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Abstract: In this paper, we study risk-averse models for multicriteria optimization problems under uncertainty. We

use a weighted sum-based scalarization and take a robust approach by considering a set of scalarization vectors to address

the ambiguity and inconsistency in the relative weights of each criterion. We model the risk aversion of the decision

makers via the concept of multivariate conditional value-at-risk (CVaR). First, we introduce a model that optimizes the

worst-case multivariate CVaR, and develop a finitely convergent delayed cut generation algorithm for finite probability

spaces. We also show that this model can be reformulated as a compact linear program under certain assumptions. In

addition, for the cut generation problem, which is in general a mixed-integer program, we give a stronger formulation

for the equiprobable case. Next, we observe that similar polyhedral enhancements are also useful for a related class

of multivariate CVaR-constrained optimization problems that has attracted attention recently. In our computational

study, we use a budget allocation application to compare the decisions from our proposed maximin type risk-averse

model with those from its risk-neutral version and the multivariate CVaR-constrained model. Finally, we illustrate the

effectiveness of the proposed solution methods for both classes of models.

Keywords: multicriteria optimization; stochastic programming; robust optimization; conditional value-at-risk; cut gen-

eration; mixed-integer programming; bilinear programming; McCormick envelopes

1. Introduction For many decision making problems under uncertainty, it may be essential to consider

multiple possibly conflicting stochastic performance criteria. Stochastic multicriteria decision making problems

arise in a wide range of areas, including financial portfolio optimization, humanitarian relief network design,

production scheduling, and homeland security budget allocation. In such problems, we can represent the

stochastic outcomes of interest by a random vector, each dimension of which corresponds to a particular decision

criterion. Then, comparing the potential decisions requires specifying preference relations among random

vectors. It is also crucial to compare the random outcomes based on the decision makers’ risk preferences.

These concerns call for optimization models that incorporate multivariate risk-averse preference relations into

constraints and/or objectives. The class of models, which incorporates the multivariate risk preferences into the

constraints using benchmarking relations, has received some attention in the recent literature. Alternatively,

in this study, we introduce a new class of models with an objective of optimizing a multivariate risk measure.

First, we review the existing literature on the risk-averse multicriteria optimization models that feature

benchmarking preference relations. In this line of research initiated by Dentcheva and Ruszczyński (2009),

two types of benchmarking relations are modeled as constraints: multivariate risk-averse relations based on

second-order stochastic dominance (SSD) and conditional value-at-risk (CVaR). These models assume that a

benchmark random outcome vector is available and extend univariate (scalar-based) preference rules to the

multivariate (vector-based) case by using linear scalarization functions. The linear scalarization corresponds to

the weighted-sum approach, which is widely used in multicriteria decision making (Steuer, 1986; Ehrgott, 2005);

the scalarization coefficients are interpreted as the weights representing the relative subjective importance of
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each decision criterion.

In many decision making situations, especially those involving multiple decision makers, it can be difficult

to determine a single weight vector. There are many alternative methods to elicit relative weights of each

criterion, including multiattribute weighting, swing weighting and the analytic hierarchy process (for a review,

see von Winterfeldt and Edwards, 1986; Saaty, 2000). However, the relative weights of even a single expert

could be very different depending on which elicitation approach is used as shown in Schoemaker and Waid

(1982) and Borcherding et al. (1991). The problem of choosing a single weight vector is further exacerbated if

multiple experts are involved. To address these ambiguity and inconsistency issues, a so-called robust approach

considers a collection of weight vectors within a prescribed scalarization set instead of a single weight vector.

Various scalarization sets are considered in the literature such as the set of all non-negative coefficients, arbi-

trary polyhedral and arbitrary convex sets (see, e.g., Dentcheva and Ruszczyński, 2009; Homem-de-Mello and

Mehrotra, 2009; Hu et al., 2012, respectively).

While the majority of existing studies focuses on enforcing multivariate SSD relations (see, e.g., Dentcheva

and Ruszczyński, 2009; Homem-de-Mello and Mehrotra, 2009; Hu et al., 2012; Dentcheva and Wolfhagen,

2013), this modeling approach can be overly conservative in practice and leads to very demanding constraints

that sometimes cannot be satisfied. For example, due to this infeasibility issue, Hu et al. (2011) solve such an

optimization problem with relaxed SSD constraints. As an alternative, Noyan and Rudolf (2013) propose to use

a multivariate preference relation based on CVaR; their approach is motivated by the fact that the univariate

SSD relation is equivalent to a continuum of CVaR inequalities (Dentcheva and Ruszczyński, 2006). The

authors consider polyhedral scalarization sets and show that their CVaR-based methodology can be extended

to optimization problems featuring benchmarking constraints based on a wider class of coherent risk measures.

In our study, we follow the line of research of Noyan and Rudolf (2013), which provides sufficient flexibility to

obtain feasible problem formulations and capture a wide range of risk preferences, including risk-neutral and

worst-case approaches.

Optimization models under both types of multivariate preference relations are challenging, since they re-

quire introducing infinitely many univariate risk constraints associated with all possible weight vectors in the

scalarization set. For polyhedral scalarization sets, Homem-de-Mello and Mehrotra (2009) and Noyan and

Rudolf (2013) show that enforcing the corresponding univariate risk constraint for a finite (exponential) subset

of weight vectors is sufficient to model the multivariate SSD and CVaR relations, respectively. These finite rep-

resentation results allow them to develop finitely convergent delayed cut generation algorithms, where each cut

is obtained by solving a mixed-integer programming (MIP) problem. Since solving these MIP formulations is

the main computational bottleneck, Küçükyavuz and Noyan (2015) develop computationally effective solution

methods for the cut generation problems arising in both types of optimization models.

As outlined earlier, the existing literature on risk-averse multicriteria optimization problems mainly focuses

on multivariate risk-constrained models, where a benchmark random vector is available and the goal is to find a

solution with a multivariate outcome vector that is preferable to the benchmark (with respect to the multivari-

ate SSD or CVaR relation). In this paper, we propose a novel model which does not require a given benchmark

and aims to optimize the risk associated with the decision-based random vector of outcomes. In this sense, the

problem we consider can be seen as a risk-averse stochastic multiobjective optimization. There are, in general,

two types of approaches to solve stochastic multiobjective problems: 1) to eliminate the stochastic nature of
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the problem by replacing each random objective function with one of its summary statistics; 2) to eliminate the

multiobjective structure of the problem by aggregating the multiple objectives and obtaining a single random

objective function. For recent surveys on these two types of approaches we refer to Gutjahr and Pichler (2013)

and Ben Abdelaziz (2012). The first (non-aggregation based) approach results in a traditional deterministic

multiobjective problem and it requires the identification of multiple (typically exponential) non-dominated

solutions in the efficient frontier. Ultimately, however, the decision makers need to specify the weights for each

criterion to choose among the non-dominated solutions. In the second (aggregation-based) approach, one can

consider a weighted sum of the multiple objectives and solve the resulting stochastic problem to obtain a solu-

tion. However, the weights to be used in either approach can be ambiguous and inconsistent due to the presence

of conflicting criteria and lack of consensus among multiple experts. Alternatively, in the second approach of

aggregating multiple objectives into one, one can use an aggregated (but non-scalarized) single objective using

stochastic goal programming. This approach considers random and/or deterministic goals (benchmark values)

for the different objectives and constructs a single objective based on a function of the deviations from the

goals. However, a benchmark goal may not be immediately available in all practical applications. For problems

where the relative importance of the criteria is ambiguous and a benchmark performance vector is not available,

we propose to focus on the worst-case CVaR with respect to the prescribed scalarization set and introduce a

new notion of CVaR robustness in the context of stochastic multicriteria optimization.

In a related line of work, to address the ambiguity and inconsistency in the weights used to scalarize the

multiple criteria in the objective function of a deterministic optimization problem, Ogryczak (2010) and Hu and

Mehrotra (2012) consider minimax type robustness with respect to a given weight set. Note that such existing

robust weighted-sum models assume that either the problem parameters are deterministic or the decision makers

are risk-neutral. For an overview on minimax robustness for multiobjective optimization problems we refer to

Ehrgott et al. (2014). However, some multicriteria decision-making problems of recent interest, such as disaster

preparedness (Hu and Mehrotra, 2012) and homeland security (Homem-de-Mello and Mehrotra, 2009), involve

uncertain events with small probabilities but dire consequences. Therefore, in the first part of this paper, we

incorporate risk aversion into multicriteria optimization models using the concept of multivariate CVaR. We

propose a maximin type model optimizing the worst-case CVaR over a scalarization set; this approach leads to

a new type of CVaR robustness. Note that our risk-averse robust weighted-sum model features the risk-neutral

version as a special case. We analyze the properties of the worst-case CVaR as a risk measure and show that an

optimal solution of such a problem is not dominated in an appropriate stochastic sense. Unlike the risk-neutral

version with a polyhedral weight set, in the risk-averse case, the inner minimization problem involves a concave

minimization. Hence, the problem in general can no longer be solved as a compact linear program (as in Hu

and Mehrotra, 2012). Therefore, we propose a delayed cut generation-based solution algorithm and show that

the cut generation problem can be modeled as a bilinear program or a mixed-integer program. We strengthen

the resulting formulations using the reformulation-linearization technique (RLT) (Sherali and Adams, 1994;

Sherali et al., 1998). We observe that the cut generation subproblems in the proposed algorithm have similar

structure with those encountered in solving the related multivariate CVaR-constrained optimization model.

Therefore, in the second part of the paper, we show that the RLT technique can be applied to obtain stronger

and computationally more efficient formulations for the cut generation problems arising in optimization under

multivariate CVaR constraints, especially for the equal probability case.

In the recent literature, another type of CVaR robustness appears in the univariate case stemming from the
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distributional robustness. Zhu and Fukushima (2009) and Wozabal (2014) consider optimizing the worst-case

CVaR and a wider class of convex risk measures (of a scalar-based random variable), respectively. However,

the authors assume that there is ambiguity in the underlying probability distribution and express the worst-

case with respect to a specified set of distributions. In contrast, we assume that the underlying probability

distribution is known but there is ambiguity in the scalarization vector (i.e., relative importance of multiple

criteria) within a polyhedral set; this leads to a new type of worst-case multivariate CVaR measure. For robust

optimization in general the interested reader may refer to Ben-Tal and Nemirovski (2002), Ben-Tal et al. (2009)

and Bertsimas et al. (2011).

The rest of the paper is organized as follows. In Section 2, we introduce the new worst-case CVaR opti-

mization model and provide some analytical results to highlight the appropriateness of the proposed modeling

approach. This section also presents a cut generation algorithm and effective mathematical programming for-

mulations of the original optimization problem and the corresponding cut generation problems for some special

cases. We describe how to apply some of these algorithmic features to the multivariate CVaR-constrained mod-

els in Section 3. Section 4 gives a hybrid model that includes both the multivariate CVaR-based constraints

and objective. We give a unified methodology that solves the hybrid model, integrating the algorithmic de-

velopments in Sections 2 and 3. Section 5 is dedicated to the computational study, while Section 6 contains

concluding remarks.

