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© Ertunç Erdil 2017

All Rights Reserved

iii



Acknowledgments

I feel very lucky to have many great people to acknowledge. The accomplish-

ments in this dissertation would not be possible without their support and guidance.

First, and foremost, I was very fortunate to have Dr. Mujdat Cetin as my

advisor. Many pages of acknowledgement would not be enough to express my sincere

gratitude to him. He has tremendous contribution in the technical content of this

dissertation and my technical skills. More importantly, he has helped me to gain

a new perspective and vision which I will use in my future career. I was also very

fortunate to have Dr. Devrim Unay as my co-advisor. I thank to him for giving

me the opportunity to work in dendritic spine project. I want to thank to other

members of my dissertation committee, Dr. Tolga Tasdizen for his valuable feedback

and discussion in every stage of this dissertation, Dr. Sinan Yildirim for helping me

to learn and develop MCMC methods, Dr. Selim Balcisoy and Dr. Ender Konukoglu

for a careful evaluation of my work and their useful feedback.

It was a pleasure to me being a member of SPIS lab. I am really thankful to

my friends in SPIS lab for the great times we spent together. I am also indebted

to all of my friends for their endless support during the course of my work. I thank

TUBITAK for providing financial support to my Ph.D.

Finally, I am grateful to my family for their encouragement, support and pure

love.

iv



BAYESIAN METHODS FOR SEGMENTATION OF OBJECTS FROM

MULTIMODAL AND COMPLEX SHAPE DENSITIES USING STATISTICAL

SHAPE PRIORS

Ertunç Erdil
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Abstract

In many image segmentation problems involving limited and low-quality data, em-

ploying statistical prior information about the shapes of the objects to be segmented

can significantly improve the segmentation result. However, defining probability

densities in the space of shapes is an open and challenging problem, especially if

the object to be segmented comes from a shape density involving multiple modes

(classes).

In the literature, there are some techniques that exploit nonparametric shape

priors to learn multimodal prior densities from a training set. These methods solve

the problem of segmenting objects of limited and low-quality to some extent by per-

forming maximum a posteriori (MAP) estimation. However, these methods assume

that the boundaries found by using the observed data can provide at least a good

initialization for MAP estimation so that convergence to a desired mode of the pos-

terior density is achieved. There are two major problems with this assumption that

we focus in this thesis. First, as the data provide less information, these approaches

can get stuck at a local optimum which may not be the desired solution. Second,

even though a good initialization directs the segmenting curve to a local optimum



solution that looks like the desired segmentation, it does not provide a picture of

other probable solutions, potentially from different modes of the posterior density,

based on the data and the priors.

In this thesis, we propose methods for segmentation of objects that come from

multimodal posterior densities and suffer from severe noise, occlusion and missing

data. The first framework that we propose represents the segmentation problem

in terms of the joint posterior density of shapes and features. We incorporate

the learned joint shape and feature prior distribution into a maximum a posteri-

ori estimation framework for segmentation. In our second proposed framework, we

approach the segmentation problem from the approximate Bayesian inference per-

spective. We propose two different Markov chain Monte Carlo (MCMC) sampling

based image segmentation approaches that generates samples from the posterior

density. As a final contribution of this thesis, we propose a new shape model that

learns binary shape distributions by exploiting local shape priors and the Boltz-

mann machine. Although the proposed generative shape model has not been used

in the context of object segmentation in this thesis, it has great potential to be used

for this purpose. The source code of the methods introduced in this thesis will be

available in https://github.com/eerdil.
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Özet

Sınırlı ve düşük kaliteli görüntüler ieren bir çok bölütleme probleminde bölütlenecek

nesne ile ilgili istatistiksel şekil ön bilgisini kullanmak bölütleme sonuçlarını önemli

derecede iyileştirmektedir. Ancak, şekil uzayında olasılık yeğinlik fonksiyonunun

tanımlanması, özellikle şekil çok doruklu bir şekil yeğinlik fonksiyonundan geliyorsa,

zorlu ve araştırmaya açık bir problemdir.

Literatürde parametrik olmayan şekil ön bilgisinden yararlanarak bir eğitim

kümesinden şekil önsel dağılımını öğrenen yöntemler bulunmaktadır. Bu yöntemler,

sınırlı ve düşük kaliteli veride bulunan nesneleri sonsal dağılımın en büyüğü kestirimi

yöntemi ile bölütler. Ancak bu yöntemler, veriden gelen bilgi ile bulunan bölütleme

sınırlarının, sonsal dağılımın en büyüğü kestirimi sonsal dağılımın istenilen doruğuna

yakınsayacak şekilde iyi bir ilklendirme olduğu kabullenmesini yapar. Bu kabullenme

ile ilgili iki temel problem vardır. Birinci problem, veri kötüleştikçe bu yöntemlerin

istenen çözüm olmama ihtimali olan bir yerel en iyi çözümünde takılı kalmasıdır.

İkinci problem, ilklendirmenin iyi olduğu durumda istenilen yerel en iyi çözüme

gidilse bile, sonsal dağılımın farklı doruklarındaki diğer olası çözümler ile ilgili bir

bilgi vermemesidir.



Bu tezde, çok doruklu sonsal dağılımlardan gelen şekillerin verinin yeterince iyi

olmadığı durumlarda bölütlenmesi için yöntemler önermekteyiz. Önerdiğimiz ilk

yöntem bölütleme problemini şekil ve öz nitelik ortak sonsal dağılımı olarak temsil

eder. Bir eğitim veri kümesinden öğrenilen ortak şekil ve öz nitelik önsel dağılımı

kullanılarak sonsal dağılımın en büyüğü kestirimi yöntemi ile bölütleme sonucu elde

edilir. İkinci olarak bölütleme problemine Bayesçi çıkarım bakış açısından bakmak-

tayız. Bu tezde Markov zinciri Monte Carlo örneklemesi tabanlı, sonsal dağılımdan

örnekler üreten iki farklı yöntem önermekteyiz. Bu tezdeki son katkı olarak ikili

şekil dağılımlarını, yerel şekil ön bilgisi ve Boltzmann makinasından yararlanarak

öğrenen yeni bir şekil modeli önermekteyiz. Bu tezde, üretici modeller bölütleme

problemi için kullanılmamış olsa da bu amaçla kullanılabilmeleri mümkündür. Bu

tezde tanıtılan yöntemlerin kaynak kodları https://github.com/eerdil adresinde

erişime açık olacaktır.
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Chapter 1

Introduction

Image segmentation can be defined as the process of grouping meaningful re-

gions in a given image and it is one of the most fundamental problems in image

processing and computer vision. The output of segmentation can be used for var-

ious applications ranging from object detection to medical image analysis. In this

thesis, we consider challenging problems in which the observed image data alone

are insufficient for effective segmentation and need to be supplemented with other

pieces of statistical information about the shapes or other features of the objects

to be segmented. With this perspective, we develop new Bayesian methods for seg-

mentation of objects from multimodal and complex shape densities using statistical

shape and feature priors.

1.1 Recent work on image segmentation

There have been significant efforts for developing general purpose segmentation

algorithms in the literature. Some of these attempts are based on edge detection [4]

[5] [6], graph theory [7] [8] and active contours [9]. Edge detection based methods

start segmentation by detecting edges. In general, detected edges include those of

fragmented and redundant ones. Edge detection based approaches then convert

these types of edges to form a closed contour which is expected to be the ultimate

segmentation. Graph theory based segmentation approaches form a weighted graph

where nodes of the graph correspond to image pixels and weights correspond to the

likelihood of the pixels at both ends being in the same region. Once the graph is

constructed, the segmentation is found by finding a cut that minimizes the cost of
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the cut. A common choice for the cost function is the sum of the weights on the cut.

As the optimization process is generally NP-hard, approximation to the optimal

solution is preferred rather than the analytic solution [8].

In this thesis, we focus on active contour based image segmentation methods.

The idea of active contours was first proposed by Kass et al. [9]. The initial approach

represents the boundary between regions as a closed contour which is evolved until it

converges to the boundary of the desired region. The segmentation problem is often

represented as an optimization problem where a cost function that depends on the

evolving contour is minimized to obtain the ultimate segmentation. Active contour

based methods have two major advantages over the edge detection and graph theory

based methods. First, active contour based methods do not require an explicit effort

to sustain a closed curve. Second, optimization of a cost function can be performed

in polynomial time. Active contour based methods have become more popular after

level set methods have been introduced by Osher and Sethian [10] [11]. By using

level set methods, boundaries with complex geometries and topological changes can

be handled during the curve evolution process in a natural way and automatically.

The initial active contour based approach of Kass et al. [9] uses a simple assumption

about the curve length as a prior. Later, more complicated shape priors have been

proposed in the active contour framework such as the ones in [1, 12–17]. In [15]

and [16], shape variability is captured using PCA on signed distance functions of

level sets. However, these techniques work well only when the shape variation is

small due to their use of PCA. Therefore, they cannot handle multimodal shape

densities. In order to learn multimodal shape densities, Kim et al. [1] and Cremers

et al. [17] proposed nonparametric density estimation based shape priors using level

sets to handle multimodal shape densities. Various extensions and applications of

these methods that exploit nonparametric shape priors can be found in [2, 18–21].

1.2 Motivation for and highlights of the proposed

methods

In this thesis, we propose novel active contour based image segmentation meth-

ods that exploits nonparametric shape priors. Let us consider the problem of seg-
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menting a noisy and partially occluded digit shown in Figure 1.1(a). Segmentation

of such images that suffer from missing data, occlusion, or severe noise requires a

prior knowledge about the shape to be segmented. Otherwise, when there is no

prior shape information, segmentation based on the information obtained from data

results in a segmentation similar to the one shown in Figure 1.1(b). Given some

shape samples from each digit class, segmentation approaches that uses nonpara-

metric shape priors can learn the prior shape distribution from the training data and

incorporate this information into the segmentation process together with the infor-

mation that comes from data. Those approaches produce successful segmentation

results when the information provided by data is limited. The segmentation result

of an approach that exploits nonparametric shape priors produces segmentations

similar to the one shown in Figure 1.1(c)

(a) Test image. (b) Data driven

segmentation.

(c) Segmentation

using nonpara-

metric shape

priors.

Figure 1.1: A toy example that shows advantages of using nonparametric shape

priors.

The state-of-the-art segmentation methods that use nonparametric shape priors

produce poor segmentation results when the information obtained from data is less

and shapes in different classes are similar to each other in terms of a particular

distance metric. Let us consider the visual example shown in Figure 1.2. In this

example, given the training set shown in Figure 1.2(a), a nonparametric shape priors

based approach produces segmentation results from the same class for test images

from different classes (see Figure 1.2(c)). In this example, using only shape priors

is not sufficient to produce correct segmentations. This motivates us to develop a

segmentation algorithm that exploits some class-related features together with the

nonparametric shape priors to achieve better segmentation results. The proposed
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approach generates segmentations from correct classes for each test image as shown

in Figure 1.2(d).

Class 1 Class 2

(a) Training Set.

(b) Test Image. (c) Segmentation using non-

parametric shape priors.

(d) Proposed approach.

Figure 1.2: The first motivating example.

In the literature, the segmentation methods that use nonparametric shape priors

represent the segmentation problem in Bayesian framework and perform maximum

a posteriori estimation on the resulting posterior density. In other words, these

approaches return a single segmentation solution at a local optimum. This does

not provide a measure of the degree of confidence in that result, neither does it

provide a picture of other probable solutions based on the data and priors. With

a statistical view, addressing these issues would involve the problem of character-

izing the posterior densities of the shapes of the objects to be segmented. This

motivates us to develop Markov chain Monte Carlo (MCMC) sampling-based image

segmentation algorithms that use nonparametric shape priors. Our sampling-based

segmentation approaches can generate multiple solutions from different modes of the

posterior density. Going back to the segmentation problem shown in Figure 1.1(a),

our sampling-based approaches produce segmentations from different digit classes

as shown in Figure 1.3.
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Figure 1.3: The second motivating example.

1.3 Contributions of this thesis

In this section, we briefly decribe the contributions of this thesis:

• We propose a novel segmentation algorithm that exploits nonparametric shape

and feature priors for object segmentation where the object to be segmented

comes from a multimodal shape density. Unlike the state-of-the-art methods

that perform segmentation using nonparametric shape density estimation, we

exploit learned discriminative class-dependent features extracted from specific

parts of the scene and incorporate the joint shape and feature density into the

segmentation process.

This work has been done in collaboration with M. Usman Ghani, Lavdie Rada,

A. Ozgur Argunsah, Devrim Unay, Tolga Tasdizen and Mujdat Cetin.

• We propose a novel Markov chain Monte Carlo shape sampling approach for

image segmentation using nonparametric shape priors. To the best of our

knowledge, this is the first MCMC sampling-based approach that exploits

nonparametric shape priors and level sets.

This work has been done in collaboration with Sinan Yildirim, Tolga Tasdizen

and Mujdat Cetin.

• We propose a novel pseudo-marginal Markov chain Monte Carlo shape sam-

pling approach for image segmentation. To the best of our knowledge, pseudo-

marginal sampling has not been used in the literature for image segmentation

before. Moreover, unlike the existing MCMC sampling-based segmentation

methods in the literature, the proposed approach perfectly satisfies necessary

conditions to implement MCMC sampling; this is very crucial to ensure that

the generated samples come from the desired density.
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This work has been done in collaboration with Sinan Yildirim, Tolga Tasdizen

and Mujdat Cetin.

• We propose a novel shape model called Disjunctive Normal Shape Boltzmann

Machine (DNSBM) to learn a binary shape distribution. The proposed ap-

proach exploits the property of the Shape Boltzmann Machine [22] for learning

complex binary shape distributions and the property of Disjunctive Normal

Shape Model (DNSM) [23] for representing local shape parts. DNSBM can

learn shape distributions when the training set is limited and generate valid

and novel samples. Although, DNSBM has not yet been applied to segmenta-

tion, the shape model has the potential to be used in a segmentation pipeline.

This work has been done in collaboration with Fitsum Mesadi, Tolga Tasdizen

and Mujdat Cetin.

1.4 Thesis organization

This thesis is organized as follows:

1.4.1 Chapter 2: Background

In this chapter, we give an overview of the concepts that are necessary for un-

derstanding the background of this thesis. These include nonparametric density

estimation, Markov chain Monte Carlo methods, and level set methods.

1.4.2 Chapter 3: Nonparametric Joint Shape and Feature

Priors for Image Segmentation

In this chapter, we propose a novel segmentation algorithm that exploits non-

parametric joint shape and feature priors. First, we provide an overview the related

work in the literature. Second, we give our motivation and contributions. Then, we

introduce the proposed approach and present the experimental results. Finally, we

conclude and briefly mention potential directions for future work.
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1.4.3 Chapter 4: Markov Chain Monte Carlo Sampling-

based Methods for Image Segmentation with Non-

parametric Shape Priors

In this chapter, we propose two novel Markov chain Monte Carlo sampling-based

approaches that exploits nonparametric shape priors for image segmentation. First,

we describe a non-exhaustive survey of the existing MCMC sampling-based im-

age segmentation methods. Second, we give our motivation for developing MCMC

sampling-based segmentation approaches with nonparametric shape priors. In the

following two sections, we present the proposed approaches together with the tech-

nical details and experimental results of each piece of work.

1.4.4 Chapter 5: Disjunctive Normal Shape Boltzmann Ma-

chine

In this chapter, we propose a novel shape model for learning binary shape dis-

tributions called Disjunctive Normal Shape Boltzmann Machine. First, we briefly

introduce existing models in the literature that have potential to learn binary shape

distributions. Then, we describe our motivation for developing the proposed shape

model and our contributions in this work. Later, we introduce the proposed shape

model. Finally, we present experimental results, conclusion, and future work.

1.4.5 Chapter 6: Conclusion

In this chapter, we conclude by revisiting the contributions of this thesis. We

also indicate possible research directions for future work motivated by the open

problems of relevance.
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Chapter 2

Background

In this chapter, we give an overview of the concepts that are necessary for un-

derstanding the background of this thesis. In particular, this chapter covers level

set methods, nonparametric density estimation, and Markov chain Monte Carlo

(MCMC) methods.

2.1 Level set methods

Curve evolution approaches are generally based on minimizing an energy func-

tion, E(c), of segmenting curve c. This is usually achieved by updating an initial

curve c with the gradient of E(c) until convergence. Shape representation is crucial

when implementing curve evolution.

There are two approaches for the numerical implementation of a curve evolu-

tion: Lagrangian and Eulerian (fixed coordinate system). A Lagrangian approach

first divides the boundary into discrete segments and evolves these discrete points

(marker points). This is the most intuitive approach, however, it brings a number

of problems. First, a Lagrangian approach requires very small time steps for stable

evolution of the boundary [11]. Moreover, in the case of topological changes such

as constructing a hole within a closed shape, it requires complicated procedures.

On the other hand, an Eularian approach called the level set method can avoid the

stability problem and can naturally handle topological changes.

Level set is a widely used shape representation to implement curve evolution

based segmentation methods [11]. Level set methods are numerical techniques for

tracking evolving surfaces which can handle topological changes such as holes and
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shapes with multiple unconnected components. When using level sets for curve

evolution in image segmentation, we expect to evolve the curve towards the region

that we want to segment. This is achieved by initializing a curve somewhere in the

image and evolving it with the gradient of an energy function until convergence.

Level set methods use an implicit representation of the curve by operating on a

function in one dimension higher.

Let us consider a closed curve c ∈ R
2 that divides the image domain Ω into

three parts: the region inside the curve R, the region outside the curve Rc and the

boundary c. The idea of level set representation proposed by Osher and Sethian [11]

is to define a smooth function φ(x) such that φ(x) = 0 represents the boundary C.

This function φ is called as a level set function and has the following property:

φ(x) < 0, x ∈ R

φ(x) > 0, x ∈ Rc

φ(x) = 0, x ∈ c

(2.1)

Note that there are many level set functions given a boundary c. However, given a

level set function, the boundary can be uniquely determined.

In order to model curve evolution, it is a common practice make the level set a

function of time as well as space. Following this practice, we can write the level set

function as φ = φ(x, t) where t indicates artificial time. Then, the curve c at a given

time t becomes the isocontour of φ at zero level, i.e. c(t) = {x : φ(x, t) = 0}.
We can define the level set function as φ : Ω × [0,∞) → R where Ω indicates

the image domain and [0,∞) indicates the time domain. The level set function is

initialized at time zero and evolved in time until it stops.

As we mentioned above, there are many level set functions that indicate the

same boundary c. In practice, the level set function is generally constructed using

the signed distance function as

φ0 = φ(x, t = 0) = ±d. (2.2)

In Equation 2.2, ±d is the signed Euclidean distance from each point x ∈ Ω to

the closest point on the boundary c. If x ∈ R, the sign of the Euclidean distance is
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negative and if x ∈ Rc the sign of the Euclidean distance is positive. By definition,

Euclidean distance is zero if x ∈ c and the motion of the curve is described by

matching the new curve to the zero isocontour of the level set function. The level

set value of a point, x, on c is always zeros as the curve propagates:

φ(x, t) = 0. (2.3)

Differentiating the above equation with respect to t, we obtain

φt(x, t) +∇φ(x, t) · ∂x
∂t

= 0 (2.4)

where, φt is the partial derivative of φ with respect to t. Let us also define a

function called the speed function F that drives the curve to the desired location.

More specifically, F is the speed in the outward normal direction to the level set

interface. Then, we can write F as

F =
∂x

∂t
·N (2.5)

where

N =
∇φ

|∇φ|
is the outward unit normal to the level set function φ.

We can rewrite Equation 2.4 as

φt +
∇φ

|∇φ|
∂x

∂t
|∇φ| = 0

φt + (
∂x

∂t
N)|∇φ| = 0. (2.6)

Note that we have

∂x

∂t
= F.N

Then, we can write Equation 2.6 as

φt + F.|∇φ| = 0. (2.7)

If φ is a signed distance function, it satisfies the Eikonal equation [24]

|∇φ| = 1.
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In this case, the outward normal vector is written as

N = ∇φ. (2.8)

Using signed distance functions have some useful features such as simplifying

computations of several quantities and allowing more stable computations. When

implementing a curve evolution framework with level sets, numerical errors can

accumulate in each update of the level set function and signed distance properties

are not retained. To avoid these problems, it is a good practice to reinitialize the

level set function to a signed distance function during curve evolution [25] [26].

As we mentioned above, an initial level set φ0 is updated in time using the

speed function at the corresponding time point and the outward normal direction.

Therefore, given φt the task is to find the update after some time increment ∇t that

produces φt+1. This is achieved by the Euler method [26] by approximating φt at

time t as

φt =
φt+1 − φt

∇t
. (2.9)

Finally, by plugging the above equation into Equation 2.7, we get the following

update equation for the level set function in time

φt+1 = φt −∇t(Ft.|∇φt|) (2.10)

where Ft and |∇φt| indicate the speed function and the magnitude of the level set

function at time t, respectively.

