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Abstract

Real world data is mostly multi-labeled i.e., it belongs to multiple classes simul-
taneously, as opposed to single labeled data belonging to a single class. At times
these multiple labels fit into a logical hierarchy such that parent labels up in the
hierarchy are generic and the related child labels down the hierarchy are more
specific. Most of the machine learning classifiers are either serving single label
classification tasks or have been transformed to perform flat multi-label classifica-
tion. At present, dedicated classifiers for hierarchical classification do not exist.
For the purpose, strategies are designed relying on the single labeled classifiers to
perform hierarchical classification. Four such strategies are well-known in liter-
ature. Hierarchical classification has been researched in many domains like text
categorization, webpages classification and medical diagnosis and has been found
very useful. So far Twitter has been neglected by the researchers in hierarchical
classification perspective. For developing supervised models labeled data is needed
and labeling task requires resources in terms of humans, money and time, delimit-
ing the amount of data which can be labeled. Active learning, a type of supervised
learning, achieves acceptable performance with minimal amount of labeled data as
compared to supervised learning models. In active learning, the learner selects the
most informative unlabeled instances and is labeled by the experts. This makes
possible to achieve comparable model performance to that of supervised learning
with lesser labeling effort and resources. Active learning is well-suited to the situ-
ations where unlabeled data is abundantly available. Hierarchical classification of
tweets complemented by active learning as a viable labeling mechanism presents
an interesting research problem. We implemented the prevailing four hierarchi-
cal classification approaches with active learning for twitter domain. Based on
the results, we can safely say that active learning is equally beneficial in Twitter.
Comparing the results of the four approaches, hierarchical prediction through flat
classification with active learning approach outperforms the other approaches.
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6zet

Gergek hayatta veriler siklikla gok etiketlidir, yani ayn1 anda birden fazla sinifa
va da kategoriye ait olabilirler. Bazen bu smiflar {ist seviyeler genel, alt se-
viyeler ise daha ozel olacak sekilde mantiksal bir hiyerarsi olusturur. Makine
ogrenmesi kapsaminda geligtirilmis olan ¢ogu siniflandirma yontemi ya tek etiketli
siniflandirma yapar ya da ¢ok etiketli simflandirma yapacak sekilde degistirilir.
Hiyerarsik simflandirma yapmak i¢in uygun siniflandirma yoéntemleri heniiz bu-
lunmamaktadir ancak bunun icin tek etiketli simiflandirmay1 baz alan stratejiler
geligtirilmistir. Bu stratejilerden dordi literatiirde iyi bilinmektedir. Hiyerarsik
siniflandirma metin ketogorizasyonu, web sayfasi siniflandirmasi, medikal tani gibi
alanlarda calisilmis ve etkinligi gosterilmistir. Ancak su ana kadar Twitter’a
ozel hiyerarsik smiflandirma {izerine caligilmamigtir. Bunun yaninda, gozetimli
ogrenme yontemleri i¢in etiketli verilere ihtiya¢ duyulur ve etiketleme icin insan
glicli, zaman, ve maddi kaynak gerekir. Bu da etiketlenen verilerin simirl ol-
masina sebep olur ve aktif 6grenme bu anlamda daha az verinin etiketlenmesi ile
diizgiin modeller olugturulmasim saglar. Aktif Ogrenmede, en fazla bilgi iceren
etiketlenmemis veri secilir ve uzmanlara etiketlemesi icin sunulur. Bu sayede
gozetimli 6grenmeye yakin bir performansla daha az etiketli veri kullamilarak
model olugturulmasi saglanir. Aktif 6grenme, etiketlenmemis verilerin ¢ok oldugu
durumlar icin uygundur. Tweetlerin hiyerargik simflandirmasinin aktif 6grenme
ile gergeklestirilmesi de bu bakimdan anlamli bir aragtirma alandir. Bu tezde,
onde gelen 4 hiyerarsik siniflandirma yaklagimini uyguladik ve aktif 6grenme icin
bunlar1 Twitter ortamina uyarladik. Elde ettigimiz sonuglar baz alindiginda, ak-
tif 6grenmenin Twitter alaninda faydali oldugunu gormekteyiz. Uyguladigimiz
dort ana yaklagimi karsilagtirdigimizda diiz ssmflandirmali hiyerarsik kestirim kul-
lanilarak yapilan aktif 6grenmenin diger ti¢ yontemden daha iyi sonuglar verdigini
gordiik.
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Chapter 1

Introduction

In theory we mostly work-around with single labeled data through binary or multi-
class classification. In binary classification we have choice of choosing among two
classes as label for the data instances while in multi-class classification we have
to select one label out of more than two possible label outputs. Mitchell’s famous
machine learning [2] PlayTennis problem with Yes or No as possible classes is
an example of binary classification. The same classification example will become

multi-class if we add May Be as third possible class value.

Real world data often falls in to multiple labels/classes simultaneously, not to be
confused with multi-class classification. In multi-class classification still the label is
single while in multi-label classification there are multiple labels for the same data
instance. Example of multi-label data is a webpage having multiple tags meaning
the webpage belongs to all those multiple categories. Multi-label classification is
the branch of machine learning dealing with the classification of multi-label data.
In multi-label classification, an instance can belong to none, some or all of the
possible labels in the set of the possible labels. Usually the multiple labels of data
instances are not mutually exclusive and bear some intrinsic relation meaning a
data instance belonging to a particular category will most probably also belong to
some other related categories. For example a document belonging to Fashion will

probably also belong to Cosmetics or Boutiques.
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At times the multiple labels of multi-labeled data form a hierarchy such that the
labels in the upper levels of the hierarchy are more generic as compared to the
more specific labels down the hierarchy. Consider the example of a text docu-
ment belonging to one of the main categories Engineering or Economics, then
subsequently having Computer or Civil as sub-category of Engineering or Macro-
Economics or Micro-Economics as sub-category of Economics. Web directories like
DMOZ ! is another example of hierarchical categorization where links to websites
are arranged in hierarchical categories. Hierarchical classification, seen by some
as a type of multi-label classification while others see it the other way round as a
generalization of multi-label classification, deals with the subject of multiple labels

fitting in a hierarchy.

Hierarchical classification has been widely researched in the context of Text clas-
sification/categorization, documents classification, images classification, webpages
categorization, DNA /Protein function prediction, web directories categorization,
medical diagnosis. Wikipedia is a major example where the webpages have been
categorized in a hierarchy and the categories are in thousands [3] 2. Twitter, proba-
bly due to short tweet size, has been researched mainly in single label classification

perspective.