2. Worst-case CVaR Optimization Model In our study, we consider a multicriteria decision making

problem where d random performance measures of interest associated with the decision variable z are rep-

resented by the random outcome vector G(z) = (G1(z), . . . , Gd(z)). All random variables in this paper are

assumed to be defined on some finite probability spaces; we simplify our exposition accordingly. Let (Ω, 2Ω ,P)

be a finite probability space with Ω = {ω1, . . . , ωn} and P(ωi) = pi. In particular, denoting the set of feasible

decisions by Z, the random outcomes are determined according to the outcome mapping G : Z ×Ω → R
d,

and the random outcome vector G(z) : Ω → R
d is defined by G(z)(ω) = G(z, ω) for all ω ∈ Ω. For a

given elementary event ωi the mapping gi : Z → R
d is defined by gi(z) = G(z, ωi). Let C ⊂ R

d
+ be a

polyhedron of scalarization vectors, each component of which corresponds to the relative importance of each

criterion. We naturally assume, without loss of generality, that C is a subset of the unit simplex, Cf , i.e.,

C ⊆ Cf := {c ∈ Rd+ |
∑
i∈[d] ci = 1}.

Before proceeding to give our definitions and models, we need to make a note of some conventions used

throughout this paper, and recall a basic definition. The set of the first n positive integers is denoted by

[n] = {1, . . . , n}, while the positive part of a number x ∈ R is denoted by [x]+ = max(x, 0). We assume

that larger values of random variables are preferred. We quantify the risk associated with a random variable

via a risk measure (specifically, CVaR) where higher values correspond to less risky random outcomes. In this

context, risk measures are often referred to as acceptability functionals. Our presentation follows along the lines

of Pflug and Römisch (2007) and Noyan and Rudolf (2013). Recall that for a univariate random variable X

with (not necessarily distinct) realizations x1, . . . , xn and corresponding probabilities p1, . . . , pn, the conditional

value-at-risk at confidence level α ∈ (0, 1] is given by (Rockafellar and Uryasev, 2000)

CVaRα(X) = max

{
η − 1

α
E ([η −X]+) : η ∈ R

}
(1)

= max{η − 1

α

∑
i∈[n]

piwi : wi ≥ η − xi, ∀ i ∈ [n], w ∈ Rn+} (2)
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= max
k∈[n]

xk − 1

α

∑
i∈[n]

pi[xk − xi]+

 , (3)

where the last equality follows from the well known result that the maximum in definition (2) is attained at

the α-quantile, which is known as the value-at-risk (VaR) at confidence level α (denoted by VaRα(X)) and

that VaRα(X) = xk for at least one k ∈ [n]. For risk-averse decision makers typical choices for the confidence

level are small values such as α = 0.05. Note that CVaRα(X) is concave in X.

The significance of modeling robustness against the ambiguity and inconsistency in relative weights motivates

us to introduce a new robust optimization model for the stochastic multicriteria decision making problem of

interest. Furthermore, to model the risk aversion of the decision makers, we use CVaR as the acceptability

functional. In particular, we focus on the worst-case CVaR with respect to the specified scalarization set C,

and introduce the following new robust CVaR measure.

Definition 2.1 (Worst-Case Multivariate Polyhedral CVaR) Let X be a d-dimensional random vec-

tor and C ⊆ Cf a set of scalarization vectors. The worst-case multivariate polyhedral CVaR (WCVaR) at

confidence level α ∈ (0, 1] with respect to C is defined as

WCVaRC,α(X) = min
c∈C

CVaRα(c>X). (4)

WCVaRC,α can be considered as a new multivariate risk measure. Following a risk-averse approach, we propose

to optimize WCVaRC,α for a given confidence level α ∈ (0, 1], and introduce a new class of robust multicriteria

optimization problems of the general form

(W-CVaR) : max
z∈Z

min
c∈C

CVaRα(c>G(z)). (5)

We note that our risk-averse W-CVaR problem features the risk-neutral version, proposed in Hu and Mehro-

tra (2012), as a special case when α = 1. Another special case appears in the literature (Ehrgott, 2005) for

a sufficiently small value of α (corresponding to the worst-case); it optimizes the worst value of a particular

weighted sum over the set of scenarios. This robust version of the weighted sum scalarization problem is clearly

a special case of W-CVaR if we assume that all scenarios are equally likely, α = 1/n, and there is a single

scalarization vector in the scalarization set C.

In the remainder of this section, we first provide some analytical results to highlight the appropriateness of

the proposed model (Section 2.1). Then, in Section 2.2, we develop solution methods to solve this new class of

problems.

2.1 Coherence and Stochastic Pareto Optimality We first analyze the properties of WCVaRC,α as

a risk measure and then show that an optimal solution of W-CVaR is Pareto optimal according to a certain

stochastic dominance relation.

Desirable properties of risk measures have been axiomatized starting with the work of Artzner et al. (1999),

in which the concept of coherent risk measures for scalar-valued random variables is introduced. There are

several approaches to define the concept of coherency for the vector-valued random variables (see, e.g., Jouini

et al., 2004; Burgert and Röschendorf, 2006; Rüschendorf, 2013; Hamel et al., 2013). For example, Hamel et al.

(2013) introduce set-valued conditional value-at-risk for multivariate random variables; using such set-valued

functionals as risk measures is appropriate for financial market models with transaction costs (see, e.g., Jouini
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et al., 2004). Our approach is more aligned with the studies which consider multivariate risk measures that

map a random vector to a scalar value; in particular, we consider the following definition of coherence in the

multivariate case (Ekeland and Schachermayer, 2011).

We say that a functional ρ mapping a d-dimensional random vector to a real number is coherent in dimension

d, if ρ has the following properties (for all d-dimensional random vectors V,V1,V2):

• Normalized : ρ(0) = 0.

• Monotone: V1 ≤ V2 ⇒ ρ(V1) ≤ ρ(V2).

• Positive homogeneous: ρ(λV) = λρ(V) for all λ > 0.

• Superadditive: ρ(V1 + V2) ≥ ρ(V1) + ρ(V2).

• Translation invariant (equivariant): ρ(V + λe) = ρ(V) + λ for all λ ∈ R.

The constant vector e denotes the vector of ones (1, 1, . . . , 1). It is easy to see that for d = 1 the definition

coincides with the notion of coherence for scalar-valued random variables (Artzner et al., 1999); we remind the

reader that we provide the definition for acceptability functionals, along the lines of Pflug and Römisch (2007).

In monotonicity property we consider the usual component-wise ordering; i.e., V1 ≤ V2 if V1(j) ≤ V2(j)

for all j ∈ [d]. One can also consider a stronger notion of translation invariance; for example, Burgert and

Röschendorf (2006) state it as follows: ρ(V + λej) = ρ(V) + λ for all j ∈ [d] and λ ∈ R, where ej is the

standard basis vector (1 in the jth component, 0 elsewhere).

The next result indicates that the proposed risk measure is of particular importance since it satisfies the

desirable properties axiomatized in the above definition of coherence.

Proposition 2.1 Consider a one-dimensional mapping ρ and a scalarization set C ⊆ Cf , and let ρC(X) =

min
c∈C

ρ(c>X) for a d-dimensional random vector X. If ρ is a coherent acceptability functional (-ρ is a coherent

risk measure), then ρC(X) denoting the worst-case functional in dimension d (with respect to C) is also coherent.

Proof. It is easy to verify that ρC is normalized, monotone, and positive homogeneous. To show that ρC

is superadditive, let us consider two d-dimensional random vectors V1 and V2. Then, by the supperadditivity

of ρ and the minimum operator, we have ρC(V1 + V2) = min
c∈C

ρ(c>(V1 + V2)) ≥ min
c∈C

(ρ(c>V1) + ρ(c>V2)) ≥
min
c∈C

ρ(c>V1)+min
c∈C

ρ(c>V2) = ρC(V1)+ρC(V2). The translation invariance of ρC follows from the assumptions

that
∑
j∈[d] cj = 1 and ρ is translation invariant: for any constant λ, ρC(V + λe) = min

c∈C
ρ(c>(V + λe)) =

min
c∈C

ρ(c>V + λ) = min
c∈C

ρ(c>V) + λ = ρC(V) + λ. �

We next discuss the Pareto efficiency/optimality of the solutions of W-CVaR. For deterministic multiobjec-

tive optimization problems, the concept of Pareto optimality is well-known and it defines a dominance relation

to compare the solutions with respect to the multiple criteria. It is natural to consider the “non-dominated”

solutions as potentially good solutions. Here, we recall two widely-used Pareto optimality concepts:

• A point z∗ ∈ Z is called Pareto optimal if there exists no point z ∈ Z such that

Gj(z) ≥ Gj(z∗) for all j ∈ [d] and Gj(z) > Gj(z
∗) for at least one index j ∈ [d]. (6)

• A point z∗ ∈ Z is called weakly Pareto optimal if there exists no point z ∈ Z such that

Gj(z) > Gj(z
∗) for all j ∈ [d]. (7)
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In contrast to the deterministic case, in a stochastic context there is no single widely-adopted concept

of Pareto optimality. The challenge stems from the stochasticity of the criteria: G1(z), . . . , Gd(z) are in

general random variables for any decision vector z ∈ Z, and one should specify how to compare solutions

in terms of these random objective criteria. To this end, in this paper, we use the stochastic dominance

rules and introduce stochastic dominance-based Pareto optimality concepts below for stochastic multiobjective

optimization problems. For k ∈ N0 = {0, 1, . . .}, let us denote the kth degree stochastic dominance (kSD)

relation by �(k); we refer the reader to Appendix A for a brief review of these relations.

Definition 2.2 (Stochastic dominance-based Pareto Optimality) A point z∗ ∈ Z is called kSD-

based Pareto optimal for some k ∈ N0 if there exists no point z ∈ Z such that

Gj(z) �(k) Gj(z
∗) for all j ∈ [d] and Gj(z) �(k) Gj(z

∗) for at least one index j ∈ [d]. (8)

Definition 2.3 (Stochastic dominance-based Weak Pareto Optimality) A point z∗ ∈ Z is called

weakly kSD-based Pareto optimal for some k ∈ N0 if there exists no point z ∈ Z such that

Gj(z) �(k) Gj(z
∗) for all j ∈ [d]. (9)

These stochastic Pareto optimality concepts are based on comparing the random variables Gj(z) and Gj(z
∗)

(in relations (6) and (7)) using a univariate stochastic dominance rule for each criterion j ∈ [d]. Such a

component-wise dominance relation provides a natural and an intuitive approach for extending the concept of

traditional Pareto optimality to the stochastic case. A closely related but slightly different notion of efficiency

based on the realizations under each scenario is presented in Ben Abdelaziz (2012). Alternatively, one can

consider a multivariate stochastic dominance relation as in Ben Abdelaziz et al. (1995). However, multivariate

stochastic dominance relations are very restrictive (see, e.g., Müller and Stoyan, 2002) and finding a non-

dominated solution according to such a multivariate relation may not be even possible. For other generalizations

of the Pareto efficiency concept to multiobjective stochastic problems we refer to Ben Abdelaziz (2012).

We next focus on the zeroth-order stochastic dominance (ZSD) rule (also known as statewise dominance)

defined in Appendix A, and present a close analogue of Theorem 2.2 in Hu and Mehrotra (2012), which provides

some managerial insights about our new W-CVaR model.

Proposition 2.2 Let C ⊆ Cf and z∗ be an optimal solution of W-CVaR.

(i) z∗ is a weakly ZSD-based Pareto optimal solution of W-CVaR.

(ii) If for every c ∈ C we have cj > 0 for all j ∈ [d], then z∗ is an ZSD-based Pareto optimal solution of

W-CVaR.

(iii) If z∗ is a unique optimal solution of W-CVaR, then it is an ZSD-based Pareto optimal solution of

W-CVaR.