In our discussion about level set methods above, we assumed that the level set

function φ is updated on the grid points in the image domain. Chopp [27] proposed

an approach called narrowband method to implement level sets. The proposed

approach updates the level set function only at the grid points that are within a

certain neighborhood of the zero isocountour. Such points construct a band around

the zero level set. We refer the reader to consult the following references for a more

detailed information about narrowband methods [28] [10] [11].

2.2 Nonparametric density estimation

Probability density functions have been heavily involved in many statistical anal-

ysis problems. For example in Bayesian inference, the posterior density is computed
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by using likelihood and prior probability densities. For a particular problem, under-

lying densities can be used for statistical analysis if they are already known.

The task of density estimation can be divided into two main categories: para-

metric and nonparametric. Parametric density estimation basically makes an as-

sumption about the underlying density where the mathematical structure of the

density is already known, e.g., Gaussian. Then, the task of parametric density esti-

mation is to find the unknown parameters of this particular density, e.g., mean and

variance of a Gaussian density. Although parametric density estimation methods

are computationally efficient, the assumption about the underlying density may not

hold in general in real applications. On the other contrary, nonparametric density

estimation methods do not make any assumptions about the underlying probability

density. Instead, they learn from a density with unknown structure. Nonpara-

metric density estimation methods suffer from large computational costs, however,

they have much more potential to model unknown densities than parametric density

estimation methods.

In the following section, we introduce a nonparametric density estimation method

called Parzen density estimator. In this thesis, we use Parzen density estimation to

estimate shape densities for image segmentation tasks.

2.2.1 Parzen density estimator

The idea of nonparametric density estimation was originally proposed by Parzen

[29], Rosenblatt [30] and Cacoullos [31]. In nonparametric density estimation, the

problem is to estimate an unknown underlying density p(x) from N i.i.d. samples

x1, x2, . . . , xN drawn from p(x).

Parzen density estimation is a kernel-based density estimation approach given

by

p̂(x) =
1

N

N∑

i=1

1

σ
k(

x− xi

σ
) (2.11)

where k(.) is called a kernel function which satisfies

∫
k(x)dx = 1, k(.) ≥ 0.
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The parameter σ is called kernel size, bandwidth, or smoothing parameter. It is

very common practice to use a Gaussian density as the kernel in Parzen density

estimation, in which case the estimator becomes:

p̂(x) =
1

N

N∑

i=1

k(x− xi, σ) (2.12)

where

k(x, σ) =
1√
2πσ2

exp−x2/(2σ2) .

Kernel size is a crucial parameter in Parzen density estimation. By playing with

the shape and size of the kernel, different density estimates can be obtained. For

example, a larger kernel size will produce a more smooth density estimate whereas

a small one will make the density more peaky. For an accurate estimation of the

density, it is known that proper choice of the kernel size is more important than the

choice of kernel shape [32].

Asymptotically, a good kernel size is expected to decrease as the number of

samples grow. In particular, Parzen [29] demonstrated that the following conditions

are necessary for asymptotic consistency of the density estimator:

lim
N→∞

σ = 0,

lim
N→∞

Nσ = ∞,
(2.13)

In general, for a d-dimensional random vector, it is known that σ = cN−1/(d+4) is

asymptotically optimal in density estimation for some constant c [33] [32]. However,

for finite N , asymptotic results give little guidance for choosing σ. In this case, we

need to use data to determine the kernel size. One possible criterion for kernel size

is that of minimizing Kullback-Leibler (KL) divergence D(p||p̂) [34]. Minimizing KL

divergence with respect to kernel size σ is equivalent to maximizing

∫
p(x) log p̂(x)dx.

Since we do not know the true density p in advance, we maximize an estimate of

this quantity:
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∫
p(x) log p̂(x)dx = Ep[log p̂(X)]

≈ 1

N

N∑

i=1

log p̂(xi)

(2.14)

Thus the following ML kernel with leave one out becomes a good choice for kernel

size σ:

σML = argmax
σ

∑

i

log p̂(xi)

= argmax
σ

∑

i

log
1

N − 1

∑

j 6=i

1

σ
k(

x− xi

σ
)

(2.15)

2.3 Markov chain Monte Carlo (MCMC) meth-

ods

In this section, we provide a brief introduction to Markov chain Monte Carlo

methods.

2.3.1 Motivation for Monte Carlo sampling

The idea of Monte Carlo was first proposed by Metropolis and Ulam in [35]. We

also refer reader to consult the references in [36] and [37].

Let us assume that we are given a set of N ≥ 1 samples X1, . . . , XN where

Xi ∈ X ⊂ R
d for some d ≥ 1. Note that the samples are independent and identically

distributed (i.i.d.) from an unknown distribution P for a random variable X , i.e.,

X1, . . . , XN
i.i.d.∼ P.

Let us further assume that we are expected to compute an estimate of the ex-

pectation (mean value) of X with respect to P using the samples X1, . . . , XN drawn

from P . Given a probability density function, p(x), of P , we can write the expected

value as follows:

EP (X) =

∫

X

xp(x)dx. (2.16)
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An estimate of the expected value can be obtained using the samples as follows:

EP (X) ≈ 1

N

N∑

i=1

Xi. (2.17)

Analogously, we can estimate the expectation of a certain function Φ : X → R

with respect to P as

P (Φ) = EP (Φ(X)) =

∫

§

Φ(X)p(x)dx. (2.18)

Then, the estimator of the function Φ can be written as the mean of samples eval-

uated at Φ,

EP (Φ(X)) ≈ 1

N

N∑

i=1

Φ(Xi). (2.19)

Note that the problem of estimating the mean of a function with respect to P is the

generalization of estimating the mean of X with respect to P , this special case is

obtained when Φ(X) = X .

When we do not know anything about P but have samples from it, we can

estimate the quantity in Equation (2.19). In the case that we explicitly know P , we

can exactly calculate the expected value using Equation (2.18).

In this thesis, we deal with problems in which we know P up to some extent

but we are not given any samples from it. In this scenario, we can generate i.i.d.

samples from P as many as we want. However, we cannot compute the integral in

Equation (2.18) or it takes a really long time to compute that we do not want to do.

In such cases, the integral is said to be intractable. Therefore, the only option is to

generate i.i.d. samples from P to estimate the quantity in Equation (2.19). This

simple approach constructs the basis of Monte Carlo methods. Once the samples

from a distribution is generated, there is no need to deal with intractable integrals

to find an estimate. This brings us to the problem of generating samples from P .

In many problems, sampling from P is not a trivial task. In the literature, there

are some methods that exactly generate samples from P . These are the method of

inversion [36] [38] and the rejection sampling method [36] [39].

In many real applications, it is very rare to be able to generate exact samples

from the desired distribution. We generally encounter with this scenario in Bayesian
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inference where the distribution that we want to sample from is the posterior dis-

tribution of some variable X given Y = y which can be written as follows:

pX|Y (x|y) =
pX(x)pY |X(y|x)∫
pX(x′)pY |X(y|x′)dx′

=
pX,Y (x, y)∫
pX,Y (x′, y)dx′

∝ pX(x)pY |X(y|x)

(2.20)

In general, pX|Y (x, y) is either too costly or impossible to perform one of the exact

sampling algorithms. Therefore, majority of the efforts have been spent to generate

approximate samples in the literature. In this thesis, we exploit from a family of

such methods called Markov chain Monte Carlo (MCMC) which we briefly survey

in the following section.

2.3.2 Markov chain Monte Carlo (MCMC) methods

An MCMC method is based on a discrete-time ergodic Markov chain which

has its stationary distribution as π. There are two widely used MCMC sampling

approaches in the literature: Metropolis-Hastings sampling [40] [41] and Gibbs sam-

pling [42] [43].

Markov chain

A stochastic process {Xn}n≥1 on X is said to be a Markov chain if its probability

law defined from the initial distribution η(x) and a sequence of Markov transition

kernels (probabilities, densities) {Mn(x
′|x)}n≥2 define the finite dimensional joint

distribution as

p(x1, . . . , xn) = η(x1)M2(x2|x1) . . .Mn(xn|xn−1)

for all n ≥ 1.

The random variable Xt is called the state of the chain at time t and X is the

state-space of the chain.

The definition of the Markov chain leads to the characteristic property of a

Markov chain which is called as the weak Markov property. The property states that
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the current state of the chain at time n conditioned on its entire history depends

only on the previous state at time n− 1 which can be written as follows:

p(xn|x1:n−1) = p(xn|xn−1) = Mn(xn−1, xn).

Metropolis-Hastings sampling

The Metropolis-Hastings algorithm requires a Markov transition kernel Q on X
to propose new values from the old ones. Let us assume that q(.|x) is the density

of Q(.|x) for any x. A candidate value for xn given the previous sample xn−1

is proposed as x′ ∼ q(xn|xn−1). The candidate sample x′ is accepted with the

acceptance probability α(xn−1, x
′) where the function α : X × X → [0, 1] is defined

as

α(x, x′) = min

{
1,

π(x′)q(x|x′)

π(x)q(x′|x)

}

where x, x′ ∈ X . If the acceptance probability α(x, x′) is above the threshold u

where u ∼ U(0, 1) the candidate x′ is accepted such that xn = x′. Otherwise, the

candidate is rejected and xn is assigned to the next state as xn = xn−1.

The Metropolis-Hastings algorithm is given in Algorithm 1.

Algorithm 1 Metropolis-Hastings sampling

1: Initialize x1 ∈ X .

2: for n = 2, 3, . . . do

3: Sample x′ ∼ q(xn|xn−1).

4: Compute α(x, x′) = min
{
1, π(x′)q(x|x′)

π(x)q(x′|x)

}
.

5: u ∼ U(0, 1).
6: if α(x, x′) > u then

7: xn = x′. ⊲ Accept the candidate

8: else

9: xn = xn−1. ⊲ Reject the candidate

10: end if

11: end for
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Gibbs sampling

Gibbs sampling [42] [43] is another popular MCMC method which can be used

when X has more than one dimension. Let us assume that X has d > 1 dimensions

such that X = {x1, . . . , xd}. The Gibbs sampler generates samples from each of

the full conditional distributions πk(xk|x1:k−1, xk+1:d). Then, the Gibbs sampler

produces a Markov chain by sampling one component, xk, at a time using the

corresponding conditional density πk. The overall Gibbs sampling algorithm is given

in Algorithm 2.

Algorithm 2 Gibbs sampling

1: Initialize X1 ∈ X .

2: for n = 2, 3, . . . do

3: for k = 1, . . . , d do xn,k ∼ πk(xn,k|xn,1:k−1, xn−1,k+1:d)

4: end for

5: end for
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Chapter 3

Nonparametric Joint Shape and Feature Priors for Image

Segmentation

Segmentation of images that include limited and low quality data is a challeng-

ing problem and requires prior information about the shape to be segmented for

an acceptable solution. For example, given a training set of car shapes, a partially

occluded car object in an image can be segmented by exploiting prior shape infor-

mation obtained from the training set. The problem becomes more complex when

the training set of shapes involves examples from multiple classes (e.g., car, truck,

plane, etc.) leading to a multimodal shape density. In this work, we focus on seg-

mentation problems in which shape distributions are multimodal and complex, but

just the shape prior information is not sufficient for effective segmentation due to,

e.g., severe occlusion. The proposed approach deals with the problem by incorpo-

rating discriminative class-dependent feature priors together with shape priors into

the segmentation process. We demonstrate that the proposed approach overcomes

the limitations of existing segmentation methods that use only shape priors. The

method introduced in this chapter has been published in [44].

3.1 Related work

One of the earliest attempts to include a prior information in image segmentation

is the active contour model, also called “snakes”, by Kass et al. [9]. Snakes use a

general regularity term as the prior, where the roughness and length of the curve

serve as a penalty, which is based on the assumption that smoother and shorter

curves are more likely [1]. However, in many applications a more informative object-
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type specific shape prior can be learned from training samples. In this regard,

active shape models (ASM) proposed by Cootes et al. [45] are powerful techniques

for segmentation using shape priors. Variants of the ASM, their applications to

different image segmentation areas, and a review can be found in [46–50].

In the original ASM, a training set of shapes represented by landmarks is used to

construct allowable shape variations via principal component analysis (PCA). The

use of linear analysis tools such as PCA in ASMs limits the domain of applicability

of these techniques to shape priors involving only unimodal densities. That is,

the original ASMs assume that the training shapes are distributed according to

a unimodal, Gaussian-like distribution; hence, the technique cannot model more

complex (multimodal) shape distributions.

Several methods have been proposed to handle multimodal distributions of shapes

by extending ASMs [12–14]. These approaches include the use of mixture of Gaus-

sians [12], manifold learning techniques [13] and kernel PCA [14, 51]. However,

these approaches use parametric probability distributions, which may not model

very complex shape variations [52]. In addition, the explicit (landmark-based) shape

representation used in ASMs has two major shortcomings. First, annotating land-

mark points with correct correspondences across all example shapes can be difficult

and time consuming. Second, the extensions of the technique to handle topological

changes are not straightforward. To overcome the limitations of landmark-based

representation, level set based shape priors were proposed [15,16]. Because of their

implicit nature, level set methods do not need landmarks and can easily handle

topological changes [53, 54]. In [15] and [16], shape variability is captured using

PCA on signed distance functions of level sets. However, these techniques work well

only when the shape variation is small due to their use of PCA. Therefore, they

cannot handle multimodal shape densities.

In order to learn multimodal shape densities, Kim et al. [1] and Cremers et

al. [17] proposed nonparametric density estimation based shape priors using level

sets. These methods estimate the prior shape density by extending Parzen density

estimator over the distances between the level set representations of the evolving

curve and training shapes. These ideas have also been extended to the problem

of segmenting multiple objects through the use of coupled shape priors [18]. An
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interesting usage of nonparametric shape priors proposed by Foulonneau et al. [2]

computes Legendre moments from binary images as shape descriptors and uses dis-

tances between descriptors instead of level sets for estimating the prior shape density.

The approach also exploits appealing properties of Legendre moments for intrinsic

alignment. The approaches of Kim et al.[1], Cremers et al. [17] and Foulonneau

et al. [2] use a simple data term that assumes the foreground and the background

intensities are piecewise-constant [55]. In the literature, there are also methods that

combine nonparametric shape priors with learning-based data terms [3, 56, 57]. Us-

ing a more sophisticated data term significantly improves the segmentation quality

when the object foreground and background have complex densities. Some other

recent work that exploits nonparametric shape priors and a more detailed review of

the level set based segmentation methods can be found in [19–21, 58–61].

3.2 Motivation

The methods [1–3, 17, 56, 57] that use nonparametric shape priors performs well

in the presence of occlusion and missing data. They also capable of handling mul-

timodal shape densities. However, the shortcomings of these methods arises when

the level of occlusion and missing data increases and when the underlying shape

density is multimodal. This is due to the fact that the prior density is estimated by

extending Parzen density estimator over the distances between the evolving curve

and training shapes. These methods use gradient descent to minimize an energy

function including data and shape priors terms. During gradient descent, a curve

represented by level sets is evolved by a data-driven force together with the weighted

average of the training shapes where the weight of each training shape is usually

inversely proportional to its distance to the evolving curve (the exact form of the

weights is determined by the specific metric used to measure distances between

shapes). Therefore, when the observed data are very limited, the evolving curve

can be more similar to training shapes from a different class based on the distance

metric. In these cases, the evolving curve is driven toward a shape from a different

mode of the shape density, which yields inaccurate segmentation results.

We illustrate the aforementioned drawback of Kim et al. [1], Foulonneau et al. [2]
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and Chen et al. [3] through the example shown in Figure 3.11. In this example, we

use a training set that contains samples from two different leaf shape classes as

shown in Figure 3.1(a). Note that the boundaries of the leaf shapes are uneven in

class 1 and smooth in class 2. We have 2 test images from each class as shown in

Figure 3.1(b). Note that the test images are severely occluded; almost half of the

leaf shapes do not appear. Since the curve found by the data term is more similar to

class 2 based on the distance metric, Kim et al. [1] produce segmentation results that

are more similar to the shapes in class 2 in both test images. The major difference

between Chen et al. [3] and Kim et al. [1] is the design of the data term. Since the

data provide very little information in the test images, the effect of the data term

is very limited in the segmentations. Therefore, Chen et al. [3] produce very similar

results with Kim et al. [1] as shown in Figure 3.1(e). The method of Foulonneau et

al. [2] produces segmentation results that are more similar to the shapes in class 1

(see Figure 3.1(d)). This means that estimating the prior shape density based on

the distances between Legendre moments does not help to have segmentation results

from the correct mode of the shape density in the presence of severe occlusion.

This motivates us to deal with the shortcomings of the existing methods by

incorporating discriminative class-dependent features to the kernel density estima-

tion process. For example, circularity of the shapes in Figure 3.1 is an important

feature for identifying different leaf classes. In such cases, jointly estimating fea-

ture and shape prior density can yield more accurate segmentations as shown in

Figure 3.1(f).

1Note that these three methods are representative ones; Kim et al. [1] estimate prior density

using distances between shapes, Foulonneau et al. [2] estimate prior density using distances between

Legendre moments and Chen et al. [3] use intensity prior-based data term together with the shape

prior term. The other nonparametric shape prior-based methods exhibit a similar behavior with

one of these methods.
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Class 1 Class 2

(a) Training Set

(b) Test Image (c) Kim et al. [1] (d) Foulonneau et al. [2]

(e) Chen et al. [3] (f) Proposed

Figure 3.1: Toy example that demonstrates motivation of the proposed method.

3.3 Contributions

Our contribution in this work is a segmentation algorithm that performs segmen-

tation by exploiting nonparametric joint shape and feature priors. Unlike the state-

of-the-art methods that perform segmentation using nonparametric shape density

estimation, we exploit learned discriminative class-dependent features (geometric or

appearance-based) extracted from specific parts of the scene relative to the object of

interest and incorporate the joint shape and feature prior density into the segmen-

tation process. In particular, we combine a data term and a joint shape and feature

prior term within a Bayesian framework to form the energy functional for segmen-

tation. To the best of our knowledge, nonparametric joint shape and feature priors

have not been proposed for image segmentation in the literature. By estimating a
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more discriminative prior density, our algorithm is able to find better segmentations

based on the shape posterior density.

Our approach may seem similar to the methods proposed by Cremers et al. [62]

and Chan et al. [63]. However, these approaches and the proposed approach focus on

completely different problems. In [62] and [63], given a scene with multiple different

types of objects, the problem is to segment a particular object that is included in

the training set. In this work, we focus on the problem of segmenting an object

using the correct shape priors when the training set contains shapes from different

classes.

A precursor of this work were presented in [64]. The approach in [64] considers

the problem of segmenting objects having multimodal shape densities as a joint

classification and segmentation problem. The method gives a hard classification

decision at some stage of the segmentation process by extracting some features.

Once the class decision is made, the curve evolution process continues by using the

training shapes in this particular class. The major drawback of the approach in

[64] is that the outcome of the segmentation is highly depend on the classification

decision which forces the algorithm to produce a segmentation result from the class.

Preliminary results of this work were presented in [65]. The proposed work ad-

vances its preliminary version in several major ways. In particular, (1) while [65]

was focused on the specific problem of spine segmentation, in this work we signifi-

cantly expand the domain of applicability of this new idea; (2) we consider and use

new types of features in our framework; (3) we present the results of an expanded

experimental analysis on a variety of data sets, together with quantitative compari-

son to the results of several state-of-the-art methods; (4) we provide a more detailed

technical development and discussion of the proposed method; (5) we present an

expanded coverage of related work.

3.4 The proposed method

3.4.1 The energy function

In this section, we propose an energy function that exploits nonparametric joint

shape and feature priors for image segmentation. Let c be the evolving curve, f
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be the feature vector and y be the intensity image. Then, the posterior probability

density function of c and f can be written using Bayes’ rule as follows:

p(c, f |y) = p(y|c, f)p(c, f)
p(y)

(3.1)

where,

p(y|c, f) = p(f |y, c)p(y|c)
p(f |c) . (3.2)

Plugging in Equation (3.2) into (3.1) yields

p(c, f |y) ∝ p(f |y, c)p(y|c)p(c) (3.3)

and p(c) can be written as

p(c) =

∫
p(c, f) df. (3.4)

Then, Equation (3.3) becomes

p(c, f |y) ∝ p(y|c)p(f |y, c)
∫

p(c, f) df. (3.5)

Let us assume that we observe a feature vector f̂ either from data or from

boundary. Such features could involve geometric, textural, or appearance-based in-

formation about the object to be segmented. From this point on, one can proceed

with various assumptions on the probability densities involved. For feature extrac-

tion, we assume that features can be extracted perfectly based on the data as well

as information about the boundary when it reaches a reasonable state. This leads

to the degenerate density:

p(f |y, c) = δ(f − f̂) (3.6)

where, δ(.) is the Dirac delta function. Also, we learn p(c, f) nonparametrically

from the training data. Since f̂ is already observed, Equation (3.5) can be written

as follows:

p(c, f̂ |y) ∝ p(y|c)p(c, f̂). (3.7)
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Note that, p(c, f̂) is also equivalent to the slice of p(c, f) at f̂ which is p(c|f = f̂).