To develop a reliable model for any classification task, we need a considerable
amount of labeled data. Labeling of data has an associated cost in terms of
human labelers, time and money. Labeling text documents is more challenging as
text documents are usually quite lengthy and takes time to be read and labeled.
Tweets are short in length but there are thousands of unlabeled tweets available
for every topic and labeling them requires handsome amount of resources. Active
Learning (AL), a special type of supervised machine learning, is proving useful
in the situations where the unlabeled data is abundantly available and we do not
have the resources to label all of it. Active Learning makes it possible to develop
a good model with only part of the data required to train a supervised learning

model, thus requiring less labeling effort and budget.

thttp://www.dmoz.org/
https://www.kaggle.com/c/Ishtc
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To get further insight and applicability of the concept, consider the example of
customer reviews related to an electronics item of a company. Customer reviews
normally range from thousands to, may be, hundreds of thousands. To analyse
these customer reviews we may consider learning a supervised model, for which we
have to label a major portion of these customer reviews incurring handful resources
in terms of humans, money and time. Instead, Active learning techniques can be
utilized to learn an acceptable model with the labeling of nominal number of these

reviews thus incurring less labeling cost.

In traditional passive learning, humans supervise the learning process and feed the
machine learning algorithm with labeled instances. All of these instances may not
be useful for the classification task in hand. Therefore we need enough instances to
get a good classification model. In contrast, Active learning empowers the learning
algorithm to specify the instances which it consider more contributing than the
others for the classification task and let only those be labeled. This makes it
possible to achieve acceptable classification accuracy with less (minimal) labeling

effort compared to that of supervised learning.

In active learning process, based on the output predictions of the unlabeled data
by a meagerly trained machine, some active sampling strategy selects the instances
deemed most informative and effective for classification and forward it to human
labelers for labeling. Model is retrained and updated with the newly labeled
instances to select next batch of most informative and effective instances to be
labeled. This process is performed iteratively till an acceptable model is generated

ideally having comparable accuracy to that of supervised learning based model.

Hierarchical classification is equally important in the twitter domain as tweets
can also be categorized into multiple hierarchical categories. For instance the
tweet “@Microsoft Heard you are a software company. Why then is most of your
software so bad that it has to be replaced by 3rd party apps?” belongs to the
topic Microsoft and subsequently bearing Negative sentiment. On the other hand
the tweet “@Scott Arbeit @GabeAul @Microsoft isntall the newest version and you

may chance your mind!” also belongs to the topic Microsoft but bearing Positive
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sentiment. Suppose an analyst needs only positive tweets on a particular topic
then hierarchical classification can help get the most relevant tweets out of the
heaps. To generate models for such hierarchical classification, active learning is a

viable solution to minimize labeling cost.

Hierarchical classification of tweets, and active learning as a solution to deal with
labeling of abundantly available unlabeled tweets presents an interesting research
problem providing motivation for this thesis. There are four major hierarchical
classification approaches in literature. We investigated the performance of these
four hierarchical classification approaches in Twitter domain complemented by the

active learning for reducing labeling task.

The remainder of this thesis is organized such that Chapter 2 provides the back-
ground knowledge and theory of hierarchical classification and active learning.
Chapter 3 provides design details of our devised experiments. Chapter 4 provides
the results and evaluation of the experiments performed. Chapter 5 contains the

intended future work and possible enhancements to the present work.



Chapter 2

Preliminaries and Background

In this chapter we provide some background knowledge, key concepts and appli-

cation areas of hierarchical classification and active learning.

2.1 Hierarchical Classification

Most of the machine learning research deals with single-labeled binary or multi-
class classification. In single-labeled binary case we have to select one of the two
possible classes. In case the number of possible classes is greater than two and
we are to select one of them then the problem becomes single-labeled multi-class.
Most of the classifiers have been devised for single-labeled jobs, even some are

inherently suited for binary single-labeled classification like SVM.

Most of the data nowadays is multi-labeled, means it belongs to more than one
class under more than one categories. Example of multi-labeled data is a thesis
document on the topic of active learning. Thesis on the topic of active learning can
be placed in the folder Computer Science, and/or Machine Learning, and/or Data
Mining, and/or Hierarchical classification, and/or Active Learning. The multiple
labels usually bear some relation and an instance falling under one label may also
be belonging to the related categories, as in the above example. The order of the
multiple labels may or may not be important. The number of labels an instance

>
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belongs to may range from none to many or almost all the possible labels. The
multi-labeling field has gained very much popularity in research communities due

to the multi-label nature of the real world data.

Multi-label classification, a branch of machine learning, deals with multi-label
classification problems. As per [4], machine learning tackles multi-labeling task
in two ways: transforming the multi-label task into multiple single label tasks
known as Problem Transformation or transforming (moulding) existing single la-
bel classification algorithms to work for multi-labeling tasks known as Algorithm
Adaptation. Binary Relevance (BR) is the most common problem transformation
method where we consider each one of the multiple labels as a binary classification
task and say for “n” labels we train “n” binary classifiers, one for each of the “n”
labels. All the “n” classifiers predict the label for an unseen instance and only
the labels of the classifiers having a prediction confidence above a threshold are
assigned to that instance. As far as algorithm adaptation is considered multi-label

decision trees, Rank-SVM, multilabel KNN are few to name modified versions of

their original single label versions.

At times the labels in the label set of multi-label data forms a hierarchy such
that labels/categories down the hierarchy are more specific as compared to up
the order generic categories. Consider the thesis example, a thesis document
may generally belong to Computer Science or Mechatronics category. Suppose
belonging to category Computer Science the document can further be placed in
one of the Machine Learning or Cryptography categories. If belonging to machine
Learning the document can further be categorized under Active Learning. In such
a hierarchy an instance belonging to a class in the hierarchy will also be belonging

to the parent classes of that class in the hierarchy.

Hierarchical classification is special kind of multi-label classification dealing with
labels forming a hierarchy. While multi-label classification deals with multiple
labels having some relation and preservation of this relation is the major chal-
lenge in multi-label classification, hierarchical classification has to take care of the

hierarchy and order of the labels as well.



Preliminaries and Background 7

CN Silla jr. et al [5] performed a detailed and comprehensive survey on hierarchical
classification and E Costa et al [6] reviewed performance evaluation measures of
hierarchical classification. According to both these studies the key considerations
in a hierarchical classification task are: type of hierarchy, depth of hierarchy and
the classification approach being used. These three considerations are explained

in the following sections.