Proof. Let us assume for contradiction that z∗ is not a weakly ZSD-based Pareto optimal solution of

W-CVaR. Then there exists ẑ ∈ Z such that Gj(ẑ, ωi) > Gj(z
∗, ωi) for all i ∈ [n] and j ∈ [d]. By the non-

negativity of c ∈ C and the observation that ck > 0 for at least one index k ∈ [d] for every c ∈ C, we have∑
j∈[d] cjGj(ẑ, ωi) >

∑
j∈[d] cjGj(z

∗, ωi) for all i ∈ [n] and c ∈ C. Then, by the monotonicity of CVaR it is
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easy to see that CVaRα

(
c>G(ẑ)

)
> CVaRα

(
c>G(z∗)

)
holds for any α ∈ (0, 1] and c ∈ C. Therefore, the

following inequalities hold and result in a contradiction:

max
z∈Z

min
c∈C

CVaRα

(
c>G(z)

)
≥ min

c∈C
CVaRα

(
c>G(ẑ)

)
> min

c∈C
CVaRα(c>G(z∗)) = max

z∈Z
min
c∈C

CVaRα(c>G(z)).

This completes the proof of part (i). Using similar arguments, the proofs of parts (ii) and (iii) are trivially

analogous to those in the proof of Theorem 2.2 in Hu and Mehrotra (2012). �

We would like to emphasize that the W-CVaR model keeps the stochastic nature of the weighted-sum, and

is novel in terms of incorporating the risk associated with the inherent randomness. Therefore, it calls for

the development of stochastic Pareto efficiency concepts discussed above. In contrast, in some of the existing

stochastic multiobjective optimization models, summary statistics such as expected value, CVaR or variance are

used as the multiple criteria (see, for example, Köksalan and Şakar, 2014, for a stochastic portfolio optimization

problem with three criteria: expected return, CVaR and a liquidity measure). Using these summary statistics,

the resulting problem becomes a deterministic multicriteria optimization problem for which the well-defined

deterministic Pareto optimality concepts can be applied. One method of obtaining Pareto optimal solutions is to

scalarize these multiple criteria using a single weight vector in the scalarization set C. By heuristically searching

over C, multiple solutions in the deterministic efficient frontier are generated, and then an interactive method

is employed for the decision makers to choose among these solutions. To illustrate this approach, consider a

modification of the portfolio optimization problem in Köksalan and Şakar (2014) where G1(z) is the uncertain

return of the portfolio and G2(z) is a random liquidity measure. Suppose that two criteria are considered:

CVaRα(G1(z)) and CVaRα(G2(z)). So for a fixed c ∈ C, the problem solved is maxz∈Z{c1 CVaRα(G1(z)) +

c2 CVaRα(G2(z))}. In contrast, in our model, we search over c ∈ C, such that the worst-case multivariate

CVaR is maximized: maxz∈Z minc∈C{CVaRα(c1G1(z) + c2G2(z))}, eliminating the need for an interactive

approach that may be prone to conflict among decision makers. Note also that the term in the minimization is

different from the objective of the interactive approach, because the order of CVaR and scalarization operations

cannot be changed. Only for the special case that the decision makers are risk-neutral (i.e., α = 1), the order

of CVaR (expectation) and scalarization operations can be changed. In addition, the interactive approach only

considers a single weight vector at a time.

2.2 Solution Methods In this section, we give reformulations and solution methods for W-CVaR. We

also provide improved formulations for the important special case when each scenario has an equal probability.

Before proceeding to describe the solution methods we first show that W-CVaR is a convex program under

certain conditions.

Proposition 2.3 If Z is a convex set and Gj(z) is concave in z ∈ Z for all j ∈ [d], then W-CVaR is a convex

program.

Proof. It is sufficient to prove that the mapping z 7→ min
c∈C

CVaRα(c>G(z)) is concave. Recall that by our

assumptions cj is non-negative and Gj(z) is concave in z ∈ Z for all j ∈ [d] and c ∈ C. Since any non-negative

combination of concave functions is also concave, the mapping z 7→ c>G(z) is concave for any c ∈ C. Then, by

the monotonicity and concavity of CVaR, the mapping z 7→ CVaRα(c>G(z)) is concave, and the claim follows

from the superadditivity of the minimum operator.
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�

We first observe that the inner optimization problem in (5) is a concave minimization over a convex set,

which implies that an optimal solution of the inner problem occurs at an extreme point of C. Let ĉ1, · · · , ĉN

be the extreme points of C. Then, using the definition of CVaR given in (2), we can formulate (5) as follows:

max ψ (10a)

s.t. ψ ≤ η` −
1

α

∑
i∈[n]

piw`i, ∀ ` ∈ [N ], i ∈ [n] (10b)

w`i ≥ η` − (ĉ`)>gi(z), ∀ ` ∈ [N ], i ∈ [n] (10c)

z ∈ Z, w ∈ RN×n+ . (10d)

Note that if the mapping gi(z) is linear in z for all i ∈ [n], then the formulation (10) is a linear program. Under

certain assumptions on the scalarization set, the number of extreme points of C may be polynomial (we will

discuss these cases in Section 2.2.1), and hence the resulting formulation (10) is compact. However, in general,

the number of extreme points, N , is exponential. Therefore, we propose a delayed cut generation algorithm to

solve (10). We start with an initial subset of scalarization vectors ĉ1, · · · , ĉL and solve an intermediate relaxed

master problem (RMP), which is obtained by replacing N with L in (10). Solving the RMP provides us with

a candidate solution denoted by (z∗, ψ∗,w∗). At each iteration, we solve a cut generation problem:

(CutGen−Robust) : min
c∈C

CVaR(c>G(z∗)).

If the optimal objective function value of the cut generation problem is not smaller than ψ∗, then the current

solution (z∗, ψ∗,w∗) is optimal. Otherwise, the optimal solution ct at iteration t gives a violated inequality

ψ ≤ CVaRα((ct)>G(z)). We augment the RMP by setting L← L+ 1, and ĉL+1 ← ct.

Observe that in the multivariate CVaR-constrained problems studied in Noyan and Rudolf (2013) and

Küçükyavuz and Noyan (2015), given a random benchmark vector Y, the cut generation problems are given

by minc∈C CVaR(c>G(z∗)) − CVaR(c>Y) (we will revisit this cut generation problem in Section 3). Due to

the similar structure, we can use the formulations and enhancements given in Noyan and Rudolf (2013) and

Küçükyavuz and Noyan (2015) to formulate the cut generation problem (CutGen−Robust) as a mixed-

integer program. Let X = G(z∗) with the realizations x1, . . . ,xn (i.e., xi = gi(z), i ∈ [n]). The representation

of CVaR in (3) leads to the following formulation of (CutGen−Robust):

min µ (11)

s.t. µ ≥ c>xk −
1

α

∑
i∈[n]

pi[c
>xk − c>xi]+, ∀ k ∈ [n], (12)

c ∈ C. (13)

The shortfall terms [c>xk − c>xi]+ in inequalities (12) present a computational challenge. Introducing

additional variables and constraints, we can linearize these terms using big-M type of constraints, and obtain

an equivalent MIP formulation similar to the one proposed by Noyan and Rudolf (2013) for the cut generation

problems arising in optimization under multivariate polyhedral CVaR constraints. However, the big-M type

constraints may lead to weak LP relaxation bounds and computational difficulties. In order to deal with these

difficulties, Küçükyavuz and Noyan (2015) propose an improved model based on a new representation of VaRα.

Let

Mik = max{max
c∈C

{c>xk − c>xi}, 0} and Mki = max{max
c∈C

{c>xi − c>xk}, 0}.
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Also let Mi∗ = maxk∈[n]Mik and M∗i = maxk∈[n]Mki for i ∈ [n], and M̃j = max{cj : c ∈ C} for j ∈ [d].

Then, the following inequalities hold for any c ∈ C:

z ≤ c>xi + βiMi∗, ∀ i ∈ [n] (14a)

z ≥ c>xi − (1− βi)M∗i, ∀ i ∈ [n] (14b)

z =
∑
i∈[n]

ξ>i xi, (14c)

ξij ≤ M̃jui, ∀ i ∈ [n], j ∈ [d] (14d)∑
i∈[n]

ξij = cj , ∀ j ∈ [d] (14e)

∑
i∈[n]

piβi ≥ α, (14f)

∑
i∈[n]

piβi −
∑
i∈[n]

piui ≤ α− ε, (14g)

∑
i∈[n]

ui = 1, (14h)

ui ≤ βi, ∀ i ∈ [n] (14i)

β ∈ {0, 1}n, ξ ∈ Rn×d+ , u ∈ {0, 1}n, (14j)

if and only if z = VaRα(c>X). Here ε is a very small constant to ensure that the left-hand side of (14g) is

strictly smaller than α. The logical variable ui = 1 only if the i-th scenario corresponds to VaRα(c>X), and

the additional variables ξil = cl only when ui = 1, for all i ∈ [n] and l ∈ [d].

Based on the representation of VaRα(c>X) given in (14), we propose an alternative formulation for

(CutGen−Robust):

min z − 1

α

∑
i∈[n]

pivi (15a)

s.t. (14), (15b)

vi − δi = z − c>xi, ∀ i ∈ [n] (15c)

vi ≤Mi∗βi, ∀ i ∈ [n] (15d)

δi ≤M∗i(1− βi), ∀ i ∈ [n] (15e)

c ∈ C, v ∈ Rn+, δ ∈ Rn+. (15f)

In this formulation, it is guaaranteed that vi = [z − c>xi]+ and δi = [c>xi − z]+ for i ∈ [n].

2.2.1 Equal Probability Case To keep our exposition simple, we consider confidence levels of the form

α = k/n for some k ∈ [n], and refer to Noyan and Rudolf (2013) for an extended MIP formulation with an

arbitrary confidence level. In this case, an alternative formulation of (CutGen−Robust), adapted from

Noyan and Rudolf (2013), is given by the bilinear program

min
1

k

∑
i∈[n]

∑
j∈[d]

xijcjβi

s.t.
∑
i∈[n]

βi = k,

β ∈ [0, 1]n, c ∈ C.
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This formulation follows from the observation that in the special case of equal probabilities and α = k/n,

CVaRα(c>X) corresponds to the weighted sum of the smallest k out of n realizations (c>xi, i ∈ [n]). Using

McCormick envelopes (McCormick, 1976), we can linearize the bilinear terms cjβi in the objective function.

Introducing the additional variables γij = cjβi, for all i ∈ [n] and j ∈ [d], an equivalent MIP formulation is

stated as:

min
1

k

∑
i∈[n]

∑
j∈[d]

xijγij (16a)

s.t. γij ≤ cj , ∀ i ∈ [n], j ∈ [d] (16b)

γij ≥ cj − M̃j(1− βi), ∀ i ∈ [n], j ∈ [d] (16c)

γij ≤ M̃jβi, ∀ i ∈ [n], j ∈ [d] (16d)∑
i∈[n]

βi = k, (16e)

β ∈ {0, 1}n, γ ∈ Rn×d+ , c ∈ C. (16f)

For i ∈ [n], if βi = 1, then constraint (16b) together with (16c) enforces that γij = cj , for all j ∈ [d]. For

i ∈ [n], if βi = 0, then constraint (16d) enforces γij to be 0.

Let P := {(γ,β, c) ∈ Rn×d+ ×{0, 1}n×C | γ = βc>,
∑
i∈[n] βi = k}. Then we have minc∈C CVaRα(c>X) =

min(γ,β,c)∈P
∑
i∈[n]

∑
j∈[d] xijγij . Note that the structure of P also appears in pooling problems (c.f., Gupte

et al., 2015). The next proposition gives the convex hull of P for a special choice of C using the reformulation-

linearization technique (RLT) (Sherali and Adams, 1994).