Therefore, Equation (3.7) and the following equation are identical.

p(c, f̂ |y) ∝ p(y|c)p(c|f = f̂). (3.8)

In this work, we use level sets to represent c. Level set representation is essentially

a mapping

φ : {0, 1}M×N → R
MN

from the binary space to the real space. In the literature, it has been found more

convenient to work with level sets to represent c to handle topological changes and

its effectiveness when computing gradients. In the rest of this chapter, we work with

x = φ(c). Therefore, Equations (3.7) and (3.8) becomes

p(x, f̂ |y) ∝ p(y|x)p(x, f̂) (3.9)

and

p(x, f̂ |y) ∝ p(y|x)p(x|f = f̂). (3.10)

Hence, given the simplifying perfect feature extraction assumption in Equation

(3.6), the learned joint shape and feature density is used through conditioning on

the extracted feature. This conditioning guides the segmentation process, possibly

towards the correct mode of the multimodal shape density. If needed, one could

certainly relax this assumption in our framework, and develop an optimization al-

gorithm for maximizing the posterior density in Equation (3.1) to infer both the

feature and the shape based on the data and the learned joint prior.

The data term we use is the piecewise-constant version of the Mumford-Shah

functional [55, 66]. We use this data term as a representative one, since it has

been previously used in a variety of applications [17, 64]. One can consider using

more sophisticated data terms such as those involving mutual information [67], J-

Divergence [68], and Bhattacharya distance [69]. We discuss estimating the joint

shape and feature prior density, p(x, f̂), in the following section.
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By simply taking the negative logarithm of Equation (3.7), we can define the

following energy function to be minimized for segmentation.

E(x, f̂) = − log p(y|x)− log p(x, f̂)

= β
[ ∫

cin

(y(x)−min)
2dx+

∫

cout

(y(x)−mout)
2dx

]
− log p(x, f̂)

(3.11)

where y(.) is the intensity image, cin (cout) is the region inside (outside) of the

segmenting curve x, min (mout) is the average intensities in these regions, and β is

a constant that determines the balance between the data and the prior terms which

we set β = 1.

3.4.2 Building joint shape and feature priors

Let us assume that we have n aligned training shapes c = {c1, c2, . . . , cn}, their
level set representations x = {x1, x2, . . . , xn} and a corresponding set of feature

vectors f = {f1, f2, . . . , fn} extracted from intensity images. The basic idea we use

is that the segmenting curve x will be more likely if it is similar to the training

shapes and f̂ is similar to the training feature vectors. In order to measure the

similarity between curves, we need to compare c with the training shapes in x.

However, when x and the training shapes in x are not aligned, a direct comparison

of x with the shapes in x includes not only shape differences but also artifacts due

to pose difference such as translation, rotation, and scaling. In order to remove pose

artifacts, we align x with the shapes in x into x̃, where x̃ is the aligned version of

x. Also, recall that shapes in x are already aligned. Similarly, in order to extract

pose invariant features, all feature vectors should be extracted after alignment. Any

kind of rigid alignment approach can be used to obtain an aligned training set of

shapes from its unaligned version for which we use the approach proposed by Tsai et

al. [15]. Then, the joint shape and feature density is estimated using Parzen density

estimation as follows2

p(x̃|f = f̂) ∝ p(x̃, f̂) =
1

n

n∑

i=1

k(d(x̃, xi), d(f̂ , fi), σx, σf) (3.12)

2Note that in Parzen density estimation, class labels of the shapes in the training set are not

available.
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where d(·, ·) is a distance metric, k(·, ·, σx, σf) is a 2D kernel with shape kernel

size σx and with feature kernel size σf . For the kernel sizes σx and σf , we use an

ML kernel with leave-one-out [32]. Note that, the composite of the 2D kernel and

the distance metrics plays the role of an infinite dimensional kernel. A variety of

distance metrics can be used in Equation (3.12) [1]. In our experiments, we use the

template distance metric [1], dT , for shape distance and the L2 distance metric, dL2 ,

for feature distance.

Note that, we compute the joint shape and feature prior density for the aligned

curve, x̃, in Equation (3.12) to remove the pose artifacts as we mentioned above. We

explain how to relate p(x̃, f̂) to p(x, f̂) in our segmentation method in the following

section.

3.4.3 Segmentation algorithm

The aim of the proposed segmentation approach is to minimize the energy func-

tional in Equation (3.11) by gradient descent, and the task comes down to computing

the gradient flow for the curve c. The overall gradient flow is the sum of the two

terms, one based on the data term and the other based on the shape and feature

prior term. The gradient flow for the data term is given by

−∂ log p(y|x)
∂x

= β
[
− (y(x)−min)

2 + (y(x)−mout)
2
]
~N, (3.13)

where ~N is the outward curve normal [55].

However, we cannot compute ∂ log p(x,f̂)
∂c

directly from the shape and feature prior

term due to the need for removing pose differences mentioned in Section 3.4.2.

Instead, we first compute ∂ log p(x̃,f̂)
∂x̃

and relate it to ∂ log p(x,f̂)
∂x

. The gradient flow

∂ log p(x̃,f̂)
∂x̃

for the joint shape and feature prior term is given by

∂ log p(x̃, f̂)

∂x̃
=

1

p(x̃, f̂)
× 1

n
× 1

σx × σf

×
n∑

i=1

(
k(dT (x̃, xi), dL2(f̂ , fi), σx, σf)

× dT (x̃, xi)× (dL2(f̂ , fi))
2 × (1− 2H(xi)

)
.

(3.14)
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where H(·) is the Heaviside function. The derivation of the gradient flow in

Equation (3.14) is a straightforward extension of the derivation in [1] and is given

in Appendix 7.1.

In order to compute ∂ log p(x,f̂)
∂x

from ∂ log p(x̃,f̂)
∂x̃

, we need a pose parameter, p, that

aligns C with the shapes x into x̃ in each iteration of the gradient descent (see line 10

in Algorithm 3). After ∂ log p(x̃,f̂)
∂x̃

is computed (see line 12 of Algorithm 3), ∂ log p(x,f̂)
∂x

is obtained by applying reverse transformation with pose parameters p to the force

∂ log p(x̃,f̂)
∂x̃

(see line 13 in Algorithm 3). In other words, gradient of the shape and

feature prior is computed for x̃, gradient force is reverse back to its original pose

and the whole gradient update is performed. Note that the alignment process can

be done intrinsically during the curve evolution as in [2, 17]. We choose to perform

this process explicitly as in [1].

Finally, the proposed segmentation method that exploits nonparametric joint

shape and feature priors is given in Algorithm 3.

3.5 Experimental results

In this section, we present experimental results on 4 different data sets using

various discriminative class-related features. In the MNIST and the aircraft data

sets, features are synthetically generated. The remaining 2 data sets, the Swedish

leaf and the dendritic spines, are completely real data sets.

We compare the performance of the proposed approach with three different meth-

ods: Kim et al. [1], Foulonneau et al. [2] and Chen et al. [3]. We obtain quantitative

results by comparing segmentation results with ground truths using Dice scores [70]

and Hausdorff distance [71]. Dice score takes values between 0 and 1 where 1 in-

dicates a perfect match whereas low values of Hausdorff distance indicate better

results.

3.5.1 MNIST handwritten digits data set

In this section, we present experimental results on 3 different settings of the

MNIST handwritten digits data set. We use the shapes in the training set shown

in Figure 3.2 in all experimental settings. Experimental settings differ from each
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Algorithm 3 Segmentation using nonparametric joint shape and feature priors

1: Initialize x

2: for t = 0 → tdata do ⊲ tdata : time when the data driven curve evolution

converges

3: if t = t′ then ⊲ t′ : time when the feature is extracted

4: Align x with the shapes in x into φx̃.

5: Extract feature vector f̂ .

6: end if

7: Update x with the data force given in Equation (3.13).

8: end for

9: for t = tdata + 1 → tconverge do ⊲ tconverge : time when data + joint shape and

feature priors driven curve evolution converges

10: Align x with the shapes in x into x̃.

11: Compute the data force for x using the Equation (3.13).

12: Compute the joint shape and feature force ∂ log p(x̃,f̂)
∂x̃

as given in Equa-

tion (3.14).

13: Reverse the force ∂ log p(x̃,f̂)
∂x̃

to its original pose ∂ log p(x,f̂)
∂x

using the reverse

pose parameters found in step 10.

14: Update x with the sum of the data force computed in step 13 and the joint

shape and feature force computed in step 12.

15: end for
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Figure 3.2: Training set of shapes for the MNIST handwritten digits data set

other in terms of the feature vectors that are exploited for segmentation. This

experiment demonstrates that our approach can learn effectively from a relatively

small training data set. The approach could also exploit information in larger data

sets when available.

In the first experimental setting of the MNIST data set, each training shape in

Figure 3.2 is obtained from an intensity image which contains gray-level intensities

drawn from a Gaussian distribution with different means for different classes in fore-

ground regions. One exemplary intensity image from each digit class is shown in

Figure 3.3. We estimate the mean intensity value in the foreground region using

the corresponding intensity images of each training set. We use the mean values

to form the training set of feature vectors f . We perform experiments on the test

images shown in the second row of Figure 3.4. In all test images, we first segment

the apparent part of the object using only the data term (lines 2 - 8 in Algorithm 3).
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Figure 3.3: Training sets that are used to obtain feature vectors. First row: the

first training setting in which each digit class contains gray-level intensities drawn

from a Gaussian distribution with different means in foreground region, second row:

the second training setting in which each digit class contains different colors in

foreground region, third row: the third training setting in which each digit class

contains different colors in background region. Note that our training sets to obtain

feature vectors contain 10 samples for each class and we display only one sample

from each class for the sake of brevity.

Figure 3.4: Test images for the MNIST data set. First row: ground truth, second

row: the first experimental setting, third row: the second experimental setting,

fourth row: the third experimental setting.
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Then, the feature vector f̂ is extracted as the mean intensity value in the foreground

region of the initial segmentation. Note that, in this experimental setting the fea-

ture vector f̂ and the feature vectors in f contain a scalar value. Also, note that the

extracted feature value strongly depends on the data driven (initial) segmentation.

Then, we keep evolving the curve using the nonparametric shape and feature priors

together with the data term (lines 9 - 15 in Algorithm 3). We also perform experi-

ments on the same test images using the approaches of Kim et al. [1], Foulonneau et

al. [2] and Chen et al. [3]. Visual segmentation results of all approaches are shown

in Figure 3.5. The visual results demonstrate that the proposed approach generates

segmentations that are closer to the ground truths whereas the other methods con-

verges to a wrong mode of the posterior shape density in most test images. We also

provide quantitative comparisons of the segmentation results with respect to ground

truth using Dice score (see Table 3.1) and Hausdorff distance (see Table 3.2). The

quantitative results with both metrics demonstrate the potential of the proposed

approach.

Figure 3.5: Visual results of the first experimental setting of the MNIST data set.

First row: the proposed method, second row: Kim et al. [1], third row: Foulonneau

et al. [2], fourth row: Chen et al. [3].

In the second experimental setting of the MNIST data set, intensity images of

the training shapes in Figure 3.2 contain different colors in foreground regions for

different classes as shown in the second row of Figure 3.3. In this experiment, each

feature vector is obtained by concatenating RGB histograms computed from the
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Table 3.1: Dice score results on the first experimental setting of the MNIST data

set.

Digit 2 3 4 5 7

Proposed 0.6217 0.4341 0.7167 0.7906 0.6809

Kim et al. [1] 0.5736 0.1771 0.4738 0.2294 0.6870

Foulonneau et al. [2] 0.3456 0.1814 0.6040 0.2298 0.6308

Chen et al. [3] 0.5736 0.1732 0.7042 0.4822 0.5915

Table 3.2: Hausdorff distance results on the first experimental setting of the MNIST

data set.

Digit 2 3 4 5 7

Proposed 8.000 11.313 5.385 6.082 6.082

Kim et al. [1] 5.656 20.000 13.601 20.000 7.000

Foulonneau et al. [2] 11.313 20.000 12.083 20.124 8.246

Chen et al. [3] 5.656 20.000 5.385 10.1980 7.211

foreground region of the corresponding intensity image. All training feature vectors

in f are constructed by following the same procedure. We use 5 test images shown in

the third row of Figure 3.4 in this experiment. Similar to the previous experiment,

we find the apparent part of the digits using only the data term. Then, we compute

the RBG histograms from the intensities that lie inside the segmenting curve and

form f̂ by concatenating the histogram of each color channel. Then, we continue the

curve evolution using our shape and feature-based segmentation approach. Visual

segmentation results of the proposed approach and the all competing approaches

are shown in Figure 3.6. We also provide the Dice score results in Table 3.3 and

Hausdorff distance results in Table 3.4. The results clearly show the superiority of

our approach with respect to other approaches.

Finally, in the third experimental setting, we design an experimental setting sim-

ilar to the second one. In this setting, background regions contain different colors

for each digit classes as shown in the third row of Figure 3.3. Similar to the second

experimental setting, we construct f by exploiting the RGB histograms from the in-

tensity images that correspond to background regions. We use the test images given

34



Figure 3.6: Visual results of the second experimental setting of the MNIST data set.

First row: the proposed method, second row: Kim et al. [1], third row: Foulonneau

et al. [2], fourth row: Chen et al. [3].

Table 3.3: Dice score results on the second experimental setting of the MNIST data

set.

Digit 2 3 4 5 6

Proposed 0.5790 0.5690 0.7458 0.5313 0.7032

Kim et al. [1] 0.5736 0.1699 0.5492 0.2770 0.4751

Foulonneau et al. [2] 0.3446 0.1814 0.5743 0.2192 0.6570

Chen et al. [3] 0.5736 0.1732 0.7042 0.4891 0.5915

in the fourth row of Figure 3.4. In all test images, once we find the apparent bound-

aries using the data term, we extract f̂ by computing the RGB histograms from

the background region and concatenating them into a single feature vector. As in

the above experiments, the proposed approach achieves better segmentation results

than the approaches we compete both visually (see Figure 3.7) and quantitatively

(see Tables 3.5 and 3.6).

3.5.2 The Swedish leaf data set

In this section, we present evaluations of the proposed approach on the Swedish

leaf data set [72]. The Swedish leaf data set contains leaf images obtained from 15
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Table 3.4: Hausdorff distance results on the second experimental setting of the

MNIST data set.

Digit 2 3 4 5 6

Proposed 5.656 6.324 5.385 14.317 8.246

Kim et al. [1] 5.656 19.416 23.194 18.248 10.816

Foulonneau et al. [2] 11.313 20.000 12.083 20.000 7.000

Chen et al. [3] 5.656 20.000 5.385 10.198 7.211

Figure 3.7: Visual results of the third experimental setting of the MNIST data set.

First row: the proposed method, second row: Kim et al. [1], third row: Foulonneau

et al. [2], fourth row: Chen et al. [3].

different tree classes. We choose two classes among them: Acer and Populus tremula.

The data set is designed for classification purposes and it only contains RGB leaf

images. We obtain binary images that are used for training by manually segmenting

10 leaf images from each class as shown in Figure 3.8. In order to construct a

training set of feature vectors f , we compute circularity of the boundaries in each

binary training shape. Circularity of the boundary is a discriminative geometric

feature for Acer and Populus tremula classes.

We perform experiments on 10 test leaf images (5 test images from each class

and none of which is included in the training set), shown in Figure 3.9. Similar

to the previous experiments, we find the apparent boundaries using only the data
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Table 3.5: Dice score results on the third experimental setting of the MNIST data

set.

Digit 2 3 4 5 7

Proposed 0.5736 0.5809 0.7093 0.5949 0.6779

Kim et al. [1] 0.5736 0.1695 0.5510 0.2766 0.4388

Foulonneau et al. [2] 0.5018 0.4016 0.5490 0.2192 0.4889

Chen et al. [3] 0.5736 0.1732 0.4369 0.4822 0.5915

Table 3.6: Hausdorff distance results on the third experimental setting of the MNIST

data set.

Digit 2 3 4 5 6

Proposed 5.656 6.403 5.099 5.000 7.000

Kim et al. [1] 5.656 19.416 23.086 18.248 20.223

Foulonneau et al. [2] 12.806 7.071 12.165 20.000 15.132

Chen et al. [3] 5.656 20.000 12.649 10.198 7.211

term and set f̂ as the circularity of the boundary. Visual segmentation results

of all approaches are shown in Figure 3.10. The visual results demonstrate that

the approaches of Kim et al. [1] and Chen et al. [3] tends to drive the segmenting

curve toward a shape from Populus tremula class in all test images. Unlike Kim

et al. [1] and Chen et al. [3], the method of Foulonneau et al. [2] converges to the

mode that corresponds to Acer class in all test images. With the aid of using the

discriminative feature priors along with the shape priors, the proposed approach

achieves segmentations from the correct mode of the shape density. The Dice score

results are 0.9409 for the proposed method, 0.9456 for the method of Kim et al. [1],

0.9030 for the method of Foulonneau et al. [2] and 0.9335 for the method of Chen

et al.[3] on average of 10 test images. The average Hausdorff distance results are

10.5742 for the proposed method, 12.7036 for the method of Kim et al. [1], 17.0145

for the method of Foulonneau et al. [2] and 13.6214 for the method of Chen et al. [3].

Note that Dice score results are close to each other even the competing methods

produce segmentations from a wrong mode of the shape density. Since the shapes

in different classes are very similar and Dice score measures the overlap between the
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Figure 3.8: Training set of shapes for the Swedish leaf data set. First row: Acer,

second row: Populus tremula.

Figure 3.9: Test images for the Swedish leaf data set. First row: Acer, second row:

Populus tremula.

segmentation and the ground truth, these results are expected. Hausdorff distance

better quantifies the difference in the visual results in this experiment.

3.5.3 The airplane data set

In this section, we evaluate the performance of our segmentation approach on the

airplane data set [73]. The airplane data set contains 7 different airplane classes. In

our experiments, we take a subset of two of them: F-14 wings opened and Harrier.

We use 10 airplane shapes from each class for training as shown in Figure 3.11. Each

airplane training shape in Figure 3.11 is obtained from an intensity image as shown

in Figure 3.12. Note that, in Figure 3.12, airplane shapes from different classes

contain different textural foreground regions. This means that textural features

obtained from the foreground region can be discriminative class-dependent features
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Figure 3.10: Visual segmentation results on the Swedish leaf data set. First row:

proposed method, second row: Kim et al. [1], third row: Foulonneau et al. [2], fourth

row: Chen et al. [3].

for this data set. For each training shape, we extract 3 different textural features

from the foreground region: correlation, energy, and homogeneity. We form each

feature vector fi in f by concatenating these values into a single vector.

Figure 3.11: The airplane data set. First row: F-14 wings opened, second row:

Harrier.

We compare the performance of the proposed approach with Kim et al. [1],

Foulonneau et al. [2] and Chen et al. [3] on 10 test images shown in Figure 3.13.

Note that the test images are not included in the training set. When segmenting test

images, we extract three textural features (correlation, energy, and homogeneity)

after the data driven segmentation and concatenate into a single vector f̂ . Visual

segmentation results on the airplane data set are shown in Figure 3.14. According

to the visual results, the proposed approach drives the segmenting curve toward the
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Figure 3.12: Training set that are used to obtain the feature vectors. Note that each

airplane shapes from different classes contain different textures.

Figure 3.13: Test images for airplane data set. First row: F-14 wings opened, second

row: Harrier.

correct mode of the shape density in all test images. When the tail of an Harrier type

airplane is occluded, it looks more similar to the F-14 wings opened airplane type.

In such cases, Kim et al. [1], Foulonneau et al. [2] and Chen et al. [3] converges

to a F-14 wings opened type airplane. Such results can be observed in the first,

the second and the fifth test images of the Harrier class. The average Dice score

(Hausdorff distance) results on all test images with respect to ground truths are

0.9153 (1.7899) for the proposed method, 0.8746 (6.1726) for the method of Kim et

al. [1], 0.8762 (5.9271) for the method of Foulonneau et al. [2] and 0.8748 (6.5479)

for the method of Chen et al. [3]. The quantitative results indicate the positive

effect of using additional class-dependent features along with the shape prior.

3.5.4 The dendritic spine data set

In this section, we present experimental results on a dendritic spine data set. The

data set is obtained from Neuronal Structure and Function laboratory of Champal-

imaud Neuroscience Foundation, Lisbon.
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Figure 3.14: Visual segmentation results on the airplane data set. First row: pro-

posed method, second row: Kim et al. [1], third row: Foulonneau et al. [2], fourth

row: Chen et al. [3].