2.1.1 Type of Hierarchy

Hierarchies can take the form of a Tree or Directed Acyclic Graph (DAG) . In tree
type hierarchies each node has exactly one parent and each node can be reached
through one and only one path, as shown in Figure 2.1.

II_’_.-'"'_ e
| Root

W W
/N a L9

= 4 ¥

oJojolo

FIGURE 2.1: Tree-type hierarchy

On the other hand in Directed acyclic graph (DAG) a node can have more than
one parent meaning a node can be reached through multiple paths in the hierarchy,
as shown in Figure 2.2. It is important to mention that as per the qualification of

DAG, no circular relation should exist among the nodes.

In hierarchical classification tasks the hierarchy of the labels can be (incrementally)
learned from the training data itself at learning phase or it can be hardwired
beforehand. For example in [7] the inherent hierarchy of the labels is learned and

updated dynamically through concept-drift.
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FIGURE 2.2: Directed Acyclic Graph (DAG) type hierarchy

2.1.2 Depth of Hierarchy

Some hierarchical classification jobs require the instances to be classified at all the
levels till the leaf nodes, termed as “Mandatory Leaf-Node Prediction” (MLNP)
problems. For example, a graduate student of Sabanci University must be be-
longing to one of the faculties and then must be having one of the many faculty
members of that particular faculty as thesis advisor. Some tasks may provide the
flexibility of discontinuing further classification at any node in the hierarchy and
classification till leaf node may not be compulsory, such tasks may be termed as
“Optional Leaf-Node Prediction” problems. For example, a document belonging
to Computer Science, further belongs to Data Mining but may not necessarily be
belonging to sub-categories of Data Mining. In such tasks, the criteria for contin-
uation of further classification down a hierarchy is the qualification of a prediction
confidence threshold. If the prediction confidence drops below a threshold value

at a node further classification is not useful and discontinued.

2.1.3 Classification Approaches

Hierarchical classification has been tackled with four different approaches: sin-

gle flat classification, hierarchical prediction through flat classification, top-down
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classification and big bang (global) classification. A brief overview of these four

approaches is provided:

o In single flat classification approach only the leaf node classes are taken
into consideration, neglecting the rest of the hierarchy, and single label flat
classification is performed for these leaf node classes. Single flat classification
approach is the simplest among the four. By predicting the leaf classes we
automatically predict the ancestor classes. The potential problem with this
approach is that we put all our eggs in one basket and misclassification of an
instance implies the misclassification of many or almost all of the ancestor
classes of that particular instance. For example, in Figure 2.3 an instance
belonging to class 1.1 if misclassified by the classifier as class 1.2 implies
misclassification of two labels while the same instance if misclassified as
class 2.1 implies misclassification of all the labels from leaf node to the top

root node.

FIGURE 2.3: Single flat classification approach

e In hierarchical prediction through flat classification approach we treat each
level of the hierarchy as an independent single flat classification problem,
neglecting the structure of the hierarchy, and train a single flat classifier
for each level, as shown in Figure 2.4. This approach is identical to multi-
label classification. The main discrepancy with the approach lies in the fact

that the level classifiers are flat therefore labels predicted by the classifiers
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may be not consistent with the original hierarchy. For example, an instance
belonging to hierarchy 1>1.1 can be inconsistently misclassified as 1>2.1 or
2> 1.1. As far as the complexity is concerned, this approach can be ranked

second to the single flat classification approach.

FIGURE 2.4: Hierarchical prediction through flat classification approach

e In top-down approach multiple single-label classifiers local to a hierarchy
level are trained. The approach can be conceptualized as a tree of classifiers.
The root classifier is trained with all the available labeled data. The next
level of classifiers are trained with the instances belonging to only one of
the parent classes. Referring to Figure 2.5, the root classifier is trained with
the whole training data with respect to first label. At level 1 the classifier
1 is trained only with the instances belonging to class 1 of the level 0 and
the instances belonging to classes other than class 1 are not included in its
training. Similarly classifier 2 is trained only with the instances belonging to
class 2 of the level 0 and the instances belonging to classes other than class
2 are not included in its training. Same approach is used for the classifiers

at level 2.

In testing phase, the test instance starts predicting its labels from the root
node and based on the prediction made is further exposed to the relevant
classifier in the level 1 and then level 2 till the leaf node label is predicted.

The main discrepancy with this approach is the propagation of the error
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made at upper levels down to the lower levels. A test instance misclassified
at an upper level will then subsequently be misclassified at all the following

levels.

FIGURE 2.5: Top Down approach

e In big bang approach we have a global classification model which deals with
the hierarchies internally and for user the training and testing is performed
in single runs. The implementation complexity lies in the algorithm. The

concept is depicted in Figure 2.6

FIGURE 2.6: Big bang approach
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2.1.4 Applications of Hierarchical Classification

Enormous growth and adoption of electronic documents, necessitated Hierarchical
classification in the context of Text categorization so that electronic documents
may be categorized on the lines of the conventional files. Along with text docu-
ments, digital libraries and emails also need to be hierarchically categorized which
is manually impossible. Hierarchical classification is also used in image classifi-
cation, categorization of ever increasing huge number of webpages, DNA /Genes
classification, written text recognition, web directories, diagnosis of fatal diseases

and their medication.

Wikipedia is the prime example where hierarchical classification is heavily re-
searched. There are about 325,000 categories and 2,400,000 documents in wikipedia
corpus and these categories have a hierarchy!. Manual classification is becoming

difficult as more categories and documents are being added.

One striking benefit of hierarchical classification is avoidance of ambiguity. For
example a thesis document on the topic of active learning will be archived by some
in active Learning folder under the umbrella of the machine learning while others
may place it in active learning folder under academic Learning. But if hierarchy

is followed, the thesis will reach its exact folder.

thttps:/ /www.kaggle.com/c/Ishtc
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2.2 Active Learning

According to Wikipedia?, “Active learning is a model of instruction that focuses the
responsibility of learning on learners”. In line with this concept of the academic
active learning, the active machine learning puts the responsibility of learning on
the learner (learning algorithm). Learner is made incharge of the learning process
and the training data being used in the process. The learner selects the data it
deems necessary and effective for its learning and the humans (Oracles) label it.
Due to the involvement of both human and machine in the process, active learning
is also known as “human-in-the-loop machine learning”. Through active learning
we can achieve optimum classification performance with comparably less labeled

data as that of supervised learning.

