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ABSTRACT

A SEARCH BASED ANALYSIS OF DECISION MAKING IN SIMPLE

ALLOCATION PROBLEMS

RABİA TELLİ

Economics, M.A. Thesis, 2016

Supervisor: Özgür Kıbrıs

Keywords: Rationality, Contraction Independence, Weak Axiom of

Revealed Preferences, Search, Consideration Set

In this thesis, we focus on the analysis of rationality for simple allocation problems by

interpreting solution rules as data on the choices of a policy maker. For an inventory of

bankruptcy rules, we show that only constrained equal awards rule satisfies contraction

independence. In addition, we weaken the rationality axiom and formulate the weak

WARP (Weak Axiom of Revealed Preferences) property for simple allocation problems.

We conclude that among a class of well-known solutions to simple allocation problems,

the constrained equal awards rule uniquely satisfies contraction independence and weak

WARP. In order to see the implications of existence of behavioral constraints in making

choice, we next construct a search based model in which the decision maker has to

engage in a dynamic search to adjudicate the conflicting claims and chose a division.

Finally, we show that all allocation rules can be rationalized with this simple search

model.
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ÖZET

BASİT DAĞITIM PROBLEMLERİNDE KARAR VERME SÜRECİNİN ARAMA

TEMELİNDE İNCELENMESİ

RABİA TELLİ

Ekonomi Yüksek Lisans Tezi, 2016

Tez Danı̧smanı: Özgür Kıbrıs

Anahtar Kelimeler: Rasyonellik, Daralmadan Bağımsızlık, Açı̆ga Çıkan Tercihlerin

Zayıf Axiomu, Arama, Değerlendirme Seti

Bu tezde, basit dağıtım problemlerinin çözüm kurallarını, bir karar merciinin seçim-

leri ile ilgili veri olarak yorumlayıp bu basit dağıtım problemlerinin rasyonelliği üzerine

odaklandık. İflas problemlerinin çözümü amacıyla kullanılan bir takım kurallar için,

daralmadan bağımsızlık özelliğini, sadece sınırlandırılmı̧s eşit ödüllendirme kuralının

sağladı̆gını gösterdik. Ek olarak, rasyonellik aksiyomunu zayıflattık ve açı̆ga çıkan

tercihlerin zayıf aksiyomu’nun daha zayıf bir versiyonunu, basit dağıtım problemleri

için formüle ettik. Basit dağıtım problemlerinin çözümü için tanımlanmı̧s, tanınmı̧s

çözümler arasında, sınırlandırılmı̧s eşit ödüllendirme kuralının daralmadan bağımsızlık

ve açı̆ga çıkan tercihlerin zayıf aksiyomu’nun daha zayıf bir versiyonunu sağlayan tek

kural olduğu sonucuna vardık. Seçim yapma sürecinde, davranı̧ssal kısıtların varlı̆gının

olasısonuçlarınıgörmek amacıyla arama temelli bir model oluşturduk. Bu modelde,

karar mercii, çakı̧san hak taleplerini karara bağlamak ve bir bölüşüm yapmak için di-

namik bir arama sürecine girmek zorundadır. Son olarak, bu modelle açıklanan bütün

dağıtım kurallarının rasyonel olduğunu gösterdik.
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I would like to thank Sura İmren for her support throughout my M.A. degree. Lastly,

I would like to thank my parents and my sisters who have supported me in all possible

ways throughout my life and always respected my decisions.

vi



TABLE OF CONTENTS

Abstract iv

Özet v

Acknowledgements vi

Table of Contents vii

Table of Figures viii

1 Introduction 1

1.1 Applications of Simple Allocation Problems 3

2 Literature Review 4

3 Simple Allocation Problems 7

3.1 An Inventory of Rules 8

4 Analysis of Rationality For Division Rules 11

4.1 Two-Agent Problems 12

4.2 Three-Agent Problems 14

5 Weak WARP 15

5.1 Two-Agent Problems 16

5.2 Three-Agent Problems 17

6 Search Model for Simple Allocation Problems 19

6.1 Model 20

7 Conclusion 23

References 23

vii



LIST OF FIGURES

Figure 1: A two agent simple allocation problem 7

Figure 2: A three agent simple allocation problem 7

Figure 3: Path of awards of four central rules 8

viii



1 Introduction

Revealed preference theory relies on the idea that the individual’s choice behavior re-

veals underlying preferences that govern it. Most of the earlier work on revealed prefer-

ence theory is related to the applications of these ideas to classical demand theory (e.g.

see Samuelson, 1938, 1948). However, the concept of revealed preference is applicable

to a wide range of choice situations. For example, applications of the theory to bargain-

ing games (Nash, 1950) characterize bargaining rules which can be “rationalized” as

maximizing the underlying preferences of an impartial arbitrator (or, depending on the

interpretation, a social welfare function of the bargainers) (Peters and Wakker, 1991;

Bossert, 1994; Ok and Zhou, 1999; Sánchez, 2000).

Revealed preference theory assumes that the decision maker is maximizing her prefer-

ences and her choices are the result of this maximizing procedure. As a consequence,

revealed preference theory represents the empirical content of rational decision making

behavior. The theory offers a condition for the choices to be consistent with prefer-

ence maximization. The Weak Axiom of Revealed Preferences (hereafter, WARP) is

a necessary and suffi cient condition for rationality. When the choice is single-valued,

this relevant condition is called Property α in Sen (1971) in the context of consumer

choice, and as independence of irrelevant alternatives in Nash (1950) in the context of

bargaining. This condition requires that the chosen element from a set also be chosen

from every subset that contains it. However, real life choice procedures often violate

these conditions. Instead of classifying this kind of choice procedures as irrational,

alternative explanations for rationality are proposed by recent research that incorpo-

rates the behavioral approach to the rational decision making theory. Rationality is

redefined as optimal behavior within the additional constraints such as, loss aversion,

endowment effect, limited attention, status quo bias and temptation. This idea is la-

beled as bounded rationality. As in the case of rationality, it can be applied to a wide

range of decision problems. This observation will be the starting point of this thesis.

In this thesis, we analyze concepts of rationality on a class of simple allocation problems.

The implications of full rationality on these problems has been previously analyzed by

Kıbrıs (2012, 2013) who carries out a revealed preference analysis. A simple allocation

problem for a societyN is an |N |+1 dimensional nonnegative real vector (c1, ...c|N| , E) ∈
RN+ satisfying

∑
N ci ≥ E where E, the endowment has to be allocated among agents in

N who are characterized by c, the characteristic vector. By interpreting an allocation

rule on simple allocation problems as representing the choices of a decision maker (e.g.
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a policy maker or a bankruptcy judge), Kıbrıs (2012, 2013) analyzes the conditions

under which an allocation rule can be rationalized as maximizing a binary relation. It

states that contraction independence property is equivalent to the rationality of a rule.

