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ABSTRACT 

 

COMPUTATIONAL METHODS FOR ANALYZING NGS DATA TO DISCOVER 

CLINICALLY RELEVANT MUTATIONS 

 

 

BEKİR ERGÜNER 

 

Ph.D. Dissertation, July 2017 

 

Supervisor: Prof. Dr. İsmail Çakmak 

 

 Keywords: Genome, next generation sequencing, structural variation, mutation, 

Mendelian disorders 

 

 The advent of Next Generation Sequencing platforms started a new era of 

genomics where affordable genome wide sequencing is available for everyone. These 

technologies are capable of generating huge amounts of raw sequence data creating an 

urgent demand for new computational analysis tools and methods. Even the simplest 

NGS study requires many analysis steps and each step has unique challenges and 

ambiguities. Efficiently processing raw NGS data and eliminating false-positive signals 

have become the most challenging issue in genomics. It has been shown that NGS is 

very effective identifying disease-causing mutations if the data is processed and 

interpreted properly. In this dissertation, we presented an effective whole genome/exome 

analysis strategy which has successfully identified novel disease-causing mutations for 

Cerebrofaciothoracic Dysplasia, Klippel-Feil Syndrome, Spastic Paraplegia and 

Northern Epilepsy. We also presented a k-mer based method for finely mapping genomic 

structural variations by utilizing de novo assembly and local alignment. Compared to the 

mapping based read extraction method, the k-mer based method improved detection of 

all types of structural variations, in particular detection rate of insertions increased 21%. 

Moreover, our method is capable of resolving complete structures of complex 

rearrangements which had not been accomplished before.  
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ÖZET 

 

KLİNİKLE İLİŞKİLİ MUTASYONLARIN KEŞFİNDE ETKİN YENİ NESİL 

DİZİLEME VERİSİ ANALİZ METOTLARI 

 

 

 

BEKİR ERGÜNER 

 

Doktora Tezi, Temmuz 2017 

 

Tez Danışmanı: Prof. Dr. İsmail Çakmak 

 

 Anahtar Kelimeler: Genom, yeni nesil dizileme, yapısal varyasyonlar, mutasyon, 

Mendel hastalıkları 

 

 Yeni nesil dizileme (YND) teknolojileri sayesinde, genom çapında dizileme 

yapmanın herkes tarafından erişilebilir olduğu bir devir başladı. Bu teknolojiler 

aracılığıyla devasa boyutlarda veri üretilmesi yeni analiz metotlarının ve yazılımlarının 

geliştirilmesi için acil ihtiyaçlar doğurdu. En basit YND çalışması bile birçok analiz 

basamağı gerektirmektedir. Bununla birlikte her bir analiz basamağı da kendine özgü 

zorluklara ve yanılsamalara sahiptir. Günümüzde, ham YND verisini verimli bir şekilde 

analiz ederken yanlış pozitif sinyallerin de düşük miktarda tutulması genomik sahasının 

en önemli sorunu haline gelmiştir. YND verisinin doğru analiz edilmesi ve 

yorumlanması sayesinde kalıtsal hastalıklara yol açan mutasyonların keşfinde çok etkili 

olduğu birçok araştırma tarafından gösterilmiştir. Bu çalışmada, özgün mutasyonların 

bulunmasında çok etkin bir tüm genom ve tüm ekzom verisi analiz yöntemi sunulmuştur. 

Geliştirdiğimiz bu yöntemle Serebrofasiotorasik Displazi, Klippel-Feil Sendromu, 

Spastik Paraparezi and Kuzey Epilepsi hastalıklarına sebep olan özgün mutasyonları 

keşfetmeyi başardık. Bunun yanı sıra, yapısal varyasyonların hassas haritalanması için 

kullanılan, de novo birleştirme ve lokal hizalamadan faydalanan k-mer bazlı bir metot 

geliştirdik. Haritalama verisine bağlı metoda kıyasla k-mer bazlı metot her çeşit yapısal 

varyasyonun tespitinde daha iyi sonuç verdi. Ayrıca geliştirdiğimiz bu metot daha önce 

başarılamamış olan kompleks yapıdaki yapısal varyasyonların çözümünü de 

yapabilmektedir.  
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1 INTRODUCTION 

 

Genome is the complete genetic information of an organism which defines its 

biological traits. Most of the structural, functional and regulatory information such as 

sequences of RNA and proteins is encoded and stored in the genome. Although more 

than 99% of the genomic sequence is common among the individuals of the same species, 

it is the small percentage of the genome which gives them their identities and many 

phenotypic properties. Most of today’s genetics studies are oriented towards the 

discovery of these small differences among the genomes of individuals in order to 

associate discrete genomic regions (i.e. genes) with specific biological traits such as 

hereditary disorders. In the past decade, the number of such discoveries increased 

dramatically with the help of latest DNA sequencing technologies. The accumulation of 

data from genetic studies enabled clinicians to suggest optimal treatment strategies to the 

patients based on their genomic structure. Today, the advent of Next Generation 

Sequencing (NGS) technologies is paving the way for personalized medicine and 

pharmacogenomics [1, 2]. 

 

The latest developments in the Next Generation Sequencing technologies greatly 

increased the sequencing throughput while decreasing the costs. It took 15 years and cost 

3 billion US dollars for The Human Genome Project to completely sequence the first 

draft sequence of the human genome [3]. In contrast, it is now possible to sequence whole 

genome sequence of a person for as low as one thousand US dollars and it is projected 

the prices will keep falling in the near future [4]. These figures show that genome 

sequencing will be more and more commonly used in the near future. Whole exome 

sequencing (WES), a method where the DNA from coding regions is captured for 

sequencing, has been the major method used by researchers during the last decade. It is 

mainly used for detecting deleterious single nucleotide variations (SNV) and small 

insertions and deletions (indels) in the translated part of the genes which are important 

for their clinical implications. Whole genome sequencing (WGS) is used for sequencing 

almost every region in the genome to conduct more comprehensive analysis. It is possible 

to detect SNVs and small indels as well as large genomic structural variations in the non-

coding regions of the genome using WGS. 
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The most widely used NGS platforms can produce millions or even billions of 

short read sequences with sizes ranging between 100 and 300 base pairs (bp). These short 

reads are then aligned back to a reference genome in order to construct the sample’s 

genome sequence. After the alignment process, genomic variations specific to the sample 

can be identified under two categories, first category is the SNVs and small indels and 

the second one is the large structural variations. Detection, functional analysis and 

interpretation of these two variation categories have different kinds of difficulties and 

considerations. SNVs and indels can be detected with relatively high accuracy and 

sensitivity by short read sequencing [5,6]. However, because SNVs and small indels 

appear in vast numbers it is challenging to confirm which ones have deleterious effect on 

the genes and whether they are clinically relevant or not. On the other hand, structural 

variations would usually cause a deleterious effect if they appear inside a gene but it is 

more complicated to detect and validate them using short read sequences [7]. 

 

The aim of this dissertation is to develop methods for accurately identifying 

clinically relevant mutations from the genome data generated by using next generation 

sequencing platforms. For this purpose I present a computational framework for 

analyzing WGS and WES data which has been successful to identify the causative 

mutations of 4 rare Mendelian disorders. I also present a novel method which can be used 

for fine mapping complex genomic rearrangements using WGS or targeted sequencing 

data. A k-mer based read extraction strategy is used in this method which increased the 

detection rate of both large deletions, insertions and inversions. 
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 2 BACKGROUND AND RELATED WORK 

 

2.1 Next Generation Sequencing 

 

“Next generation sequencing” is the term used for various high throughput 

sequencing platforms that are capable of sequencing millions of short DNA fragments at 

each run. They generate short DNA sequences, called short reads, with sizes ranging 

between 50 bp and 600 bp. Recently, a new generation of sequencing platforms have 

been developed which can sequence much longer DNA sequences with lower throughput 

and lower accuracy. In order to differentiate these long read generating platforms some 

scholars started using the term “second generation sequencing” for short read generating 

high throughput sequencing platforms. In this dissertation, we continue to use the term 

NGS to address the second generation sequencing platforms for simplicity and easy 

understanding. 

 

As in any DNA sequencing process the NGS methods start with extraction of 

genomic DNA (Figure 2.1A). Extraction can be done manually by using conventional 

methods or using commercially available extraction kits. The main objective for the 

extraction step is to extract ample amount of DNA without causing too much 

fragmentation. The extracted DNA is then carefully sheared into smaller fragments in 

order to obtain fragments with sizes closer to the optimal value required by the 

sequencing platform. The sheared fragments goes into a size selection process for 

selecting the fragments with desired size and discarding shorter and longer fragments. 

Sequencing adapters which are specific to the sequencing platform are ligated at both 

ends of the selected DNA fragments. Indexed adapters can be used for multiplexing to 

sequence multiple samples together. Depending on the amount of DNA fragments, 

polymerase chain reaction (PCR) can be used to amplify and adjust the final 

concentration of the DNA library. 

 

The prepared DNA library can be sequenced using one of the available NGS 

platforms. Currently the most widely used platforms are Illumina’s HiSeq and MiSeq 

sequencers, and Ion Proton-Torrent sequencer from Life Technologies. In general 

Illumina’s platforms can generate better quality reads [8–10]. Illumina also offers pair- 
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Figure 2.1: NGS sequencing procedure. A) Whole exome sequencing versus whole 

genome sequencing processes. B) Pair-end sequencing of the DNA fragments in the 

library. 
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end sequencing method on its platforms by which pairs of short reads can be generated 

by sequencing both ends of the DNA fragments. Pair-end sequencing is widely adopted 

in genomics community for being useful in detection of large structural variations and 

scaffolding contigs in de novo genome assemblies. The sequence data used in this 

dissertation was also generated by using pair-end sequencing on Illumina’s platforms 

(Figure 2.1B). 

 

2.1.1 Whole Genome Sequencing 

  

 Whole genome sequencing is performed for sequencing every possible 

region of the genome. It is possible to detect SNVs, small indels and large structural 

variations which appear in intergenic, intronic and exonic regions using WGS. It is also 

possible to detect copy number variations (CNV) of large (more than 1 Kbp) sections of 

the genome by read count analysis [11, 12]. In order to produce good results with WGS, 

the data should have uniform coverage throughout the whole genome. It is also important 

to have tight distribution of fragment sizes (insert sizes) in pair-end sequencing data for 

detection of structural variations with high sensitivity [7, 13]. The major downside of 

WGS has been its high sequencing costs however the costs have been constantly dropping 

and it will be much more affordable to use WGS in the near future [4]. Another concern 

is the difficulty of storing, transferring and analyzing large amounts of data generated by 

WGS. Modern cloud based genome analysis services become available for such 

computational demands. However, researchers and clinicians should still carefully plan 

for whole genome data analysis if they want to sequence many samples. WGS should be 

conducted only if the sufficient computing infrastructure would be available for the 

analysis. A typical WGS experiment with 40x mean depth of coverage yields more than 

100 GB of compressed sequence data per sample. Even the variant data has formidable 

size, more than 3 million of SNVs and small indels are generated per sample. Production 

of such large volumes of data made development of efficient and effective genome 

sequence analysis software more important than ever. 
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Figure 2.2: Visualization of aligned short reads. NGS data from WGS (upper half) and 

WES (lower half). The blue blocks at the bottom indicates some of the exonic regions of 

the KLC4 gene. Note that highly variable sequence depth (size of the peaks in the middle 

band) among different exons in WES data. Image created by IGV [14]. 

