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ABSTRACT

Computational Approaches to Study Drug Resistance

Mechanisms

Zoya Khalid

Keywords: Drug Resistance, Text Mining, Relation Extraction, Drug Repurposing, HIV

resistance

Drug resistance is a major obstacle faced by therapists in treating complex diseases like

cancer, epilepsy, arthritis and HIV infected patients. The reason behind these phenomena

is either protein mutation or the changes in gene expression level that induces resistance

to drug treatments. These mutations a↵ect the drug binding activity, hence resulting in

failure of treatment. All this information has been stored in PubMed directories as text

data. Extracting useful knowledge from an unstructured textual data is a challenging task

for biologists, since biomedical literature is growing exponentially on a daily basis. Building

an automated method for such tasks is gaining much attention among researchers.

In this thesis we have developed a disease categorized database ZK DrugResist that auto-

matically extracts mutations and expression changes associated with drug resistance from

PubMed. This tool also includes semantic relations extracted from biomedical text covering

drug resistance and established a server including both of these features. Our system was

tested for three relations, Resistance (R), Intermediate (I) and Susceptible (S) by applying

hybrid feature set. From the last few decades the focus has changed to hybrid approaches

as it provides better results. In our case this approach combines rule-based methods with

machine learning techniques. The results showed 97.7% accuracy with 96% precision, recall

and F-measure. The results have outperformed the previously existing relation extraction

systems thus facilitating computational analysis of drug resistance against complex diseases

and further can be implemented on other areas of biomedicine.

Literature is filled with HIV drug resistance providing the worth of training data as compared

to other diseases, hence we developed a computational method to predict HIV resistance.

For this we combined both sequence and structural features and applied SVM and Random

Forests classifiers. The model was tested on the mutants of HIV-1 protease and reverse tran-

scriptase. Taken together the features we have used in our method, total contact energies
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among multiple mutations have a strong impact in predicting resistance as they are crucial

in understanding the interactions of HIV mutants. The combination of sequence-structure

features o↵ers high accuracy with support vector machines as compared to Random Forests

classifier. Both single and acquisition of multiple mutations are important in predicting HIV

resistance to certain drug treatments. We have discovered the practicality of these features;

hence these can be used in the future to predict resistance for other complex diseases.

Another way to deal drug resistance is the application of drug repurposing. Drug often

binds to more that one targets defined as polypharmacology which can be applied to drug

repositioning also referred as therapeutic switching. The traditional drug discovery and

development is a high-priced and tedious process, thus making drug repurposing a popular

alternate strategy. We have proposed a method based on similarity scheme that predicts

both approved and novel targets for drug and new disease associations. We combined PPI,

biological pathways, binding site structural similarities and disease-disease similarity mea-

sures. We used sixty drugs for training the algorithm and tested it on eight separate drugs.

The results showed 95% accuracy in predicting the approved and novel targets surpassing

the existing methods. All these parameters help in elucidating the unknown associations

between drug and diseases for finding the new uses for old drugs. Hence repurposing o↵ers

novel candidates from existing pool of drugs providing a ray of hope in combating drug

resistance.
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ÖZET

İlaç Direnç Mekanizmaları için İşlemsel Yaklaşımlar

Zoya Khalid

Anahtar Kelimeler: İlaç Direnci, Metin Madenciliği, İlişkisel Çıkarım, İlaç Repurposing,

HIV direnci

Ilaç direnci, kanser, epilepsy, artritis ve HIV gibi kompleks hastalıkların tedavisi sürecinde

terapistlerin karşılaştığı büyük bir engeldir. Protein mutasyonu veya gen ifadesindeki değişiklik

düzeyi bu olayın arkasındaki sebeptir. Bu mutasyonlar ilaç bağlanma aktivitesini etkile-

mekte, bu nedenle de tedavinin başarısızlıkla neticelenmesine sebep olmaktadır. Bu bil-

giler PubMed rehberlerinde metin verisi olarak arşivlenmektedir. Biyomedikal literatürü

günlük olarak katlanarak büyümekte olduğundan, biyologlar için, yapısal olmayan metin

verilerinden kullanılabilir bilgiyi seçip çıkartmak zorlu bir iştir. Bu ve buna benzer görevleri

gerçekleştirebilmek için otomatikleştirilmiş bir yöntem geliştirmek araştırmacıların ilgisini

çekmektedir.

Bu tez çalışmasında, ilaç direnciyle ilişkili mutasyonları ve ifade değişikliklerini PubMedden

otomatik olarak seçip çıkaran, hastalıklara göre kategorilenmiş ZK DrugResist adlı bir veri

bankası geliştirdik. Bu araç, ilaç direnciyle ilgili olan biyomedikal metinlerden elde edilen

anlamsal ilişkileri de içermektedir ve bu iki özelliği de içeren bir sunucu kurulmuştur. Sis-

temimiz hibrit özellik seti uygulanarak üç ilişki bakımından test edildi, Direnç (R), Orta

derece (I) ve Duyarlılık (S). Son on yıllık süreden beri odak noktası, daha iyi sonuçlar verdiği

için hibrit yaklaşımlara değişmiştir. Bizim vakamızda, bu yaklaşım kurala-dayalı yöntem ile

özdevimli öğrenme tekniklerini birleştirmektedir. Sonuçlar %96 hassasiyet, geri çekme ve

F-ölçümü ile %97.7 doğruluk göstermiştir. Sonuçlar, daha önceden varolan bağıntı çıkarım

sistemlerinden daha iyi olduğunu göstermiş, böylece kompleks hastalıklara karşı gelişen ilaç

direncinin işlemsel analizlerini kolaylaştırmıştır ve daha ötesi farklı dirimsel tıp alanlarına

da uygulanabilmektedir.

Literatür, diğer hastalıklara göre kıyaslandığında, HIV ilaç direnciyle ilgili çalışma veri-

lerinin değerini gösteren araştırmalarla doludur, bu nedenle HIV direncini öngörmek amaçlı

işlemsel bir yöntem geliştirdik. Bunun için dizi ve yapı özelliklerini birleştirdik ve Destekçi

Vektör Makinesi (SVM) ve Rastgele Orman klasifikatörleri uygulandı. Model, HIV-1 pro-

teaz ve ters transkriptaz mutantları üzerinde test edilmiştir. Yöntemimizde kullandığımız
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özellikleri birleştirdik, birden fazla mutasyon arasındaki total temas enerjilerinin, HIV mu-

tantları arasındaki etkileşimi anlayabilmek için önemli olmalarından dolayı, direnç tahmini

üzerinde güçlü etkisi vardır. Dizi-yapı özelliklerinin kombinasyonu SVMler ile, rastgele or-

man klasifikatörüne göre yüksek doğruluk sağlamaktadır. Tek ve birden çok mutasyonun her

ikisinin de kazancı belli ilaç tedavilerine karşı oluşan HIV direncinin tahmini için önemlidir.

Bu özelliklerin kullanılabilirliğini keşfettik, bu sayede bu özellikler aynı zamanda diğer kom-

pleks hastalıklara karşı gelişen direnç durumunu öngörmek için gelecekte kullanılabilir. İlaç

direnci ile ilgilenmenin bir diğer yolu ilaç repurposing uygulamasıdır. Terapötik değişim

olarak da adlandırılan, ilacın genellikle birden fazla hedefe bağlanılabilmesini tanımlayan po-

lifarmasi ilaç yeniden konumlandırmasında kullanılabilir. Geleneksel ilaç keşif ve geliştirme

yöntemi pahalı ve meşakkatli bir süreçtir, bu nedenle ilaç repurposing yöntemi popüler al-

ternatif bir stratejidir. Biz de ilaç ve yeni hastalık ilişkileri için kabul edilen ve yeni hedefleri

öngören benzerlik şemasına dayanan bir yöntem önerdik. PPI, biyolojik yolaklar, bağlanma

bölgelerinin yapısal benzerlikleri ve hastalık-hastalık benzerlik ölçülerini birleştirdik. Algo-

ritmayı eğitmek için altmış ilaç kullandık, ve algoritmayı sekiz ayrı ilaçta test ettik.

Sonuçlar, doğrulanmış ve yeni hedefleri öngörmede %95 doğruluk göstererek varolan

yöntemlerden üstünlüğünü göstermiştir. Bütün parametreler ilaç ve hastalıklar arasındaki

bilinmeyen ilişkileri açıklayarak eski ilaçların yeni kullanımlarının bulunmasına yardım etmiştir.

Böylece repurposing varolan ilaç havuzundan yeni adaylar önererek, ilaç direnciyle mücadelede

bir umut olabilir.
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Chapter 1

Introduction

1.1 Mechanisms of Drug Resistance

Before the advent of molecular biology and genetics, phenotypic assays were employed for

the drug discovery which involved very little knowledge of molecular mechanisms. Years

later this approach has been taken over by target based drug discovery. Target is often

defined as a single gene, gene products (proteins) or a biological mechanism. According to

one study the target is classified into two classes: Gene based and mechanistic based [1].

Gene based targets are the genes or gene products that tend to carry mutations hence bear

the high risk of developing a disease. On the other hand, mechanistic targets are based on

how the drug is administered that is its specific mode of action which can be inferred from

drug mechanism of actions. The drug functions by binding to other small molecules referred

to as substrates or ligands. It binds to the active site of the drug and resulting complex is

called as Ligand- Protein complex. When drug binds to its ligand it prevents ligand binding

to its natural substrate hence the normal function of the protein is aborted.

Drug treatment is often faced by an obstacle called ”drug resistance” generally meaning the

decrease in the e�cacy of drug in curing a particular disease. Drug resistance is becoming

a major health hazard spreading from viral diseases to cancer. Resistance to chemothera-

peutic is of two types: intrinsic or acquired. The pre-existence of resistance cells indicates

intrinsic resistance, while if the resistance cells appear after treatment it is acquired re-

sistance. Another interesting description of cancer resistance is the appearance of tumor

heterogeneity which means di↵erent cancer cells can have di↵erent morphology in terms of

gene expression, metabolism and proliferation. This causes serious impediment in making

an e↵ective treatment for cancer, hence providing good reasons to apply pharmacogenomics
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for cancer therapy. Furthermore, the use of high throughput techniques is coupled with

bioinformatics to identify molecular signatures for predicting drug response.

As it is a primitive cause of treatment failure, many studies have been performed in order

to combat drug resistance. One such approach uses change in the treatment that is first

line, second line and third line drugs in response to resistance being observed [2]. Sadly,

this could not become a very popular choice as choosing first line drugs has less side ef-

fects and is also e↵ective to large population compared to second and third line drugs.

The alternative is to use multiple drugs also known as drug cocktails. On one hand if this

approach increases the e�cacy by lowering down the chances of resistance, its side e↵ects

making it less e↵ective in patients [3]. Many clinical trials have been conducted to overcome

drug resistance, nevertheless drug target develops multiple drug resistance referred as MDR.

These trials usually are performed once the resistance is being observed, there should be

theoretical knowledge available beforehand that would be helpful in selecting drug target

for overcoming resistance.

Redox regulation is also contributing in developing drug resistance. Reactive oxygen species

(ROS) causes oxidation of amino acid residues and protein backbone which results in protein

fragmentation. These oxidized proteins disrupt the protein functions hence, making cells to

adopt altered molecular pathways. ROS modulation is considered as one of the prerequisite

for tumor development and also important to measure drug resistance [4].

