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ABSTRACT 

Micro swimming robots offer many advantages in biomedical applications, such 

as delivering potent drugs to specific locations in targeted tissues and organs with 

limited side effects, conducting surgical operations with minimal damage to healthy 

tissues, treatment of clogged arteries, and collecting biological samples for diagnostic 

purposes. Reliable navigation techniques for microswimmers need to be developed for 

navigation, positioning and localization of robots inside the human body in future 

biomedical applications. In order to develop simple models to estimate trajectories of 

magnetically actuated microswimmers blood vessels and other conduits, effects of the 

channel wall must be understood well. In this thesis, experimental and numerical model 

results are presented on swimming of microswimmers with a magnetic head and a 

helical tail in laminar flows inside circular channels filled with glycerol. Designed to 

mimic the swimming behavior of biological organisms at low Reynolds number flows, 

the microswimmers are manufactured utilizing a 3D printer and a small magnet and 

consist of a helical tail and a body that encapsulates the magnet. The swimming motion 

results from the synchronized rotation of the artificial swimmer with the rotating 

magnetic field induced by three electromagnetic-coil pairs. In order to obtain linear and 

angular velocities and to analyze the motion of the microswimmer, a computational 

model is developed to obtain solutions of quasi-steady Stokes equations, which govern 

the swimming of the microswimmers and the flow inside the channel. Experiments and 

numerical simulations are carried out for a number of cases with different geometric 

parameters and flow rates in the channel. Numerical simulation results agree well with 

experimentally measured velocities of the swimmer validating the experimental results. 

It is also presented a discussion on the influence of geometric parameters of the tail, 

such as wavelength, amplitude and length, and the direction of rotation of the swimmer 

on its trajectory based on the observed behavior in experiments and numerical solutions. 

Moreover, a computational fluid dynamics (CFD) model for swimming of 

microorganisms with a single helical flagellum in circular channels is presented. The 

CFD model is developed to obtain numerical solutions of Stokes equations in three 

dimensions, validated with experiments reported in literature and used to analyze the 

effects of geometric parameters, such as the helical radius, wavelength, radii of the 

channel and the tail and the tail length on forward and lateral swimming velocities, 

rotation rates and the efficiency of the swimmer. Optimal shapes for the speed and the 
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power efficiency are reported. Effects of Brownian motion and electrostatic interactions 

are excluded to emphasize the role of hydrodynamic forces on lateral velocities and 

rotations on the trajectory of swimmers. For thin flagella, as the channel radius 

decreases, forward velocity and the power efficiency of the swimmer decreases as well; 

however, for thick flagella, there is an optimal radius of the channel that maximizes the 

velocity and the efficiency depending on other geometric parameters. Lateral motion of 

the swimmer is suppressed as the channel is constricted below a critical radius, for 

which the magnitude of the lateral velocity reaches a maximum. Results contribute 

significantly to the understanding of the swimming of bacteria in micro channels and 

capillary tubes.  
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ÖZET 

Mikroyüzücüler, hedeflenen organlara sınırlı yan etkilerle ilaç iletilmesi, canlı 

dokulara en az zararla cerrahi ameliyatların gerçekletirilmesi, kapalı damarların 

açılması, biyolojik dokuların teşhis amaçlı vücut içinden toplanması gibi biyomedikal 

uygulamalarda pek çok avantaja sahiptir. Gelecekteki biyomedikal uygulamalarda, 

yüzücülerin vücut içindeki pozisyonlarının kontrolü için güvenilir navigasyon teknikleri 

geliştirilmelidir. Manyetik olarak tahrik edilen yüzücülerin kan damarlarında 

yörüngelerini tahmin edebilmek için kanal duvarlarının etkileri iyi anlaşılmalıdır. Bu tez 

kapsamında, manyetik gövdeye ve helisel kuyruğa sahip gliserol ile doldurulmuş 

silindirik kanallarda dışarıdan manyetik alanla tahrik edilen mikroyüzücüler için sayısal 

ve deneysel çalışmalar yapılmıştır. Biyolojik mikroorganizma hareketlerini taklit eden 

yapay mikroyüzücüler için helisel kuyruklar 3 boyutlu yazıcılar ile üretilip üzerine 

manyetik gövde yerleştirilmiştir. Üretilen yapay yüzücüler, 3 çift elektromanyetik bobin 

ile tahrik edilmiştir. Yüzücünün lineer ve açısal hızlarını elde etmek için ve yüzücünün 

hareketini analiz etmek için Stokes denklemlerini çözen hesaplamalı bir model 

geliştirilmiştir. Farklı geometrik parametreler ve farklı akış hızları için deneyel ve 

simulasyonlar yapılmıştır. Elde edilen simulasyon sonuçları, deneysel sonuçları 

doğrulamaktadır. Ayrıca helisel kuyruğun dalga boyu, genliği ve uzunluğu gibi 

geometrik parametrelerin ve yüzme yönünün etkileri de deneysel ve sayısal çalışmalarla 

açıklanmıştır. Bunlara ek olarak, tek kuyruklu mikroorganizmaların düşük Reynolds 

sayılarında hareketleri hesaplamalı akışkanlar dinamiği ile modellenmiştir. Stokes 

denklemlerini çözen bu model literatürde yayınlanan deneysel çalışmalarla 

doğrulanmıştır. Kuyruk geometrisinin verimlilik ve lineer - açısal hızlar üzerindeki 

etkileri açıklanmıştır. Optimal mikroorganizma geometrisi ve simulasyonlardan elde 

edilen hızlar gösterilmiştir. Mikroorganizma yörüngeleri üzerindeki yatay ve açısal 

hızlara olan hidrodinamik etkileri vurgulamak için Brownian hareketi ve elektrostatik 

etkileşimler çalışmaya dahil edilmemiştir. İnce kuyruklu mikroorganizmalar için, kanal 

çapı azaltıldıkça, yüzme hızı ve verimliliği de azalmaktadır. Bununla beraber kalın 

kuyruklu mikroorganizmalar için yüzme hızını ve verimliliği maksimum yapan optimal 

bir kanal çapı vardır. Mikroorganizmanın yan yönlerdeki hareketi kanal çapı azaldıkça 

kısıtlanmaktadır. Elde edilen sonuçlar mikrokanallar ve kılcal tüpler içindeki bakteri 

hareketlerinin anlaşılmasına önemli katkılar yapmaktadır. 
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1 INTRODUCTION 

Micro swimming robots can have a vast impact in development of new treatment 

methods for medical operations especially in minimally invasive surgery. Medical 

procedures such as targeted drug delivery, treatment of clogged arteries, marking 

damaged and cancerous tissues, visualization of aberrant body parts or organs will 

improve potentially and greatly with advances in the field. In order to control 

microswimmers inside conduits in the human body, such as arteries, lymphatic vessels 

and ureters, miniaturization of microswimmers and development of accurate external 

control mechanisms are essential. Furthermore, swimming of robots in confined 

environments must be well-understood to predict trajectories of robots in vessels, 

arteries and similar body conduits. 

Propulsion mechanisms of microorganisms are widely adopted in development of 

artificial microswimmers for potential applications in medicine and biology such micro 

surgical operations, drug delivery and micro manipulations. Helical nanostructured 

propellers are controlled to follow the specified patterns [1]. Micro machines fabricated 

with 3-D laser writing are actuated with external magnetic field to perform transport 

cargo in fluid environments [2]. For real – time trajectory control of the swimmers, 

magnetic resonance imaging (MRI) is used to obtain feedback information [3].  

The objective of the thesis is to make comprehensive explanation how geometric 

parameters of swimmer structure affect the swimming behavior since helical tail 

structure provides the propulsion. Fluid medium is also important; because swimmers 

show different characteristics in an unbounded fluid, near a plane wall and in channels. 

Here, swimmer behavior in circular channels is investigated for possible future 

biomedical applications in human blood vessels. Also swimmer behavior under constant 

flow is crucial to explain swimmer motion in blood streams. Microswimmer design that 

is used in experimental and numerical studies is inspired by singly flagellated natural 

microorganisms. Thus swimming of the natural organisms must be investigated for 

design of microswimmers.  A number of studies in literature address the effects of 
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geometric parameters on the swimming of microorganisms near boundaries and in the 

bulk fluid [4, 5]. Further study is necessary to understand the swimming behavior of 

microorganisms in confinements such as circular channels.  

This study will provide a basis for design of microswimmers by explaining the 

swimming velocity and the interactions with the channel walls. Designing 

microswimmers and developing the accurate control algorithm for swimmer motion, 

biomedical applications such as collecting biological samples from body and opening 

clogged arteries will be possible in the near future. 

1.1 Background 

1.1.1 Experiments 

Magnetically actuated microswimmers are becoming increasingly popular due to 

compatibility of magnetic fields with medical procedures.  Dreyfus et al. [6] 

demonstrated a magnetic microswimmer made of a red blood cell, which serves as the 

body of the structure, and super paramagnetic particles that are coated with streptavidin 

and connected to each other with DNA molecules to form a filament that serves as the 

flagellum. Propulsion of the micro structure is demonstrated with the aid of an external 

magnetic field that induces undulatory motion of the flagellum. Swimming speed of 

such microswimmers depends on the frequency of oscillations and the length and elastic 

properties of flexible filaments [6]. 

Magnetic fields can be applied to actuate different propulsion mechanisms of 

microswimmers, such as, helical tails, oscillating flexible flagella or magnetic particles. 

Abbott et al. [7] report that microswimmers with helical tail and flexible flagella have 

better performance, i.e. more efficient and swims faster, compared to robots controlled 

directly with the magnetic field gradient. Microswimmers with helical tails can be 

controlled by adjusting the frequency of rotations and changing the direction of the 

external magnetic field [7]. 

In order to use microswimmers inside the human body, their sizes must be 

compatible with intended tasks. For example, micron sized robots are necessary for 

procedures inside capillary vessels, larger ones can be used in other conduits such as 

urethra and the ocular cavity. In a recent study, nano-structured magnetic swimmers are 
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manufactured and navigated on a desired trajectory [1]. SiO2 propellers, whose 

dimensions are about 200-300 nm in diameter and 1-2 µm in length, are produced with 

shadow-growth method [1]. Zhang et al. [8] used micro manufacturing techniques to 

manufacture a helical artificial flagellum, which is about 47 m in length and about 5 

m in diameter.  Tottori et al. [2] used 3D lithography to manufacture polymeric helical 

structures about 35 m in length and 6 m in diameter and coated with ferromagnetic 

thin films on the surfaces.  Rotations and translations of nano and micro structures are 

achieved with the rotational magnetic field [1, 2, 8].  

Another approach to microswimmers in medical applications is modification of 

microorganisms with inorganic materials as demonstrated by Martel el al. [3]. 

Magnetotactic bacteria (MTB) can synthesize magnetic particles called magnetosomes, 

which allow controlling the bacteria magnetically.  MTB based nano robots can propel 

themselves with two counter-clockwise rotating flagella. Velocity of nano robots is 

controlled with the effect of the external magnetic field on magnetosomes, manipulation 

of the temperature and interactions with the capillary wall [3]. 

There are a number of experiments on low Reynolds number flagellar swimming 

in circular channels filled with viscous oils and cm-sized swimmers. Honda et al. [9] 

used helical tails, which are rigidly connected to a cubic magnet, to demonstrate the 

effects of frequency, number of waves, diameter and total length of the helical tail on 

the swimming velocity of the structure inside a silicone-oil filled circular channel. Their 

results show that the forward speed of the swimmer increases with the frequency of the 

magnetic field and the total length of the helix, and reaches a maximum for the optimal 

value of number of waves [9]. Tabak et al. [10] conducted experiments with an 

autonomous swimmer that mimics the motion of eukaryotic microorganisms with the 

aid of a battery-powered DC motor, which is placed inside the body and used to rotate a 

rigid helical tail inside circular channels. An analytical model based on the resistive 

force theory, which is developed by Hancock [11, 12], is used to obtain the swimming 

velocity and compare with experiments. According to the results, swimming inside the 

narrow channel is slower than swimming inside the wide channel due to increased shear 

drag on the swimmer inside the narrow channel [10]. According to our previous 

experiments with a mm-long swimmer that consists a magnetic lump connected to a 

rigid helical tail, swimmer’s velocity increases with the frequency up to the step-out 

frequency, for which the swimmer loses its synch with the rotating external magnetic 
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field with further increase in the frequency and slows down [13]. In addition, the CFD 

model shows that near-wall swimming is faster and more efficient than in-channel 

swimming [13]. 

Swimming of artificial structures and natural organisms has become increasingly 

popular and research has been widespread. A variety of structures that mimic the 

swimming mechanisms of microswimmers are constructed with different techniques 

such as a red blood cell with an artificial magnetic tail [6], a nanostructured helical 

propeller coated with ferromagnetic material [1], a soft magnetic metal square head and 

helical tail [8], a spherical magnetic head and helical tail [14]. Bacteria motion in 

confined geometries such as circular channels is examined by calculating motility 

coefficients [15], measuring the drift velocities [16] and measuring the chemotaxis 

parameters [17]. According to Berg and Turner [16], bacteria align with channel axis in 

confined geometries. Moreover, bacteria swim faster in restricted geometries, however 

further confinement leads to lower speeds [15].   

Various bacteria follow helical trajectories during their motion such as 

magnetotactic bacteria [18]. In their experimental study, Zeile et al. [19] demonstrate 

that Listeria monocytogenes follow a right-handed helical trajectory which is also 

reported in an analytical study by Dickinson et al [20]. Crenshaw et al. [21] explain that 

C. Reinhardtii forms not only helical trajectories but also straight ones during forward 

motion; however C. Reinhardtii follows straight trajectories during backward motion. 

Moreover, according to the light intensity during phototaxis of bacteria, positive and 

negative orientations lead to a left and right – handed helical trajectories; which 

corresponds with a switch from negative to positive angular velocity [21].  