To get insight of the concept, consider the example of a Calculus course. Calculus
text book contains thousand(s) of questions and it is nearly impossible to solve
and teach every question of the text book in the class. Normally the instructors
solve a few questions in a chapter as a starter and give rest of the chapter as
home assignment to the learners (students). The learners go through the whole
chapter and note down the question they deem as difficult and unable to solve.
These difficult to understand questions are solved by the instructor in the next
lecture. In this way with the coordination of the learner and the teacher, the
learner develops a deep understanding of the course with only part of the whole
text. On the analogy, in active learning the learner selects the instances it finds
hard to predict and ask the teacher (oracle in this case) for labeling the same,

resulting in yielding a good model with part of the available data.

In passive learning human is incharge of the learning process and learner behaves
like an observer. Human provides the labeled instances to the learner and the
learner is trained on these instances. Humans cannot judge the instances necessary
for the rightful training of the learner and hence high number of labeled instances
is required to learn a good model. In contrast, in active learning the learner

itself nominates the instances it deems most important for the classification task

Zhttps://en.wikipedia.org/wiki/Active_learning
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for labeling through the humans. Therefore active learning achieves comparable

performance to that of supervised learning in fewer instances.

Active learning has been found very useful in the situations where unlabeled data
is abundantly available and labeled data is scarce. Labeling has an associated cost
in terms of labelers, money and time. So labeling effort is minimized by using

active learning.

In a typical active learning scenario, depicted in Figure 2.7 , we have a learner
(a machine learning algorithm), a labeled set (pool) initially consisting of few
labelled instances(ground truth) termed as seed set, an unlabelled pool of instances
in a pool based active learning setup or a stream of unlabeled instances in the
case of stream-based active learning setup, oracles (humans as domain experts).
The active learning process starts with the training of learner on the seed set.
The learner then, based on some sampling strategy, selects the most informative
instance(s) from the unlabeled pool. The oracle(s) labels the selected instance(s).
The labeled instance(s) is/are added to the labeled pool and the learner is updated
on the newly labeled instances to select the next most informative instance(s) for
labeling, on the basis of updated knowledge. This process continues in an iterative

manner till some pre-defined stopping criteria is satisfied.

machine leaming

model
labeled
training sel
unlabeled pool
U

FIGURE 2.7: Typical Active Learning Setup. Reprinted from [1]

oracle (e.g., human annotator)
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In the next subsections we will shed light on the important components of the

active learning model and process.

2.2.1 Learner

The active learner has a central role in the active learning process. As with super-
vised learning, the learner in active learning model can be any machine learning
algorithm depending on the type and domain of the job. The main job of the active
learner is to predict the labels of the unlabeled instances in the unlabeled pool.
Based on the difficulty faced or lack of confidence in prediction by the learner, the
sampling strategy nominates the most informative instance out of the unlabeled

pool to be labeled by the oracle.

Usually, but not always, classifiers capable of yielding prediction probabilities,
e.g., Naive Bayes, are used as learners in active learning process for they provide
an easy way to measure the informativeness of the unlabeled instances. Support
Vector Machines (SVM) are also widely used in active learning experiments as
the support vectors and decision boundary of the SVM provides the notion of the

informativeness of the unlabeled instances.

2.2.2 Initial Seed

Although there are no concrete quantitative figures available about the size or
composition of the seed set but as per [8] there are some key guidelines about the

selection and composition of the seed set:

e The seed set should be a representative of the classes that the classifier is
expected to handle in active learning process. Consider the case where the
seed set is missing instances about one of the classes in the distribution.
The learner is trained on such seed set and made to predict the labels of the
instances in the unlabeled pool. As the learner does not know about one

of the classes, the learner will try to fit the instances of that class from the
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unlabeled pool to the classes it knows through seed set and hence that class
may be left out in the active learning process and the model will not be able

to predict that class.

e Ideally the class distribution in the seed set should be kept the same as that
of the unlabeled data so that model is trained in the right proportion of the

classes.

e The size of the seed set has a direct relation with the number of classes the
model is going to deal. The greater the number of the classes in the data,
the greater number of instances is required in the seed set to train a reliable

model.

The formation of seed set is a subjective matter and different approaches have
been researched. Some works like [9] suggests to perform clustering prior to active
learning and select the instances at the centre of clusters as members for seed set.
Unavailability of labeled instances for seed set is known as cold start problem. As a
simple approach the active learning experiments may be performed multiple times

with random selection of seed sets and finally averaging the results.

2.2.3 Sampling Strategies

Perhaps the most important and critical component of the active learning process is
the instances sampling strategy. The effectiveness of the active learning depends on
the instances being sampled which are labeled by the oracle(s) and used to retrain
model to select the next batch of to-be labeled instance(s). Effective sampling
can lead to a better model with few instances. The goal is to select the most
informative instances with respect to the job in hand. The informativeness of the
instances is measured through some utility metric. We are discussing few strategies

below:

e Random Sampling: The instances to be labelled are selected pure randomly

without any utility metric calculation. So far overall random sampling has
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been found to be the most consistent performer across all domains. Random
sampling is considered as benchmark and for any active learning sampling

strategy to be accepted and adopted must atleast outperform random sam-

pling.

e Uncertainty Sampling: Perhaps mostly used, uncertainty sampling uses the
uncertainty of the classifier in predicting the label of an instance as util-
ity metric. Of the unlabeled pool, the instances about whose class/label the
classifier is most uncertain are considered the most informative instances and
nominated for labeling task. The uncertainty is usually calculated through
confidence, margin and entropy using the posterior probabilities of the clas-

sifier.

— Confidence is measured as the highest posterior of the classifier for all
the possible classes of a given instance. Instance(s) having the smallest

confidence are considered the most uncertain and ideal for labeling.
rio =argmazr 1— Py (y|z)

— Margin is the difference of the two highest posteriors for a given in-
stance. Instance(s) having the smallest margin is/are the most uncer-

tain and ideal for labeling.
xhy = argmin Py (y1|x) — Py (42]x)

— Entropy provides the notion of incompleteness in various fields. In
active learning, entropy takes all the posteriors for an instance into
account and through Shannon-Entropy calculates the uncertainty of

the instances.