E↵ective drug treatments against complex diseases like cancer, epilepsy, arthritis, HIV is

greatly a↵ected by drug resistance. The phenomena underlying drug resistance is surrounded

by multiple factors which are not well understood as yet. Few notions about it are, generally

either the point mutations in drug target or modifications of expression levels makes drug

insensitive to treatment [5].

However, the literature shows that the most prevailing method of drug resistance is the

acquisition of point mutation in drug target that causes alteration in amino acids at certain

residues. These mutations develop at the binding site of proteins hence a↵ecting the drug

binding activity making it insensitive to treatment. Few mutations are reported in literature,

for instance Dasatinib resistance caused by V299L, T315A, and F317I/L mutations. And

Nilotinib resistance is caused by mutations at Y253F/H, E255K/V, and F359C/V [6] [7].

Moreover, those mutations that are not exactly at the binding sites but are located away do

not directly participates in drug resistance but are really ambiguous as these might changes

the structure of the protein [8]. In addition to that the changes in expression levels which

are over-expression or down expression of certain genes also contributes in drug resistance.
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The epidermal growth factor (EGFR) is over-expressed in almost 30% of breast cancer pa-

tients [9]. In other studies, it is reported that the over-expression of e✏ux pumps is the

contributing cause of Imatinib resistance [10]. Despite of having limited knowledge of drug

resistance mechanisms, point mutation of drug targets could be considered as the starting

point for predicting and overcoming drug resistance.

1.2 A disease categorized drug response database via

Text Mining

Biomedical publications are exponentially increasing with the passage of time making it hard

for the researchers to keep themselves updated. Information seems to be overburdening with

the addition of new articles on already existing corpus. Accessing relevant information from

these online knowledge sources has become a big challenge as it takes huge amount of man-

ual labor leaving it as a time consuming and laborious task. This brings researchers to build

a way which should be more advanced than searching keywords. The automated methods

aids in providing the prior knowledge before conducting clinical experiments.

Text mining is the technique nearly related to Information Retrieval (IR) that extracts struc-

tured data from unstructured text. In other way, it is the application of data mining to

the text data. Nevertheless, data mining usually works on structured data and textual data

is unstructured most of the times. Text mining has benefits over other methods as it uses

algorithms instead of applying manual filters. Secondly, it helps in deriving new relations

from the available text. Preprocessing of the text is required before applying data mining

which involve natural language processing techniques. Text mining is generally referred as

an interdisciplinary field that combines NLP, machine learning and statistics altogether.

Textual data is the only way of storing all sorts of information, hence making text mining

a popular choice for digging out meaningful knowledge out of huge pool of data.

First step in text mining is to categorize the documents on the basis of their content also

called as Text Categorization which in our case is separating drug resistance articles with

others. PubMed is queried with terms which include and are not limited to ”drug resistance,

”mutations”, ”expression changes” and ”complex diseases”. The problem is, Biology has a

rich source of vocabulary and one term can be referred by di↵erent names, this goes espe-

cially for proteins and gene names. To address this, using Bag of Words and representing it
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as vector space model usually acts as a savior. A classifier using supervised machine learning

is then applied to categorize documents. Textual data is way much complex as one term

has synonyms, so creating valid set of training and test data is also tedious task because

text varies from one domain to another. For instance, the training set created for classifying

drug resistance cannot used as test set for protein-protein interactions classification.

Text mining has various techniques. One such technique is applying clustering to text data

also referred as document clustering. It is a fast filtering technique which allows to extract

information from text that has been grouped according to the similarity between docu-

ments. The similarity could be either text-based that includes term frequency and latent

semantics or citation-based that helps in providing other related documents [11]. Another

approach is Text Summarization which intends to provide a recap containing the highlights

of a document. This is beneficial in coping with the information overload. A good sum-

mary grabs the important points that helps in deciding whether to read entire document or

not. This data reduction process has various techniques reported in literature. The most

e↵ective technique for biomedical data is concept chaining that uses the concepts rather

than terms. This works by taking in semantically related concepts using UMLS, identify-

ing strong chains by assigning scores and then extract sentences to create the summary.

Another way of doing this is making use of frequency distribution technique in which each

sentence is being assigned a score based on the frequency count of term or concept [12].

An unsupervised technique of text mining is topic modeling which is a probabilistic model

containing a combination of topics. This approach has also been applied on biomedical data

for instance a well known example is the classification of drugs based on safety measures and

the therapeutic use of drugs. One reported methods for topic modeling is Latent Dirichlet

Allocation that calculates the posterior probabilities of words on an input document [13].

Biomedical text has been broadly facilitated by text mining algorithms specially called as

biomedical natural language processing BIONLP. Much real life applications have been per-

formed using NLP making it an applied science rather than just theoretical. However, the

named entity recognition has always been a dilemma, since the biological terms varies from

document to document as one gene or protein has many synonyms. Nowadays in biomedical

domain more work is being done in finding entities relationships for example protein-protein

or disease-gene interactions [14] [15] [16]. Commonly, there are two sides of relation extrac-

tion, either using interaction based methods or using text mining methods. For interaction

methods the databases available are BIND [17], IntAct [18], BIOGRID [19], Strings [20]

and MINT [21]. Although these databases contain a large collection of manually extracted
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relations that exists between the entities, it still requires a considerable amount of time and

e↵ort because of the rapid expansion in literature. On the other hand, text mining shows di-

versity in relation extraction starting from simple approaches like co-occurrence to complex

systems like hybrid approaches, hence making it a popular method among researchers [22].

In this study we propose an automated method ” ZK DrugResist” for extracting drug re-

sponse relations via text mining. This tool categorizes abstracts based on mutations, gene

expression and disease types associated with drug resistance. Also this tool extracts seman-

tic relations from the sentences for three drug response relations (Resistance, Intermediate,

Susceptible). ZK DrugResist is freely available for non commercial use, it does not require

any registration and can be accessed using Safari, Google Chrome and Firefox web browsers.

ZK DrugResist requires user to pick any disease category for input. The server will display

the results page for the selected disease type summarizing drug resistance.

1.3 Combining Sequence and Structural Features for

Predicting Drug Resistance

Aids is an epidemic disease spreading worldwide since early 1980s which occurs due to HIV

infection. Even today there is no e↵ective treatment that provides a complete remedy for

AIDS [23]. Commonly it is treated by providing a combination of drugs termed highly

active antiretroviral therapy (HAART), which controls the virus transmission, hence in-

creasing the survival chances. As reported in earlier studies, the two important drug targets

for HIV infected patients are protease inhibitors and reverse transcriptase. Among these,

four falls in the nucleoside RT inhibitors (NRTIs) category, three in the non-nucleoside RT

inhibitors (NNRTIs) and seven in the PR inhibitors (PIs) [24]. Despite this fact, the HIV

therapy is restricted to the emerging drug resistance phenomena. The reason behind these

phenomena is either the protein mutation or the changes in gene expression level that in-

duces drug resistance [7] [6]. These mutations either alter the residues at binding site or

at the distal regions hence a↵ecting the drug binding activity which results in failure of

treatment [25], [26]. Therefore, it is necessary to conduct resistance testing in order to carry

out HIV e↵ective therapy. Previously, both phenotypic and genotypic analysis was used to

measure HIV drug resistance. Phenotyping is more di�cult to be performed as it is time

consuming and laborious, while genotyping on the other hand is faster, but there remain
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some challenges in predicting drug resistance from genotypic data [27].However, due to the

acquisition of mutations and multiple mutation patterns for drug resistance, it is di�cult

to associate genotypic with phenotypic methods.

Many computational methods have already been developed for analyzing drug resistance

using genotypic data. These methods are either sequence based or structure based. For

sequence based, various studies have been reported that use the statistical and supervised

learning approaches to evaluate resistant mutation sequences. For instance, for HIV these

methods usually work by taking the protein sequences of Protease PI and reverse transcrip-

tase RT. Further on the basis of fold value they are assigned as resistant, intermediate or

susceptible. Sequence methods require training set of su�cient size for predicting resistance

with higher accuracy. Despite of the e�ciency of these methods, they are unable to predict

the new inhibitors as the same training data cannot be applicable for training other pre-

dictors. For HIV these methods usually work by taking the protein sequences of Protease

PI and reverse transcriptase RT. Further on the basis of fold value they are assigned as

resistant, intermediate or susceptible. The structure based methods normally use the 3D

representation to calculate binding energies between protease and inhibitors. Although no

large training set is required, still the performance measure is compromised because of the

noise in calculating this free energy [28].

To overcome the limitations of both methods, one can combine the two approaches that can

help in predicting resistance before testing the drug clinically. We examined HIV resistance

against protease and reverse transcriptase drug treatments. The data available on Stanford

HIV database has been used for seven PIs, four NRTIs, and three NNRTIs. Additionally

for the two drugs of PIs: Indinavir (IDV) and Saquinavir (SQV) we also used the datasets

reported by Dragchi and group [29]. Using SVM and Random forests classifiers we exam-

ined both single and multiple mutations of HIV resistance and also inferred the interactions

among them.

Our goal is to look for the best features for determining HIV resistance. Unlike the lin-

ear sequence representation, we combined both sequence and structure features implying

a qualitative depiction of a feature set. This feature set includes hydrophobicity measure,

evolutionary conservation, flexibility measure, frequency occurrence count, solvent accessi-

bility, disordered proteins and amino acid volume information as sequence features. For

structural features, the 2D and 3D structure representation along with the contact energies

of the interacting residues followed by average hydrophobicity and average volume were

used. Along with single point mutations it is equally important to look for the combina-
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tion of multiple mutations for HIV resistance. Therefore, we calculated the total contact

energies between these multiple mutations for every instance that in turns helps to infer the

impact of multiple interactions of HIV mutants. This gives a better understanding of how

these multiple mutations bring resistance in response to certain drug treatments. Our study

shows the possibility of using combinatorial approaches with optimized features to combat

HIV resistance.

1.4 Drug Repurposing

Growth in drug research and development has been dropping down for few years as it is

getting real expensive with chances of failure attempts. Pharmaceutical companies are un-

successful in keeping pace to bringing new drugs to the market, reasons behind this are

manifold, broadly the safety and e�cacy factors are coupled with the overpricing. To cope

with this dilemma, the theory of reusing the existing drugs gained a lot of thoughtfulness

among bio-pharmaceutics. The phenomena of using the old drugs with new indications

paired with the original indications is termed as repurposing or repositioning. The concept

of drug repurposing causing a huge cut down in terms of price in drug discovery domain

as it costs almost half the price of a new drug causing an overhaul in drug development.

Before carrying out drug repositioning, few aspects should be given a look and these in-

clude drug side e↵ects and its relevancy with the disease. Since the approved drugs have

already been passed through various validation steps which include target identification and

ADMET (absorption, distribution, metabolism, excretion and toxicity) characteristics, thus

can facilitate in identifying new uses for the same drug [30].

Among various approaches for finding new uses of old drugs, using GWAS data, gene ex-

pression data and structural features are considered as the most distinguished methods.