Variety of stimuli such as concentration of repellents and attractants, temperature, 

magnetic field and light [22, 23] can induce bacterial locomotion, or motility, which 

may be exhibited not only in bulk fluids but also near solid surfaces and in 

confinements [15, 17, 24]. Brownian motion randomizes the direction and the position 

of the cell during a steady swimming period, and is coupled with hydrodynamic 

interactions to alter profoundly the trajectory of bacteria near a planar wall due to 

variations of the distance from the wall [25]. However, swimming behavior of bacteria 

in confinements exhibits nearly steady behavior [15]. Electrostatic and van der Waals 

forces are effective and cause adhesion only when the bacteria are very close to the 

boundary about 10 nm [15]. 
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As demonstrated in previous works, e.g. [4,5] , the swimming characteristics of 

bacteria with helical tails are vital to understand phenomena such as surface 

accumulation and mobility in bulk fluids and in porous media. DiLuzio et al. [26] 

studied the swimming behavior of E. coli cells in confined geometries, reported that 

bacteria swim close to porous agar surface than solid PDMS surface, and showed that 

the motion of cells is affected by the guide material in narrow channels; the percentage 

of the cells swimming close to the agar surface decreases as the channel height 

increases, indicating that hydrodynamic interactions diminish [26]. In an experimental 

study with mammalian sperm cells and unicellular green algae, Kantsler et al. [27] 

demonstrated that flagella-surface interactions are mostly important on the surface 

scattering mechanism of cells.  

Biondi et al. [15] conducted experiments to determine the effects of restricted 

geometries on the swimming behavior of E. coli in micro channels with heights varying 

from 2 to 20 μm, calculated the motility coefficients from the single-cell data, and 

reported that swimming behavior remains nearly constant in confined geometries. 

Maximum swimming speed is achieved in the 3-μm channel, but the speed decreases 

because of increasing drag force due to the restriction in the 2-μm channel [15]. Berg 

and Turner [16] conducted experiments with motile and non-motile bacteria in 

capillaries of 10 μm and 50 μm in diameter, reported that drift velocities and diffusion 

coefficients are higher in 10-μm capillary than in 50-μm, and concluded that bacteria 

align with the channel's longitudinal axis in restricted geometries. Liu et al. [17] 

performed experiments with E. coli in a capillary tube with 50 μm diameter, developed 

a method to measure chemotaxis parameters at the single cell level, demonstrated that 

the swimming speed has a normal distribution, and concluded that there is an optimal 

viscosity which maximizes the swimming speed [17]. Furthermore, authors also 

obtained the distribution of turn angles, which exhibits a non-normal behavior due to 

geometric restriction [17]. Mannik et al. [28] studied the motility of E.coli inside micro 

channels with diameter about 2 m and narrower, which are marginally larger, about 

30%, than the diameter of the cells. Authors showed that bacterial motion is one-

dimensional due to shallowness of the channel and the bacterium swims at the same 

average speed in the channels with diameters larger than 1.1 m as in the chamber. The 

motility of the bacteria vanishes in smaller channels with diameter 0.8 m and smaller, 

but the bacteria can still pass through these channels by growth and division.  
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1.1.2 Computational and Theoretical Modeling 

In addition to experimental work, analytical and computational models are 

reported in literature; computational models are based on computational fluid dynamics 

(CFD) and boundary element methods (BEM). In [29], an analytical model of a bio-

inspired microswimmer with a flexible tail based on the resistive force theory (RFT) is 

developed to predict the trajectory of the microswimmer; analytical model results agree 

well with CFD model results. In [30], a three-dimensional CFD model is developed for 

the microswimmer with a spherical magnetic head attached to a helical tail; 

comparisons are made between unbounded, in-center and near-wall swimming inside a 

cylindrical channel. Results show that swimming near the channel wall is faster and 

more efficient than swimming in the center, the efficiency of the robot is frequency-

independent, and forces perpendicular to the axis of the swimmer, which aligns with the 

axis of the channel, are very much higher for near-wall swimming than in-center 

swimming [30]. 

Using the BEM method, Ramia et al. [31] studied swimming of microorganisms 

with spherical bodies and rotating helical flagella for four different cases: in an 

unbounded medium, near a plane boundary, midway between two parallel boundaries 

and with other swimmers nearby. Swimming speed and angular velocity of the 

swimmer in an unbounded fluid are compared to the planar boundary case, a decrease 

less than 10% due to the flagellar locomotion is observed. The interaction with other 

neighbor swimmers or parallel planar boundaries causes a decrease in the velocity as 

much as 10% [31]. In a similar study, a BEM model is used to study forward and 

backward motion of flagellated bacteria close to a planar boundary [32]. It is 

demonstrated that trajectories and swimming speeds are different during forward and 

backward motions of the swimmer owing to effects of the pitch angle and the angle 

between the boundary and the axis of the helical tail [32]. Giacche et al [33] used a 

BEM model to study the entrapment of microorganisms with helical tails near planar 

walls, according to results the numerical model agrees very well with experimental 

observations, and the helical wavelength and amplitude have a profound effect on the 

stable trajectory of the microorganism.  

Recently, Felderhof [34] developed an analytical model for swimming of infinite 

helices inside circular channels based on first order expansion for the geometry of the 
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helical structure. According to results, in-channel swimming is faster and more efficient 

than unbounded swimming especially for thick tails.  

Moreover, theoretical models, such as the resistive force theory (RFT) [12] and 

slender-body theory [35] and computational solutions of Stokes equations, such as the 

boundary element method [36], are developed to obtain swimming velocities near plane 

boundaries [4, 37] and in bulk fluids [38]. Keaveny et al. [39] developed a numerical 

model to analyze the spiral motion of a swimmer with a flexible tail composed of 

magnetic spheres attached with filaments and actuated by an external magnetic field. In 

our earlier work [30, 40], behavior of microswimmers with a magnetic head and a 

helical tail is studied with quasi-steady numerical solutions to Stokes equations in order 

to identify the effect of geometric parameters of the swimmer on the forward and lateral 

velocities and wobbling rates.  

Controllable swimming inside channels in the presence of a Poiseuille flow bears 

importance for manipulating the motion of artificial and natural organisms in blood 

vessels. In a recent study, Zöttl and Stark [41] achieved non-linear dynamics of a 

spherical microswimmer in the Poiseuille flow. Trajectories of a spherical 

microswimmer are presented by discussing the swinging and tumbling motion of the 

swimmer. Authors also reported that confinement leads to more stable trajectories [41]. 

The motion of a spherical microswimmer in cylindrical Poiseuille flow is examined to 

determine chaotic dynamics [42]. It is reported that regular or chaotic motion of a 

swimmer depends on small finite periodic oscillations which vary with the position and 

orientation of the swimmer in the channel and efficient upstream (downstream) 

swimming takes place at (away from) the center [42]. It is also reported that African 

trypanosome cells which are subjected to flow, form an oscillatory path similar to a 

sinusoidal wave as they subjected to flow in bounded geometries [43]. Surface 

accumulation characteristics of bacteria in the absence and presence of the external flow 

in confined geometries are presented by changing the parameters such as cell density, 

channel diameter and the flow velocity; according to results, steady flow leads to 

accumulation of bacteria near channel wall [44]. 

Effects of other forces than Stokes drag are of particular interest for oscillatory 

motion of microswimmers. Wang and Ardekani [45] report  that unsteady effects such 

as the Basset - history  and added-mass may play an important role in addition to Stokes 

drag force in low Reynolds number swimming of microorganisms when the frequency 

of oscillations are substantially large. In fact,  unsteady history and added-mass forces 



8 

may exceed the value quasi-steady Stokes drag when the product of Strouhal, Sl, and 

Reynolds, Re, numbers is much greater than one, i.e. SlRe  = fD/ >> 1, typically when 

the frequency of oscillations, f, is very large, roughly in the kHz range for 

microswimmers [45].    

Reynolds number of the bacterial locomotion is very low, about 10
-5

, and the flow is 

governed by incompressible Stokes equations. Felderhof [34] constructed an 

approximate solution based on perturbation methods for infinitely long ‘thick’ helical 

filaments rotating and moving axially inside circular channels, and showed that the 

confinement leads to increased swimming speed and efficiency depending on the stroke 

parameters such as the amplitude, wavelength and the relative radius of the filament 

with respect to the channel radius. 

Boundary element method (BEM) is used in numerical models of swimming of 

microorganisms in the bulk fluid, e.g. [5, 36], near planar walls, e.g. [4, 31], and 

recently in channels [46]. Zhu et al. [46] modeled the locomotion of ciliated 

microorganisms with a spherical squirmer model inside straight and curved capillary 

tubes with a BEM model, which is tuned for geometric confinements. Authors reported 

that the confinement and near-wall swimming always decrease the swimming speed of 

the squirmer with tangential surface deformation, but improve the speed of the squirmer 

with normal surface deformation, which pushes against the wall [46].   

Numerical solutions to Stokes equations, such as finite-element-method (FEM) 

based computational fluid dynamic (CFD) models are powerful tools to study effects of 

the proximity to solid surfaces on the swimming behavior of bacteria and to identify 

hydrodynamic interactions between the surface and the cell. Temel and Yesilyurt [30] 

used a three-dimensional CFD model for an actual artificial swimmer used in 

experiments to study the effect of distance from the wall and the geometry of the helical 

tail on the swimming speed and the power efficiency, which attain maximum values at a 

critical distance from the wall compared to center swimming.  

1.2 Scope of the Thesis 

The scope of the thesis is to understand the effects of the geometric parameters 

such as wavelength and amplitude of the helical tail, length and diameter of the 

cylindrical head, the radial position of the swimmer, and channel size and effects of the 
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channel flow on the behavior of artificial swimmers and organisms by in-channel 

experiments with swimmers manufactured by 3D printers and use of steady-snapshot 

solutions of Stokes equations. Although there are a number of studies on spherical 

swimmers in Poiseuille flow, the motion of swimmers with a helical tail and a magnetic 

head needs to be understood well. 

For experiments, tail geometries of the swimmers are manufactured utilizing 3D 

printers and permanent magnets are placed on top of them. Swimmers are rotated by 

means of an external rotating magnetic field, which is generated by Helmholtz coil pairs 

and perpendicular to the channels axis and to the magnetization vector of the radially 

magnetized cylindrical head. Experiments are conducted with a number of swimmers 

having different dimensions and helical parameters in channels with three different 

diameters. In addition to the helix and the tail length, channel radius is also varied in 

experiments to study the effect of the flow restriction on the swimming performance. 

In the simulations, swimmers with a rigid helical tail and a magnetic head are 

examined in Poiseuille flows inside circular channels filled with highly viscous fluid, 

glycerol, to ensure low Reynolds number micro flow conditions. Linear and angular 

velocities of swimmers are obtained by using force-free and torque-free conditions. No-

slip boundary conditions are applied to the channel wall. On swimmer surface no-slip 

boundary conditions are expressed as moving wall boundary conditions. For 

microorganisms, the numerical model is validated against experimental work reported 

in literature; for microswimmers, the numerical model is validated with experiments 

and used for other cases that are not covered in the experiments such as the effects of 

the radial position on the swimming speed.  

Understanding motion of artificial and natural swimmers in confinements is 

significant in order to use the swimmers in blood vessel for biomedical applications. 

The effects of the geometrical parameters microorganisms swim at low Reynolds 

numbers are also important; Martel et al. [3] think that natural organisms can be used as 

robots in human microvasculature. This thesis will provide a basis for design of the 

microswimmers to be used in future biomedical applications such as drug delivery, 

opening clogged arteries.  
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2 METHODOLOGY 

2.1 Experiments 

2.1.1 Fabrication of Microswimmers 

Microswimmers consist of a permanent magnetic cylindrical head and a helical tail 

manufactured with a 3D-printer (Projet HD 3000) which uses VisiJet EX 200 polymers. 

3D-printing technology offers design flexibility and allows setting the values for the tail 

length and the wavelength of a tail as desired. Radially polarized neodymium-iron-

boron (Nd2Fe14B) cylindrical permanent magnets, which are 0.4 mm in diameter and 1.5 

mm in length, are placed between the holders at the tip of the helical tail as the head of 

the swimmer with a strong adhesive (Figure 2.1).  

 

Figure 2.1 a) Sample swimmer structures with magnetic head (black) and helical tail 

(red) that manufactured with 3D printer. b) Schematic presentation of manufacturing 

process of swimmers. 

2.1.2 Experimental Setup 

Swimmers are placed axially in cylindrical glass tubes with diameters varying 

between 1.6 and 4.8 mm and 10 cm in length and  filled with glycerol whose viscosity is 

μ = 1.412 Pa·s, and density is ρ = 1261 kg/m
3
. The helical axis of the swimmer is 
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aligned with the axis of the channel. Channel’s inlet is connected to a syringe pump by 

means of a flexible tube (see Figure 2.2 and Figure 2.3).  

 

Figure 2.2 Experimental setup with syringe pump, electromagnetic coil pairs and 

camera.  

Three pairs of Helmholtz coils are placed in x-, y- and z- directions to obtain a uniform 

magnetic field around the channel, which lies in the x- direction, as previously 

demonstrated for bulk swimming of artificial swimmers in literature, e.g. [8]. In this 

study, out-of-phase low frequency AC currents are applied to two coil-pairs in y- and z- 

directions to obtain a magnetic field that rotates in the x- direction on y-z plane.  

