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Abstract

With the increasing complexity of cryptographic algorithms, attackers are looking
for side channels to compromise private data. While attackers are tracking side chan-
nels, they leave traces behind them unintentionally. In this work, we concentrated on
Flush+Reload type of attacks which is aimed to retrieve private data by using inten-
tional contentions on shared resource. Our shared resource is L1 Data Cache of CPU.
The trace of attackers on shared resource is a great asset for extraction of utilization
pattern which is strong indicator for presence of attacker in the system. For this reason
we collected data and extract utilization characteristics of the resource by using hard-
ware performance counters. In this work, by taking the advantage of machine learning
approaches, we make a decision on running applications, whether attacker application
is one of them or not. Smarter attackers may flush cache partially in order to minimize
footprint on shared resource. Workload level is another significant factor that alters the
utilization profile of shared resource. For this reason, we experimented our approaches
under 4 different levels of partial cache flush and 7 different workload level which mimics
e-commerce server load. Our approach is able to detect the presence of attacker with

higher than 85% accuracy and lower than 0.5% average execution time overhead.
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ézet

Kriptografik uygulamalardaki karmagiklik arttikca, atak yapmak isten kisiler, hede-
fledikleri veriye ulagmak i¢in yan kanallar1 kullanmaya bagvururlar. Ancak yan kanal-
lar1 takip ederlerken, arkalarinda farkedemedikleri izler birakiyor olabilirler. Bu tezde,
onbellek tabanli yan kanal ataklarindan olan Flush+Reload tipindeki ataklar: yakalaya-
bilmek i¢in ¢aligmalar yaptik. Bu tip ataklar, ortak aygitlar iizerindeki kullanim tip-
lerinden gizli bilgileri elde etmeye ¢alisirlar. Bu tezdeki ortak aygit, islemcinin 1. Se-
viye onbellegidir. Casuslarin 6nbellek iizerinde biraktiklar izler, onlarin varligini bu-
labilmek adina oldukg¢a degerli bir bilgidir. Bu sebeple secilen ortak aygit tizerindeki
kullanim ayrintilarimi donanim performans sayaglari ile topladik. Bu tezde otomatik
ogrenme yontemlerini kullanarak, casus programin sistemde galigip ¢aligmadigini bu-
luyoruz. Arkalarinda daha az iz birakmak isteyen casus yazilimlar, 6nbellgin yarisini
veya daha kii¢lik bir kismin silerek, bellek tizerindeki izlerini kii¢iiltmeye caligabilir.
Onbellek kullanimi {izerinde énemli etkisi olan bir diger parametre de sistem iizerindeki
is yukiidiir. Bu sebeple, bu tezdeki yaklagimlarimizi 7 farkh ig yiiki altinca ve 4 farkh
silme stratejilerini kullanarak denedik. Bu tezde agiklanan sistem, casus yazilimin
varhgimi %85 den daha da yiiksek bir oran ile bulurken ¢alisma siiresine gelen ek yiik,

ortalama %0.5 seviyelerindedir.
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1 Introduction

Cryptographic algorithms that withstand known theoretical attacks may succumb to
side-channel attacks due to flaws in their implementations [24]. Side-channels are un-
intended manifestations about the key dependent aspects of cryptographic application
exccutions, ec.g., the execution time, power consumption, electromagnetic emanation,
micro-architectural artifacts, etc. Since the secret key effectively influences the execu-
tion of cryptographic applications, observations made on a side-channel may eventually
leak information about the secret key if it effects in the computation are not cloaked.

An important category of side-channel attacks is due to shared micro-architectural
resources such as cache memory and branch prediction unit [9,25,29]. Cache-based
side channel attacks, which are the main focus of this thesis, exploit the key-dependent
cache access patterns of cryptographic applications. These attacks typically leverage
execution times and/or cache contentions to infer whether a cache access is a hit or
a miss as well as the actual cache set being accessed. These access patterns are then
associated with likely key values to extract the secret key or to reduce the possible key
space.

In many cache-based side channel attacks, the malicious party leverages a spy process
to intentionally create cache contentions with the cryptographic application [38]. One
way to develop a spy process is to use a two-step approach, called the prime and probe
approach [38]. In the prime step, the spy process fills the cache (e.g., L1 data cache
memory) with its own data. In the probe step, the spy accesses the cache sets that
were previously filled with its own data. Each access is timed. The spy process carries
out these steps one after another in a loop. When the spy accesses a cache set in

the probe step, since the cache set was filled with the spy’s own data in the prime



step, the respective data is expected to be fetched from the cache memory. Thus, the
access should be performed fast. However, if an access to a cache set takes longer
than expected, then it indicates that one or more cache lines in the respective cache
set are evicted by other processes. In the prime and probe approach, such evictions
are assumed to be caused by the cryptographic application, although this may not be
necessarily the case, as any other process currently running on the same platform can
cause these evictions. To factor out the noise, the spy process performs a series of
observations, i.e., the prime-and-probe loop iterates a number of times. In effect, the
spy process searches for cache contentions. The contentions are then associated with
likely key values on a per key byte basis to extract the secret key bytes or to reduce the
space of possible key candidates [29,38]. The results of many empirical studies strongly
suggest that the same and similar attacks can effectively and efficiently extract private
keys [43,44,44).

The countermeasures against these attacks are often taken in a retroactive man-
ner [34,38,41,46]. First, an attack surfaces itself. Then, the attack is analyzed and the
necessary countermeasures to prevent future attacks of the same or similar type, are
determined. Finally, the countermeasures are implemented and the cryptographic ap-
plications are redeployed. However, spy processes have been quite successfully adapted
themselves to these countermeasures [34, 38].

In this thesis, rather than proposing yet another retroactive countermeasure, we
present an online approach to detect ongoing attacks, so that proactive preventive
measures can be taken in time. The roots of this approach stem from a number of
simple observations we make on the common characteristics of all side-channel attacks
carried out against software implementation of cryptographic algorithms. First, the
victim and the spy share at least one resource, such as data cache, instruction cache,
dynamically linked libraries, etc. Second, the spy carries out the attack by creating
intentional contentions in the shared resource, whose affects on the victim can easily
be observed from outside the victim. Third, since the shared resource is often used
by other processes running concurrently with the victim, the spy effects not only the

victim but also the other processes. Fourth, the spy is forced to conduct a series of



experiments in order to factor out the noise caused by the other processes. These
observations suggest that there are identifiable and repeatable patterns in the behavior
of spy processes and that similarities and deviations from these patterns are highly
correlated with the presence or absence of spy processes.