A drug can bind to several di↵erent targets making it promiscuous in nature. This is a

well-known phenomenon which is also considered as a significant factor for the e�cacy of

drugs. Drug promiscuity reveals the drug o↵-targets, thus making them prime candidates

for drug repurposing. Among the in-silico approaches for finding drug targets, binding site

structure similarity from structural bioinformatics domain is highly contributing. The pro-

teins sharing similar binding sites tend to bind same ligands hence paving ways for drug

repositioning. Previous studies reported that flexibility is also one of the physiochemical

properties of ligand contributing in drug promiscuity. With sharing similar binding sites,
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the ligand flexibility is similarly influencing drug binding to multiple targets, hence these

features are staple for drug repositioning [31] [32].

In addition to that, recent studies have also worked on analyzing drug associated biologi-

cal pathways. These are beneficial in exploring mechanism of action of drugs and also the

upstream or downstream genes in a pathway [33]. It is important to look for the pathway

associated genes, as there are possibilities if the drug is not directly binding to its target but

the target gene is interacting with other genes in a pathway hence binding to the ligand.

Among drugs retrieved biological pathways, some of the drug targets share common path-

ways which in turn helps in revelation of clinical functions along with the drugs mechanism

of action. Also these pathways might have associated with some other diseases than those

they were initially used for, hence providing a substitute for drug repurposing.

1.5 Motivation

Drug Resistance is the major bottleneck in treating complex diseases making it the limelight

of current research. Over the decades much work has been conducted both experimentally

and computationally to understand drug resistance mechanisms.Machine learning has widely

been applied for studying drug resistance. Our motivation is to develop methods for under-

standing drug resistance by applying machine learning techniques. The aim of the thesis is

as follows

• To provide a disease categorized database that contains a collection of all the literature

summarizing the association of drug resistance with point mutations and expression

changes also including the drug response relations (resistance, intermediate , suscep-

tible)

• Second is to integrate sequence and structural features for predicting HIV resistance.

• Third to propose a drug repurposing strategy by combining PPI, biological pathways,

binding site structure similarity and disease-disease similarity unlike one drug one

target models.
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1.6 Structure of the Thesis

This thesis is organized into five chapters. Each chapter has three separate sections, Text

Mining, Drug Resistance Prediction and Drug Repurposing.

Chapter 2: Provides a comprehensive background of computational analysis of drug resis-

tance. The approaches developed to predict drug resistance including Text Mining, Sequence

and Structure Features and Drug repositioning are discussed.

Chapter 3 : A design of model developed to study drug resistance mechanisms is described

in detail. This chapter covers the features taken for building a model in order to establish

a database , second the features for building a classification model for predicting HIV resis-

tance. And last section provides in detail the algorithm proposed for drug repurposing.

Chapter 4: Provides in detail the results obtained.

Chapter 5: Discussion and conclusions are highlighted. Also possible ideas for extending

this work are discussed.

1.7 Published Articles

The part of the thesis on disease categorized database and prediction of HIV resistance has

been published [34] [35]

• Khalid, Zoya, and Osman Ugur Sezerman. ”Prediction of HIV Drug Resistance by

combining Sequence and Structural Properties.” IEEE/ACM Transactions on Com-

putational Biology and Bioinformatics (2016).

• Khalid, Zoya, and Osman Ugur Sezerman. ”ZK DrugResist 2.0: A TextMiner to

Extract Semantic Relations of Drug Resistance from PubMed.” Journal of Biomedical

Informatics (2017).

The part of thesis on designing an algorithm for drug repurposing is in preparation phase.
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Chapter 2

Background

This chapter begins with the overview of previous work on drug resistance. The computa-

tional strategies that aimed to predict resistance and ways of combating drug resistance is

summarized in this chapter.

2.1 Text Mining

Biomedical literature provides a rich source of information which provide a good start in

establishing the state of the art in particular domain. PubMed database has the vast collec-

tion of biomedical literature that provides approximately 24 million articles from di↵erent

journals including Medline and life science [36]. Biological terms such as genes and proteins

has no fixed terminology, therefore interpreting this heterogeneous nature of the data needs

to be automated to facilitate the researchers. This introduces Biological Natural Language

Processing (BIONLP) as a light in disguise. The components of BIONLP are: Text classi-

fication, Named Entity Recognition, Relation Extraction and Relation Classification.

Much work has been performed in analyzing protein-protein interactions, but most of the

databases developed for that purpose are manually curated ones. There is a high need of

developing an automated method for the ease of extracting required information. The au-

tomation can be performed by using machine learning or rule based methods however, these

methods require an applicable training set which varies from one domain to another. Many

data mining techniques have been applied to biomedical data but the proteins, genes and

drugs nomenclature heterogeneity complicates the process. Many authors suggested using

context free grammars or specialized biomedical parsers [37] to tackle this problem.

Considering drug resistance, literature shows some already developed databases. One of
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them is BacMat which is based on genetic alterations that are associated with antibiotics

resistance [38]. One more database is Biozyne P-gp Predictor which is based on SVM classi-

fier that di↵erentiates the substrates from e✏ux pumps [?]. [39] reported a database GEAR

which associates genomic elements like SNPs, microRNA with drug resistance by measuring

the probablities of co-occurrence.

Many techniques for relation extraction have been proposed lately that broadly include co-

occurrence, rule based, machine learning and pattern-based. Co-occurrence as the simplest

approach, provides high sensitivity but very low specificity as biomedical texts have com-

plex sentences that make it di�cult to find related words [40]. Secondly for the Rule-based

approaches usually rules are defined manually by using features derived by applying natural

language processing (NLP) chunking and parsing techniques. However, variations in biolog-

ical terms make rule-based methods less accurate providing more precision but at the cost

of lower recall [41]. Third approach works on building classifiers that use features derived

from either shallow parsing or full dependency parsing. This method is the most preferable

method as it provides good measures but it also requires fully annotated training sets of

enough size [15]. Lastly pattern based methods need patterns to extract relations which

provide low recall if they are manually generated ones. Bootstrapping can be performed for

automatic patterns to improve recall measure [42].

All of the reported relation extraction methods generally worked on the protein-protein in-

teraction or protein-gene interactions corpus [43] [44]. Most of the times, the other type

of relations is overlooked by the researchers. For predicting HIV resistance there are two

methods reported, one is rule-based while the other one centered on computational based ap-

proach [45] [46]. Furthermore, there are already developed databases like Stanford HIVDB,

RegaDB and CancerDR which are updated regularly by experts. One study published in

2012 has analyzed the casual relations extraction focuses on HIV resistance caused by cer-

tain mutations. This study was based on Rule-based methods. The results showed the

precision of 97% on HIVDB dataset while on PubMed abstracts it is 87% [47]. Another

method named EDGAR based on natural language processing tools focuses on extracting

drug, gene and cell names from biomedical text along with extracting semantic relations

with respect to gene expression and drug resistance. The authors have not mentioned any

accuracy measure to be compared with. This method has an application called semantic

Medline which is accessible at skr3.nlm.nih.gov [48].
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2.2 Identifying Drug Resistance by combining sequence

and structure features

As described earlier, predicting drug resistance has been divided into two categories: se-

quence based and structure based. For applying these methods there is a need of prior

data to train a model for analyzing the e↵ect of mutations on resistance. As the ex-

isting data provides information that helps in associating the mutations to the pheno-

type (resistant, susceptible). Literature is filled with HIV drug resistance providing the

worth of training data as compared to other diseases, hence limits the sequence based ap-

proaches to only analyzing HIV resistance. The largest warehouse is the Stanford HIV drug

database (HIVDB) containing genotypic sequence data with the phenotypes [49]. Gener-

ally, the gene sequence is the genotypic data while phenotypic data is measured by cal-

culating the mutation e↵ect on resistance. This resistance factor is defined as follows:

RF = MutantIC50

WildtypeIC50

For predicting phenotype from genotype data building regression models is one way of do-

ing that. These are probabilistic models that can be obtained by applying least square

regression, neural networks, decision trees and support vector machines as cited in [50]. In

a recent study authors have used the combination of both linear and cross-validated regres-

sion for predicting HIV resistance. They have tested their model on reverse transcriptase

and non-nucleoside reverse transcriptase (NNRTI) [51]. Using artificial neural networks for

predicting HIV resistance is one preferred model. [52] used 7500 HIV sequences for training

and testing their model. Furthermore, Random Forests and ANN were also employed to

analyze bevirimat HIV resistance [53]. All these methods have reported higher degree of

accuracy in predicting HIV resistance, but quality of a model cannot be determined only

by considering accuracy measure. More True positives and less False positives should be

examined to avoid misleading results.

Even if these learning methods are good enough to predict resistance, still it is di�cult to

determine which mutations confer resistance or in other words how many mutations are

enough for causing resistance. For this multiple mutations patterns should be evaluated as

reported in [54]. The authors used Bayesian models to generate probabilities for determin-

ing the impact of multiple mutations on drug resistance in HIV.

The above discussed methods used the sequence of protein or gene to build learning models.

There is another category of sequence based methods that uses chemical properties of the
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proteins for predicting resistance. The sequence data is represented as physiochemical de-

scriptors which are either hydrophilic, hydrophobic or soluble. The same could be applied

for determining the protein ligand interactions. The striking outcome of using this, is the

generalization of a model for instance, based on these properties the same training set could

be applied to two inhibitors having similar chemical features. However, the model accuracy

will compromise if the drugs aren’t similar much [55] [56].

Moreover, with the computational learning methods, rule-based methods also contributed in

predicting HIV resistance. These rules are defined by experts by analyzing clinical data for

finding the impact of single or multiple mutations on resistance. Publicly available databases

are Stanford HIV, HIV-grade, REGA, ANRS and Visible Genetics [57] [50] [58] [59].

On the contrary, the structure based methods use the drug ligand complex, docking, molecu-

lar dynamics and molecular modeling. These approaches start with the wild type structure

followed by introducing mutations and checking for the structural changes. The scoring

function is built to compute how the mutant proteins are e↵ecting resistance. One study

used molecular modeling software SYBYL for determining that mutations are actually dis-

rupting the binding site of the drug [60]. Similarly, protease inhibitor ampenavir was studied

using molecular dynamics which shows the impact of double point mutations on resistance.

Similarly, for Tuberculosis another study reported for ACP reductase indicating that S94A

mutation confer resistance to isoniazid [61]. Furthermore, multidrug HIV resistance was

also conducted using molecular dynamics simulations as cited by [62]. One more study [63]

studied mutation at residue 50 with binding to two drugs atazanavir and amprenavir. Mu-

taion of I50V for atazanavir and I50L to amprenavir causes decrease in binding a�nity

hence results in HIV protease resistance.

Various other studies for analyzing these resistant mutations were examined by applying

statistical and machine learning methods including artificial neural networks, SVM, Ran-

dom Forests, decision trees and Regression Analysis to examine the relationship of genotype

and phenotype [64] [65] [66]. All these published methods usually relied on the genotypic

data hence used non-parametric methods. Previously for Saqunavir (SQV) and Indinavir

(INV) of PIs linear discriminant analysis and cluster analysis was performed to determine

resistance mutations [67]. Similarly, for structure based analysis SVM and Random Forests

learning models were tested for Nevirapine (NVP) of PIs drug treatment [68]. Moreover,

Graph Theory techniques such as Delaunay Triangulation and Sparse Dictionary were also

used for structure based analysis of resistance mutation patterns [69].