The main purpose of the allocation literature is to determine well-behaved rules for

associating with each problem a division between the claimants of the amount available.

Simple allocation problems have a wide range of applications. These are analyzed in

detail in Kıbrıs (2012) and we will give them in the subsection 1.1. Even though

relative importance of the rules depends on the application, there are several rules that

are commonly used in practice or discussed in theoretical work. Throughout this paper,

we analyze the rules used in the bankruptcy literature. In the section 2, we will present

these rules that are compiled in Thomson (2003, 2012).

The thesis is organized as follows. In Section 3, we analyze rationality of the inventory of

rules described in the section 2. As in Kıbrıs (2012, 2013) we assume that the allocation

rule represents the choice of a decision maker. We make our analysis based on the

contraction independence property. We identify the rules that violate this property by

giving an example for two and three agent case. We show that the only rational rule is

constrained equal awards rule (also known as the equal gains rule) for the reason that

its operation principle is based on equal division and thus, is independent of the agents’

characteristics values. It treats them as constraints in the application of this principle.

In Section 4, we weaken the rationality axiom and introduce a new property called

weak WARP proposed by Manzini and Mariotti (2007). This property requires that if a

decrease in the characteristics values does not change the initially chosen allocation, this

allocation has to be chosen for the characteristic values between the initial and decreased

characteristic values. This property captures the existence of menu dependence in a

consistent manner. Change of choice set may lead to change of preferences. However,

if the larger set does not contain any reason for the choice reversal, no smaller menu

contains such a reason either. We check which one of the rules satisfies this weak

rationality axiom.

In Section 5, we characterize a search model in which the choice process is generated

by a time-continuous dynamic search. The decision maker looks through alternatives

continuously and uses them to construct consideration sets. Then, she chooses the best

alternative in order to maximize utility on the intersection of the choice set and the

consideration set. Our main assumption is that the decision maker cannot consider all

alternatives due to lack of information or unawareness. Therefore, she must actively

2



search for alternatives. She starts the search with origin, at that point each claimant

gets nothing and terminates search when the characteristic vector is considered. We

identify preferences and search paths for most commonly used rules: Proportional rule,

constrained equal awards rule, constrained equal losses rule and the Talmud rule. We

then, show that every rule can be rationalizable by this search model.

1.1 Applications of Simple Allocation Problems

A simple allocation problem for a society N is an |N | + 1 dimensional nonnegative

real vector (c1, ...c|N| , E), which, with the exception of the last application below, is

interpreted as follows. A social endowment E of a perfectly divisible commodity is to

be allocated among members of N . Each agent i ∈ N is characterized by an amount ci
of the commodity. Next, we present the alternative interpretations of c and E at various

applications. These applications are discussed in detail in Kıbrıs (2012). Therefore, we

present them as in that paper.

1. Taxation: A public authority is to collect an amount E of tax from a society

N . Each agent i has income ci. This is a central and very old problem in public

finance. For example, see Edgeworth (1898) and the following literature. Young

(1987) proposes a class of “parametric solutions”to this problem.

2. Bankruptcy: A bankruptcy judge is to allocate the remaining assets E of a

bankrupt firm among its creditors, N . Each agent i has credited ci to the bankrupt

firm and now, claims this amount. For example, see O’Neill (1982) and the

following literature. For a detailed review of the extensive literature on taxation

and bankruptcy problems, see Thomson (2003 and 2007).

3. Permit Allocation: The Environmental Protection Agency is to allocate an
amount E of pollution permits among firms in N (such as CO2 emission permits

allocated among energy producers). Each firm i, depending on its location, is

imposed by the local authority an emission constraint ci on its pollution level.

For more on this application, see Kıbrıs (2003) and the literature cited therein.

4. Single-peaked or Saturated Preferences: A social planner is to allocate E
units of a perfectly divisible commodity among members of N . Each agent i

is known to have preferences with peak (saturation point) ci. The rest of the

preference information is disregarded as typical in several well-known solutions to
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this problem, such as the Uniform rule or the Proportional rule. For example, see

Sprumont (1991) and the following literature.

5. Demand Rationing: A supplier is to allocate its production E among deman-

ders inN . Each demander i demands ci units of the commodity. The supply-chain

management literature contains detailed analysis of this problem. For example,

see Cachon and Lariviere (1999) and the literature cited therein.

6. Bargaining with Quasilinear Preferences and Claims: An arbitrator is to
allocate E units of a numeriare good among agents who have quasilinear prefer-

ences with respect to it. Each agent holds a claim ci on what he should receive.

For examples of bargaining problems with claims, see Chun and Thomson (1992)

and the following literature. For bargaining problems with quasilinear preferences,

see Moulin (1985) and the following literature.

7. Surplus Sharing: A social planner is to allocate the return E of a project among
its investors in N . Each investor i has invested si. The project is profitable, that

is,
∑

N si ≤ E. Using the principal that no agent should receive less than his

investment, define the maximal share of an agent i as ci = E −
∑

N\{i} sj . Note

that
∑

N ci ≥ E. The surplus sharing problem can now be analyzed as a simple

allocation problem. For more on surplus-sharing problems, see Moulin (1985 and

1987) and the following literature.

8. Consumer Choice under fixed prices and rationing: A consumer has to

allocate his income E among a set N of commodities. The prices of the com-

modities are fixed and thus, do not change from one problem to another. (With

appropriate choice of consumption units, normalize the price vector so that all

commodities have the same price.) As typical in the fixed-price literature, the

consumer also faces “rationing constraints”on how much he can consume of each

commodity. Let ci be the agent’s consumption constraint on commodity i. See

Benassy, 1993 or Kıbrıs and Küçüksenel, 2008, for more on rationing rules.

2 Literature Review

Revealed preference theory is described firstly in Samuelson (1938). By using the “se-

lected over”expression, he actually defined the well known Weak Axiom of Revealed
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Preference. Samuelson’s paper stimulated a significant amount of theoretical and empir-

ical work and revealed preference literature has grown rapidly. Varian (2005) presents

a detailed survey starting from Samuelson’s seminal work. His paper offers an un-

derstanding about the development of the literature. However, in recent years, the

standard theory of individual decision making evolved into an area which suggests that

the study of choice procedures may yield better understanding of choice behavior. The

experimental and theoretical work of Kahneman and Tversky (1979) led to take into

consideration the behavioral analysis of economic decision making.

Experimental evidence discussed in Kahneman and Tversky (1979) shows that the

individuals make their choices by taking into account the status quo option. By using

the current option as a reference point, they determine their preferences. Thus, change

of reference option leads to change of preferences. In light of this information, the

paper tries to construct a reference dependent choice theory based on the reference

dependence, loss aversion and diminishing sensitivity assumptions which are ignored

by standard rational choice models.

Masatlıoğlu and Ok (2004) formulates a rational choice theory which allows for the

presence of the status quo bias. Their axiomatic choice model incorporates the standard

choice theory as a special case (the absence of a status quo). Their model allows for

choice reversals conditional on default option in the sense that a status quo point may

alter the individual’s choices even if it is not chosen.

