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ABSTRACT 

 

Sliding Mode Controllers (SMC) possess robustness properties under parameter 

uncertainties. Usually, a Lyapunov based controller design with a switching control signal 

constitutes the backbone of robustness. However, the ideally zero switching time of the 

controller output cannot be achieved in digital implementation. This causes a phenomenon 

called chattering – high frequency oscillations observed in systems state variables. Chattering 

also shows itself as high amplitude oscillatory behavior in the control signal. A chattering 

actuator output is not favorable for many plants, including robot manipulators driven by 

actuator torques. This problem is traditionally solved by smoothing the switching control 

output, deviating from the original mathematical foundations robustness. Over-smoothing 

causes performance deterioration, while too limited smoothing action may lead to the wear of 

the mechanical system components. This motivates the exploration of automatic tuning 

approaches which consider chattering and performance simultaneously. 

This thesis proposes two SMC smoothing and parameter tuning methods with soft 

computing (SC) methodologies. 

The first method is based on Genetic Algorithms (GA). SMC controller parameters, 

including the ones governing the smoothing action are tuned off-line by evolutionary 

computing. A measure is employed to assess the instantaneous level of chattering. The 
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integral of this value combined with performance indicators including the rise time and steady 

state error in a step reference scenario are used as the fitness function. The method is tested on 

the model of a direct drive (DD) SCARA type robot, via simulations. 

The GA-tuned SMC is, however, tailored for a fixed reference signal and fixed 

payload. Different references and payload values may pronounce the chattering effects or lead 

to performance loss due to over-smoothing. The second SMC parameter tuning method 

proposed employs a fuzzy logic system to enlarge the applicability range of the controller. 

The chattering measure and the sliding variable are used as the inputs of this system, which 

tunes the controller output smoothing mechanism on-line, as opposed to the off-line GA 

technique. Again, simulations with the direct-drive robot model are employed to test the 

control and tuning method.  
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ÖZET 

 

  

Kayan Kipli Denetleyiciler (KKD) parametre belirsizlikleri karşısında gürbüzlük 

özelliklerine sahip denetleyicilerdir. Söz konusu gürbüzlüğün temelinde genellikle 

anahtarlamalı bir kontrol sinyali üreten Lyapunov tabanlı bir denetleyici tasarımı 

bulunmaktadır. Bununla beraber, ideal koşullarda söz konusu denetleyici tarafından sıfır 

zamanda anahtarlama yapan bir sinyal olarak üretilmesi beklenen kontrol çıktı sinyali sayısal 

uygulamada gerçekleştirlememektedir. Bu durum, çatırdama adı verilen ve sistem durum 

değişkenlerinde yüksek frekanslı salınımlara sebebiyet veren bir durum meydana 

getirmektedir. Çatırdama aynı zamanda denetleyici sinyalinde de yüksek genlikte salınımlı bir 

davranış şeklinde kendini göstermektedir. Çatırdamalı bir eyleyici çıktı sinyali, eyleyici 

torkları tarafından sürülmekte olan robot manipülatörler de dahil bir çok tesis için istenmeyen 

bir durumdur. Bu problem geleneksel yöntemlerde, denetleyicinin gürbüzlük özelliğini 

azaltmasına rağmen, anahtarlamalı denetleyici çıktı sinyalinin düzgünleştirilmesi yoluyla 

çözülmektedir. Fazla düzgünleştirme performans azalmasına, çok sınırlı düzgünleştirme ise 

mekanik sistemin komponentlerinde aşınma etkisine sepeb olabilmektedır. Bu etkenler, 

çatırdama ve performans etkilerini eş zamanlı bir şekilde ele alan otomatik ayarlama 

yaklaşımlarını motive etmektedir. 
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Bu tezde, esnek hesaplama yöntemleri kullanan iki farklı KKD düzgünleştirme ve 

parametre ayarlama yöntemi önerilmektedir. 