Proposition 2.4 (Sherali et al. (1998); Gupte et al. (2015)) If C is a unit simplex (i.e., C = Cf ), then the

convex hull of P is described by:

conv(P ) = {(γ,β, c) ∈ Rn×d+ × [0, 1]n × C | γij ≤ cj , i ∈ [n], j ∈ [d], γij = βi, i ∈ [n], γij = kcj , j ∈ [d]}.

Using the fact that C ⊆ Cf and Proposition 2.4, we can strengthen the formulation (16), as follows:

min
1

k

∑
i∈[n]

∑
j∈[d]

xijγij (17a)

s.t. γij ≤ cj , ∀ i ∈ [n], j ∈ [d] (17b)∑
j∈[d]

γij = βi, ∀ i ∈ [n] (17c)

∑
i∈[n]

γij = kcj , ∀ j ∈ [d] (17d)

(16c)− (16d) (17e)

c ∈ C, β ∈ {0, 1}n, γ ∈ Rn×d+ . (17f)

Note also that if C is the unit simplex (C = Cf ), then the integrality restrictions on β can be relaxed in (17)

and the cut generation problem is an LP. However, recall that if C is the unit simplex, then the extreme points

of C are polynomial, given by ĉ` = e` for ` ∈ [d]. Hence, in this case, the overall problem formulation (10)

itself is a compact LP when the mapping gi(z) is linear in z for all i ∈ [n], even under general probabilities.

Furthermore, using the additional information on the structure of the scalarization polytope C and the RLT

(Sherali and Adams, 1994), we can obtain stronger formulations. Suppose that C = {c ∈ Rd+ |Bc ≥ b}, for a
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given r×d matrix B and b = (b1, . . . , br). Let B` be the `th row of B. Then, we can strengthen the formulation

(16) as follows:

min
1

k

∑
i∈[n]

∑
j∈[d]

xijγij (18a)

s.t.
∑
j∈[d]

B`jγij − b`βi ≤ B`c− b`, ∀ i ∈ [n], ` ∈ [r] (18b)

∑
j∈[d]

∑
j∈[d]

B`jγij − b`βi ≥ 0, ∀ i ∈ [n], ` ∈ [r] (18c)

∑
i∈[n]

(
∑
j∈[d]

B`jγij − b`βi) = k(B`c− b`), ∀ ` ∈ [r] (18d)

c ∈ C, β ∈ {0, 1}n, γ ∈ Rn×d+ . (18e)

It is known that if C = {c ∈ Rd+ |Bc ≥ b} is a d-simplex, then conv(P ) = {(γ,β, c) ∈ Rn×d+ × [0, 1]n ×
C |(18b)− (18d)} (Gupte et al., 2015). Therefore, the LP relaxation of (18) is integral in this case.

Remark 2.1 Note that if M̃j = 1 for all j ∈ [d] (as is the case when C is the unit simplex), then constraints

(16c)-(16d) are implied by (17c)-(17d), and can be dropped from the formulation. However, for the situations

where M̃j < 1 for some j ∈ [d], the constraints (16c)-(16d), obtained by applying the RLT technique to the

constraints cj ≤ M̃j , j ∈ [d], can be useful to reduce the solution time.

Remark 2.2 It is also possible to obtain stronger formulations of (14) by applying the RLT technique for the

general probability case. In particular, the RLT procedure based on the constraint
∑
i∈[d] ci = 1 provides the

following valid inequality ∑
j∈[d]

ξij = ui, (19)

which can be added to the formulation (14).

Next we consider an important special case of C that applies to multicriteria optimization when certain

criteria are deemed more important than others. In particular, we study the case where C contains ordered

preference constraints that take the form

C = {c ∈ Rd+ |
∑
j∈[d]

cj = 1, cj ≥ cj+1, ∀ j ∈ [d− 1]}. (20)

If the set C has the ordered preference structure (20), then we are able to obtain the convex hull of P , which

is stated in the following result.

Proposition 2.5 If C is given by (20), then the convex hull of P is described by:

conv(P ) = {(γ,β, c) ∈ Rn×d+ × [0, 1]n × C | (17c), (17d), γij ≥ γij+1, γij − γij+1 ≤ cj − cj+1, i ∈ [n], j ∈ [d− 1]}.

Proof. It is easy to show that the extreme points of C are:

ĉ1 = (1, 0, 0, . . . , 0)

ĉ2 = (
1

2
,

1

2
, 0, . . . , 0)

ĉ3 = (
1

3
,

1

3
,

1

3
, . . . , 0)
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...

ĉd = (
1

d
,

1

d
,

1

d
, . . . ,

1

d
).

Hence, C is a (d− 1)-simplex, and the result follows similarly from Gupte et al. (2015). �

2.3 Finite Convergence In this section, we study the convergence of the proposed cut generation algo-

rithm.

Proposition 2.6 The delayed cut generation algorithm described in Section 2.2 to solve W-CVaR is finitely

convergent.

Proof. We show that given a solution to RMP we can find an optimal solution to the cut generation

subproblem, which is an extreme point of C. As a result, the proposed cut generation algorithm is finitely

convergent, because there are finitely many extreme points of C. For the general probability case, we can

obtain such a vertex optimal solution by using the following method: suppose that we solve one of the MIP

formulations of (CutGen−Robust) and obtain an optimal solution c∗. Let π be a permutation describing

a non-decreasing ordering of the realizations of the random vector c∗>X, i.e., c∗>xπ(1) ≤ · · · ≤ c∗>xπ(n), and

define

k∗ = min

k ∈ [n] :
∑
i∈[k]

pπ(i) ≥ α

 and K∗ = {π(1), . . . , π(k∗ − 1)}.

Then, we can obtain the desired vertex solution ĉ by finding a vertex optimal solution of the following linear

program:

min
c∈C

1

α

[∑
i∈K∗

pic
>xi +

(
α−

∑
i∈K∗

pi

)
c>xπ(k∗)

]
.

This LP relies on the subset-based representation of CVaR (Theorem 1, Noyan and Rudolf, 2013). The feasible

set is the polytope C, so there exists a vertex optimal solution ĉ. It is easy to show that ĉ is also an optimal

solution of (CutGen−Robust). �

Furthermore, when equal probability is assumed, by solving the alternative cut generation formulation (18)

using a branch-and-bound (B&B) method, we are guaranteed to obtain a desired vertex optimal solution c

without solving an additional LP. To see this, note that once the LP relaxation at a B&B node results in an

integral β, the only remaining constraints enforce c ∈ C.

3. Multivariate CVaR-constrained Optimization Model In this section, we consider a related class

of multicriteria decision making problems, where the decision vector z is selected from a feasible set Z and

associated random outcomes are determined by the outcome mapping G : Z ×Ω → R
d. We consider an

arbitrary objective function f : Z 7→ R and assume that a d-dimensional benchmark random vector Y is

available. We aim to find the best decision z for which the random outcome vector G(z) is preferable to

the benchmark Y with respect to the multivariate polyhedral CVaR preference relation. Such multivariate

CVaR-constrained optimization problems are introduced in Noyan and Rudolf (2013). Given a polyhedron of

scalarization vectors C ⊆ Cf and a confidence level α ∈ (0, 1], the problem is of the general form:

max f(z) (21a)

s.t. CVaRα(c>G(z)) ≥ CVaRα(c>Y), ∀ c ∈ C (21b)
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z ∈ Z. (21c)

The benchmark random vector can be defined on a different probability space, but in practical applications it

often takes the form Y = G(z̄), where z̄ is a benchmark decision.

Observe that (21b) contains infinitely many inequalities. Noyan and Rudolf (2013) show that these inequal-

ities can be replaced with those for a finite subset of scalarization vectors corresponding to the vertices of a

higher dimensional polyhedron. The authors propose a delayed cut generation algorithm, which involves the

solution of a relaxed master problem (RMP-B) to obtain a candidate solution ẑ ∈ Z, and the following cut

generation subproblem:

(CutGen−Benchmark) : min
c∈C

CVaRα(c>X)− CVaRα(c>Y), (22)

where X = G(ẑ). If the optimal objective function value of (CutGen−Benchmark) is non-negative, then

ẑ is optimal, otherwise we obtain a solution c∗ ∈ C such that the corresponding CVaR inequality in (21b) is

violated. So augment RMP-B by adding this violated CVaR constraint and resolve it. According to Noyan

and Rudolf (2013), the main bottleneck of this delayed cut generation algorithm is solving the cut-generation

problem (22), since it is generally nonconvex. Therefore, the main focus of this section is the cut generation

problem. Throughout the rest of this paper, we assume that Y is a random vector with (not necessarily distinct)

realizations y1, . . . ,ym and corresponding probabilities q1, . . . , qm. As before, we let gi(ẑ) = xi = (xi1, . . . , xid)

for all i ∈ [n].

To solve (22), we first need to represent CVaRα(c>X) and CVaRα(c>Y) appropriately. Using the LP

representation (2) for CVaRα(c>Y), we can reformulate (CutGen−Benchmark) as

min CVaRα(c>X)− η +
1

α

∑
l∈[m]

qlwl

s.t. wl ≥ η − c>yl, ∀ l ∈ [m] (23)

w ∈ Rm+ . (24)

The minimization of the concave term CVaRα(c>X) causes computational difficulties. For this cut generation

problem, Küçükyavuz and Noyan (2015) introduce a MIP formulation based on the VaR representation of

CVaR (see (14)), which is given by

min z − 1

α

∑
i∈[n]

pivi − η +
1

α

∑
l∈[m]

qlwl (25a)

s.t. (15b)− (15f), (23)− (24). (25b)

The authors demonstrate that this formulation, which we refer to as (MIP−CVaR), along with computa-

tional enhancements, outperforms existing models for (CutGen−Benchmark) under general probabilities.

In this section, we consider the special case of equal probabilities, and propose strengthened MIP formulations

for the cut generation problems using the RLT technique.

3.1 Equal Probability Case As in Section 2.2.1, to keep our exposition simple, we consider confidence

levels of the form α = k/n and assume that all the outcomes of X are equally likely. For this special case,

similar to the development in Section 2.2.1, Noyan and Rudolf (2013) give the equivalent formulation below:

min
1

k

∑
i∈[n]

γ>i xi − η +
1

α

∑
l∈[m]

qlwl (26a)
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s.t. (16b)− (16f), (23)− (24). (26b)

As before, M̃j = max{cj : c ∈ C}. Suppose that the vertices of the polytope C is known and given as

{ĉ1, . . . , ĉN}. Then, we can simply set M̃j = max
`∈[N ]

ĉ`j . Furthermore, we can use the RLT-based strengthening

for (26b) and obtain the following MIP formulation:

(MIP− Special) : min
1

k

∑
i∈[n]

γ>i xi − η +
1

α

∑
l∈[m]

qlwl (27a)

s.t. (17b)− (17f), (23)− (24). (27b)

In addition, we can use the RLT technique to further strengthen this formulation using any additional con-

straints in C as in (18); we will provide some numerical results on the performance of such strengthened versions

in the computational study in Section 5.2.1.

From Proposition 2.4, we can obtain the minimum of CVaRα(c>X) by solving a linear program when C

is a d-simplex. However, even for the special case of unit simplex, constraints (17b)–(17d) are not sufficient

to describe the convex hull of the set of feasible solutions to (27), due to the additional constraints (23)–(24)

representing CVaRα(c>Y). To show this and develop potentially stronger MIP formulations, we derive a class

of valid inequalities that describes facets of the convex hull of feasible solutions to (27b).

Let

S := {(γ, c,β, η,w) ∈ Rn×d+ ×Rd+ × {0, 1}n ×R×Rm+ | γ = βc>,
∑
j∈[d]

cj = 1,
∑
i∈[n]

βi = k,

c>yl ≥ η − wl, ∀ l ∈ [m]}.