Dean, Kıbrıs and Masatlıoğlu (2015) develops a model that captures both status quo

bias and limited attention phenomenon. They construct their model based on the

following assumptions. First of all, decision maker has limited attention and status

quo always receives attention. Moreover, status quo bias becomes more prevalent when

the choice set expands. This pattern is called choice overload. Secondly, they assume

that a status quo option may cause the decision maker to eliminate some alternatives by

constructing some sort of consideration sets. They also provide experimental evidence to

show that their assumptions are necessary to explain status quo biased choice behavior.

Manzini and Mariotti (2007) defines a procedure in which the decision maker uses se-

quentially two asymmetric binary relations (rationales) to account for cyclical choice

patterns. The rationales are applied in a fixed order. While the first rational removes

inferior alternatives, the second rational determines the chosen alternatives from the

narrowed set. Their elimination approach can explain a limited form of menu depen-

dence.
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A different approach to explain the choice procedures that are inconsistent with stan-

dard choice theory is pursued in Masatlıoğlu and Nakajima (2012). They eliminate one

of its main assumptions. They assume that decision maker may not evaluate simulta-

neously all alternatives in the choice set. As well as, they formulate a behavioral search

model by using consideration sets. These sets evolve during the course of search and

provide a dynamic decision procedure. The major novelty of the paper is the explicit

formalization of the evolution of the consideration set over time.

Thomson (2003, 2013) provides a detailed review of the literature on taxation and

bankruptcy problems. He presents the rules and their properties when the number

of agent is fixed or varying; compares the rules on the basis of these properties. His

surveys cover an axiomatic and game theoretic modeling of allocation problems and

discuss experimental testing of the theory devoted to adjudicate the conflicting claims.

Kıbrıs (2012) analyzes rationality and transitive rationality notions for simple alloca-

tion problems. Rationality of a rule is about whether its choices can be modeled as

maximization of a binary relation. That is, a rule is said to be rational (transitive ra-

tional) if its choices coincide with maximization of a (transitive) binary relation on the

allocation space. He shows that rationalizability is equivalent to WARP. Additionally,

contraction independence and WARP imply each other. Kıbrıs also introduces a weak

rationality property which allows a rule to maximize a different binary relation for each

characteristic vector. However, he shows that every rule satisfies weak rationality. In

the same spirit, Kıbrıs (2013) characterizes a family of rational rules named recursive

rules by using other well known axioms in the literature.

Stovall (2014) characterized the family of asymmetric parametric rules on the basis

of the family of symmetric parametric rules (Young, 1987). In that paper, Young’s

characterization becomes a special case of the family of asymmetric parametric rules.

Moreover, Stovall (2014) characterizes a family of rules which can be described in three

different ways by imposing Independence of Irrelevant Alternatives, Consistency and

Resource Monotonicity on the rules. He states that these three axioms characterize

each of following families of rules, and thus these families are in fact one and the same.

He refers to the first solution concept as monotone path rules that are identified with

the path of awards for a given claims vector. He gives the name of claims independent

parametric rules to second family of rules which are identified with a set of parametric

functions. Collectively rational additively separable (CRAS) rules are the third one

that is identified with an additively separable, strictly concave social welfare function.
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3 Simple Allocation Problems

Let N = {1, ..., n} be the set of agents. For i ∈ N , let ei be the ith unit vector in RN+ .
Let e =

∑
N ei. We use the vector inequalities, 5,≤, < .1.

A simple allocation problem for N is a pair (c, E) ∈ RN+ ×R+ such that
∑

N ci ≥ E

(please see Figure 1). We call E the endowment and c the characteristic vector.
As discussed at the end of Section 1; depending on the application, E can be an asset

or a liability and c can be a vector of incomes, claims, demands, preference peaks, or

consumption constraints. Let C be the set of all simple allocation problems for N .

Given a simple allocation problem (c, E) ∈ C, let X(c, E) = {x ∈ RN+ | x 5 c and∑
N xi 5 E} be the choice set of (c, E).

Figure 1: A two-agent simple allocation

problem

Figure 2: A three-agent simple allocation

problem

An allocation rule F : C → RN+ assigns each simple allocation problem (c, E) to

an allocation F (c, E) ∈ X(c, E) such that
∑

N Fi(c, E) = E. Each rule F satisfies

F (c, E) 5 c which, depending on the application, might be interpreted as a consumption

constraint (as in permit allocation) or an effi ciency requirement (as in single-peaked

preferences). Also,
∑

N Fi(c, E) = E can be interpreted as an effi ciency property (as in

permit allocation) or feasibility requirement (as in taxation). In consumer choice, this

condition is equivalent to the Walras law.

F (c, E) is called also an awards vector for (c, E). Given a claims vector, the graphical
1That is, x 5 y if and only if xi 5 yi for each i ∈ N ; x ≤ y if and only if x 5 y and x 6= y; x < y if

and only if xi < yi for each i ∈ N .
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location of the awards vector chosen by a rule as the endowment varies from 0 to the

sum of the claims
∑
ci, is the path of awards of the rule for the claims vector.

Figure 3: Paths of awards of four central rules for N = {1, 2}. (a) Proportional rule.
(b) Constrained equal awards rule (c) Constrained equal losses rule. (d) Talmud Rule

3.1 An Inventory of Rules

We introduce an inventory of most commonly used rules in literature as defined in the

surveys of Thomson (2003 & 2015). They are defined for a fixed N .

Proportional Rule: The proportional rule is one of the best known rules. It allocates
the endowment proportional to the claims.

• For each (c, E) ∈ C, P (c, E) = λc where λ is chosen so that
∑
λci = E.

Constrained Equal Awards Rule: This rule allocates equal amount to all claimants
subject to no agent receiving more than his claim. It involves the idea of equality and

favors the agents who have the smallest claims. Because of these properties, it has a

central role in the literature.

• For each (c, E) ∈ C and each i ∈ N, CEAi = min{ci, λ}, where λ is chosen so
that

∑
min{ci, λ} = E.
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Piniles’Rule: It is based on a double application of the constrained equal awards
rule. It uses the half-claims instead of the claims themselves.

• For each (c, E) ∈ C and each i ∈ N, Pini(c, E) = CEAi(c/2, E) if
∑

(cj/2) ≥ E,

and Pini(c, E) = ci/2 + CEAi(c/2, E −
∑

(cj/2)) otherwise.

Constrained Egalitarian Rule: This rule recommends an egalitarian division con-
cept and proposes the constrained equal awards rule for the half claims until the endow-

ment reaches the sum of the half claims. When the endowment is more than the half

sum of the claims, each agent receives the maximum of his half claim and min{ci, λ}
where λ is set so that awards add up to E.

