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1 Introduction and Problem Description

The Electric Vehicle Routing Problem with Time Windows (EVRPTW) was introduced

by [1] as an extension to the Green Vehicle Routing Problem of [2]. It is a variant of the

Vehicle Routing Problem with Time Windows where a fleet of electric vehicles (EVs) is

used instead of internal combustion engine vehicles. Since the EV has a limited driving

range it may need to have its battery recharged at a station en route. In [1], it is assumed

that the battery is fully recharged at any state of charge (SoC) and the duration is linearly

proportional to the amount of energy transferred. The full recharge restriction was later

relaxed in [3]. Furthermore, it is shown that the recharge duration is a concave function

of the energy transferred and charging slows down when the energy level reaches 85% of

the battery capacity [4-6].

The existing literature assumes that recharging at the station starts as soon as the EV

arrives at the station. However, in practice the number of chargers in a station is limited

and they may not be available at the time of arrival. So, the EV may have to queue

before recharging and this waiting time may affect the routing decisions. The waiting

time may vary depending on the location of the station and the time of the visit. Some

variations in the waiting time are difficult to predict. For instance, if a charger is out of

order, the EVs should queue in at another charger, if available, or go to a nearby station.

On the other hand, some waiting time can be foreseen, for example when there are more

vehicles on the roads during the rush hours, which translates in increased demand for

recharging. In this study, we extend the EVRPTW by considering waiting times at the



recharging stations. We assume an M/M/1 queueing system and use expected waiting

times to predict the queue lengths. We also use a nonlinear charging function and allow

late arrivals at the customers and the depot with penalties. Moreover, we assume that the

battery is operated between 10% and 90% of its capacity since it degrades faster beyond

these limits [5]. Recently, [7] has addressed a similar environment where the stations

have limited number of chargers (1, 2 or 3) and an EV may need to wait for service if

the chargers are busy recharging other EVs in the fleet. In this problem, the use of the

chargers depends on the routing and charging decisions made, whereas in our setting the

queue lengths are independent from our fleet, such as is the case at public stations.

In this context, we split the planning horizon (usually a day) into a predetermined

number of time intervals such as morning, afternoon, evening, and night, and the average

queue lengths at the stations vary according to the arrival time. We assume different EV

arrival rates depending on the time of the day, e.g. the stations are less busy in the morning

since the EVs depart with a full battery whereas the energy on the battery is usually

consumed in the afternoon or evening, hence the EVs need recharging to continue their

routes. The routing decisions are then made according to these time-dependent waiting

times at the recharging stations. The objective is to minimize a total cost function which

includes the energy cost, cost of vehicles, driver wages, and penalties associated with time

window violations at the customers and the depot.

2 Solution Methodology

We assume that each recharging station is equipped with a single charger. The arrivals

are Poisson with mean λ, and the service times follow an exponential distribution with

parameter µ. We apply a first come first served queue discipline where the first in first

out property holds, i.e. the vehicles leave the station in the order they have arrived.

Our solution approach is a matheuristic which integrates the Adaptive Large Neighbor-

hood Search (ALNS) method with an exact method. ALNS is a metaheuristic framework

that iteratively destroys a solution and then repairs it using a greedy heuristic [8]. It has

been successfully applied for solving various VRP variants in the recent literature. It uses

several operators to destroy and repair the solution which are selected adaptively based

on their past performances in improving the solution. In this study, we use the customer

removal and insertion operators introduced in [3]. The repaired solution is accepted ac-

cording to a simulated annealing criterion which allows the acceptance of worse solutions

with a certain probability. Furthermore, we optimize the charging station selection and

recharge quantity decisions of the vehicles by solving a mixed integer program using a

commercial solver every after a predetermined number of iterations ∆. Basically, the best

solution obtained in the last ∆ iterations is further enhanced by optimizing charging de-



cisions while preserving the sequence of the customers. To solve this fixed-route problem

fast, we formulate an effective mathematical model.