To test this hypothesis we have developed an online approach to detect the presence
of spy processes. Given a shared resource to be monitored, this approach continuously
monitors the resource at runtime and quantifies the contentions experienced by the
victim process as well as by the other processes. Whenever the extent to which processes
suffer from these contentions reaches a “suspicious” level, a warning is issued indicating
the presence of a likely spy process. Once a warning is issued, proactive countermeasures
to prevent the ongoing attack, such as migrating the victim to a different core, CPU,
or a machine, can be taken. However, such countermeasures are beyond the scope of
this work.

We have also conducted a set of experiments to evaluate the proposed approach. In
these experiments, while we used the approach to detect the presence of a specific type
of spy processes, the techniques are equally applicable to detect other spy processes
that operate by creating intentional contentions in shared resources. In particular,
the spy process in the experiments, implemented the prime-and-probe approach [38].
The victim process was a cryptographic application using 128-bit AES for encryption
and decryption. The shared resource we monitored was L1 data cache memory. The
contentions were quantified by using hardware performance counters — CPU resident
counters that record various low level events occurring on a CPU. To analyze the
contentions, we have developed two approaches: a supervised and an unsupervised ap-
proach. The supervised approach assumed that the capabilities of the spy process was
known a priori, whereas the unsupervised approach did not have this assumption. In
both approaches, the monitoring was carried out on a per scheduling quantum basis by
using dynamic operating system kernel instrumentation. Furthermore, the spy and the
victim processes were executed on a platform that mimicked an e-commerce server. To
analyze the sensitivity of the approach to workload levels, 7 different levels of workloads

were used. To evaluate the proposed approach on smarter spy processes, the propor-



tion of the cache memory flushed by the spy process was varied from full, to half, to
quarter, to one eighth. We measured both the accuracy and the runtime overhead of
the proposed approach.

With all threats to external validity in mind we believe that our study supports
our basic hypothesis that there are identifiable and repeatable patterns in the behavior
of spy processes and that these patterns can be analyzed at runtime to detect the
presence of spy processes, all at acceptable runtime overheads. We arrived at this
conclusion by observing that the proposed approach correctly detected the presence of
the spy processes with an F-measure of above 85% and a runtime overhead of below
1.5% and that the performance varied marginally over different levels of workloads and
the proportions of the cache memory flushed, or whether a supervised or a unsupervised
approach was used.

The remainder of the thesis is organized as follows: Section 2 discusses the related
work; Section 3 provides background information on various technologies used; Section 4
discusses the proposed approach in a nutshell; Section 5 presents the details; Section 6
discusses the implementation details; Section 7 empirically evaluates the approach; and
Section 8 discusses threats to validity; and Section 9 presents concluding remarks and

future work.



2 Related Work

In this thesis, we aim to provide a lightweight mechanism for detection of processes that
create collusions with a cryptographic process in the cache memory resulting in cache-
based side-channel attacks [22,29,31,39]. While collusions created by any process can
give rise to cache attacks, majority of the cache attacks rely on a specifically designed
process, which is often referred as spy process, targeting fine-grained collusions with the
cryptographic victim process. One particular cache attack proposed by Bernstein [14]
does not rely on collusions by a spy process, but on the unintended collusions by
operating system processes as shown in [12,26,27]. In this work, however, we only
deal with methods for detecting spy processes via the instrumentation of hardware
performance counters, deployed in many modern day processors.

Side-channel attacks utilize unintended information about sensitive data (e.g., secret
keys) that is released during the execution of a cryptographic algorithm [5,8, 10, 23].
An observable aspect of the computation such as execution time, power consumption
during particular operations, cache access patterns, can lead to side-channel attacks, if
it is a function of secret key used during computations. A cache access operation based
on a round key byte in a block cipher, a branch instruction whose outcome depends on
a bit of a private key in public key cryptography algorithm, execution time that varies
with the message and the secret key all lead to side-channel attacks.

Cache-based side channel attacks (or briefly cache attacks) utilize key-dependent
cache access patterns either in data [4,7,14,15,16,17,27,27,29,33,37,39] or instruction
caches [2,3,6]. Except for [14], all attacks utilize (or assume the presence of) a spy
process that flushes the cache memory before the scheduling of the cryptographic pro-

cess to create cache collusions with the victim process. Recent works such as [11,13,44]



apply fine-grained cache flush operations that evict particular cache lines that are likely
to be used by the victim process.

The cache attacks can be grouped into three different categories, namely «a) access-
driven attacks, b) trace-driven attacks, and ¢) time driven attacks. In access-driven
attacks, the attacker observes accessed or unaccessed cache lines. By using the ob-
servation, the attacker infers the private key of the cryptographic system. Tromer et
al. propose an approach that uses a spy process to identify the unaccessed cache set-
s/lines by the cryptographic application [38]. Tromer et al. present two variants of
the attack, namely synchronous and asynchronous attacks. In the synchronous vari-
ant, the spy process has the ability to start an encryption process. The synchronous
attack can recover a 128-bit AES key after about 300 encryption operations. On the
other hand, the asynchronous variant does not have the ability to start an encryption
operation at will and therefore the attacker only observes the cache usage for a certain
period of time. In the asynchronous attack, 45.7 bit of a 128-bit AES key can be re-
covered by using cache access pattern data observed in one minute. In early examples
of access-driven attacks [38], it is assumed that spy and cryptographic victim processes
are scheduled in the same core in a multicore processor. Falkner et al. propose the
so-called Flush+Reload attack, in which the spy process does not necessarily run on
the same CPU-core as the victim process [44]. By taking advantage of an Assembly
instruction in Intel processors with X86 architecture, the attacker is able to evict cache
lines selectively from all cache levels. This forces all processes to load the cache lines
from the memory if they need them independent of the core on which they are sched-
uled. A miss in all levels of cache memory results in significant data access times that
can be utilized as a side-channel.

In trace-driven cache attacks [29], the attacker tries to obtain cache miss and hit
patterns (a trace) in a series of cache accesses such as the lookup table access during
the last round of AES. The observation of the power consumption or clectro-magnetic
emissions of cryptographic device running a cryptographic algorithm can be used to
obtain cache traces assuming that the device is under the control of an attacker. Page

shows that a 56-bit DES key provides only 32-bit key security if trace-driven attack is



applied [29].