• For each (c, E) ∈ C and each i ∈ N, CEi(c, E) = min{ci/2, λ} if E ≤
∑

(cj/2)

and CEi(c, E) = max{ci/2,min{ci, λ}} otherwise, where in each case, λ is chosen
so that

∑
CEi(c, E) = E.

Constrained Equal Losses Rule: This rule proposes an awards vector which equal-
izes the losses imposed to the agents subject to no agent receiving a negative amount.

In opposition to constrained equal awards rule, it favors the agents who have the largest

claims.

• For each (c, E) ∈ C and each i ∈ N, CELi(c, E) = max{0, ci − λ}, where λ is
chosen so that

∑
max{0, ci − λ} = E.

Concede-and-divide: This rule is defined only for the two-claimant case. It first
assigns to each claimant the difference between the endowment and the other agent’s

claim (or 0 if this difference is negative), and divides the remainder equally.

• For |N | = 2. For each (c, E) ∈ C and each i ∈ N,

CDi(c, E) = max{E − cj, 0}+
E−
∑

maxN{E−ck, 0}
2

.

Talmud Rule: This rule is a mixture of constrained equal awards and constrained
equal losses. For an endowment less than the half-sum of the claims, the constrained

equal awards rule is applied; if there is more, the constrained equal losses rule is utilized.
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• For each (c, E) ∈ C and each i ∈ N,

1. If
∑

(ci/2) ≥ E, then Ti(c, E) = min{ci/2, λ}, where λ is chosen so that∑
min{ci/2, λ} = E.

2. If
∑

(ci/2) ≤ E, then Ti(c, E) = ci −min{ci/2, λ}, where λ is chosen so that∑
[ci −min{ci/2, λ}] = E.

Random Arrival Rule: This rule uses the following pattern: It compensates fully
each claimant with respect to the order of the claimant’s arrival until the endowment

runs out. All orders are given equal probabilities and the average of the awards vectors

obtained by this pattern is taken to remove the unfairness associated with a particular

order. In the following formal definition, ΠN refers to the class of bijections from N

into itself.

• For each (c, E) ∈ C and each i ∈ N,

RAi(c, E) = 1
n!

∑
π∈ΠN

min

{
ci,max

{
E −

∑
cj, 0

j∈N, π(j)<π(i)

}}
.

ICI Family: This rule is described as in Thomson (2012).

• The ICI family (Thomson, 2000, 2008b) generalizes the Talmud rule. The pattern
of distribution is the same but the definition allows the critical values of the

endowment at which claimants come in and out of the distribution to differ from

the half-claims, and moreover, to depend on the claims vector. To specify a rule

in the family, we need lists F ≡ (Fk)
k=n−1
k=1 and G ≡ (Gk)

k=n−1
k=1 (where n ≡ |N |) of

functions from RN+ to R+ such that for each pair k, k′ ∈ {1, ..., n−1} with k < k′,

Fk′ ≤ Fk′ and Gk′ ≤ Gk. Let c ∈ RN+ be given, and let E grow from 0 to
∑
ci. The

distribution is as follows. The first units are divided equally until E reaches F1(c),

at which point the smallest claimant drops out for a while. The next units are

divided equally among the others until E reaches F2(c), at which point the second

smallest claimant also drops out for a while. This goes on until E reaches Fn−1(c),

at which point only the largest claimant is left; he receives each additional unit

until E reaches Gn−1(c). The other claimants return for more, one at a time, in

the reverse order of their departure. As E increases from Gn−1(c) to Gn−2(c), each

increment is divided equally between the two largest claimants, and so on. The

10



process continues until E reaches G1(c), at which point each increment is divided

equally among all claimants, and until the end. To guarantee that then, each agent

receives exactly his claim, the lists F (c) ≡ (Fk(c))
k=n−1
k=1 and G(c) ≡ (Gk(c))

k=n−1
k=1

have to satisfy certain linear relations, the ICI relations.

Parametric Rule of Representation: This rule is described as in Thomson (2012).

• Let Φ be the family of functions f : R+× [λ, λ]→ R+, where −∞ ≤ λ ≤ λ ≤ ∞
that are continuous, nowhere decreasing with respect to their second argument,

and such that for each c0 ∈ R+, we have f(c0, λ ) = 0 and f(c0, λ ) = c0. The

parametric rule of representation f ∈ Φ, Sf , is defined as follows: for each N ∈ N
and each (c, E) ∈ CN , Sf (c, E) is the awards vector x such that for some λ ∈ [λ,

λ] , and for each i ∈ N, xi = f(ci, λ).

4 Analysis of Rationality For Division Rules

An allocation rule on simple allocation problems can be interpreted as data on the

choices of a decision maker. In that context, a rule can be qualified as rational if

there is a binary relation defined on RN+ for a given rule such that for each problem,

the awards vector chosen by the rule is the unique maximizer of the relation over

the choice set of the problem. Rationalizability is equivalent to theWeak Axiom of
Revealed Preference (WARP) which can be equivalently stated as follows: for each
pair (c, E), (c′, E) ∈ C, F (c, E) ∈ X(c′, E) and F (c, E) 6= F (c′, E) implies F (c′, E) /∈
X(c, E). WARP requires the binary relation to be antisymmetric2 (Kıbrıs, 2012).

The counterpart of WARP for allocation rules can be defined as follows: A rule F

satisfies contraction independence if a chosen alternative from a set is still chosen

from subsets (contractions) that contain it: For each pair (c, E), (c′, E) ∈ C, F (c, E) ∈
X(c′, E) ⊆ X(c, E) implies F (c′, E) = F (c, E). For an allocation rule, WARP and

contraction independence imply each other. As a result, rationality is equivalent to

contraction independence. The following lemma provides a simple way of controlling

whether a rule satisfies the contraction independence (Kıbrıs, 2012).

Lemma 1 A rule F satisfies contraction independence if and only if for each (c, E),

(c′, E) ∈ C it satisfies the following properties
2A binary relation B on RN+ is antisymmetric if for each x, y ∈ RN+ , xBy and yBx imply x = y.
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Property (i). if for each i ∈ N , min{ci, E} = min{c′i, E} , then F (c, E) = F (c′, E),

Property (ii). if F (c, E) ≤ c′ ≤ c, then F (c′, E) = F (c, E).

Constrained equal awards rule is the only rule that satisfies contraction independence

among the rules presented in the Section 3. The following proposition provides a general

proof.

Proposition 2 Constrained Equal Awards Rule satisfies contraction independence.

Proof. For each (c, E) ∈ C, Fi(c, E) = min{ci, λ(c, E)}, where λ(c, E) is chosen so

that
∑

min{ci, λ(c, E)} = E. Let (c, E), (c′, E) ∈ C be such that F (c, E) ∈ X(c′, E) ⊆
X(c, E). We want to show that F (c, E) = F (c′, E). If X(c′, E) ⊆ X(c, E), then for

each i ∈ N, either c′i 5 ci or min{c′i, E} = min{ci, E}. If F (c, E) ∈ X(c′, E), then

Fi(c, E) 5 c′i. Assume initially that for each i ∈ N, Fi(c, E) 5 c′i 5 ci.