One advantage of structure based methods over sequence based methods is that, they don’t
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really depend on the availability of training data. Still it faced one limitation, the molecular

docking and molecular simulations require predefined set of mutants. Hence these methods

cannot be applied extensively for predicting structure based HIV resistance.

Table 2.1 summarizes the existing literature defining methods used and accuracy measured.

Table 2.1: Comparison of Accuracy Measure with the Existing Literature

Types of Features Technique Reported Accuracy Reference

Sequence Feature: Hydrophobicity Molecular Dynamic Simulation NA [70]

Sequence Feature: Conserved Residues Molecular Dynamic Simulation NA [71]

Structure Features : Molecular Dynamic simulations Molecular Dynamic Simulation NA [72]

Sequence Features : Frequencies of Occurrence Neural Networks 85% [29]

Structure Features :Ligand Protein binding complex Neural Networks 85% [29]

Combined Sequence and Structure representation Sparse Dictionary 85-97% [69]

Structure Features : Contact Energies Support Vector Machines 83-91 % [73]

Structure Features: Interaction among Multiple Mutations Bayesian Variable partition NA [74]

Sequence and Structure
Random Forests

Support Vector Machines

80-94%

65-87%
[75]

Sequence Features

Decsion Trees

Neural Networks

Support Vector Machines

Regression

77-89% [50]

Combined sequence-structure: Delaunay tessellation
Support Vector Machines

Random Forests
90-93% [76]

Combined sequence-structure: Delaunay tessellation Support vector Machines 88% [77]

Sequence Features: Frequencies of Occurrence Regression Model 76-80% [78]

2.3 Drug Repurposing

Drug repositioning is the idea of exploring new therapeutic uses of old drugs, hence con-

tributing in saving money from bringing out a new drug to the market. Various studies have

been reported on drug repositioning making it a hot topic for the researchers. The classical

method of drug discovery is one drug one target model which has expected to provide less

e�cacy and with more side e↵ects. This model doesn’t consider the biological mechanisms

that makes drug to bind with more than one target hence limiting the e�ciency of this

model [79] [80].

To overcome these limitations much work has been done on computational and network

based approaches that provides a new direction towards drug repositioning. In one study

the authors used chemical structures of drug and its target starting from this the network
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will expand linking new indications [81]. [82] used pairwise similarity to conduct drug repo-

sitioning. The similarity measures include drug similarity, drug target similarity and target-

target interaction. A drug-drug similarity network was proposed by [83] where the network

has gene expression profiles as features. Many studies have been proposed lately that used

the drug and disease expression profiles to provide plausible candidate for drug reposition-

ing [84] [85] [86]. Further literature mining and pathway analysis was also proposed to build

drug disease network [87] [88].

One study used the microarray gene expression data for finding drug-disease interactions.

Their network contains disease-disease, disease-drug and drug-drug associations that pro-

vides insights about drug repositioning. The methodology was based on scoring system that

calculates the similarity scores among the drug and disease pairs. Using this method, the

authors have discovered many new indications for the approved drugs [89].

Another method used gene expression profiles to check the e↵ect of drug on various treat-

ments. The network contains those nodes that either have similar mechanism of action or

targeting same biological pathway. This network was developed on consensus transcrip-

tional response which shows the transcriptional activity of a drug towards drug treatments.

This approach helps in capturing the similarities and di↵erences in drug responses, hence is

useful for drug repositioning [90].

For creating a disease-drug, disease-disease and drug-drug network Guanghui and Agarwal

used gene expression profiles, they have used two approaches namely correlation and enrich-

ment. Correlation takes in profile-profile similarity while enrichment measures signature-

profile similarity. This helps in identifying novel relations among drug and disease hence

can be used for repositioning [91].

[92] used both e�cacy and side e↵ects measure for drug repurposing. The gene regulation

has been observed before and after drug treatment to measure drug e�cacy and the num-

ber of essential genes and correlated genes were measured for side e↵ects. Based on this a

scoring scheme was developed to align drug-disease association for repurposing.

Another study performed drug repositioning without using the gene signatures. A scoring

function was formulated to compute drug-gene-disease network, which takes in both the

contribution of a gene and e↵ect of a drug on a gene. Drug-disease association can be com-

puted by measuring the similarity and dissimilarity of their gene expression profiles [93].

Various studies have already been conducted for pathways based analysis of drug repur-

posing. Creating a network from drugs-targets-pathways-gene-disease helps in interpreting

mechanism of action and can contribute in drug repurposing [?] [94].
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Machine learning is contributing much for building drug repositioning strategies. It com-

bines multiple information including how similar their chemical structures are, closeness in

a PPI network of drug targets and correlation among the gene expression patterns [95].

In addition to the computational approaches few studies are also devoted to manually ana-

lyze the drug associated pathways for drug repositioning [96] [97]. For instance, bexarotene

which was used for cancer treatment can also be used for Alzheimers disease [98]. The

manual curation has performed which is based on drug target, target associated pathways,

transcriptional responses of pathway and the gene based analysis for understanding mech-

anism of disease.
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Chapter 3

Materials and Methods

3.1 Text Mining

For the text mining first the abstracts were collected by querying PubMed with terms which

include but not limited to ”drug resistance, mutations”, ”expression changes” and ”complex

diseases”. These abstracts were categorized based on four modules as described below.

3.1.1 Drug Resistance Vs. Others

The first stage is to separate the drug resistance abstracts from the rest. The total abstracts

are 15,580. For each of the downloaded abstract the feature vector is constructed. In order

to distinguish them the frequency of each word is counted as a feature value. These words

were then further processed using tokenization and porter stemming algorithms. After

breaking the abstract into words the term frequency of words was counted by using term

”drug resistance” and calculates its total occurrence in an abstract. Next calculate the

Term document inverse frequency TFIDF, it is the weight calculated by taking number of

documents in the corpus by the number of documents containing term. This module will

separate drug resistance abstracts from the rest.

3.1.2 Mutation Vs. Expressions

In the second category we picked these drug resistance documents and scanned them to

associate either with mutation or with expression level changes. The documents cited like

over-expression, down regulation kind of terms are marked as expression abstracts while the

others that are cited by protein mutations are marked as Mutation abstracts.
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3.1.3 Protein Vs. DNA

To extract mutations associated with drug resistance we used Perl Regular Expressions.

Protein mutations are ambiguous there are chances they might have mixed up with the DNA

mutations like the one letter code amino acid mutation A456G can easily be misinterpreted

with the nucleotide letters. We worked on this ambiguity with regular expressions which

classified the protein mutations and DNA mutations separately.

3.1.4 Cancer Vs. Others

The last step categorizes the association of drug resistance with the complex diseases like

Cancer and others which include but not limited to neuro-degenerative, autoimmune and

metabolic disorders. This gives us 5,965 abstracts reported on cancer resistance, while the

others 9,615 are on HIV resistance. For cancer the abstracts containing mutations are 1,224

while from HIV it is 5,615. Additionally, there are 520 abstracts which contained expression

changes with drug resistance.

Figure 3.1: Modules for extracting Abstracts
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3.1.5 Relation Extraction

For extracting relations first, we collected sentences containing drug name, mutation type

or gene expression changes together in a sentence. This gives us 4000 sentences in total.

Along with the identification of mutation, drugs and gene names our system also searched

for relation words and predicates. We created a list of these words as shown in Table 4.

These words were manually created for the ease of parsing the sentences later. Each sentence

is looked for the pattern <mutation, relation/predicate, drug/disease/gene >. For parsing

we used Stanford parser that generates the output in the form of pen Treebank.

3.1.6 Features and Model Building

This section describes the features set for training and testing our model, which in our case

is the hybrid feature set.

3.1.6.1 Vector representation

We have used Bag of words (BOW) model for document representation in vector form. This

model uses term frequency count as one of the features which counts the occurrence of each

term in a sentence and assigns score. Second task is to assign weights to the features, for

this Term frequency inverse document frequency (TFIDF) was used. It is the product of

two statistics Term Frequency and Inverse Document Frequency, term frequency deals with

the raw calculation of a term in a document while inverse document frequency deals with

the significance of a word count. We used a Perl module TEXT: TFIDF for this.

3.1.6.2 NLP and Concept Ranking

For this part variety of text processing algorithms were used namely, part of speech tagging

(POS) and Natural Language Processing (NLP) for noun and verb phrases identification.

Part of speech tag could be a noun, verb or adjective, this tagger provide annotation to the

text in the dataset. Specifically, for NLP the Perl module GeniaTagger was used to extract

syntactical information from the text. This online system takes in biomedical data as input

and performs chunking. The verb and noun chunks obtained were considered as syntactical

features for further classification.

Next step is to rank noun and verb concepts obtained in the previous step by applying a

mapping function reported in [99]. This ranking is important to filter out the irrelevant
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features from the relevant ones as it provides more meaningful information about the re-

lation words hence helps in finding related concepts for relation extraction. UMLS has

three knowledge sources, Metathesaurus, Semantic Network, and the Specialist Lexicon.

MetaMap uses Metathesaurus for mapping named entities like drug, gene name with more

accuracy to the medical concepts as each concept is associated with a semantic type like

Pharmacological substance, Gene or Genome? etc. Also, it assigns scores to each medical

concept for each input sentence which were further used for ranking by applying the concept

ranking algorithm [99]. This algorithm worked by extracting related concepts from UMLS

by setting two di↵erent thresholds for noun and verb. For noun the scores obtained from

MetaMap should exceed 600 while for verb this number is 700. The concepts include Ther-

apeutic or Preventive procedures, Functional concept and so on details are referenced [44].

The concepts that passed this threshold criterion were filtered out as features for our feature

set.

3.1.6.3 Name Entity Recognition

The gene names following the protein mutation are also extracted from the abstracts. For

this purpose the complete list of o�cial gene names was downloaded from HUGO database

http://www.genenames.org/. Any gene name mentioned in the abstract is programmed to

match with the list of the genes stored and the results are displayed on web. We followed

MugeX approach for this module.

3.1.6.4 Relation Classification

This component deals with classifying extracted relations from the candidate sentences.

Three relations were focused namely resistance, intermediate and susceptible which were

mentioned in text as high, low or reduced resistance. Hence class labels are Resistance

(R), Intermediate (I) and Susceptible (S). We used Support Vector Machines (SVM) for

performing classification for the three classes.

3.1.6.5 Support Vector Machines (SVM)

Support vector machines are supervised learning algorithms that optimize feature vector to

separate classes by using a margin it constructs hyperplane in high dimensional space. As in

our case the relation classification is multiclass problem rather than binary, hence LibSVM

Perl implementation was used [100]. Moreover, as the number of features set is larger so
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linear kernel was preferred with c=0.5. For training our model we have used features derived

from the dataset of 15,580 abstracts, while for testing we used complete independent set of

500 abstracts. We used separate training and test sets for evaluating the performance of

our SVM model. From 4000 sentences, 3000 candidate sentences are for training the model

for three class Relation classification while for testing 1000 sentences were selected as test

dataset.