 

2.1.2 Whole Exome Sequencing 

 

In whole exome sequencing only the captured DNA fragments coming from 

exonic sites are sequenced (Figure 2.1). An exome capture array is used for enrichment 

of exonic DNA fragments during the sample preparation process. Since only about 1% 

of the genome is translated into proteins, targeting these regions dramatically decreases 

the required sequencing throughput for generating high depth of coverage at exonic sites. 

WES is commonly used in clinical researches and diagnostics for its cost effectiveness 

and for being lightweight to analyze. WES is preferred instead of WGS if it is highly 

likely that the suspected mutations are in the coding region. Numerous studies have 

shown that WES was very effective for detection of rare germline mutations causing 

Mendelian disorders [15] as well as somatic mutations from cancer samples [16–18]. 

 

In contrast to WGS, the ability to sequence protein coding regions with high depth 

of coverage is the main advantage of WES (Figure 2.2). It is most effective for detection 

of SNVs and small indels occurred at the exonic sites. Because intronic and intergenic 
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regions are not sequenced and variations in those regions cannot be detected. This may 

not be a concern because such variations are unlikely to affect the structure of the genes. 

However it is also possible to miss structural variations, especially inversions and 

translocations, because of the lack of sequence information outside the exonic regions. 

This is also valid for the SVs that span across exonic sites if their breakpoints are in 

intronic or intergenic regions. Copy number variation analysis conducted with WES data 

is also less sensitive [19] because of the read depth bias introduced by the exome 

enrichment process during sample preparation (Figure 2.2). Therefore WGS is the better 

option for detection of structural variations and copy number variations. 

 

2.2 NGS Data & Analysis 

 

2.2.1 Raw NGS Data 

 

 Short reads generated by NGS are stored in a text-based format which is called 

FastQ. In a FastQ file there are four lines for every short read; the unique read label, the 

read’s nucleotide sequence, a separator and the string for base quality scores (Figure 2.3). 

The base quality scores show how much confidence does the sequencing platform has 

for calling the particular base. The characters in the quality string are ASCII encodings 

of base quality scores in Phred scale: 

Q = -10 log10 P 

where Q is the base quality score and P is the probability of the base being an incorrect 

base call. For current NGS platforms these scores range between 2 and 40. The base 

quality of 40 means 1 in 10000 of the bases would be incorrect. Although base quality 

scores are good indications of the sequencing accuracy, the machine generated scores 

might not represent the reality accurately [9, 20]. Most notably, every NGS platform loses 

accuracy sequencing short tandem repeat regions (STR) and low complexity regions 

(LCR). Ion Proton and Roche FLX platforms struggle guessing the length of 

homopolymer regions which introduces false indels at those sites. In addition to such 

biases platforms can also introduce pattern specific sequencing errors [21, 22]. 
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Figure 2.3: Demonstration of a short read stored in FastQ format. Here the offset for the 

base scores is 40 because ASCII equivalent of A is 65. 

 

 

 

Figure 2.4: Visual overview of STR and LCR regions. The two homozygous SNVs on 

the right side of the image are true, all the mismatches on the reads coincide with each 

other. Many false variants appear towards the right side caused by sequencing and 

alignment errors caused by STR and LCR regions. 

  



9 

 

The sequencing accuracy of NGS platforms is 99% on average [10]. For most of 

the sequencing projects this is not an acceptable rate, especially when it is compared to 

99.9% accuracy rate of capillary/Sanger sequencing. In order to increase their accuracy 

and sensitivity for variant calling, NGS platforms use their massively parallel sequencing 

ability to sequence genomes with high depth of coverage (read depth). Although higher 

sequencing depths can significantly increase the variant calling accuracy, it should be 

kept in mind that these improvements are less effective in regions such as STR and 

homopolymer regions, where system specific errors are abundant (Figure 2.4). 

 

2.2.2 de novo Genome Assembly 

 

de novo assembly is the process where short pıeces of sequences (reads) are joined 

together in order to recreate the original sequence. In genomics, the aim is to generate 

complete sequences of chromosomes of organisms in order to reveal their whole genome. 

The actual order of the short sequences is predicted based on alignment of start/end 

regions between them. This means every short sequence needs to be aligned to every 

other sequence resulting in a computational complexity of O(n2) which makes genome 

assembly a computationally intensive task. Moreover, large amounts of memory is 

required because most of the processes have to be kept in the memory for increased speed. 

Therefore assembly of short reads generated by NGS technologies can be an 

overwhelming task even with the most advanced computing infrastructure because the 

number of reads generated by NGS can easily reach billions. In particular, de novo 

genome assembly for organisms with large genomes, such as plants and vertebrates, is 

known to be greatly challenging due to the excessive number of reads required for 

covering their genomes entirely. In order to overcome these challenges many different 

algorithms and software have been developed specializing in assembly of short reads 

generated by NGS platforms. 

 

Most of the available genome assembly software are optimized in order to achieve 

best performance with minimum memory footprint. In general there are two types of 

approaches for the genome assembly, the string based approaches and graph based 

approaches. Many of the string based short read assembly tools implement the Greedy-

extension algorithm [23]. Such tools [24–27] are mainly used for highly accurate 

assembly of small genomes. Compared to the string based methods, graph based methods 
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are more efficient and can be used for handling the assembly of large and complex 

genomes [28–30]. The overlap-consensus-layout (OCL) graphs and de Bruijn graphs 

(DBG) are the most common algorithms used by the graph based genome assemblers. In 

OCL algorithm the assembly graph is created based on the overlaps between reads longer 

than a certain threshold value (Figure 2.5). DBG are created by first chopping the reads 

into much smaller pieces (k-mers) and edges are formed between adjacent k-mers. OCL 

based tools [31–33] are more suited for assembly of longer reads with low depth of 

coverage whereas DBG based tools [30,34,35] are better for assembling shorter reads 

with high coverage data [36]. In contrast to OCL based tools, DBG based tools can be 

configured by changing the k-mer size in order to use less memory. Therefore they have 

been the primary choice when assembling gigabase-long genomes [28, 29]. 

 

 

Figure 2.5: Comparison of OCL and de Bruijn graphs. A) Overlapping reads. B) Overlap 

graph of the reads. C) DBG generated by using 3-mers in the reads. 

 

For regenerating the original sequence, assemblers search the graphs in order to 

find a path that visits every node only once, which is called the Euler path. Ideally there 

should be a single Eulerian path visiting all the nodes in the graph. However in many 
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cases finding such a path is not possible due to the bubbles, spurs and cycles [37]. Bubbles 

are formed when an alternate path diverging from the main path and then converging 

back arises (Figure 2.6A). Such paths are usually caused by polymorphisms or platform 

specific sequencing errors. Assembly tools can either discard the alternate paths or save 

it as an alternative assembly. Spurs are short dead-end divergent branches usually caused 

by sequencing errors (Figure 2.6C). Most assemblers prune and discard these branches 

and give priority to other paths. Cycles are formed when the main path converges back 

to a previous point on itself (Figure 2.6B). Such cases appear when there are repeat 

regions which are longer than the reads or the k-mers. Assemblers have to separate the 

assembly at cyclic regions in the absence of long reads spanning across the repeat region. 

These separate contiguous assemblies are called contigs. 

 

Most of the large genome assembly projects started with creating relatively short 

(~10 - 100 kbp) contigs by assembling short (~100 - 300 bp) reads. These contigs were 

then connected in the correct order using pair-end or mate-pair libraries in order to create 

longer assemblies in a process called scaffolding [38]. It is very important to have high 

depth of coverage when using short reads for assembly because increasing the number of 

reads at each loci would increase the chance of having longer overlapping regions 

between the reads. Fewer ambiguities like cycles appear by having longer overlapping 

regions between the reads during creation of the assembly graphs.  BAC or fosmid clones 

can be used in order to solve the assembly of the repeat regions longer than the available 

short reads. For example, it would be impossible to determine the length and the sequence 

of a tandem repeat region of length 500bp by using 100 bp short reads. Recently, this 

approach has been changed by the introduction of the long read sequencing platforms, 

namely the third generation sequencing platforms. These platforms can provide up to 100 

kbp long sequences but with very high error rate, about 10%. In the latest assembly 

projects, long read data with low coverage is used for creating long contigs with lengths 

more than several megabases. Then high coverage and high quality short read data is used 

for correcting sequencing errors on the contigs [39, 40]. 



12 

 

 

Figure 2.6: Depiction of bubbles, cycles and spurs seen in assembly graphs. A) Bubbles 

are alternative paths diverging from the main path and converging back again. B) Cycles 

are formed when the main path converges back on itself. C) Spurs are short dead-end 

divergent branches. 

 

2.2.3 Short Read Alignment 

 

The raw NGS sequence data does not have the information of genomic locations 

where the short reads originates from. In order to build the genomic sequence of the 

sample, short reads must be either assembled or aligned to a reference genome. Because 

there is a high quality reference genome available for humans the alignment process is 

preferred for efficiency and speed in most applications. The most challenging part of the 

alignment process is to provide high speed, high sensitivity and high precision all at the 

same time. In practice, however, providing high speed alignment has become the 

dominant factor because of the huge number of short sequences generated by NGS 

platforms. For this purpose specialized alignment software, called short read mappers, 

have been developed. These tools can map thousands of reads per second to the human 

reference genome [41] making alignment of human WGS data, which can have more than 

one billion reads, a feasible process. 
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Every short read mapper has its own advantages and disadvantages depending on 

the algorithm and the implementation method that it’s using. The most commonly used 

mappers use some form of Burrows-Wheeler transform to generate an FM-index from 

reference genome and search the indexed genome for matching substrings from the reads. 

BWA [42], Bowtie [43], Bowtie2 [44], SOAP2 [45] are some of the well-known short 

read mappers that use FM-index. The other commonly used method is called seed & 

extend method where the indexed reference genome is searched for exact matching seeds 

(k-mers) from the reads for finding candidate locations. Then the reads are fully aligned 

to candidate locations with Smith-Waterman algorithm. MAQ [46], mrFast [47], mrsFast 

[48], SHRiMP [49], BFAST [50, 51], SSAHA2 [52] are several of the commonly used 

implementations of seed-extend method. In general, FM-index based tools are faster, 

especially for mapping exactly matching reads, and require less memory compared to the 

seed-extend based tools. In theory, seed-extend based methods should be more sensitive 

at increased mismatch and indel rates. However, in practice FM-index methods can also 

provide adequate sensitivity when high quality sequence data is provided [41, 49]. This 

is because newer implementations of FM-index aligners can use subsequences from the 

reads as seeds and use the Smith-Waterman algorithm to complete the alignment. As a 

result, FM-index based mappers are more commonly used than seed-extend based 

mappers in large scale human genome sequencing projects such as 1000 genomes project 

[53].  

 

 

Figure 2.7: The effect of repeat regions on short read mapping. Mapping confidence 

increases as the sequence identity between repeats decreases. 
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The most difficult aspect of short read alignment process is generating accurate 

results regardless of the repeat regions existing in the genome. Most organisms have large 

portions of duplicated regions within their genomes. It was reported that about 50% of 

the human genome is comprised of repeats of various sizes [54]. On the other hand, only 

5% of the human exome fall within the repetitive regions [55]. This increases the chance 

to accurately detecting deleterious mutations in the exome. However, the variants 

detected outside the unique regions have to be validated with another sequencing 

technology before making any decision. The repeat regions cause ambiguities in short 

read mapping process primarily due to the length of the repeat elements can be longer 

than the short reads (Figure 2.7). The reads originating from repeat regions can be 

mapped to multiple locations without any distinction between them. The problem is 

exacerbated when the mismatches caused by SNPs and sequencing errors are taken into 

account. The only solution for overcoming repetitiveness of the genome is by increasing 

read sizes without decreasing sequencing accuracy. By using the current NGS 

technologies, it is inevitable to have uncertainties in read mapping even with the most 

accurate read mappers. Therefore the discrepancies caused by the repeat regions should 

be taken into consideration during downstream analyses. 