Y
Ty = argmar — Z Py (9i]x) log Py (yi|x)

r i=1
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e Semi-Random Sampling: In semi-random sampling, switching between ran-
dom and uncertainty sampling is iteratively performed. As an example sce-
nario, one instance is randomly selected to be labeled and model retrained
to select the most uncertain instance to be labeled in an iterative manner.
Through semi-random sampling we can reap the partial benefits of both
random and uncertainty sampling. Consider an example scenario where as
per the uncertainty based sampling most of the uncertain examples belongs
to the same class then the trained model may be biased. Semi-random can
avoid the situation by providing chance to the neglected class instances to

be labeled and become part of model training.

e Data Fxploration Based Sampling: Apart from the individual label of an in-
stance, the distribution of data or neighbourhood instances can also be taken
into consideration while selecting an instance for labeling. For example, [10]
performs clustering prior to active learning and representative instances of
clusters are selected for labeling. [11] and [12] devised strategies which takes
into consideration the labels of the labeled instances in the neighbourhood
of a candidate instance for calculation of its effectiveness. Relying purely
on the distribution of data is known as Data Exploration and relying com-
pletely on the learner to sample instances for labeling is known as Model
Exploitation. Purely relying on exploration or exploitation is not suggested

as each has its own drawbacks.

e Query by Committee: Instead of single, multiple different learners are trained
and used to predict the labels of the unlabeled instances in the unlabeled
pool. Disagreement by the classifiers over the labels is used as the utility
metric and the instances bearing maximum disagreement are deemed to be

most uncertain and nominated for labeling.

2.2.3.1 Synthetic Queries

In some cases, for training a model synthetic queries may be generated by the

learner and labeled by the oracles, as shown in Figure 2.8. The synthetic queries
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are generated by altering attributes of the queries known to the learner. The
concept may be useful as the model is trained on breadth of instances but almost
useless in some cases like in case of text categorization. Just altering the attributes
may result in the generation of grammatically wrong or incomplete queries and

may completely make no sense to the oracle.

2.2.3.2 Batch-mode Queries

Our active sampling strategy may select a single most informative instance to
be labeled or it may select a batch of multiple queries. Batch mode selection of
queries speeds up the active learning process as the assessment of informativeness
of instances takes time but on the other hand some of the instances in the batch
may not be required to be labeled if some other queries in the batch are labeled,

hence wastage of labeling budget.

2.2.4 Unlabeled Data (Pool)

In pool-based active learning scenario, we have a large pool of unlabeled instances
from which the sampling strategy, through the learner, iteratively selects the most
informative instances to be labeled by the oracle. While in stream-based setting,
one instance a time arriving in a stream is dealt and evaluated to be enough

informative to be labeled or discarded. The scenarios are depicted in Figure 2.8.

2.2.5 Oracles

It is usually assumed that oracles are perfect humans, experts in the problem do-
main or atleast domain-aware, reliable and consistent performers. Labeling can be
done in single-instance querying with single-oracle environment or multi-instance
querying with multi-labelers environment. In case of hierarchical classification,
oracle(s) per hierarchy level may be required as a single oracle may not be ex-

pert of every category. Recently crowd-sourced labeling [13] has gained popularity
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FIGURE 2.8: A more generalised Active Learning setup. Reprinted from [1]

and some platforms like Mechanical Turk® and CrowdFlower * provide services
for crowd-sourced labeling. As the labels acquired from such a setting may not
be completely reliable therefore strategies have been suggested for coping with
such noisy labels. For example, if the labeling accuracy of a labeler falls below
an acceptable threshold the labeler may be refrained from further labeling. [14]
suggest strategies where the queries considered hard to be labeled by the labelers

are labeled by the domain experts.

2.2.6 Stoppage Criteria

“When are we supposed to stop active learning?”. This is fairly an objective
question. As per [8], various approaches have been devised for catering this ques-
tion. The simplest approaches may be: whenever (a predefined) target accuracy
is achieved or a fixed number of iterations are completed or the unlabeled pool is
exhausted then stop further learning. One more intuitive approach is to monitor
the performance measure and whenever a decline in performance is noticed stop
the learning. Another simple approach is that if cost of labeling further instances

exceeds the misclassification cost then active learning can be stopped.

3https://www.mturk.com/mturk /welcome
“http:/ /www.crowdflower.com/
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2.2.7 Applications of Active Learning

Being proven effective and beneficial for the machine learning, active learning has
been used in a variety of applications and domains. Text classification/catego-
rization is perhaps the top beneficiary as labeling long text documents are hard
to read and label. Webpages categorization, images classification are favorable for
active learning as unlabeled instances in these areas are widely available. Some
interesting applications of active learning include Automatic Classification of Soft-
ware Behavior [15], recommender systems [16], Automatic speech recognition [17],
Natural language parsing [18], music retrieval [19], anomaly and rare-category

detection [20].



Chapter 3

Research Problem

In this chapter we will provide the details of the research problem we have inves-

tigated. An overview of the related work performed is provided.

3.1 Problem Definition and Proposed Approach

Twitter has not been thoroughly researched in the context of hierarchical classifi-
cation. Hierarchical classification of tweets is equally important as other domains.
For example an electronics company may want to categorize the pool of tweets
about their different products into positive and negative user feedback. With hi-
erarchical classification, they will be able to categorize and then analyse the users
feedback about different products. Existing hierarchical classification approaches
devised mainly for text classification can be validated in Twitter domain. For
reducing the labeling effort required for training these models; active learning can

be utilized.

We tailored the four existing hierarchical classification approaches with active
learning to be used for hierarchical classification of tweets. The big bang approach

will be used as benchmark for comparison of the other experiments.

22
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3.2 Research Hypotheses

Through the devised experiments we will try to satisfy the following hypotheses:

e Conventional hierarchical classification approaches can be utilized for hier-

archical classification of tweets.

e Sophisticated hierarchical prediction through flat classification and top-down
approaches are expected to perform better than the rest of the two ap-

proaches.

e As proved in other domains, active learning can be used for hierarchical
classification in twitter domain, thus saving considerable amount of labeling

effort.

3.3 Related Work

As discussed in previous sections, Twitter has not been able to gain researchers
attention in the context of Hierarchical Classification. To the very best of our
knowledge, only Zhaochun Ren et al [7] researched hierarchical classification in
Twitter domain. To make up for the short length of the tweets, they are extending
the short text of tweets using wikipedia corpus. They used simple supervised

learning for training the model.

Regarding the application of active learning in hierarchical classification, we know
about two works [21] and [22]. Both these works are in text classification domain
and not in twitter domain. Both these works use top-down approach for hierarchi-
cal classification. Performance comparison of their approach is made with random

sampling.