Figure 3.2: Modules for Relation Extraction and Relation Classification

3.2 Implementation and Usage

We named our tool as ZK DrugResist which is web based implemented in Strawberry Perl,

Python and PHP. The MySql database was built on XAMPP Server. The Web designing

was performed by using WordPress, further CGI, DBI and DBD Perl modules was used to

connect MySql with the web interface. The core model of this tool was SVM model. ZK

DrugResist is freely available for non commercial use, it does not require any registration

and can be accessed using safari, google chrome and Firefox web browsers. ZK DrugResist

requires user to pick any disease category for input. The server will display the results page

for the selected disease type summarizing drug resistance.
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3.3 Sequence and Structural Features

The amino acid sequences of HIV-1 Protease and Reverse transcriptase was downloaded

from Stanford HIVdb. The thirty most common mutations were identified and labeled in

both of the sequences. These labeled mutations were represented as a sequence window

with the mutation residue at the center followed by n residues at c terminal and n residues

at n terminal. For the optimal sequence window length, we tried di↵erent lengths from 5 to

21 by measuring classification accuracy.

3.3.1 Frequency count

Each position in a sequence window is represented by a 20 dimensional vector representing

20 amino acid residues. Only one dimension may contain a value of 1 the rest are zeroes.

Furthermore, the amino acids were also grouped through Sezerman grouping method [101]

which makes an 11 dimensional vector for each position. In addition to that we have also

added frequency count of each residue in a sequence as a separate feature. The frequency

measure of each amino acid is calculated as total frequency of amino acids in a sequence

window over the average occurrence in overall protein sequence. Again in this case each

position is represented by 20 dimensional and 11 dimensional vectors for grouped and non-

grouped amino acids.

3.3.2 Conserved Mutations using PSSM

Evolutionary conserved sequences are important as of the fact that these are very critical to

the function of the protein. Mutations in these conserved regions might a↵ect the functioning

of the protein. In order to evaluate this, we used PSI-BLAST which helps in identifying the

conserved residues by assigning them scores. We then compared the e↵ect of mutation on the

conserved regions. PSI-BLAST program from BLAST+ toolkit (version 2.2.26+) with three

iterations (numiterations3), and inclusion e-value threshold of 1e� 5 (�inclusionethresh)

1e� 5) were used. The higher the score, more conserved is the residue.

3.3.3 Measuring Flexibility and Rigidity

Measuring the flexibility and rigidity of the amino acid residues before and after mutation

is an important feature for drug resistance mutations. We used an online server FlexPred to
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measure this feature. This server is freely available at http://flexpred.rit.albany.edu/

[102] The binary feature value has been generated for flexibility and rigidity measures. Value

of 1 is assigned if the overall window sequence shows flexibility measure, 0 otherwise. This

server predicts the residue positions which are involved in conformational switches of a

protein. Each residue has been assigned label flexible or rigid based on probability values

generated. Higher the probability, more confident is the prediction.

3.3.4 Disordered Regions

Unstructured regions also called as disordered are those proteins which dont have any proper

well defined structure. IUPred server was used to predict these regions in both HIV-1

protease and RT sequences [103]. This server takes in the amino acid sequence and predicts

the disordered regions based on the pairwise contact energy as these proteins do not have

many interactions to form hence no stable structure. The information obtained from IUPred

server was converted into two kinds of feature vectors. One is based on the overall disordered

tendency in a sequence window while second one relies on a threshold value of 0.5 hence

creating binary feature vector. If the average sequence window disordered value is greater

than 0.5 the feature vector is assigned a value of 1 and in the other case its 0.

3.3.5 Hydrophobicity Measure

Hydrophobicity scales are the measures of hydrophobicity for amino acid residues. More

positive the value is more hydrophobic the residue is. The mutation a↵ects the hydropho-

bicity scale hence disrupting the overall structure. We used Hopp & Woods hydrophobicity

scales to estimate average hydrophobicity of sequence window [104].

3.3.6 Volume Measure

The smaller volume residue mutating into larger sized amino acid residue might change the

overall structure of the protein. Hence it is important to find out volume of the sequence

window before and after mutation. We used Kharakoz’s estimated amino acid volumes [105].

The volume of each sub window added two di↵erent features to the feature vector.
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3.3.7 Secondary Structure Features

The secondary structure of HIV1 protease and reverse transcriptase was predicted by PSIPRED

web server freely available at http://bioinf.cs.ucl.ac.uk/psipred/ [106]. It creates a

9 dimensional vector with three values for each position of a sequence window. There are

three features in secondary structure coils, helices and beta sheets (C H E). For each se-

quence window either 0 or 1 has been assigned based on which secondary structure feature

is present in particular sequence window.

3.3.8 Solvent Accessibility

Those residues which are accessible to the solvent if mutated might cause stability changes in

protein. To estimate this feature we used WESA tool which is freely available online http:

//pipe.scs.fsu.edu/wesa.html. Again a binary feature vector was created for solvent

accessibility feature.

3.3.9 Structure and contact residues

The 3D structure of HIV-1 protease and RT was downloaded from PDB RSCB. The RSCB

Ligand explorer was used in order to visualize the contacts between the inhibitor and the

drug. Two type of contacts Hydrogen bonds (HBs) and non-bonding interactions (NBIs)

were analyzed. Each of the contacts was considered separately hence giving two di↵erent

features to a feature vector. The better way to represent a protein 3D structure is to

analyze the protein contact map which shows the pairwise distance between protein residues.

This measure is important to infer relationship between two residues which are key factors

for protein structure prediction. We used RaptorX Contact Predict online server freely

accessible at http://raptorx.uchicago.edu/ContactMap/ [107]. The threshold between

the contact atom residues was 7Ao. The value is assigned as 1 if the two residues are in

contact, 0 otherwise.

3.3.10 Interactions between multiple mutations

The dataset we are using for this study shows that there are also multiple mutations making

drug insensitive to treatment. In order to capture the combination of multiple mutations

and the interaction between them we calculated the total contact energies which determines

if these mutations are interacting or not. This feature was also used in one of the reported
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studies to determine impact of interaction on drug resistance [74] [54]. We used the Amino

Acid empirical contact energies published in an earlier study [108]. Moreover, we also

calculated the average volume and average hydrophobicity for these combinatorial mutation

patterns.

3.4 Preprocessing Filters and Feature Selection

For feature selection we used minimum redundancy and maximum relevance algorithm

(mRMR) [109]. Its a two-step process, first it orders the features based on minimum redun-

dancy and maximum relevance, later these ordered feature list is used for further analysis.

For our data we used mRMR algorithm with a discretization threshold of 1 with rest of the

parameters left with default settings. We did the incremental feature selection to reduce

the dimensionality of features. We added the highest score features to the lowest one and

tested the performance of the classifier. Average area under the curve (AUC) was used as

performance evaluation measure to find the optimal feature set [110]

Our dataset is highly unbalanced; to avoid the biased output from classifier we have applied

two filters. One is for over-sampling the minority class and the second is for under-sampling

of majority class.

3.4.1 SMOTE and SpreadSubsample Filters

For over-sampling we have applied Synthetic Minority Over-Sampling Technique (SMOTE)

filter. Applying only over-sampling techniques to imbalanced data often results in overfit-

ting. To avoid this, we combined over-sampling of minority class with the under-sampling of

majority class which results in achieving better classifier performance. For under-sampling

we used SpreadSubsample filter [111]. For the two drugs IDV and SQV of PIs we trained

our model on the datasets reported in [112] [113] and performed the model testing on the

dataset present at Stanford HIVdb for these two drugs. This was performed to analyze our

model on completely independent test set containing new mutation positions with few of

them overlapping with the training set. While for the rest of the five drugs of PIs and seven

drugs of RTs the training and testing were performed on the datasets available on Stanford

HIVdb by dividing it as 20% for test set and rest as training set. We used two classes for

our case: Resistance and Non-Resistance as multiclass classification is di�cult with SVM

and Random Forests, both resistance and intermediate were considered as resistance class
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while susceptible is non-resistance [69].

3.5 Model Building

Two classifiers Support Vector Machines and Random Forests are used to predict HIV drug

resistance.

3.5.1 Support Vector Machines

Support vector machines are supervised learning algorithms that optimize feature vector

to separate classes by using a margin, it constructs hyperplane in high dimensional space.

LibSVM implementation via wrappers method in scikit-learn python module was used [100]

[114]. The parameters were tweaked in order to get the best possible classification accuracy.

One of the limitations of SVM is its sensitivity to class imbalance, if the data is biased the

chances of misclassification increase. In order to overcome this, we used sampling techniques

on our dataset before applying SVM as described above.

3.5.2 Random Forests

Random Forests generally are ensemble learning methods that are used for classification and

regression tasks. It works by bootstrapping from the training set. The python scikit-learn

module was used to apply random forests on our dataset. The performances of the models

were assessed by three basic measures namely sensitivity (sn), specificity (sp) and accuracy

(Acc) respectively. For training set accuracy, we used 10-fold cross validation. In addition

to that the classification performance was further analyzed by ROC analysis. One of the

benefits of using ROC is that it is insensitive to class imbalance, as described earlier our

dataset has skewed class distribution that might result in biased output, ROC is a good

evaluation measure in this case as it is indi↵erent to this problem.

3.6 Drug Repurposing

We have proposed a drug prioritization algorithm to reposition drugs by using benchmarked

dataset reported in [115]. We developed a ranking algorithm to find diseases that a drug can

be repurposed for. We trained our method on 60 FDA approved drugs with their associated
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disease indications. Further for testing the proposed model, we used independent test set

of 8 drugs with the same attributes [116].

3.6.1 Computing Drug Disease Network

Our aim is to start with the drug, its target and old disease indication as a seed value

and ends up finding the new/repurposed disease labels. We extracted drug targets from

DrugBank, comparative Toxicogenomics database (CTD) and Therapeutic Target Database

(TTD), target involved pathways from Pathway commons and KEGG. To look for common

pathways among targets we used GenesLikeMe from GeneCards. It works by finding the

shared pathways with the query gene by assigning weighted score. Our threshold was 1.0

in this case. For finding binding site structural similarity we used online tool PROBIS.

This server takes in PDB structures as query proteins and compare it with 42270 struc-

tures available in the database which shares similar binding sites. The threshold of 1 was

selected which filtered the significant similarity scores from the non- significant ones. The

tool is freely available at http://probis.cmm.ki.si/. Binding sites can be similar in two

proteins, a ligand binding to one protein can bind to another protein sharing the similar

binding site that was not binding with this ligand at first place.

For checking disease- disease similarity we used a web-server DisGeNET available at http:

//www.disgenet.org/web/DisGeNET/menu/search?0. This tool calculates similarities be-

tween two diseases based on the number of shared genes among them. Furthermore, we also

used CTD web-server for this feature. This server has a a module called Analyze that also

compares the two diseases based on the common genes the two diseases have. Score for this

feature was calculated by the following formula :

Score = X�Min

Max�Min

⇥ 5

3.6.2 Building a Scoring System

Our scoring system takes in gene-based similarity measures and disease-disease similarity

measures together. The algorithm works by computing weights for three gene-based simi-

larity measures and one disease-disease similarity measures. For drugs associated with more

than one gene, we looked for the highly cited association between the two in PMID. Details

are as follows.
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Algorithm: Drug-Disease Ranking based on similarity measures

Input: Drug Dr, Disease O, Drug Target Dt,

Output: Similarity Scores S, disease list.