 

During the alignment process short reads from repeat regions align to multiple 

locations on the genome. Because of this property these reads are commonly called as 

multi-reads. They can either match exactly to multiple locations or there can be several 

mismatched bases between the alternative locations. Depending on the goal of the 

sequencing project there are three mapping strategies for handling the multi-reads; single-

mapping, multi-mapping or all-mapping and best-mapping. In the single-mapping 

strategy, multi-reads are randomly assigned to one of the alignment positions which have 

same identity with the read. Their mapping quality is set as 0 or 255 in order to indicate 

that they are multi-reads so that the variant callers may discard these reads or they give 

very low quality scores to the variants detected on them. Single mapping is the most 

commonly adopted strategy in WGS/WES projects because it is fast especially if the FM-

index based aligners were used, such as BWA, Bowtie and SOAP. Most of the aligners 

can also output a given number of alternative alignment locations for multi reads up to a 

certain mismatch ratio. Seed-extend based methods like MrFast and BFAST can output 

all of the possible alignment positions allowing a given mismatch rate. This strategy is 

applied only in special occasions because it can take thousands of CPU hours mapping a 
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WGS sample. For example Variationhunter [50] uses all-mapping information in order 

to increase the detection sensitivity of structural variations. In case of best-mapping, the 

alignment position with the highest mapping score is reported. This process requires first 

performing an all-mapping alignment and then selecting the highest scoring alignment. 

Therefore it requires even longer CPU times than all-mapping. Some of the few mappers 

such as MAQ and SHRiMP can utilize base quality scores of mismatching bases in order 

to calculate mapping scores as accurate as possible. This functionality also costs higher 

computation times therefore best-mapping is only used when the utmost accuracy is 

required. 

 

2.2.4 Calling SNVs and Small Indels 

 

The sole purpose of sequencing the genome of an individual is revealing genetic 

variations carried by the individual. Therefore detection of variants is the most crucial 

part of NGS analysis. There are many software tools developed for detecting SNVs and 

small indels such as GATK [56], VarScan [57], Freebayes [58], Samtools [59] and 

Strelka [60]. These tools specialize in variant calling based on the coinciding mismatched 

bases from the reads that were aligned to the same region. The confidence of calling a 

variant depends on the base qualities of the mismatching bases, mapping confidences of 

the reads, allele balance and strand bias of the variant. Allele balance is the ratio of reads 

carrying the variant to the total number of reads overlapping the variant. For a high 

confidence heterozygous variant call the allele balance should be close to 0.5. Strand bias 

represents the bias between the number of reads mapped to the forward or the reverse 

strand of the reference. By using these criteria a confidence score is calculated for every 

variant which represents the chance of the variant being a false-positive. In addition to 

the variant score, a genotype score which reflects the confidence for genotyping a 

particular sample is given for each sample. These scores are important measures to 

differentiate the true variants from the sequencing and alignment artifacts. 

 

Availability of high quality sequence data together with high depth of coverage 

is vital for generating high confidence variant calls [61]. Depth of coverage is particularly 

important for deciding whether the genotype of the called variant is heterozygous or 

homozygous [61, 62]. The required depth of coverage varies considerably depending on 

the aim of the sequencing. While 35x mean coverage depth is considered adequate for 
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calling germline mutations [63], at least 80x coverage is recommended for detection of 

somatic mutations from tumor samples [64]. The uniformity of the read depth also plays 

an important role. An average of 80x coverage is required for WES to cover 85%-95% 

of the target bases due to the differences between capturing efficiencies of the probes 

[65]. It was shown that SNP data from the population databases can be used in order to 

increase calling sensitivity at low coverage regions [66]. Also, variant calling from father-

mother-child trio data has become a common practice in clinical applications for 

increasing sensitivity [67]. 

 

2.2.5 Detecting Structural Variations 

 

Genomic alterations which are larger than 20 bp in size are typically considered 

as structural variations (SV) [68]. Size of a structural variation can be millions of base 

pairs. There are cases where entire arms of chromosomes can be deleted, duplicated or 

inversed. SNVs and small indels are more numerous than the SVs, however, the total size 

of the genome affected by structural variations is larger [69][70]. In general, SVs can be 

categorized as insertions, deletions, inversions, duplications and translocations (Figure 

2.8). Most of the short read mappers cannot perform complete alignment of reads affected 

by the SVs due to the alignment limitations forced by performance concerns [71]. 

Therefore standard variant callers that depend on the alignment information of individual 

reads cannot identify SVs. Special methods have been developed to detect SVs using 

additional information such as insert size distribution, mate/pair orientations of pair-

end/mate-pair reads and split-read alignment to identify large structural variations. 

 

The most commonly used information by SV detectors is the insert sizes of pair-

end reads. Insert size is the distance between the first base of the downstream read and 

last base of the upstream read. Indels would change the mean, median and variance values 

of the insert sizes at the affected sites (Figure 2.8A-B). This metric is especially effective 

for detecting the large deletions because the insert sizes increase considerably at the 

affected regions. Therefore many tools such as BreakDancer [72], CLEVER [68], GASV 

[73], DELLY [74], HYDRA [75], MoDIL [76], PEMer [77], VariationHunter [50] were 

developed that use statistics based on the insert sizes for detecting large indels. The 

methods which solely rely on pair/mate information cannot give the exact positions and 

the sizes of the structural variants, instead they estimate border positions which contain 
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the structural variations. Moreover, as the variance of the insert size distribution of DNA 

libraries increases such methods suffer from loss of sensitivity for smaller indels [68]. In 

order to achieve higher precision several SV detectors, such as NovelSeq [78], PINDEL 

[79], SOAPindel [80], Splitread [81], BreakSeq [82] and BreaKmer [83] have been 

proposed which utilize split-reads and/or one-end-anchored reads. Split-reads contain 

breakpoints caused by the SVs and they can only be partially aligned by the short read 

mappers. They are usually output as soft-clipped reads. Unmapped reads with mapped 

mates are called one-end-anchored reads. Various algorithms are used to extract the exact 

locations of breakpoints of SVs from the soft-clipped reads and one-end-anchored reads. 

For example, PINDEL uses a pattern growth algorithm on one-end anchored reads to find 

indels. BreakMer assembles the novel k-mers in order to find and validate breakpoints. 

NovelSeq focuses on revealing the sequences of novel insertions by assembling the 

unmapped reads. Another important feature of the pair-end reads is the relative alignment 

strands of the mates with respect to each other. For normally mapped (concordant) pair-

end reads the reads should be on the opposite strands. However inversions causes both 

mates to be aligned on the same reference strand (Figure 2.8E). Such discordant mates 

are considered as evidence for existence of an inversion at the affected region. HYDRA, 

PEMer, DELLY and many other SV detectors can utilize this feature to detect inversions 

[7]. 

 

 

Figure 2.8: Demonstration of structural variations. It can be seen how the pair-end read 

mapping is affected by each SV type. 
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2.2.6 Variant Annotation 

 

Development of computational tools for annotating large sets of variants 

generated by NGS has become extremely important. Such tools can give insight about 

the functional impacts of variations on genes. The information generated by the 

annotation software is crucial for finding the disease-causing mutations. There are many 

kinds of information which can be inserted into the variant information. The most 

commonly added information is database IDs and allele frequencies of variations from 

population SNP databases, such as dbSNP [84] and ExAC [85], which can be used to 

select rare mutations specific to individuals or cohorts. Another very important 

information is the effect of exonic variations on the translated protein sequence. SnpEff 

[86] and ANNOVAR [87] can be used to annotate missense, nonsense, frameshift and 

splice site mutations. Missense mutations can be further annotated with predictive values 

reflecting their impact on the phenotype. These values are generated by variant effect 

predictors such as SIFT [88], PolyPhen 2 [89], MutationTaster [90]. Essential 

information for the assessment of clinically relevant mutations can be retrieved from 

HGMD [91], OMIM [92] and ClinVar [93] databases. Any details with genomic location 

information in BED [94] or VCF [95] format can be added to the variant data by using 

SnpSift [96], VCFtools [95] and GATK Variant Annotator [56]. The availability of rich 

and versatile annotation information makes NGS data more powerful for clinical research 

and diagnostics. 

 

2.3 NGS and Mendelian Disorders 

 

Mendelian disorders are mostly monogenic and rare diseases which have 

inheritance pattern fitting the Mendel’s inheritance model. Although each rare disorder 

individually affects small number of people, it was reported that more than 4% of the 

newborns have been affected with some type of Mendelian disorder [97]. More than 3000 

disorders in OMIM catalog [92] have reports related to their molecular basis. However 

there are still more than 3500 disorders without any information on their genetic origin. 

During the last decades great efforts have been made to discover associated genes and 

mutations with Mendelian disorders. Before NGS, conventional methods used to rely on 

linkage analysis to narrow down the set of candidate genes into a small number (<300) 

[98]. These candidate genes were then sequenced one by one using Sanger sequencing in 
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order to find the disease-causing mutation. This type of genetic study was feasible only 

if there were enough number of affected samples available [99] and it was not possible 

to discover de novo mutations. 

 

The introduction of NGS methods into rare disease studies has revolutionized the 

way candidate mutations and genes are found. For autosomal recessive diseases, the 

number of candidate mutations can be lowered down to 10 or fewer if there are 4 or 5 

samples available from the same family. It is even possible to pinpoint the causative 

mutation from a single patient’s whole exome data from non-consanguineous families 

[100,101]. WGS and WES methods generate large sets of variants which broadly cover 

the genetic landscape of samples. On the other hand, the deluge of variants detected by 

NGS methods also contains large number of trivial polymorphisms together with false-

positive variants arising from the sequencing and alignment errors. Complex filtering 

methods should be devised for discarding unrelated and false variants while prioritizing 

a small set of candidates. 

3 DISCOVERING CLINICALLY RELEVANT MUTATIONS 

 

3.1 Motivation 

 

Today’s NGS platforms were engineered to generate the most amount of 

sequence data for the best price. As a result, there has been an exponential growth in the 

amount of sequence data [102] in the last decade. Such rapid growth of data volume has 

created a demand for efficient analysis pipelines each specific to the type of NGS 

application used. Many analysis steps such as assembly, alignment, variant calling, 

annotation etc. are necessary for reaching the desired results for all types of NGS 

applications. Because of the aforementioned sequencing artifacts and technical 

limitations each analysis step introduces some noise to the resulting data. It is crucial to 

choose the correct tool at each step in order to minimize the false-positive results while 

maximizing the recall rate. The correct choice of tools greatly depends on the purpose of 

the NGS experiment. Here we present an efficient WGS and WES analysis pipeline 

compiled for detecting germline SNVs and small indels by using the best practices and 

tools reported in the literature. We utilized parallel processing and distributed computing 
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methods for increasing the pipeline’s throughput to the full capacity of the available 

computing cluster. We also describe filtering and prioritization strategies devised for 

revealing the causative mutations of rare Mendelian disorders in the WGS/WES variant 

data.  

 

3.2 Methods 

 

3.2.1 Preprocessing Raw Sequence Data 

 

Our pipeline starts with the conversion of base calling files generated by the NGS 

platforms to FastQ files by using vendor provided software. The platforms used in our 

project were Illumina HiSeq 2000 and 2500 (Illumina Inc., San Diego, CA, USA). 