Proposition 3.1 For any i ∈ [n], s ∈ [m], and t ∈ [m] \ {s}, the inequality

c>ys −
∑
j∈[d]

(ysj − ytj)γij ≥ η − ws − wt, (28)

is valid for S. In addition, inequality (28) defines a facet of conv(S) if and only if s ∈ [m], t ∈ [m] \ {s} are

such that ysj < ytj and ysi > yti for some i, j ∈ [d].

Proof. Suppose that βi = 0, then γij = 0 for all j ∈ [d]. Hence, inequality (28) reduces to

c>ys ≥ η − ws − wt,

which is valid since wt ≥ 0. Otherwise, suppose that βi = 1, then γij = cj for all j ∈ [d], and inequality (28)

reduces to

c>yt ≥ η − wt − ws,

which is valid, because ws ≥ 0, for all s ∈ [m]. We provide the facet proof in Appendix B (see Proposition

B.2). �

3.1.1 Alternative VaR-based formulations In this section, without loss of generality, we assume that

all the realizations of c>X are non-negative (or equivalently, xi is non-negative for all i ∈ [n]). Then, it is easy

to show that (CutGen−Benchmark) can be formulated as follows:

min
1

k

∑
i∈[n]

θi − η +
1

α

∑
l∈[m]

qlwl
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s.t. θi ≥ c>xi − (1− βi)Mi, ∀ i ∈ [n] (29)∑
i∈[n]

βi = k,

c ∈ C, β ∈ {0, 1}n, θ ∈ Rn+,

(23)− (24).

In this formulation, Mi is the largest possible value of θi (e.g., Mi = max
c∈C

c>xi). This new formulation

again follows from the observation that in the special case of equal probabilities and α = k/n, CVaRα(c>X)

corresponds to the weighted sum of the smallest k realizations of c>X. In this special case, VaRα(c>X)

corresponds to the kth smallest realization, and the model guarantees that θi = c>xi if c>xi ≤ VaRα(c>X),

and θi = 0 otherwise. However, this MIP formulation is weak due to the big-M constraints (29). Hence, we

can take advantage of the new representation of VaR given in (14) to develop a stronger MIP formulation:

(MIP VaR Special 1) : min
1

k

∑
i∈[n]

θi − η +
1

α

∑
l∈[m]

qlwl (30a)

s.t. z ≤ c>xi + βiMi∗, ∀ i ∈ [n] (30b)

θi ≥ c>xi − (1− βi)Mi, ∀ i ∈ [n] (30c)

z ≥ θi, ∀ i ∈ [n] (30d)

z =
∑
i∈[n]

ξ>i xi, (30e)

∑
i∈[n]

ξij = cj , ∀ j ∈ [d] (30f)

∑
j∈[d]

ξij = ui, ∀ i ∈ [n] (30g)

∑
i∈[n]

βi = k, (30h)

(14d), (14h)− (14i), (23)− (24) (30i)

β ∈ {0, 1}n, u ∈ {0, 1}n, c ∈ C, (30j)

ξ ∈ Rn×d+ , θ ∈ Rn+. (30k)

In this formulation, it is guaranteed that ξij = cjui for all i ∈ [n] and j ∈ [d]. These bilinear terms are

linearized by using the McCormick envelopes and their RLT strengthening, based on only the information

that C is a subset of the unit simplex. Additional constraints on the scalarization set C can be used to

further strengthen the above formulation. Notice that different from (14), this formulation includes the RLT

strengthening equality (19) (or (30g)).

In (MIP VaR Special 1), the variable z = VaRα(c>X) is represented by
∑
i∈[n]

ξ>i xi =
∑
i∈[n]

uic
>xi. Al-

ternatively, we can express the variable z as follows: z =
∑
i∈[n]

θiui. In this approach, we can only use the

information on the upper bounds on the decision variables θi while linearizing the bilinear terms. Replacing

(30e)-(30g) by (31c)-(31f) provides us with an alternative MIP formulation of (CutGen−Benchmark) under

equal probabilities:

(MIP VaR Special 2) : min
1

k

∑
i∈[n]

θi − η +
1

α

∑
l∈[m]

qlwl (31a)

s.t. (30b)− (30d), (30h)− (30j), (31b)
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z =
∑
i∈[n]

δi, (31c)

δi ≤ θi, ∀ i ∈ [n] (31d)

δi ≤Miui, ∀ i ∈ [n] (31e)

δi ≥ θi −Mi(1− ui), ∀ i ∈ [n] (31f)

δ ∈ Rn+, θ ∈ Rn+. (31g)

In this formulation, it is guaranteed that δi = θiui for all i ∈ [n]. We compare the computational performance

of the proposed alternative MIP formulations in Section 5.2.

Finally, we note that these two special MIP formulations can also be applied to solve (CutGen−Robust)

by dropping the variables and constraints associated with CVaRα(c>Y); leading to enhanced versions of (15)

for the equal probability case.

4. Hybrid Model In this section, we present a hybrid model that includes both the multivariate CVaR

constraints and the robust objective based on the worst-case CVaR. We show that the algorithms in Sections

2 and 3 can be integrated into a unified methodology to solve the hybrid model of the form

(Hybrid) : max
z∈Z

min
c∈C

CVaRα(c>X)

s.t. CVaRα(c>G(z)) ≥ CVaRα(c>Y), ∀ c ∈ C. (32)

For a given subset of scalarization vectors C̃ := {c̃1, · · · , c̃L̃} ⊂ C a relaxed master problem (RMP-H) is

given by

max
z∈Z

min
c∈C

CVaRα(c>X) (33a)

s.t. CVaRα((c̃`)>G(z)) ≥ CVaRα((c̃`)>Y), ∀ ` ∈ [L̃]. (33b)

We can represent the constraints (33b) by linear inequalities, leading to the following equivalent reformulation

of RMP-H:

max min
c∈C

CVaRα(c>X)

s.t. η̃r −
1

α

∑
i∈[n]

piw̃ri ≥ CVaRα((c̃r)>Y), ∀ r ∈ [L̃]

w̃ri ≥ η̃r − (c̃r)>gi(z), ∀ r ∈ [L̃], i ∈ [n],

w̃ ∈ RL̃×n+ , z ∈ Z.

As discussed in Section 2.2, we can handle the maximin type objective function of interest using a finitely

convergent delayed cut generation algorithm. In this spirit, suppose now that Ĉ = {ĉ1, · · · , ĉL} ⊂ C is a given

subset of scalarization vectors used to calculate the worst-case CVaR. In line with the formulation given in

(10), RMP-H is given by

max ψ (34a)

s.t. η̃r −
1

α

∑
i∈[n]

p̃iw̃ri ≥ CVaRα((c̃r)>Y), ∀ r ∈ [L̃] (34b)

w̃ri ≥ η̃r − (c̃r)>gi(z), ∀ r ∈ [L̃], i ∈ [n] (34c)

ψ ≤ η` −
1

α

∑
i∈[n]

piw`i, ∀ ` ∈ [L], i ∈ [n] (34d)
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w`i ≥ η` − (ĉ`)>gi(z), ∀ ` ∈ [L], i ∈ [n] (34e)

w̃ ∈ RL̃×n+ , w ∈ RL×n+ , (34f)

z ∈ Z. (34g)

Given a solution to the RMP (34), two types of cut generation problems are solved to identify if the current

solution is optimal or there is a scalarization vector c ∈ C for which at least one of the following constraints

is violated: (10b) and (32). As discussed in Section 2.2, for minimizing the worst-case CVaR, it is sufficient

to consider the extreme points of C. On the other hand, for the multivariate CVaR relation, it is sufficient

to consider the finitely many c vectors obtained as the projections of the vertices of the higher dimensional

polyhedron P (C,Y) given by (Noyan and Rudolf, 2013)

P (C,Y) =
{

(c, η,w) ∈ C ×R×Rm+ : wl ≥ η − c>yl, l ∈ [m]
}
. (35)

Thus, generating the violated constraints associated with those particular vertex scalarization vectors at

each iteration guarantees the finite convergence of the delayed cut generation algorithm of (Hybrid). In

other words, the provable finite convergence depends on finding a solution to the cut generation problems

(CutGen−Robust) and (CutGen−Benchmark), which is an extreme point of C and the projection

of a vertex of P (C,Y), respectively. In Section 2.3, we discuss how to obtain a vertex optimal solution of

(CutGen−Robust) from an optimal solution obtained by solving one of its MIP formulations (such as (15)).

For obtaining the desired vertex optimal solution of (CutGen−Benchmark), we refer to Noyan and Rudolf

(2013).

5. Computational study In the first part of our computational study, we investigate the value of the

proposed W-CVaR model with respect a robust risk-neutral model and a multivariate CVaR-constrained model.

We also report on the performance of the cut generation algorithm for the W-CVaR model. In the second part,

we demonstrate the computational effectiveness of the MIP formulations and the valid inequalities developed

(in Section 3) for the cut generation problem arising in multivariate CVaR-constrained optimization models.

5.1 Worst-case Multivariate CVaR Optimization We explore the effectiveness of the proposed W-

CVaR model by applying it to a homeland security budget allocation (HSBA) problem (Hu et al., 2011). This

problem studies the allocation of a fixed budget to ten urban areas, which are classified in three groups: 1)

higher risk : New York; 2) medium risk : Chicago, San Francisco Bay Area, Washington DC-MD-VA-WV, and

Los Angeles-Long Beach; 3) lower risk : Philadelphia PA-NJ, Boston MA-NH, Houston, Newark, and Seattle-

Bellevue-Everett. The risk share of each area is measured based on four criteria: 1) property losses, 2) fatalities,

3) air departures and 4) average daily bridge traffic. To represent the inherent randomness a random risk share

matrix A : Ω → R
4×10
+ is considered, where Aij denotes the proportion of losses in urban area j relative to

the total losses for criterion i. The set Z = {z ∈ R10
+ :

∑
j∈[10] zj = 1} represents all the feasible allocations

and the associated random performance measures of interest are specified based on a particular type of penalty

function for allocations under the risk share. The negatives of these budget misallocations associated with each

criterion are used to construct the random outcome vector G(z) = (G1(z), . . . , G4(z)), as given below, in order

to be consistent with our setup where the larger values of the random variables are preferred:

Gi(z) = −
∑
j∈[10]

[Aij − zj ]+, i ∈ [4].
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Hu et al. (2011) model this HSBA problem using optimization under multivariate polyhedral SSD constraints

based on two benchmarks: one based on average government allocations (Department of Homeland Security’s

Urban Areas Security Initiative) - denoted by G(zG), and one based on suggestions in the RAND report (Willis

et al., 2005) - denoted by G(zR) . On the other hand, Noyan and Rudolf (2013) replace the SSD constraints

with CVaR-based ones, leading to the following optimization model:

max min
c∈C

E(c>G(z)) (36a)

s.t. CVaRα(c>G(z)) ≥ CVaRα(c>G(zR)) ∀ c ∈ C (36b)

CVaRα(c>G(z)) ≥ CVaRα(c>G(zG)) ∀ c ∈ C (36c)

z ∈ Z. (36d)

We benchmark our W-CVaR model, defined in (5), against two relevant existing models: the first one, which

we refer to as B-CVaR, is obtained from (36) by dropping (36c) (the government benchmark is ignored for

simplicity), and the second one is the risk-neutral counterpart of our model (Hu and Mehrotra, 2012):

W-Exp : max
z∈Z

min
c∈C

E(c>G(z)).