1.Initialize a string array of size 5 for storing proteins Prot [5]

2.Initialize integer array of size 5 for storing scores of proteins protScore[5]

3.Initialize counter1 and counter2 =0

4.Get proteins which are 5 nodes away in a PPI network from the Target protein Dt, loop

counter1 and store in Prot [5]

5.Loop counter2 and fill array by assigning protScore[ ]= 5,4,3,2,1, closest protein being

the highest

6.while protein counter is less than or equal to 5 do
Check common pathways between Dt and Prot[ ]

if there is a common pathway then
Add pathway score to protScore[] for the proteins in Prot [ ]

Update Prot[]

end

end

7. for Prot[ ] do

Check for the binding site structural similarity if similarity exists then
Add +5 to protScore[ ] and update Prot[ ]

end

end

8. for Prot[ ] do
Extract associated diseases add in diseaseN[ ]

Look for disease similarity between diseaseO[ ] and diseaseN[]

Update protScore[ ]

end

9. if protScore[]¡ 5 then
Repeat checking binding site structural similarity with downstream and upstream

proteins of a pathway.

end

10. Print protScore[ ], diseaseD[ ] and Prot[ ]
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Figure 3.3: Workflow of Drug Repurposing Methodology
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Chapter 4

Results

In this chapter we will present our database ZK DrugResist followed by the analysis carried

out to predict HIV resistance by combining sequence and structure features and also how

our proposed algorithm works on drug repurposing data.

4.1 Text Mining

We applied our SVM classification model on the corpus obtained from PubMed. There were

5,965 abstracts reported on cancer resistance, while the others 9,651 are on HIV resistance.

For cancer the abstracts containing mutations are 1,224 while from HIV it is 5,615. Addi-

tionally, there are 520 abstracts on cancer which contained expression changes with drug

resistance. The model generalization abilities were tested with 10-fold cross validation and

we obtained 97% accuracy for the training set. For testing we have supplied completely

independent set of 500 abstracts and have obtained 97.9% accuracy measure. Furthermore,

for the mutation extraction from texts we used Perl regular expression library and it is

working with 100% accuracy on the corpus. The results are tabulated in Table 4.3 shows

some regular expressions of point mutations observed in PubMed abstracts.

Relation extraction was tested for three relations namely Resistance (R), Intermediate (I)

and Susceptible (S). These three relations were used because these were found as most mo-

mentous relations obtained from the textual data. The part of our dataset was proposed

by [47] which has already been used for relation extraction tasks but with a di↵erent ap-

proach. Specifically, for this module we have proposed hybrid features set that combines bag

of words representation, natural language processing techniques and semantic features from
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Table 4.1: SVM classification on PubMed Abstracts

Evaluation Measures SVM Accuracy Precision Recall F-Measure

10-fold Cross validation 97.2% 0.96 0.97 0.98

Test Set 97.9% 0.97 0.97 0.98

UMLS MetaMap. The results showed 98.99% accuracy on the training set while the test set

accuracy was 97.98%. Also we evaluated our model with precision and recall measure along

with the accuracy which are tabulated in Table 4.2. Out of 3000 candidate sentences, 2600

sentences belong to Resistance class, 167 to Intermediate and 190 to Susceptible class, while

rest 43 sentences were the ambiguous sentences. For the test set out of 1000, 845 labeled as

resistance, 25 as Intermediate, 124 as susceptible and 6 were the ambiguous sentences. The

results are tabulated in Table 4.4.

These results can be accessed from ZK DrugResist which is available at http://zkdrugresist.

sabanciuniv.edu/. The server categorizes drug response relations based on disease type.

Figures 4.1, 4.2 and 4.3 provides a snapshot of how ZK DrugResist works.

Table 4.2: Relation Extraction classification results

Evaluation Measures SVM Accuracy Precision Recall F-Measure

10-fold Cross validation 98.98% 0.97 0.97 0.98

Test Set 97.7% 0.96 0.96 0.96
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Table 4.3: Regular Expressions

Mutations Regular Expressions

ALA128 �� >GLU

ARG56 to TRP

Valine to Glutamine at position 168

Cystine (122) to Methionine

L148K

ARG�145�� >MET

GLU45 by LEU

GLU45 with LEU

ALA-22 was replaced by GLY

HIS�to�VAL substitution at position 54

THY to CYS at residue 124

150(ALA)����MET

VAL�156 and MET�128 to CYS

Table 4.4: Relations from Sentences

Total Sentences Resistance(R) Intermediate (I) Susceptible (S) Ambiguous

3000 2600 167 190 43

1000 845 25 124 6
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4.2 Sequence and Structure Features

This section describes the prediction of HIV drug resistance by combining both sequence

and structural properties through supervised machine learning techniques. The model was

tested on PIs and RTs drug treatments for HIV resistance. For sequence features mining,

first we have identified the optimal sequence window length by using the maximum features

count. The classification results showed that the highest AUC obtained was at size 5, so the

rest of the analysis was continued with this window length. Our feature set comprised of

13050 features, we reduced the features dimensionality by applying the mRMR algorithm.

The incremental feature selection was employed to construct a feature set, initially started

with the highest scoring ten features followed by adding more features until the classifica-

tion accuracy falls or becomes steady. This gives us 400 features for PIs and 500 features

for RTs, which include the frequency occurrences of both grouped and non-grouped amino

acids at some positions, evolutionary conservations of specific positions, contact energies,

average hydrophobicity, solvent accessibility and secondary structure features. We have no-

ticed that this feature selection algorithm does not rank our flexibility measure count and

disordered count as optimal features; hence, we removed it from our feature vector. This

means that single point mutation is neither a↵ecting the flexibility of amino acids nor the

disordered predicted regions. Few of the selected features are mentioned in Table VI and

pictorial representation is shown in Figures 4.1 and 4.2 that depicts classification accuracy

on varying feature numbers and window sizes.

Few of the drugs of HIV resistance has class imbalance issue; dataset has more resistance

classes as compared to the non-resistance ones. To tackle this, we applied two filters SMOTE

and SpreadSubsample before applying classifiers as mentioned in Methods section.

Our classification models were trained for each drug separately. Two classifiers were tested;

SVM and Random Forests, and results showed that SVM predicts HIV resistance with accu-

racy 98-99.2% compared to the Random Forests which provides 87-92% accuracy measures

on all drugs. The results are tabulated in Tables 4.5,4.6, 4.7, 4.8, and 4.9.

Furthermore, we applied the 10-fold crossvalidation measure in order to check the general-

ization abilities of our model. The cross-validation accuracy we obtained by applying SVM

was 95-96%, while with the Random Forests it was 82-83%. As accuracy alone is not a

su�cient measure for classification, we evaluated our model with other parameters, includ-

ing F-Measure, precision and Recall. We also plotted ROC in order to further validate the
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performance measure of our models. ROC value of 0.985 generated with SVM classifier

which showed that our model performs well on independent test sets.

Figure 4.5: Classification Performance with varying Feature Numbers

Figure 4.6: Classification Performance with Varying window size
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Table 4.5: SVM Classification Results on IDV and SQV Drugs of PIs

Evaluation Measures SVM Acc Sn Sp Recall FMeasure ROC

IDV (Test Set) 98% 0.9 0.9 0.978 0.977 0.98

10-fold cross validation 96% 0.96 0.92 0.94 0.95 0.95

SQV (Test set) 97.65% 0.96 0.96 0.96 0.96 0.98

10-fold cross validation 96% 0.95 0.94 0.94 0.95 0.95

Table 4.6: Random Forests Classification Results on IDV and SQV Drugs of PIs

Evaluation Measures RF Acc Sn Sp Recall FMeasure ROC

IDV (Test Set) 92% 0.9 0.9 0.92 0.89 0.92

10-fold cross validation 88% 0.89 0.88 0.87 0.88 0.83

SQV (Test set) 92% 0.91 0.92 0.93 0.89 0.85

10-fold cross validation 88% 0.89 0.88 0.87 0.88 0.83

Table 4.7: SVM Classification on PIs Inhibitors

Evaluation Measures SVM ATV NFV RTV LPV TPV

Accuracy 98% 98.2% 99.2% 99.2% 98.1%

Standard Deviation (10-fold) 0.21 0.13 0.14 0.25 01

Specificity 0.96 0.97 0.95 0.93 0.96

Standard Deviation (10-fold) 0.25 0.18 0.14 0.22 0.21

Sensitivity 0.92 0.95 0.95 0.93 0.96

Standard Deviation (10-fold) 0.12 0.13 0.28 0.23 0.1
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Table 4.8: SVM Classification Results on NRTIS and NNRTIs of RTs s

Evaluation Measures SVM 3TC ABC AZT TDF ETR EVP NVP

Accuracy 99.6% 98.2% 99.2% 99.4% 98.5% 99.4% 99.1%

Standard Deviation (10-fold) 0.21 0.13 0.14 0.25 0.31 0.18 0.22

Specificity 0.96 0.97 0.95 0.93 0.97 0.96 0.96

Standard Deviation (10-fold) 0.22 0.21 0.29 0.29 0.15 0.18 0.24

Sensitivity 0.92 0.95 0.95 0.93 0.97 0.96 0.96

Standard Deviation (10-fold) 0.51 0.19 0.18 0.22 0.21 0.28 0.27

Table 4.9: Random Forests Classification Results on PIs, RTs

Evaluation Measures RF 3TC ABC AZT TDF ETR EVP NVP

Accuracy 90.2 87.5 87.5 92.5 92.4 89.5 88.5

Standard Deviation (10-fold) 0.48 0.43 0.54 0.52 0.38 0.48 0.59

Specificity 0.92 0.87 0.89 0.89 0.91 0.91 0.88

Standard Deviation (10-fold) 0.58 0.63 0.44 0.48 0.35 0.39 0.49

Sensitivity 0.89 0.92 0.92 0.92 0.88 0.91 0.91

Standard Deviation (10-fold) 0.52 0.53 0.48 0.55 0.53 0.51 0.48
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Table 4.10: Random Forests Classification Results on PIs, RTs

Order Features Position

1 mut10_avg_vol 538

2 mut10_E+1 422

63 mut36_CE-1_N 719

143 mut62_Difference 4482

209 mut71_Difference 9863

285 mut74_CE-1_I 6106

292 mut74_avg_vol 6198

317 mut74_CE-2_T 6133

287 mut74_CE+2_K 6188

419 mut41_CE+2_D 1876

Table 4.11: Comparison of Accuracy Measure with the Existing Literature

PIs Inhibitors RTs Inhibitors

Methods ATV NFV IDV LPV SQV TPV 3TC ABC AZT TDF

HIV grade 84.7 81.2 85.1 80.5 80.2 72.8 91.5 89.7 94.6 80.7

ANRS N/A 78.1 85.1 87.0 N/A 59.7 92.0 83.9 94.4 72.7

HIVdb N/A 83.4 N/A 83.9 N/A 76.8 94.3 95.0 94.5 79.7

REGA 84.4 82.2 85.6 84.0 69.3 N/A 95.9 86.0 94.0 73.8

SVM 95.5 96.0 94.6 96.2 94.6 96.1 98.7 98.1 98.4 97.5

SVM Combined 98 % 98.2 % 99.2 % 99.2 % 97.65% 98.1 % 99.6 % 98.2 % 99.2 % 99.4 %

ANN 84.7 81.2 85.1 80.5 80.2 72.8 98.2 98.4 98.7 97.0

Sparse Dictionary N/A 78.1 85.1 87.0 N/A 59.7 91.2 91.5 93.2 85.2
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4.3 Drug Repurposing

We developed an algorithm to integrate PPI interactions data, common pathway analysis,

binding site structure similarity and disease-disease similarity measure to score the rele-

vance of each component in predicting new diseases for which a drug can be repurposed

for. The dataset contains drugs with their old and new disease indications. The half part

of the dataset which contains drug, its target and old indication has been used to train our

algorithm. And further the method was tested to check if it can predict the hidden part of

the dataset (new disease indications).