[21] is using global unlabeled pool and each node is performing individual active

learning in parallel fashion for itself irrespective of the other nodes. The problem
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with the approach is the selection of irrelevant instances. If an irrelevant to the

node instance is selected to be labeled the budget is wasted.

Xiao Li et al [22] enhanced Xiao Li et al [21] by introducing individual unlabeled
pools for each node consisting of only the instances relevant to one of the par-
ent class. Active learning is performed for root node and then refined relevant
unlabeled pools are constructed for subsequent nodes from the perfectly labeled
instances by oracle. As the size of the unlabeled pools keeps shrinking down the
hierarchy, the authors proposed a novel approach of using trained classifiers in the
upper levels to label the unlabeled instances in their unlabeled pools and these
instances are used to populate the unlabeled pools of the subsequent nodes. To
cope with the misclassifications performed in these labeling and reduce their ef-
fect, dual-pool strategy has been suggested. One of the unlabeled pool contains
the instances perfectly labeled by oracles and the other unlabeled pool contains the
(somehow noisy) instances labeled by the classifiers which may contain instances
misclassified by the upper level classifier and being irrelevant to the concerned
node. Based on some heuristics, instances are selected by the active sampling

strategy in some proportion out of these pools.

Sufficient research has been performed in hierarchical classification of text therefore
benchmark performance for comparison exists. For Twitter domain as there is no
work so we are doing the comparative analysis of all four approaches. We are using
a simplified version of [21] and [22], by deploying a single unlabeled pool instead
of the dual-pool strategy.



Chapter 4

Experiments Design

In this chapter we explain the experiments designed for comparing the four hi-
erarchical classification approaches. Details of the hierarchy considered for the
experiments, dataset and evaluation measure used for comparison of the experi-

ments are provided.

4.1 The Hierarchy

For our hierarchical classification experiments, we are using the pre-defined hier-
archy provided as Figure 4.1. We have three levels in the hierarchy. At root level
we have two classes: Sports&Entertainment and Politics. At second level of the
hierarchy we have two classes: Factual and non-factual for each of the two parent
classes. At third level in the hierarchy we have Positive and Negative classes in
case of non-factual parent class or Neutral in case of factual case. Looking at
the hierarchy, classification till the leaf nodes is required and hence the task is

Mandatory Leaf-Node Prediction (MLNP) problem.

25
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FIGURE 4.1: Proposed hierarchy

4.2 Experiments

4.2.1 Big Bang

Our first experiment is based on the concept of big bang approach of hierarchical
classification. The experiment is carried out through MEKA. MEKA framework
is WEKA’s extension for multi-label classification!. MEKA contains both the
problem transformation and algorithms transformation methods for multi-label
classification and multi-target classification. The interface and operation of MEKA
is very much identical to that of WEKA. As the spirit of the big bang approach,
MEKA looks after the implementation of the multi-labeling tasks and for users
the job is performed in a single run. It is important to mention here that MEKA

performs flat classification means lacking hierarchical classification.

From now onwards we will call this experiment ALBB. In ALBB, we use the Class-
Relevance (CR) class of MEKA multi-target classification. CR is the generalised
multi-target version of the Binary Relevance (BR) method of multi-label classifi-
cation, meaning the relation among labels will be neglected and multiple classifiers

will be trained for multiple labels.

Thttp://meka.sourceforge.net/
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For active Learning in ALBB we are using Random sampling for instance selection
i.e., instances are pure randomly selected from the unlabeled pool and after being
labeled added to the labeled pool until the budget is exhausted. Eventually the
model is trained on the labeled pool to perform the classification of tweets in
the testset. We will use ALBB as performance benchmark for the other three

experiments.

4.2.2 Single Flat Classification

As discussed in the previous chapter, we consider only the six leaf node classes
and a single flat classifier is trained. Nodes in the hierarchy other than the leaf
nodes are neglected as each class represents a full path in the hierarchy. We will

call this experiment ALSFC in the rest of the text.

The hierarchical task is reduced to a simple one level multi-class classification task.
There is a single unlabeled pool and we select most uncertain instances from this
unlabeled pool and ask oracle for labeling of these instances. Labeled instances are
added to the labeled pool and model retrained for further selection of uncertain

instances till the budget is exhausted.

4.2.3 Hierarchical Prediction through Flat Classification

Devised by Jesse Read et al [23] for multi-labeling tasks, classifier chains is a vari-
ant of Binary Relevance (BR) in which association among the labels is preserved
by adding the preceding label(s) as attribute(s) to the dataset for learning the
next label using flat multi-label classification. Being a problem transformation
technique, the dataset is transformed into “n” single label datasets, where “n” is
the number of labels and “n” numbers of classifiers are trained. Each classifier
is trained on one of the “n” datasets such that dataset at position “j” uses the
labels of the “j-17 datasets as additional attributes bearing a binary value of “1”

in case of instance being positive for corresponding label or “0” in case of negative

instance.
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As our third hierarchical classification experiment, we used classifier chains concept
with local classifier per level experiment. From active learning point of view, we
are dividing the budget equally in the three levels. We will be using the term
ALCC as identifier for this experiment in the remaining text. In ALCC, we used
three local classifiers for each level of the hierarchy. The label output of level 0
is added as an additional attribute in level 1 dataset and both level 0 and level 1

labels output as additional attributes in level 2 dataset.
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FIGURE 4.2: Process flow of ALCC

For active learning we need a labeled pool initially consisting of the seed set and
an unlabeled pool. Referring Figure 4.2, in ALCC we are having three classifiers
“C” one for each level and every classifier having its unlabeled pool “Dy”. As we
are using Classifier Chains concept, the unlabeled pools for level 1 and level 2 are
empty initially. Active learning is performed for the first level and most uncertain
instances from the unlabeled pool are labeled by oracle “O” till the exhaustion of
share in the budget. These labeled instances are added to the level 0 labeled pool
“Dy” as well as added to the level 1 unlabelled pool having level 0 labels appended
as attribute. Once the budget share is consumed, the level 0 trained classifier is
then used to predict the labels of the instances left out in the unlabeled pool of
the level 0 to make sure provision of sufficient unlabeled instances in the unlabeled

pool of the level 1. For avoiding noise, we only considered the labels for which
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the classifier was atleast 80% confident to be placed in the level 1 unlabeled pool.
Similarly, active learning is performed for the level 1 and the labeled instances are
concomitantly added to the unlabeled pool of the level 2 having both level 0 and
level 1 labels appended as attributes. After the exhaustion of the level 1 budget,
the learned classifier is used to label the left out instances in the unlabeled pool
of the level 1 and instances qualifying 80% confidence criteria are placed in level 2
unlabeled pool. Finally, active learning is performed for the level 2 and classifier

trained.