Let F (c, E) be such that Fi(c, E) = ci for all i ∈ {1, ...k} and Fj(c, E) < cj for all

j ∈ {k + 1, ..., n}. Suppose F (c′, E) 6= F (c, E). Then, there exists {i, j} ∈ N such

that Fi(c′, E) < Fi(c, E) and Fj(c′, E) > Fj(c, E). Now, j /∈ {1, ..., k} since otherwise,
Fj(c, E) = cj = c′j. So j ∈ {k + 1, ..., n}. That is Fj(c, E) < cj. Then, there exists two

cases.

Case 1: i ∈ {1, ..., k}. Then, Fi(c′, E) < Fi(c, E) = ci = c′i and Fi(c
′, E) = λ(c′, E).We

know that Fj(c′, E) = min{c′j, λ(c′, E)} ≤ λ(c′, E). However, we claim that Fj(c′, E) >

Fj(c, E) = λ(c, E) > Fi(c, E) > Fi(c
′, E) = λ(c′, E). Then, we obtain Fj(c

′, E) >

λ(c′, E), a contradiction.

Case 2: i ∈ {k + 1, ..., n}. Then, Fi(c, E) = Fj(c, E) = λ(c, E). We have Fi(c′, E) <

Fi(c, E) ≤ c′i and Fj(c
′, E) > Fj(c, E), Fj(c, E) < c′j. Fi(c

′, E) < c′i, then Fi(c
′, E) =

λ(c′, E).Altogether, these imply Fj(c′, E) > Fj(c, E) = λ(c, E) = Fi(c, E) > Fi(c
′, E) =

λ(c′, E). Then, we obtain Fj(c′, E) > λ(c′, E), a contradiction.

Secondly, for the case that min{c′i, E} = min{ci, E}, the proof follows the same con-
struction.

In the following subsections, we focus on the rules other than the contrained equal

awards rule for two and three agent case.
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4.1 Two-Agent Problems

In this section, we show that the rules other than the constrained equal awards, all

violate contraction independence and thus, are not rational for two-agent problems.

Proposition 3 Proportional Rule violates contraction independence.

Proof. Consider the following economy. Let N = {1, 2}, c = (10, 2), c′ = (9, 2) and

E = 10. Since c′ ≤ c, we have X(c′, E) ⊆ X(c, E). Also F (c, E) ∈ X(c′, E). However,

F (c, E) = (25
3
, 5

3
) 6= F (c′, E) = (90

11
, 20

11
), violating contraction independence.

Proposition 4 Piniles’Rule violates contraction independence.

Proof. Consider the following economy. Let N = {1, 2}, c = (14, 6), c′ = (12, 6) and

E = 10. Since c′ ≤ c, we have X(c′, E) ⊆ X(c, E). Also F (c, E) ∈ X(c′, E). However,

F (c, E) = (7, 3) 6= F (c′, E) = (6.5, 3.5), violating contraction independence.

Proposition 5 Constrained Egalitarian Rule violates contraction independence.

Proof. Consider the following economy. Let N = {1, 2}, c = (14, 6), c′ = (12, 6) and

E = 10. Since c′ ≤ c, we have X(c′, E) ⊆ X(c, E). Also F (c, E) ∈ X(c′, E). However,

F (c, E) = (7, 3) 6= F (c′, E) = (6, 4), violating contraction independence.

Proposition 6 Constrained Equal Losses Rule violates contraction independence.

Proof. Consider the following economy. Let N = {1, 2}, c = (10, 2), c′ = (10, 1) and

E = 10. Since c′ ≤ c, we have X(c′, E) ⊆ X(c, E). Also F (c, E) ∈ X(c′, E). However,

F (c, E) = (9, 1) 6= F (c′, E) = (8.5, 1.5), violating contraction independence.

Proposition 7 Concede and Divide violates contraction independence.

Proof. Consider the following economy. Let N = {1, 2}, c = (10, 2), c′ = (10, 1) and

E = 10. Since c′ ≤ c, we have X(c′, E) ⊆ X(c, E). Also F (c, E) ∈ X(c′, E). However,

F (c, E) = (9, 1) 6= F (c′, E) = (9.5, 0.5), violating contraction independence.
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Proposition 8 Talmud Rule violates contraction independence.

Proof. For the two-claimant case, concede and divide rule delivers the numbers pro-
posed by the Talmud.

Proposition 9 Random Arrival Rule violates contraction independence.

Proof. Consider the following economy. Let N = {1, 2}, c = (10, 2), c′ = (10, 1) and

E = 10. Since c′ ≤ c, we have X(c′, E) ⊆ X(c, E). Also F (c, E) ∈ X(c′, E). However,

F (c, E) = (9, 1) 6= F (c′, E) = (9.5, 0.5) violating contraction independence.

4.2 Three-Agent Problems

In this section, we show that the rules other than the constrained equal awards, all

violate contraction independence and thus, are not rational for three-agent problems.

Proposition 10 Proportional Rule violates contraction independence.

Proof. Consider the following economy. Let N = {1, 2, 3}, c = (10, 8, 6), c′ = (10, 7, 5)

and E = 20. Since c′ ≤ c, we have X(c′, E) ⊆ X(c, E). Also F (c, E) ∈ X(c′, E). How-

ever, F (c, E) = (25
3
, 20

3
, 5) 6= F (c′, E) = (100

11
, 70

11
, 50

11
) violating contraction independence.

Proposition 11 Piniles’Rule violates contraction independence.

Proof. Consider the following economy. Let N = {1, 2, 3}, c = (10, 8, 6), c′ = (8, 8, 6)

and E = 20. Since c′ ≤ c, we have X(c′, E) ⊆ X(c, E). Also F (c, E) ∈ X(c′, E). How-

ever, F (c, E) = (23
3
, 20

3
, 17

3
) 6= F (c′, E) = (7, 7, 6) violating contraction independence.

Proposition 12 Constrained Egalitarian Rule violates contraction independence.

Proof. Consider the following economy. Let N = {1, 2, 3}, c = (10, 8, 6), c′ = (6, 4, 4),

and E = 12. Since c′ ≤ c, we have X(c′, E) ⊆ X(c, E). Also F (c, E) ∈ X(c′, E).

However, F (c, E) = (5, 4, 3) 6= F (c′, E) = (4, 4, 4) violating contraction independence.
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Proposition 13 Constrained Equal Losses Rule violates contraction independence.

Proof. Consider the following economy. Let N = {1, 2, 3}, c = (10, 8, 8), c′ = (10, 7, 6)

and E = 20. Since c′ ≤ c, we have X(c′, E) ⊆ X(c, E). Also F (c, E) ∈ X(c′, E).