3 Experimental Results

To validate the performance of the proposed approach, we perform experiments using

36 small instances generated by [1]. We compare our results with those obtained with

CPLEX. The service rate µ is calculated as explained in Section 1. We assume λ = µ/3

for the least busy time interval and set the arrival rate λt in time interval t randomly by

multiplying λ with a positive scalar. All stations are assumed to have the same arrival

rates for each time interval. Finally, the average waiting time at a station in time interval

t is calculated as wt = λt/µ(µ − λt). ∆ is set to 200 and matheuristic terminates after

10,000 iterations. All experiments are conducted on an Intel Xeon E5 3.30 GHz processor

and 32 GB of RAM. The mathematical model and the matheuristic are coded in Java and

solved by CPLEX 12.6.2 with default settings.

Table 1: Results on Small Size Instances

CPLEX Matheuristic CPLEX Matheuristic

Instance Cost Time Cost Time Instance Cost Time Cost Time

C101C10 3562.18 2233 3562.18 10 C103C15 3589.52 7200 3583.61 26

C104C10 2348.00 7200 2347.63 31 C106C15 3476.10 7200 3476.10 30

C202C10 3904.82 7200 3904.82 38 C202C15 4576.78 7200 3988.89 118

C205C10 3417.17 160 3417.17 25 C208C15 3753.73 7200 3753.73 125

R102C10 1611.83 7200 1608.37 12 R102C15 2313.14 7200 2313.14 20

R103C10 1271.70 7200 1271.70 11 R105C15 2185.12 7200 2185.05 16

R201C10 1289.27 6272 1289.27 48 R202C15 1738.07 7200 1660.70 110

R203C10 1319.45 7200 1319.45 55 R209C15 1494.19 7200 1487.39 130

RC102C10 2211.27 7200 2211.27 8 RC103C15 2342.45 7200 2342.45 10

RC108C10 2073.69 7200 2073.69 9 RC108C15 2147.50 7200 2147.50 14

RC201C10 1605.90 7200 1605.90 29 RC202C15 1943.72 7200 1934.67 86

RC205C10 1534.29 7200 1534.29 26 RC204C15 1409.21 7200 1368.43 140

The results are reported in Table 1. The computation times are given in seconds. We

set the time limit for CPLEX to 7200 seconds. So, if the computation time of CPLEX is

less than this limit, the solution is optimal; otherwise, it is the best upper bound found.

The matheuristic solutions are the best of 10 runs whereas the computational times are

average of 10 runs. Since both CPLEX and our method found the optimal solution in all 5-

customer instances, we did not include them in the table. On average, the optimal solutions

are attained in 206.8 and 10.7 seconds by CPLEX and the matheuristic, respectively. In

10-customer instances, the matheuristic provides better solutions in two instances which

are highlighted in bold. In the remaining 10 instances, CPLEX and the matheuristic find

the same solutions but CPLEX run times are significantly more and reach the time limit



in most of the cases. In 15-customer instances the matheuristic achieves better solutions

in 7 out of 12 instances. Furthermore, the run time is significantly better than CPLEX

for all cases. Overall, we can claim that the proposed method outperforms CPLEX both

in solution quality and computational time.

In conclusion, the proposed approach is effective in solving all small size instances. Our

future work will concentrate on testing its performance on large instances under various

scenarios of queue characteristics.
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[3] M. Keskin, B. Çatay, “Partial recharge strategies for the electric vehicle routing prob-

lem with time windows”, Transportation Research Part C: Emerging Technologies, 65:

111-127, 2016.

[4] T.M. Sweda, I.S. Dolinskaya and D. Klabjan, “Optimal recharging policies for electric

vehicles”, Transportation Science, 51(2), 457-479, 2017.

[5] S. Pelletier, O. Jabali, G. Laporte, M. Veneroni, “Battery degradation and behaviour

for electric vehicles: Review and numerical analyses of several models”, Transporta-

tion Research Part B: Methodological, 103, 158-187, 2017.
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