Birinci yöntem Genetik Algoritma (GA) tabanlı bir yöntemdir. Bu yöntemde, 

düzgünleştirme eylemini kontrol edenler de dahil, tüm KKD parametreleri evrimsel 

hesaplama kullanılarak çevrim dışı bir şekilde ayarlanmaktadır. Anlık çatırdama seviyesinin 

belirlenmesi amacıyla bir ölçüt kullanılmaktadır. Bu ölçütün integrali yanısıra, bir adım 

girdisi karşısındaki yükselme süresi ve kararlı durum hatası gibi performans göstergeleri form 

fonksiyonu olarak kullanılmaktadır. Söz konusu yöntem, doğrudan tahrikli bir SCARA tip 

robot manipülatör modeli kullanılarak gerçekleştirilen simülasyonlar üzerinde test edilmiştir. 

Bununla birlikte, Genetik Algoritma tabanlı KKD, sabit bir referans sinyali ile sabit 

bir görev yükü için uygundur. Bu nedenle, farklı referanslar ve farklı görev yükü değerleri 

çatırdama etkilerini ortaya çıkarabilir veya fazla-düzgünleştirme temelli performans 

düşüşlerine neden olabilirler. Önerilen ikinci KKD parametre ayarlaması yöntemi, 

denetleyicinin uygulama alanını genişletme amaçlı bir bulanık mantık sistemi kullanmaktadır.  

Çevrim dışı çalışan GA yönteminin aksine bu yöntemde çatırdama ölçütü ve kayan değişken, 

anahtarlamalı denetleyici çıktısını çevrim içi olarak düzgünleştiren bu sisteme girdi olarak 

kullanılmaktadır. Aynı şekilde, doğrudan tahrikli robot model simülasyonları, geliştirilen 

denetleme ve ayarlama yönteminin test edilmesi için kullanılmıştır. 
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Chapter 1 

 

1. INTRODUCTION 

 
 

It is not easy at all to handle robot manipulator control due to nonlinear and coupled 

system dynamics. Usually, system parameters in motion control applications are unknown or 

they may vary with time; but Sliding Mode Control – shortly known as SMC – copes with the 

changing parameters and nonlinearity problem. This is true even when what we know about 

plant dynamics is limited, which makes SMC a robust control strategy. 

[1] and [2] state that SMC was firstly introduced in the 50’s of the 20th century, but it 

received more attention in the 70’s of the same century, and since then, it has been employed in a 

huge variety of applications. Those include motion control, chemical plant control, converters of 

power, and robotics [3-4]. 

SMC is very well known and mostly famous with its robustness as its most attractive 

property, because once we force the system to be in a sliding mode, disturbances and parameter 

changes no more affect it. 

The control signal of the SMC is discontinuous, and it switches over a predefined region 

in what is known as the state space. To have all motions in this region neighborhood directed 

towards the region, it is certainly required to have some conditions met, so we can end up by 

having the results towards zero in any sliding motion of the states that follow the dynamics, 

which were defined by its region [5]. Usually the sliding region is nothing but a line in a 2-D 

state plane. We have the system in the sliding mode only when the state variables move on the 

sliding region. Such a mode provides us with many useful properties that enable us to track the 

control of the uncertain nonlinear systems, which make it full of properties that can be described 

as invariance ones when it comes to the uncertainties we may face in the plant model itself. For 

more information about such a thing, a survey of sliding mode controllers was provided in [6]. 

[7-11] confirm that Robotics is indeed an area where SMC can be applied successfully. 
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In spite of that, and unfortunately, Sliding Mode Controllers are very well known by 

some problems that may have some significant effects on the system. The most significant one is 

what is known as “Chattering”, which is the oscillations of the controller output. Another one 

would be the huge employment of unnecessarily large control signals in order to override the 

uncertainties of the parametric. “The amount of control necessary to keep the system state 

variable on the sliding region”, which is the equivalent control, cannot be easily calculated; thus, 

a full knowledge of the plant dynamics is a must [12]. Previously, many modifications have been 

proposed to the pure sliding control law to ease handling such problems [13] 

The huge developments in the fields known as the Intelligent Control, the Fuzzy Logic, 

and the Evolutionary Computing approaches, gave huge flexibility to the designers of the 

systems to overcome the uncertainty problems by either learning from their experience or by 

implementing their own understanding of the problem [14-15]. Some of the results of these 

researches were reported in [16-33]. 

