. Iiritano, M. Manna, and N. Leone. A

logic-based system for e-tourism. Fundam. Inform., 105(1-2):35–55, 2010.

[80] F. Ricca, G. Grasso, M. Alviano, M. Manna, V. Lio, S. Iiritano, and N. Leone.

Team-building with answer set programming in the Gioia-Tauro seaport. Theory

and Practice of Logic Programming, 12, 2012.

[81] C. Sakama. Learning by answer sets. In Proc. of AAAI Spring Symposium:Answer

Set Programming, 2001.

[82] T. Schaub and S. Thiele. Metabolic network expansion with answer set program-

ming. In Proc. of ICLP, pages 312–326, 2009.

[83] T. Schaub and K. Wang. A comparative study of logic programs with preference. In

Proc. of IJCAI, pages 597–602, 2001.

[84] R. Shearer, B. Motik, and I. Horrocks. HermiT: A highly-efficient OWL reasoner.

In OWLED, 2008.

[85] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable

model semantics. Artificial Intelligence, 138:181–234, 2002.

[86] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical

OWL-DL reasoner. J. Web Sem., 5(2):51–53, 2007.

[87] T. C. Son, E. Pontelli, and C. Sakama. Logic programming for multiagent planning

with negotiation. In Proc. of ICLP, pages 99–114, 2009.

[88] T. C. Son and C. Sakama. Reasoning and planning with cooperative actions for

multiagents using answer set programming. In Proc. of DALT, pages 208–227, 2009.

[89] C. Stark, B.J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers.

BioGRID: a general repository for interaction datasets. Nucleic Acids Res., 2011.

[90] T. Syrjanen. Debugging inconsistent answer set programs. In Proc. of NMR, 2006.

[91] S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh, M.C. Rousset, and

R. A. Schmidt, editors. Reasoning Web. Semantic Technologies for Information Sys-

tems, 5th International Summer School 2009, Brixen-Bressanone, Italy, August 30 -

108

September 4, 2009, Tutorial Lectures, volume 5689 of Lecture Notes in Computer

Science. Springer, 2009.

[92] J. Tiihonen, T. Soininen, and R. Sulonen. A practical tool for mass-customising

configurable products. In Proc. of the International Conference on Engineering

Design, pages 1290–1299, 2003.

[93] N. Tran and C. Baral. Reasoning about triggered actions in AnsProlog and its appli-

cation to molecular interactions in cells. In Proc. of KR, pages 554–564, 2004.

[94] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System description.

In IJCAR, pages 292–297, 2006.

[95] F. Türe and E. Erdem. Efficient haplotype inference with answer set programming.

In Proc. of AAAI, pages 1834–1835, 2008.

[96] M. D. Vos, T. Crick, J. Padget, M. Brain, O. Cliffe, and J. Needham. A multi-

agent platform using ordered choice logic programming. In In Declarative Agent

Languages and Technologies (DALT’05), pages 72–88, 2005.

[97] M. D. Vos and D. Vermeir. Extending answer sets for logic programming agents.

Ann. Math. Artif. Intell., 42(1-3):103–139, 2004.

109

	INTRODUCTION
	Contributions of the Thesis
	Thesis Outline

	ANSWER SET PROGRAMMING
	Programs
	Generate-And-Test Representation Methodology with Special ASP Constructs
	Presenting Programs to Answer Set Solvers
	Example: Graph Coloring Problem

	EXTENDING BioQuery-ASP TO ANSWER NEW QUERIES
	New Types of Biomedical Queries
	Negation in Queries
	Queries about Symptoms of Diseases
	Similarity/Diversity of Drugs
	Finding Close/Distant Drugs to a Given Drug

	New Biomedical Knowledge Resources
	New Experiments

	EXPLANATION GENERATION IN ASP
	Explanations in ASP
	Generating Shortest Explanations
	Generating k Different Explanations
	Presenting Explanations in a Natural Language
	Experiments with Biomedical Queries
	Implementation of Explanation Generation Algorithms

	RELATING EXPLANATIONS TO JUSTIFICATIONS
	Offline Justifications
	From Justifications to Explanations
	From Explanations to Justifications

	PROOFS
	Generating Shortest Explanations
	Proof of Proposition 2 – Termination of Algorithm 2
	Proof of Proposition 3 – Soundness of Algorithm 2
	Proof of Proposition 4 – Complexity of Algorithm 2

	Generating k Different Explanations
	Proof of Proposition 5 – Termination of Algorithm 6
	Proof of Proposition 6 – Soundness of Algorithm 6
	Some Properties of Algorithm 6
	Proof of Proposition 8 – Complexity of Algorithm 6

	Relations between Explanations and Justifications
	Proof of Proposition 10 – Soundness of Algorithm 8
	Proof of Proposition 11 – Soundness of Algorithm 9

	DISCUSSION AND CONCLUSION
	SHORTEST EXPLANATIONS FOR BIOMEDICAL QUERIES
	BIBLIOGRAPHY