Figure 3.15: Training set for dendritic spine data set. The first 8 spines from the

left are mushroom and the remainings are stubby.

In the literature, dendritic spines are generally grouped into four classes: mush-

room, thin, stubby, and filopodia (see Figure 3.16). In our experiments, we use

training samples from mushroom and stubby classes. The dendritic spine data set

contains 88 mushroom and 27 stubby 2D spine intensity images together with the

expert’s manual segmentations. In our experiments, we use 8 mushroom and 8

stubby dendritic spine shapes shown in Figure 3.15 for training and the remaining

80 mushroom and 19 stubby spines for testing. We perform two different types of

experiments with the dendritic spine data set; one is by using appearance-based

and the other is by using geometric features. We also compare the segmentation

performance of our approach with the approaches of Kim et al. [1], Foulonneau et

al. [2] and Chen et al. [3].
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(a) Intensity images

(b) Manual Segmentations

Figure 3.16: Intensity and corresponding manually annotated binary image exam-

ples from each spine class. From left to right: Mushroom, Stubby, Thin, and Filopo-

dia.

Spine neck is an important feature that helps to distinguish mushroom and spine

classes. Spine head is common for spines in both classes and can be segmented

roughly only using the information obtained from the data [64]. Given that spine

neck is located in the area below the spine head if it exists, we can extract both

appearance and geometric features exploiting the information in this region. We

explain how to extract both types of features below:

First, we describe our appearance-based features. Intensity profiles below the spine

head provides distinguishable features for spines from different classes [64]. First,

we grab a rectangular region such that the bottom point of the spine head (shown

by a red cross in Figure 3.17(a)) lies at the center of the rectangle. The second

rectangular region shown in Figure 3.17(b) is drawn such that it is located just below

the spine head. We fix the size of the first and the second rectangles to 40 × 110 and

10 × 130, respectively, in a 150 × 150 ROI. Using these two rectangular regions,

we construct three sets of feature vectors from the training set for classification.
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The first set of feature vectors are obtained by summing up the intensities in the

first rectangle horizontally. Similarly, the second set of feature vectors are obtained

by vertical summation of the intensities in the same rectangle. We present the

statistics of these two feature vectors extracted from the training set for each class

in Figure 3.18(a) and 3.18(b). In these figures, error bars indicate one standard

deviation around the mean. The final set of feature vectors are the histograms of

intensities in the second rectangular region. We present average of these histograms

for each spine class in Figure 3.18(c). Visual inspection of these feature vectors

indicate that they contain discriminatory information about the spine class. Once

we extract these three feature vectors from the corresponding intensity images of

each training shape, a feature vector fi is obtained by concatenating them. f̂ is also

extracted by exploiting the intensity information in the rectangular regions shown

in Figure 3.17 as mentioned above. The final segmentation is obtained by evolving

the segmenting curve with the data and the shape and feature priors terms.

(a) First region (b) Second region

Figure 3.17: Regions where a potential neck is likely to be located.

Next, we describe the geometric features we use in spine segmentation. Spine neck

length is an important geometric feature for identifying different spine classes [74].

In order to compute spine neck length, we follow a procedure consisting of multi-

ple steps. First, we apply Otsu thresholding [75] to get a rough segmentation of

the dendritic branch part (the part where the spine is connected to) and apply a

fast marching distance transform [76] on this rough segmentation to compute the

medial axis of the dendrite. Dendrite segmentation is refined by applying a locally

adaptive sized disk-shaped structuring element around the medial axis of the den-
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Table 3.7: Average Dice score and Hausdorff distance results on 99 dendritic spines.

Proposed

method w/

apperance priors

Proposed

method w/

feature priors

Kim

et al. [1]

Foulonneau

et al. [2]

Chen

et al. [3]

Dice

Score
0.7492 0.7474 0.6424 0.7348 0.7238

Hausdorff

Distance
19.2002 20.7133 31.1413 26.0494 25.6581

drite to remove the spines. Once the head of the spine of interest is segmented, a

fast marching algorithm [76] computes paths from the center of the spine head to

a number of candidate target locations on segmented dendrite through the spine

neck. This results in a neck path for each target location. Further, we apply three

constraints to select the neck path from these candidate paths. These constraints

are: neck path length, path complexity (L1-norm of path derivatives), and path

smoothness (L1-norm of image intensities along the path). We select the neck path

that has collectively the lowest value for these three constraints. Computed neck

paths for a mushroom and a stubby spine are presented in Figure 3.19. Note that

the computed neck path starts from the center of the spine head. Therefore, for

correct computation of the neck length, we have to remove the path part that lies in

the spine head. To achieve this, we first compute the radius of the spine head, r, by

fitting a circle using the Hough Circle Transform on spine head segmentation and

subtract it from the length of the computed path [74]. We compute the neck length

for each training shape to form f . When segmenting a test image, we compute the

neck length into f̂ in the same manner.

Some visual results that are obtained using the proposed approach (both for

appearance-based and geometric features) and the other competing approaches are

shown in Figure 3.20. We also evaluate the performance of these segmentation

methods quantitatively using Dice score and Hausdorff distance. The average of

both Dice score and Hausdorff distance results of all methods are shown in Table 3.7.

In all experiments, the best and the second best quantitative results are obtained by

the proposed approach with appearance-based feature priors and geometric feature
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priors, respectively.

3.6 Conclusion

We have proposed a segmentation method that exploits joint nonparametric

shape and feature priors. The proposed method minimizes an energy function that

includes a joint nonparametric shape and feature priors term together with the data

term using level sets and gradient descent. We provide experimental results on a

variety of real and synthetic data sets involving multimodal and complex shape

density estimation problems. Experimental results demonstrate that the proposed

algorithm achieves better segmentations than the state-of-the-art approaches that

use nonparametric shape priors and can be applied to different data sets from various

domains.

One possible future direction of the proposed method might be developing a

similar approach by using a different shape representation than level sets, e.g. Dis-

junctive Normal Shape Models [19,23]. Our approach can also be modified slightly

and be used as a joint segmentation and classification approach. To this end, classes

(perhaps corresponding to modes in the shape density) may be inferred during the

segmentation phase and this probabilistic inference may then be used to update the

weights of the training samples to drive the segmentation.
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Mushroom

Stubby

(a) Statistics (mean ± one standard deviation) of the first feature vector based on

training data.

Mushroom

Stubby

(b) Statistics (mean ± one standard deviation) of the second feature vector based

on training data.

(c) Mean of the third feature vector based on training data.

Figure 3.18: Visualization of different sets of appearance-based feature vectors. Red

indicates mushroom and blue indicates stubby spines.
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(a) Mushroom (b) Stubby

Figure 3.19: Computed neck paths for a mushroom and a stubby spine are shown

in red.
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(a)

(b)

(c)

(d)

(e)

Figure 3.20: Visual segmentation results on the dendritic spine data set. (a) pro-

posed method with appearance-based feature priors, (b) proposed method with geo-

metric feature priors, (c) Kim et al. [1], (d) Foulonneau et al. [2], (e) Chen et al. [3].

Note that in each subfigure, the spines in the first row are mushroom, the ones in

the second row are stubby spines.
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Chapter 4

Markov chain Monte Carlo Sampling-based Methods for

Image Segmentation with Nonparametric Shape Priors

Segmenting images of low quality or with missing data is a challenging prob-

lem. Integrating statistical prior information about the shapes to be segmented can

improve the segmentation results significantly. Most shape-based segmentation al-

gorithms optimize an energy functional and find a point estimate for the object to

be segmented. This does not provide a measure of the degree of confidence in that

result, neither does it provide a picture of other probable solutions based on the

data and the priors. With a statistical view, addressing these issues would involve

the problem of characterizing the posterior densities of the shapes of the objects to

be segmented. For such characterization, we propose a Markov chain Monte Carlo

(MCMC) sampling-based image segmentation algorithms that use nonparametric

shape priors. In addition to better characterization of the statistical structure of

the problem, such an approach would also have the potential to address issues with

getting stuck at local optima, suffered by existing shape-based segmentation meth-

ods. The proposed approaches are able to characterize the posterior probability

density in the space of shapes through their samples, and to return multiple solu-

tions, potentially from different modes of a multimodal probability density, which

would be encountered, e.g., in segmenting objects from multiple shape classes. We

present promising results on a variety of data sets.
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4.1 Related work

Incorporating prior shape density into the segmentation process has been widely

studied in the literature. A non-exhaustive survey of optimization-based active

contour models are given in Section 3.1. All these methods minimize an energy

function containing both data fidelity and shape terms, and find a solution at a

local optimum.

In order to have a more detailed information about the characteristic of the

posterior density, Markov chain Monte Carlo (MCMC) based methods have been

proposed. There are a limited number of MCMC-based image segmentation methods

in the literature. Moreover, most of these methods generate samples from the poste-

rior density by assuming the prior density is uniform [77], [78], [79]. In other words,

they do not use any prior knowledge about shapes. Therefore, such methods are not

capable of segmenting objects when the intensities provide very limited information

about object boundaries (due to occlusion, noise, missing data etc.). Among these

approaches, Fan et al. [77] have developed a method using explicit (marker-based)

representations of shape. The proposal distribution generates a candidate sample by

randomly perturbing a set of marker points selected on the closed curve. The ran-

dom perturbation is obtained by generating noise from unit Gaussian distribution

and smoothing the noise using a low pass filter. Due to the use of marker points in

perturbation, this approach is only applicable to segmentation of simply connected

shapes; it cannot represent shapes that include holes and disconnected components.

Later, Chang et al. [78] have proposed an efficient MCMC sampling approach on a

level set-based curve representation that can handle topological changes. Random

curve perturbation is performed through an addition operator on the level set rep-

resentation of the curve. Additive perturbation is generated by sampling from a

Gaussian distribution. Also, some bias is introduced to the additive perturbation

with the gradient of the negative logarithm of the posterior density (whose prior

density is uniform) to achieve faster convergence. Both Fan et al. [77] and Chang

et al. [78] do not satisfy the necessary conditions to implement MCMC since they

compute the probability of generating a perturbation approximately. These meth-

ods do not explicitly define the proposal distribution; instead they define how to

sample from this distribution. The ways they follow to generate a candidate sample
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is mostly based on generating a noise vector smoothed with a low-pass filter. The

filtered noise vector is then added to the curve to obtain the candidate. Since there

are infinite noise and low pass filter combinations that result the same perturbation,

the exact computation of this probability is not possible. Chang et al. [78] further

extends their methods to achieve order of magnitude speed up in convergence by

developing a sampler whose samples at every iteration are accepted [79]. This is

achieved by designing a Gibbs-like proposal distribution.

The only sampling-based segmentation approach that uses shape prior in the

literature is proposed by Chen et al. [80]. The approach uses the shape prior term

suggested by Kim et al. [1] and Cremers et al. [17] to handle multimodal shape

densities. Samples are generated by constructing a smooth normal perturbation at

a single point on the curve which preserves the signed distance property of the level

set. The method is restricted to segmentation of simply connected shapes due to its

inability to handle topological changes. Therefore, the approach is not applicable

to shapes with complex boundaries.

Although not directly related to the proposed approaches, De Bruijne et al. [81]

use a sequential Monte Carlo approach, particle filtering, for segmentation. The

method exploits both shape and local appearance priors for segmentation and use

particle filtering for optimization purpose. Therefore, the method only returns a

single segmentation result. The method captures the shape variation using prin-

cipal component analysis (PCA) using the assumption that the underlying shape

distribution is unimodal. Therefore, it cannot handle cases when the prior shape

density is multimodal.

4.2 Motivation

The optimization-based methods introduced in Section 3.1 minimize an energy

function containing both data fidelity and shape terms, and find a solution at a

local optimum. Having such a point estimate does not provide any measure of

the degree of confidence/uncertainty in that result. Moreover, the point estimate

does not provide information about the characteristics of the posterior density and

may suffer from returning a solution at a local optimum. There might be multiple
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reasonable solutions to a segmentation problem especially from different modes of

the posterior density if the underlying density is multimodal.

As we mentioned in the previous section, MCMC-based segmentation methods

are proposed to deal with these shortcomings of the optimization-based methods.

However, most of the MCMC-based segmentation methods assume that the un-

derlying prior shape density is unimodal, i.e., they are not capable of segmenting

objects in the case of occlusion, missing data and severe noise. The only method

that exploits nonparametric density estimation to learn prior shape density can only

segment closed objects since it cannot handle topological changes.

These problems motivate us to develop Markov-Chain Monte Carlo (MCMC)

based segmentation approaches that generates samples from posterior density by

exploiting prior shape densities. Ideally, such an approach should generate samples

from posterior density to 1) provide more information about the degree of confi-

dence/uncertainty in the segmentation result, 2) overcome the issue of being stuck

at local optimum, 3) present multiple meaningful segmentations; potentially from

different modes of the posterior density.

Figure 4.1 and 4.2 contains illustrative examples that address some of the short-

comings of the optimization-based segmentation approaches and solutions of our

MCMC sampling approaches. Let us assume that we are given a training set of

binary aircraft images (a “unimodal” prior shape density). Let us also assume that

we have two test images with zero and a high amount of noise as shown in Fig-

ure 4.1(a). The results of the optimization-based segmentation approach of Kim

et al. [1] are shown in Figure 4.1(b). We choose the approach of Kim et al. [1]

as a representative one since it is optimization-based and can handle both “uni-

modal” and “multimodal” shape densities using nonparametric shape priors. As

shown in Figure 4.1(b), Kim et al. [1] produces quite well segmentation results

on both test images. However, it does not provide any measure of the degree of

confidence/uncertainty that arises due to the noise. On the other hand, MCMC

sampling-based approaches return a confidence boundary obtained by multiple sam-

ples from posterior density (see Figure 4.1(c)). Note that the variations between

the low and high confidence boundaries increases as the noise increase; which is

expected.
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(a) Test Images. (b) Kim et al. [1]. (c) Low (blue) and high (red)

confidence boundaries pro-

duced by the MCMC-based

sampling framework proposed

in this chapter.

Figure 4.1: The first motivating example of using MCMC shape sampling for image

segmentation

(a) Test Image. (b) Kim et

al. [1].

(c) Samples from different modes of the posterior

density drawn by the proposed approach.

Figure 4.2: The second motivating example of using MCMC shape sampling for

image segmentation

As the second motivating example, let us assume that we have a training set

of binary handwritten digits for each digit class. Let us segment the test image in

Figure 4.2(a) using the approach of Kim et al. [1]. Kim et al. [1] successfully drive an

initial curve to a mode of the posterior density and produce the single segmentation

shown in Figure 4.2(b). However, it does not give any idea about other probable

segmentations. The MCMC sampling-based approaches return multiple meaningful

solutions by drawing samples from different modes of the posterior density as show

in Figure 4.2(c).
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4.3 MCMC shape sampling for image segmenta-

tion with nonparametric shape priors

In this section, we introduce our first MCMC shape sampling approach for image

segmentation exploiting nonparametric shape priors. The proposed approach is

published in [58].

4.3.1 Contributions

Our contributions in this work are twofold. First, as the major contribution, we

present a Markov chain Monte Carlo (MCMC) sampling approach that uses non-

parametric shape priors for image segmentation. Our MCMC sampling approach

is able to characterize the posterior shape density by returning multiple probable

solutions and avoids the problem of getting stuck at a single local optimum. To

the best of our knowledge, this is the first approach that performs MCMC shape

sampling-based image segmentation through an energy functional that uses non-

parametric shape priors and level sets. We present experimental results on several

data sets containing low quality images and occluded objects involving both uni-

modal and multimodal shape densities. As a second contribution, we provide an

extension within our MCMC framework, that involves a local shape prior approach

for scenarios in which objects consist of parts that can exhibit independent shape

variations. This extension allows learning shapes of object parts independently and

then merging them together. This leads to more effective use of potentially limited

training data. We demonstrate the effectiveness of this approach on a challenging

segmentation problem as well.

4.3.2 Metropolis-Hastings sampling in the space of shapes

With a Bayesian perspective, segmentation can be viewed as the problem of

estimating the boundary c based on image data, y:

p(c|y) ∝ exp(−E(c)) (4.1)

where,
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E(c) = Ey(c) + Eshape(c) = − log p(y|c)− log pc(c) (4.2)

In this work, we present an algorithm to draw samples from p(c|y) which is, in

general, a complex distribution and is not possible to sample from directly.

In this work, we use level sets to represent c. Level set representation is essentially

a mapping

φ : {0, 1}M×N → R
MN

from the binary space to the real space. In the literature, it has been found more

convenient to work with level sets to represent c to handle topological changes and

its effectiveness when computing gradients. In the rest of this chapter, we work with

x = φ(c). Therefore, the problem turns into generating samples from p(x|y).
MCMC methods were developed to draw samples from a probability distribution

when direct sampling is non-trivial. We use Metropolis-Hastings sampling [40] which

has been previously used for image segmentation [77,78,80]. In Metropolis-Hastings

sampling, instead of directly sampling from p, a proposal distribution q is defined

and samples from q are accepted in such a way that samples from p are generated

asymptotically. The Metropolis-Hastings acceptance probability is defined as

Pr
[
x(t+1) = x′|x(t)

]
= min

[
π(x′)

π(x(t))
.
q(x(t)|x′)

q(x′|x(t))︸ ︷︷ ︸
Metropolis-Hastings ratio

, 1

]
. (4.3)

The Metropolis-Hastings threshold, η, is randomly generated from the uni-

form distribution in [0, 1]. The candidate (proposed) sample §(t+1) is accepted

if Pr
[
x(t+1) = x′|x(t)

]
is greater than η. Otherwise, x(t+1) = x(t). In Equa-

tion (4.3), x(t) and x′ represent the current sample and proposed sample, respec-

tively. The superscripts (t) and (t + 1) denote the sampling iteration count, and

π(x) ∝ exp(−E(x)). After a sufficient number of iterations (i.e., the mixing time)

a single sample from the posterior is produced by converging to the stationary dis-

tribution. Evaluating the acceptance probability is a key point in MCMC methods.

Correct evaluation of the acceptance probability satisfies the sufficient conditions for

convergence to the desired posterior distribution: detailed balance and ergodicity.

Therefore, the problem turns into the correct computation of forward q(x(t+1)|x′)

and reverse q(x′|x(t+1)) transition probabilities of the proposal distribution.
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4.3.3 The proposed method

We assume that the curve at the 0th sampling iteration, x(0), is the curve that is

found by minimizing only the data fidelity term, Ey(x). We use piecewise-constant

version of the Mumford-Shah functional [55, 66] for data driven segmentation. One

can consider optimizing more sophisticated energy functions such as mutual infor-

mation [67], J-Divergence [68], and Bhattacharya Distance [69] to obtain x(0). Also,

using an MCMC sampling based approach for data driven segmentation can enrich

the sampling space since it would allow subsequent MCMC shape sampling to use

several initial curves to start from. After the curve finds all the portions of the ob-

ject boundary identifiable based on the image data only (e.g., for a high SNR image

with an occluded object, one would expect this stage to capture the non-occluded

portions of the object reasonably well), we activate the process of generating samples

from the underlying space of shapes using nonparametric shape priors.

The overall proposed MCMC shape sampling algorithm is given in Algorithm 4.

The steps of the algorithm are explained in the following three subsections.

Algorithm 4 MCMC Shape Sampling

1: for i = 1 → M do ⊲ M : # of samples to be generated

2: Randomly select class of x(0) as introduced in Section 4.3.3.

3: for t = 0 → (N − 1) do ⊲ N : # of sampling iterations

4: Generate candidate sample x̃′ from curve x̃(t) as introduced in Sec-

tion 4.3.3.

⊲ The steps between 5 - 10 are introduced in Section 4.3.3

5: Calculate Metropolis-Hastings ratio, Pr

6: η = U[0,1]

7: if (t+ 1) = 1 OR η < Pr then

8: x̃(t+1) = x̃′ ⊲ Accept the candidate

9: else

10: x̃(t+1) = x̃(t) ⊲ Reject the candidate

11: end if

12: end for

13: end for
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Random class decision

Suppose that we have a training set x = {x1, . . . , xn} consisting of shapes from

n different classes where each class xi = {xij|j ∈ [1, mi] ∈ Z} contains mi different

example shapes. We align training shapes xij into x̃ij using the alignment approach

presented in Tsai et al. [15] in order to remove the artifacts due to pose differences

such as translation, rotation, and scaling.