The magnetization vector, m, of the permanent magnet also lies on the y-z plane 

having an angle  with the magnetic field vector. The torque on the magnetic head of 

the swimmer is calculated from the cross product of the magnetic dipole moment of the 

permanent magnet and the magnetic induction of the coils, B. For a magnetic field that 

rotates in the clock-wise direction with angular frequency ω, the magnetic torque is 

obtained as follows: 
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where μ0 is permeability of the free space and H is the magnetic field vector. The 

magnetic dipole moment of the cylindrical head, m, can be obtained by multiplying the 

volume of the magnet, ϑ, and magnetization of the material, M.   

  m M   (1.2) 

For synchronous rotation of the swimmer with the magnetic field, magnetic torque 

must be larger in magnitude than the viscous torque on the swimmer. The angle  
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between the magnetic field vector and the magnetic dipole varies according to the 

balance between the magnitudes of the magnetic and viscous torques. For large 

magnetic fields rotating at slow rates the angle is very small, and at step-out frequency 

when the swimmer barely keeps up with the rotation of the magnetic field the angle is 

/2.  

 

Figure 2.3 a) Schematic presentation of experimental setup which consists 

electromagnetic coil pairs, syringe pump, flexible tube, circular channel and camera. b) 

Close-up to circular channel to demonstrate the microswimmer inside the channel with 

partial section view. 

The magnetic field strength to obtained required torque depends on the current (I), 

number of turns (N), radius of the coil (a), the vertical distance between magnet and the 

center of the coil (x).  The magnetic field strength for the coil consists of one-turn wire, 

the current I, in the distance x from the center of the coil is calculated as: 

 
2

2 2 3/22( )

Ia
H

a x



 (1.3) 

The distance between the coil pairs must be equal to radius of the coils according 

to Helmholtz coil pair rule. Thus magnetic induction magnitude for coil pairs with 

radius R, and consist N-turn can be calculated as: 



13 

 

3

2
0

0

4

5

NI
B H

R

 
    

 
  (1.4) 

According to (1.1), when the swimmer is not aligned with the axis of the channel, 

magnetization in the x- direction is no longer zero, and the magnetic torque on the 

swimmer has non-zero components in y- and z- directions as well. This may play an 

important role in the stability of the swimmer’s trajectory as discussed in the results 

section here.  

Uniform rotating magnetic field is obtained by adjusting the AC current on 

electromagnetic coils by means of Maxon ADS_E 50/5 motor drives and NI DAQ 

hardware. The frequency and the magnitude of the current are set via LabView 

software. In order to get a rotating magnetic field, alternating current must be applied 

with a phase shift. For example, current applied to small and big coils can be expressed 

as follows: Ismall_coil = I0, small_coil sin(2πft) and Ibig_coil = I0, big_coil cos(2πft). Forward and 

backward swimming can be obtained by using two coil pairs. Third coil pair is used for 

navigation by changing the direction of the magnetic field vector. Here, forward and 

backward motion is investigated in the straight circular channels. Frequencies of the 

current for each coil is same (fx = fy = fz) whereas the current magnitudes are different (Ix 

≠ Iy ≠ Iz); because orthogonal coils pairs have different dimensions, in order to obtain 

uniform magnetic field in the middle of the setup, current magnitudes must be different 

for equal magnetic field strengths (Bx = By = Bz). 

The motion of the swimmer is recorded with the CASIO EX-ZR1000 digital 

camera at 120 frames per second. Trajectory of the swimmer and components of the 

velocity vector are obtained by image processing tools in MATLAB (APPENDIX).  

2.2 Computational Model 

2.2.1 Approach 

The microswimmer that consists of a cylindrical magnetic head and a rigid left-

handed helical tail is placed inside a circular channel as shown in Figure 2.4. Inlet and 

outlet of the glycerol-filled channel are closed. The cylindrical magnet is placed inside 

the left-handed helix starting from the top as shown in Figure 2.4. Geometric 

dimensions used in the model based on our experiments are presented in Table 2.1. 
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Non-dimensional values are obtained from the normalization based on the diameter of 

cylindrical body.   

Circular channel that contains the swimmer is filled with glycerol, which has a 

dynamic viscosity of 1.412 Pa-s. Reynolds number is based on the swimmer’s diameter 

as the length scale and the tangential velocity of the head as the velocity scale, and 

given by: 

 
2

Re
2

x hDVD 
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 
  (1.5) 

where ωx = 2πf is the angular velocity of swimmer in the x-direction (see Figure 2.4), ρ 

is the fluid density, µ is the dynamic viscosity of fluid and Dh is the diameter of the 

cylindrical head of the microswimmer (see Figure 2.4). When the rotation frequency is 

set to 1 Hz, the Reynolds number is 4.51×10
-4

  1 where viscous forces are dominant 

to inertial forces.  

 

Figure 2.4 Geometric parameters, coordinate axes and front and back isometric views 

of the microswimmer. 

The angular velocity of the swimmer in the x-direction, which is the axis of the 

swimmer (Figure 2.4), is effectively equal to the angular velocity of the rotating 

magnetic field in the same direction. As long as the magnetic moment is sufficiently 

high to overcome the viscous torque, rotation of the swimmer will be in-synch with the 

rotation of the magnetic field up to the step-out frequency as reported previously in [1, 

8, 13]. 
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The flow field in the channel has a very low Reynolds number and is governed by 

Stokes equations: 

 2 0, 0p    u u   (1.6) 

where µ is viscosity, u is the velocity vector and p is the pressure.  

The centerline of the left-handed helical tail is given by: 

    0 0, sin , cosh h h hx B kx B kx    P  (1.7) 

where xh is the x-coordinate, k is wave number (k=2π/λ), φ=t, is phase angle, and B0 is 

the wave amplitude, or the radius of the helical tail, which is also the radius of the 

cylindrical head.  

Linear velocities of the rigid-body swimmer in x, y and z- directions, i.e. Usw, Vsw 

and Wsw, and angular velocities in y and z-directions, i.e. ωy and ωz, are 5 unknowns, 

which need to be determined by 5 additional equations. The angular velocity in the x-

direction, ωx, is an input. Force-free swimming conditions in x, y and z- directions 

provide three equations for the linear velocity vector of the rigid swimmer, and 

expressed by setting the total fluid forces at the surface of the swimmer to zero. Net 

fluid force is calculated by integrating the fluid stresses on the swimmer surface and set 

to zero:  

 0
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where j = {x,y,z} indicates the direction,  σ is the fluid stress tensor, and  ns is the 

surface normal vector. Similarly to force-free swimming conditions, torque-free 

swimming conditions are used to obtain angular velocities in y and z- directions: 
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where x, y, z are the coordinates of the position vector on the surface of microswimmer 

and (x, y, z)com are the coordinates of the center of mass. 

The angular velocity component in the x-direction, ωx, coincides with the 

channel’s axis, and taken as a constant input assuming that the swimmer’s rotation is 

synchronized with the rotation of the external magnetic field. Alternatively, magnetic 

torque in the x- direction can be used as an external torque constraint for the viscous 

torque in this direction. However, as long as the magnetic torque is large enough to 
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overcome the viscous torque, swimmer’s rotation in the x- direction is synchronized 

with the magnetic field as observed in experiments here and in literature [1,8,13]. Only 

for frequencies larger than the step-out frequency [8], swimmer cannot rotate in synch 

with the magnetic field when the magnetic field is not strong enough, but synchronized 

motion can be restored by increasing the intensity of the field [8,13]. Here, we are 

interested in the effect of geometric parameters in the swimming performance assuming 

that the magnetic field strength can be set to a value high enough to sustain 

synchronized swimming, and used a kinematic constraint for the angular velocity 

component, ωx = 2f. Furthermore, in simulations, frequency, f, is set to unity as a unit 

scale, since all velocities scale linearly with the frequency. 

 

Figure 2.5 A representation of the finite-element mesh distribution over the surface of 

the microswimmer and the portion of the wall near the swimmer. 

Table 2.1 Geometric parameters of the model 

Symbol Description 

Base 

Values 

 

Dimensionless 

values 

Dh Diameter of the cylindrical head 400 µm 1 

Lh Length of the cylindrical head 600 µm 1.500 

λ Wave length of the tail 625 µm 1.5625 

B0 Wave amplitude 200 µm 0.5 

Lt Length of the tail 1250 µm 3.125 

Dw Wire diameter 130 µm 0.325 

Lsw Total length of microswimmer 1850 µm 4.625 

Dch Diameter of the channel 1000 µm 2.5 

Lch Length of the channel 6000 µm 15 

Nλ Number of waves 2 2 

f Frequency 1[Hz] 1[Hz] 

 

At closed inlet and outlet of the channel and on the channel wall, no-slip boundary 

condition is used: 

       0u    at  0, chx L  and  at  chr R       (1.11) 
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No-slip boundary conditions at the surface of the swimmer are expressed as 

moving wall conditions, for which the linear and angular velocity vectors of the 

swimmer are used to calculate the local velocity of the swimmer’s moving boundary: 
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2.2.1.1 Microorganisms 

The monotrichous bacteria model used in [4] and shown in Figure 2.6 is taken as 

the model organism here and placed at the centerline of the circular channel. Since head 

and tail of microorganisms are rotating inversely, the differences in numerical model are 

presented for natural organisms.  

 

Figure 2.6 Parameters of the cell geometry; description of the parameters are 

shown in Table 2.2. 

The helical tail is attached to the cell body with a simple joint as shown in Figure 

2.6 and rotates in the opposite direction to the rotation of the body. The helical tail is 

modified with the amplitude growth rate as proposed in [38]. The centerline of the left-

handed helical tail is given by: 

 
2 2 2 2

( ) , (1 )sin( ), (1 )cos( )E Ek k
X B e k B e k

        
  

  (1.13) 

where ξ is the x- coordinate, k is wave number (k = 2π/λ), φ is phase angle that 

corresponds to the angular position of the tail during its rotation, i.e. φ = t, B is the 
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wave amplitude, which is set to equatorial radius of the spheroid head, r, and kE is the 

growth rate of the amplitude. Phan-Thien et al. [36] and Shum et al. [4] studied similar 

geometry of the bacterium as well. 

No-slip boundary conditions on the surface of the organism are expressed as moving 

wall conditions. Local velocities of the head and the tail of the organism are calculated 

using angular, , and linear velocities, Usw, as follows: 
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  (1.14) 

where  is the angular velocity of the tail with respect to fixed coordinate frame in the 

x-direction, subscript ‘com’ represents the center of mass of the bacterium and [] 

represents transpose of the vector. The actual center of mass is very close to the 

midpoint of the spheroid head since the tail is very thin. For the base case bacterium 

model with λ/s = 3 and L/s = 6, the distance between the center of the spheroid head and 

the center of mass is about s/10.  

Table 2.2 Geometric parameters of the model organism 

Symbol Decription 

s Polar radius of spheroid head 

r Equatorial radius of spheroid head 

 
Nλ 

Wavelength of the tail 

Number of helical turns 

B Wave amplitude 

L Length of the tail 

Rtail Tail radius 

Dtail Tail diameter 

f Frequency 

Rch 

Lch 

Channel radius 

Channel length 

Swimming efficiency, η, is calculated from the ratio of the rate of work done to 

propel the organism in the forward direction to the rate of work done to rotate the 

helical tail with respect to the body of the organism as commonly used in literature, e.g. 

[47]: 

 
tail

η
τ ( + )

body sw

x

F U


 
  (1.15) 
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where Fbody is the drag force on the body, which is calculated by integrating the fluid 

stresses, Usw is the forward velocity (in the axial direction of the channel), τtail is the tail 

torque, Ωx is the angular velocity of the body and  is the angular velocity of the tail 

about x-axis. 

2.2.2 Numerical Model  

Equations (1.6), (1.8)-(1.10) are subject to boundary conditions (1.11) and (1.12) 

and solved numerically with the finite-element method using the commercial software 

COMSOL Multiphysics [58]. The model has approximately 150K elements, mostly 

tetrahedral, and 1.1M degrees of freedom. P1+P1 elements are used as discretization of 

fluids. Solver of the model is chosen as PARDISO in all simulations. On the swimmer 

surface triangular elements are used. Surface of the microswimmer and part of the 

channel wall close to the swimmer have finer mesh quality than other parts of the 

channel away from the swimmer (Figure 2.5). In order to improve the accuracy of the 

solution in near-wall simulations, boundary layer mesh that consists of five layers of 

prism elements are used between the swimmer and the channel wall. 

Convergence of the finite-element mesh is tested by varying the number of 

elements. For each case there are five boundary layers between the swimmer and the 

channel wall. As the mesh size decreases on the surface of the swimmer, number of 

elements and degrees of freedom increase (Table 2.3). Solution with the finest mesh 

requires 97 GB of RAM which is the maximum available memory in the workstation 

used for the simulations. Error rates of linear velocities are calculated according to the 

simulation with the finest mesh. Maximum error in the results with the mesh used in the 

simulations is less than 2%. 

Table 2.3 Convergence results and errors based on the finest mesh for different  

number of elements 
Number of 

elements 

(x103) 

Degrees of 

Freedom 

(x106) 

System 

Memory (GB) 

Error in Usw 

[%] 

Error in 

Vsw [%] 

Error in Wsw 

[%] 

150 1.140 52 0.37 1.96 0.42 

172 1.305 61 0.29 2.96 0.22 

210 1.587 80 0.11 0.98 0.05 

226 1.700 87 0.11 1.13 0.13 

248 1.860 97 0* 0* 0* 

* Error rate of solution with finest mesh is accepted 0 and the other error rates are calculated according 

to these results. 
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3 EFFECTS OF GEOMETRIC PARAMETERS ON THE SWIMMING OF 

NATURAL ORGANISMS  

The CFD model of the bacterial locomotion is validated against the results 

reported by Goto el al. [5], who developed a boundary-element-method  (BEM)  model 

and conducted experiments with individual species of V. algino to study  swimming 

velocity and body rotation rates, which are computed with the CFD model here based 

on the geometric parameters of cells reported in [5] and for a channel with radius 15 μm 

and length 40 μm, which is sufficiently larger than the average diameter of the cell body 

and the average length of the cell. Calculated and reported ratios of the swimming 

velocity to the body rotation rate are shown in Figure 3.1. The CFD model results are 

almost identical with the BEM model results and very close to the measured ones. 