However, F (c, E) = (8, 6, 6) 6= F (c′, E) = (9, 6, 5) violating contraction independence.

Proposition 14 Talmud Rule violates contraction independence.

Proof. Consider the following economy. Let N = {1, 2, 3}, c = (10, 8, 8), c′ = (10, 7, 6)

and E = 20. Since c′ ≤ c, we have X(c′, E) ⊆ X(c, E). Also F (c, E) ∈ X(c′, E).

However, F (c, E) = (8, 6, 6) 6= F (c′, E) = (9, 6, 5) violating contraction independence.

Proposition 15 Random Arrival Rule violates contraction independence.

Proof. Consider the following economy. Let N = {1, 2, 3}, c = (10, 8, 8), c′ = (10, 7, 6)

and E = 20. Since c′ ≤ c, we have X(c′, E) ⊆ X(c, E). Also F (c, E) ∈ X(c′, E).

However, F (c, E) = (8, 6, 6) 6= F (c′, E) = (9, 6, 5) violating contraction independence.

5 Weak WARP

From the previous section, we conclude that majority of the well known division rules

violate rationality axioms. To explain choice patterns that are inconsistent with full

rationality, alternative motivation and procedures of choice are proposed. One of these

alternative explanations is related to menu dependence. Experimental evidence shows

that a decision maker’s preferences may depend on the set she confronts. Therefore,

cyclical patterns of choice can be described by this choice procedure. In this sense,

Manzini andMariotti (2007) proposed a property called weakWARPwhich allows menu

dependence but requires some consistency between choices. Suppose that alternative x

is chosen over y in a small set and in a larger set including this small set. This condition

reveals that there is no reason for choice reversal between x and y. As a result, in a

subset of the larger set which includes the small set, x has to be chosen over y.
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In the same spirit, we formulate a similar property with Manzini and Mariotti (2007)

and we call it again weak WARP to capture bounded rationality and examine whether

the rules satisfy it. Accordingly, weak WARP can be stated as follows: for the pairs

(c1, E), (c2, E), (c3, E) ∈ C, such that c1 ≤ c2 ≤ c3 and x ∈ X(c1, E) ⊂ X(c2, E) ⊂
X(c3, E), if x = F (c1, E) = F (c3, E) then x = F (c2, E).

In what follows we will show that constrained equal awards is the only rule that satisfies

weak WARP.

Proposition 16 Constrained Equal Awards Rule satisfies weak WARP.

Proof. Since the Constrained Equal Awards rule satisfies the stronger Contraction
Independence axiom, it also satisfies weak WARP.

5.1 Two-Agent Problems

In this section, we show that the rules other than the constrained equal awards, all

violate weak WARP for two-agent problems.

Proposition 17 Proportional Rule violates weak WARP.

Proof. Consider the following economy. Let N = {1, 2}, c3 = (10, 4), c2 = (9, 3.5),

c1 = (8, 3.2) and E = 10. Since c1 ≤ c2 ≤ c3, we have X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E).

Also F (c1, E) = F (c3, E) ∈ X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E). However, F (c1, E) =

F (c3, E) = (7.14, 2.86) 6= F (c2, E) = (7.2, 2.8) violating weak WARP.

Proposition 18 Piniles’Rule violates weak WARP.

Proof. Consider the following economy. Let N = {1, 2}, c3 = (10, 4), c2 = (8, 4),

c1 = (6.5, 3.5) and E = 10. Since c1 ≤ c2 ≤ c3, we have X(c1, E) ⊂ X(c2, E) ⊂
X(c3, E). Also F (c1, E) = F (c3, E) ∈ X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E). However,

F (c1, E) = F (c3, E) = (6.5, 3.5) 6= F (c2, E) = (6, 4) violating weak WARP.

Proposition 19 Constrained Egalitarian Rule violates weak WARP.
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Proof. Consider the following economy. Let N = {1, 2}, c3 = (10, 4), c2 = (8, 3),

c1 = (5, 2) and E = 7. Since c1 ≤ c2 ≤ c3, we have X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E).

Also F (c1, E) = F (c3, E) ∈ X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E). However, F (c1, E) =

F (c3, E) = (5, 2) 6= F (c2, E) = (4, 3) violating weak WARP.

Proposition 20 Constrained Equal Losses Rule violates weak WARP.

Proof. Consider the following economy. Let N = {1, 2}, c3 = (10, 4), c2 = (9, 4),

c1 = (9, 3) and E = 10. Since c1 ≤ c2 ≤ c3, we have X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E).

Also F (c1, E) = F (c3, E) ∈ X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E). However, F (c1, E) =

F (c3, E) = (8, 2) 6= F (c2, E) = (7.5, 2.5) violating weak WARP.

Proposition 21 Concede and Divide violates weak WARP.

Proof. Consider the following economy. Let N = {1, 2}, c3 = (10, 4), c2 = (10, 3),

c1 = (9, 3) and E = 10. Since c1 ≤ c2 ≤ c3, we have X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E).

Also F (c1, E) = F (c3, E) ∈ X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E). However, F (c1, E) =

F (c3, E) = (8, 2) 6= F (c2, E) = (8.5, 1.5) violating weak WARP.

Proposition 22 Talmud Rule violates weak WARP.

Proof. Example: for the two-claimant case, concede and divide rule delivers the num-
bers proposed by the Talmud.

Proposition 23 Random Arrival Rule violates weak WARP.

Proof. Consider the following economy. Let N = {1, 2}, c3 = (10, 4), c2 = (10, 2),

c1 = (8, 2) and E = 10. Since c1 ≤ c2 ≤ c3, we have X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E).

Also F (c1, E) = F (c3, E) ∈ X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E). However, F (c1, E) =

F (c3, E) = (8, 2) 6= F (c2, E) = (9, 1) violating weak WARP.

5.2 Three-Agent Problems

In this section, we show that the rules other than the constrained equal awards, all

violate weak WARP for three-agent problems.
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Proposition 24 Proportional Rule violates weak WARP.

Proof. Consider the following economy. Let N = {1, 2, 3}, c3 = (10, 8, 6), c2 =

(10, 7, 5), c1 = (25
3
, 20

3
, 5) and E = 20. Since c1 ≤ c2 ≤ c3, we have X(c1, E) ⊂

X(c2, E) ⊂ X(c3, E). Also F (c1, E) = F (c3, E) ∈ X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E).

However, F (c1, E) = F (c3, E) = (25
3
, 20

3
, 5)) 6= F (c2, E) = (100

11
, 70

11
, 50

11
) violating weak

WARP.

Proposition 25 Piniles’Rule violates weak WARP.

Proof. Consider the following economy. Let N = {1, 2, 3}, c3 = (10, 8, 6), c2 = (8, 8, 6),

c1 = (23
3
, 20

3
, 17

3
) and E = 20. Since c1 ≤ c2 ≤ c3, we have X(c1, E) ⊂ X(c2, E) ⊂

X(c3, E). Also F (c1, E) = F (c3, E) ∈ X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E). However,

F (c1, E) = F (c3, E) = (23
3
, 20

3
, 17

3
) 6= F (c2, E) = (7, 7, 6) violating weak WARP.