We exploit the shape prior term px(x) proposed by Kim et al. [1] to select the

class of the curve x̃(0). The prior probability density function of the curve evaluated

at sampling iteration zero is

px(x̃
(0)) =

1

n

n∑

i=1

1

mi

mi∑

j=1

k(dL2(x̃
(0), x̃ij), σ) (4.4)

where k(., σ) is a 1D Gaussian kernel with kernel size σ, dL2(., .) is the L2 distance

metric and φ denotes the level set representation of a curve. Also, note that x̃(0)

is the aligned version of x(0) with the training set. By exploiting Equation (4.4),

we can compute the prior probability density of the shapes in xi evaluated at x̃(0),

p′xi
(x̃(0)), as follows

p′xi
(x̃(0)) ∝ 1

mi

mi∑

j=1

k(dL2(x̃
(0), x̃ij), σ). (4.5)

We randomly select a class for shape x̃(0) where the probability of selecting a

class is proportional to the value of p′xi
(x̃(0)) computed in Equation (4.5). When

we generate multiple samples, the random class selection step helps us obtain more

samples from the classes having higher probabilities.

Generating a candidate sample

In this section, we explain how to generate a candidate sample from the proposal

distribution q. Once the class of x̃(0) is randomly selected, we perform curve pertur-

bation exploiting the training samples in this class. Let x̃r be the set that contains

the training shapes from the selected class r. We randomly choose γ training shapes

from x̃r where the probability of selecting each shape is proportional to its similarity

with x̃(t). We compute the similarity between a training shape x̃rj and x̃(t) as the

value of the probability density function, s, at x̃rj where,
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sx̃(t)(x̃rj) ∝ k(dL2(x̃
(t), x̃rj), σ). (4.6)

Note that a training shape can be selected multiple times and random train-

ing shape selection is repeated in each sampling iteration. We represent the set

composed of randomly selected γ training shapes at sampling iteration t by x̃
(t)
R
.

Finally, we define the forward perturbation for the curve x̃(t) with level sets as

follows:

x̃′ = x̃(t) + αf (t) (4.7)

We choose f (t) as the negative gradient of the energy function given in Equa-

tion (4.2) in order to move towards a more probable configuration in each perturba-

tion. Here, α indicates the step size for gradient descent. Note that we use randomly

selected training samples, x̃Rj ∈ x̃
(t)
R
, for curve perturbation. Mathematically this is

expressed as

f (t) = −∂E(x̃(t))

x̃(t)
=

∂ log p(y|x̃(t))

∂t

+
1

px̃(t)(x̃(t))

1

γ

1

σ

γ∑

j=1

k(dL2(x̃
(t), x̃Rj), σ)(x̃Rj − x̃(t))

(4.8)

In other words, updating the curve x̃(t) toward the negative gradient direction

of the energy functional produces the candidate curve x̃′.

Evaluating the Metropolis-Hastings ratio

Computation of the first fraction in the Metropolis-Hastings ratio in Equation

(4.3) is straightforward since π(x) ∝ exp(−E(x)). Recall that the candidate curve

x̃′ is dependent on the forward perturbation f (t). Therefore, we compute the forward

perturbation probability by considering the value of the probability density function,

s, for each randomly selected training shape x̃Rj ∈ x̃
(t)
R

as follows:

q(x̃′|x(t)) =
∏

x̃Rj∈x̃
(t)
Rj

s(x̃Rj) (4.9)
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Similarly, the reverse perturbation probability in sampling iteration (t + 1) is

computed as the probability of selecting random shapes in x̃
(t−1)
R

which have been

used to produce the curve x̃(t):

q(x̃(t)|x̃′) =
∏

x̃Rj∈x̃
(t−1)
Rj

s(x̃Rj) (4.10)

Note that, given the above formulations, computation of the reverse perturbation

probability is not possible for candidate curve x̃′
(1)
, the curve at sampling iteration 1,

since we have to use information from sampling iteration −1 for evaluation of Equa-

tion (4.10), which is not available. Therefore, we accept the candidate sample x̃′
(1)

without evaluating the Metropolis-Hastings ratio and consider the above-mentioned

steps for generating samples after sampling iteration 1.

4.3.4 Discussion on sufficient conditions for MCMC sam-

pling

Convergence to the correct stationary distribution is crucial in MCMC meth-

ods. Convergence is guaranteed with two sufficient conditions: (1) that the chain is

ergodic, and (2) that detailed balance is satisfied in each sampling iteration. Ergod-

icity is satisfied when the Markov chain is aperiodic and irreducible. Aperiodicity

of a complicated Markov chain is a property that is hard to prove as attested in the

literature [82].

Detailed balance is satisfied as long as the Metropolis-Hastings ratio in Equa-

tion (4.3) is calculated correctly. We have already described how we compute the

Metropolis-Hastings ratio in the previous section. Empirical results show that a

stationary distribution is most likely reached since our samples converge. Related

pieces of work in [77], [78], and [80] argue that the Markov chain is unlikely to be

periodic because the space of segmentations is so large. Similarly, we can also assert

that our Markov chain is unlikely to be periodic. Even if the chain is periodic in

exceptional cases, the average sample path converges to the stationary distribution

as long as the chain is irreducible. Irreducibility of a Markov chain requires showing

that transitioning from any state to any other state has finite probability. Chen et

al. [80] and Chang et al. [78] provide valid arguments that the Markov chain is irre-
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ducible whereas Fan et al. [77] does not discuss this property. As explained in the

previous section, curve perturbation in our framework is performed with randomly

selected training samples x̃
(t)
R

and each shape has finite probability to be selected

at any sampling iteration. With this perspective, we can also argue that each move

between shapes has finite probability in our approach.

4.3.5 Extension to MCMC sampling using local shape pri-

ors

In this section, we consider the problem of segmenting objects with parts that

can go through independent shape variations. We propose to use local shape priors

on object parts to provide robustness to limitations in shape training size [19, 83].

Let us consider the motivating example shown in Figure 4.3. In this example, there

are three images of walking silhouettes: two for training and one for testing. Note

that the left leg together with the right arm of the test silhouette involves missing

regions. When segmenting the test image using nonparametric shape priors [1] based

on global training shapes1, the result may not be satisfactory (see the rightmost

image in the first row of Figure 4.3), because the shapes in the training set do

not closely resemble the test image. This motivates us to represent shapes with

local priors such that resulting segmentation will mix and match information from

independent object parts (e.g., by taking information about the the right arm from

the first training shape and about the left leg from the second training shape).

Our idea of constructing local shape priors is straightforward. Once the training

shapes are aligned, we divide the shapes into patches, such that each patch contains

a different local shape region. Each patch is indicated by a different color in the sec-

ond row of Figure 4.3. Note that the patches representing the same local shape have

identical size. For MCMC shape sampling using local shape priors, it is straight-

forward to adapt the formulation in the previous sections to consider local priors.

In particular, instead of choosing random global shapes using the values computed

by Equation (4.6), we compute these values for each patch (local shape) and select

random patches among all training images. Note that evaluation of forward and

1Unless otherwise stated, the shape priors we use are global. We explicitly refer to global shape

priors when we need to distinguish them from local shape priors.
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Training images Test image
Segmentation with

global priors

Local shape priors

with colored patches

Activated local

shape priors

Expected

segmentation

Figure 4.3: Motivating example for using local shape priors in walking silhouettes

data set.

reverse perturbation probabilities should also be modified accordingly.

4.3.6 Experimental results

In this section, we present empirical results of our MCMC shape sampling algo-

rithm on segmentation of potentially occluded objects in low-quality images. Note

that, when dealing with segmentation of objects with unknown occlusions, Ey(x)

increases when the shape term delineates the boundaries in the occluded region.

This can lead to overall increasing effect on E(x′) for a candidate curve and to the

rejection of the candidate sample. In order to increase the acceptance rate of our

approach, we use π(x) ∝ exp(−Eshape(x)) instead of π(x) ∝ exp(−E(x)) in our ex-

periments involving occluded objects (see supplementary material for experiments

involving missing data in which we use π(x) ∝ exp(−E(x))). This does not cause

any problem in practice since the data fidelity term (together with the shape prior

term) is involved in the curve perturbation step, enforcing consistency with the data.

We perform experiments on several data sets: aircraft [1], MNIST handwritten

digits [84], and walking silhouettes [17]. In the following subsections, we present

quantitative and visual results together with discussions of the experiments for each
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data set.

Experiments on the aircraft data set

The aircraft data set [1] contains 11 synthetically generated binary aircraft im-

ages as shown in the top row of Figure 4.4. We construct the test images shown in

the middle and the bottom rows of the same figure by cropping the left wings from

the binary images to simulate occlusion and by adding different amounts of noise.

Note that the test images shown in the middle row of Figure 4.4 (test image set -

1) have higher SNR than the ones shown in the bottom row (test image set - 2).

In our experiments, we use this data set in leave-one-out fashion, i.e., we use one

image as test and the remaining 10 binary images for training.

Figure 4.4: The aircraft data set. First row: Training set, second row: test image

set - 1 and third row: test image set - 2, fourth row: test image set - 3. Note that

green indicates missing pixels in test image set - 3.

In Figure 4.5, we present some visual and quantitative results on the first three

images from the test image set - 1 shown in Figure 4.4. In this experiment, we

generate 500 samples using our shape sampling approach for each test image. We

also obtain segmentations using the optimization-based segmentation approach of

Kim et al. [1] (see the second column of Figure 4.5). We compare each sample and

the result of Kim et al. [1] with the corresponding ground truth image using precision

- recall values and the F-measure. The samples with the best F-measure value are

shown in the third column of Figure 4.5. Finally, we plot the precision - recall values

(PR plots) for each sample and for the result of Kim et al. [1] in the fourth column
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of Figure 4.5. Here, the data fidelity term keeps the curve at the object boundaries

and shape prior term helps to complete the shape in the occluded part. In our

approach, since we select the most probable subset of training images and evolve

the curve with the weighted average of these images, the results of our approach are

more likely to produce better fits for the occluded part. In the experiments shown

in Figure 4.5, our approach can generate better samples than the result of Kim et

al. [1] in all test images. Moreover, our algorithm is able to generate many different

samples in the solution space. By looking at these samples, one can also have more

information about the confidence in a particular solution.
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Ground Truth Result of [1] Best Sample PR Plots
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Figure 4.5: Experiments on test image set - 1 of the aircraft data set. Note that

each row contains the results for a different test image. In the PR plots, ‘×’and

‘×’mark the samples produced by our approach where ‘×’indicates the sample with

the best F-measure value, and ‘×’marks that of segmentation of Kim et al. [1].
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Ground Truth Result of [1] Best Sample PR Plots
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Figure 4.5 (cont.): Experiments on test image set - 1 of the aircraft data set. Note

that each row contains the results for a different test image. In the PR plots, ‘×’and

‘×’mark the samples produced by our approach where ‘×’indicates the sample with

the best F-measure value, and ‘×’marks that of segmentation of Kim et al. [1].

We also perform experiments on the aircraft test image set - 2 shown in Figure 4.4

and present results on the first three images in Figure 4.6. The segmentation problem

in this image set is more challenging than the previous case because of lower SNR.
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We perform experiments with the same settings as in test image set - 1 and present

the results in the same way in Figure 4.6. In this case, we have to give more weight

to the shape prior term during evolution to complete the occluded part because of

the high amount of noise. Because of the limited role of the data fidelity term, the

curve starts losing some part of the boundary after the shape term is turned on since

the role of the data term is limited. Therefore, in this case, not only the occluded

part but also the other parts of the aircraft shape approach a weighted average of

the objects in the training set during curve evolution. Note from Figure 4.6 that

the results of Kim et al. [1] on different test images are very similar to one another.

However, our sampling approach produces more diverse samples including better

ones than the result of Kim et al. [1] in terms of F-measure in most cases.
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Ground Truth Result of [1] Best Sample PR Plots
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Figure 4.6: Experiments on test image set - 2 of the aircraft data set. Note that

each row contains the results for a different test image. In the PR plots, ‘×’and

‘×’mark the samples produced by our approach where ‘×’indicates the sample with

the best F-measure value, and ‘×’marks that of segmentation of Kim et al. [1].
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Ground Truth Result of [1] Best Sample PR Plots
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Figure 4.6 (cont.): Experiments on test image set - 2 of the aircraft data set. Note

that each row contains the results for a different test image. In the PR plots, ‘×’and

‘×’mark the samples produced by our approach where ‘×’indicates the sample with

the best F-measure value, and ‘×’marks that of segmentation of Kim et al. [1].
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Ground Truth Result of [1] Best Sample PR Plots
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Figure 4.7: Experiments on test image set - 3 of the aircraft data set. Note that

each row contains the results for a different test image. In the PR plots, ‘×’and

‘×’mark the samples produced by our approach where ‘×’indicates the sample with

the best F-measure value, and ‘×’marks that of segmentation of Kim et al. [1].
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Ground Truth Result of [1] Best Sample PR Plots
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Figure 4.7 (cont.): Experiments on test image set - 3 of the aircraft data set. Note

that each row contains the results for a different test image. In the PR plots, ‘×’and

‘×’mark the samples produced by our approach where ‘×’indicates the sample with

the best F-measure value, and ‘×’marks that of segmentation of Kim et al. [1].

Experiments on the MNIST data set

In this section, we present empirical results on the MNIST handwritten digits [84]

data set which includes a multimodal shape density (i.e, training set contains shapes
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from multiple classes corresponding to different modes of the shape density). The

MNIST handwritten digits data set contains 60,000 training examples and 10,000

test images from 10 different digit classes. In our experiments, we take a subset of

100 images for training such that each class contains 10 training examples. Test

images, none of which are contained in the training set, are obtained by cropping

some parts of the digits and adding noise. The test images that we use in our

experiments are shown in Figure 4.8.

Figure 4.8: Test images from the MNIST data set. From left to right: MNIST - 1,

MNIST - 2, and MNIST - 3.

In our experiments on the MNIST data set, we generate 1000 samples using our

shape sampling approach. In order to interpret our results, we use three method-

ologies: (1) Compute the average energy for each class by considering the samples

generated in that class. Choose the best three classes with respect to average energy

values. Display the best three samples from each class in terms of energy. These

samples are most likely good representatives of the modes of the target distribution,

(2) Compute the histogram images H(x) which indicate in what percentage of the

samples a particular pixel is inside the boundary. This can be simply computed

by summing up all the binary samples and dividing by the number of samples [77].

H(x) can be computed for each class for problems involving multimodal shape den-

sities. We draw the marginal confidence bounds, the bounds where H(x) = 0.1 and

H(x) = 0.9, over the test image for each class, (3) Count the number of samples

obtained from each class. This can allow a probabilistic interpretation of the results.
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Figure 4.9: Average shape energy (Eshape(x)) across all sampling iterations for all

digit classes for test image MNIST - 1. Note that the number of iterations start

from 300 in x-axis because the previous iterations involve segmentation with the

data term only.

Figure 4.9 demonstrates the average shape energy for each class, Eshape(x), as

a function of sampling iterations for test image MNIST - 1. We note that while

the average energy appears to be smoothly converging, the energy for each sample

path can sharply increase and decrease. The plot of class 9 in Figure 4.9 exhibits

such a such pattern because there is only one sample generated from this class. As

the number of samples generated in each class increases, the average sample path

converges to a stationary distribution.

Number of samples generated from each digit class for all the three test images

is shown in Table 4.1. This allows us to make a probabilistic interpretation of

the segmentation results. One can evaluate the confidence level of the results by

analyzing the number of samples generated from a class over all samples.

In different segmentation applications, one can investigate solutions obtained

from different parts of the posterior probability density. Especially, in the case

of multimodal shape densities, segmentation results obtained from multiple modes

might be interesting and might offer reasonable solutions. Figure 4.10 shows some

visual results obtained from the experiments on the MNIST data set. For each test
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Test Image
Digit Class

0 1 2 3 4 5 6 7 8 9

MNIST - 1 336 433 6 18 29 38 115 16 8 1

MNIST - 2 4 691 8 3 96 9 0 120 3 66

MNIST - 3 119 661 8 1 2 11 154 14 28 2

Table 4.1: Number of samples generated for each digit class in test images from the

MNIST data set.

image, we display the results from the best three digit classes where, the quality of

each class is computed as the average energy, E(x), of the samples in that class. Also,

for each class, we show three samples having the best energy values. These results

show that our algorithm is able to find reasonable solutions from different modes of

the posterior density. In Figure 4.10, we also present marginal confidence bounds

(MCB images) obtained from the samples in each class. The figure demonstrates

the marginal confidence bounds at different levels of the histogram image, H(x), for

the best classes in all test images. H(x) = 0.1 and H(x) = 0.9 indicate the low

probability and the high probability regions, respectively.
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MCB image The best 3 samples

MNIST - 1

MNIST - 2

MNIST - 3

Figure 4.10: Experiments on the MNIST data set. Note that in MCB images,

red and green contours are the marginal confidence bounds at H(x) = 0.1 and

H(x) = 0.9, respectively. 74



Experiments on the walking silhouettes data set

In this experiment, we test the performance of local shape priors extension of

our MCMC shape sampling approach and compare it with the one that uses global

shape priors, as well as with the method of Kim et al. [1]. We choose a subset of

30 binary images of a walking person from the walking silhouettes data set [17]. A

subset of 16 images shown in Figure 4.11 among these 30 binary images are used

for training. The remaining 14 binary images are used to construct test images by

adding a high amount of noise.

Figure 4.11: The training set for the walking silhouettes data set.

We present results on all test images in Figure 4.12. Similar to the evaluations

performed for the aircraft data set, we plot the PR values for each sample obtained

by our approaches (with global and local priors) and by the approach of Kim et

al. [1]. According to the results, our proposed approach with global shape priors

produces samples that have F-measure values better than or equal to the result of

Kim et al. [1] in all test images. By using local shape priors, we can generate even

better samples than both Kim et al. [1] and the approach with global shape priors.

Moreover, it seems that our approach based on local shape priors is able to sample

the space more effectively than the approach with global shape priors.
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Figure 4.12: Experiments on walking silhouettes data set. In the PR curves, the

‘×’marks the sample having the best F-measure value obtained using the proposed

approach (with either global or local shape priors), and the ‘×’marks that of seg-

mentation of Kim et al. [1].
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Figure 4.12 (cont.): Experiments on walking silhouettes data set. In the PR curves,

the ‘×’marks the sample having the best F-measure value obtained using the pro-

posed approach (with either global or local shape priors), and the ‘×’marks that of

segmentation of Kim et al. [1].

4.3.7 Conclusion

We have presented a MCMC shape sampling approach for image segmentation

that exploits prior information about the shape to be segmented. Unlike exist-
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ing MCMC sampling methods for image segmentation, our approach can segment

objects with occlusion and suffering from severe noise, using nonparametric shape

priors. We also provide an extension of our method for segmenting shapes of ob-

jects with parts that can go through independent shape variations by using local

shape priors on object parts. Empirical results on various data sets demonstrate

the potential of our approach in MCMC shape sampling. The implementation of

the proposed method is available at spis.sabanciuniv.edu/data_code.

4.4 Pseudo-marginal MCMC sampling for image

segmentation using nonparametric shape pri-

ors

In this section, we introduce our pseudo-marginal MCMC shape sampling ap-

proach for image segmentation exploiting nonparametric shape priors.

4.4.1 Contribution

Our contributions in this work is a pseudo-marginal Markov chain Monte Carlo

(MCMC) sampling-based image segmentation approach that exploits nonparamet-

ric shape priors. We incorporate the nonparametric shape priors with the observed

data in Bayesian framework and generate samples from the resulting posterior dis-

tribution. The proposed approach is able to segment objects that suffer from severe

occlusion, noise and missing data. Our pseudo-marginal MCMC sampling approach

is able to characterize the multimodal posterior shape densities through its samples

and avoids the problem of getting stuck at a single local optimum.

MCMC sampling approaches generally become inefficient when the size of the

data set increases. In our approach, we deal with this problem by using a sub-

sampling procedure called pseudo-marginal sampling which still guarantees having

samples from the posterior density without using all examples in a given training

set. To the best of our knowledge, pseudo-marginal sampling have not been used in

the literature for a sampling-based image segmentation method before.

Satisfying necessary conditions to implement MCMC sampling is a crucial step
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for developing an MCMC sampler. In order to satisfy these conditions, a proposal

distribution should be defined in a proper way so that the probability of generating

a new sample given the previous one and the probability of generating the previ-

ous sample given the new one are computed correctly. Defining such a proposal

distribution is not trivial. Therefore, to the best of our knowledge, all MCMC-

based segmentation approaches in the literature approximate to these probabilities

including the one introduced in Section 4.3. In our approach, we define a proposal

distribution for exact computation of these probabilities. This guarantees obtaining

samples from the desired distribution; the posterior density in our case.

This work advances the work presented in Section 4.3 in several major ways. In

particular, (1) while the method in Section 4.3 approximately satisfy the necessary

conditions of MCMC sampling, in this work we perfectly satisfy these conditions;

(2) we use pseudo-marginal sampling to be able to learn very large data sets; the

one in Section 4.3 becomes inefficient when the size of the data set increases.