 

Figure 3.1 Ratio of the swimming velocity and the body rotation rate: measurements 

(blue) and BEM calculations (green) reported in Goto et al. [5], CFD results (red) for V. 

algino species reported in Goto et al. [5] and labeled A to G. 

In addition to the forward velocity, torques generated by the flagellar motor are 

computed with the CFD model and compared to the BEM results reported in [5] as 

shown in Figure 3.2 a. Values of the flagellar torque from the CFD model are slightly 

higher than the ones from the BEM model. In order to find out if the presence of the 
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channel in CFD simulations may have an effect, we calculated the flagellar torque for 

different channel radii as shown in Figure 3.2 b. The flagellar torque rapidly decreases 

with increasing channel radius for narrow channels, but for large radii flagellar torque 

does not vary with the channel radius significantly. Thus, the channel radius can be 

deemed sufficiently large. Comparisons with results in [5] indicate that there is about 

10% difference between the calculated ones here and the reported results.   

 

Figure 3.2 Flagellar torque normalized by the body rotation rate, T/Ω [pN-mm-s]. (a) 

CFD calculations (blue), BEM calculations (red) reported by Goto et al. [5]. (b) Effect 

of the channel radius, Rch [μm], on the flagellar torque, T [fN-nm] 

3.1 Forward Velocity  

Performance metrics of the flagellar swimming, such as the forward velocity, 

power efficiency and the magnitude of lateral velocities vary with geometric parameters 

of the tail. In the simulations, the radii of the spheroid body in long and short axes are 

fixed as reference length scales, s = 2r = 1.11 μm, and the tail rotation frequency is set 

to unity. Radius of the sphere which has the same volume as the spheroid head, a, is 0.7 

µm as also adopted in [4]. Tail envelop growth rate which defines the part of tail where 

it is connected to the spheroid head is taken as kE = 2π/s.   

Inside wide channels, there is a slight improvement in the stroke, which is the 

distance traveled during a full rotation of the tail, for larger wavelengths especially for 

shorter tails than inside narrow channels. Shum et al. [4] studied the forward velocity of 

the cell with the same dimensions near a planar wall, and showed that forward velocity 

reaches its maximum when there is about one full wave on the tail, i.e. for Nλ = 1. Here, 
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the forward velocity becomes maximum for Nλ values between 2 and 3. Lastly, the 

forward velocity exhibits similar dependence on the tail length and the wavelength in 

narrow and wide channels with slightly varying loci of the optimum (see the black 

circles in Figure 3.3a for Rch/r = 3 and Figure 3.3b for Rch/r = 13.5). Stroke values are 

slightly larger for swimming inside the wide channel than the ones inside the narrow 

channel.  

 

Figure 3.3 Surface plot of the stroke, Usw/f [μm], as a function of the wavelength and 

the length of the tail for (a) narrow channel (Rch/r = 3) and (b) wide channel (Rch/r = 

13.5). Black circles represent the loci of maximum values of the stroke for each tail 

length. Solid squares represent the maximum values for all computations. (c) Usw/f [μm] 

as a function of the normalized channel radius, Rch/r, for different tail lengths and the 

fixed wavelength (λ/s = 3). (d) Usw/f [μm] as a function of the channel radius, Rch/r, for 

different wavelengths and the fixed tail length (L/s = 6). 

Variation of the stroke with the normalized channel radius is shown in Figure 3.3c 

for a fixed wavelength, λ/s = 3, and the normalized tail length, L/s, values varying 

between 2 and 8. As the channel radius increases, the stroke increases rapidly between 
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Rch/r = 1.25 and Rch/r = 3, then continues to increase slowly up to Rch/r = 6, and does 

not vary significantly for larger values of Rch/r; in effect, the free-swimming conditions 

apply for Rch/r > 6. 

For constant tail length, L/s= 6, the variation of the stroke with respect to channel 

radius is shown in Figure 3.3d, for normalized wavelengths,  λ/s, varying between 1 and 

6. For λ/s = 1 and 6, as the channel radius increases, the stroke increases rapidly first 

than decreases slightly. However, for normalized wavelength values equal to 2, 3 and 4, 

the stroke does not go through a maximum. Moreover, the stroke is the largest for λ/s = 

3 for all values of the normalized channel radius.   

Decreasing swimming velocity in narrow channels is due to increasing drag force on 

the body, which is analytically calculated for some objects. For example Happel and 

Brenner [49] show that channel restriction causes increased drag on the sphere which 

moves axially through a cylindrical tube. As the normalized channel radius approaches 

to one, the cell plugs the channel and the displaced fluid in front of the cell cannot flow 

over the body and results in infinite drag, and zero swimming velocity. These results are 

consistent with previous studies on artificial microswimmers; Temel and Yesilyurt [30] 

showed that displaced fluid in front of the swimmer flows over the body and contributes 

to increased drag. Furthermore, in our previous work on artificial structures with 

cylindrical bodies swimming in cylindrical channels, as the radius of the body increases, 

the increasing drag force on the swimmer leads to reduced forward velocity of the 

swimmer [50]. 

Moreover, the propulsion force is expected to increase near solid boundaries and 

result in an increase in swimming velocities as reported in [31] for swimming between 

parallel plates, and as observed for λ/s = 1 in Figure 3.3d. The trade-off between the 

drag on the spheroid body and the flagellar propulsion force leads to small variations in 

the swimming velocity unless the cell is very close to the wall; however in some cases, 

especially for tails with large radii, flagellar force is dominant as discussed below and 

reported in [34]. 

3.2 Power Efficiency 

Power efficiency of swimming, which is given by Eq. (1.15), is calculated as a 

function of the wavelength and the tail length for wide (Rch/r = 13.5) and narrow (Rch/r 
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= 3) channels. For the wide channel, maximum swimming efficiency is about 1.27% 

(Figure 3.4a), whereas it is 2.26% for the narrow channel (Figure 3.4b). For the wide 

channel, optimum normalized wavelength is three, λ/s = 3, and the normalized length of 

the tail is eight, L/s = 4. On the other hand for the narrow channel, the optimal 

wavelength is four, optimal normalized tail length is eight, L/s = 8. In the narrow 

channel (Figure 3.4a), the power efficiency increases monotonically with the 

normalized tail length up to L/s = 8 for all λ/s.  

 

Figure 3.4 Surface plots of the power efficiency of swimming, η, as a function of the 

normalized wavelength and the normalized tail length for (a) Rch/r = 3, and (b) Rch/r = 

13.5. Black circles are the loci of maximum values for normalized tail lengths equal to 

2, 3, 4, 6, and 8. Solid squares are the locations of the global maxima. Efficiency plots 

as function of the normalized channel radius for (c) a fixed wavelength, λ/s = 3, and (d) 

for fixed tail length L/s = 3. 

However for the wide channel (Figure 3.4b) the power efficiency decreases with the tail 

length for λ/s = 1, 2 and 6, but goes through a maximum for λ/s = 3 and 4. For the wide 
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channel, there is an optimal region, where the efficiency is about 1.27% for 3 < λ/s < 4 

and 3 < L/s < 8. Shapes of organisms for the four extremes of wavelength and tail length 

pairs are also shown in Figure 3.4a. 

Even though the swimming velocity does not vary significantly for narrow and wide 

channels, the efficiency is significantly higher in the narrow channel with Rch/r = 3 than 

the wide channel with Rch/r = 13.5. The drag force on the body, which is the same as the 

propulsion force from the tail, is also higher in the narrow channel than the one in the 

wide channel. The viscous torque on the body is expected to be higher inside the narrow 

channel as well. However, the efficiency increase inside the narrow channel indicates 

that the increase in the torque is not as high as the one in the propulsion force which 

overcomes the drag. According to [49] the drag force on the sphere with the equal 

volume as the spheroid body of the cell is 2.32 times and the viscous torque is 1.10 

times larger in the narrow channel than the wide channel confirming the two-fold 

increase in the efficiency.  

The variation of the power efficiency with the channel radius is shown for the fixed 

wavelength in Figure 3.4c, and for the fixed tail length in Figure 3.4d.  There is a 

critical radius of the channel, which varies between 2r and 3r, for each geometry of the 

tail that the power efficiency reaches the maximum.  For channels with radii smaller 

than the critical radius, the efficiency declines rapidly and goes to zero as the channel 

radius approaches to the radius of the body. For channels with radii larger than the 

critical radius, the efficiency declines rapidly first, but then levels out and converges to 

a limit for the free swimmer in the bulk fluid. Furthermore the maximum efficiency is 

larger for longer tails than shorter ones studied here, although there is an optimal tail 

length for the cell swimming in the bulk fluid.  

In [4], authors report that the efficiency is very close to its maximum for a wide 

range of wavelength and tail length values as observed here. Moreover, optimal range of 

values does not change substantially for near wall and in free swimming conditions [4]. 

Here, it is observed that the efficiency in narrow channels can reach a value two times 

higher than the one in wide channels.  

In Figure 3.5, the drag force on the body, which is the same as the propulsion force, 

is plotted against the normalized channel radius: for λ/s = 3 and varying tail lengths in 

Figure 3.5a; and for L/s = 6 and varying wavelengths in Figure 3.5b. In all cases, drag 

on the body increases with decreasing channel radius. Dependence of the body drag on 
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the tail geometry is due to the effect of hydrodynamic interactions between the body 

and the tail [51] and increases with the tail length.  

In Figure 3.6, the flagellar torque is plotted with respect to normalized channel 

radius for λ/s = 3 and varying tail lengths (Figure 3.6a) and for L/s = 6 and varying 

wavelengths (Figure 3.6b).  The flagellar torque increases with the tail length and 

decreases with the wavelength, or increases with the number of waves on the tail.  

 

Figure 3.5 Drag force on the spheroid head, Fbody [fN], as a function of the normalized 

channel radius for (a) the fixed wavelength, λ/s = 3, and (b) tail length, L/s = 6.  

 

Figure 3.6 Flagellar torque, T [pN-nm], as a function of the normalized channel radius 

for (a) the fixed wavelength, λ/s = 3, and (b) tail length, L/s = 6. 
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3.3 Lateral Velocities  

As reported in literature, e.g. [19, 52], bacteria follow helical trajectories during 

swimming. The radius of the helical trajectory is determined by the magnitude of lateral 

velocities in perpendicular directions to the forward motion. In this study, we computed 

the velocities of the cell in lateral directions, (y- and z- directions in Figure 2.6), for 

angular rotations of the tail between /6 and 2 by /6 intervals. It is observed that there 

is a /2 phase angle between the velocities in y- and z- directions (not shown here), 

which have the same magnitudes, indicating that the cell, in effect, follows a helical 

trajectory. 

 

Figure 3.7 Magnitude of the lateral stroke, Vlateral/f [μm], is plotted as a function of the 

normalized channel radius, Rch/r, for different wavelengths and a fixed tail length, L/s = 

6. 

In Figure 3.7, the effect of the channel radius on the magnitude of the lateral stroke, 

which is defined as,  2 2/ /lateral sw swV f V W f   here, is shown for a fixed tail length, 

L/s = 6, and for varying values of wavelengths between λ/s = 1 and 6. The lateral stroke 

increases sharply for the values of the normalized channel radius between 1.5 and 4 and 

then increases slightly between 4 and 6; further increase in the channel radius does not 

lead to significant change in the lateral stroke (not shown here). For normalized values 

of λ/s = 1, 2, 3 and 6, as the wavelength increases the lateral stroke increases. For λ/s = 

4, the magnitude of the lateral stroke is larger than the one for λ/s = 1 but smaller than 

the one for λ/s = 2. The envelop region that defines the smooth increase of the helical 

radius near the body of the cell contributes to the imbalance in the rotation of the helices 
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with integer number of turns. Shapes of organisms are also shown in Figure 3.7 to 

improve the visualization of the effects of the helical shape.  

In order to demonstrate the effect of the number of turns as an important parameter 

that governs the lateral stroke, we performed simulations for fixed tail length, L/s = 6 

and channel radius, Rch/r = 4, by varying the number of helical turns, Nλ. In Figure 3.8, 

the effect of Nλ on the magnitude of the lateral stroke, Vlateral/f , is presented. In general, 

the lateral stroke decreases with the number of helical turns, and goes through peaks and 

troughs depending on the number of helical turns. Typically peaks are observed at half 

integers and troughs at full integers in literature [53]. The contribution from the envelop 

region that breaks the symmetry near the joint, thus the lateral stroke achieves local 

maxima for Nλ = 1, 2, 3, 4.25, and minima for Nλ = 1.5, 2.5, 3.75. 

 

Figure 3.8 Magnitude of the lateral stroke, Vlateral/f [μm], as a function of Nλ for 

fixed channel radius, Rch/r = 4, and tail length, L/s = 6. 

Effects of solid walls on the motion of microorganisms are well-reported in 

literature; and observations agree with the results presented here.  In particular, there are 

several studies report that the lateral motion due to Brownian or hydrodynamic effects 

are suppressed near solid boundaries [32, 37, 4, 27, 54]. Berg and Turner [16] report 

that the bacteria align with the axis of the channel and the lateral motion is suppressed 

significantly inside channels. Moreover, Liu and Papadopoulos [17] report that that 

randomness in the locomotion of bacteria is reduced in capillaries compared to the 

locomotion in the bulk. Our results indicate that lateral motion is also suppressed in 

narrow channels similarly to the suppression of Brownian motion in capillaries.  
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3.4 Wobbling Rate 

Angular velocities in lateral directions, Ωy and Ωz, indicate the wobbling rate of 

the bacterium. In Figure 3.9, the magnitude of the wobbling rate, 2 2
wobbling y z   

is plotted with respect to normalized channel radius, Rch/r, and for normalized values of 

the tail length, L/s, between 2 and 8 and for a fixed wavelength, λ/s =3. In all cases, the 

magnitude of lateral angular velocities is much smaller than the rotation rate of the tail 

in the axial direction; for L/s = 2, the maximum is about 0.075 for the unit rotation rate 

of the tail. Magnitude of the wobbling rate decreases as the channel radius decreases, 

similarly to the effect observed in lateral velocities. It is reported in literature that 

natural organisms tend to align with the axial direction of the channel as the channel 

radius decreases consistently with the reduced lateral velocity as well as the wobbling 

[16].  