We follow the data generation scheme described in Noyan and Rudolf (2013) and consider their “base case”

scalarization set given by C = CBase := {c ∈ R4
+ :

∑
i∈[4] cj = 1, cj ≥ c∗j − θ

3 , j ∈ [4]}, where c∗ =

(1/4, 1/4, 1/4, 1/4) and θ = 0.25. Additionally, we also consider a second choice of C, which involves the

so-called ordered preferences as follows: C = COrd := {c ∈ R4
+ :

∑
i∈[4] cj = 1, c2 ≥ c1 ≥ c3 ≥ c4}. This choice

relies on the assumption that the second criterion (based on fatalities) is the most important one, followed

by the first criterion (based on property losses), the third criterion (based on air departures) and the fourth

criterion (based on average daily bridge traffic). For further details on data generation, we refer to Hu et al.

(2011) and Noyan and Rudolf (2013).

In our benchmarking analysis, we consider the equal probability case, set n = 500 and obtain the results

for three models W-CVaR, W-Exp, and B-CVaR under each value of α ∈ {0.05, 0.1, 0.15}. The results on

allocation decisions - averaged over three randomly generated instances - are reported in Table 1. As seen from

these results, for each setting, B-CVaR provides solutions that allocate most of the budget (at least 51%) to the

area with the highest risk (New York). This is primarily due to that fact that New York has a large (58.61%)

allocation in the RAND benchmark. On the other hand, the budget percentage allocated to the five urban

areas with lower risk cities is less than 18 and 12 for the scalarization sets CBase and COrd, respectively. Since

the set COrd involves the scalarization vectors giving more priority to the second criterion (based on fatalities),

B-CVaR suggests to allocate even more budget to New York, the most populated area with a significantly

higher risk share associated with fatalities; for the raw data for fatalities and the remaining three criterion

see Table 1 in Hu et al. (2011). As expected, the allocation decisions obtained by the B-CVaR model with

benchmarking constraints are sensitive to the particular benchmark allocations. On the other hand, the robust

risk-neutral model W-Exp provides a more “averaged” solution compared to B-CVAR and W-CVAR. For both

choices of the scalarization set, W-Exp always allocates more budget to the areas with medium risk comparing

to the other models. For example, for the instances with CBase and α = 0.05, it allocates almost three percent

more budget than W-CVAR, and this behavior is also observed under the other settings. The results of W-Exp

are consistent with its “risk-neutral” nature.

Finally, we would like to emphasize that W-CVaR allocates more budget to the areas with lower risk

compared to the other models. In particular, for the instances with the scalarization set CBase, W-CVaR
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allocates on average four percent more budget to such areas than W-Exp. These results are consistent with

the risk-averse perspective of W-CVaR. Moreover, it is much less conservative than B-CVaR with respect to

its allocation to New York.

We next provide some insights about the solution times of our proposed W-CVaR model for the instances

under consideration. All computations in this study are performed on a 64-bit Windows Server 2012 R2

Datacenter with 2.40GHz Intel Xeon CPU E5-2630 processor with 32 GB RAM, unless otherwise stated. The

vertices of both types of scalarization sets are known and there are only four of them. Thus, we could easily

solve W-CVaR using the compact LP formulation (10). For the HSBA instances with CBase, α = 0.1 and

n = 500, it takes at most 20 seconds to obtain an optimal solution; even for n = 5000 it takes at most 60

seconds. We observe that while the cut generation algorithm we propose is only essential for cases where the

number of extreme points of C is exponential, it could also be useful in cases where the number of extreme

points is small. For example, for CBase, the compact LP takes 200 seconds on average for the three hardest

instances with n = 5000 and α = 0.15, whereas the cut generation algorithm takes on average 20 seconds,

and generates only three extreme points of CBase. This can be due to the large number of scenario dependent

constraints and variables introduced in (10b)-(10c) for each extreme point of C.

Allocations (%) for Areas with Allocations (%) for Areas with

Higher Risk Medium Risk Lower Risk Higher Risk Medium Risk Lower Risk

Base Polytope (CBase) Ordered Preferences (COrd)

α = 0.05

W-CVaR 31.33 35.70 32.98 51.30 29.30 19.40

W-Exp 32.90 38.56 28.53 48.83 34.33 16.83

B-CVaR 52.03 30.41 17.56 57.10 31.43 11.47

α = 0.10

W-CVaR 31.30 35.50 32.20 51.13 31.83 17.03

W-Exp 32.93 38.63 28.43 48.83 34.33 16.83

B-CVaR 52.00 30.57 17.43 56.93 31.40 11.67

α = 0.15

W-CVaR 31.20 35.93 32.87 50.53 31.23 18.23

W-Exp 32.90 38.47 28.63 48.73 34.37 16.90

B-CVaR 51.77 30.92 17.32 56.93 31.17 11.90

RAND Benchmark 58.61 34.31 7.07 58.61 34.31 7.07

Table 1: Model benchmarking results for the HSBA data with n = 500

5.2 Multivariate Polyhedral CVaR-Constrained Optimization In order to perform a de-

tailed analysis on comparing the computational performance of the alternative MIP formulations of

(CutGen−Benchmark) under equal probabilities, we consider an additional type of problem and a class of

randomly generated instances given by (Küçükyavuz and Noyan, 2015)

max{f(z) : CVaRα(c>Rz) ≥ CVaRα(c>Y) ∀ c ∈ C, z ∈ R100
+ }.

Here R : Ω 7→ [0, 1]d×100 is a random matrix and the benchmark vector Y takes the form of R̄z̄ for another

random matrix R̄ : Ω 7→ [0, 1]d×100 and a given benchmark decision z̄ ∈ R100
+ . Following the data generation

procedure presented in Küçükyavuz and Noyan (2015), we independently generate the entries of the matrices

R and R̄ from the uniform distribution on the interval [0, 1]. Moreover, the decision variables z and z̄ are

are independently and uniformly generated from the interval [100, 500]. This data generation scheme directly
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provides us with the realizations of two d-dimensional random vectors X = Rz and Y = R̄z̄; such an approach

is sufficient since we only focus on solving the cut generation problem given the random vectors X and Y. On

the other hand, for the HSBA instances, Y is already well-defined (since the benchmark allocations are given)

while the realizations of the random vector X are obtained using a different approach. In particular, we solve

the corresponding RMP-B once, and use its optimal solution to calculate the realizations of the associated

4-dimensional random vector X. For more details on both types of data sets (HSBA and random data sets),

we refer to Küçükyavuz and Noyan (2015).

All the optimization problems are modeled with the AMPL mathematical programming language. All runs

were executed on 4 threads of a Lenovo(R) workstation with two Intel R© Xeon R© 2.30 GHz CE5-2630 CPUs

and 64 GB memory running on Microsoft Windows Server 8.1 Pro x64 Edition. All reported times are elapsed

times, and the time limit is set to 3600 seconds unless otherwise stated. CPLEX 12.2 is invoked with its default

set of options and parameters. If optimality is not proven within the time allotted, we record both the best

lower bound on the optimal objective value (retrieved from CPLEX and denoted by LB) and the best available

objective value (denoted by UB). Since the optimal objective function can take any value including 0, we

report the following relative optimality gap: ROG = |LB−UB |/(|LB |).

One can obtain slightly different versions of the presented MIP formulations by applying the RLT techniques

for different types of available information (such as the valid lower and upper bounds on the scalarization

vectors). We next provide the alternative MIP formulations of (CutGen−Benchmark) for which we report

results in Tables 2-3.

• (MIP−CVaR): The best available benchmark model proposed by Küçükyavuz and Noyan (2015); it

is based on the VaR representation (14) and its formulation is given by (25). For further computational

enhancements, we added the valid inequality (19), and deleted the set of Big-M constraints (14d).

• (MIP VaR Special 1): This new formulation is also based on the VaR representation (14) but it

is valid for the case of equal probabilities. Its formulation is given in (30); (14d) is deleted as in

(MIP−CVaR).

• (MIP VaR Special 2): This new formulation is a slightly different version of (MIP VaR Special 1)

and its formulation is given in (31); (14d) is deleted as in (MIP−CVaR) .

• (MIP− Special): This new model is obtained by using the RLT-based strengthening for (26). The

formulation (27) involves the inequalities obtained by applying the RLT procedure based on the unit

simplex condition and the upper bounding constraints. We also apply the RLT procedure based on

the lower bounding information (cj ≥ Lcj , j ∈ [d]), which provides the following valid inequalities:

γij ≥ Lcjβi, ∀ i ∈ [n], j ∈ [d], (37)

−γij + cj ≥ Lcj(1− βi), ∀ i ∈ [n], j ∈ [d]. (38)

Unless stated otherwise, (MIP− Special) refers to the formulation obtained by adding the constraints

(37)-(38) to (27).

From Remark 2.1 for the unit simplex case, we drop the redundant constraints (those obtained from

the upper and lower bounding information). In Table 4, “Base Special” refers to the model obtained from

(MIP− Special) by deleting the constraints (16c)-(16d) and (37)-(38); it only involves the most effective

constraints (obtained from the unit simplex condition).
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For the HSBA problem, we report the results averaged over two instances with different benchmarks (based

on Government and RAND benchmarks) for each combination of α and n. For the random data set, we

randomly generate two instances and report the average statistics. In all the tables in this section, the “Time”

column reports the average solution time and the “B&B Nodes” column collects the number of nodes used

during the branch-and-cut process.

From Table 2, we can see that (MIP− Special) solves a majority of the test instances in the shortest

amount of time. However, there are some instances (for example, for HSBA data, unit simplex, α = 0.01, n =

1000, 1500) for which (MIP− Special) only solves one out of the four instances within the time limit as

opposed to (MIP VaR Special 1) and (MIP VaR Special 2) which both solve three of the instances within

the limit. Furthermore, all new formulations we propose significantly outperform the existing formulation

(MIP−CVaR) for the equal probability case.

Furthermore, we can apply the computational enhancements proposed in Küçükyavuz and Noyan (2015) to

the proposed formulations, namely variable fixing, bounding and a class of valid inequalities referred to as the

ordering inequalities (on the β variables). The variable fixing method recognizes scenarios which are guaranteed

to be larger than VaR, and fixes the corresponding β variables to zero. In addition, for the existing MIP (26)

and (MIP− Special), we introduce upper and lower bounds on CVaRα(c>X), for the others which involve

the z decision variable (representing the VaR) we introduce upper and lower bounds on VaRα(c>X). Table 3

summarizes our computational experience with using these enhancements. The ‘Remaining Bin. Var.’ column

reports remaining percentage of binary variables after the preprocessing, and the ‘# of Order. Ineq.’ column

represents the number of ordering inequalities added to the formulations. Observe that there is a significant

reduction in the number of binary variables. Furthermore, many ordering inequalities are added to strengthen

the formulation. As a result, instances that were not solvable to optimality by any of the methods (reported

in Table 2) can now be solved to optimality with at least one of the new formulations. We would also like

to note that the total time spent on preprocessing (for calculating the Big-M coefficients and handling all the

enhancements - fixing, bounding, and ordering inequalities), which is not included in the times reported, is

negligible.

5.2.1 Effectiveness of the MIP formulations strengthened by the RLT procedure In this section,

we use additional information on C to obtain stronger RLT formulations. Our experiments are reported in

Table 4, for the scalarization sets CBase and COrd. We observe that the RLT-based strengthening using only

the unit simplex information (17b)-(17d), reported in the column titled Base Simplex, is not very effective.

Recall (Remark 2.1) that when there exists an index j ∈ [d] such that M̃j = max{cj : c ∈ C} < 1, the

constraints (16c)-(16d) are not redundant for (MIP− Special). In fact, for the HSBA instances, including

these inequalities in (MIP− Special) leads to a significant reduction in the computational time as reported

in the second column of Table 4. It is surprising to observe that (MIP− Special) could solve some instances

in very short CPU time, while it reaches the time limit when (16c)-(16d) are dropped.