In testing phase, the instances are exposed to the three level classifiers in turn and

labels predicted.

4.2.4 Top Down

As our fourth experiment, we used top down approach. We will be using ALTD
as identifying term for this experiment. We used a local classifier for each node
approach. Each classifier is trained with only the instances belonging to one of the
parent class. It is important to mention here that budget is equally distributed
among the levels and the level budget is equally distributed in the classifiers in a

level.

Referring Figure 4.3, in ALTD we are using individual unlabeled pool “Dy” for
each classification node. The unlabeled pool of each classifier should only contain
the instances belonging to one of the parent class. On the lines of the ALCC,
active learning is performed at level 0. The labeled instances are added to the
level 0 labeled pool “D;” as well as to the unlabeled pool of node 1 or node 2 at
level 1 depending on the label provided by oracle “O”. After the due budget share
for level 0 is consumed, the learned classifier is used to predict the labels for the left
out instances in the unlabeled pool of the level 0 and sent to respective unlabeled
pools of the level 1 depending on the predicted labels. For avoiding noise, we only
considered the labels having atleast 80% classifier confidence to be placed in the

next level unlabeled pools. Similarly, active learning is performed for both the
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nodes at level 1 and the labeled instances are sent to the respective labeled pools
as well as the unlabeled pools in the level 2 depending on the labels provided by
the oracle. After the exhaustion of the due share in budget, the left out instances
in each unlabeled pool at levell are labeled by their respective learned classifiers
and the based on the predicted labels the instances are sent to the unlabeled pools

at level 2. Eventually active learning is performed at level 2 and classifiers trained.

@-‘ D, !J(Rnn:\ [ oy | Level O

FIGURE 4.3: Process flow of ALTD

Testing is also performed in the top down fashion. A test instance is classified
by the root node and based on the predicted level 0 label the instance is further

exposed to the relevant node and this goes on till the leaf node is predicted.

4.3 Dataset

For conducting the experiments, we used SemEval twitter dataset [24],[25]. Se-
mEval is an international workshop on semantic evaluation??. The original dataset
is a collection of tweets on eighty (80) different topics. We selected tweets related
to forty three (43) topics and manually transformed them to three-level proposed

hierarchy. Originally the tweets were bearing two labels: one for topic and other

Zhttp:/ /alt.qcri.org/semeval2016/1/
3https://en.wikipedia.org/wiki/SemEval
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for the sentiment of the tweet i.e., Positive, Negative or Neutral. We treated the
topics as first label and merged them to two broad categories. The sentiment was
transformed to two labels. Positive and Negative were considered as non-factual
second label and Neutral as factual. The sentiment itself is considered as third

label. Composition of the final dataset is provided in Table 4.1.

Dataset Instances Features Hierarchy Level
SemEval 4332 10500 3

TABLE 4.1: Dataset statistics

The class distribution of the final dataset is provided in Table 4.2. The dataset is

skewed.

Level 1 Categories Level 2 Categories | Level 3 Categories

Non-factual (2161) Ezsgl;gse((lsfg))

Factual/Neutral (880)

Positive (283
Non-factual (716) Negative((433)>)

Factual /Neutral (575)

Sports&Entertainment (3041)

Politics (1291)

TABLE 4.2: Dataset class distribution

As we know, due to 140 characters limit and informality of the medium, tweets
contain informal language, extensive use of abbreviations, typos and special char-
acters. To be fit for classification tasks, tweets need to be preprocessed. Following

steps were taken to clean and preprocess the tweets data:

e Removal of URLs: Tweets heavily contains URLs to other pages. These
links do not contribute to the classification task hence they needs to be

removed.

e Removal of Punctuation: Extensive punctuation is used by users. These

punctuations make complex the language hence are removed.



Experiments Design 32

e Remowal of Numbers: Numbers and dates are less important for classification

and therefore were removed.

e Remowal of StopWords: Stopwords do not contribute to the classification
tasks and uselessly increase the number of attributes therefore we removed

stopwords using NLTK stopwords list.

o Stemming: Where possible we stemmed the words, like work, works, worked,

working were stemmed to work.

We use simple Bag-of-Words (BOW) representation for tweets in our classification
task. Due to the reason mentioned in the next section, the preprocessed tweets
coupled with their respective labels were saved in ARFF format as both WEKA
and MEKA uses ARFF file format.

Using Bag of Words approach for attributes in text classification makes it different
from other classification jobs. In other classification jobs the attributes of the
training set and test set are always the same, only the values of those attributes
changes. In text classification the number of attributes and the attributes itself
may differ in training set and testset. To handle the situation, we chain the
indexing process and the classifier. We used WEKA’s Filtered Classifier to chain
String to Word Vector filter with the classifier to perform the indexing of the data
on-the-fly.

4.4 Evaluation Measure

Some researchers use flat classification evaluation measures for performance assess-
ment of hierarchical classification while many devised their own measures suitable
to their machine learning domain. A comprehensive comparison of different per-
formance measures has been carried out by [6] and [26]. Ideally, a hierarchical

classification task should be evaluated with hierarchical evaluation measures.
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Being most advocated, we are using hierarchical F-measure for evaluation of our
hierarchical classification task. Hierarchical F-measure is a tweaked version of F-
measure for hierarchical evaluation calculated using tweaked versions of precision

and recall. The hierarchical F-measure is calculated through Equation 4.1.

2% hPxhR
M= TIR (4.1)
where
S IPNT
hP = ———
Zi l
and A A
> \BNT
hR = -
=7

In the above equations AP represents hierarchical precision and hR represents
hierarchical recall. P is the set of labels predicted for a test instance ¢ for all
the levels in the hierarchy and 7} is the set of true labels for all the levels in the

hierarchy of that test instance i.