Proposition 26 Constrained Egalitarian Rule violates weak WARP.

Proof. Consider the following economy. Let N = {1, 2, 3}, c3 = (10, 8, 6), c2 = (6, 4, 4),

c1 = (5, 4, 3) and E = 12. Since c1 ≤ c2 ≤ c3, we have X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E).

Also F (c1, E) = F (c3, E) ∈ X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E). However, F (c1, E) =

F (c3, E) = (5, 4, 3) 6= F (c2, E) = (4, 4, 4) violating weak WARP.

Proposition 27 Constrained Equal Losses Rule violates weak WARP.

Proof. Consider the following economy. Let N = {1, 2, 3}, c3 = (10, 8, 8), c2 =

(10, 7, 6), c1 = (8, 6, 6) and E = 20. Since c1 ≤ c2 ≤ c3, we have X(c1, E) ⊂ X(c2, E) ⊂
X(c3, E). Also F (c1, E) = F (c3, E) ∈ X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E). However,

F (c1, E) = F (c3, E) = (8, 6, 6) 6= F (c2, E) = (9, 6, 5) violating weak WARP.

Proposition 28 Talmud Rule violates weak WARP.

Proof. Consider the following economy. Let N = {1, 2, 3}, c3 = (10, 8, 8), c2 =

(10, 7, 6), c1 = (8, 6, 6) and E = 20. Since c1 ≤ c2 ≤ c3, we have X(c1, E) ⊂ X(c2, E) ⊂
X(c3, E). Also F (c1, E) = F (c3, E) ∈ X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E). However,

F (c1, E) = F (c3, E) = (8, 6, 6) 6= F (c2, E) = (9, 6, 5) violating weak WARP.
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Proposition 29 Random Arrival Rule violates weak WARP.

Proof. Consider the following economy. Let N = {1, 2, 3}, c3 = (10, 8, 8), c2 =

(10, 7, 6), c1 = (8, 6, 6) and E = 20. Since c1 ≤ c2 ≤ c3, we have X(c1, E) ⊂ X(c2, E) ⊂
X(c3, E). Also F (c1, E) = F (c3, E) ∈ X(c1, E) ⊂ X(c2, E) ⊂ X(c3, E). However,

F (c1, E) = F (c3, E) = (8, 6, 6) 6= F (c2, E) = (9, 6, 5) violating weak WARP.

Before the presentation of our simple search model, we should mention that every

distinct member of a family of rules may have different properties. In the same vein, ICI

family (abbreviation of Increasing-Constant-Increasing expression) is a generalization of

the Talmud rule and has infinitely many members. For this family, instead of the half-

sum of the claims as in the Talmud rule, the points at which agents temporarily stop

receiving additional units and the points at which they come back can be determined

by the claims vector. The family contains constrained equal awards rule as well as the

rules that violate contraction independence and weak WARP such as the constrained

equal losses, and Talmud rules.

Parametric Rules also have infinitely many members and contains the rules that violate

contraction independence and weak WARP such as the proportional, constrained equal

losses, Talmud, and Piniles’rules. However, Stovall (2014) characterizes a sub-family of

the asymmetric parametric rules. In that paper, this sub-family is formulated as follows:

A parametric function is defined for each claimant and each parametric function depends

only on a single parameter, in which it is weakly increasing. For any problem, each

parametric function is truncated by the individual’s claim, and a common parameter is

found so that the sum of the truncated parametric functions evaluated at that parameter

equals the endowment. These rules are called as claims independent parametric rules

and satisfy the Independence of Irrelevant Alternatives (IIA) axiom.

6 Search Model for Simple Allocation Problems

Incomplete information about alternatives or lack of cognitive capacity may yield to

failure in choosing the best available option. Hence, existence of such constraints is in

contrast with the full rationality. In order to summarize choice behavior under these

constraints, search based models are considered as an alternative theoretical framework.

Since we think of a simple allocation problem as a choice problem, we design a simple
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search model in which the decision maker (bankruptcy judge or policy maker) makes a

search to explore the choice set and to select a division.

Our choice process is generated by a time-continuous dynamic search. At time t = 0, no

choice is to be made and each claimant gets nothing. For time t > 0, the decision maker

searches continuously and constructs the consideration set with the options that are paid

attention until time t. She stops searching when the characteristic vector is considered.

At the end of the search, some considered options may not be available. Thus, the

decision maker compares the alternatives in the intersection of the consideration set

and the choice set. She reveals her final choice by maximizing a preference relation.

In our model, the search path reflects the consideration set formation process. The

consideration set can be defined as the search history at time t. Because of the generality

of our model, each rule performs adequately across the search model.

6.1 Model

Our search model consists of two components: a preference relation and the search

path.

A preference relation denoted by � is a strict order over the alternative space, RN+
3. For a given (c, E), an alternative x ∈ RN+ is �-best in X(c, E), denoted x =

arg max�X(c, E) if x � y for each y ∈ X(c, E).

The search path defines for a given c ∈ RN+ the alternative that is considered at a

particular time t ∈ [0, 1] in the search process. The search starts with no division.

Once the characteristic vector is considered, the decision maker finalizes the search

process.

Definition 30 A search path is a mapping f : [0, 1] × RN+ → RN+ such that for each

i ∈ N and c ∈ RN+ , fi (., c) is nondecreasing, f(0, c) = 0 and f(1, c) = c. At every time

t, f(t, c) represents the alternative considered at that time during the search process.

The search history is the set of all alternatives that the decision maker have considered

by the end of t ∈ [0, 1]. While search continues, the search history expands.

3A binary relation � on RN+ is a strict order over RN+ if it is asymmetric (x � y implies not y � x)
and negatively transitive (not x � y and not y � z imply not x � z).
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Definition 31 The search history at time t ∈ [0, 1] and claims vector c ∈ RN+ is At(c) =
t⋃

s=0

f(s, c).

We can now state that an allocation rule F is consistent with the search model if the

following definition is satisfied:

Definition 32 F is rationalized by a search model if there is a search path f and a

preference relation � such that for each c, E, and t∗ = E∑
ci
, F (c, E) = arg max�At(c)∗.

This simple search model rationalizes all bankruptcy rules, therefore it provides a gen-

eral framework about the search behavior of the decision maker for simple allocation

problems. Because of its generality, it can be taken as a base model. For further stud-

ies, additional structure and restriction can be imposed in order to construct a more

informative model. We now state our main result.

Proposition 33 Any allocation rule can be rationalized with a (�, f(t, c)) pair.