Therefore we used the bcl2fastq conversion tool from the Casava software package 

(version 1.8.2 or later). The conversion tool also performs demultiplexing of the data 

from multiplexed sequencing runs. We allowed 1 mismatch in the indexes for 

demultiplexing process in order to avoid single base sequencing errors and collect as 

many reads as possible. This is the maximum number of mismatches allowed without 

causing index collision for the KAPA single indexed adapters (Kapa Biosystems, MA, 

USA) which were used in our WES projects. We separated the FastQ data into multiple 

files containing 4 million reads to enable distributed parallel processing during the 

sequence alignment step. The converted and demultiplexed FastQ files were first adapter 

trimmed using an in-house trimming script. We discarded reads that are shorter than 35 

bp to reduce ambiguously aligned reads [103]. We also removed any low quality reads 

with average base quality score less than 20 during the adapter trimming process in order 

to lessen false variants caused by sequencing artifacts [104]. 

 

3.2.2 Sequence Alignment 

 

Short read alignment is the most crucial step for any genome resequencing 

project. Results of all subsequent analysis steps depend on the sensitivity and the 

precision of the alignment tool used. Especially for large scale sequencing projects 

performance has high priority for selecting the right alignment software. We used the 

BWA’s [42] MEM tool which had been extensively benchmarked [41,105] showing 
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Figure 3.1: Workflow diagram of the WGS/WES data analysis pipeline. 
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that it has very good performance and accuracy. In our experience we have seen that it is 

one of the most reliable and well maintained SR mapping software available for academic 

use. We used the default parameters of the BWA which were already optimized for 

mapping Illumina short reads onto human genome. Pair-end short reads were mapped 

onto the reference human genome GRCh37 released under the GATK resource bundle 

(v2.5)[106]. Appropriate read group names were added to aligned sequence data by 

setting -r parameter of the BWA. For parallelization, individual FastQ files were aligned 

independently by multiple BWA instances running on multiple machines (Figure 3.1). 

Each instance of the BWA was also run in multithreaded mode for maximum resource 

utilization. Aligned reads were stored in binary SAM (.bam) files and bam files were 

position-sorted by using Samtools sort tool [59]. Sorted bam files belonging to the same 

sample were merged with Samtools merge tool. PCR duplicates were removed to prevent 

biases in allele balances of variants [107] by processing the merged bam files with 

Samtools rmdup (Figure 3.2). Finally, GATK IndelRealigner was used to perform 

multiple sequence alignment around indel sites for correcting the alignment errors caused 

by the indels (Figure 3.3) [108]. 

 

 

 

Figure 3.2: Bias created by PCR duplicates. PCR duplicates show up as pairs of reads 

aligning at the same positions. The mismatches on the duplicated reads are probably PCR 

or alignment artifacts. If the duplicate removal is not performed they might be considered 

as evidence for a variant. 
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Figure 3.3: Effect of indel realignment. Depiction of short read alignments at an indel 

site before (top) and after (bottom) the multiple sequence alignment. Multiple false indels 

were eliminated to reveal one large true deletion. 

 

3.2.3 Variant Calling 

 

Variant calling is another key step in NGS analysis workflows where the results 

are highly dependent on the algorithms and statistical methods used for detection of the 

variants. We have chosen GATK UnifiedGenotyper tool for calling variants because of 

its high sensitivity for both SNVs and small indels [5]. UnifiedGenotyper allows pooling 

multiple samples together for increasing sensitivity at low read depths. It is especially 

important to pool the samples from the same cohort during variant calling because the 

genotype based filtering is more effective when the variant set is common for all the 

samples included in the filtering. In addition to pooling we supplied the dbSNP (version 

132 or later) variants for increasing the sensitivity. Variant calling is a very 

computationally intensive task especially for WGS data. In order to distribute the 

workload and increase speed of the process we performed variant calling for each 

chromosome separately on multiple machines and then concatenated the output variant 

files in the same order as the reference genome file. Finally, the variants were inserted 

into an in-house SQL database for storing population wide variant data. The database 
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was updated after each batch of samples were analyzed and the population wide allele 

frequencies of variants were calculated to annotate variants from the next batch. 

 

3.2.4 Annotation of the Variants 

 

Availability of rich annotation information increases the efficacy of variant 

filtering and prioritization for discovering disease causing genes. We used SnpEff [86] 

to predict the effects of missense mutations and indels. We also used SnpSift [96] to add 

custom information gathered from various databases to the variants. The detailed 

information about the annotation fields can be seen on Table 3.1. The final annotated 

variant data is stored in VCF format [95] for downstream analysis. 

 

3.2.5 Discovering Disease Associated Mutations 

 

In this study we have devised an effective variant filtering strategy for rare 

Mendelian diseases to eliminate unrelated variants and prioritize the potentially related 

mutations. Our strategy depends on both the segregation analysis of the affected families 

and prioritization of the variants based on various annotation information. For an efficient 

analysis the variant data of all the samples from the affected families were collected in a 

single VCF file. Before starting the filtering process we eliminated low quality variant 

calls by filtering out the ones with coverage less than 4x and genotype score lower than 

15. We used VarSifter [109] tool for applying our filtrations criteria on the annotated 

VCF files. We began with filtering out the variants with more than 1% allele frequency 

in the public databases. We also discarded the variants existing in the in-house database 

(IGBAM, TUBITAK-MAM, Turkey) if the disease had not been studied before. 

Otherwise an appropriate filtering value, such as 4%, was applied on the in-house allele 

frequency depending on the scarcity of the disease. We then select the variants which 

segregated in the family according to the heredity pattern of the disease. For autosomal 

recessive disease, variants that were heterozygous in parents and homozygous in the 

affected children were selected in consanguineous families. If the family was non-

consanguineous compound heterozygosity was also considered. For autosomal dominant 

disorders; the variants heterozygous in the affected samples and homozygous-reference 

in the control samples were selected. Furthermore, if there is information about linkage 

regions from previous studies then the variants in the linkage regions are selected. For 
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recessive diseases, we used HomSI [110] to identify runs-of-homozygosity (ROH) 

regions on the affected samples. ROH regions were used for evaluating variants in the 

absence of linkage information. The selected variants were further evaluated based on 

their potential deleterious effects on the proteins. The loss of function (LOF) mutations 

such as start/stop codon gain/loss variants and frameshift indels were given the highest 

priority. Missense (nonsynonymous) variants were prioritized based on the collective 

information gathered from mutation effect predictors. Moreover, variants within the 

conserved regions (PhastCons score) were also given higher priority. Finally, the short 

read alignments around the candidate variants were visually scrutinized using IGV [14]. 

Variants from the regions where sequencing, alignment and variant calling errors were 

abundant, such as repeat regions (segmental duplications), STR regions and low 

complexity regions, were discarded or given low priority.  

 

3.3 Results 

 

3.3.1 Nonsense TMCO1 Mutation Causes CFT 

 

Whole exomes of two family trios (Figure 3.4A) were sequenced and annotated 

variant data was created with our standard WGS/WES pipeline. The children from both 

families were phenotypically diagnosed with cerebrofaciothoraic dysplasia (CFT) [122]. 

Based on the preliminary studies about the families it was devised that the disease was 

inherited via autosomal recessive model. Therefore we applied our variant filtering 

strategy for recessive disorders on both families’ variant data (Table 3.2). Initially, we 

filtered out common variants in population with more than 1% minor allele frequency 

and eliminated the variants existing in our in-house control variant database. The variants 

with low genotype quality and inadequate coverage were also discarded. From the 

remaining variant set we selected the variants that are heterozygous in parents and 

homozygous in affected children. The stop gain mutation (p.Arg87Ter, c.259C>T) on the 

TMCO1 gene was the only mutation residing in the target haplotype region (2.28 Mbp 

ROH region in Figure 3.4B) which fitted the segregation pattern of the disease in both 

families. Sanger sequencing was used to validate the mutation was not an artifact caused 

by sequencing or alignment errors (Figure 3.4C). Therefore we identified the mutation as 

the sole candidate causing CFT. 
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Table 3.1: Annotation fields and their explanation. 

Annotation 

Field 
Type Tool Description Source Reference 

Gene name String SnpEff RefSeq Gene name RefSeq (SnpEff) [111] 

Type of the 

variant 
String SnpEff 

Effect on the translated product: 

missense, stop_gain. Etc. 
SnpEff [86] 

dbID String SnpEff dbSNP variant ID dbSNP [84] 

1000G MAF Float SnpSift 1k Genomes Project allele frequency 
1K Genomes 

Project 
[53] 

ESP6500 MAF Float SnpSift ESP6500 exome allele frequency ESP [112] 

ExAC MAF Float SnpSift Europe exome allele frequency 

The Exome 

Aggregation 

Consortium 

[113] 

Icelanders AF Float SnpSift Iceland WGS allele frequency deCODE [113, 114] 

TRdb Het 

MAF 
Float SnpSift Ratio of heterozygous carriers In-house  

TRdb Hom 

MAF 
Float SnpSift Ratio of homozygous carriers In-house  

Mutation 

Disease 
String SnpEff 

Previous disease associations of the 

variant 

HGMD,ClinVar,

OrphaNet 

[91], [93], 

[115] 

Gene Disease String SnpEff 
Previous disease associations of the 

gene 

HGMD,ClinVar,

OrphaNet 
 

PhastCons 

score 
Float SnpEff 

Conservation score among 

vertebrates 
PHAST [116] 

Segmental 

Duplication 
Float SnpEff Identity of the repeat regions SnpEff  

Gene Process String SnpEff Gene ontology MsigDB [117] 

PolyPhen2 

score 
Float SnpSift 

PolyPhen 2 effect score for missense 

mutations 
DBNSFP [118], [89] 

PolyPhen2 

pred 
String SnpSift PolyPhen 2 effect prediction DBNSFP  

SIFT pred String SnpSift SIFT effect prediction DBNSFP [119] 

SIFT score Float SnpSift 
SIFT effect score for missense 

mutations 
DBNSFP  

MutationTaster 

pred 
String SnpSift MutationTaster effect prediction DBNSFP  

MutationTaster 

score 
Float SnpSift 

MutationTaster effect score for 

missense mutations 
DBNSFP  

CADD pred String SnpSift CADD effect prediction DBNSFP [120] 

CADD score Float SnpSift 
CADD effect score for missense 

mutations 
DBNSFP  

HGVS String SnpEff Human genome variant server entry HGVS [121] 

Transcript ID String SnpEff NCBI transcript ID(s) SnpEff  

Amino Acid 

Change 
String SnpEff 

Amino acid change caused by 

missense mutations 
SnpEff  
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Figure 3.4: CFT family. A) Pedigrees of the two families diagnosed with 

cerebrofaciothoraic dysplasia. B) HomSI output showing the 2.28 Mbp homozygous 

region in blue color. C) Sanger sequence validating the TMCO1 p.Arg87Ter (c.259C>T) 

mutation. 

 

Table 3.2: Variant counts after each filtering step for CFT families. 

 Family 1 Family 2 

 I.1 I.2 II.1 I.1 I.2 II.1 

Total # of variants 181,946 235,603 234,340 164,958 212,319 209,188 

>4 coverage and >15 Genotype score 92,113 148,641 132,673 90,858 114,109 123,587 

Not found in dbSNP 135 or GMAF <0.01 23,474 39,981 35,054 24,734 30,195 32,933 

Not found in in-house DB (n=136) 1,968 2,651 2,624 2,954 3,590 3,590 

Heterozygous in parents, homozygous in 

children 65 3 

In target haplotype region 

(chr1:164816956-167101983) 1 1 

Common across families 1 

 

Further investigations were performed in order to confirm that the candidate 

mutation in homozygous state was causing CFT. Expression analysis confirmed that 

patients with homozygous c.259C>T mutation were TMCO1 deficient while 

heterozygous carriers and homozygous reference individuals were able to produce 

TMCO1 [122]. Several studies prior to our findings had also found results supporting our 

discovery. A previous study reported that other Turkish families which had the same 
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phenotype were carrying the same p.Arg87Ter mutation [123]. Moreover results from 

another study [124] had shown that TMCO1 frameshift mutation in an Amish family had 

caused similar phenotypic properties. These results strongly indicate that the variation 

discovered by our method was indeed the causative mutation of CFT. 