Time-driven attacks [39] utilize the variation in the execution time of the crypto-
graphic algorithm. The attacker tries to distinguish the execution time variations due
to cache misses and guess whether a particular cache access of the cryptographic pro-
cess is a miss or hit. Knowing either the plaintext or the ciphertext, the attacker can
produces hypothesis about the outcome of a particular cache access that is determined
by the value of a round key byte. If the hypothesis is correct, the observed execution
time will coincide with the time model derived from the hypothesis and this will provide
the likelihood score of a key value for its being the correct key. The process will yield
the correct key with the highest score if sufficient number of observation can be done
with certain accuracy.

In order to prevent side channel attacks, many countermeasures are proposed in
the literature. An obvious solution is that processes do not share hardware resources
in the computer [32], [35]. In a more sophisticated defense method proposed in [41],
the authors propose a scheduler based defense mechanism against the Prime+Probe
attack [38]. In the Prime+Probe attack, the attacker tries to schedule itself immediately
before and after the cryptographic application, and also wants the cryptographic process
to perform one encryption during one quanta, which is the duration a scheduled process
runs before another process is scheduled. Extending the quanta duration will have a
negative impact on the attack, since the cryptographic process, then, will have time
to perform more than one encryption. In that case, the cryptographic process will be
more likely to access all cache lines and sets holding data and lookup tables used in
the cryptographic algorithm. That all cache lines are accessed give no information, and
therefore the observation will be useless from attacker’s perspective.

Since it has been shown that the side channel attacks are applicable in cloud systems,
where virtualization and multi-tenancy are norms [34,46], research in countermeasures
specific to cloud systems attracts some attention. In [30], Pattuk et al. propose using
a threshold scheme for key distribution in cloud to prevent side channel attacks. Thus,
each client do not have to save the actual key for encryption operation. For execution

of the encryption operation, shared keys are gathered, then execution is completed.



Hardware performance counters are hardware registers that can be used in various
contexts. Note that some care needs to be takes as pointed out by McKee et al. in [42].
In [45], Porter and Yilmaz used the advantage of HPCs for classification of program
executions. Since hardware performance counters are fast for reading and accurate for
measurements, they monitor program executions. Another work, that exploits HPCs
is [18] where Cohen et al. take the advantage of HPCs to profile system in parallel
programs and aimed to detect anomalies during the execution. In [21], they also used
HPCs and apply profiling concept into cloud platforms. Their aim is efficient resource
allocation and scheduling, which is a critical issue in cloud systems.

Also, HPCs are used in to accelerate cache attacks [40]. In [12], HPCs are used
to find out the types of cache collusions leading to the attack in [14]. In this work,
we also use hardware performance counters to perform accurate measurements of cache
miss and/or hit rates incurred by a process. The changes in or patterns of cache misses
suffered by a victim process will be utilized to detect the presence of a spy process,

which enables cache attacks.



3 Background Information

In this section we provide background information about the approaches and tools used

in the thesis.

3.1 Supervised/Unsupervised Learning

Supervised learning is an aspect of machine learning which is used to build a model in
order to determine relationships between input attributes and the output attributes.
Constructed models can be used to predict the outcome of a model by evaluating the
inputs. These constructed models are then used to reveal important knowledge that is
hidden in the data set or they can be simply used to predict a label given the inputs.

Unsupervised learning is another machine learning technique that deals with unla-
belled data. This type of learning aims to form clusters based on the attributes of the
elements. Distinguishing between different classes without training the classifier is a
harder problem to solve rather than supervised learning. Some example algorithms are
K-means, hidden Markov models, PCA.

In this work both supervised and unsupervised learning methods were used in order
to detect cache based side channel attacks. As the supervised method, we used classi-
fication trees with data gathered from the L1 cache of the CPU for both identification
of workload level and detection of presence of spy process in order to increase the ac-
curacy of our approach. As an unsupervised learning method we used clustering with
thresholds in order to find a cluster where spy process do not exists. Afterwards, our

approach is able to make decision on the presence of the spy.



3.2 System Tap

SystemTap [36] is a free software for gathering information from running Linux systems.
The software has several kinds of probes for monitoring such as user space probes,
system call probes, timer probes etc. The key feature of systemTap is instrument both
user level and kernel level at the runtime. Therefore execution information can be
collected without modifying, compiling, and redeploying the kernel source code. Run

time instrumentation mainly used for profiling.

3.3 Prime-+Probe

Prime+probe is a timing based attack model of the spy process that is first proposed
in [38]. Prime+probe is a two step approach. In the prime step, the spy process fills the
cache with its own data. To this end, we used double linked list structure as shown in
Figure 1 which has the same size as L1 Data-cache. In the probe step, the spy accesses
the cache sets that were previously filled with its own data in the prime step. Each
access is timed. The accesses that take longer than the average access time are identified
and the respective cache sets are marked as potentially accessed by the cryptographic
application.

The rationale behind the Prime+Probe is simple, the spy carries out the prime and
probe steps one after another. When the spy access a cache set in the probe step, since
the cache was filled with the spy data in the prime step, the respective data is expected
to be fetched from the cache. Thus the access should be performed fast. However,
if an access to a cache set takes longer than expected, then it can indicate that one
or more cache lines in the respective cache set are evicted by another process. In the
Prime+4Probe approach, such evictions are assumed to be caused by the cryptographic
application.

Our attacker model employs the Prime+Probe approach. The Prime+Probe algo-
rithm has strong impact on cache-miss events by creating cache contentions between
processes. Number of cache-miss events are strongly correlated with the presence of an

attacker application.
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Figure 1: Prime+Probe Data Structure

3.4 Hardware Performance Counters

HPCs are special type of registers inside of the CPU which are dedicated to measure
performance of the system. The user can configure counters programmatically, then
start to read values. By default, Hardware Performance Counters are deactivated. The
counters has special configuration for events to count such as the number of branches
taken, number of executed instructions, the number of cache miss and cache access
etc. The counter is incremented when specified event occurs in the system. Since
the counters are dedicated hardware, access and calculation can be done with low
timing overhead. The user programmatically enable/disable the performance counter
hardware. Most of the modern CPUs are shipped with sufficient number of HPCs.