When we have the extreme points of C, we can easily obtain the upper and lower bounds on the components

of c. For COrd including the ordered preference constraints cj ≥ cj+1, we obtain the corresponding inequalities

obtained by using the RLT (see Proposition 2.5):

γij ≥ γij+1, ∀ i ∈ [n], j ∈ [d− 1], (39)
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(MIP−CVaR) (MIP VaR Special 1) (MIP VaR Special 2) (MIP− Special)

Time; B&B Time; B&B Time; B&B Time; B&B

[ROG] Nodes [ROG] Nodes [ROG] Nodes [ROG] Nodes

HSBA Data Base Polytope & α = 0.01

n 1500 705.8 1524.2 447.1 1781.9 392.7 1286.2 3.1 0.1

2000 1225.1 3095.9 †1840 [50] 3510.0 †1829 [50] 3729.1 6.4 0.0

2500 †2313 [50] 5439.5 †1846 [50] 2995.9 †1867 [50] 2951.3 9.1 0.0

3000 †2275 [50.5] 3712.3 †1970 [50] 2658.1 †1916 [50] 2104.4 10.1 0.0

5000 †[1415.8] 4594.0 †[56.2] 6170.4 †[55] 4367.5 34.7 0.0

Base Polytope & α = 0.05

n 500 109.5 1422.6 109.6 1514.2 138.1 1870.6 0.7 0.0

1000 1667.5 11976.4 †1829 [50] 8823.9 †1891 [50] 10001.7 2.9 0.0

1500 †[100.3] 14627.9 †2316 [50] 7430.1 †2598 [50] 9652.0 9.2 0.5

2000 †[451.9] 9696.0 †3071 [50] 8230.4 †3430 [50] 9752.0 8.5 1.3

2500 †[174] 5998.7 †[57.2] 6928.7 †[56.2] 7094.4 †1837 [50] 2028.8

3000 �[442.7] 1008.0 �[261] 4073.8 †[67.7] 5660.0 95.6 18.7

5000 †[145.5] 2901.7 †[77] 1332.6 †[73.9] 2580.6 †[50.2] 1047.9

Unit Simplex & α = 0.01

n 500 96.1 546.5 60.5 441.8 45.8 432.5 4.7 73.9

1000 1122.2 4388.1 1130.6 4139.8 694.2 3878.5 †2048 [42.6] 26341.8

1500 †[129.6] 6424.9 †3245 [50] 7059.8 †3035 [50] 8819.8 †[81.3] 29985.7

2000 †[108.5] 5910.1 †[159.7] 5327.7 †[141.7] 7025.9 †[215.9] 22330.7

2500 †[106.2] 1704.0 †[118.2] 4784.6 †[122.1] 6093.4 †[188] 19352.6

Unit Simplex & α = 0.05

n 300 211.4 2796.1 186.3 2833.4 155.9 2313.5 †2001 [42.2] 71177.5

500 †2425 [145.3] 17459.6 1854.4 15871.0 1741.8 16352.7 †[125.1] 54251.9

Random Data Unit Simplex & d = 4 & α = 0.01

n 1000 581.4 2588.0 437.1 2800.6 384.4 2770.4 60.3 820.0

1500 †[45.6] 7961.1 †3131 [47.6] 10201.0 1898.8 11795.1 †[56.9] 25972.6

2000 †[97.5] 6196.6 †[98] 10282.1 †[98.4] 6091.4 †[73.2] 22182.7

Unit Simplex & d = 6 & α = 0.01

n 500 542.2 4639.2 258.9 2540.5 264.6 1906.9 5.3 59.2

1000 †[89.5] 9098.1 †[91.8] 15183.7 †[92.1] 20069.5 †1890 [4] 15124.4

Table 2: Computational performance of the alternative MIPs for (CutGen−CVaR) under equal probability

case

†: Time limit with integer feasible solution; �: Time limit with no integer feasible solution. B&B Nodes are reported

in hundreds.
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Existing-Special (26) (MIP−CVaR) (MIP VaR Special 2) (MIP− Special) Remaining # of

Time; B&B Time; B&B Time; B&B Time; B&B Binary Order.

[ROG] Nodes [ROG] Nodes [ROG] Nodes [ROG] Nodes Var. (%) Ineq.

n HSBA Data & Base Polytope & α = 0.01

1500 141.4 2580.9 2.9 23.4 1.8 9.8 0.3 0.0 3.6 353.0

2000 †[820.36] 19786.1 16.0 112.5 5.2 33.3 0.7 0.0 4.5 745.0

2500 †[290.89] 14933.2 23.0 160.8 15.2 74.2 1.0 0.0 4.3 1168.5

3000 †[422.16] 13630.5 42.3 245.3 24.3 99.4 1.0 0.0 4.4 1908.5

5000 †[221.54] 5731.1 366.3 1707.8 149.5 521.9 6.7 0.1 4.3 4960.0

n HSBA Data & Base Polytope & α = 0.05

300 106.5 4128.0 1.1 23.2 0.7 5.5 0.1 0.0 19.2 325.0

500 †2175 [71.3] 43351.7 5.3 58.5 1.4 9.7 0.3 0.0 16.2 818.0

1000 †[739.6] 28977.7 55.6 544.3 16.2 122.4 1.4 0.1 15.0 2959.0

1500 †[441] 17373.6 470.9 3461.1 90.9 415.8 2.6 0.0 15.7 7620.5

2000 †[351] 9858.6 768.7 3538.1 171.9 510.9 5.3 0.0 14.9 12656.5

2500 †[269.9] 3967.2 †3021 [9.2] 9700.8 813.0 1932.5 13.6 0.6 15.8 22194.5

3000 †[253.1] 2399.3 †[66.5] 8618.1 1029.1 1809.3 20.7 0.3 15.9 30857.0

5000 †[250.9] 632.4 †[138.5] 2248.4 †[74.7] 1671.8 42.7 0.3 15.5 84272.0

n HSBA Data & Unit Simplex & α = 0.01

500 788.6 32724.9 5.8 83.5 2.4 41.0 0.6 11.3 22.2 170

1000 †[106] 49324.4 105.1 788.0 81.8 640.7 †1847 [14.7] 37653.9 23.9 771.5

1500 †[105.7] 29495.4 374.5 2054.1 290.1 1631.1 †2002 [49.3] 21375.9 21.9 1837.5

2000 †[106.3] 19970.0 1706.1 7224.5 1172.6 4874.4 †[233.3] 27470.6 22.2 3237.5

2500 †[105] 14320.9 †[393.8] 9854.0 †3469 [50] 10137.6 †[1834.8] 15418.6 22.9 5386.5

n HSBA Data & Unit Simplex & α = 0.05

300 †[107] 72202.6 55.2 946.3 39.9 720.5 132.7 4143.7 52.8 761.5

500 †[107.1] 35273.8 473.6 5888.6 352.4 4430.1 †2756 [44.2] 33873.7 53.3 2049

n Random Data & Unit Simplex & d = 4 & α = 0.01

500 58.8 1482.2 2.5 40.3 3.5 54.0 0.7 12.3 17.4 146.0

1000 †[76.1] 67673.1 33.3 321.0 29.9 334.8 6.7 120.9 14.9 547.0

1500 †[89.4] 48570.4 184.2 1573.3 186.2 1819.4 †3514 [2.2] 48577.2 15.0 1261.5

2000 †[89.9] 30300.3 826.3 4878.4 835.4 6774.6 †[58.5] 32174.8 15.2 2287.5

n Random Data & Unit Simplex & d = 6 & α = 0.01

300 22.0 492.4 4.2 63.5 4.2 67.7 0.4 3.5 30.0 52.0

500 †2754 [41.3] 37181.5 50.7 503.8 50.1 706.9 2.0 39.9 31.1 191.0

1000 †[80.6] 48415.9 1810.5 10147.2 1464.9 12522.5 276.4 4806.8 30.5 953.5

Table 3: Computational performance of the alternative enhanced MIPs (fixing, bounding, ordering inequalities)

for (CutGen−CVaR) under equal probability case

†: Time limit with integer feasible solution.

B&B Nodes are reported in hundreds.
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γij − γij+1 ≤ cj − cj+1, ∀ i ∈ [n], j ∈ [d− 1]. (40)

In addition, for this case, M̃ = (1, 1/2, 1/3, 1/4) and Lc = (1/4, 0, 0, 0). In our computational experiments

reported in Table 4, we use the RLT strengthening of the upper bounding inequalities and the ordered preference

constraints defining CBase.

Table 4 demonstrates that the most effective solution method for cut generation under equal probabilities

is to use the formulation (MIP− Special) with all enhancements: fixing, bounding, ordering inequalities on

β, and the RLT-based strengthening using the additional inequalities defining C.

5.2.2 Effectiveness of the new valid inequalities In this section, we study the computational ef-

fectiveness of the proposed valid inequalities (28). Although there are polynomially many inequalities (28),

adding all of them (O(m2n)) into a MIP formulation of (CutGen−Benchmark) may not be effective due

to the large number of scenarios, m and n. Therefore, we implement a branch-and-cut algorithm that adds

inequalities (28) to the MIP formulation as they are violated. To further limit the number of inequalities added,

instead of adding all the violated inequalities (28) for each s and t ∈ [m] \ s, we use a separation algorithm

where we add one violated inequality for the smallest t > s for a given s ∈ [m]. In our implementation, we

consider (MIP− Special) as the base MIP formulation, and add the violated inequalities (28) as user cuts;

this approach to solve (CutGen−Benchmark) is implemented in C language using CPLEX 12.6. Moreover,

we only seek and add the violated inequalities (28) in the root node and every 10,000 branch-and-bound nodes

for the first 50,000 nodes. We test the computational performance of (MIP− Special) with and without the

proposed inequalities. For each approach, one core is used and the dynamic search is turned off. In these exper-

iments, we solve random instances where each component of the vectors X and Y is independently generated

from a discrete uniform distribution on the interval [1,10]. We assume that the number of realizations of X

and Y are equal (i.e., n = m), α = 0.01, and all the outcomes are equally likely.

In Table 5, we report the results - averaged over three instances - on the performance of two approaches.

In both approaches, we also take advantage of two computational enhancements, namely variable fixing and

ordering inequalities. In addition to the columns defined in earlier tables, the “ # of Ineq. (28)” column collects

the number of the proposed inequalities (28) that are added to (MIP− Special). From this column, we see

that only a small subset of inequalities (28) is added. Nevertheless, according to the results, we are still able to

benefit from these inequalities for these instances. However, we note that as we increase d, the effectiveness of

inequalities (28) within a branch-and-cut algorithm decreases. We note that it becomes more effective to use

the base formulation (MIP− Special) for this data set as α increases, or for the HSBA data and the random

data described in Section 5.2.

6. Conclusions In this paper, we study risk-averse models for multicriteria optimization problems under

uncertainty. First, we introduce a model that optimizes the worst-case multivariate CVaR, and develop a finitely

convergent delayed cut generation algorithm for finite probability spaces. In addition, for the cut generation

problem, which is in general a mixed-integer program, we give a stronger formulation for the equiprobable

case using the reformulation linearization technique. Next, we observe that similar polyhedral enhancements

are also useful for a related class of multivariate CVaR-constrained optimization problems that has attracted

attention recently. Our computational study demonstrates the effectiveness of the proposed solution methods

for both classes of models.
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(MIP− Special) (MIP− Special) & Ineq. (28) Remaining # of

d n Time B&B nodes Time B&B nodes # of Ineq. (28) Bin. Var. (%) Order. Ineq.