Calculation of hierarchical F-measure is simple for ALBB, ALCC and ALTD. In
ALSFC approach, we make the hierarchical classification problem a single flat
classification problem but to make a comparison with the other three we have
to calculate the hierarchical F-measure. As each label represents a path in hi-
erarchy, so each predicted label should contribute the way it contributes in a
hierarchical problem. For example, a Positive leaf node class instance of category
Sports&Entertainment if misclassified as Negative should be less harmful than the

same instance if misclassified as Neutral.
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Experiments Evaluation

The designed experiments were conducted with the same parameters and assump-

tions as follows:

e Margin-based uncertainty sampling, due to its simplicity and wide usage in
active learning experiments, is used as utility metric to select most infor-

mative instances in case of ALSFC, ALCC, and ALTD. For ALBB we used

random sampling.

e Naive Bayes, due to its scalability, inherently providing probability distribu-
tion on the instances, proven better results with text classification, is used

as the base classifier in all the experiments.

e Each label is assumed to consume one unit of budget. So if all the three

labels were provided by oracle then three units of budget is consumed.

To evaluate the models, 10% of the total 4332 instances i.e., 433, were used as
Testset while the remaining 90% instances i.e., 3899, were considered as training
set. The training set was distributed among seed set and unlabeled pool. Experi-
ments were conducted for three different values of seed sets i.e., 0.1% of training
set, 0.5% of training set and 1% of the training set. To exclude randomness effect,

each experiment is performed 10 times with prior randomization of the dataset

34
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using unique random seed values. We used 500 budget limit with recording of

performance on intervals of 25 instances.

5.1 Results

We first present individual results of experiments initiated with the three different

seed sets and then inter-experiment comparative results are provided.

5.1.1 Big Bang with Active Learning

Figure 5.1 provide the hierarchical F-measure curves of the Big Bang approach
with active learning, referred to as ALBB, on three different values of seed sets.
As evident, greater the size of the seed set greater the hierarchical F-measure we
get. And greater the performance of the seed set lesser the gap for improvement.
We can see steepest curve in the case of 0.1% seed set while at 1% seed set the

curve is not so steep.
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F1GURE 5.1: ALBB performance on different seed sets
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5.1.2 Single flat classification with Active Learning

In case of Single flat classification with Active Learning, referred to as ALSFC,
as expected we get greater performance on larger size of seed set. In Figure 5.2
the three curves converge at budget 150 and remains steady till the exhaustion of

budget.
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FI1GURE 5.2: ALSFC performance on different seed sets

5.1.3 Hierarchical Prediction through Flat Classification

with Active Learning

Figure 5.3 shows that the hierarchical F-measure performance with 0.1% of seed
set is nominal as compared to the other two seed sets hence leaving scope for
greater learning therefore we see a continuous rise in performance. The other two
seed sets achieve good performance at seed sets and the scope for learning is less
as compared to the 0.1% seed set. The performance enters a steady state at the

exhaustion of budget.
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5.1.4 Top Down with Active learning

As depicted in Figure 5.4, our last experiment bears significant difference in the

performance on the seed sets and the model continuously improve its learning till

a steady state is reached at budget 250.
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5.1.5 Inter-experiment Comparison

Referring Figures 5.5(a), 5.5(b) and 5.5(c), we can see that ALCC (hierarchical
prediction through flat classification) is outperforming the other three approaches.
In our opinion, ALTD is a good approach but as the data is skewed and budget
is equally distributed among the nodes, the nodes with the major data did not
get enough share of budget to train enough uncertain instances. As the case with
ALCC, budget is used by the level classifiers according to the uncertain instances
so the greater the number of instances of a class greater the budget used for that

class and hence higher the hierarchical F-measure.

In active learning experiments the effectiveness can be quantified by the number of
queries an experiment saves in achieving the best performance of the random sam-
pling counterpart. In our case random sampling based ALBB is the benchmark.
Referring Table 5.1, ALBB achieves 0.67, 0.68 and 0.69 hierarchical F-measures
on consumption of 400 (maximum allowed) budget units with 0.1%, 0.5% and 1%
seed sets respectively. ALSFC outperforms the other competitors in 0.1% case
by achieving 0.67 hierarchical F-measure with consumption of 85% less queries
as compared to ALBB, but we can see in Figure 5.5(a) that after training with
consumption of 250 queries ALCC takes the lead. In 0.5% and 1% seed sets cases,
ALCC is leading the competition by saving 85% and 90% queries respectively to
achieve the 0.68 and 0.69 hierarchical F-measure of ALBB.

Seed Set | Experiment | H. F-measure | Queries Consumed | Queries Saved
ALBB 0.67 400 - -
0.1% ALSFC - - 75 85%
' ALCC - - 130 74%
ALTD - - 125 75%
ALBB 0.68 400 - -
0.5% ALSFC - - 140 2%
' ALCC - - 75 85%
ALTD - - 145 1%
ALBB 0.69 400 - -
1% ALSFC - - 110 78%
ALCC - - 50 90%
ALTD - - 90 82%

TABLE 5.1: Comparative analysis of the experiments
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Chapter 6

Conclusions and Future Work

In this thesis, we used active learning for developing models for hierarchical clas-
sification of tweets. For the purpose we devised four models having different
underlying concept. The first model is based on big bang approach of hierarchical
classification. Second model is based on single flat classification of hierarchical
classification. Third approach is based on local classifier per level approach and
the third model is based on local classifier per node approach. To reduce labeling
task, which requires resources like humans, time and money, we used active learn-
ing to select a modest number of instances out of the available pool to be labeled
and acquire optimum learning. We used the Hierarchical F-measure as evaluation

metric for the experiments was used.

From the results of the experiments, hierarchical prediction through flat classifica-
tion approach outperformed the counterparts, while all outperforming the random

sampling based big bang approach.

Currently labeling budget is equally distributed and consumed by all the levels, and
all the classifiers within a level. We will work on deploying schemes for utilization
of variable budget by levels and classifiers to achieve better performance or atleast

get the classifiers lagging behind at far with the others.

As we are using the learned classifiers to predict the remaining unlabeled instances
for next level unlabeled pools, noise is added in case of misclassified instances.

40
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Enhancement to the present work is possible in the form of the usage of the oracle
feedback for back-propagation of noisy instances by correcting their previous labels

and sending them to their respective unlabeled pools.

In present implementation we are using simple bag of words approach for at-
tributes. Additional sophisticated attributes can be added to the dataset to in-

crease classifiers learning and performance as a result.

Query by Committee (QBC) can be used to sample most informative instances and
predict labels for the left out instances in unlabeled pools for next level unlabeled

pools.

Presently we use uniform budget consumption for each level label, while in real
life different labels can incur different cost like based on labeling difficulty or the

labeling choices available hence variable cost for different labels can be researched.
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