4.4.2 Model and problem definition

Probabilistic model for image segmentation

The image segmentation problem consists of estimating an unknown segmenting

curve for an object that belongs an unknown class given an observed image y ∈
YM×N of size M ×N where Y is the set of the values that the pixels of y can take,

e.g. the integers from 0 to 255. We denote the class of the object by s ∈ {1, . . . , n}
where n ≥ 1 is the total number of classes and it is known. For simplicity we assume

that s has a uniform distribution over {1, . . . , n} so that

p(s) = 1/n, s = 1, . . . , n. (4.11)

The segmenting curve we ultimately want to estimate is essentially a binary image

c ∈ {0, 1}M×N having the same size with y, where 0’s indicate background and 1’s

indicate the object.

The conditional density of y given c, or the likelihood, is independent from s

and denoted as L(y|c). We use piecewise-constant version of the Mumford-Shah
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functional [66], [55]:

L(y|c) = exp

{
−

∑

(i,j)∈cin

(y(i, j)− µin)
2

−
∑

(i,j)∈cout

(y(i, j)− µout)
2

} (4.12)

where cin (cout) is the region inside (outside) of the curve c and µin and µout are the

average intensities in cin and cout

µin =
1

|cin|
∑

(i,j)∈cin

y(i, j), µout =
1

|cout|
∑

(i,j)∈cout

y(i, j)

One can consider using more sophisticated likelihood terms such as mutual infor-

mation [67], J-Divergence [68], Bhattacharya Distance [69] and learning-based [57],

[3].

We also have a training set of binary curves that are grouped into classes, that

is we have

C = {C1, . . . , Cn},

where each Ci = {ci,1, . . . , ci,mi
} is the collection of mi ≥ 1 segmented curves for

class i.

Level set representation

In this work, we construct the a non-parametric prior distribution on the un-

known c given its class s using the training set C. However, we choose to define this

prior by using the level set representation. Level set representation is essentially a

mapping

φ : {0, 1}M×N → R
MN

from the binary space to the real space. In the literature, it has been found more

convenient to work with level sets to represent c to handle topological shape changes.

As we will show below, another motivation for us to work with x instead of c is

efficient use of gradients with respect to x in our methodology. Therefore we define

the level set variable x = φ(c) and work with x during the rest of this section. Let

us also define the level set representation of the training set as well:

X = {X1, . . . ,Xn},
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where each Xi = {xi,1, . . . , xi,mi
} with xi,j = φ(ci,j), the level set representation of

ci,j. Now we can define the prior distribution for x given the class s. We use the

Parzen density estimator for each class, leading to

p(x|s) = 1

ms

ms∑

i=1

N (x; xs,i, σ
2I) (4.13)

where N (x;µ,Σ) is the (possibly multivariate) gaussian density with mean µ and

covariance Σ. This prior corresponds to a mixture of kernels (Parzen densities) with

centres xs,1, . . . , xs,ms
with kernel size σ. Kernel density estimation is widely used

in related context, see [1], [17] for examples. To determine the kernel size σ, we use

an ML kernel with leave-one-out [32].

Note that φ is not invertible; however with an abuse of notation, we define a

pseudo-inverse

φ̄ : RMN → {0, 1}M×N

that satisfies φ̄(φ(c)) = c. The function φ̄ maps the level set representation back to

binary segmenting curve such that if x = φ(c) we have φ̄(x) = c. We will need φ̄ to

rewrite the likelihood in terms of y:

p(y|x) = L(y|φ̄(x)). (4.14)

Bayesian formulation

Combining (4.11), (4.13), and (4.14) in terms of x, we can now write the joint

density of s, x, and y

p(s, x, y) = p(s)p(x|s)p(y|x). (4.15)

Bayesian image segmentation problem can be formulated as finding the posterior

distribution of x and y

p(x|y) ∝ p(y|x)p(x) = p(y|x)
n∑

s=1

p(s)p(x|s).

However, estimating p(x|y) can be difficult since the summation over classes

makes the distribution hard to infer, e.g. using Monte Carlo sampling methods.

Alternatively, we aim for the joint posterior distribution of s and x given y
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p(s, x|y) ∝ p(s, x, y) (4.16)

whose marginal is still the desired posterior p(x|y). In the following section, we

will describe an MCMC method to efficiently sample from p(s, x|y).

4.4.3 Methodology

Metropolis-Hastings within Gibbs

An MCMC algorithm is based on updating the samples for the variable of the

posterior distribution. One of the most popular MCMC algorithm is Metropolis-

Hastings [40]. We could apply MH for p(s, x|y) by proposing a candidate sample

(s′, x′) and then accept or reject it with an acceptance probability. However, at-

tempting to change and s and x at the same time may not be efficient because of

the lack of intelligent proposal mechanisms which would lead to few instances of

acceptance and hence a sticky Markov chain.

On the other hand, a sensible candidate for the new sample of x can be gener-

ated when s is kept the same by using the gradient information of the conditional

distribution given s. This is possible by Gibbs-like moves of some random variables

by conditioning the posterior density on the remainings . That is why we adopt a

version of Gibbs sampling where one has updates for s and x in an alternating fash-

ion [42], [43]. However, since the full conditional p(x|s, y) is hard to sample from, we

update x by using an MH move, which leads to the well known Metropolis-Hastings

within Gibbs (MHwG) algorithm. MHwG for image segmentation is presented in

Algorithm 5.

Algorithm 5 MHwG for p(s, x|y)
1: Initialize x(0), s(0).

2: for t = 1 → N do

3: Sample s(t) ∼ p(s|y, x(t−1)) ∝ p(s)p(x(t−1)|s)
4: Use an MH move for p(x|y, s(t)) to update x(t−1) to x(t)

5: end for
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Computational complexity of MHwG and subsampling

Observe that both conditional densities in Algorithm 5 involve p(x|s) which needs

to be evaluated during MH updates. This requires evaluation of ms multivariate

densities of dimension MN . This can be too costly when ms is large, which occurs

when we have a big the training set.

Towards a more computationally efficient MCMC algorithm that scales with the

training data size, we consider the following unbiased estimator of p(x|s = i) via

subsampling:

p̂(x|s) = 1

m̂s

m̂s∑

j=1

N (x; xs,uj
, σ2I) (4.17)

where

{u1, u2, . . . , um̂s
} ⊂ {1, 2, . . . , ms} (4.18)

is a subsample generated via sampling without replacement and m̂s ≪ ms. This

approximation of the prior leads to the approximation of the conditional posterior

densities:

p̂(s|x, y) ∝ p(s)p̂(x|s) (4.19)

p̂(x|s, y) ∝ p̂(x|s)p(y|x) (4.20)

However, using this approximation does not generally guarantee that the Markov

Chain have an equilibrium distribution that is exactly p(x, s|y). In order to deal

this issue, we adopt the pseudo-marginal MH algorithm of [85] in the next section.

4.4.4 The proposed method

Assume that we have a non-negative random variable z such that given x and

s, its conditional density gs,x(z) satisfies

∫ ∞

0

gs,x(z)zdz = p(x|s).

In our setting z is our approximation to p(x|s), i.e. z = p̂(x|s = i), and its prob-

ability density gs,x(z) corresponds to the generation process of this approximation.
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(It will become clear that in fact we do not have to calculate gs,x(z) at all but we

should be able to sample from it.) Define the extended posterior density with the

new variable z added

p(x, s, z|y) ∝ p(s)zgs,x(z)p(y|x) (4.21)

When we integrate z out, we see that samples for s and x from (4.21) will admit

the desired posterior in (4.16):

p(s)p(y|x)
∫

zgs,x(z)dz = p(s)p(x|s)p(y|x)

Now, the problem of generating samples from the posterior density in (4.16) can

be replaced with the problem of generating samples from the posterior density in

(4.21).

We propose a pseudo-marginal MHwG sampling to generate samples from p(x, s, z|y).
Note the important remark that this algorithm also targets p(x, s|y), hence p(x|y)
exactly. General steps of our sampling algorithm is given in Algorithm 6. In step 3

we condition the posterior on x and update s and z. Analogously, in step 4, we

update x and z by conditioning the posterior on s. In the following, we explain in

detail how to perform those steps. We also give an elaborate description of how we

propose the candidate values for the level set, x, which constitutes an important

part of our novel algorithm from a practical point of view.

Algorithm 6 Pseudo-marginal MHwG - generic

1: Initialize x(0), s(0), and z(0).

2: for t = 1 → N do

3: Use an MH move for p(s, z|y, x(t−1)) that updates (s(t−1), z(t−1)) to (s(t), z(t)).

4: Use an MH move for p(x, z|y, s(t)) that updates (x(t−1), z(t−1)) to (x(t), z(t)).

5: end for

6: Outputs samples (s(1), x(1)), . . . , (s(N), x(N)).
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Update step for the class s and z

The distribution that we sample s and z in Metropolis-Hastings is p(s, z|y, x).
We can write this distribution as

p(s, z|y, x) = p(s, z|x) ∝ p(s)zgs,x(z). (4.22)

Since we regard the proposal mechanism as a joint update of s and z, it is clear

that the proposal generates (s′, z′) from the density q(s′|s)gs′,x(z). Note that (s′, z′)
denote the candidate samples generated from the proposal distribution. We assume

that q(s′|s) is a uniform distribution U{1, n} and z′ = p̂(x|s′). Once s′ and z′ are

sampled, they are either accepted with probability

min

{
1,

p(s′)z′gs′,x(z
′)q(s|s′)gs,x(z)

p(s)zgs,x(z)q(s′|s)gs′,x(z′)

}

=min

{
1,

p(s′)z′q(s|s′)
p(s)zq(s′|s)

}
,

(4.23)

or keep the current values of s and z. Steps of sampling s and z from p(s, z|y, x)
are shown between steps 4-12 of Algorithm 7. Note that these steps correspond to

step 3 of Algorithm 6. Also note that we can exactly compute the probabilities in the

MH ratio in (4.23) which guarantees satisfying necessary conditions to implement

MCMC sampling.

Update step for the level set x and z

The next step is to sample x and z from the conditional density p(x, z|y, s) as
shown in step 4 of Algorithm 6. To achieve this, we perform a Metropolis-Hastings

sampling as we use for sampling s(t) and z(t). The conditional density p(x, z|y, s)
can be written as

p(x, z|s, y) ∝ zgs,x(z)p(y|x). (4.24)

Also, for joint sampling of candidates (x′, z′) we can write the proposal density as

qs,j(x
′, z′|y) = qs,j(x

′|x, y)gs,x′(z′). (4.25)

where j is sampled uniformly from {1, ms}, and z′ = p̂(x′|s) is generated using

subsampling. (The details of qs,j(x
′|x, y) will be explained in Section 4.4.4.) Then,
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the Metropolis-Hastings ratio can be computed as follows:

min

{
1,

z′gs′,x(z
′)p(y|x′)qs,j(x|x′, y)gs,x(z)

zgs,x(z)p(y|x)qs,j(x′|x, y)gs′,x(z′)

}

=min

{
1,

z′p(y|x′)qs,j(x|x′, y)

zp(y|x)qs,j(x′|x, y)

} (4.26)

Proposal mechanism for the level set

The crucial part in (4.26) is designing the proposal distribution to generate a

candidate curve x′ from x. Let us define the energy function corresponding to the

training images in class s:

Es(x) := log p(x|s) + log p(y|x, s)

When the training data set is too large, calculating log p(x|s) from (4.13) may be too

expensive as discussed earlier. An unbiased estimator of Es(x) would be obtained

as

Es,j(x) := logN (x; xs,j, σ
2I) + log p(y|x, s)

where j ∼ U(1, . . . , ms). The proposal distribution after sampling the jth training

image in class s is then constructed as follows:

qs,j(x
′|x, y) = N

(
x′; x− ∇̂Es,j(x),Σ

)
. (4.27)

Here, the shift term ∇̂Es,j(x) is an approximation to the gradient ∇Es,j(x) w.r.t. x

and it is given by

∇̂Es,j(x) =
1

σ2
(x− xs,j) +

[
(y − µin)

⊙2 − (y − µout)
⊙2
]

(4.28)

where (·)⊙k is the element-wise power operation for x.

In (4.28), the first term (x − xs,j)/σ
2 is the gradient of logN (x, xs,j, σ

2I) and

the term (y − µin)
⊙2 − (y − µout)

⊙2 is a discrete approximation w.r.t. the level set

representation x [55], so that the expression in (4.28) altogether is an approximation

to ∇Es,j(x).

Design of the proposal covariance

In the design of the proposal distribution in (4.27), the most important part is

finding a co-variance matrix, Σ, that generates smooth perturbations. Generating
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Algorithm 7 Pseudo-marginal MHwG - detailed

1: Initialize s(0), x(0) and generate an approximation of the prior z(0) = p̂(x(0)|s(0))
using subsampling as in (4.17).

2: for t = 1 → N do

3: Set s = s(t−1), x = x(t−1), and z = z(t−1).

4: Sample s′ ∼ q(s′|s).
5: Generate an approximation z′ = p̂(x|s′) of p(x|s′) using a subsample of size

m̂s′ where m̂s′ ≪ ms′ .

6: Compute Metropolis-Hastings acceptance ratio:

α = min

{
1,

p(s′)z′q(s|s′)
p(s)zq(s′|s)

}
,

7: Sample η ∼ U(0, 1).
8: if α > η then

9: s(t) = s′; z(t) = z′; ⊲ Accept the candidate

10: else

11: s(t) = s; z(t) = z; ⊲ Reject the candidate

12: end if

13: Set s = s(t), and z = z(t).

14: Uniformly draw a random number j in {1, . . . , ms}.
15: Sample x′ from qs,j(x

′|x, y) = N
(
x′; x− ∇̂Es,j(x),Σ

)
.

16: Generate an approximation z′ = p̂(x′|s) of p(x′|s) using a subsample of size

m̂s.

17: Compute Metropolis-Hastings acceptance ratio:

α = min

{
1,

z′p(y|x′)qs,j(x|x′, y)

zp(y|x)qs,j(x′|x, y)

}
,

18: Sample η ∼ U(0, 1).
19: if α > η then

20: x(t) = x′; z(t) = z′; ⊲ Accept the candidate

21: else

22: x(t) = x; z(t) = z; ⊲ Reject the candidate

23: end if

24: end for
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(a) (b)

Figure 4.13: Perturbation of a curve (red) with (a) unfiltered noise and (b) smoothed

noise. Note that green indicates curves obtained after perturbing the curve shown

by red.

candidate curve by smoothly and randomly perturbing the current curve is required

for an MCMC shape sampling approach since smoother curves are high likely [1],

[77]. This can also be observed from the visual example shown in Figure 4.13. In

our proposal N (x′; x − ∇̂Es,j(x),Σ), this can be achieved by finding a co-variance

matrix that yields a smooth perturbation. Therefore, Σ should be obtained such

that the neighboring pixels on the curve have higher correlation than the ones that

are not close. Obtaining such Σ is not trivial since it should also be decomposed

such that Σ = AAT . For this reason, most of the methods in the literature generate

a Gaussian noise with identity co-variance matrix, smooth this noise with a low-

pass filter and perturb the curve with the smoothed Gaussian noise. Although, such

an approach practically works, the Metropolis-Hastings acceptance ratio cannot be

computed properly which results the failure of the necessary MCMC conditions.

In the proposed approach, we compute a positive semi-definite co-variance matrix

Σ such that it generates smooth random perturbations. The proposed algorithm to

produce Σ is given in Algorithm 8. Σ has to be positive semi-definite to decompose

it into Σ = AAT .

Given an M × N image, we first generate an MN × MN matrix Z from unit

Gaussian distribution. Then, we construct another MN×MN matrix F where each

column of F is a smoothed version of each row in Z. By assuming F is constructed

by multiplying Z by a matrix Â, we can find matrix Â as follows

Â = Z−1F. (4.29)

As Z is generally reversible, Â can be computed using (4.29). Given Â, a co-variance
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matrix Σ̂ can be computed as

Σ̂ = ÂÂT . (4.30)

However, generally Σ̂ is not positive semi-definite since Â is not generally a full

rank matrix. Therefore, we find the closest positive semi-definite matrix to Σ̂ us-

ing the approach [86]. The closest positive semi-definite matrix is the co-variance

matrix Σ we use in our shape proposal distribution. Since Σ is computed that re-

sults expected perturbation, the probabilities in the Metropolis-Hastings ratio can

be exactly computed. This helps us to satisfy necessary MCMC conditions which

guarantees having an equilibrium distribution that is exactly the posterior density.

Algorithm 8 Design of the proposal covariance

1: Initialize an MN ×MN matrix Z whose elements are randomly generated from

unit Gaussian distribution.

2: Initialize an empty MN ×MN matrix F .

3: for i = 1 → MN do

4: Assign ith row of Z into z.

5: Construct ẑ by smoothing z using a low-pass filter.

6: Assign ẑT into the ith column of F .

7: end for

8: Â = Z−1F

9: Σ̂ = ÂÂT

10: Compute Σ, the closest positive semi-definite matrix to Σ̂ using the approach

in [86].

4.4.5 Experimental results

In this section, we present experimental results of our pseudo-marginal MCMC

sampling approach on object segmentation. We perform experiments on various

data sets each describe different advantages of using a sampling-based approach

over optimization-based ones.
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Degree of confidence in segmentation results

Sampling-based segmentation approaches can provide a measure of the degree

of confidence in segmentation results unlike the optimization-based approaches. In

this experiment, we demonstrate this advantage of the proposed approach on the

aircraft data set [1]. The aircraft data set [1] contains 11 synthetically generated

binary aircraft images as shown in the first row of Figure 4.14.

Figure 4.14: The aircraft data set.

It is expected that degree of confidence on segmentation results decreases as the

noise level in the image increases. However, optimization-based segmentation ap-

proaches do not give any idea about the degree of confidence on their segmentations

since they generate a solution at a local optimum. In order to demonstrate this

advantage of our approach, we generate test images with different noise levels as

shown in Figure 4.15. Note that each test image is constructed by adding different

amount of noise to the images in Figure 4.14. When segmenting a particular test

image, we exclude the corresponding binary image from the images in Figure 4.14

and use the rest for training. We generate 1000 samples using the proposed ap-

proach on each test image. We take the average of all binary samples for each test

image and threshold the average image at 0 and 0.9 to find the least and most

confidence marginal boundaries, respectively. The results highlighting these bound-

aries are shown in Figure 4.15. Note that the distance between the least and most

confidence boundaries increases as the noise level increases. This also states that

the uncertainty in the segmentation results increases as the noise level get higher,

which is expected. Our sampling-based segmentation approach can give idea about

the degree of confidence on the segmentation results by generating samples from the

posterior density.
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Table 4.2: Standard deviation of Dice scores between each sample and ground truth

for each test image.

Noise level

Test Image 0 10 50 100

1 0.0002 0.0019 0.0051 0.0079

2 0.0004 0.0016 0.0042 0.0078

3 0.0004 0.0015 0.0048 0.0119

4 0.0003 0.0046 0.007 0.0128

5 0.0003 0.004 0.0067 0.0134

6 0.0005 0.0037 0.0079 0.0127

7 0.0002 0.001 0.0138 0.0101

8 0.0005 0.0013 0.0034 0.0193

9 0.0003 0.0019 0.0067 0.0119

10 0.0003 0.0011 0.0045 0.0077

11 0.0004 0.0013 0.0079 0.009

Average 0.000345 0.002173 0.006545 0.011318

We also obtain quantitative results that supports the visual results in Figure 4.16.

We compare each samples with the ground truth using Dice score [70] and compute

standard deviation for each test image as shown in Table 4.2. Quantitative results

also demonstrate that the standard deviation of Dice score results between each

sample and ground truth increases together with the noise level in the test image.
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Figure 4.15: Test images used in the experiments with the aircraft data set. Note

that the noise level in the test images increases from top to bottom.

Figure 4.16: Marginal confidence bounds obtained from samples for each test image

in the experiments with the aircraft data set. Note that red indicates the least

confidence boundary whereas blue indicate the most confidence boundary.

Time vs. accuracy

MCMC methods are known to be inefficient when the training set size become

larger. The proposed pseudo-marginal MCMC sampling approach deals with this

problem by computing an unbiased estimator of the proposal density in each sam-

pling iteration. In this section we perform experiments on the MNIST data set [84].

The MNIST data set consists of 60, 000 training and 10, 000 test examples of binary

handwritten digits. A subset of examples from the training set are shown in Fig-
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Figure 4.17: A subset of training examples from the MNIST data set.

ure 4.17. The data set is generally used for classification task. In this experiment,

we take one of the images from the test set (see Figures 4.18(a) and 4.18(c)), artifi-

cially occlude some part of the digit and introduce some noise. We use the resulting

images shown in Figure 4.18(b) and 4.18(d) to test the proposed approach.