 

Figure 3.9 (a) Wobbling rate of the bacterium with respect to the normalized radius of 

the channel, Rch/r, for λ/s = 3 and L/s = 2 (blue plus signs), 3 (green squares), 4 (red left-

triangles), 6 (cyan stars) and 8 (magenta circles). (b) Relationship between wobbling 

rate and tail length for wide channels (Rch/r = 13), blue circles represent the wobbling 

rates. 

Furthermore, as the tail length increases wobbling rate decreases due to increasing 

resistance to lateral rotations; it is harder to rotate an organism with a longer tail than a 

shorter one. In fact, the wobbling rate is the highest in the case of the shortest tail, L/s = 

2. For L/s = 2, 3 and 6, wobbling rate increases sharply for 1.5 < Rch/r < 3, and slowly 

for Rch/r > 3. For L/s = 4, and mildly for L/s = 8, there is a slight increase in the 
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wobbling rate for 4 < Rch/r < 6, due to hydrodynamic interactions between the tail and 

the channel wall (see Figure 3.9a).  

Wobbling behavior of the bacteria is also observed during the motion of artificial 

helical flagella, which are actuated with external magnetic fields [54]. Man and Lauga 

[55] discussed that the visible angle of wobbling is proportional to the wobbling rate for 

a fixed geometry of the helix and varies inversely with the dimensionless Mason 

number, Ma, which is defined as the ratio of viscous torques to magnetic torques. At 

high values of Ma the swimmer achieves directional propulsion, whereas at low values 

wobbling prevails [37]. In case of microorganisms with helical tails the magnetic torque 

is replaced by the motor torque and the effective viscous torque increases as the channel 

diameter decreases, and stabilizes the wobbling (see Figure 3.2b and Figure 3.9a). 

Moreover, for large channels the Ma is smaller and according to [37], the wobbling rate 

varies inversely with the square of the tail length (see Figure 3.9b).  

3.5 Effect of Tail Radius (Rtail) 

Combined effects of the radius and the length of the tail and the channel radius are 

studied here, while the normalized wavelength is fixed, λ/s = 3. The normalized radius 

of the tail, Rtail/r, is varied between 0.063, which is the base case, and 0.315; the base 

case corresponds to 0.05a, where a is the radius of the sphere which has the same 

volume as the spheroid head as adopted in [4]. The stroke increases with the radius of 

the channel for the base value of the tail radius in Figure 3.10a. However as the radius 

of the tail increases it is observed that the stroke goes through maximum at a critical 

channel radius. The presence of the maximum stroke is distinguishable for L/s = 8 for 

Rtail/r = 0.126 in Figure 3.10b, and as the tail radius increases further, the maximum 

stroke is observed for shorter tails as well. In Figure 3.10e, the stroke reaches the 

maximum for all tails studied here.  

For L/s = 2, the stroke increases with the tail radius for any channel radius in 

Figure 3.11a. However for L/s = 8 in Figure 3.11e, there is a crossover: the stroke 

increases with the tail radius in narrow channels for Rch/r < 4, and changes the trend in 

wide channels. 
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Figure 3.10  The stroke, Usw/f [μm], as a function of the normalized channel radius, 

Rch/r, and the normalized tail length, L/s, and for (a) Rtail/r = 0.063; (b) Rtail/r = 0.126; 

(c) Rtail/r = 0.189; (d) Rtail/r = 0.252; and (e) Rtail/r = 0.315. 

Normalized values of the critical radius of the channel, for which the stroke is 

maximum, are listed in  

Table 3.1 Critical Channel Radii 

Table 3.1; values of the critical radius vary between 2 ≤ Rch/r ≤  3. For a given tail 

length, critical radius of the channel decreases as the radius of the tail increases, but the 

critical radius is not observed for thinner tails as the length of the tail increases.   

 

Figure 3.11  The stroke, Usw/f [μm], as a function of the normalized channel radius, 

Rch/r, for the normalized tail radius, Rtail/r, values varying between 0.063 and 0.315, and 

for (a) L/s = 2; (b) L/s = 3; (c) L/s = 4; (d) L/s = 6; and (e) L/s = 8.  

The power efficiency of the bacteria swimming in circular channels is revisited for 

Rtail/r values varying between 0.063 and 0.315 and for L/s between 2 and 8 in Figure 

3.12. The efficiency increases with the tail radius in narrow channels, but decreases in 

wide channels. For L/s = 6 the maximum efficiency is observed as 0.0327 for Rtail/r = 

0.126, which is considerably higher than 0.0132 for Rtail/r = 0.063 (Figure 3.12e). There 

is an optimal channel radius, which provides the maximum swimming efficiency. As 

the tail radius increases, optimal channel radius decreases; for Rtail/r = 0.315, the 
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optimal channel radius is about Rch/r = 1.75, whereas for Rtail/r = 0.063, the optimal 

channel radius is Rch/r = 2.25.  

 

Table 3.1 Critical Channel Radii 

Critical Rch/r 

  
Rtail/r 

0.063 0.126 0.189 0.252 0.315 
L

/s
 

2 - - - 3 2.5 

3 - - 3 2.5 2.25 

4 - - 2.75 2.5 2.25 

6 - 3 2.5 2.25 2 

8 - 2.75 2.25 2.25 2 

 

The crossover in the efficiency takes place for Rch/r ≈ 3 for all tails. Increase in the 

efficiency of helical swimming in circular channels is also discussed in [34] based on 

analytical results obtained from the perturbation theory for infinite helices in channels. 

Furthermore, inside the channel with Rch/r = 10 and for L/s = 8, the efficiency for the tail 

with the smallest radius is 0.0122 and for the one with the largest is 0.0035.  

 

Figure 3.12  The efficiency as a function of the normalized channel radius, Rch/r, for the 

normalized tail radius, Rtail/r, values varying between 0.063 and 0.315, and for (a) L/s = 

2; (b) L/s = 3; (c) L/s = 4; (d) L/s = 6; and (e) L/s = 8. 
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4 EFFECTS OF GEOMETRIC PARAMETERS ON THE SWIMMING OF 

ARTIFICIAL SWIMMERS 

4.1 Experiments 

According to the experiments, swimmers exhibit distinct swimming modes with 

respect to the frequency of the rotating magnetic field. At low frequencies (1 - 5 Hz), 

the swimmer motion takes place very close to the wall due to gravity. In the transition 

period (5 - 20 Hz), the lift force due to the rotating flow in the channel becomes 

sufficiently large and leads to swimming away from the wall in the core region of the 

channel.  The swimmer reaches its maximum velocity in the axial direction (in the x- 

direction) along the channel in the transition period. At very high frequencies, the 

swimmer loses synchronization with the magnetic field and cannot sustain a continuous 

motion, since the magnetic torque cannot overcome the viscous drag torque.  

 

Figure 4.1 The swimming modes of swimmers with respect to frequency. (Usw [mm/s]; 

ω/2π [1/s]) 
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The limit “step-out” frequency can vary with the geometric parameters of the helical 

tail, amplitude of the magnetic field, and flow conditions. After the step-out frequency, 

the motion of the swimmer is irregular. The swimmer moves arbitrarily in the all 

directions with a decreasing velocity (Figure 4.1). 

4.1.1 Channel Effect    

We performed experiments to elucidate the effect of the channel diameter on the 

velocity of the swimmer for three robots with difference dimensions in wide channel 

(Dch = 2.5) and narrow one (Dch = 1.6).  

Table 4.1 Dimensions of Robots P1, P2 and P3. Dhead is diameter of the head, λ is 

wavelength, L is the total length of the swimmer. 

Robots Dhead [mm] λ [mm] L [mm] Nλ 

P1 1 0.5 3 3 

P2 1 0.5 2.5 2 

P3 1 0.5 2.5 2 

 

Dimensions of the robots P1, P2 and P3 are represented in Table 4.1. Based on the 

numerical studies in our previous study [40], it is known that as length of the helical tail 

is increased, swimmer velocity increases. Due to close dimensions, velocities have 

similar values (Figure 4.2). In the wide channel, forward and backward velocity profiles 

follow the same trend for three robots. The step-out frequency for forward motion is 

considerably higher in the wide channel than the one in the narrow channel. 

Hydrodynamic flagellar torque is increasing rapidly as the channel diameter (Dch) 

approaches to the diameter of the swimmer head (Dhead) (Acemoglu and Yesilyurt, 

2014). In narrow channels, as frequency increased, the synchronization of the 

hydrodynamic and magnetic torques is lost at lower frequencies (~10 – 15 Hz) due to 

the increase in hydrodynamic force; however in wide channels step-out frequency is 

~20 – 25 Hz. Moreover, the swimmers start to follow a helical trajectory at 5 Hz. As 

frequency is increased, the radius of the helical trajectory increases and the swimmer 

hits the channel wall frequently with an irregular motion. It is suspected that the 

magnetic torque on the swimmer may contribute to the instability as the orientation of 

the swimmer is not aligned with the long axis of the channel, which is the same as the 

direction of the rotating magnetic field. As the frequency is increased further, increasing 
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contact of the swimmers with the wall hinders the forward motion. However the 

swimmers can propel at higher frequencies in the wide channel since the swimmer wall 

- interactions are not as much effective as the ones in the narrow channel.   

For backward motion, higher backward velocities are observed in the narrow 

channel due to the restriction. Decreasing the channel diameter causes an increase in the 

swimmer velocity up to a critical channel diameter [40]. In these experiments, for 

backward motion, we observed that backward motion is faster in the narrow channel 

(Figure 4.2). There are two main reasons to observe higher velocities in the narrow 

channel. Firstly, when channel diameter is decreased, traction force starts to become 

dominant and contributes to the velocity of the swimmer. Secondly, the swimmer 

follows a straight trajectory close to the long axis of the channel in the backward 

motion, which means energy loss due to swimmer - wall interactions is less than the one 

in the forward motion. For only P2 backward velocity in the narrow channel is very 

close to backward velocity in the wide channel. Moreover, in the backward motion, the 

swimmer can reach higher frequencies than the step-out frequency in the forward 

motion, since it follows a straight trajectory in the both narrow and wide channels. 

Because the stability of the helical trajectory in the forward motion is less than the 

straight trajectory in the backward motion; as frequency increases, synchronization with 

magnetic field is lost at lower frequencies in the forward motion.    

 

Figure 4.2 Swimming velocities, Usw [mm/s], for Robots P1, P2 and P3 in wide and 

narrow channels.  
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Figure 4.3  Positions and trajectories (yellow lines) of the swimmer at low (f = 1 Hz) 

(a) and high (f = 5 Hz) (b) frequencies. Channel walls are highlighted with blue lines. 

The swimmer propels at the bottom of the channel at low frequencies (a) and near 

channel center at high frequencies (b).  

In order to determine the position of swimmer in the channel, we compare our 

experiment results with simulation results. Simulations are performed by placing the 

swimmer in the channel center and near channel wall. In experiments, the swimmer 

propels the near wall at low frequencies due to weight of the swimmer (Figure 4.3a). At 

transition frequencies, the swimmer takes lift force and starts to swim close to the 

channel center (Figure 4.3b). Our simulation results demonstrate that at low 

frequencies, the experiment results agree well with the near-wall simulation results 

(Figure 4.5c-d); whereas at transition frequencies they agree with simulations in the 

channel center (Figure 4.5a-b). Thus, experimental observations are validated with our 

CFD model. Both in wide and narrow channels, backward velocities agree well with the 

center simulations; whereas forward velocities does not follow same trend with the 

simulation results due to non-stable helical motion.  

 

Figure 4.4  Radial position, R [mm], effect on swimming velocity Usw [mm/s], (at 

center Rch = 0). 
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Beside these results, there is an optimum radial position that maximizes the forward 

velocity. As the swimmer approaches the channel wall, forward velocity increases; if it 

is very near the channel wall, velocity decreases rapidly due to friction (Figure 4.4). 

 

Figure 4.5  Comparison of experimental results with simulation results for Robot P1. 

(blue circles are experimental results, green squares are near wall simulation results, 

red triangles are the channel center simulation results).  a) Dch = 2.5 mm, b) Dch = 1.6 

mm, close-up for low frequencies, c) Dch = 2.5 mm, d) Dch = 1.6 mm.  

4.1.2 Wavelength Effect (constant tail length (L)) 

Three different robots are manufactured with different wavelengths and fixed tail 

length. Experiments are performed in the circular channel with a diameter 1.6 mm. The 

tail length (L) of the robots is 1.8 mm and the wavelengths (λ) are 0.4, 0.6 and 0.8 mm 

for Robot S1, S2 and S3, respectively (Figure 4.6) Swimming velocity results are 
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demonstrated in Figure 4.7. Robot S2 can reach higher swimming velocities at high 

frequencies than Robot S1 and S3; in literature it is also reported that for fixed tail 

length, there is an optimum Nλ which maximizes swimming velocity [35, 38]. In Figure 

4.7, Robots S2 and S3 whose (Nλ) are 2.25 and 3 perform faster motion than Robot S1 

(Nλ = 4.5). Robot S1 has the lowest velocity; because of low thrust force provided by the 

tail. The tail geometry of the Robot S1 does not let the fluid enter the inside of the tail 

since the wavelength is short; during motion, the fluid passes over the tail with very 

limited interaction with the entrapped fluid inside the tail. Thus Robot S1 cannot 

displace the fluid as much as Robot S2 and S3 can. The channel center leads to reach 

high frequencies without step-out in the backward motion (Figure 4.7). Additionally, 

backward velocity can reach higher values (e.g. 1 mm/s), whereas maximum forward 

velocity is ~0.6 mm/s.  