Observable events on the system via HPCs may differ between CPUs.

3.5 Faban and Olio

Faban framework [19] is an open-source performance testing tool. Users can develop
their own workload to test their system’s performance. In our case, we used Apache Olio
project [20], which is a sample application to help developers evaluate their performance
using Faban framework. We created realistic server workload that consists of database
and webserver requests. Olio is basically simulates users, and number of concurrent
users is configurable over Faban framework.

In this thesis, we used Faban and Olio to generate realistic e-commerce server work-
load with 7 different levels. Since it is an e-commerce server, workload level is changed

by number of concurrent users which is a reconfigurable parameter in Olio over Faban

11



framework. We have minimum 25 concurrent users and maximum 500 concurrent user
on the e-commerce server.

The rationale behind the workload generation idea is the following, the workload
level on the server is strongly correlated with the number of cache misses and accesses
that cryptographic application and other processes suffers. For this reason, we created
7 different levels of workloads on the server. In Figure 12, the difference of workload

levels in the manner of cache usage and cache-miss counts is displayed.
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Figure 2: Overview of proposed solution

4 SpyCatcher in a Nutshell

In this section, we will describe the proposed approach in a nutshell. SpyCatcher has
2 modes of operation which are with and without workload classification. At a high
level SpyCatcher consists of 3 building modules as it is shown in Figure 2. First we
monitor system and collect data. If mode of operation includes workload classification,
it is performed at the second step. In the last step, spy detection mechanism works.
Task of the monitoring module is to collect values of HPCs for each quanta which is
described in Figure 4. After sufficient amount of data is collected, we create sliding
window structure as it is described in Figure 5. If the mode of operation is with
workload classification, as the next step we determine the workload level of window by
using a supervised method. According to the workload level decision, parameters of spy
detection mechanism is tuned and run on current window. Our analysis method is the
last module before the presence of spy is decided. We have two different methods for spy

detection module, supervised and unsupervised methods. After spy detection module

13



make a decision about the presence of spy, One cycle of proposed solution accomplished.
Then our system collect data for required amount of quanta to create new window and

whole process starts over.
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5 Approach

In this section, we describe four methods to detect cache based side channel attacks
by taking the advantage of some machine learning algorithms. Our first approach
employs supervised method for spy detection without workload classification. The
second one also uses supervised method for spy detection, but it classifies workload
levels and create model for each workload level. The third approach is unsupervised,
which creates a model for the safe state of the system in order to detect presence of
spy. The last approach is a hybrid of supervised and unsupervised algorithms. This
approach employs workload classification as supervised approach, and spy detection as
unsupervised approach.

Workload classification is done only using supervised approach with total of 10
features were used which are listed in table 1. Supervised spy detection also uses these
10 features. For unsupervised spy detection module, relatively simple feature set is used
compared to workload classification phase. Features of spy detection module is listed
in table 2.

In order to create training set for the proposed technique, we divided collected data
70% as training set and 30% as the test set in stratified manner. We used same set
in order to train both supervised approaches and unsupervised approaches. We tested
both approaches with the same test set, which are different than the training set.

As it is described in the Section 4, our proposed solution consists of 3 main modules.
In the subsections of this section, we will explain these modules in details which are

monitoring, workload classification and spy detection.
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ID

Description

ot IS w \] —

© oo N O

Mean of miss rate

Median of miss rate

Mean-standard deviation of miss rate

Mean+standard deviation of miss rate

Average miss count

Average access count

Number of unique processes in a window size n

Average number of unique processes in sub-window, n/2
Average number of unique processes in sub-window, n/4

Average number of unique processes in sub-window, n/8

Table 1: Features for Supervised Approaches

ID | Description

1 | Mean of miss rate
2 | Mean-standard deviation of miss rate

3 | Mean-+standard deviation of miss rate

Table 2: Features for Unsupervised Approaches
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5.1 Monitoring

In this section, we will describe the data collection step. Data collection is done by
taking the advantage of SystemTap and custom patched Linux kernel where hardware
performance counters are reachable without any additional software. We have used two
hardware performance counters to measure required CPU events which are L1 data
cache-miss and L1 data cache-access. These values are read for each processes at the be-
ginning of quanta (i.e. when the scheduler takes process into execution) and at the end
of quanta. Reading pattern of HPCs is shown in figure 4. In the event cycle of scheduler,
kernel functions “perf_event_task_sched_in” and “perf_event_task sched_out” arc
called for scheduling a process in and out, respectively. These kernel functions are in-
strumented using SystemTap. We have two values, one for the before quanta execution
and the other for the after quanta execution. Difference of each counter’s values mean
the number of occurred event during one quanta in CPU.

As it is shown in figure 4, counter values read at the beginning (M;, A;) and at
the end (My, Ay). For the shown quanta, cache-miss count, cache-access count and

cache-miss rate are calculated as follows,

MZSS(Qn) - MZ,n - Ml,n (1)

Access(Qn) = Ay — A1 (2)
Mi n

MissRate(Q,) = #g&%j) (3)

After the calculation of these values for each quanta, an analysis window will be
formed. We realized that number of quanta that forms an analysis window is significant
for performance of the system. In order to decide on a window size, we conducted an
experiment. We have two variables for this experiment, window size and shift amount.
Window size is the number of quanta that forms an analysis window. After an analysis
window is formed and processed, shift amount of quanta is required to form a new

window for analysis. We measured the accuracy of workload classifier against different
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window sizes and different shift amounts. Visual explanation of window and shift
amount term can be found in Figure 5. Detailed results of the experiment are shown in
Figure 3. The aim of the experiment is to discover a fair size for the analysis window,
not the fully optimized size. Discovery of an optimized window size is out of the scope
of this thesis.

As a result of the experiment, we decided to select window size as 2000 and shift
amount as 25. but the number of quanta that by gathering features of 2000 quanta as

described in figure 5.

W = w1, Wy, Ws...... WN (4)
wi = 4 (5)
y=0

where W is a set of windows describing the execution, w; is the current window in
execution ¢ represents quanta belonging to execution. We calculated set of features
for each analysis windows, which mainly consists of descriptive statistics, as listed in
Table 1.

We collected data, under seven different workload levels. We have used Faban and
Olio to generate realistic server workload. We defined number of concurrent users for
workload level 1 to 7, as respectively 25, 50, 100, 200, 300, 400 and 500. Increasing the

number of concurrent users results increase in the workload level.