 

3.3.2 Nonsense MEOX1 Mutation Causes Klippel-Feil Syndrome 

  

Whole exome sequencing was performed for 8 individuals from a 

consanguineous family with 5 children affected by the Klippel-Feil syndrome (KFS) 

(Figure 3.5). The inheritance pattern of the disease was found to be autosomal recessive 

[125]. We have analyzed the exome data with our standard pipeline and generated the 

annotated variant data. We selected the variants that have less than 1% minor allele 

frequency in the dbSNP database and discarded the variants with less than 50 variant 

quality score generated by GATK UnifiedGenotyper. For segregation based filtering we 

selected the variants that are homozygous in affected children and heterozygous in 

mother. We discarded the variants that are homozygous in the unaffected sibling. A 

preliminary genome-wide linkage analysis had identified a linkage region between 

17:36410559-52907886 with 4.2 LOD score. After applying our filtration strategy we 

identified 6 mutations in the linkage region (Table 3.3). 

 

Comprehensive literature investigation was performed in order to reveal the most 

prominent candidate out of the 6 mutations. AOC3 gene is related to leukocyte trafficking 

and it is expressed on the surface of endothelial cells. AOC3 deficient mice were shown 

to be healthy and fertile [126]. Mitochondrial ribosomal L27 protein is encoded from 

MRPL27 gene. Defects in these family of proteins were observed to cause deficiencies 

in oxidative phosphorylation [127]. The mutation observed in the KRTAP4-11 gene was 

not located in the conserved region. ORMDL3 gene had been associated with asthma 

[128]. No functional significance had been reported for GHDC gene. As a result, we 

prioritized the nonsense mutation p.Q84X occurred on the MEOX1 gene which truncated 

the ⅔ of the 254 amino acid long protein. It was confirmed with Sanger sequencing that 

the mutation was homozygous in affected children and heterozygous in parents and in an 

unaffected child (Figure 3.5). Another study concurrently identified a frameshift deletion 

in MEOX1 causing KFS [129]. Moreover a previous study had shown that deficiency of 

MEOX1 and MEOX2 genes caused KFS like phenotype in mice embryos [130]. In the 
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light of such strong supporting information we have concluded that the nonsense 

mutation in MEOX1 gene had caused the KFS in this family. 

 

 

Figure 3.5: KFS family. A) Pedigree of the extended family. Exome sequencing was 

performed for II-2, IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, and IV-7. B) Sanger 

sequence validating the nonsense mutation in 9 family members. (Copyright Bayrakli et 

al. 2013) 

 

Table 3.4: The remaining 6 candidate variants after filtering for KFS. 

Chromosome Genomic locations and variants Amino acid change Gene Name 

17 38078188_38078205 

delCCCATCTTTCCCCAAC 

(UTR3) ORMDL3 

17 39274194C>T p.C125Y KRTAP4 

17 40344303_40344305delCAC p.W281del GHDC 

17 41003401T>C p.L14P AOC3 

17 41738653G>A p.Q84X MEOX1 

17 48447413G>A p.R74S MRPL27 
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3.3.3 Deletion on KLC4 Causes Hereditary Spastic Paraplegia 

 

3 children from a consanguineous family (Figure 3.6A) were clinically 

phenotyped with progressive complicated spastic paraplegia (SP). We sequenced whole 

exomes of 3 affected children and their parents. Based on the inheritance pattern observed 

in the family we filtered the variant data for selecting autosomal recessive mutations 

(Table 3.5). First, we discarded low quality (<50) variants. Then we selected the variants 

which were homozygous in affected children and heterozygous in parents. Finally we 

removed the variants seen in our in-house database and other population wide 

polymorphism databases. As a result of our filtration process 2 novel mutations had 

remained. We gave priority to the frameshift deletion (c.853_871del19) on the KLC4 

gene because it was inside a 6.5 Mbp ROH region (Figure 3.6B). The existence of the 

mutations and its segregation pattern was validated with Sanger sequencing [131]. 

 

Further investigation confirmed that the 19 bp frameshift deletion caused a 

termination signal at the 277th codon of the transcript truncating more than half of the 

619 amino acid long protein [131]. KLC4 is one of the four isoforms of the KLC proteins 

which are from the kinesin family. Kinesins are known to be involved in intra cell 

transportation and microtubule regulation. The truncation caused by the c.853_871del19 

deletion removes 4 of the 5 tetratricopeptide regions which are necessary for cargo 

binding and transportation. Therefore the deletion renders the KLC4 protein completely 

dysfunctional in the homozygous patients. It was known that defects in microtubule-

based transportation mechanism hindered neuronal activities [132]. Moreover the clinical 

phenotype of the affected children showed strong correlation between KLC1 gene 

knockout models of drosophila and mice [133,134]. Such findings are strong evidences 

supporting the association of the KLC4 gene with SP phenotype. 
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Figure 3.6: SP family. A) Pedigree of the affected family by SP. B) 65 mbp ROH region 

observed in the SP patients colored in blue. 

 

Table 3.5: Number of variants matching the filtering criteria in the SP family. 

 II-1 II-2 II-3 I-1 I-2 

Covered at Least 5x 97.82% 95.68% 98.09% 97.22% 97.83% 

Number of All Variants 277,500 263,729 281,438 275,019 282,422 

Number of All Variants QS > 50 266,584 251,676 269,585 263,938 270,598 

Total Number of Variants 390,006 

Total Number of Variants QS > 50 358,607 

... homozygous non-reference variants 

(patients) 107,368 107,124 106,776   

... heterozygous non-reference 

variants (father and mother)    164,412 167,537 

... Father and mother are heterozygous 

& patients are homozygous 738 

... exonic or splice site 95 

... novel 

(does not exist in in-house DB and 

dbSNP 138) 2 

... inside linkage region (chr6:40Mb-

46Mb) 1 
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3.3.4 Missense CLN8 Mutation Causes Northern Epilepsy 

 

Whole exome sequence data of 7 individuals from a consanguineous Turkish 

family (Figure 3.7A) was analyzed with our standard WGS/WGS pipeline. The annotated 

variant data was filtered based on the autosomal recessive model (Table 3.6). Variants 

with inadequate coverage (<4) and genotype quality scores (<15) were neglected. The 

variants that are homozygous in affected children and heterozygous in parents were 

selected. 12 variants remained after discarding the polymorphisms in the public variant 

databases with more than 1% allele frequency. Only one loss of function mutation, 

c.677T>C (p.Leu226Pro) on the CLN8 gene, remained after the filtration. After 

observing that the mutation resides in a 6.5 Mbp ROH region (Figure 3.7B) we decided 

that this mutation is the most prominent candidate for the family. 

 

The family was diagnosed with a subtype of neuronal ceroid lipofuscinosis (NCL) 

[135]. Clinical data indicated that the phenotype of the Turkish family matched with a 

subtype of NCL which was first described in Finland as Northern Epilepsy (NE) [136]. 

Numerous studies were done confirming that CLN8 mutations caused NE [137–141]. 

Hence, we concluded that c.677T>C (p.Leu226Pro) on the CLN8 is the causative 

mutation of the disease observed in this family. Finally, Sanger sequencing was used to 

validate that the mutation was not an NGS artifact (Figure 3.7C). 

 

Table 3.6: Variation filtering results from the NCL family WES data. 

 Patients Parents 

Filtering conditions / individuals V-1 V-2 V-4 V-5 IV-1 IV-2 IV-3 

Average coverage 72 52 46 58 48 59 43 

Percentage of >4 coverage 98.00% 97.00% 97.00% 98.00% 97.00% 98.00% 97.00% 

Total number of variants 493,535 444,975 425,165 450,862 429,634 465,550 420,307 

Genotype Quality ≥15 and Coverage ≥4 

in all individuals 163,996 164,083 163,559 162,129 169,574 168,968 167,829 

Homozygous in patients and 

heterozygous in parents 134 

GMAF <0.01 in dbSNP, ESP6500, in 

house Turkish exome database n=978) 12 

Loss of function mutations in exonic 

region 1 

In shared homozygous region (chr8:0-

6.5 Mbp) 1 

Selected mutation CLN8:p.Leu226Pro/c.677T>C 
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Figure 3.7: NCL family. A) Pedigree of the NCL family. Exomes of IV-1, IV-2, IV-3, 

V-1, V-2, V-4 and V-5 were sequenced. B) HomSI analysis showing the homozygous 

region in the affected patients. C) Sanger sequence data confirming the c.677T>C 

(p.Leu226Pro) mutation. (Copyright Sahin et al. 2016) 

 

3.4 Discussion 

 

NGS is a powerful technology providing researchers and clinicians with plenty 

amount of genomic data. The large volume of the sequence data combined with the 

systematic artifacts embedded in it create special challenges regarding the performance 

of the analysis as well as accuracy of the results. For any NGS experiment many steps 

must be taken in order to achieve the desired results. Every tool in every step has its own 

advantages and disadvantages. None of the software tools has hundred percent accuracy 

and sensitivity. In this study we presented an efficient analysis pipeline for WGS and 
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WES data which utilizes the best practices reported in the literature. We also chose well 

maintained and stable software in order to increase versatility of the pipeline under heavy 

loads. Choosing well maintained software is especially important for reproducibility of 

the results by other researchers in the medical genetics community. Reproducibility is 

necessary both for further validation of the results and for being beneficial to the future 

researches about the related clinical cases. An important aspect to reproducibility is 

compatibility of the data format used to store the output values. In the history of 

bioinformatics, many number of data formats have been used to store biological data. 

Incompatibility between the data formats always hindered sharing the information 

between different research projects [142]. For avoiding this problem, we have adopted 

file formats such as FastQ, SAM and VCF, which are the most commonly used formats 

by the genetic community [143]. By doing this we were also able to use the variants 

detected in the previously sequenced samples as control data. Moreover, we applied 

simple yet powerful parallelization methods in order to distribute the workload between 

multiple computing nodes and increased the overall speed of the standard analysis. 

Although speed is not the primary concern for most of the research projects, it has vital 

importance for clinical diagnostics. Whole exome sequencing of mother-father-child 

trios has become a common practice for diagnosis of rare diseases in clinical setting 

[144]. Quickly generating the diagnostic reports increases chance of successful treatment 

and patient’s satisfaction. Our analysis pipeline can be taken as an example model for 

high speed NGS data analysis for promptly generating diagnostic reports.  Finally, the 

results showed that our pipeline successfully generated annotated variant data which is 

very effective for detecting disease-causing mutations in the clinical setting. 