From human PPI network we filtered proteins that are at least 5 nodes away form the

drug target. This gives us approximately 60,000 proteins varying from target to target.

We picked these proteins and looked for common pathways among them. This filters the

proteins from 60,000 to almost 100 for most of the cases. In third step we checked for bind-

ing site structural similarity between the drug target and these filtered protein list. This

further shortens the candidate list to at most 4 proteins. The final step was to look for

disease-disease similarity associated with the drug target and the new targets. The output

of our method shows that the high scoring candidate is always the target of the new disease

indication which was already reported as repurposed disease of that particular drug.

From training set, out of forty-seven drugs, the computed scores of the two drug targets

were really low. Further scanning of these two cases showed that they do not have any

binding site structure similarity between the two targets. Similarly, from the test set out

of six, we have found three similar cases. We then picked these less scoring genes and find

the pathways they are associated with and further compare the downstream and upstream

genes to check binding site structure similarity. The associated pathways were scanned for

di↵erent levels for downstream and upstream genes which are either activating, phosphory-

lating or interacting with the target genes. The idea was to uncover if the pathways proteins

are actually binding to the drug and blocking its activity. These genes were looked again

for structure similarity, all of the drug targets shared similar binding site with the pathway

genes, the results are tabulated in Table 4.1.2.

As described, for testing our algorithm, we hid the half part of the dataset and applied

it only on the first part which is drug, its target and its old indication. We matched the

resulted candidate targets and diseases with the hidden part of the dataset and results

showed that our method is successful in predicting the new indications of the drug with
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Table 4.12: Results on Pathway based Drug Repurposing

Drug Target old Indication New Indication Target Pathway Target

(Train Set) Mifepristone Pregnancy termination FAS Cushing Syndrome NR3C1 P53 SIGNALING PATHWAY P53

(Train Set) Heparin anticoagulant SERPINC1 Cystic Fibrosis TGFB1 COMPLEMENT AND COAGULATION CASCADES F9

(Test set) Itraconazole Antifungal CYP3A4 Cancer ABCB1 Pathways in Cancer FIGF

good accuracy. In addition to that it also predicts some novel targets and diseases which

in future can be verified experimentally. The novel targets and their associated diseases are

tabulated in Table 4.1.3.

We found some interesting findings in our results. For few of the cases, our scoring scheme

revealed that the targets from the dataset and the novel target have achieved same scores.

For these we extracted the drugs associated with the two and looked for the drug-drug sim-

ilarity. We calculated Tanimoto coe�cient for computing maximum common substructures

(MCS) similarity between the two chemicals. This score tells the common substructure

shared by two query chemicals. The value of score ranges between 0 to 1; 1 being the high-

est, our score was between 0.4 to 0.6. Hence we can say that the drugs for these two targets

have common substructures so can be repurposed for each other. Results are tabulated in

Table 4.1.4
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Table 4.13: Novel Predictions for Drug Repurposing

Drug Target old Indication Novel Targets New Indications Reported New Indications

Zidovudine Cancer TP53
BCL2

MDM2

Breast Neoplasms

Hypertension
AIDS

Methotrexate Cancer DHFR
MYC

RB1

Liver Neoplasms

Breast Neoplasms
Rheumatoid arthritis

Memantine Parkinson Disease GRIN1
RAF1

RAC1

NOONAN SYNDROME

Heart Failure
Alzheimers disease

Thalidomide Sedative TNF
IL6

TNFRSF1A

Diabetes Mellitus

Liver Syndrome
MULTIPLE MYELOMA

Raloxifene Osteoposrosis ESR1
FOS

TGFR

Hypertensive Disorders

Breast Neoplasms
Breast Neoplasms

Colesevelam Hyperlipidemia LDLR

MAPK1

NFKB1

EGFR

Neoplasm

Adenocarcinoma

Lung Carcinoma

Diabetes Mellitus, Type 2

Imatinib Chronic Myeloid Leukemia PDGFRB

MAPK3

RAF1

NRAS

Neoplasm

NOONAN Syndrome

Juvenile Myelomonocytic

Gastrointestinal stromal tumour

Table 4.14: Total True and False Predictions

Total Drugs True Predictions After Pathway Analysis Correct Predictions

44 (Train Set) 40 42 2

6 (Test Set) 3 5 1
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Chapter 5

Discussion

Drug resistance is the major obstacle faced by therapists in treating HIV infected patients.

E�cient methods of predicting drug resistance may help to overcome the treatment failure

regimens. Besides the proteomic level studies, in silico predictions are also one of the robust

solutions to this task. The computational strategies utilize sequence data to dig out HIV

mutants to certain drug treatments. Previously, many computational studies have been

reported regarding drug resistance prediction.

We built a text miner to associate mutations, expressions and resistance relations with drug

resistance. We compared our results with two already published methods on drug resis-

tance, one of them is EDGAR and other method was proposed by [47] which is also used

in 5 hospitals from virology lab for prior selection of the resistant data.The HIV relation

extraction system [47] was tested on 500 sentences from PubMed and 300 sentences from

HIVdb comments with a precision, recall and F- measure of 87%, 82% and 84.5%. Our

results showed better performance with 97%,97% and 98% of these evaluation measures

hence providing state of the art performance. On the other hand, EDGAR study did not

publish any evaluation measure providing an idea of how this approach will work, hence

we cannot really make a comparison. There is no gold standard corpus available for drug

resistance, which leaves us comparing our method only with the one reported in [47]. Hybrid

approaches have a benefit over other methods, such as using only rule based methods yield

low recall while machine learning o↵ers low precision if the training set is not of su�cient

size; hence combining the two approaches results in better recall and precision measure.

Our study proposed text mining system for drug resistance which has two components.

The first component works on categorizing abstracts based on extracting mutations, genes,

disease and identifies their associations with drug resistance. The second component works
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on classifying all possible relations that can exist between mutations and drugs which are

either resistance, intermediate or susceptible relations. The dataset proposed can further

be used as a gold- standard corpus for analysis on drug resistance .

Next, we developed a method to predict HIV resistance computationally. Most studies

working on HIV resistance have utilized datasets present on the HIV Stanford database.

However, there is one study reported in year 2002, in which the authors used the datasets

published by Winter and Schinazi research group. In order to check the classifier perfor-

mance of our selected features in predicting HIV resistance we trained our model on both

datasets.

The resistance datasets of few drugs contain imbalanced class information; that is, majority

patterns belong to resistance class as opposed to the non-resistance class. It is important

to tackle the imbalance dataset issue before applying classifier, to avoid biased output that

predicts only the majority class and leaves the minority class out. The probability of bias

is higher, if the data is high dimensional and the number of samples is fewer. We checked

classification before and after applying filters. The results revealed that both SMOTE and

SpreadSubsample improve the overall performance of our classifier. The cross-validation

accuracy of the train set was between 95-96% from SVM while with Random Forests it was

82-83%. The accuracy measure on the independent test sets was 98-99.2% by SVM, while

with Random Forests it was 87-92%.

The standard ways of predicting HIV resistance are generally the genotype interpretation

algorithms like HIV-GRADE, Rega, Stanford HIVdb and ANRS-Rules [37]. For predicing

HIV resistance, taking sequence and structure features separately show some limitations.

Sequence based features are only limited to the mutations present in the training set as

they are less e↵ective in finding completely unseen mutations, while structure based meth-

ods can predict resistance for unseen data, but it remains di�cult to infer the mechanistic

impact of these mutations. Making the right choice of features helps in obtaining a more

biologically meaningful representation of protein sequence and structure in order to deduce

drug resistance mechanisms.

The results of our strategy showed that our method outperforms the state of the art methods

for drug resistance prediction against PIs and RTs for the two classifiers SVM and Random

Forests. The sequence and structural features of independent mutations were combined

with multiple mutations. The results showed that the accuracy measure for seven drugs

ranges between 98-99.2%; while the accuracy reported from standard methods were 59.7-

87.0% [18]. One of the studies on drug resistance prediction introduced sparse dictionary
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and Delaunay triangulation method as an extension to the standard methods. For PIs and

RTs their reported accuracy ranges between 92-97% by SVM [18] while with the sparse

dictionary method it ranges between 95-99% for PIs and for RTs it was between 85-91%

which is comparable with our results. The accuracy obtained from SVM previously was

95-96%. Our features improved this accuracy to greater than 97%.

Our method was benchmarked against already published methods and showed better results

in all of the evaluation measures. The results clearly showed that combining both sequence

and structural properties with the added features of contact energies helps in enhancing the

accuracy measure. These features are crucial for understanding drug resistance mechanisms.

It is important to look for evolutionary conserved residues because mutation in these will

disrupt protein structure which in turn a↵ects the binding pocket hence drug will not bind.

The residues which are in close proximity in a protein structure when mutated to a large

sized amino acid, disrupts the protein structure hence drug binding activity is a↵ected. If a

small volume residue mutated into large sized residue it will a↵ect the nearby residues activ-

ity hence resulting in the drug not binding with the protein. Similarly, regarding structural

features, contact energies between the multiple mutation patterns crucial for ligand molecule

binding, hence it is one of the important features. The contact energy changes of a protein

structure have a strong impact on unfolding free energy changes which ultimately a↵ects

the stability of protein [38]. For drug resistance this feature has always been overlooked.

We tested our classifier performance with and without contact energies feature. The results

showed the great degree of decrease in accuracy measure without contact energy feature.

Hence it is an important feature to be considered for predicting HIV resistance.

One way of combating drug resistance is the concept of drug repositioning. This emerges

as an alternate strategy for therapy if the first line and second line treatment fails. We pro-

posed a prioritization algorithm for computational drug repurposing. Drug often binds to

more than one target, which is defined as polypharmacology one application of which is drug

repurposing also referred as drug repositioning or therapeutic switching. Drug polyphar-

macology can act both ways; on the one hand it is beneficial for drug repurposing while

at the same time it is highly unwanted in drug discovery domain because of probable side

e↵ects. Two reasons behind this promiscuous phenomena of drugs are the binding site simi-

larities among the drug targets and the flexibility of drugs that makes them bind to multiple

targets. There have been a number of approaches proposed lately for drug repurposing in-

cluding side e↵ects, gene expression profiles and structure similarity. Drug repositioning is

in the limelight of current research as bringing a new drug to the market is becoming more
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and more expensive.

Our method integrates four di↵erent types of similarity measures between drug and dis-

ease. We developed a ground basis for evaluating drug disease relationship by prioritizing

the candidates for drug repurposing. All these parameters help in elucidating the unknown

associations between drug and diseases for finding the novel targets to reiterate old drugs.

We compared our method with previous studies reported on drug repositioning. [33] used

pathway information to unravel new uses of old drugs. The authors used all possible asso-

ciations from drug down to diseases. Their method predicts some novel associations too.