5.2 Workload Classification

Data analysis among different workload levels suggests that workload level on the en-
vironment effects cache behavior. We noticed an increasing trend in miss rate when
workload was high in the environment. This information, naturally, effects our decision
whether there exists a spy in a given window or not.

Windows that are a part of different workload levels will have different cache usage
characteristics even though they consist of same processes as it is described in Sec-
tion 7.5. A window that is executed when the number of concurrent users is 500, will

certainly suffer more cache miss rate compared to a window when there is 25 concurrent
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time '

Proces;| Process 1 Focess 2

1st read 2nd read
Cache Miss: M Cache Miss: M
Cache Access:Aq Cache Access:Ap

Figure 4: Counter reading pattern

Window #1 Window #2
Q1 Qz ....... 025 .................. onoo ....... Q2025
time >

Figure 5: Sliding Window Structure

users as it is shown in Figure. Therefore grouping windows by their workloads before
making the final decision was a good step in order to increase our accuracy.

Purpose of this step was simple, build a workload classification algorithm so we
can train specialized classifiers for making the final decision. We extracted features in
Table 1 for workload classification. The workload classifier is a decision tree, build with
C4.5 algorithm, we aimed to minimize the entropy while building the tree. Since C4.5
is a supervised algorithm, we need to train it first, for this reason we divided the whole
dataset into 70% training set, and 30 % test set. We have 7 different workload labels in
our dataset, so C4.5 algorithm creates a 7 class classifier. We tested the decision tree by
using our test data in order to measure accuracy. After training phase of classifier, we
converted it to native C code to embed into the running Linux kernel, which resulted
in nested if else conditions. A representation of a workload classifier was given as a

Figure 7.
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%2 ==0.031 ¥2 = 0031
w1 ==0.221 1 =0221 ¥l ==0342 x1=0.342
| | | 1
Workload 2 Workload 4 Worklad 3 Workload 5

Figure 6: Decision tree for workload classification

if{x2 = 0.031)4
if{=xl = 0.342){
workload level = 5;
}
elzse{
workload level = 3;
¥
}
else{
if{xl = 0.221){
workload level = 4;
}
el=se{
workload level = 2;
}
¥

Figure 7: Workload classifier sample code
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W »| Workload Workload 4
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Workload 5

Workload 6

Workload 7

Figure 8: Workload classifier model

5.3 Spy Detection

This section describe the process of spy detection. SpyCatcher have 2 different spy de-
tection mechanisms which are supervised and unsupervised method. Supervised method
was done to set an upper bound for the unsupervised method in terms of accuracy. Since
supervised method is specifically trained for the spy implementation used in this thesis
it is natural to expect a higher accuracy than the supervised method. However specifi-
cally training a classifier for a certain way of spy implementation is far from ideal. Any
change regarding the spy implementation would cause this specifically trained classifier
to fail. Nevertheless we used both supervised and unsupervised method as the detection
method of SpyCatcher.

Supervised spy detection method consists of 7 different classifiers which are spe-
cialized for each workload. After the initial classification of the Workload classifier,
execution data was fed to a specialized decision tree. The training of this decision tree
was done by tagging each workload level by looking at the current workload on the

system and we tagged the window as with spy if there is a spy in it. We have 1 label
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Figure 9: Overview of Supervised Spy Detection

in supervised mode of operation of SpyCatcher which is with spy and without spy.

If SpyCather use workload classifier to detect workload level, it creates a model per
workload level for spy detection module as it is shown in Figure 9.

Note that cach classifier is also embedded into the kernel and they can be expressed
as nested if-else statements written in C language. In principle, spy detection classifiers
are similar to Workload classifier which we discussed above. They are both nested if-else

statements implemented in C language generated by C4.5 decision tree algorithm.

5.3.1 Supervised Method

In order to understand whether there exists a spy in an analysis window we used
supervised machine learning algorithms. Supervised method is one of the solutions for
spy detection module in Figure 2.

We conjecture that the presence of a spy process change the cache behaviour. There
are a total of 7 classifiers trained according to workload levels, after training the classi-
fiers for all workloads we proceed to feed the data generated by the workload classifier
to the corresponding spy detection classifier.

Spy detection classifiers are relatively simple compared to the workload detection

classifiers. They result in lighter trees and they use less features. As mentioned above
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spy detection classifier consists of 3 features.

We specifically used decision trees as our classification engines. There are several
reasons behind this decision. To start with, decision trees are easy to implement in
kernel level since a tree can be expressed as a certain number of nested if-clse state-
ments. Another reason to use decision trees was to avoid the extra overhead caused by
calculations. A naive-bayes classifier or a support vector machine classifier would intro-
duce extra overhead due to some complex arithmetic operations. In the case of decision
trees, overhead to execution time is minimal. There are no arithmetic operations to be

performed other conditional branch instructions.

5.3.2 Unsupervised Method

The second solution that we propose for spy detection module is an unsupervised
method. In this approach we calculate a safe zone where windows do not include
spy process. In order to form such a zone, we used windows without spy process in the
training set.

The rationale behind the idea is the following, we can track a system for a certain
time interval while spy process is not running in the system. We create a model using
features of windows to define safe state of the server. In order to create model, we
used the features which are listed in Table 2. By reducing the number of features,
windows are transformed into a point in 3-Dimensional domain. We need to find the
centroid of the points for each workload level. For this reason, we aimed to take
advantage of centroid calculation strategy of k-means clustering algorithm in order to
calculate suitable centroid point for our data, we k-means algorithm. We feed k-means
clustering and request for one cluster, it calculates the centroid of the given data. Once
the centroid is calculated, we measured distance of each point’s in test data to the
centroid using manhattan distance algorithm. Since some of the points are outlier in
the dataset, we discard points with the distance larger than the 3rd quartile of the
dataset. We observed that, 95th percentile of distance is an acceptable threshold in
terms of performance measurements when outliers are discarded.