 

We have also shown that WES data can be very useful for discovery of novel rare 

disease-causing mutations if it's analyzed correctly. The capacity and affordability of 

sequencing large portions of the genome increases our chance to discover novel 

mutations causing the diseases. However, the vastness of the numbers of variants detected 

from WGS/WES data creates a “needle in a haystack” problem. It is difficult to 

differentiate the real disease associated variants from the trivial polymorphisms without 

the help of relevant annotation information. In the pre-NGS era only a small number of 

genes or regions were sequenced based on the preliminary linkage studies. If a variant 

from the target region had missense or loss of function effect then it was considered a 

strong indication for disease association [15]. However, the effect of the variant solves 
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only a small part of the problem for WES/WGS experiments because every individual 

carry hundreds of missense/loss of function variants [114]. Thus, careful experiment 

design as well as plausible filtering and prioritization strategies are vital in order to single 

out the correct causative mutation. If the candidate genes or loci related to the phenotype 

are unknown prior to WES/WGS, it is necessary to sequence multiple affected and 

control samples preferably from the same family. Variant data of the negative controls 

that are closely related to the affected individuals is highly effective for filtering out the 

rare but trivial variants inherited in the family. As seen in the Klippel-Feil syndrome and 

the Northern Epilepsy cases, segregation based filtering dramatically decreased the 

number of suspected variants. Segregation based filtering was much more effective when 

an additional family with the same phenotype had been sequenced in case of CFT 

dysplasia. This indicates that positive controls from different families can be more 

effective probably because distant families have fewer shared polymorphisms and there 

is a higher chance that one of the shared variants are actually related to the common 

phenotype. Another effective way of discarding irrelevant variants is to use variant 

database of negative controls from the same population. This is especially essential in 

cases where small number of samples were sequenced. For example, there were nearly 

one hundred candidate variants left after the segregation based filtering in the Spastic 

Paraplegia case. By using the in-house Turkish variant database (TUBITAK-MAM) in 

conjunction with dbSNP, we were able to reduce the number of candidates to only 2 

variants. Hence, it has utmost importance to create and update their own in-house variant 

databases for genome centers so that they can use the unaffected population data as 

negative controls. 

 

In many cases segregation and population based filtering may not be enough to 

single out the disease associated gene or mutation. For example, there were 6 potential 

candidates for KFS even though 8 samples from the same family had been sequenced. In 

such cases it is necessary to carefully investigate functional information of each candidate 

gene in order to figure out which one of them is more relevant to the phenotype. The first 

thing to look for is whether the candidate genes were associated with any disease or 

phenotypes in the previous studies. This was the decisive information which concluded 

the Northern Epilepsy case because CLN8 was associated with the disease by multiple 

studies in the past. In the case of KFS, however, further investigation regarding 

expression profiles of the genes, biological functions of the proteins, interspecies 
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conservation rates of the mutation sites and phenotypic effects of knock-out experiments 

on model organisms for all the candidates was necessary. In addition to validating the 

candidate mutation with Sanger sequencing it is also necessary to show the effects of the 

mutation on transcription and translation. It is expected that loss of function mutations 

would cause the defective mRNAs to be quickly digested by the nonsense-mediated 

mRNA decay mechanism [145,146]. Quantitative real-time PCR and northern blot 

methods were used to confirm that the suspected mutations are causing the mRNA 

degradation in CFT and SP cases.  

 

Determining the candidate variations for disease causing mutations is the most 

important step in clinical researches. NGS technologies have made the discovery of 

candidate mutations much more easy and affordable. However, multiple validation steps 

are necessary for confirming that the selected variant is not a false positive. First, it must 

be validated with Sanger sequencing and/or PCR that the mutation is not an NGS artifact. 

Furthermore, molecular and functional studies about the phenotype, and concordant 

results from multiple families are necessary to conclude that the selected mutation is 

actually causing the particular phenotype. Caution is necessary even if there is only “1 in 

a million” chance of false association, because NGS can easily discover millions of 

variants. Therefore it was crucial to validate our results with as many samples as possible. 

Our results were also confirmed with multiple families, functional and molecular 

experiments.  
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4 FINE MAPPING STRUCTURAL VARIATIONS 

 

4.1 Motivation 

 

Genomic rearrangements and indels larger than 20 bp are classified as structural 

variations. Special methods which are different from those used for calling SNVs and 

small indels are used for detecting structural variations. For finding structural variations, 

most of the SV detectors search for signals such as soft clipped reads and discordantly 

mapped read pairs clustered together. Even the most advanced SV detectors rely on the 

mapping information generated by the short read mappers and do not utilize unmapped 

reads. The main reason why SV callers depend on short read mappers is because their 

goal is scanning through the whole genome in order to discover as many SVs as possible 

in the shortest amount of time. However, it is known that sensitivity and specificity of 

short read mappers can be greatly reduced by deletions and insertions [41]. Hence, most 

of the SV callers cannot use the discordant reads which are mapped to erroneous locations 

due to discrepancies created by SVs. Relying on short read mappers may provide SV 

callers with high performance but it may also cause losing potentially valuable reads for 

revealing exact structure of individual SV regions. The existing SV callers allow this 

compromise because scrutinization of individual SV regions is not a priority for them but 

defining approximate regions of all the SVs is the main priority. 

 

The majority of the SV detectors were designed with only the purpose of listing 

the candidate regions which may contain SV breakpoints. Some of the SV callers have 

used k-mers for detecting SVs at single base pair resolution. BreaKmer [83] scans the 

reads mapped to the region of interest for finding novel k-mers not found in the reference 

genome and assembles them to reveal the breakpoints. Both BreaKmer is memory and 

CPU intensive and can only be used for targeted sequencing experiments. novoBreak 

[147] finds novel k-mers by comparing k-mers in raw read data of tumor-blood pairs in 

order to discover somatic SVs. novoBreak does not require short read mapping but it can 

only be used with case-control or tumor-blood paired data. Local reassembly of split-

reads is another method for determining SVs at single base pair resolution. TIGRA [148] 

and HYDRA [75] assembles discordantly mapped and one-end-anchored reads that are 

in close proximity to the SV sites. These tools require less memory and they are fast 
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enough to scan WGS data however they heavily rely on the mapping information coming 

from the SR mappers. In addition to SV detectors there are several tools which focus on 

graphical visualisation and manual validation of the suspected SV sites. PyBamView 

[149] is a web based SAM/BAM alignment viewer which focuses on visualisation of 

insertions. Bambino [150] detects SNVs and small indels using the alignment 

information in SAM files and visualizes them. Svviz [151] takes a suspected SV as an 

input and visualizes the supporting reads in comparison to normal reads in order to help 

validating the SV. Although some of these tools perform realignment or reassembly at 

the local level, they still require mapped read data and ultimately rely on the short read 

mappers. 

 

Here we present a method for fine mapping of structural variations based on their 

k-mer content. The goal of our method is to reveal exact structure and sequence of already 

detected or suspected structural variant regions rather than discovering novel variant 

regions. In our method, the reads that are possibly associated with the SVs are extracted 

based on the shared k-mer content between the reads and the SV regions. This enables us 

to retrieve every possibly relevant without depending on mapping information and even 

the unmapped reads can be utilized. The extracted reads are then assembled by using de 

novo assembly and the assembled contigs are aligned onto the reference genome by using 

Blast [152,153]. Because de novo assembly is a key step in our method we compared 

results from three different assembly software; SPAdes [34], Velvet [35] and ABySS [30] 

in order to assess performance of our method regardless of the assembler. Finally, the 

local hits, together with junction information, are plotted against the SV regions for 

revealing the final structures of the variations. Using de novo assembly alongside with 

local alignment enables us to report multiple genomic rearrangements in a single region. 

To the best of our knowledge [7, 13], our method is the only method which can 

accomplish such a feat. Hence, our method can be crucial for understanding highly 

variable DNA shuffling regions. Moreover, extracting reads based on their k-mer content 

rather than relying on the mapping information improved detection rate of SVs, 

especially for insertions. SVMap, the Python implementation of our method, is available 

at https://github.com/berguner/svmap. 
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4.2 Methods 

 

4.2.1 k-mer based read extraction 

 

The key improvement provided by our method is that short reads are extracted 

from raw sequence data based on their k-mer content rather than location information 

generated by the mapping software. Basically, any read sharing at least one k-mer with 

the SV regions that are of interest for detailed scrutinization is selected for de novo 

assembly. Any SV region detected by a SV detection method can be given as input. We 

use the term “SV region” referring to a subsequence from the reference genome including 

the SV event together with flanking sequences on both sides. Inclusion of 

anchoring/flanking sequences is vital because the k-mers collected from these regions 

will enable capturing reads and/or pairs of reads crossing the breakpoints of SVs (Figure 

4.1). For single-end sequencing the size of these anchoring/flanking sites depends on the 

read size whereas for pair-end sequencing it depends on the insert size of the library. For 

example, three times the mean insert size from both flanking regions would be a safe 

value for most of the pair-end genome sequence data. It is best to adjust the size of 

flanking regions large enough to cover majority of the sequence data based on the DNA 

library properties and features of the sequencing platform. 

 

To start the procedure every k-mer existing in the given SV region(s) that are of 

interest is extracted from the reference genome sequence (Figure 4.2). By definition, k-

mer refers to every possible subsequence of length k existing in a given sequence. For a 

given region of length L, L-k+1 k-mers will be extracted. We collect every subsequence 

of length L starting from the first base of the SV region while shifting 1 base pair in every 

iteration until the last k-mer is reached. In addition, reverse-complements of the extracted 

k-mers are also collected because reference genome files have only forward strand but 

reads can be either on the forward or the reverse strand. Hence the total number of 

extracted k-mers will be 2(L-k+1). The extracted k-mers and the information of which 

SV region do they belong should be stored in a data structure which can be efficiently 

searched. We used a hash table based dictionary structure for our implementation where 

every key (k-mer) search takes constant, O(1), amount of time regardless of the number 

of k-mers stored in the dictionary. This allows looking up every k-mer existing on every  
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Figure 4.1: Visual demonstration of SV events, k-mers and extracted reads that are used 

for assembly of variant region. The k-mers that are indicative for supporting reads for SV 

events are shown in red color. Our method is able to extract split reads, discordant reads, 

one-end-anchored (OEA) reads as well as unmapped reads. The line plot representation 

for each type of SV is shown on the right. 
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read on the dictionary to be completed in a practical amount of time. It can be argued that 

looking for exact matches might cause missing relevant reads because of the single 

nucleotide polymorphisms or sequencing errors. However, such artifacts would be 

avoided mostly because we search for every k-mer with 1bp shifts on the read. 

 

A crucial consideration for our approach is balancing specificity versus sensitivity 

of k-mer based read extraction. The key measure affecting this balance is the size of k-

mers; longer k-mers would be more specific while shorter k-mers would be more 

sensitive. Therefore selected size must be a value allowing to capture as many relevant 

reads as possible without gathering too many irrelevant reads. In our tests we took the k-

mer size as 26 because 80% of the 26-mers in human genome are unique and increasing 

the size does not increase specificity significantly whereas decreasing it would 

dramatically reduce specificity [103]. Besides determining the size of k-mers, avoiding 

the systematic repeats in the genome is an important step. Because of the repetitive nature 

of human genome there are many k-mers with exceptionally high frequency regardless 

of their size. Eliminating such k-mers is especially crucial when working with whole 

genome data because thousands of irrelevant reads from telomeric, centromeric and 

various other repeat regions may be selected which would adversely affect the assembly 

process. We used “aln” and “samse” functions of BWA [42] to detect and eliminate 

highly repetitive 26-mers in the human genome. 

 

The k-mer dictionary becomes ready for searching and extracting relevant reads 

after the cleanup process. For the extraction process, every k-mer in each read from the 

raw sequence file(s) is searched in the target k-mer dictionary. If a read has at least 1 

common k-mer with a particular SV region, the read is selected and stored for de novo 

assembly of that region. The mate of the read is also selected for the pair-end or mate-

pair sequence data. 

 

4.2.2 Assembly 

 

There are many de novo genome assembly software using specialized algorithms. 