3

900 51 91260 31 49228 31 53.3 24822

1000 27 39615 17 16984 12 41.0 30975

1100 101.3 349827 36 124928 15 46.9 33412

4

600 44.3 53896 32.7 47387 17 53.0 10924

700 378 779551 358 766937 8 38.1 8457

800 329 382508 292 346429 31 50.1 11065

Table 5: Effectiveness of the valid inequalities (28) for α = 0.01 (with fixing and ordering inequalities)
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Appendix A. Stochastic dominance In this section, we review the well-known stochastic dominance

relations, which are essential for the stochastic Pareto optimality definitions presented in Section 2.

The stochastic dominance relations are fundamental concepts in comparing random variables (Mann and

Whitney, 1947; Lehmann, 1955) and have been widely used in economics and finance (see, e.g., Levy, 1992).

Different from the approaches based on risk measures, in a stochastic dominance based approach, the random

variables are compared by a point-wise comparison of some performance functions (constructed from their

distribution functions when the order is greater than zero). We note that the lower order dominance relations

(k = 0, 1, and 2) are the most common ones (referred to as ZSD, FSD, and SSD, respectively). We provide

the formal definitions below and refer the reader to Müller and Stoyan (2002) and Shaked and Shanthikumar

(1994) for further details.

• We say that a random variable X dominates another random variable Y in the zeroth order if X ≥ Y
everywhere, i.e., X(ω) ≥ Y (ω) for all ω ∈ Ω.

• An integrable random variable X dominates another integrable Y in the first order (or X is stochas-

tically larger than Y ) if F1(X, η) := P(X ≤ η) ≤ F1(Y, η) := P(Y ≤ η) for all η ∈ R.

• For k ≥ 2 we say that a k-integrable random variable X (i.e., ∈ Lk) dominates another k-integrable

random variable Y in the kth order if Fk(X, η) ≤ Fk(Y, η) for all η ∈ R, where Fk(X, η) =∫ η
−∞ Fk−1(X, t) dt for all η ∈ R.

• For k = 0, if X(ω) > Y (ω) for all ω ∈ Ω, we will refer to the relation as “strong ZSD” and denote

it by X �(0) Y . For k ≥ 1, if all the inequalities Fk(X, η) ≤ Fk(Y, η) are strict, then we refer to the

relation as “strong kSD” and denote it by X �(k) Y . We remark that the notion of “strong kSD” is

not analogous to the notion of strict kSD, which requires that at least one of the inequalities defining

the dominance relation is strict.

Appendix B. A class of facets of conv(S). Before we study the facets of conv(S), we first need to

establish its dimension.

Proposition B.1 Conv(S) is a polyhedron with dimension n+ d+m− 1.
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Proof. First, we show that conv(S) is a polyhedron. First, note that the extreme rays of conv(S) can be

enumerated as follows:

δl = (0,0,0, 0, el), ∀ l ∈ [m] (41a)

δm+1 =: (0,0,0,−1,0), (41b)

δm+2 = (0,0,0, 1,1), (41c)

where el is a standard basis vector of an appropriate dimension with the l-th element equal to 1 and all other

elements equal to 0. We have

conv(S) = ∪Hh=1 {(γ, c,β, η,w) | γ = βĉh
>
, (c, η,w) = (ĉh, η̂h, ŵh), β ∈ [0, 1]n,

∑
i∈[n]

βi = k}+

m+2∑
l=1

µlδl,

where (ĉh, η̂h, ŵh) for all h ∈ [H] are the vertices of the polyhedron P (Cf ,Y) (see (35)) for a finite H. In

addition, µl is a non-negative parameter for all l ∈ [m + 2]. From Balas (1998) we know that we can take

the union of these polyhedra parameterized by ĉh, since each polyhedron shares the same recession cone (41).

Hence, we obtain the extended formulation of conv(S) as:

1 =

H∑
h=1

λh, β =

H∑
h=1

βh,

c =

H∑
h=1

ch, γ =

H∑
h=1

γh,

η =

H∑
h=1

ηh +

m+2∑
l=m+1

µlδl,

w =

H∑
h=1

wh +

m+2∑
l=1

µlδl,

γh = ĉhβh, ch = λhĉh, ∀ h ∈ [H]

ηh = λhη̂h, wh = λhŵh ∀ h ∈ [H]∑
i∈[n]

βhi = kλh, ∀ h ∈ [H]

0 ≤ βh ≤ λh, ∀ h ∈ [H]

λ ∈ Rh+, µ ∈ Rm+2
+ .

Therefore, conv(S) is a polyhedron. Next, we show that the dimension of conv(S) is n + d + m − 1. Clearly,

in the original constraints defining S, there are two linearly independent equalities:
∑
j∈[d] cj = 1,

∑
i∈[n] βi =

k. In addition, there are nd implied nontrivial equalities: γij = cjβi, for all i ∈ [n] and j ∈ [d]. Hence,

dim(conv(S)) ≤ n+m+ d− 1.

Consider the following set of points:

(uve
>
1 , e1,uv, 0, 0) ∀ v ∈ [n],

(u1e
>
j , ej ,u1, 0, 0) ∀ j ∈ [d] \ {1},

(u1e
>
1 , e1,u1, 0, el) ∀ l ∈ [m],

(u1e
>
1 , e1,u1,−1, 0),
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where uv, for all v ∈ [n] are any affinely independent vectors with k elements equal to 1 and the remaining

elements equal to 0. These vectors exist because the dimension of the following system:

β ∈ {0, 1}n,
∑
i∈[n]

βi = k, (42)

is n− 1. Clearly, this set of points is feasible and affinely independent. In addition, the cardinality of this set

is n+m+ d. Hence, dim(conv(S)) ≥ n+m+ d− 1, which completes the proof. �

Proposition B.2 For any i ∈ [n], s ∈ [m], and t ∈ [m] \ {s}, inequality (28) is facet-defining for conv(S) if

and only if s ∈ [m], t ∈ [m] \ {s} are such that ysj < ytj and ysi > yti for some i, j ∈ [d].

Proof. To show the necessity, we first note that if there exists a pair s ∈ [m], t ∈ [m] \ {s} such that

ysj ≥ ytj or ysj ≤ ytj for all j ∈ [d], in other words, when the realizations under a scenario are dominated

by the realizations under another scenario, then the corresponding inequality (28) is dominated. To see this,

suppose that ysj ≤ ytj for all j ∈ [d] for some pair ∀ s ∈ [m],∀ t ∈ [m]\{s}. Then the corresponding inequality

(28) is dominated by the original inequality c>ys ≥ η−ws, because the coefficients of γij are ytj−ysj ≥ 0, and

γij , wt ≥ 0. Now consider the case that ysj ≥ ytj for all j ∈ [d] for some pair ∀ s ∈ [m],∀ t ∈ [m] \ {s}. Then

the corresponding inequality (28) is dominated by the original inequality c>yt ≥ η − wt. To see this, observe

that we can rewrite inequality (28) for this choice of s and t as, c>yt+
∑
j∈[d](ysj−ytj)(cj−γij) ≥ η−wt−ws.

It is now easy to see that the inequality is dominated, because ysj − ytj ≥ 0, cj ≥ γij and ws ≥ 0.

To show sufficiency, we need to show that for any given i ∈ [n], s ∈ [m], and t ∈ [m] \ {s}, there are

n+m+ d− 1 affinely independent points that satisfy (28) at equality. From the necessity condition, we only

need to consider the cases for which there exists an index j1 ∈ [d], such that ysj1 < ytj1 , and there exists

an index j2 ∈ [d], such that ysj2 > ytj2 . In order to simplify the notation, and without loss of generality,

throughout the rest of the proof, we let j1 = 1, and j2 = 2, or equivalently, ys1 < yt1, and ys2 > yt2.

First, we construct a set of points:

PT1
v = (uvẽ

>
v , ẽv,uv, ρ

1
v, ξ

1
v), ∀ v ∈ [n], (43)

where if uvi = 0, then ẽv = e1 and ρ1v = ys1, else if uvi = 1, then ẽv = e2 and ρ1v = yt2. In addition,

ξ1vs = ξ1vt = 0, and ξ1vl = max{M̃s, M̃t} for all v ∈ [n] and l ∈ [m] \ {s, t}. Clearly, the set of points defined in

(43) are affinely independent feasible points, and satisfy (28) at equality. Next, we construct a set of points:

PT2
j = (ũje

>
j , ej , ũj , ρ

2
j , ξ

2
j ), ∀ j ∈ [d] \ {1, 2}, (44)

where ũj is any feasible point of (42) with ũji = 0 if ysj ≤ ytj , and ũji = 1 otherwise (i.e., if ysj ≥ ytj), for

all j ∈ [d] \ {1, 2}. In addition, ρ2j = min{ysj , ytj}, for all j ∈ [d] \ {1, 2}. Furthermore, ξ2js = ξ2jt = 0, and

ξ2jl = max{M̃s, M̃t} for all j ∈ [d] \ {1, 2} and l ∈ [m] \ {s, t}. It is easy to see that the set of points defined in

(44) are feasible, affinely independent from (43), and satisfy (28) at equality.

Furthermore, we construct the following set of points:

PT3
s = (ū1e

>
1 , e1, ū1, yt1, ξ

3
s) (45a)

PT3
t = (ū2e

>
2 , e2, ū2, ys2, ξ

3
t ) (45b)

PT3
l = PT3

s + (0, 0, 0, 0, el), ∀ l ∈ [m] \ {s, t}, (45c)
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where ū1 is any feasible point of (42) with ū1i = 0, and ū2 is any feasible point of (42) with ū2i = 1. In addition,

ξ3ss = yt1 − ys1, ξ3st = 0, and ξ3sl = max{M̃s, M̃t} for all l ∈ [m] \ {s, t}. Similarly, ξ3ts = 0, ξ3tt = ys2 − yt2, and

ξ3tl = max{M̃s, M̃t} for all l ∈ [m] \ {s, t}. Clearly, the set of points defined by (45) are affinely independent

feasible points which satisfy (28) at equality.

Finally, we construct the single point:

PT4 = (u1c
∗>, c∗,u1, η

∗, ξ4), (46)

where c∗ = (c∗1, c
∗
2, 0, . . . , 0), and the parameters (c∗1, c

∗
2, η
∗) are uniquely defined by the following linear system:

c∗1 + c∗2 = 1

ys1c
∗
1 + ys2c

∗
2 = η∗

yt1c
∗
1 + yt2c

∗
2 = η∗,

or equivalently, c∗1 = ys2−yt2
ys2−yt2+yt1−ys1 , c∗2 = 1 − c∗1, and 0 < c∗1, c

∗
2 < 1. In addition, ξ4s = ξ4t = 0, and

ξ4l = max{M̃s, M̃t}, for all l ∈ [m] \ {s, t}.

Clearly, PT4 is affinely independent from the points defined by (43), since the following matrix:
1 0 ys1

0 1 yt2

c∗1 c∗2 η∗ = ys1c
∗
1 + ys2c

∗
2

 , (47)

has full rank (due to yt2 < ys2). In addition, it is easy to check that (46) is affinely independent from the

points defined by (44) and (45). Furthermore, it is also a feasible point which satisfies (28) at equality.

From (43)-(46), we obtain n+m+ d− 1 affinely independent feasible points which satisfy (28) at equality.

Hence, inequalities (28) are facet defining.

�
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Burgert, C. and Röschendorf, L. (2006). Consistent risk measures for portfolio vectors. Insurance: Mathematics

and Economics, 38(2):289–297.
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