In Figure 4.7, velocities of Robot S2 and S3 are very close to each other; however 

their low and high frequency responses are slightly different. For forward motion, S3 is 

faster than S2 up to 10 Hz, S2 has slightly higher velocities after 10 Hz up to step-out 

frequency (Figure 4.7). For backward motion, the crossover is observed at about 12 Hz. 

 

Figure 4.6  Tail geometries that are produced with different wavelengths where tail 

length is constant.  

A comparison of the data obtained from the numerical studies and the experiments 

are depicted in Figure 4.8. For Robot S1, swimming velocities obtained from the 

experiments are lower than the simulation results (Figure 4.8a). During 3D printing 

process, support material is placed between the helical pitches; after printing process 

support material is removed from the body. Tail geometry is like a solid body with the 

effect of the remaining support material on helical tail. Because of this, ideal propulsion 

obtained from simulations does not match with the experimental data. The center 

simulation results for Robot S2 are very close to the experimental ones for backward 
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motion (Figure 4.8b), moreover experimental observations validate that backward 

motion is stable in the channel center not only for Robot S2 but also all other swimmers 

that used in the experiments. For forward motion of Robot S2, swimmer follows a 

helical trajectory around channel wall; near wall simulation results are consistent with 

experimental results.  For Robot S3, experimental swimming velocities match with the 

velocities from the center simulations; whereas the experimental backward velocities 

are slightly lower than the simulations (Figure 4.8c). 

 

Figure 4.7  Wavelength effect on swimmer velocity, Usw [mm/s], for Robots S1, S2 and 

S3 presented in Figure 4.6. Robot S1 - λ= 0.4 mm - Nλ = 4.5, blue triangles; Robot S2 - 

λ= 0.6 mm - Nλ = 3, green circles; Robot S3 - λ= 0.8 mm - Nλ = 2.25, red squares. 

 

Figure 4.8  Swimming velocity, Usw [mm/s], comparison of experimental and 

simulation results for wavelengths a) λ = 0.4 mm, b) λ = 0.6 mm, c) λ = 0.8 mm. 
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4.1.3 Effects of Number of Waves (constant wavelength, λ) 

Robot R1, R2 and R3 have constant wavelength (λ = 1 mm) and 6, 4, 2 mm tail 

lengths respectively. In Figure 4.9, swimming velocities, Usw, are represented for these 

three robots. As tail length is increased, forward and backward velocities increase due to 

greater thrust force applied by the tail. The fluid displaced by the tail increases as the 

total surface area of the tail is increased. Although it is known that there is an optimal 

tail length (L) which maximizes Usw for fixed wavelength [40], experiment results 

demonstrate that Usw increases with increasing tail length (Figure 4.9a). According to 

simulation results as tail length L is increased, Usw increases up to L = 8 mm (Figure 

4.9b). The optimum value of tail length is dependent with Ltail/Rhead and Rtail/Rhead as 

reported in [34]. Here our Rtail/Rhead parameter is equal to 0.25. Felderhof [34] reports 

that Rhead/Rtail must be equal to 0.02 to observe optimum tail length. Since our model has 

a thick tail, optimum tail length is not observed in both experimental and computational 

works.  

 

Figure 4.9  a) Tail length effect on swimming velocity, Usw [mm/s], for Robots R1, R2 

and R3 who have constant wavelength, λ = 1 mm, where channel diameter (Dch) is 1.6 

mm. b) Swimming velocity, Usw, – tail length, L, simulation results in the channel center 

for 9 Hz; corresponding experimental values are shown with red squares. 

Simulations for the same swimmer geometries as in the experiments also validate 

that experimental swimming velocities agree with center swimming velocities (Figure 

4.10); observed swimming trajectories are in the center for backward motion and helical 

trajectories are around center line of the channel. 
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Figure 4.10  Experiment and simulation comparison for swimming velocities [Usw, 

mm/s] of Robots R1, R2, and R3. 

4.2 Simulations  

Simulations are carried out to study effects of the radial position of swimmer, 

number of helical waves, wave amplitude (also the radius of the head) and the length 

of the cylindrical head. In the base case, swimmer has two helical waves with the 

length of the head equals to 600 µm, amplitude of the waves and the radius of the head 

equal to 200 µm, and is placed 20 μm away from the wall as shown in Figure 4.11a. In 

all simulations, the axis of the swimmer is kept parallel to the axis of the channel, 

which is 6 mm in length and 1 mm in diameter. In our experiments, we observe that 

the swimmer travels near the wall due to its weight and remains almost parallel to the 

axis of the channel. 

 

Figure 4.11 a) Isometric view of microswimmer in the channel; b) Back view swimmer 

in the center of the channel; c) Back view of the swimmer near the wall. 

Simulations are performed using the non-dimensional values. In all 

simulations, angular velocity of the swimmer in the x-direction is set to a constant 
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value where frequency is 1 Hz, i.e. ωx = 2πf  for f=1 Hz, ωx=2π.   

4.2.1 Effect of the Radial Position  

Radial position of the swimmer is varied in the y-direction for z = 0 (Figure 

4.11b, c) while other parameters are kept constant. In total, ten different positions 

between the center and the boundary of the channel are used in simulations. The effect 

of the radial position on the velocity of the swimmer is shown in Figure 4.12a; 

velocities in the x, y and z-directions are plotted with respect to the distance between 

the channel wall and the swimmer, which varies between 20 and 110 μm for the base-

case swimmer with two full waves on the tail and 200 μm amplitude. According to 

Figure 4.12a, magnitude of the forward velocity, Usw, increases with decreasing 

distance between the channel wall and the swimmer. As the swimmer gets closer to 

the wall, traction forces are expected to increase and lead to increasing forward and 

lateral velocities. Minimum forward linear velocity is observed at the center of the 

channel as 0.088 mm/s (not shown in Figure 4.12a). According to our ongoing 

experiments, the robot with almost the same dimensions travels with 0.11 mm/s in a 

glass tube with the same dimensions as the channel; experimentally measured 

swimming velocity lies between the near-wall and in-center values obtained in 

simulations. It is difficult to obtain the radial position of the robot in the experiments, 

but due to its weight, robot travels closer to the wall than the center of the channel. 

 

Figure 4.12 a) Linear velocity in the x-direction, Usw (blue line with circles), in the y-

direction, Vsw (green line with squares), and in the z-direction, Wsw (red line with 

triangles) vs. the distance between the wall and swimmer; b) Angular velocities about 

the y and z-axes vs. distance from the channel wall. 
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Magnitude of the y-direction velocity, Vsw, remains very small compared to 

velocity components in other directions and changes very slightly. The positive y-

velocity indicates that the swimmer is pushed towards the wall with a decreasing trend 

as the swimmer becomes closer to the wall.  

The velocity in the z-direction, Wsw, is always positive indicating that the 

swimmer tends to move with the flow induced by the rotation of the tail (see Figure 

4.13). As the distance between the swimmer and the wall decreases, magnitude of the 

z-velocity increases. The maximum value of the z-velocity is observed when the 

distance from the wall is about 30 μm (Figure 4.12a). As the swimmer approaches 

further towards the wall, it is expected that the traction force between the swimmer 

and the wall will be dominant and the z-velocity will change its direction. 

 

Figure 4.13  Velocity vectors (arrows) of the flow due to counter-clockwise 

rotation of the swimmer about the x-axis, and the pressure distribution (shaded colors) 

on the swimmer. 

Angular velocities in y and z-directions are plotted against the distance from 

the wall in Figure 4.12b.  Rotation of the swimmer about the y-axis corresponds to the 

yaw angle, which represents the heading of the robot with respect to the direction of its 

motion, and the rotation about the z-axis corresponds to the pitch angle, which 

represents the angle of attack with respect to the channel wall (see Figure 4.11). In 

simulations, the swimmer is perfectly aligned with the heading direction, i.e. yaw and 

pitch angles are set to zero, and angular velocities are calculated based on the torque-

free swimming condition. A slight positive angular velocity in the y-direction, which 

is towards the wall here (see Figure 4.11), indicates that the swimmer is forced to turn 

to right (head to starboard in nautical terminology) with respect to its heading. 

Similarly, slightly positive angular velocity in the z-direction indicates that the 

swimmer tends to pitch up from the channel wall. As the swimmer approaches to the 
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wall, the yaw rotation rate increases due to increasing traction from the body; and the 

pitch rate first increases, goes through a maximum, then decreases as the swimmer 

approaches further towards the wall. The pitch rate of the swimmer follows the same 

trend as the z-velocity (see Figure 4.12a). 

4.2.2 Effect of the Number of Helical Waves 

Number of helical waves is varied between one and four for the base case 

swimmer with a fixed wavelength of 625 μm and positioned 20 μm away from the 

wall. In Figure 4.14a, linear velocity components of the swimmer are plotted against 

the number of helical waves on the tail. Magnitude of the forward velocity, Usw, 

increases with increasing number of waves. However, the rate of increase tends to 

slow down as the number of waves increases. In literature, it is reported that there is an 

optimum number of helical waves that maximizes the forward velocity [30, 13]. 

 

Figure 4.14  a) Linear velocities in x-, y- and z- directions vs. the number of waves 

for the swimmer placed near the wall; b) Angular velocities about the y and z-axes vs. 

the number of waves for the swimmer placed near the wall. 

Radial velocity, which is in the y-direction here (see Figure 4.11), Vsw, 

decreases slightly with increasing number of waves, indicating that as the number of 

waves increases the swimmer’s distance from the wall tends to remain stable. 

Swimmer’s velocity in the z-direction, which is the tangential velocity with respect to 

channel coordinates, Wsw, increases with the increasing number of waves similarly to 

the forward velocity, Usw. Since the z-velocity (tangential velocity according to 
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cylindrical coordinates) is influenced by the local rotating flow field around the 

swimmer, the increase in the z-velocity is due to the increase in the surface area of the 

swimmer with the number of waves.  

As the number of waves increases, magnitudes of angular velocities about y 

and z-axes decrease as shown in Figure 4.14b.  In principle, for a fixed wavelength as 

the number of helical turns increase, the length of the tail increases, and the 

distribution of periodic fluid forces over the tail becomes symmetric. Therefore yaw 

and pitch rotations of the swimmer about the center of mass diminish.   

4.2.3 Effect of the Amplitude and Radius of the Head 

For the swimmer with the base case dimensions and placed 20 µm away from 

the channel wall, the amplitude of helical waves, which is also the radius of the 

cylindrical head, is varied between 200 µm and 350 µm. Linear velocity components 

are plotted with respect to wave amplitude, B0, in Figure 4.15. Forward velocity 

increases slowly with increasing wave amplitude up to the 300 µm, however, 

decreases sharply for 350 μm. It is well-established that the velocity of the swimmer 

increases with the amplitude of helical waves, e.g. [29, 31, 34, 38]. However, 

increasing the head size with the amplitude inside a channel increases the drag force 

on the head and reduces the velocity, and leads to decrease in the forward velocity.  

Moreover, since the channel's inlet and the outlet are closed, displacement of the 

swimmer forces the fluid to displace backwards over swimmer and contributes to 

further increase in the drag. In Figure 4.16, the effect of increasing the diameter of the 

head along with the amplitude of helical waves is shown; the swimmer with a larger 

diameter of the cylindrical head covers larger portion of the cross section of the channel. 

Similarly to the forward velocity, velocities and y and z- directions also decrease 

sharply for B0=350 μm. 
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Figure 4.15  Linear velocities in x-, y- and z- directions vs. wave amplitude for the 

swimmer placed near the wall. 

 

Figure 4.16  Distances between swimmer and channel wall, d1 and d2: a) For base 

case, B0 = 200 µm; b) For B0 = 300 µm. 

4.2.4 Effect of the Length of Cylindrical Body 

The length of the swimmer’s body (head) is increased twice with respect to the 

base case swimmer (Figure 4.17a, b) and reduced by half (Figure 4.17c) to study the 

effect of the length of the body, while the total length of the helix including the portion 

which overlaps with the body is kept constant. 

According to Figure 4.18, the magnitude of the forward velocity decreases with 

increasing length of the body owing to: first, decreasing length of the tail, which leads 

to less propulsion and slower forward velocity; and, second, increasing length of the 

body increases the drag force on the body. The velocity in the y- direction remains very 

small and decreases slightly due to decreasing effect of the tail since its relative length 

decreases as well. Lastly, the linear velocity in the z- direction increase with the body 
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length due to increasing surface area of the swimmer which is subject to a lateral drag 

due to rotating flow. 

 

Figure 4.17  Swimmer with the body length twice as much as the one used in the 

base case;  b) Base case swimmer;  c) Swimmer with half head length of the base case 

swimmer. 

 

Figure 4.18  Linear velocities in x-, y- and z- directions vs. length of the body for 

the swimmer placed 20 µm away from the wall. 
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5 EFFECTS OF THE POISEUILLE FLOW IN THE CIRCULAR CHANNELS 

The flow rate inside the channel with 1.6 mm diameter is varied between 0 and 75 

μl/min by 25 μl/min intervals for the swimmers listed in Table 5.1. Robots R1, R2 and 

R3 have fixed length (Lhead) and diameter of the head (Dhead) and wavelength (λ). 

Number of waves is varied from 6 to 2 for Robots R1, R2 and R3. Reynolds Numbers 

for different flow rates are under unity (Re << 1) and presented in Table 5.2. 

 

Figure 5.1 Schematic representation of the forward (head direction) and backward 

motion (tail direction) of the swimmer. 

Table 5.1. Dimensions of Robots R1, R2, R3. Dhead is diameter of the head, λ is 

wavelength, L is the total length of the swimmer. 