Each one these software has their own advantages and disadvantages depending on read 

size, read quality, library properties and sequence content of the genome. We tried three 

of the most well-known assemblers for assembling the SV regions; SPAdes [34], Velvet 
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[35] and ABySS [30]. For our test set, the assemblers were run with recommended 

settings for human genome with a minimum coverage cut off value of 3. K-mer size is 

set to 31 and 64 for velvet and ABySS respectively. We used the default setting for 

Spades where various k-mer sizes are used iteratively to improve the assembly. All of the 

assemblers are run with pair-end read option in order to maximize contig/scaffold sizes. 

 

 

Figure 4.2: The chart showing the workflow in of SVMap. 

 

4.2.3 Basic Local Alignment 

 

In order to assess the final structure of the variant with respect to reference 

genome we used NCBI’s Blastn [152,153] software for aligning the assembled contigs 

back to the reference genome database. Local alignment allows us to find the most 

significant locally matched regions of contigs to reference chromosomes. We created the 

Blastn search database from the reference human genome assembly (GRCh37.p13) using 

the word size as 11. We set the maximum number of hits per target sequence 

(chromosome) and the maximum number of target sequences to 10. The default 

parameters of Blastn were changed for searching interspecies genomic sequence matches 

with high sensitivity. Since we are aligning human samples to human reference, we 

lowered the reward and the penalty scores to the lowest possible values (-reward=1, -

penalty=-5) in order to prioritize highly specific shorter hits. Even so, it is inevitable that 

irrelevant hits will occur frequently because 51% of the human genome is made up of 

repetitive DNA [54] and Blast favors longer hits because of the scoring algorithm it uses 

to estimate the e-value. We have managed to prevent irrelevant long hits from completely 
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hiding relevant short hits by adjusting the reward and penalty parameters. Finally, the 

results are stored in XML file format for easy and flexible parsing options. 

 

4.2.4 Fine mapping SVs 

 

The basic assumption of our mapping approach is that flanking regions (Figure 

4.1) of SVs in the assembled contigs would align back to the SV region on the reference 

genome. If a contig has been assembled from reads that support an SV event there will 

be multiple Blast hits for that contig rather than having a single continuous alignment. 

Alignment positions and orders of hits relative to each other would therefore help 

visualizing and revealing the type, size and location of the genomic rearrangement(s) 

(Figure 1D). For example, if a contig is carrying a deletion of size 150 bp there will be 

two Blast hits for that contig which are 150bp apart from each other. The sequence of the 

contigs carrying genomic rearrangement(s) would reveal the structure of the variant in 

single base level because we also include split reads from breakpoints in the assembly 

process. Furthermore, the combination of de novo assembly with local alignment allows 

us to explain multiple genomic rearrangements happened in the same region since we are 

taking into account multiple Blast hits from the contigs which are assembled 

independently from the reference genome. 

 

Blastn result files are lists of similar subsequences between the query sequences 

and the chromosomes in the reference genome sorted by their alignment e-values. In our 

implementation, the 10 most significant hits for the 10 most relevant chromosomes are 

listed for every contig from each region’s assembly. This gives 100 hits per each contig 

in the assembly file. Evidently, it is highly unlikely for a correctly assembled contig to 

have 100 real hits because it would mean that there are 100 different rearrangement 

events occurred in the same region. Hence we need to select the most significant hits for 

each contig which could explain the actual rearrangement events. The quick solution 

would be to choose the hits with the lowest e-values -highest significance- however 

longer hits would dominate our selection. This is a common problem in long interspersed 

nuclear elements (LINE) in the genome because e-value of a hit decreases exponentially 

as the length increases and long hits from LINE regions can eliminate the shorter, more 

relevant hits. Because of such consequences we used bit scores for scoring the local hits. 

Bit scores are significance scores of local hits normalized by their lengths. We 
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implemented an iterative method to maximize the total bit score of local hits selected for 

explanation of a given contig. To make a decision between overlapping hits we selected 

the hits which have higher per-base-bit score for the overlap regions. The final score for 

the contig is calculated by multiplying the total bit score of selected hits by the average 

read depth of the contig. Scoring the contigs this way would help prioritizing multiple 

contigs associated with the same region based on the number of supporting reads and the 

sequence identity between the contig and the SV region. 

 

Finally, the selected local hits are sorted based on their position on the contigs 

and the likely events such as, insertion, deletion and inversion, are deduced based on the 

relative positions and strands of consecutive hits on the reference genome. To put it 

simply, if there is a gap between two consecutive hits on the reference side then it is 

considered as a deletion, but if the gap is on the contigs’ side then it is called an insertion. 

Also, it is noted as an interchromosomal translocation if the consecutive hits are on 

different chromosomes. The event is called an inversion when the consecutive hits are on 

different strands. We also create a graphical representation of likely rearrangement events 

by plotting the selected hits against the SV region in the reference genome using line 

plots. The pairwise line plot representation that we used can show both positions of the 

SV breakpoints and the relative strandedness of local hits from the contigs. Therefore it 

is possible to visually interpret exactly what kind of genomic rearrangements have 

occurred in the region of interest (Figure 4.1). 

 

4.2.5 Dataset 

 

We used 2 different datasets in order to test effectiveness our method. The first 

dataset contains a complex rearrangement event discovered in a rare disease study [154]. 

Raw data consists of high coverage pair-end sequence data targeting a 3.27 Mb region in 

the chromosome 20 where the rearrangement has occurred. The second dataset contains 

high confidence structural variations with sizes of up to 10kb which are confirmed by 

multiple SV detection methods [155] from the genome of the HapMap [156] individual 

NA12878. Pair-end whole genome sequence data of NA12878 archived under study 

SRX485062 is downloaded from the SRA database [157]. To prepare the sequence data 

for comparing k-mer based and mapper based methods, we mapped the sequences to 
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GRCh37 reference human genome by using BWA MEM [42]. The aligned sequences 

were sorted and the PCR duplicates were removed by using the samtools [42]. 

 

Table 4.1: Detailed information about the sequence data used in our tests. 

Data Read Size # of Reads Size of Sequenced Region 
Average 

Coverage 

NA12878 
100x2 

(Pair-end) 
1,482,602,390 Whole genome 49x 

2341, targeted 

sequence 

75x2 

(Pair-end) 
13,192,022 

3.27 Mb 

(chr20:43,655k-46,924k) 
302x 

 

 

4.3 Results 

 

4.3.1 Targeted Sequencing Data 

 

We applied our method to targeted pair-end sequence data of a patient in which 

the bases between 43,655,000-46,924,000 of the chromosome 20 were sequenced. The 

targeted region covered a complex genomic rearrangement causing ELMO2 gene to lose 

its function. The approximate location of the rearrangement event was first identified by 

BreakDancer [72], it reported 5 inversions and 2 deletions with high scores between 

45,021,000-45,040,000 (Supplementary Table A1). After visually inspecting the region 

with IGV [14] it was evident that a complex rearrangement has occurred affecting the 

first three exons of the ELMO2 gene (Supplementary Figure A1). Although BreakDancer 

was able to identify some of the SV events it was insufficient to understand the 

rearrangement completely and it could not report the breakpoints accurately. We ran 

BreaKmer [83] for detecting breakpoints in the affected region more accurately. 

BreaKmer was able to discover all of the breakpoints, however it classified them as 

inversions and/or translocations while neglecting the deletion and the insertion events 

(Supplementary Table A2). 

 

We utilized our method in order to understand the complete scope of 

rearrangements happened in the region. We extracted the k-mers from the bases between 
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45,022,000 and 45,037,129 for creating the dictionary which would be used for read 

extraction. The extracted reads were then assembled with all three of the assemblers. 

Finally, the assembled contigs were locally aligned to the reference genome. Our scoring 

algorithm successfully prioritized a 3257 bp contig assembled by SPAdes which 

contained the rearranged genome sequence. The rearrangement event was composed of 

one large deletion, one novel insertion, one inverted duplication and one inversion events 

all happened in a frame approximately 6kb in size (Figure 4.3). Capillary (Sanger) 

sequencing was used for validating that the sequence of the selected contig matches 

exactly with sequence of the actual rearranged genome [154] (Supplementary Figure A3). 

Furthermore, our scoring algorithm was also able select and prioritize the correct local 

hits exactly explaining the rearrangement events (Supplementary Figure A4). 

 

 

Figure 4.3: Visual demonstration of complex rearrangement happened on ELMO2 gene. 

A) Shows the sequence of chromosome 20 from hg19 reference genome. B) Shows the 

sample’s sequence after the rearrangement. C) Shows the explanation of the plot 

generated by our method. Segment a (260bp) was inversely-duplicated and inserted 

upstream of the segment b together with a novel 13 bp insertion. Segment b (57bp) was 

inverted and segment c (5870bp) was deleted. 
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Our scoring and selection algorithm played a crucial role revealing the complex 

nature of this rearrangement event. This is especially important for this case because 

ELMO2 has an isoform on chromosome 15 with 92% sequence identity. Because of such 

high similarity the targeted sequence data was also covering the bases between 

22,770,816 and 22,802,215 on chromosome 15. Many reads, which actually belong to 

the isoform region, were selected for assembly because they contained k-mers extracted 

from the original region. As a result, the assembly output contained contigs belonging to 

chromosome 15 also. Our scoring and selection algorithm performed successfully on two 

levels for elimination of the noise caused by the isoform. First, it gave the highest score 

to the contigs assembled from the reads coming from the actual region of interest rather 

than those coming from the isoform. Second, out of 100 hits it selected the 4 relevant 

local hits explaining the individual rearrangement events on the contig, even though some 

of them were small and have relatively high e-values. We observed that adoption of per-

base bit scores for scoring has played a key role for the successful outcome. 

 

4.3.2 Whole Genome Dataset 

 

For the purpose of assessing effectiveness of our method we applied our method 

to detect and explain structural variations found in the whole genome of HapMap 

individual NA12878. We used high confidence SVs reported in a study for benchmarking 

SV discovery tools [155]. Although there were more than 4000 SVs in the dataset we 

used the deletions and insertions found on chromosomes 1, 2, and 3. Such a selection was 

necessary because considerable amount of time was needed for manual scrutiny of each 

SV. The number of SVs found on the first three chromosomes should be enough to 

demonstrate how effective our method for general use is. On the other hand, we kept all 

of the inversions because there were already a few of them. The final test set consisted 

of 998 SVs including 544 deletions, 404 insertions and 50 inversions (See supplementary 

spreadsheet for details). 

 

The main objective of our test was to demonstrate how effective is k-mer based 

read extraction compared to the mapping location based read extraction for detecting 

structural variations. Our k-mer based read extraction process was used to extract reads 

belonging to each of the SV regions in the test set. The reads which were mapped to the 

SV regions were extracted using Samtools and converted to fastq format using a custom 
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bam-to-fastq conversion script. In an attempt to eliminate assembler induced biases we 

used 3 different de novo assemblers to assemble reads extracted by both methods. Finally, 

the high scoring local hits from the local alignment results were scrutinized for inclusion 

of the actual SV events. We also included joint detection metrics where results from both 

extraction methods and/or 3 assembly methods were joined together. 