Proof. Define � as represented by the function U(x) =
∑
xi. Define f for all c and

for all s as f(s, c) = F (c, s
∑
ci). Pick any c, E. Let t∗ = E∑

ci
. We now want to show

that F (c, E) = arg max�At(c)∗. Let F (c, E) = x∗. By construction, At(c)∗ = {x ∈ RN+
| x = F (c, E ′) for all 0 ≤ E ′ ≤ t∗

∑
ci}. This implies x∗ ∈ At(c)∗ . Suppose there is

y ∈ At(c)∗ such that y � x∗. By construction of �,
∑
yi >

∑
x∗i = E. In that case

y /∈ At(c)∗ , a contradiction.

By using the search path construction used in the proof, we can explicitly define search

paths for the commonly used rules.

• A Search Path for Proportional Rule: The most-known rule is the proportional
rule. One of the search path of this rule can be defined as follows:

fP (s, c) = s · c where s ∈ [0, 1] (1)

• A Search Path for Constrained Equal Awards Rule (fCEA): An important way of

selecting a division between the claimants is constrained equal awards rule. By

defining its explicit search path, the alternative considered at a particular time in

the search process will be apparent.
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f(s,c) =



(λs
n
, λs
n
, ..., λs

n
) if s ∈ [0, nc1

λ
]

(c1,
λs−c1
n−1

, ..., λs−c1
n−1

) if s ∈ [nc1
λ
, (n−1)c2+c1

λ
]

(c1, c2,
λs−(c1+c2)

n−2
, ..., λs−(c1+c2)

n−2
) if s ∈ [ (n−1)c2+c1

λ
, (n−2)c3+c1+c2

λ
]

...
...

...

(c1,c2, ..., cn−1,

λs− (c1 + c2 + ...+ cn−1)
if s ∈ [2cn−1+c1+...+cn−2

λ
, c1+c2+...+cn−1+cn

λ
]

(2)

where λ =
∑
ci

• Search Path for Constrained Equal Losses Rule (fCEL): This rule can be consid-

ered as a counter part of the constrained equals awards rule in terms of losses.

The following formula gives us its explicit search path.

f(s,c) =



(0, 0, ..., 0, λs) if s ∈ [0, cn−cn−1
λ

]

(0, ...0, λs−(cn−cn−1)
2

, λs+(cn−cn−1)
2

) if s ∈ [ cn−cn−1
λ

, cn+cn−1−2cn−2
λ

]

(0, ..., λs−(2cn−1−cn−cn−2)
3

,
λs−(2cn−cn−1−cn−2)

3
)

if s ∈ [ cn+cn−1−2cn−2
λ

, cn+cn−1+cn−2−3cn−3
λ

]

...
...

...

(λs+((n−1)c1−c2−...−cn)
n

, ...,
λs+((n−1)cn−c1−...−cn−1)

n
)

if s ∈ [ cn+cn−1...−(n−1)c1
λ

, c1+c2+...+cn−1+cn
λ

]

(3)

where λ =
∑
ci

• A Search Path for Talmud Rule: The following function is a compact formulation
of the search path of the Talmud Rule.

fT =

{
fCEA(s, c

2
) if 0 ≤ s ≤ 0.5

fCEL(s, c
2
) if 0.5 ≤ s ≤ 1

(4)
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7 Conclusion

In this study, we first focus on the analysis of rationality for simple allocation problems.

We take the contraction independence property as equivalent to rationality. For an

inventory of bankruptcy rules, we show that only constrained equal awards rule satisfies

the contraction independence. We then weaken the rationality axiom and formulate the

weak WARP property for simple allocation rules. We see that constrained equal awards

rule uniquely satisfies the contraction independence and weak WARP.

In real life choice problems, all available alternatives may not be observed and evaluated

fairly by the decision maker. As a result, people in general follow a search process in

order to figure out complicated decision problems. Since we treat simple allocation

problems as choice problems, we develop a simple search model in which the decision

maker (or policy maker) has to engage in a dynamic search to adjudicate the conflicting

claims. We show that all simple allocation rules can be rationalized with this simple

search model. Therefore, our model is not falsifiable. On the other hand, even if being

not falsifiable is a major limitation, it provides a general framework to summarize the

behavior of the decision maker in simple allocation problems. Hence, our work can

be used as a starting point. For further research, alternative special models can be

formulated to analyze choices under different restrictions on consideration sets.
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[15] Masatlıoğlu. Y. and Ok, E., 2005, Rational Choice with Status-Quo Bias, Journal

of Economic Theory, 115, 1-29.

[16] Moulin, H., 1985, Egalitarianism and utilitarianism in quasi-linear bargaining,

Econometrica, 53, 49– 67.

[17] Moulin, H., 1987, Equal or proportional division of a surplus, and other methods,

International Journal of Game Theory, 16, 161– 186.

[18] Nash, J.F., 1950, The Bargaining Problem, Econometrica, 18, 155-162.

[19] O’Neill, B., 1982, A Problem of Rights Arbitration from the Talmud, Mathematical

Social Sciences, 2, 287-301.

24



[20] Ok, E. and Zhou L., 2000, The Choquet Bargaining Solutions, Games Econ. Be-

hav., 33, 249-264.

[21] Peters, H. and P. Wakker, 1991, Independence of Irrelevant Alternatives and Re-

vealed Group Preferences, Econometrica, 59, 1787-1801.

[22] Samuelson, P.A., 1938, A Note on the Pure Theory of Consumer’s Behaviour,

Econometrica, 5, 61-71.

[23] Samuelson, P.A., 1948, Consumption Theory in Terms of Revealed Preferences,

Econometrica, 15, 243-253.

[24] Sánchez, M. C., 2000, Rationality of Bargaining Solutions, Journal of Mathematical

Economics, 389-399.

[25] Sen, A.K., 1971, Choice Functions and Revealed Preferences, Review of Economic

Studies, 38, 307-317.

[26] Sprumont, Y., 1991, The Division Problem With Single-Peaked Preferences: A

Characterization of the Uniform Allocation Rule, Econometrica, 49, 509-519.

[27] Stovall, J., 2014a, Asymmetric parametric division rules, Games and Economic

Behavior, 84, , 87-110.

[28] Stovall, J., 2014, Collective rationality and monotone path division rules, J. Econ.

Theory, 154, 1-24.

[29] Thomson, W., 2003, Axiomatic and Game-Theoretic Analysis of Bankruptcy and

Taxation Problems: A Survey, Mathematical Social Sciences, 45, 249-297.

[30] Thomson, W., 2013, Axiomatic and game-theoretic analysis of bankruptcy and

taxation problems: an update, Rochester Center for Economic Research Working

Paper.

[31] Varian, Hal R., 2006, Revealed Preference, In Samuelsonian Economics and the

Twenty-First Century, ed. Michael Szenberg, Lall Ramrattan, and Aron A. Gottes-

man, 99-115, New York: Oxford University Press.

[32] Young, P., 1987, On dividing an amount according to individual claims or liabilities,

Mathematics of Operations Research, 12, 398– 414.

25