Robots Dhead [mm] λ [mm] L [mm] Nλ 

R1 0.8 1 8 6 

R2 0.8 1 6 4 

R3 0.8 1 4 2 

Effect of the flow rate on the swimming velocity is studied for three different robots 

R1, R2, and R3, with the same dimensions except the tail lengths. Since the wavelength 

(helical pitch) is kept the same for all three robots, the number of waves, Nλ, are 6, 4 and 

2 for R1, R2, and R3 respectively.  Swimming velocities, Usw, are plotted according to 

the rotation of the magnetic field in the x- direction for different flow rates (Figure 5.2). 
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Forward (backward) swimming is in the negative (positive) x- direction as shown in 

Figure 5.1. Positive (negative) rotation frequencies indicate counter-clock wise (CCW) 

(clock wise (CW)) rotation of the magnetic field for the swimmers with left-handed 

helical (LHH) tails. The swimmer moves against the flow for positive rotation 

frequencies, and in the direction of the flow for negative frequencies (Figure 5.1). 

Increasing flow rate decreases (increases) the swimming velocity in the forward 

(backward) direction. Swimming velocities vary linearly with the frequency of rotations 

up to about 20 Hz. For larger values of the rotation rate, swimmers cannot sustain 

synchronous rotation with the magnetic field, and velocities decrease rapidly. 

Table 5.2. Reynolds numbers for different characteristic lengths. Vflow is the average 

velocity. 

  

Dhead Dchannel 

D = 0.8 

[mm] 

D = 1.6 

[mm] 

  μl/min Vflow [mm/s] Re1 Re2 

Flow 

Rates 

25 0.207 1.48E-05 2.96E-04 

50 0.414 2.96E-04 5.92E-04 

75 0.622 4.44E-04 8.88E-04 

Average velocity of the flow, Vflow, is 0.207, 0.414 and 0.622 mm/s in the 1.6 mm-

diameter channel for 25, 50 and 75 μl/min flow rates respectively. In Table 5.3, 

swimming velocities, Usw, are presented for backward and forward swimming at 15 Hz 

for Robot R1 along with relative changes with respect to the no flow case. Since the 

forward (backward) swimming is in the opposite (same) direction of the channel flow 

(see Figure 5.1), the velocity of the swimmer decreases (increases) as the channel flow 

rate increases. Moreover, the rate of change in the swimming velocity is not 

proportional to the average velocity of the flow. The decrease in the forward velocity of 

the swimmer is by 1.14, 1.42 and 1.20 times the average velocity of the flow in the 

channel for flow rates equal to 25, 50 and 75 μl/min respectively. Similarly, the increase 

in the backward velocity is by 1.40, 1.67 and 1.58 times the average velocity of the flow 

for those flow rates. 

Swimming behavior of R1, R2 and R3 is similar under the effect of constant flow 

rates (Figure 5.2). Due to tail length, R1 is the fastest and R3 is slowest robot under the 

same channel flow conditions. Swimmers cannot swim in the forward direction against 

the flow at low frequencies (1 - 3 Hz) in close proximity to the channel wall. Although 
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the swimmers continue to rotate at low frequencies with the applied rotating magnetic 

field, the swimmers are dragged in the backward direction with the effect of the flow for 

all flow rates. For positive rotation rates (ωx/2π > 0), positive swimming velocities (Usw 

> 0) represent the drag velocities in Figure 5.2. Robot R1 can swim against flow after 5 

Hz for all flow rates, whereas Robot R3 can swim against flow only for high 

frequencies (after 15 Hz) at 25 μl/min. Moreover swimming velocities show linear 

pattern according to rotation rates in the absence of the flow and for low flow rates, 

however linear pattern is fluctuating at high flow rates (50 and 75 μl/min in Figure 5.2). 

Table 5.3. Flow effect on swimming velocity with respect to the average flow velocity 

(Vflow) for Robot R1. 

Q  

[μl/min] 

 Vflow  

[mm/s] 

Forward swimming Backward swimming 

Usw 

at 15 Hz 

[mm/s] 

,0sw sw

flow

U U

V


  

Usw  

at 15 Hz  

[mm/s] 

,0sw sw

flow

U U

V


 

0  0 -1.669  - 1.666 -  

25 0.207 -1.432 -1.14 1.956 1.40 

50 0.414 -1.080 -1.42 2.359 1.67 

75 0.622 -0.925 -1.20 2.651 1.58 

 

Figure 5.2 Swimming velocities, Usw [mm/s], for Robot R1, R2 and R3 under effect of 

the fluid flow inside channel. Q [μl/min] is flow rate and ωx is angular velocity about x- 

axis.  
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In Figure 5.3a comparison of data obtained from the simulation and experiments 

are depicted for different flow rates. For all flow rates, experiment results agree well 

with the center simulation results. After step-out frequency, swimming velocities are not 

predictable since the swimmers moves with an irregular pattern. Moreover, for forward 

motion of Robot R2, as flow rate is increased the step-out frequency also decreases. The 

step-out frequencies are 21, 19 and 15 for 25, 50 and 75 μl/min flow rates, respectively 

(Figure 5.3).   

 

Figure 5.3 Comparison of experimental and simulation results in the channel center. 

The swimming velocities, Usw [mm/s], of Robot R2 are represented for a) Q = 25 

μl/min, b) Q = 50 μl/min, c) Q = 75 μl/min, where ωx is angular velocity about x- axis. 

5.1 Swimming Trajectories 

Backward and forward motions of swimmer show different characteristics. In the 

forward motion, the swimmer follows helical trajectory; whereas it is a straight line for 

backward motion. Although fluid flow affects the swimmer velocity in both directions, 

it does not considerably affect the trajectory of the swimmer. 

In Figure 5.4, swimmer trajectories at 15 Hz are represented in order to see the 

effect of the flow on swimmer trajectory. For all flow rates, the swimmer follows the 

helical trajectory in the forward motion. Although the amplitude of the helical trajectory 

does not vary considerably, the wavelength of the trajectory decreases as flow rate is 

increased (Figure 5.4). Wavelengths of the trajectories are approximately 0.6, 0.45, 0.3, 

0.2 mm for 0, 25, 50, 75 μl/min respectively. Since the swimmer propels against the 

flow, for high flow rates, due to decrease in the Usw, the wavelength of the helical 

trajectory decreases.  
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Figure 5.4 Swimmer trajectories for Robot R2 at 15 Hz for forward motion a) Q = 0 

μl/min, b) Q = 25 μl/min, c) Q = 50 μl/min, d) Q = 75 μl/min. Q [μl/min] is flow rate in 

the channel. Units of x-, y- and z- axis are in millimeter [mm].  

For backward motion, swimmer trajectories at 15 Hz are demonstrated in Figure 5.5. 

In backward motion, the swimmer propels in the tail direction (see Figure 5.1). The 

swimmer starts its motion with an oscillatory behavior. After 2 to 3 mm motion, the 

trajectory becomes stable in the channel center and the swimmer follows a straight line. 

In the case of constant flow, the amplitude of oscillations during the beginning of the 

motion is amplified with effect to the flow; the laminar flow profile delays the 

stabilization of motion in the channel center. As flow rate is increased, the maximum 

distance increases that the swimmer takes before it stabilizes its motion in the channel 

center (Figure 5.5a-d). 

 

Figure 5.5 Swimmer trajectories for Robot R2 at 15 Hz for backward motion a) Q = 0 

μl/min, b) Q = 25 μl/min, c) Q = 50 μl/min, d) Q = 75 μl/min. 

Swimmer trajectories observed here are consistent with and complement previous 

studies on trajectories of low-Reynolds number swimmers in circular channels [41, 46, 

60]. Berke et al. [60] used a point stresslet representation of a swimmer to study near 

wall trajectories and concluded that pusher type swimmers tend to follow trajectories 

parallel to the nearest surface, in effect, consistently with the helical trajectories 

observed in the experiments for in-channel swimming, where the attraction to the solid 

surface keeps the pusher near the channel wall at all times as shown in Figure 5.4. Zhu 
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et al. [46] studied spherical squirmers in circular channels and concluded that puller-

type swimmers have wavelike trajectories that decrease in amplitude and converge to a 

stable trajectory parallel to the tube’s axis as observed in Figure 5.5, whereas pushers 

are always unstable. Lastly, Zöttl & Stark [41] studied spherical squirmers in circular 

channels with Poiseuille flow and reported that pushers perform stable oscillations 

around the centerline of the channel with specific amplitude and hydrodynamic 

interactions with the channel wall stabilize the upstream orientation of the pullers. In 

our experiments tail pushes the swimmer in the upstream direction and pulls in the 

downstream. According to Figure 5.5, increasing channel flow rate leads to longer 

oscillations before the trajectory of the puller-type swimmer is stabilized indicating a 

destabilizing effect of the channel flow.  

We conducted a number of additional simulations to obtain snap-shot solutions 

for the robot R2 at the centerline of the channel, near the channel wall, and by 

perturbing the orientation of the swimmer, which is parallel to the centerline of the 

channel, slightly. In all cases, steady-solutions to Stokes equations lead to symmetric 

linear and angular velocities as expected from the linearity of governing equations. 

When the swimmer (R2) is located 0.2 mm away from the channel wall and parallel to 

the centerline, the radial velocity is negative (−0.05 mm/s) when the tail rotates at 10 Hz 

and pushes the swimmer, and positive (+0.05 mm/s) consistent with the stability of 

backward swimming when the swimmer is pulled by the tail. Moreover, even when the 

swimmer is rotated slightly in the y-direction counter-clockwise by two degrees, δθy = 

+2
o
, so that the tail orients towards the wall, the radial velocity is still slightly negative 

(positive) when the tail pulls (pushes) the swimmer. 

5.2 Channel & Flow Effect 

Robot R2 which has four number of waves on its tail is used in these set of 

experiments. The swimmer’s motion is observed in three different channels whose 

diameters are Dch = 1.6, 3, 4.8 mm. Frequency dependent swimmer velocities are 

presented in Figure 5.6. Velocity profiles form a straight line in a narrow channel, 

whereas this regularity is not observed in the wider ones. Due to restriction, the 

swimmer moves faster in narrow channels than in the wide ones because of the 

increasing traction force in narrow channels as long as the magnetic torque high enough 



54 

to overcome the viscous torque. In the wide channels (Dch = 3, 4.8 mm) the swimmer 

does not follow helical trajectory for all frequencies in the head direction but follows 

more complex trajectories.  

 

Figure 5.6 Flow effect in the circular channels whose diameters are a) Dch = 1.6 mm, b) 

Dch = 3 mm, c) Dch = 4.8 mm, for flow velocities are Vflow = 0, 0.207, 0.414, 0.622 

mm/s. 

In Figure 5.7a-f, swimming velocities from experiments (blue lines with circles) are 

compared with the ones from simulations for the case when the robot is placed at the 

center of the channel (green lines with squares) and 0.1 mm away from the channel wall 

(red lines with squares). The effect of the radial position on the swimming velocity is 

different for each channel. Typically, the swimming speed improves with the radial 

position of the robot gradually reaching to a maximum first then rapidly goes to zero 

due to the stiction constraint when the robot touches the wall [40]. In experiments, the 

swimmer is very close to the channel wall due to gravity, especially when stationary. 

Thus, the distance of the swimmer from the wall is fixed at a numerically feasible 

minimum value in near-wall simulations for all channels.  

When there is no flow in the channel, simulations for the robot placed at the 

centerline of the 1.6-mm diameter channel agree very well with the experiments (Figure 

5.7a) indicating that the robot travels near the center of the channel. Near-wall 

swimming speeds in this case are about 30% larger than centerline speeds.  

For the channel with 3.0-mm diameter, swimming velocities for the centerline and 

near-wall simulations are very close to each other and to experimental results (Figure 

5.7b). Near-wall swimming speeds are slightly larger than the center swimming and 

agree with experimental results at high rotation rates in the forward and the backward 

directions, when there is no flow in the channel.  
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For the channel with the largest diameter, experimental results and simulations 

agree better for forward swimming than the backward swimming case, when there is no 

flow (Figure 5.7c). According simulations to centerline and near-wall swimming speeds 

are very close for this channel as well. Discrepancy for backward swimming results can 

be due to the orientation of the swimmer, which is taken as parallel to the channel’s axis 

(x-direction) in simulations, but may differ in experiments especially in larger diameter 

channels as there is more room for the swimmer to find an equilibrium position and 

orientation under the effects of hydrodynamic interactions. Further experiments are 

necessary to determine the orientation and the position of the swimmer. 

 

Figure 5.7 Simulation and experiment comparison for different channel diameter and 

average flow velocities.(Vflow = 0 mm/s for (a, b, c) and Vflow = 0.414 mm/s for (d, e, f)). 

In Figure 5.7d-f, swimming velocities from simulations are compared to 

measurements from experiments when there is a Poiseuille flow with an average 

velocity of 0.414 mm/s in all channels. Similarly to the case when there is no flow in the 

1.6-mm diameter channel, the swimming velocities from simulations for the robot at the 

centerline of the channel agree very well with experiments in Figure 5.7d.  

For the 3.0-mm channel, swimming speeds from simulations and experiments agree 

very well for effective forward swimming, when Usw < 0 and ωx/2π > 5 Hz, and for 

backward swimming when the clockwise rotation rate is high (−ωx/2π > 10 Hz). 

According to experiments, swimming conditions for  −5 < ωx/2π < 5 Hz indicate that the 
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swimmer  is not aligned with the channel’s axis (Figure 5.7e). In experiments, the 

swimmer makes a wobbling motion about the x-direction that coincides with the 

channel’s axis for −5 < ωx/2π < 5 Hz. For ωx/2π < −5 Hz (backward motion), the 

swimmer is aligned with x-axis up to the step-out frequency.  

 

Figure 5.8 Swimming velocity [Usw, mm/s] – rotation rates [ωx/2π, 1/s] plots for flow 

velocities a) Vflow = 0 mm/s, b) 0.207 mm/s, c) 0.414 mm/s, d) 0.622 mm/s  in three 

different channels. 