One of those techniques is known as the Genetic Algorithms, which is used to explore 

search spaces with large dimensions by imitating the process of evolution in nature. Stronger 

Individuals (solutions) according to specifically designed fitness criterion survive to pass their 

“Genetic Material”, which is/are (a) suitable part(s) of the solution, to the individuals existing in 

the next generation. Continuous iterations of the new generations provide us some kind of an 

optimized solution that we can code in the “Chromosome” of what is known as the “Test 

Winner” in the last generation. By this, we can consider GA as suitable tools for the adjustment 

of many nonlinear controllers’ parameters indeed. 

On the other hand, Fuzzy Logic systems employ human experience into the control task 

as one of the many other intelligent control techniques. Fuzzy Rules are used to compute the 

control signal in the control process of the robotic trajectory. Also, the other controllers 

parameters can be tuned on-line by using them, which enable us to reach a better performance 

when we have uncertainties and operating points that do vary. 

This thesis proposes two SMC smoothing and parameter tuning approaches. 

The first approach is based on GA. In this method, various SMC controller parameters 

are tuned off-line by evolutionary computing. The parameters used to describe a control output 

smoothing mechanism are among the tuned ones. The sliding region - a sliding line in this case - 

is also adjusted by the GA system, along with the main coefficient of the control action, which 
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pushes system state variables towards the sliding line. A chattering measure is introduced. The 

integral of the sliding measure, and performance indicators, including the rise time, error integral 

and steady state error, are used to define a fitness function in a step reference scenario. The 

method is tested on the model of a 2-DoF DD (Direct Drive) SCARA type robot, via simulations. 

The GA-tuned SMC, however, is obtained for a fixed reference signal and fixed payload. 

Different references and payload values may lead to chattering effects and performance 

degradation. The second SMC parameter tuning method proposed in the thesis employs a fuzzy 

logic system to enlarge the operation range of the controller. The chattering measure and the 

sliding variable are used as the inputs of this system. The fuzzy logic system tunes the controller 

output smoothing mechanism on-line, which opposes the off-line GA technique. Again, 

simulations carried out with the Direct-Drive robot model are employed to test the control and 

the tuning method. The variable sliding control gain and the introduction of a “Smoothing 

Function” tuned by a GA and a Fuzzy Logic System are novel contributions. 

The thesis is organized as follows. The second chapter outlines principles of sliding mode 

controllers, genetic algorithms and fuzzy logic systems. Practical difficulties and popular 

solutions are discussed for sliding mode controllers. A survey on the combination of GA and 

fuzzy systems with sliding mode controllers is also presented. The direct-drive SCARA type 

robot model used in this study is introduced in Chapter 3. Chapter 4 is devoted to the description 

of the particular SMC employed in the thesis. The GA based tuning of this controller is presented 

in Chapter 5, and Chapter 6 discusses the fuzzy logic on-line tuning system. Developments in 

Chapters 4, 5, and 6, are accompanied by simulation results with the robot model. Conclusions 

and a discussion of future work are presented in the last chapter. 
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Chapter 2 

 

2. A SURVEY ON SLIDING MODE CONTROLLERS, GENETIC ALGORITHMS 

AND FUZZY LOGIC SYSTEMS 

 

In this chapter, a survey on the integration of GA and fuzzy logic systems with SMC is 

presented. The first three subsections are devoted to outline the basic principles of SMC, GA, 

and fuzzy logic, as separate methodologies.  

 

2.1. Sliding Mode Control 

 

In order for the system to stay in a “sliding mode”, and thus, it will not be affected by 

disturbances and modeling uncertainties; error states in SMC should be driven to the 

“switching/sliding” surface. By definition, the control of an st)1( −n -order system is much easier 

than the control of an thn -order system. The basics of Sliding Mode Controller design are 

outlined below to support the discussions in the following chapters. The approach mentioned 

below was chosen carefully to provide a framework for the coming discussions. However, a 

variety of other SMC designs are provided in the literature. This approach provides an example 

to present the difficulties of the Sliding Mode Controllers tackled in some practical applications. 