The threshold value which is set using training data, identifies the safe region of
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windows in 3-D space. In Figure 10, distribution of windows are shown in 3-D domain.
Green points identifies windows without spy process, red points identifies windows
with spy process and the wireframe of sphere identifies the calculated safe region of
windows. As it is shown in Figure 10, windows without spy process and with spy
process are separable in the domain of selected features. In order to identify different
classes in dataset, we used thresholding technique against distance to centroid metric.
In Figure 10, we have 2078 window without spy process(green points) and 1962 of them
located in the safe region sphere. There is 2071 windows with spy(red points), where
only 57 of them located in the safe region, the others are labelled as with spy. Once
the model of safe state created, our system is ready to make decision on the presence
of the spy process. The first decision is made, when 2000 quanta is collected as the
first window. After SpyCatcher decide on the status of the first window, it needs data
from 25 new quanta to form a new window. Then we can make a decision about a
new window whether it is valid for our model or not. The window(or point in selected
domain) considered as without spy process, if it is placed inside of the sphere like green

points in Figure 10. Otherwise, that window marked as with spy process.
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6 Implementation

In this section, we will mention about implementation details of core elements of this

thesis, which are the attacker process and the tracer process.

6.1 Spy Application

The attacker process is designed to evict specified number of cache-sets from L1 data-
cache of the CPU. In order to perform eviction, attacker uses an array whose size is
same with the cache sets that will be evicted. We have 64 sets in L1 data-cache. The
size of attacker’s table varies in terms of number of cache-set to flush.

The spy application successfully evicts cache-sets from the L1 data-cache. In order
to be sure on flushing the cache, we conducted an experiment. We observed cache-
miss count during the execution of 1 AES encryption with pseudo-randomly generated
128-bit key and 128-bit pair. We used openSSL library for AES implementation with
version 0.9.7a. Descriptive statistics are displayed in Figure 11. Theoretically, all
rounds of AES encryption causes around 10 cache-misses. When all of the cache lines
are evicted, theoretical number of cache-misses is around 100. Average values in the
figure corresponds to the theoretical calculations. Because of the other executions
during the regular job cycle of the CPU such as memory allocation, function calls etc.,

theoretical values do not exactly met with the observed values.

6.2 Tracer Application

Tracer application is the main component of this thesis which implements the data col-

lection, feature extraction and spy detection logic. This application is developed using
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Figure 11: L1 Cache Miss Events

systemTap scripting language and executed in Linux kernel. Data collection section of
this application employs 3 arrays which are global variable with size of 2000. We used
these array as analysis windows which are described in section 5.

Initial trigger comes from the Linux scheduler to the tracer via systemTap probe that
instruments “perf_event_task_sched_in” function. When the scheduler takes a pro-
cess into execution, the value of required HPCs are read and stored in the internal data
structure of the Linux process. In regular Linux systems, all processes has its own data
structure where meta data of the process is stored such as process ID, thread ID, etc.
We added two additional fields for value of HPCs for this thesis to store L1 data cache-
miss and L1 data cache-access event counts. When the process execution is finished for
a quanta, value of HPCs are read using the same method. When the execution of quanta
is finished, we instrument the relevant function which is “perf_event_task_sched_out”,
and execute our whole logic after it is executed. At the end of quanta, we are able to
read values from the internal values of process itself. Therefore we have the values of
both counters for before quanta execution and after quanta execution. Thus we are
able to calculate the L1 cache-miss events and L1 cache-access events for this quanta.

Number of cache-miss and cache-access events are stored in global arrays. At the end

28



of each quanta, cache-miss, cache-access and cache-miss-rate feature is calculated and
stored in global variables. Remaining features in table 1, is calculated when an analysis
window filled with required amount of quanta. The calculation details of remaining

features will be described in subsections.

Mean of Miss Rate
This feature is calculated by using the miss rate array, which consists of data
collected between the context switch time of scheduler. Mean of miss rate for an

analysis window is basically the arithmetic mean of the values and calculated as

follows;
| 2000
Mean = 2000 Zzzl MissRate; (6)

Median of Miss Rate
Median is the value of the element which is placed in the middle of a sorted array.
The miss rate array is not sorted because when values are storing, the challenge
is the time. We do not have time to sort array at each context switch. For this
reason we sort the miss rate array after data of 2000 quanta collected in kernel
level by using quick sort algorithm. Then, select the element in the middle of the

array.

Mean + Standard Deviation of Miss Rate
The calculation of mean of miss rate feature is described above. When sum mean
and the standard deviation, we find the 3rd quartile of the dataset which helped

us to identify differences.

Mean - Standard Deviation of Miss Rate
The calculation of mean of miss rate feature is described above. When subtracting
standard deviation from mean , we find the 1st quartile of the dataset which helped

us to identify differences.

Average Miss Count
Arithmetic mean of L1 data cache-miss count values for each quanta that are

observed in monitoring stage, forms this feature for an analysis window.
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Average Access Count
Arithmetic mean of L1 data cache-access count values for each quanta that are

observed in monitoring stage, forms this feature for an analysis window.

Number of Unique Processes in an Analysis Window
An analysis window consists of 2000 quanta but the number of unique processes
in a window varies according to the workload level. When the workload level
on the server increases, basically total number of running processes is likely to
increase. We use the relationship between workload level and number of running
processes on the system in order to estimate workload level. For this reason we

calculated number of unique processes and identify according to the process IDs.

Number of Unique Processes in Partial Analysis Window

Number of unique processes may vary in smaller pieces of the analysis window.
For this reason we divided an analysis window into 2, 4 and 8 equal pieces and
calculate number of unique processes as it is described above. Then calculate the
arithmetic mean of cach part’s unique number of processes in order to form this

feature. This feature is significant for workload classification as well.

After the features are calculated, next step is determined according to the require-
ments of the experiment. If workload classification is required, then the tracer executes
the decision tree which is trained off-line by C4.5 algorithm. Thanks to the C language
compatibility, we embedded the decision tree implementation into systemTap script.
The last module is the spy detection. In the supervised mode of operation we trained
decision tree using C4.5 algorithm offline and executed in kernel level online thanks to
the systemTap features. For the unsupervised mode of operation, since this module
uses fewer number of features than the supervised spy detection, it consists of several
if-else statements at all. This module is also trained offline, but able to make online

decision on an analysis window.
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7 Experiments

7.1 Subject Applications

We performed experiments to collect performance counter values for two cases; crypto-

graphic application and other applications running on the server.

7.1.1 Cryptographic Application

Cryptographic application performs encryption operation with psuedo-randomly gener-
ated message and key where the key size is 128 bit. In every iteration of the application,
it generates new message, key pair and then perform encryption. While performing en-
cryption operation, it uses open-SSL implementation of Advanced Encryption Standard

(AES) version 0.9.7a.