We noticed that they did not use binding site structure information in building their net-

work. Unlike them our method uses this parameter which turns out as an important feature

for drug repurposing. Another study reported [94]pathway based analysis for drug repo-

sitioning. Biological pathways are important for analyzing biological mechanisms that are

associated with diseases. Its important to elucidate the pharmacological e↵ect of the drugs

which can be inferred by analyzing pathways associated with the drug targets.

[89]reported a method named PREDICT which proposed a strategy of drug reposition-

ing that can be applied to personalized medicine as well. They used five di↵erent levels

for computing drug-drug and disease-disease similarities. Their measure includes chemi-

cal based, sequence based, genetic based, closeness in a PPI, side e↵ect and phenotypic

based for disease-disease similarity. They have achieved high rates of accuracy measures

AUC=0.9. [117] studied the correlation of drug promiscuity with binding site structural

similarity which states that one drug can bind to multiple targets because of sharing similar

binding site. We have used this concept to build our algorithm. All these published meth-

ods did not use these parameters altogether for drug repositioning. Our algorithm helps

in predicting novel indications, hence can be applied to a large scale for conducting drug

repurposing.
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Chapter 6

Conclusions

The aim of this study are manifold. First is to develop a platform that contains all literature

about drug resistance combined with mutations and expression changes associations. For

this purpose we have built a database ”ZK DrugResist”that queries PubMed abstracts and

categorized them on the basis of disease association. This tool provides a quick way of get-

ting informed about all the information regarding drug resistance that has been published

till now. Thus saving time and energy from searching online one after another through

Medline repositories. Up to the best of our knowledge no such Text Miner has been built

before on drug resistance, hence our tool can be used on large scale for the analysis of drug

resistance against complex diseases.

The second goal was to build such methods that can predict resistance with more preci-

sion. We have revised a strategy for determining HIV resistance by merging both sequence

and structural properties. We have introduced a novel combination of features that give

promising results in terms of performance measures. In the previous studies sequence and

structure features were either applied separately or if combined the features like volume

measure, contact energies and multiple interactions were usually missed out. Up to the best

of our knowledge no study has ever used this combination of features for predicting HIV re-

sistance, hence our feature set could be beneficial for predicting HIV resistance with greater

accuracy. All of these features are crucial in inferring valuable information for understand-

ing mechanistic insights of drug resistance. Even with all the odds that may emerge, we

are optimistic that the methods and results shown here will break down the ways that will

improve drug activity to overcome resistance. For future studies, these features can be used

to predict resistance to the drugs of other complex diseases.

The third goal was to propose drug repurposing strategy that serves as a ray of hope in bat-
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tling drug resistance. Our method is based on a similarity scheme that can handle both ap-

proved and novel targets for drug-disease association. Our model integrates protein-protein

interaction data, biological pathways, binding site similarity and disease-disease similarity

unlike one drug one target models. The algorithm tests the relevance of each parameter

and scores accordingly. Results showed that our method is successful in predicting already

reported new indications of a drug and along with that some novel indications were also

found. The novel targets can serve as leads that requires further experimental validation.

Repurposed drugs provide a best alternative for treating drug resistance.

As of future work we will further improve our drug repurposing methodology by adding tran-

scriptional responses which states that, if two drugs have similar transcriptional responses

they will have similar MOA hence can be repurposed. Also, we will perform parameter

optimization of our scores for obtaining better results.
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S. Wegner, L. Ruiz, M. J. Pérez-Eĺıas, et al., “A comparison of three computational

modelling methods for the prediction of virological response to combination hiv ther-

apy,” Artificial intelligence in medicine, vol. 47, no. 1, pp. 63–74, 2009.

[65] N. Beerenwinkel, B. Schmidt, H. Walter, R. Kaiser, T. Lengauer, D. Ho↵mann,

K. Korn, and J. Selbig, “Diversity and complexity of hiv-1 drug resistance: a bioinfor-

matics approach to predicting phenotype from genotype,” Proceedings of the National

Academy of Sciences, vol. 99, no. 12, pp. 8271–8276, 2002.
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Table A.1: Protease Inhibitors PIs

Name Abbreviation

Amprenavir APV

Atazanavir ATV

Darunavir DRV

Indinavir IDV

Nelfinavir NFV

Ritonavir RTV

Saquinavir SQV

Tipranavir TPV

Table A.2: Neucleoside Reverse Transcriptase NRTIs and Non Nucleoside Reverse Tran-

scriptase NNRTIs

Name Abbreviation

Lamivudine 3TC

Abacavir ABC

Zidovudin AZT

Tenofovir TDF

Etravirine ETR

Encenicline EVP

Nevirapine NVP
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Table A.3: List of FDA Approved Cancer Drugs

Drugs for Cancer Drugs for cancer

Cabometyx Proleukin

lenvatinib Valstar

nivolumab Xeloda

atezolizumab Zofran

venetoclax Anzemet

alectinib Bromfenac

cobimetinib letrozole

daratumumab Neumega

elotuzumab Taxol

panobinostat flutamide

palbociclib iodixanol

pembrolizumab amifostine

trifluridine and tipiracil sargramostim

ixazomib ibrutinib

sonidegib afatinib

necitumumab obinutuzumab

osimertinib ceritinib

dinutuximab idelalisib

rolapitant nivolumab

belinostat olaparib

blinatumomab pembrolizumab

ramucirumab ibrutinib

67



Appendix B

Drug Repurposing Datasets

68



Table B.1: Training set for Drug Repurposing

DrugbankId Drug Name Old Indication New Indication Year of Repositioning

DB01611 Hydroxychloroquine Sulphate Antiparacitic and antimalarian agent Lupus Erythematosus, Systemic 1955

DB00437 Allopurinol Tumor Lysis Syndrome Gout 1967

DB00915 Amantadine Influenza, Human Parkinson Disease 1969

DB00495 Zidovudine Cancer AIDS 1987

DB00563 Methotrexate Cancer Rheumatoid arthritis 1988

DB00350 Minoxidil Hypertension Alopecia 1988

DB00704 Naltrexone Opioid Dependence Alcohol Withdrawal 1994

DB00755 Retinoic acid (Tretinoin) Acne Vulgaris, Keratosis Pilaris Leukemia, Promyelocytic, Acute 1995

DB00182 Amphetamine (Aderall) Stimulant, Obesity Attention Deficit Disorder with Hyperactivity 1996

DB00441 Gemcitabine Antiviral Pancreatic Neoplasms, Bronchogenic Carcinoma 1996

DB00681 Amphotericin B Antifungal Leishmaniasis 1997

DB01156 Bupropion Depression Smoking Cessation 1997

DB01216 Finasteride Benign Prostatic Hyperplasia Alopecia 1997

DB01105 Sibutramine Depression Obesity 1997

DB01005 Hydroxycarbamide (Hydroxyurea) Myeloproliferative Disorders Anemia, Sickle Cell 1998

DB00203 Sildenafil Angina Pectoris Erectile Dysfunction 1998

DB01041 Thalidomide Sedative Erythema Nodosum Leprosum 1998

DB00482 Celecoxib Analgesia,Osteoarthritis and adult rheumatoid arthritis Familial Adenomatous Polyposis 1999

DB00065 Infliximab Crohn Disease Rheumatoid arthritis 1999

DB01222 Budesonide Asthma, Rhinitis, Nasal Polyps Crohn Disease 2001

DB00254 Doxycycline Bacterial Infections Periodontitis 2001

DB00472 Fluoxetine Depression Premenstrual Syndrome 2001

DB00674 Galantamine Myopathic Conditions Alzheimer Disease 2001

DB01169 Arsenic Syphilis, African Trypanosomiasis Leukemia, Promyelocytic, Acute 2002

DB00289 Atomoxetine Depression Attention Deficit Disorder with Hyperactivity 2002

DB00996 Gabapentin Epilepsy Neuralgia 2002

DB01043 Memantine Parkinson Disease Alzheimers disease 2003

DB00441 Gemcitabine Antiviral Breast Neoplasms 2004

DB01229 Paclitaxel Cancer Restenosis 2004

DB00273 Topiramate Epilepsy Migraine 2004

DB00268 Ropinirole Parkinson Disease Restless Legs Syndrome 2005

DB00203 Sildenafil Angina Pectoris Hypertension, Pulmonary 2005

DB00393 Nimodipine Hypertension Vasospasm, Intracranial 2006

DB00441 Gemcitabine Antiviral Ovarian Neoplasms 2006

DB00073 Rituximab Non-Hodgkin Lymphoma, Chronic Lymphocytic Leukemia Rheumatoid arthritis 2006

DB01041 Thalidomide Sedative Multiple Myeloma 2006

DB00476 Duloxetine Diabetic Neuropathies Depression 2007

DB00230 Pregabalin Epilepsy, Diabetic Neuropathies Anxiety Disorders 2007

DB00230 Pregabalin Epilepsy, Diabetic Neuropathies Fibromyalgia 2007

DB00481 Raloxifene Osteoporosis Breast Neoplasms 2007

DB00905 Bimatoprost Glaucoma Hypotrichosis 2008

DB00930 Colesevelam Hyperlipidemia Diabetes Mellitus, Type 2 2008

DB00476 Duloxetine Diabetic Neuropathies Fibromyalgia 2008

DB00692 Phentolamine Hypertension Anesthesia 2008

DB04896 Milnacipran Depression Fibromyalgia 2009

DB00820 Tadalafil Erectile Dysfunction Hypertension, Pulmonary 2009

DB01142 Doxepin Depression Insomnia 2010

DB00476 Duloxetine Diabetic Neuropathies Musculoskeletal Pain (Osteoarthritis, Low Back Pain) 2010

DB00820 Tadalafil Erectile Dysfunction Prostatic Hyperplasia, Benign 2011

DB00834 Mifepristone Pregnancy termination Cushing Syndrome 2012

DB00273 Topiramate Epilepsy Obesity 2012

DB01222 Budesonide Asthma, Rhinitis, Nasal Polyps Colitis, Ulcerative 2013

DB00480 Lenalidomide Multiple Myeloma Lymphoma, Mantle-Cell 2013
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Table B.2: Test set for Drug Repurposing

Drugs Original Use Anticancer Mechanisms Developmental Status

Itraconazole Treatment of fungal infections
Inhibiting 20S proteasome and AKT signaling

Inhibiting Hedgehog pathway
phase I and II

Nelfinavir Treatment for HIV infections

Inhibiting endothelial cell cholesterol tra�cking and angiogenesis

Inhibiting HSP90 and HER2 signaling

Inducing ER stress and autophagy, and inhibiting angiogenesis

phase I and I

Digoxin Treatment for cardiac diseases

Inhibiting Na+/K+-ATPase

Acting as a phytoestrogen and inhibiting androgen receptor signaling

Inhibiting HIF-1 synthesis

phase I and I

Nitroxoline Treatment for urinary tract infections

Inhibiting human MetAP2 and sirtuins in endothelial cells

Inducing premature senescence and inhibiting angiogenesis

Inhibiting cathepsin B

Preclinical trials

Riluzole Treatment for Amyotropic lateral sclerosis
Inhibiting the release of glutamate

Inhibiting cell proliferation of metabotropic glutamate receptor 1 (GRM1)-expressing human melanoma cells
Phase I and II

Disulfiram Treatment for chronic alcoholism
Inhibiting proteasome when complexed with metals

IInhibiting DNA methyltransferase 1 (DNMT1)
Phase II and III

70