The plant under consideration is a nonlinear MIMO system: 

∑
=

+=
m

j

jiji

k

i ubxfx i

1

)( )(     i=1,...,m. (2.1) 

)( ik

ix  here refers to the th

ik  derivative of 
ix . The state vectors of the subsystems described in (2.1) 

were combined to form the state vector x . 

[ ]Tk

mmm

k mxxxxxxx
11

111   1 −−= L&LL& . (2.2) 
The control input was defined as 
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[ ]Tmuuu L1= . (2.3) 
Let x  be ( n x1), then we can express the system equation as 

)()()( tBuxftx +=& . (2.4) 
Let B be the (nxm) gain matrix. Thus, the sliding surface will be defined as the surface where the 

(m x1) variable s , defined by 

)()())()((),( XsttxtxGtxs a

d −=−= φ& , (2.5) 
is equal to zero. s  refers to the sliding variable (the sliding function). 

In (2.5), 

)()(s   and    )()( tGxxtGxt a

d ==φ . (2.6) 
They are nothing but the time and the state dependent parts of the sliding function, respectively. 

In (2.6), dx  refers to the desired state vector, while G is the (mxn) slope matrix of the sliding 

surface. G was chosen so that the sliding surface function can be represented as 

i

k

ii e
dt

d
s

i 1−









+= λ . (2.7) 

is  is the thi  component of the sliding function s . ie  refers to the error for ix  defined by 

i
d
ii xxe −= . (2.8) 

The constants iλ  were selected positive. We know that the error ie  converges to zero if si equals 

zero. Generally, the errors of the system converge to zero, if the states are on the sliding surface 

(with the error dynamics defined by the sliding surface parameters). 

The SMC design was formed by Lyapunov function selection. The control law is to be 

chosen so that a Lyapunov function candidate satisfies criteria of stability of Lyapunov. Thus, 

the Lyapunov function candidate was chosen as 

2
)(

ss
sV

T

= . (2.9) 
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Now we have a positive definite function. It is desired to have the derivative of the Lyapunov 

function as a negative definite. It is doable if  

)(sign
)(

sDs
dt

sdV T−=  (2.10) 

of some mxm positive definite diagonal gain matrix D. sign(s) refers to the vector signum 

function. )(sign is  affects the components of s . It is defined as 





<−

>+
=

01

01
)(sign

i

i
i

s

s
s . (2.11) 

By differentiating (2.9), and then equating it to (2.10), we obtain 

)(sign sDs
dt

ds
s TT −= . (2.12) 

Let’s take the time derivative of (2.5), and let’s use the plant equation to reach 

))(( BuxfG
dt

d

dt

dx

x

s

dt

d

dt

ds a +−=−=
φ

∂
∂φ

. (2.13) 

Place (2.13) into (2.12) to get the control input signal as 

)()()( tututu ceq += , (2.14) 

and )(tueq  is nothing but the equivalent control term given by  








 −−= −

dt

td
xGfGBtueq

)(
)()()( 1 φ

, (2.15) 

while )(tuc  is a corrective control defined as 

)(sign)(sign)()( 1 sKsDGBtuc ≡= − . (2.16) 
Just for the record, we do have many other choices for both the Lyapunov function and 

the desired derivative of it. However, each one of them will definitely yield some different forms 

for the corrective control term. 

As it was stated before in Chapter 1, the pure form of the SMC does suffer from some 

drawbacks when it comes to real practical applications. One of them is the controller output high 
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frequency oscillations known as chattering. The ideally infinite frequency switching necessary 

for the sliding mode establishment causes such oscillations. In addition to the fact that chattering 

may cause severe damages to the mechanical components, the instability resulted by the high 

frequency plant dynamics, which may be excited by Chattering, is definitely undesirable in 

almost all implementations. 

Moreover, an SMC is easily vulnerable to the measurement noises, which makes it a 2nd 

problem. Measurement noise has very negative effects when the measured sliding variable is 

close to zero, but control signal depends on the sign of it measured there. 

The 3rd problem is due to the fact that the SMC can employ too large control signals to 

overcome the uncertainties of the parameters. 