7.1.2 Other Applications on Server

There are so many running processes in default Linux system. Other Application
means all of the processes apart from cryptographic process. In addition to default
Linux processes, we added two new operating system service, which are web server and
database server. These services are used create realistic user workload on the server by

Faban framework.

7.2 Independent Variables

3 independent variables are used in this work, which are;

Traced processes

L1 Data-cache miss and L1 data-cache access values of each process’s each quanta
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is collected during our experiments. In analysis phase, we divide the collected
data into two group. One of the groups includes only cryptographic process’s
cache-miss and cache-access values. The other group includes all processes in the

collected data.

Spy’s Cache Flush Percentage
Spy flushes L1 data-cache using Prime+Probe method which was defined in
Shamir et.al.’s work [28]. In our work, we flushed 100%, 50%, 25% and 12,5% of
L1 data cache of the CPU.

Workload Level
We have 8 different workload levels, which are defined as in the following. First
level do not include any workload other than the spy and the cryptographic pro-
cesses. For other workload levels, different number of concurrent users are simu-
lated using Faban framework. For workload level 2 to 8, we have 25, 50, 100, 200,

300, 400 and 500 concurrent users respectively.

7.3 Evaluation Framework

In the context of our experiments, windows classified as with spy and really includes
includes spy evaluated as true positive(TP) samples. Windows classified as with spy
but in fact windows with out spy evaluated as false positive(FP) samples. Windows
classified as without spy, and really without spy evaluated as true negative(TN) samples.
Windows classified as without spy, but in fact windows with spy evaluated as false
negative(FN) samples.

In light of these definitions, the performance of our approach is measured using 3

most commonly used metric in performance evaluation which are;

Precision
Precision term can be defined as percentage of really spy including windows in
labelled as with spy windows.

TP
Precision = ———— (7)

TP+ FP
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Recall
Recall is defined as discovery rate of classified as with spy windows among really

with spy windows.

TP
RGCCL” = m—m (8)

F-Measure
Only precision or only recall do not really measure the performance of the ap-
proach, for this reason f-measure is used which is harmonic mean of precision and

recall.

Precision * Recall
F—-M =2
casure * Precision + Recall 9)

Runtime Overhead
Our analysis method is running online, for this reason runtime overhead is crucial
success factor. We measured runtime overhead using cryptographic process. We
measured elapsed time during 100k encryption while both cryptographic process
and tracer is running and only cryptographic process is running. Performance
metric of Runtime Overhead is calculated by using Equation 10. ¢, (withTrace)
is the elapsed time during while both cryptographic process and tracer process
are running. t,(withoutTrace) is the elapsed time during while only cryptographic
process is running. We performed the measurement around 10k times. For de-
tection of average time from 10k observation, we divide whole data into smaller
chunks, then used the average of averages approach to minimize the noise in data.

withTrace) — t.(withoutTrace)

te(
head =
Overhea te(withoutTrace)

(10)

7.4 Operational Model

In this section, we will describe the experiment environment, used version of hardware
and software components. We experimented the approach on the server which has Intel

Core 2 Duo E6420 CPU, 4 GB of ram, 64 KB of L1 data cache and 1 TB of hard disk

drive. The whole approach tested on Centos 6.4 and Linux Kernel version 2.6.32. Kernel
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instrumentation is done by taking advantage of System Tap version 2.6. Cryptographic
algorithms are used from openSSL library 0.9.7a. For workload generation, we used
two tools, version of Faban is 1.2, and version of Olio is 0.2. Handling of workload is
done by web server and database server with version 2.2.15 and 5.1.69 respectively.

For training purposes, Matlab 2013b is used both for workload classification and
spy detection modules. In the supervised parts of out approach, C 4.5 decision tree
algorithm used, which is already implemented in Matlab library.

By definition of Prime+Probe attack, attacker process and target process must run
on the same core. For this reason, we used taskset command of Linux which forces
processes to run on the specified core. Cryptographic process, spy process, web server

and database server processes are forced to run on the same core of the CPU.

7.5 Workload Characteristics

Workload is generated on the system using Faban and olio as described in background
information section. We used web server and database server workload with different
number of concurrent users as workload. Selected side channel attack approach is
using cache contentions. In order to detect attacks, different workload levels must have
different impact on L1 CPU-cache. Difference of workload levels in the manner of L1
cache-miss event is shown in figure 12.

Number of cache-miss event is increased as the workload level is increased. This
means that, higher number of processes is running on the system and these processes
are using same cache sets with cryptographic application. In other words, workload

levels are distinct in the manner of cache-miss event.

7.6 Results and Discussion

In this section, we will explain and discuss the results of the experiments. 4 different
experiments are performed for testing our approach. Half of the experiments do not
use workload classification module. Since spy detection methods of experiments are

different, we name them accordingly. In supervised method section, spy detection is
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Figure 12: Workload Characteristics

done by supervised machine learning algorithms.

As we stated before, we experimented our approach over collected data both only
cryptographic process and all running processes. Performing analysis over only cryp-
tographic application’s data is not accurate enough to decide on the presence of the
spy process. We conducted series of experiment over only the data of cryptographic
application using the same setup. Precision, Recall and F-measures are provided in
Appendix B, where overall accuracy is lower than 45% for unsupervised approach and
lower than 85% for supervised approaches. For this reason we focused on data of all

processes.

7.6.1 Supervised Method

In the case of supervised learning, there were 2 different approaches as explained in
previous sections. For the first one, we trained a decision tree for all workloads in
order to detect and isolate the spy process. For the second approach we eliminated the
Workload Classifier in between.

Two different approaches introduce a time-accuracy tradeoff. If there is a workload
classifier in between, we measured F-measure around 99% and runtime overhead as

0.3%. When workload classification is not used, single decision tree is trained for all
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workload level and we observed F-measure as 98% and runtime overhead as 0.1%. We
notice an increase in F-measure since we were able to differentiate and model the work-
load effect on cache. However, since we use an additional classification tree in between
this is causing an extra overhead in terms of timing. Detailed experiment results are
provided in Appendix A as Precision, Recall, F-Measure and Runtime Overhead.

Differentiating between workload levels are not mandatory for the approach to work
but it is certainly beneficial. Results of this approach indeed proves that the classifier
can also perform well without differentiation of workload levels.