Lastly, for Dch = 4.8 mm, the swimming speed is highly irregular at high rotation 

rates in the forward (ωx/2π > 5 Hz) and the backward (−ωx/2π > 10 Hz) directions in the 

case of Poiseuille flow in the channel with the average velocity of 0.414 mm/s (Figure 

5.7f). Simulation results for near-wall swimming agree significantly better with 

experimental measurements than the simulations for center-swimming when the 

swimming speed is proportional to the rotation rate. Moreover, overall results 

demonstrate that the robot swims in narrower channels at higher effective speeds than 

wider channels partly due to increasingly irregular even “chaotic” swimming patters as 

reported by Chacón [42]. Confinement in narrow channels improves the regularity of 

swimming and hence allows higher swimming speeds. 
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We also observed the channel effect under fix flow rate (Figure 5.8). In the absence 

of the flow, the swimming velocities, Usw, follow same trend in different channels up to 

step-out frequency; the velocity profiles have same slope which remains unchanged as 

the channel diameter is increased (Figure 5.8a). As the flow is introduced to the channel 

(at Vflow = 0.207 mm/s), Robot R2 has higher backward velocities after 10 Hz up to step-

out frequency in the channel with Dch = 3 (Figure 5.8b). As the average flow velocity is 

increased to 0.414 mm/s, backward velocities for Dch = 4.8 follow same trend with the 

other channels whereas the decrease in forward velocity is higher than the other ones 

(Figure 5.8c). For Vflow = 0.622 mm/s, velocity profile of Robot R2 shows an oscillating 

behavior in the channel with Dch = 4.8 (Figure 5.8d). Moreover the magnitudes of the 

velocities for the backward motion are lower in the wide channel (Figure 5.8d). 

Presence of a flow inside the channels has a more pronounced effect on the swimmer 

velocity in wider channels. For all cases, after step-out frequency, swimmer velocities 

are not predictable; show an irregular pattern. 
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6 CONCLUSION 

Low Reynolds number swimming of an artificial structure that consists of a 

cylindrical body and a rigid helical tail is modeled with the three-dimensional CFD 

model here. Effects of the radial position of the swimmer, length and radius of the 

cylindrical body, number and amplitude of helical waves on the linear and angular 

velocities of the swimmer are studied using the model. According to results, as the 

distance between channel wall and the swimmer decreases, forward velocity increases 

due to traction forces. The number of helical turns on the tail of the swimmer placed 

near the channel wall improves the magnitude of the forward velocity of the swimmer 

between one and four helical turns in the tail. Swimming speed also increases with the 

radius of the body and the helical tail of the swimmer for up to a value that corresponds 

to 3/5
th

 of the channel radius, then decreases due to increasing drag force on the 

swimmer. Increasing the length of the cylindrical body of the swimmer affects the flow 

induced by the rotation of the swimmer, thus, increases the velocity of the swimmer in 

the tangent-direction with respect to the channel wall, and decreases the forward 

velocity of the swimmer. Our experiments are underway to validate the CFD model and 

characterize the behavior of swimmers with cylindrical bodies.  

In this thesis, the 3D finite element method (FEM) based simulations of 

microswimmers with cylindrical magnetic head and helical tail are conducted and 

corresponding experimental studies are performed for the same cases in order to 

validate numerical works. Regarding the design of microswimmers to propel in low 

Reynolds numbers, there are many aspects to be elucidated that affect the swimming 

efficiency such as swimmer geometry, fluid medium and confinement geometry. In this 

study, swimmer velocities are presented by changing the swimmer and confinement 

geometry where fluid in all cases is glycerol so as to find the individual effects of all 

parameters. Moreover, external flows with constant rate are introduced to the channel to 

confirm that microswimmers can be controlled against fluid flow. Fluid flow effect on 

swimmer trajectories is also represented. Moreover channel radius effect is also 



59 

observed and we report that confinement leads to more stable trajectories compared to 

the ones in wide channels. Generally, swimmers follow helical trajectory in the head 

direction (forward motion), which is also observed in bacteria motion. Stable straight 

trajectories are also for various swimmer geometries in the tail direction (backward 

motion). Effects of the helical wavelength of the tail and tail length on swimming 

velocities are discussed with experimental and numerical studies. At constant tail 

length, there is an optimal wavelength which maximizes the swimming velocity. 

Furthermore, longer tails provide faster forward and backward motion for fixed 

wavelength. 

CFD simulations are performed to compare experimental results. In each case, 

swimmer geometries used in experiments are modeled; for low Reynolds number 

swimming of microswimmers, Stokes equations are computed. Our simulation results 

are in very good agreement with the experimental results. 

A CFD model is developed to analyze the swimming of singly-flagellated bacteria 

with a spheroid head in circular channels. Force- and torque-free swimming conditions 

are used in the model to obtain forward and lateral velocities and rotation rates of model 

organisms. Linear and angular velocities of the organism and swimming efficiencies are 

computed with the CFD model for varying tail length, wavelength, channel radius and 

the tail radius. Maximum forward velocity is obtained for λ/s = 3 and L/s = 8 in both the 

large channel that mimics free-swimming conditions and the channel with a radius three 

times the short axis of the spheroid head. The maximum efficiency is obtained for λ/s = 

4 and L/s = 8 in the narrow channel, but for λ/s = 3 and L/s = 4 in the large one. Unless 

inside narrow channels, for which Rch/r < 3, the forward velocity does not vary 

significantly, but decreases sharply to almost zero for  Rch/r ≈ 1.5. However, the 

swimming efficiency is almost twice as much in narrow channels with Rch/r ≈ 3 as the 

one in large channels Rch/r > 10.  

For integer number of waves on the tail, the magnitude of the lateral motion attains 

maximum values, whereas for number of waves, 1.5, 2.5, 3.5, the magnitude becomes 

minimum because of the envelope growth of the amplitude near the joint. In principle, 

magnitude of lateral velocities depends on the completion of helical turns that ensures 

the symmetry of the helix, however the smooth ramp-up of the helical radius near the 

joint, which connects the body and the tail, breaks the symmetry. Moreover, the lateral 

motion and wobbling rate, which is the magnitude of rotation rates of the cell in 
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perpendicular directions to its motion, are suppressed as the radius of the channel 

decreases, consistent with the observations in literature.  

Lastly, the effect of the tail radius is also characterized in conjunction with the 

effects of the tail length and the channel radius. As the radius of tail is increased, there 

is a critical channel radius the velocity and the efficiency of the swimmer are 

maximized. The normalized critical channel radius, Rch/r, varies between 2 and 3 

depending on the length and the radius of the tail.  The forward velocity and the 

efficiency are higher for thicker tails in narrow channels than thinner tails, and vice 

versa in wide channels. 

This thesis will contribute to literature by shedding light on the swimming 

behavior of bacteria-like microswimmers confined in circular geometries, which have 

the potential to be used in important biomedical applications such as minimally invasive 

surgeries, drug delivery systems and opening clogged arteries. 

6.1 Future Work 

In order to practice microswimmers in biomedical applications in human body, 

motion of microswimmer should be studied further. Microswimmer motion in flexible 

channels can be studied as future work. Here, swimmers with rigid helical tail are 

presented; second step might be investigating the swimmer behavior with flexible tail 

which will be manufactured with different process other than 3D printer. Also in this 

thesis swimmer velocity and trajectory are obtained with image processing tools. Using 

velocity and trajectory information from the recorded videos as feedback, closed-loop 

control can be performed for real-time trajectory control of swimmers. Instead of 

images and recorded videos, information obtained from magnetic sensors can be used as 

feedback for control algorithm. Once a control mechanism is developed, experiments in 

living tissue can be performed as future work. 
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APPENDIX: IMAGE PROCESSING CODE IN MATLAB 

In order to obtain velocities and trajectory of the swimmer from the recorded 

video files, a MATLAB code is written which detects black head of the swimmer. 

Inputs of the function are n (video name without extension), angle (rotation angle 

of image), fps (frame per second of the recorded video), threshold (black color 

intensity) and rect (rectangle sizes for crop operation). Outputs of the function are Usw 

(swimming velocity of the swimmer) and the coordinates of the trajectory (x and y). 

The code performs following tasks sequentially. First of all, the video is read and 

each frame is written in a matrix (frames). Since video images have irrelevant parts, 

only the region that swimmer is moving is cropped; the width of the cropped image is 

20 mm defined with the graph paper. If the long axis of the channel is not horizontal in 

the screen, it is rotated by an amount of angle degree. angle is generally not more than 

±2°. Than channel boundaries are highlighted with solid color (blue). This code is 

written to detect black parts in the image; thus head of the swimmers are dyed to black. 

The code defines the centroid of the black parts. In each frame, coordinates of the 

centroids are recorded where units are pixel. Unit of the coordinates are converted to 

millimeter (mm) with the aid of the cropped image width. At the same time cropped 

images are recorded to a new video with video writer function. The trajectory of the 

swimmer is plotted to a figure using coordinates of the centroids in mm. Lastly, the 

code saves the figure as ‘.fig’ file and trajectory coordinates as ‘.mat’ file.  

function [Usw,x,y] = top(n,angle,fps,threshold,rect) 
%% ---------------------------SAMPLE-INPUTS--------------------------% 
% n=15;                    % name of the video .mp4 , n is frequency. 
% angle= 0;                % rotation angle of image 
% fps = 120;               % frames per second 
% threshold = .75;         % threshold is determined experimentally 
% Top view adjustment with rectangular crop 
% rect = [xmin ymin width height] ; % in pixels 
% rect = [364 217 150 28]; 
upl = 20/rect(1,3);      % unit pixel length [mm/pixel] 
%% video name 
string1 = ['' num2str(n) '.mp4']; 
%% to access the video and get basic information about it 
swimmerObj = VideoReader(string1); 
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%% get frames from video  
frames = read(swimmerObj); 
%% Select region where swimmer is moving 
nFrames = size(frames,4); % Number of frames 
first_frame = frames(:,:,:,1); 
first_region = imcrop(first_frame,rect); 
frame_regions = repmat(uint8(0), [size(first_region) nFrames]); 
for count = 1:nFrames 
frame_regions(:,:,:,count) = 

imcrop(imrotate(frames(:,:,:,count),angle),rect); 
% define channel boundaries 
y1=2;  % in pixels upper bound of the channel 
frame_regions(y1,:,1,count)=0; 
frame_regions(y1,:,2,count)=0; 
frame_regions(y1,:,3,count)=255; 
y2=27; % in pixels upper bound of the channel 
frame_regions(y2,:,1,count)=0; 
frame_regions(y2,:,2,count)=0; 
frame_regions(y2,:,3,count)=255; 
end 

  
%% 
seg_sw = false([size(first_region,1) size(first_region,2) nFrames]); 
centroids = zeros(nFrames,2); 
se_disk = strel('disk',1); 
%% 
for count = 1: nFrames 
    fr = frame_regions(:,:,:,count); 
    gfr = rgb2gray(fr); 
    gfr = imcomplement(gfr); 
    bw = im2bw(gfr,threshold);  % threshold is determined 

experimentally  
    bw = imopen(bw,se_disk); 
    bw = imclearborder(bw); 
    seg_sw(:,:,count) = bw; 
end 
%% Use |regionprops| to calculate the center of the swimmer head. 
sw_centers = zeros(nFrames,2); 
for count = 1:nFrames 
    property = regionprops(seg_sw(:,:,count), {'Centroid','Area'}); 
    AA = [property.Centroid]; 
    TF = isempty(AA); 
    if TF == 1  
        sw_centers(count,:) = [0,0]; 
    else 
        sw_centers(count,1) = AA(1,1); 
        sw_centers(count,2) = AA(1,2); 
    end 
    if ~isempty([property.Area]) 
        areaArray = [property.Area]; 
        [junk,idx] = max(areaArray); 
        c = property(idx).Centroid; 
        c = floor(fliplr(c)); 
        width = 0; 
        row(count) = c(1)-width:c(1)+width; 
        col(count) = c(2)-width:c(2)+width;  
        r = [ 255 255 0 ]; 
        frame_regions(row(count),col(count),1,count) = r(1);% red 
        frame_regions(row(count),col(count),2,count) = r(3);% green 
        frame_regions(row(count),col(count),3,count) = r(3);% blue  
    end 
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%to draw trajectory with yellow line on video 
            if count>1 
                for nc = 1:1:count-1 
                    frame_regions(row(nc),col(nc),1,count) = r(1);% 

red 
                    frame_regions(row(nc),col(nc),2,count) = r(2);% 

green 
                    frame_regions(row(nc),col(nc),3,count) = r(3);% 

blue 
                end 
            end 
end 
%%  writing frames as avi file 
% Play video  
implay(frame_regions,100); 
%% Write video 
string133 = ['' num2str(n) '.avi']; % video name 
writerObj = VideoWriter(string133); 
writerObj.FrameRate = 100; 
open(writerObj); 
writeVideo(writerObj,frame_regions); 
close(writerObj);  
%% Display Swimmer centers in mm 
x = sw_centers(:,1); 
y = sw_centers(:,2); 
% 
N = max(size(x)); 
cc = mean(y); 
% Unit conversion 
x  = x * upl; 
y  = (y-cc) * upl; 
% in order to calcutale average forward velocity Usw 
Usw = ((x(nFrames)-x(1))/(nFrames-1))*fps;  % mm/sec 
figure (1) 
plot(x,y,'r.',... 
     'LineWidth',2); grid on 
% legend('trajectory','smooth trajectory','upper channel wall','lower 

channel wall') 
xlabel('x [mm]'); ylabel('y [mm]'); zlabel('z'); 
str1 = sprintf('Swimming trajectory and U_{sw} = %f mm/s - %d 

Hz',Usw,n); 
title(str1); 
string10 = ['top_view_' num2str(n) '.fig']; 
hgsave(string10); 
str13 = ['top_view_' num2str(n) '.mat']; 
save(str13,'x','y');  
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