We apply our pseudo-marginal shape sampling approach for segmentation of the

image shown in Figure 4.18(b). In this experiment, we construct training sets by

taking subsets of MNIST training set with different sizes. We segment the test

image in Figure 4.18(b) for each of these training sets using our pseudo-marginal

shape sampling approach. We also perform the same experiments without using

pseudo-marginal sampling (conventional MCMC sampling) by computing the pos-

terior probability using each training example in each sampling iteration. In each

experiments we generate 1000 samples and record the average time for generating a

single sample. The plot in Figure 4.19 shows average running time as a function of
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(a) (b)

(c) (d)

Figure 4.18: Using MNIST test images for segmentation: (a)-(c) images from the

MNIST test set, (b)-(d) occluded and noisy version of the images in (a)-(c) for

segmentation task.

training set size for both pseudo-marginal sampling and conventional MCMC sam-

pling. The average single sample generation time of the proposed approach does

not change as training set size increases since we choose m̂i = 10 regardless of the

training set size in all experiments.

We also measure the effect of using pseudo-marginal sampling on the accuracy

of the generated samples. We compare each sample generated by both pseudo-

marginal sampling and conventional MCMC sampling with the ground truth using

Dice score [70]2. The average Dice score results are given in Table 4.3. Note that

the average Dice score results are very close to each other for pseudo-marginal and

conventional MCMC shape sampling approaches. The very slight decrease in Dice

score results of pseudo-marginal sampling can be acceptable in many applications

when the huge gain in computation time is considered.

2Note that our algorithm can produce samples from different digit classes. In order to have

a fair Dice score comparisons, we run our sampling algorithm several times until all samples are

from the same class with the ground truth.
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Figure 4.19: Average running time for producing a single sample as a function of

training set size for both pseudo-marginal MHwG shape sampling and conventional

MHwG shape sampling.

Table 4.3: Average Dice Score results of all samples for each experiment with dif-

ferent training set sizes.

Training Set

Size

Pseudo-marginal

Shape Sampling

Conventional

MCMC Sampling

1000 0.7736 0.7758

5000 0.7735 0.7818

10000 0.7744 0.7765

15000 0.7756 0.7745

20000 0.7706 0.7791

25000 0.7689 0.7776

30000 0.7703 0.7767

35000 0.7700 0.7769

40000 0.7691 0.7801

50000 0.7719 0.7776

Average 0.7718 0.7777

A common way of comparing two MCMC sampling approach is to plot the

95



Number of Sampling Iterations
0 100 200 300 400 500 600 700 800 900 1000

lo
g 

p(
x,

 s
 | 

y)

-80

-78

-76

-74

-72

-70

Pseudo-marginal MHwG
Conventional MHwG

Number of Sampling Iterations
0 100 200 300 400 500 600 700 800 900 1000

lo
g 

p(
x,

 s
 | 

y)

-80

-78

-76

-74

-72

-70

Pseudo-marginal MHwG
Conventional MHwG

Figure 4.20: Log posterior probabilities for (left) 5000, (right) 50000 training samples

posterior probability (or logarithm of posterior probability) of each sample. We show

these plots for both pseudo-marginal sampling and conventional MCMC sampling

in Figure 4.20. We compute logarithm of posterior (log posterior) probabilities in

the plots for training sets that contain 5000 and 50000 examples. Note that the log

posterior probabilities of both both approaches are very close to each other. This

means that using an unbiased estimator of the original posterior density in pseudo-

marginal sampling results similar samples to the ones drawn by conventional MCMC

sampling.

The advantage of conventional MCMC sampling over pseudo-marginal sampling

is the acceptance rate. The conventional MCMC sampling has higher probability to
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accept a candidate sample compared to the pseudo-marginal sampling. For exam-

ple, in the case of 50000 training samples are available, the conventional approach

accepts 926 of 1000 candidates whereas the pseudo-marginal sampling accepts 438

of 1000 candidates. The high acceptance rate of conventional MCMC sampling can

be inferred from Figure 4.20 as well. In these plots, curves that correspond to the

pseudo-marginal sampling have more flat regions compared to the conventional ap-

proach. The flat regions are mostly obtained when candidate samples are rejected.

Sampling from multimodal posterior densities

In this section, we present results of our pseudo-marginal sampling approach

when sampling from multimodal posterior densities. We present results on the

MNIST data set where we use the subset of the MNIST data set shown in Figure 4.17

for training. Having a multimodal prior density leads to obtain a multimodal poste-

rior density when combined with a likelihood term in Bayesian framework. In this

experiments, we draw samples from the resulting multimodal posterior density.

We apply the proposed pseudo-marginal sampling approach on the test image

shown in Figure 4.18(a). We run the proposed approach three times on the test

image. In each run, we constructed a chain with 1000 sampling iterations.

In the first run of the algorithm, the chain has converged at the mode of the

posterior density that corresponds to digit class 7 after 140 sampling iterations. In

this run, the algorithm has got stuck at this mode. Therefore, it only generated

samples from digit class 7. The least and most marginal confidence boundaries

obtained using all samples are shown in Figure 4.21(a).

In the second run of the algorithm, the chain has converged at the mode of

the posterior density that corresponds to digit class 9 after 140 sampling iterations.

Until the sampling iteration 582, the algorithm draw samples from this mode. In

the following iterations, the samples started to converge to the mode of digit class

7 where the convergence is achieved at iteration 634. After this point, all samples

are drawn from digit class 7 until the end of the chain (sampling iteration 1000).

The least and most confidence marginal boundaries obtained using samples from

different modes are shown in Figure 4.21(b).

In the last run, we slightly modified our algorithm to give more freedom to
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(a) The first

run

(b) The second run

(c) The third run

Figure 4.21: Marginal confidence bounds obtained by samples in three different runs

of the proposed approach. Note that red indicates the least confidence boundary

whereas blue indicate the most confidence boundary.

discover different modes of the posterior density. To achieve this, we run the second

part of our algorithm, line 4 of Algorithm 6 where we sample level set, multiple

times (10 times in this experiment). This slight change does not corrupt MCMC

properties and gives the algorithm the ability of moving multiple steps toward a

particular mode in a single sampling iteration. In this experiment, the chain has

converges to digit class 9 after 12 sampling iterations and generates samples from

this class until the iteration 27. Then, the chain starts converging to mode that

corresponds to digit class 4, converges at iteration 30 and generates samples of 4s

until iteration 316. At iteration 317, the chain converges back to digit class 9 where

if converges at iteration 320 and generates samples of 9s until the iteration 717.

Lastly, the chain converges to digit class 7 at iteration 720 and generates samples

from this mode until the end of the chain (the sampling iteration 1000). The least

and most marginal confidence boundaries obtained using from different modes are

shown in Figure 4.21(c). Note that running the level set sampling part of the

algorithm for multiple times significantly increases the number of discovered modes

in the posterior density. One can consider running the part where we sample class

(line 3 of Algorithm 6) for multiple times for a particular application; which also

does not corrupt any of the MCMC properties.
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We plot the logarithm of the posterior probability of samples at each sampling

iteration for three different runs (see Figure 4.22). As we mentioned above, in

the first run the algorithm converges to mode of digit class 7 and generates all

samples from this mode. Therefore, posterior probabilities indicated by blue curve

in Figure 4.22 do not change much after convergence. The red curve shows the

posterior probability of each samples obtained in the second run. Note that there

are two convergence regions in the red curve. The first convergence region between

iterations 140 and 582 correspond to samples from digit class 9. Note the decrease

in the posterior probability after iteration 200 in this convergence region. At the

iterations that correspond to decrease, the algorithm tries to converge to another

mode. However, it comes back to the digit class 9. Later, the algorithm leaves

digit class 9 and converges to the mode of digit class 7. The convergence can be

observed in the ramp after iteration 600 in the red curve. The posterior probabilities

of samples at the third run of the algorithm is shown by green curve in Figure 4.22.

Note that the oscillation in the green plot is much higher than the other plots. This

is because we run the level set sampling part of the algorithm multiple times in each

sampling iteration. One last note from Figure 4.22 is that the mode that corresponds

to digit class 7 has the higher probability than the other classes. However, even

though the samples from other modes have lower probabilities they are visually

reasonable segmentations given the observed data. This shows the ability of the

proposed algorithm dealing with getting stuck at local optima as well as advantage

of a more detailed exploration of the posterior density.

In another experiment with the MNIST data set, we use the test image shown

in Figure 4.18(d). We constructed a chain with 1000 sampling iterations. We plot

the logarithm of the posterior probability of samples at each sampling iteration in

Figure 4.23. In this experiment, the pseudo-marginal sampling approach produces

samples from digit classes 7, 4, 9, and 1. Note that samples from different classes

are shown by different colors in Figure 4.23. It can be observed from the plot that

the logarithm posterior probabilities of samples from digit classes 4 and 9 are very

close to each other. Since samples from these classes have similar probabilities, it

converging from one of these modes to another is more likely. Therefore, we see

many transitions among these modes between sampling iterations 200 and 550.
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Figure 4.22: Log posterior probabilities of the samples obtained during three differ-

ent runs of the algorithm on the test image in Figure 4.18(b).
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Figure 4.23: Log posterior probabilities of the samples obtained during the run of

the algorithm on the test image in Figure 4.18(d).
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Figure 4.24: Marginal confidence bounds obtained by samples on test image shown

in Figure 4.18(d). Note that red indicates the least confidence boundary whereas

blue indicate the most confidence boundary.

Last, we show the marginal confidence bounds of samples obtained from each

digit class in Figure 4.24. It is important to note from Figure 4.23 that the samples

generated from digit class 1 has the highest posterior probabilities. This is inter-

esting because the observed data in Figure 4.18(d) do not look like a digit 1. This

shows that the solutions with higher probabilities may not be the visually reasonable

solutions when the data provide very limited information.

Experiments on dendritic spine data set

In this section, we present experimental results on dendritic spine data set. The

data set is obtained from Neuronal Structure and Function laboratory of Champal-

imaud Neuroscience Foundation, Lisbon.

In the literature, dendritic spines are generally grouped into four classes: mush-

room, stubby, thin, and filopodia (see Figure 4.25). The dendritic spine data set

contains 88 mushroom and 27 stubby spine intensity images together with their man-

ual segmentations. The data set does not include any thin and filopodia examples

since they are barely seen spine types.

Researchers that focus on dendritic spine analysis generally identifies mushroom

spines as a spine having wide head and a neck whereas stubby is defined as neckless

spine [87]. However, it is very common to see spines that are in between of both

definitions (see Figure 4.26). For such spines, manual labeling decisions generally

change for different experts. A recent work on spine shape analysis from unsuper-

vised learning perspective revealed clusters that include intermediate spines [88].

The uncertainty in assigning intermediate shape spines to a particular class (either

mushroom or stubby) makes spine segmentation problem an interesting application
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(a) Intensity images

(b) Manual Segmentations

Figure 4.25: Intensity and corresponding manually annotated binary image exam-

ples from each spine class. From left to right: Mushroom, Stubby, Thin, and Filopo-

dia.

for a sampling-based segmentation approach.

In this experiment, we generate samples from the posterior density for segmenta-

tion of images shown in Figure 4.26. The training set we use is shown in Figure 4.27.

We plot the logarithm of the posterior probability of all samples obtained for each

test image (see Figure 4.28). The plot demonstrate that the samples obtained for

the intermediate spine (test image shown in Figure 4.26(c)) have lower probabilities

than the ones obtained for mushroom (Figure 4.26(a)) and stubby (Figure 4.26(b))

test images. This is because the shape class, s, oscillates between mushroom and

stubby classes in each sampling iteration as shown in Figure 4.29. Therefore, the

generated samples stuck at a low probability region between modes of mushroom

and stubby. The oscillation between classes during shape class sampling reflects the

uncertainty in the problem. This gives some intuition about the confidence of the

results which is not possible to obtain using an optimization-based approach.
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(a) (b) (c)

Figure 4.26: Visual examples of (a) mushroom, (b) stubby, and (c) intermediate

spines.

Figure 4.27: Training set for dendritic spine data set. The first row: mushroom

spines, the secong row: stubby spines.
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Figure 4.28: Log posterior probabilities of the samples obtained by running the

algorithm on the test images in Figure 4.26.
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Figure 4.29: Class samples obtained by running the algorithm on the test images in

Figure 4.26. Note that 0 indicates stubby and 1 indicate mushroom classes.

4.5 Conclusion

We propose a pseudo-marginal Markov chain Monte Carlo (MCMC) sampling-

based image segmentation approach that exploits nonparametric shape priors. The

segmentation problem is often formulated as the posterior probability of the seg-

menting curve given the observed data where the prior shape density is estimated

using nonparametric shape priors.

The methods in the literature find the desired segmentation by performing MAP

estimation on the resulting energy function. Instead, in the proposed approach, we

generate samples from the resulting posterior distribution to avoid shortcomings

of the optimization-based approaches. Such shortcomings include getting stuck at

local optima and being unable to characterize the posterior density. The proposed

MCMC sampling approach deals with all these problem while being computationally

efficient unlike the conventional MCMC approaches. By using the pseudo-marginal

sampling principles, the proposed approach become applicable to very large data

sets; the computation time of the proposed approach does not depend on the size

of the data set. Moreover, our pseudo-marginal shape sampler perfectly satisfy the

necessary conditions to implement MCMC sampling which is very crucial ensuring

the generated samples come from the desired distribution. Existing methods in the
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literature only approximately satisfies these conditions.

We perform experimental results on various data sets to show the advantages of

the proposed pseudo-marginal shape sampling approach. We believe performance

of many segmentation tasks can be improved by exploring the posterior density in

more detail, especially on the applications where uncertainty on the results matter.
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Chapter 5

Disjunctive Normal Shape Boltzmann Machine

Shape Boltzmann machine (a type of Deep Boltzmann machine) is a powerful

tool for shape modelling; however, has some drawbacks in representation of local

shape parts. Disjunctive Normal Shape Model (DNSM) is a strong shape model

that can effectively represent local parts of objects. In this work, we propose a new

shape model based on Shape Boltzmann Machine and Disjunctive Normal Shape

Model which we call Disjunctive Normal Shape Boltzmann Machine (DNSBM).

DNSBM learns binary distributions of shapes by taking both local and global shape

constraints into account using a type of Deep Boltzmann Machine. The samples

generated using DNSBM look realistic. Moreover, DNSBM is capable of generating

novel samples that differ from training examples by exploiting the local shape rep-

resentation capability of DNSM. We demonstrate the performance of DNSBM for

shape completion on two different data sets in which exploitation of local shape parts

is important for capturing the statistical variability of the underlying shape distri-

butions. Experimental results show that DNSBM is a strong model for representing

shapes that are composed of local parts.

5.1 Related work

A strong shape model should contain two important properties: realism and

generalization [22]. The first property states that the model should capture the

correct shape distributions, i.e., samples that are drawn from the distribution should

be valid shapes. The second constraint ensures that the samples generated from the

learned distribution should also cover unseen but valid shapes.
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Training Images Samples

Figure 5.1: Local shape representation and shape sampling using SBM (first row)

and the proposed DNSBM (second row).

There exist a variety of approaches for 2D shape modelling in the literature [89]

[90] [91] [45] [23].

Restricted Boltzmann Machine (RBM) [92] is a model that includes a number of

hidden variables h each connected to all image pixels (units in the visible layer v) as

shown in Figure 5.3(a). Note that there are no direct connections between the units

of a layer, which makes this a bipartite graph. Hence, the energy of a configuration

can be written as follows:

E(v,h) =
∑

i

bivi +
∑

i,j

wijvihj +
∑

j

cjhj (5.1)

where, i and j range over pixels and hidden variables, respectively. Then, the

model can learn constraints and dependencies between pixels by learning the pa-

rameters wij, bi, and cj . The distribution over v is given by marginalizing over the

hidden variables: p(v) =
∑

h
exp(−E(v,h))/Z(θ), where θ represents the model pa-

rameters and Z(θ) is the partition function. This marginalization allows the model

to capture dependencies between the image pixels. RBM has edges between hid-

den and visible variables. Therefore, all hidden units are conditionally independent

given the visible units. Similarly, all visible units are conditionally independent

given the hidden units. This property is useful for exact and efficient inference.

Then, the conditional probabilities can be written as p(vi = 1|h) = σ(
∑

j wijhj+ bi)

and p(hj = 1|v) = σ(
∑

iwijvi + cj) where, σ(◦) = 1/(1 + exp(−◦)) is the sigmoid
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function. Using this property, v and h can be sampled consecutively, which can be

exploited during learning the model parameters [93].

RBMs can approximate any binary distribution if an exponential number of

hidden units and a large amount of training data are available [92]. The DBM is

capable of learning more complex structures in the data using additional hidden

units as shown in Fig. 5.3(b). The energy of a DBM with two hidden layers can be

written as follows:

E(v,h1,h2) =
∑

i

bivi +
∑

i,j

w1
ijvih

1
j +

∑

j

c1jh
1
j +

∑

j,k

w2
jkh

1
jh

2
k +

∑

k

c2kh
2
k (5.2)

where, i, j, and k range over pixels, the first, and the second hidden vari-

ables, respectively. Exact inference is no longer possible in this model, however,

the conditional distributions p(v|h1), p(h1|v,h2) and p(h2|h1) can be computed

as in RBMs [94]. Then, computationally efficient approximate inference can be

established by block-Gibbs sampling from the posterior p(h1,h2|v) [22].
RBM and DBM are powerful models, however, they require a large number of

binary images to learn the shape distributions like the other recent and powerful

generative models: Generative Adversarial Network (GAN) [95] and Variational

Autoencoders (VAE) [96]. In most applications, sizes of the available data sets are

small since obtaining segmented binary images is an expensive process. SBM [22]

is a shape model based on RBM and DBM that accurately captures the properties

of binary shapes. Unlike RBM and DBM, SBM is capable of learning shape distri-

butions even when the size of the training set is limited, by exploiting information

from local shape representations. The visible units v of the SBM are the pixels of an

X × Y binary image. SBM divides images into four equal-sized slightly overlapping

patches to represent local shape parts as shown in Fig. 5.1. The first hidden layer

h1 consists of four blocks and each block is fully connected to a particular patch.

Finally, all units in h1 are fully connected to the units in the second hidden layer

h2. The structure of SBM for 1D images is shown in Fig. 5.3(c). The structure can

easily be generalized to 2D. SBM follows the procedure in [94] to learn the model

parameters and generates a new sample using block-Gibbs sampling as depicted in

Figure 5.2.
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Figure 5.2: Block-Gibbs Sampling.

Recently, Erdil et al. [58] proposed a Markov chain Monte Carlo method for

generating samples from shape posterior densities. Since the method represents local

shape parts with patches as in SBM, it suffers from similar issues when generating

a new sample.

5.2 Motivation

In SBM, the patches that represent local shape parts do not correspond to a

geometrically meaningful local shape parts. Here, a geometrically meaningful local

shape part stands for a single physical component of the shape, for example, a

particular limb (e.g., head, arm, etc.) of the standing person shown in Figure 5.1.

In patch-based local shape representation, a geometrically meaningful local shape

part can appear in multiple patches. For example, the left arm of the standing person

shown in the first row of Figure 5.1 is contained partially in both red and yellow

local regions in the first training image. Therefore, samples generated by SBM may

contain unrealistic samples. For example, the sample in the third column of the first

row in Figure 5.1 contains two left arms; one is raised up and the other partially

appears just to the left of the body. This motivates us to develop a new shape model

that exploits a better local shape part representation to learn the underlying shape

distribution.

5.3 Contributions

Our contribution in this work is a new shape model called Disjunctive Normal

Shape Boltzmann Machine (DNSBM) which exploits the property of SBM for learn-

ing complex binary distributions and the property of DNSM [19] for representing
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local parts of shapes. DNSM is an implicit and parametric model that represents

a shape by a union of convex polytopes. In DNSM, each polytope or union of a

subset of the polytopes can represent a physical local part of an object as shown in

the second row of Fig. 5.1. This property of DNSM makes it a very powerful model

for representing local shape parts. As we exploit that property, samples generated

by our proposed DNSBM are realistic. Also, DNSBM is able to generate novel

samples which are not contained in the training set by exploiting local shape parts

in block-Gibbs sampling and by using the learned distribution. We train DNSBM

on two different data sets in which local shape parts are important for capturing

the statistical variability of the whole shape distribution and show its performance

by generating samples from the distribution for shape completion. Experimental

results show the effectiveness of DNSBM. Some exemplary results of DNSBM using

two training examples are shown in the second row of Fig. 5.1. Here, our approach

is able to generate realistic and novel samples that are not contained in the training

set.
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(a) RBM

(b) DBM

(c) SBM

Figure 5.3: Undirected models for modelling binary shapes.
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(a) DNSBM

Figure 5.3 (cont.): Undirected models for modelling binary shapes.

5.4 The proposed method

In this section, we provide the formulation of DNSM [19] to represent binary

shapes in terms of physically meaningful local shape parts. Then, we introduce the

proposed shape model: Disjunctive Normal Shape Boltzmann Machine (DNSBM).

5.4.1 Binary shape representation using DNSM

DNSM represents a shape by a union of convex polytopes. A polytope can be

represented by intersection of half-spaces as shown in Fig. 5.4(b). Smooth convex

polyopes can be obtained by increasing number of half-spaces (see Fig. 5.4(c)).
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(b) (c)

(d) (e) (f)

Figure 5.4: DNSM shape representation.