 

The test results showed that our k-mer based method aided detection of additional 

structural variations for all 3 types of structural variations (Table 4.2). Moreover, k-mer 

based method performed better compared to mapper based method for all types of tested 

structural variations. Compared to mapping based extraction the most distinguished 

advantage was seen in detecting homozygous insertions. 21% more homozygous 

insertions were detected using the k-mer method with SPAdes only or with joint 

assembler output. Homozygous deletions were the easiest SV type to detect while 

heterozygous insertions were the most difficult. A similar ranking between the SV types 

is observed in almost all of the current SV discovery tools. Although the recall rates are 

not perfect, they on par or better than most of the SV discovery tools [68,158]. Looking 

at the test results, it is evident that detection rate heavily depends on the assembler. For 

all types of SVs SPAdes performed notably better than Velvet and ABySS. It can be 

argued that such difference is due to the read correction and iterative k-mer size selection 

capabilities built into the SPAdes. There was also an option in SPAdes for consideration 

of large rearrangements for scaffolding diploid genome assemblies which was not 

available in Velvet or ABySS. In contrast to other cases k-mer based extraction performed 

worse only for detecting deletions while using ABySS. Perhaps the reason behind this 

result was the difficulties in handling reads with shared k-mer content coming from 

unrelated genomic regions which can be inferred from the fact that there is less difference 

in detection rates for heterozygous deletions. 

 

One of the most powerful features of our method is that it can reveal exact 

sequence of the genomic region after SV events. It is not restricted to categorize a 

genomic rearrangement under any one of the recognized SV types. Hence, it can report 

multiple types of rearrangement events in a given region which has been shown in the 

ELMO2 case. After inspecting 998 SVs in NA12878 dataset we have encountered 18 

occasions where multiple SV events happened adjacently. We have also detected that 13 

of the reported insertions were actually translocation or trans-duplication events 
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happened within a 2k bp region. Such findings show that our method is useful when a 

complex rearrangement has been found in a region of interest but could not be explained 

using currently available SV discovery tools. 

 

Table 4.2: Recall rates of SVMap run with k-mer based method vs. mapping based 

method. “Joint” columns represents the resulting recall rate when any one of the methods 

was able to detect a given SV. The “joint” row at the bottom represents joint recall rates 

of all of the assemblers.        

 Deletion (544) Insertion (404) Inversion (50) 

 

Homozygous 

(229) 

Heterozygous 

(315) Homozygous (272) 

Heterozygous 

(132) 

Homozygous & 

Heterozygous 

 kmer map joint kmer map joint kmer map joint kmer map joint kmer map joint 

SPAdes 94.8 93.9 97.8 54.9 40.0 59.7 67.3 48.2 71.7 56.8 51.5 64.4 57.1 53.1 63.3 

Velvet 62.9 59.0 71.6 6.7 3.5 8.9 10.3 5.5 12.9 5.3 2.3 7.6 16.3 14.3 18.4 

AbySS 46.7 71.2 80.3 35.9 41.0 47.9 9.6 8.1 14.0 13.6 7.6 17.4 36.7 36.7 42.9 

joint 96.9 95.2 97.8 64.4 56.5 69.5 70.6 49.6 75.7 61.4 54.5 65.9 67.3 65.3 71.4 

 

4.4 Discussion 

 

It is certain that whole genome sequencing will be much more accessible and 

widely used for different purposes such as personal medicine and cancer genomics. These 

studies require discovery and explanation of every genomic variation existing in the 

individual’s genome. 10 years have passed since the first individual human genome had 

been sequenced [159] and discovery of structural variations still remains a difficult 

challenge after many developments in sequencing technologies. There are 40 different 

tools and methods [7] developed for discovering structural variations which aim detection 

of structural anomalies throughout the genome. However, little has been done for 

understanding individual genomic rearrangement regions. We proposed SVMap to 

address such needs and showed that k-mer based read extraction would be beneficial for 

revealing the underlying structure of all types of structural variations. novoBreak also 

uses k-mers for extracting SV related read pairs and it is independent from short read 

mapper but it requires tumor-blood paired data for selecting the aberrant k-mers in tumor 

samples. SVMap can be used without a control sample however it analyses only the target 

regions. BreaKmer is also confined to the target regions but it is also dependent on the 
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mapped short read data. In contrast to BreaKmer and novoBreak, SVMap utilizes all of 

the reference k-mers in the SV region for the purpose of collecting all possibly relevant 

read pairs and assembles them to reveal the complete structures of the genomic 

rearrangements. BreaKmer and novoBreak focus on detecting only the breakpoints rather 

than solving the structures of the rearrangements. 

 

Our method is the first method to use de novo assembly in conjunction with basic 

local alignment in order to explain genomic rearrangement events. HYDRA and TIGRA 

als uses local reassembly but they only utilise discordant or split reads. Discordance or 

concordance of the read pairs is determined by the relative alignment positions of the 

mate and this decision strongly depends on the short read mapper and can be biased based 

on the DNA library properties. Therefore, it is highly likely that they miss relevant reads 

because of such complications. HYDRA, TIGRA and novoBreak aim detection of 

structural variants on the entire genome therefore they make some compromises in order 

to make the analysis more practical in terms of computational resources. SVMap, on the 

other hand, focuses on analysis of selected important regions and does not make such 

sacrifices. Hence, it excels at the local level compared to general SV detectors. A 

common case for using SVMap would be scrutinizing intragenic SV candidates detected 

by one of the SV detectors.  PyBamView, Bambino and svviz also focus on scrutinizing 

selected candidate SV regions but they are more focused on the graphical representation 

of the read alignments individually.  In addition to the its immunity to insensitivity of SR 

mapping tools, to the best of our knowledge, SVMap is the only method which can report 

multiple types of rearrangements in a single region. These features makes SVMap a 

powerful new tool useful for better understanding structural variations with high 

importance. 

 

By investigating our test results we saw that in only one test scenario, deletion 

detection by ABySS, k-mer based read extraction underperformed compared to mapping 

based read extraction. We can argue that the loss of sensitivity for ABySS is cause by the 

inclusion of more reads that are not supporting the deletion events into the assembly with 

the k-mer method. It is common for assemblers to prune some paths in the assembly graph 

for avoiding false assemblies. Such behaviour might be the reason for losing the contigs 

including the deletion events. The fact that this adverse effect is less pronounced in the 

heterozygous deletions supports our claim. Even in ABySS’s case k-mer based read 
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extraction was able to detect additional deletions which were not detected by mapping 

based read extraction. It was also observed that using both extraction methods improved 

detection rate for all three types of SVs. The results also showed that outcome of our 

method is highly dependent on the underlying assembly method. In order to achieve the 

best possible results it is crucial to use multiple assemblers. However, every one of the 

tested assemblers performed poorly for heterozygous SVs. This indicates that a special 

study is necessary for optimizing assembly of subregions from large diploid genomes. 

Even if every step of the process is optimized to the maximum capability the limitations 

of short read sequencing cannot be overcome. Most notably assembly and mapping of 

large novel insertions is not possible where the size of reads and/or insert size of the 

mates/pairs are not long enough to completely cover the inserted sequence. Because of 

this limitation the reads captured by using the anchoring (flanking) regions cannot be 

connected to span the whole extent of the insertion resulting in two separate contigs from 

each side. This limitation similarly affects assembly of inversion sites, especially the 

heterozygous inversions. Another limitation is the need for high depth of coverage and 

necessity of high quality reads for successful assemblies. Because such limitations arise 

from the sequencing technologies, they can be overcome only by the availability of long 

and high quality reads in abundance. 
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5 CONCLUSION 

In our work we have investigated the computational methods used for analyzing 

the NGS genome data in order to compile best practices for discovering disease causing 

mutations. We studied the mutations under two categories, first is the SNVs and small 

indels, and second is the complex genomic structural variations. In contrast to structural 

variations the methods and software tools for calling SNVs and small indels are well 

established and have high sensitivity and accuracy rates. The challenging aspect of small 

variant analysis is the large number of clinically irrelevant and/or false variant calls. 

Accurately selecting the disease-causing mutation among irrelevant variants is prone to 

false discoveries because several hundred thousand small variants are called from a 

typical human WES sample. We have shown that our standard analysis pipeline and 

mutation-disease association strategy is a good implementation of effective WES 

analysis methods. Structural variants, on the other hand, are not as numerous as small 

variants and they are most probably deleterious on the genes. But it is challenging to 

define the exact structure of the rearrangement occurred by using currently available 

tools. In this context, we developed a fine mapping method which was capable of solving 

even the more complex genomic rearrangements. 

 

It is evident that the introduction of NGS technologies has completely changed 

the landscape of genomic area. The new sequencing platforms are generating ever more 

data with lower costs than the previous platforms. The accessibility and affordability of 

genomic data have presented unprecedented research opportunities to clinical 

researchers. However, the plethora of data generated by these technologies is presenting 

great challenges for current computational analysis tools and methods. It is crucial to 

develop new methods and tools which can keep up with the pace of genomic data 

accumulation in order to achieve groundbreaking discoveries. It is also vital to increase 

recall rate while decreasing the error rate because the there is greater risk of making false 

decisions due to the increased amount of data. It is forecasted that new and better 

sequencing technologies coupled with advanced analysis methods will minimize the false 

discovery rates in the future. 
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Appendix A  Supplementary Figures & Tables 

 

Table A1: High confidence BreakDancer SV calls at 20:45,021K-45,040K. 

Chr1 Pos1 Orientation

1 

Chr

2 

Pos2 Orientation

2 

Typ

e 

Size Scor

e 

Num 

Reads 

20 45021083 3+2- 20 45021281 640+568- DEL 341 99 221 

20 45024714 640+568- 20 45031300 653+310- INV 7155 99 287 

20 45024714 640+568- 20 45037323 7+213- INV 1400

9 

99 132 

20 45024714 640+568- 20 45037534 0+28- INV 1347

0 

99 19 

20 45025280 25+21- 20 45025346 114+150- DEL 347 99 68 

20 45031300 653+310- 20 45037323 7+213- INV 5827 99 60 

20 45031300 653+310- 20 45037534 0+28- INV 6006 74 7 

 

 

Table A2: BreaKmer output showing the breakpoints at 20:45,021K-45,040K. 

Target_Name SV_subtype All_genomic_breakpoints Target_genomic_breakpoints 

ELMO2 trl chr20:45031259,chr3:87987195 chr20:45031259 

ELMO2 tandem_dup chr20:45031259,chr20:45022911 chr20:45031259,chr20:45022911 

ELMO2 trl chr20:45031259,chr9:113150090 chr20:45031259 

ELMO2 inversion chr20:45037123,chr20:45031202 chr20:45037123,chr20:45031202 

ELMO2 inversion chr20:45037123,chr20:45031202 chr20:45037123,chr20:45031202 

ELMO2 inversion chr20:45037123,chr20:45031202 chr20:45037123,chr20:45031202 

ELMO2 inversion chr20:45037123,chr20:45031202 chr20:45037123,chr20:45031202 

ELMO2 inversion chr20:45031193,chr20:45023171 chr20:45031193,chr20:45023171 

ELMO2 inversion chr20:45031193,chr20:45023171 chr20:45031193,chr20:45023171 

ELMO2 inversion chr20:45026874,chr20:45026625 chr20:45026874,chr20:45026625 

ELMO2 inversion chr20:45024428,chr20:45024084 chr20:45024428,chr20:45024084 

ELMO2 inversion chr20:45024428,chr20:45024084 chr20:45024428,chr20:45024084 

ELMO2 trl chr20:45024263,chr15:22792297 chr20:45024263 

ELMO2 inversion chr20:45023171,chr20:45031193 chr20:45023171,chr20:45031193 

ELMO2 inversion chr20:45023171,chr20:45031193 chr20:45023171,chr20:45031193 
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Figure A3: Pairwise alignment of the assembled contig (query) prioritized by SVMap 

against the Sanger sequence (sbjct) of the region affected by the complex rearrangement. 
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Figure A4: The plot showing the local hits selected from the ELMO2 alignment of 

ELMO2 assembly. The hits labeled “2_0, 2_1, 2_2, 2_3” belong to the contig “2” which 

scored highest among the other contigs. The contig 2 covers complete scope of the 

complex rearrangement.  

 