Experiments with different configurations were carried out to further investigate the
results. Supervised learning, in this research were mostly used to give us an idea about
the upper bound in terms of F-measure, precision and recall. Naturally unsupervised
learning method is a better approach than supervised method. It is generalizable to
every execution without training a specific classifier but it is also intuitive to expect a
slightly worse result compared to the supervised approach.

In runtime overhead perspective, overhead introduced by decision trees were negli-
gibly small. We measured 100k encryption with and without spy detection modules in

execution. Runtime overhead introduced by spy detection module is less than 1% and
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can be seen in Appendix A.

7.6.2 Unsupervised Method

Two different experiments are performed in the context of unsupervised approach. At
first, we used SpyCatcher with workload classification, and we selected unsupervised
method for the spy detector module. The model for unsupervised spy detection is
formed according to the output of supervised workload classification algorithm. Per-
formance details of the first configuration is shown in Figure 15. As it is shown in
Figure 15, F-measure has decreasing trend as the workload level increases. However it
is still higher than 85%. The reason behind the negative trend is the growing noise on
the system as the workload increases.

The second observation from Figure 15 is that, the success of this decision mech-
anism is not dependent on the number of flushed cache set. As shown in Figure 15,
F-Measures are very close to each other under same workload level. Spy flushes different
number of cache sets. Flushed cache set may not belong to cryptographic application,
but some other process needs the flushed part of the cache during its execution. This

situation leads to cache miss event. Since our system collects data from all of the
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Unsupervised Method with Workload Classification (F-Measure)
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running processes, flush operation become detectable by using our approach In fact,
partial flush of cache sets creates difference between the processes which are using the
flushed sets of the cache and which are not in the manner of cache miss event count and
miss rate. Therefore, F-Measure has slightly positive trend as the number of flushed
cache set decreased. This result means that, our approach can detect the spy included
window when the spy evicts cache sets partially.

The other important aspect of the experiment is runtime overhead of the analysis
and decision making progress. Timing overhead details are shown in Appedix A. The
overhead measured using cryptographic application. The average runtime overhead was
lower than 0.8%.

In the context of unsupervised approach, the second experiment is done without
workload classification over the same train and test set. Thus the second configuration
employs pure unsupervised mechanisms. This experiment also repeated for 4 different
number of flushed cache sets. One centroid and one threshold defined by our proposed
method for all workload levels. As the number of flushed cache set increased, average
distance of windows to the centroid also increased. Details of distance metric are

provided in Figure 17. This indicates us that, when spy process flushes higher number
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Figure 16: Performance Details of Unsupervised approach without

Workload Classification

of cache set, windows become distant from the centroid.

The F-measure result of experiment where SpyCacher executed in unsupervised
mode and workload classification is not executed, are provided in Figure 16. As it
is seen on the figure, F-measures are around 95% which are higher than the hybrid
solution of the problem. The reason is the following, workload classification is not used
in this approach, by this way we eliminated the error rate of workload labelling process.
By taking out the workload classification module, we are able to build more reliable
model for spy detection. Since result of workload classifier is used for building model
in hybrid approach, erroneous workload classification led to create unreliable model for
spy detection module.

Timing overhead of the method is provided in Appendix A. Overhead values are
slightly lower than the other unsupervised configuration. The overhead measured using
cryptographic application. The average runtime overhead was lower than 0.1%.

The result indicates that majority of time is spent in workload classification module
which is not surprising. By waiving around 5% of F-measure, we can detect the presence

of spy processes with lower overhead.
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Figure 17: Average distance of windows to Centroid in Unsupervised

Approach without Workload Classification

7.7 Compare and Contrast

In this thesis, we have 4 different configuration to evaluate our approach on Linux
system. Since supervised approaches more accurate than the unsupervised ones, su-
pervised workload classification and supervised spy detection experiments are done to
discover what are the upper limits of F-measure in different number of flushed cache
sets. As it is shown in Figure 14 and 13, F-measure is higher than 95% in supervised
approaches. Supervised method is successful in the manner of F-measure, but elapsed
time for a decision can be reduced by using the proposed unsupervised methods. Using
the unsupervised approach reduced the runtime overhead by 90%, compared to using

the supervised approach.
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8 Threats to Validity

In this section, we will discuss about the details of possible threats to external validity
which are a) selected environment, b) side channel attack model, ¢) number of attacker
on the system, and d) generated workload. First of all, we only tested our approach
in Linux environment which is selected according to our team members’ experience.
Since programming HPCs is possible in Windows and Mac OS, we strongly believe
that our proposed solution can be implemented on other platforms. Although we have
only evaluated the proposed approach to detect the presence of spy process using the
Prime+4Probe technique, we believe that the approach is readily available to detect
other spy processes. This is because other spy processes in the cache-based side-channel
attack also operate by creating intentional cache contentions, which affect the degree to
which the process suffer from cache misses. The other threat is number of spy processes
on the system. We experimented our scenarios with one spy process. We believe that
detecting the presence of more than one spy process in not any harder than the detecting
the presence of a single spy process, because as the number of spy process increase, the
cache contentions increased by the processes increase. The last important threat to
validity for our work is workload levels. We tried to create workload as close as possible
to real life user workload of an web application server. In particular v , we worked with
8 different workload levels. We simulated different number of concurrent users from 25
user to 500 user on our web server and database server. Since our approach based on
CPU-core sharing principle, all of the processes need to be forced to a single core of
CPU. For this reason, we believe that 500 concurrent user is realistic load for a single

core.
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9 Conclusion and Future Work

In this thesis, we presented a lightweight online approach to detect the presence of
the spy processes. Therefore we collect data from an e-commerce server, then analyze
it for a window and make decision on the window whether an attacker exists or not.
We located the window with spy process with higher than 85% F-measure and 0.5%
runtime overhead in average. Identification of the presence of attacker is critical for
overall system security. Once the the presence of attacker is confirmed, applications that
are running on the system may take additional actions in order to prevent information
leakage.

As the future work of this thesis, suspicious process or a list of suspicious processes
can be discovered by using some other technique. The other next step of this thesis
can be experimenting our approach using other attacker models. Once the attack is
discovered and the attacker is found, then what are the possible actions. Changing the
allocated CPU of attacker or terminate the attacker process. Preventive actions are

also quite promising.
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