DNSM approximates the characteristic function of a shape as a union of convex

polytopes which themselves are represented as intersections of half-spaces. Consider

the characteristic function of a D-dimensional shape f : RD → B where B = {0, 1}.
Let Ω+ = {x ∈ RD : f(x) = 1} represent the foreground region. Ω+ can be

approximated as a union of N convex polytopes, Ω+ ≈ ⋃N
i=1 Pi. The ith polytope

is defined as the intersection Pi =
⋂Mi

j=1Hij of Mi half-spaces. The half-spaces are

defined as Hij = {x ∈ RD : hij(x)} where

hij(x) =




1, if

∑D
k=1 δijkxk + cij ≥ 0

0, otherwise

Therefore, Ω+ is approximated by
⋃N

i=1

⋂Mi

j=1Hij and equivalently f(x) is approx-

imated by the disjunctive normal form
∨N

i=1

∧Mi

j=1 hij(x). Converting the disjunc-

tive normal form to a differentiable shape representation requires the following

steps: First, De Morgan’s rules are used to replace the disjunction with negations

and conjunctions, which yields f(x) ≈ ∨N
i=1

∧Mi

j=1 hij(x) = ¬∧N
i=1 ¬

∧Mi

j=1 hij(x).

Since conjunctions of binary functions are equivalent to their product and nega-

tion is equivalent to subtraction from 1, f(x) can also be approximated as 1 −
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∏N
i=1(1 −

∏Mi

j=1 hij(x)). The final step for obtaining a differentiable representation

is to relax the discriminants hij to sigmoid functions σij = 1/(1+ e−(
∑D

k=1 δijkxk+cij)).

The resulting approximation to the shape characteristic functions is then given by

f(x) = 1−∏N
i=1

(
1−∏Mi

j=1 σij

)
, where x = {x, y} for two-dimensional (2D) shapes

and x = {x, y, z} for three-dimensional (3D) shapes [19].

The only free parameters of the model are δijk and cij, which determine the

orientation and location of the sigmoid functions (discriminants) that define the

half-spaces. The level set f(x) = 0.5 is taken to represent the interface between the

foreground (f(x) ≥ 0.5) and background (f(x) < 0.5) regions.

The DNSM discriminant parameters, ∆t, that represent the tth training sample

can be obtained by choosing the weights that minimize the following energy function

E(∆t) =

∫

x∈Ω

(f(x)− qt(x))
2dx+ η

N∑

i

N∑

r 6=i

∫

x∈Ω

gi(x)gr(x)dx (5.3)

where, gi(x) =
∏Mi

j=1 σij represents the individual polytopes of f(x). qt(x) is

the tth binary training image (1 for object and 0 for background) to be represented

by DNSM and η is a constant that controls the allowed degree of overlap between

polytopes. We find that having slightly overlapping polytopes is important to ensure

shape continuity in the generated samples by DNSBM. We minimize Equation (5.3)

using gradient descent to obtain∆t which represents the tth training sample. DNSM

representation of the binary image in Fig. 5.4(d) is given in Fig. 5.4(e). Note that

each polytope may not correspond to a local geometrically meaningful shape part

since large number of convex polytopes are required for representing complex shapes.

One can consider combining polytopes manually to obtain local shape parts when

constructing the training set. We use the approach proposed in [97] that relaxes the

convexity constraint of DNSM and represents complex shapes by a smaller number of

approximately convex polytopes each corresponding to a geometrically meaningful

local shape part. Fig. 5.4(f) shows the approximately convex polytopes obtained

using the approach in [97].
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(a) (b)

Figure 5.5: Decomposing a shape into polytopes. (a) A shape with DNSM repre-

sentation. (b) Binary images corresponding to each physical shape part (polytope).

5.4.2 From DNSM to DNSBM

Our proposed approach, DNSBM is a type of Deep Boltzmann Machine having

the structure shown in Fig. 5.4(a). In DNSBM, each pre-aligned binary training

shape in an X × Y image is initially represented with N polytopes such that each

polytope corresponds to a physically meaningful (local) shape part as explained in

Section 5.4.1. Then, each shape is decomposed into N binary images where each

binary image represents a single local shape part as shown in Fig. 5.5. Each red

block in the visible layer v of DNSBM (see Fig. 5.4(a)) corresponds to a binary image

that represents a particular local shape part. Therefore, there are N red blocks each

containing X × Y units in the visible layer of DNSBM as exemplified by the binary

images in Fig. 5.5(b). The first hidden layer h1 of DNSBM is composed of N blocks

(shown in gray in Fig. 5.4(a)). The units in each block of v are fully connected with

the units in the corresponding block of h1. Each unit of h1 is also connected to

all units of h2. While the connections between v and h1 capture the dependencies

between pixels, the connections between h1 and h2 capture the inter-relations of

local shape parts.

Learning of the model involves maximizing log p(v; θ) of the observed data v

with respect to its parameters θ = {b,W1,W2, c1, c2}. The work in [94] proposes

a two-phase learning procedure. In the pre-training, the model is trained bottom

up, one layer at a time, to find a good initial estimates of the model parameters.

Once the parameters are initialized, parameters of the full model can be fine-tuned

by backpropagation. In DNSBM, we follow the same procedure in [94] to learn the

model parameters. Once the parameters of DNSBM are found, we generate samples

from the model using block-Gibbs sampling.
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5.5 Experimental results

In this section, we present experimental results of DNSBM on two data sets in

which local shape parts play an important role for identifying shape densities when

the training set is limited. We compare the performance of the DNSBM with SBM.

The implementation of DNSBM and the data sets are available at github.com/

eerdil/dnsbm_icassp17.

The first data set is the standing person data set [83]. The data set contains

50, 170 × 170 binary images of a standing person with varying arm postures. We

construct a training set with 28 images by using shapes each containing a particular

posture of either left or right arm as shown in Fig. 5.6. Each of the remaining 22

shapes in the data set contains arm postures of both left and right arms. Since each

arm posture is contained for both left and right arms separately in the training set,

the remaining 22 shapes can be explored by exploiting these local shape parts. Note

that, exploitation of local shape parts is not done simply by combining all possible

local shapes, it naturally emerges as a result of block-Gibbs sampling. We obtain

local shape (head, left arm, right arm, etc.) representations of the standing person

for each binary training shape using DNSM. When training DNSBM on this data

set, we empirically set sizes of h1 and h2 to 2000 and 500, respectively. Increasing

the size of h2 may cause overfitting whereas h1 should be large enough to capture

pixel dependencies.

Figure 5.6: Training set of the standing person data set.
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We design 3 test cases having different missing regions to be completed in our

experiments as shown in the first column of Fig. 5.7. Image completion is established

by generating samples from both DNSBM and SBM using the observed part of the

shape. Some shape completion results of each approach are shown in Fig. 5.7. We

also provide likelihood images in the first column for each approach in Fig. 5.7.

These images are obtained by summing up all generated samples and normalizing

with the total number of samples [77]. We further enhance the likelihood images

in Fig. 5.7 for visualization purposes. Note that in the likelihood images, bright

pixels indicate high occurrence of the corresponding pixel in foreground region of

the generated samples. In this data set, all samples of DNSBM appear realistic, i.e.,

there is no sample that does not look like a standing person, whereas SBM generates

some unrealistic samples (see the standing person samples in Fig. 5.10(b)).

The second data set is the walking silhouette data set [17]. The walking silhouette

data set contains 150 binary images of a walking person. Similar to the experiments

on the standing person data set, we choose a subset of 24 images (see Fig. 5.8) for

training. We obtain the local shape parts of walking silhouettes using 6 polytopes

with DNSM. We train the DNSBM on this data set using 1000 units for h1 and 50

units for h2 for 78× 52 images.

Figure 5.8: Training set of the walking silhouette data set.

We design 5 test cases for shape completion using shapes not included in the

training set and with different missing regions to be completed as shown in the

first column of Fig. 5.9. We perform shape completion on these test images by

generating samples from both DNSBM and SBM. Some completion results of each

method together with the likelihood images for the corresponding input shape are

shown in Fig. 5.9. The walking silhouette data set is a more challenging data set

than the previous one since it contains more local shape parts that change their

posture. In this data set, DNSBM produces better results than the SBM in terms of
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the number of realistic samples, as well as its generalization capability to generate

valid and diverse shapes, as shown particularly in the 2nd, 3rd, and 5th rows of

Fig. 5.9. Some unrealistic samples generated by both DNSBM and SBM on the

walking silhouette data set are given in Fig. 5.10. The patch-based local shape

representation of SBM is not a good representation for this data set, since almost

each physical shape part, especially legs of the silhouette, appears in more than one

patch. This leads SBM to generate a large number of unrealistic samples in this

data set.

Test DNSBM SBM

Likelihood Generated Samples Likelihood Generated Samples

Figure 5.9: Samples generated by DNSBM and SBM for completion of the shapes

in the first column. Pixels in the red region are missing.

(a) DNSBM (b) SBM

Figure 5.10: Some unrealistic samples generated by DNSBM and SBM.
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Table 5.1: Comparison of DNSBM and SBM using Dice score.

DNSBM SBM

Walking silhouette 0.6526 0.6112

Standing Person 0.5935 0.5825

Quantitative evaluation of sampling-based approaches is not a trivial task and

requires considering different metrics. First, we compute the similarity between the

ground truth and the completion results using Dice score [70], since it is expected

that a sampling-based approach generates many samples that are similar to the

ground truth. The average Dice score results of all test cases for both data sets are

shown in Table 5.1. Note that, high values of Dice score indicate higher similarity

with the ground truth. Second, we expect to obtain realistic samples. We measure

this by computing the probability of sampling the completed region given the ob-

served data using the imputation score [22]. The average of all imputation scores

in all test cases of both data sets are 0.085 for DNSBM and 0.014 for SBM where

higher is better. Finally, a good sampling approach is expected to generate diverse

samples. We demonstrate the diversity of samples by plotting the precision-recall

(PR) values of all samples generated in all test cases in the walking silhouette data

set as shown in Fig. 5.11. The results demonstrate that the samples of DNSBM

spread in the precision-recall space more than the samples of SBM. Note that a

large number of blue crosses in Fig. 5.11 correspond to unrealistic samples produced

by SBM. Therefore, the superiority of the DNSBM over SBM in terms of diversity

becomes more evident if we consider Fig. 5.11 without such samples.

119



Recall

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
c
is
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Shape Boltzmann Machine

DNSBM

Figure 5.11: PR values of the samples generated using the walking silhouette data

set.

Since DNSBM uses a representation of each physical local part individually by a

single polytope, it does not suffer from having multiple pieces for a single local part

in the generated samples. However, in some cases, exploiting different local shape

parts in the training set does not yield a visually appealing sample as shown in

Fig. 5.10. This problem originates at places where local shape parts are connected

to each other. Although we have solved this problem up to some level by generating

overlapping polytopes, we can still encounter such samples in some rare cases. Some

possible solutions of this problem might be incorporating information about tie

locations of polytopes to the sampling process. One can also consider performing a

local registration as a post-processing step.

5.6 Conclusion

We have presented a shape model, DNSBM, that is based on the SBM and

the DNSM. DNSBM is able to represent physically meaningful local shape parts

individually and exploits this representation when the training set size is limited.

We have shown the performance of DNSBM on two data sets for shape completion.

The proposed method exhibits better performance than SBM.
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Test DNSBM SBM

Likelihood Generated Samples Likelihood Generated Samples

Figure 5.7: Samples generated by DNSBM and SBM for completion of the shapes in the first column. Pixels in the red region are missing.
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Chapter 6

Conclusion and future work

In this chapter, we provide a summary of this thesis and possible future research

directions.

6.1 Summary of this thesis

In this thesis, we propose Bayesian methods for image segmentation that ex-

ploits nonparametric shape priors. We approach the problem from two different

perspectives: (1) MAP estimation, (2) Markov chain Monte Carlo sampling.

First, we propose is a segmentation method that exploits joint nonparametric

shape and feature priors. The proposed method represents the segmentation prob-

lem in terms of the joint posterior density of shapes and features. Then, the resulting

energy function is minimized using gradient descent and active contours. The role

of using feature priors is to aid the evolving contour to converge to the correct mode

of the posterior density. Conditioning on the extracted feature information helps

improve the segmentation performance. Experimental results demonstrate the ef-

fectiveness of the proposed method when the posterior density is multimodal and

data provides very limited information about the object to be segmented.

Second, we propose two different Markov chain Monte Carlo sampling based seg-

mentation methods that exploits nonparametric shape priors. The first approach

represents the segmentation problem in terms of the posterior probability density of

the object boundaries given the observed data. Once the method finds the bound-

aries that can be segmented using a data fidelity term, it gives a probabilistic class

decision about the object to be segmented. Then, samples from each selected class
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are generated using Metropolis-Hastings. In order to generate samples from different

modes, it is required to create multiple Markov chains each expected to generate

samples from different modes. This brings a very high amount of computational

cost to the approach which makes it really hard to use with large training sets.

Moreover, this approach computes some probabilities in the Metropolis-Hastings

ratio approximately. Although practical results demonstrate that the algorithm

generates meaningful samples, it is not guaranteed to have samples from the target

distribution as long as we do not compute these probabilities exactly. These short-

comings of the first MCMC sampling based approach motivate us to develop the

second approach. In the second approach, we propose a pseudo-marginal MCMC

sampling approach that uses nonparametric shape priors. The proposed approach

represents the target posterior distribution as the joint distribution of segmenting

curves and classes. Unlike the first MCMC sampling based approach, the second

approach creates a single Markov chain that generates samples from different modes

of the posterior density. The computation cost of the proposed approach does not

depend on the size of the training set thanks to pseudo-marginal sampling. More-

over, in the proposed approach, probabilities are computed exactly when evaluating

the Metropolis-Hastings ratio which guarantees having samples from the desired

distribution.

Last, we propose a shape model that learns binary shape distributions called

Disjunctive Normal Shape Boltzmann Machine (DNSBM). DNSBM combines the

power of Shape Boltzmann Machine on learning shape distributions and Disjunctive

Normal Shape Model on representing local shape parts. DNSBM can generate novel

and realistic samples from the learned distribution. DNSBM has potential to be used

in various applications such as image segmentation which is the main focus of this

thesis.

6.2 Future research directions

Cremers et al. [62] and Chan et al. [63] focus on the segmentation problem in

which given a scene with multiple different types of objects, the problem is to seg-

ment a particular object that is included in the training set. However, the approach
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may not be effective when the training set contains object that are similar to each

other and/or data provide very limited information. These shortcomings are similar

to the ones that we mentioned in Chapter 3 for the methods proposed in the existing

nonparametric shape priors based methods such the ones proposed by Kim et al.

[1] and Cremers et al. [17]. Therefore, the shortcomings of the methods in [62] and

[63] can possible be addressed by using additional feature priors as we proposed in

Chapter 3. Hence using our joint shape and feature prior-based approach in the

kinds of segmentation problems posed in [62, 63] could be explored in the future.

Mesadi et al. [98] propose a method that uses local shape and appearance

priors for object segmentation using disjunctive normal shape models [23]. Using

local shape and appearance priors significantly improves the segmentation results

because it allows learning shape and appearance distributions in local regions. One

can consider developing a segmentation approach by exploiting local shape priors in

level set representation. In this representation, local regions can be represented by

grids or an arbitrary decomposition of shapes depending on the application. Using

a local shape representation with level sets might improve the performance of the

proposed approaches in this thesis since it helps to extract more information from

limited data and training set.

As we mentioned several times throughout this thesis, a simple Bayesian formu-

lation of the segmentation problem consists of two terms: prior distribution of shape

and conditional distribution of data given shape. In this thesis, we mostly focused

on designing the prior distribution of shapes and used very simple models for the

data term. One powerful approach to estimate the conditional density of data given

shapes is to use intensity priors from a training set [57]. The learned conditional

density of data given shapes can be used in the approaches proposed in Chapters 3

and 4 to achieve better results in some applications.

Convolutional Neural Networks (CNNs) have become very popular in recent

years and have been successfully applied to many different problems. The main

power of CNNs comes from the ability of learning their own features for different

types of objects. In CNNs, each convolutional layer carries different types of features

for objects from different classes. Adapting these features into the active contour

models can be an interesting future research direction which can possibly lead to
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better segmentation performance.

Using shape priors in the segmentation process helps in completing boundaries

in the regions with missing data and/or occlusions. One can expects to recover the

intensities in a region that suffers from missing data and/or occlusion. Therefore, it

can be interesting to represent the problem as a joint segmentation and inpainting

problem.

DNSBM is an interesting shape model for learning binary shape distributions by

exploiting local shape parts. The learned distribution can be used in the segmen-

tation process. A segmentation approach that uses the learned shape distribution

learned by deep Boltzmann machine can be found in [83]. As an extension of the

work of this thesis, development of a segmentation approach utilizing a DNSBM-

based shape model could be an interesting direction for future work.

Most of the segmentation problems considered in this thesis involved multi-modal

shape densities. The modes or other well-defined components of such shape densities

could be associated with classes of objects included in the space of objects of interest.

Our primary objective in this thesis was to solve segmentation problems, where

the classes or multi-modal nature of the densities appeared as complicating factors.

However, one can of course be explicitly interested in inferring the class of the object

in the scene as well as segmenting it. The machinery we have developed in Chapters

3 and 4 of this thesis could serve as the basis of a statistical framework for joint

segmentation and recognition of objects. Posing such a problem and examining the

tools developed in this thesis in the process of solving that problem could be another

interesting direction for future work.

Given recent success of deep learning methods in a variety of image analysis

problems, a major line of future research might involve establishing connections be-

tween the types of methods presented in this thesis and deep learning methods. In

fact, a limited portion of our work, that presented in Chapter 5, already contains

such a connection, through Deep Boltzmann Machines. However, all of the work in

the earlier chapters fits within the more classical statistical framework of Bayesian

methods. A natural question that might arise is the following: should we still be

interested in such classical methods, given all the success of powerful deep learning

methods? We argue the answer is yes, and the key is to observe how these differ-
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ent lines of thought can be consolidated in a complementary way to produce even

more powerful methods. While deep learning methods have revolutionized machine

learning, one important limitation has been that most deep learning models cannot

represent their uncertainty. Representation of uncertainty has been one of the main

themes of this thesis. Interest in combining Bayesian approaches with deep learn-

ing methods has recently emerged (although there exist examples in earlier work as

well), as exemplified by the Bayesian Deep Learning Workshop at NIPS 2017. We

argue one interesting question for future work in this domain will be how Bayesian

methods can be used to make deep learning more interpretable. We believe the kind

of work presented in this thesis would play an important role in such a quest.
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Chapter 7

Appendix

7.1 Gradient flow of joint shape and feature den-

sity

In this section, we provide the details on how we derive gradient of Equation

(3.12) and obtain Equation (3.14). Note that the derivation is a straightforward

extension of the derivation in [1].

Let us consider the log of the joint shape and feature prior density

log p(x̃, f̂) = log
(1
n

n∑

i=1

k(dT (x̃, xi), dL2(f̂ , fi), σx, σf)
)
. (7.1)

Then, the derivative of log p(x̃, f̂) with respect to x̃ is written in the following form

∂ log p(x̃, f̂)

∂x̃
= − 1

p(x̃, f̂)
× 1

n
× 1

σx × σy

×
n∑

i=1

(
k(dT (x̃, xi), dL2(f̂ , fi), σx, σf)

× dT (x̃, xi)× (dL2(f̂ , fi))
2 × ∂dT (x̃, xi)

∂x̃

)
.

(7.2)

Now the task comes to computing ∂dT (x̃,xi)
∂x̃

. Consider the template distance met-

ric dT (φx̃, φxi
) = Area(inside(x̃)△inside(xi)) where △ denotes the set symmetric
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difference. This metric can be written in the form of region integrals as follows [1]

dT (φx̃, φxi
) =

∫

Ω

(1−H(φx̃(x)))H(φxi
(x))dx

+

∫

Ω

H(φx̃(x))(1−H(φxi
(x)))dx

=

∫

inside(x̃)

H(φxi
(x))dx

+

∫

outside(x̃)

(1−H(φxi
(x)))dx

(7.3)

For the region integrals in Equation (7.3), the derivative is well known [99], which

is given by

∂dT (x̃, xi)

∂x̃
= (2H(φxi

)− 1). (7.4)

By plugging Equation (7.4) into Equation (7.2), we obtain the gradient flow of

log p(x̃, f̂) with respect to C̃:

∂ log p(x̃, f̂)

∂x̃
=

1

p(x̃, f̂)
× 1

n
× 1

σx × σy

×
n∑

i=1

(
k(dT (x̃, xi), dL2(f̂ , fi), σx, σf)

× dT (x̃, xi)× (dL2(f̂ , fi))
2 × (1− 2H(φxi

)
)
.

(7.5)
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