The 4th problem is the difficulty to calculate the equivalent control, which demands us 

to endorse a complete knowledge of the plant dynamics. 

In order to overcome those problems, some modifications to the original sliding control 

law had to be suggested and implemented [34]. One of those modifications is the Boundary 

Layer approach. In the place of the signum function, a saturation function is implemented [7, 

12]. Another one would be the “Provident Control”. It just switches between control structures to 

avoid a sliding mode [35, 36]. A good mathematical model of the plant is required for the 

computation of the equivalent control. [37] proposed the use of an equivalent control estimation 

technique. 

  

2.2. Genetic Algorithms 

 
 

Genetic Algorithms (GA) are heuristic methods employed to solve complex 

optimization problems [38]. They use the "Survival of the Fittest" principle and compare 

candidate solutions according to their fitness. Fitness can be as a measure of qualities or 

disadvantages of the solution. A solution is coded into registers called "Chromosomes" after the 

analogy with living beings. A set of solutions - called a population - is created randomly at first. 

The solutions are called individuals of this population. Individuals are then ranked according to 

their fitness values. The next generation of the population is created from the first generation by 

chromosome cross-over and mutation processes. Chromosomes of fitter individuals are favored 

in this mechanism to pass their contents into the next generation. The candidates chosen for this 
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process are called parents. Usually the parents are selected randomly using a scheme which 

favors the more fit individuals. After the selection process, their chromosomes are recombined. 

The process of producing offspring individuals creates the next generation. In traditional GA, 

crossover and mutation are the two typical mechanisms. The crossover and mutation operators 

are used on randomly selected parents from the candidate pool. Also to reduce the probability of 

divergence, a number of elite (the fittest) members of each population are transferred to the next 

one. New generations are created iteratively. A solution individual with the desired value of 

fitness can be generated in this manner with a number of iterations [38]. 

At some randomly chosen 2 positions of the chromosome strings of 2 individuals 

chosen randomly to let the crossover concentrates on them by dividing their chromosome strings 

at those 2 positions, 4 produced segments are referred to them as tails and heads. The tail 

segment of the first individual and the head segment of the second individual are combined to 

produce a new full length new chromosome. This is referred to as single point crossover. A 

crossover sample for the given parents is shown in Figure 2.1. 

 

 

Figure 2.1: A sample Cross-Over 

 

Individuals chosen in a random manner suffer from an enforced mutation after the 

crossover by altering a randomly chosen gene, in order to avoid local solutions by at random 

search [38]. Figure 2.2 shows the mutation operation of an individual. 

 

 



9 
 

 

Figure 2.2: Mutation 

 

Then the individual’s number within the population and the maximum iterations will be 

set because they are very important parameters of the GA methodology. In addition to the 

percentages of the population selected for crossover and mutation, the percentage of the elite 

members (They will pass directly to the next generation) is another important parameter of the 

GA methodology. The parameters of the GA methodology are shown in Table 2.1, while the 

overall Reproduction Operation is shown in Figure 2.3. 

 

Table 2.1 

The parameters of GA 

The amount of population 

chosen for cross-over 

The amount of individuals 

exposed to mutation 

Amount of elite individuals 

Population size 

Number of maximum 

iterations 

 

 

Figure 2.3: Reproduction Scheme 
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2.3. Fuzzy Logic Systems 

 
 

Figure 2.4 shows a basic pure fuzzy logic system diagram. From it, it is clear that the 

Fuzzy Rule Base consists of a set of fuzzy IF-THEN rules to determine a mapping from the 

fuzzy sets in the input discourse U  universe to fuzzy sets in the output discourse Y  universe 

based on the principles of the fuzzy logic. 

 

 

Figure 2.4: Basic Pure Fuzzy Logic Systems Structure. 

 

In this scheme the fuzzy IF-THEN rules are of the form 

ll

nn

ll GyFxFxR  is  THEN  is  and  and  is  IF : 11
)(

L  (2.17) 

l
iF and lG  are fuzzy sets, Uxxx n ∈= ),( ,1 K  and Yy∈  are input and output linguistic 

variables, respectively, and Ml ,,2,1 K= , where M is the number of rules. This type of fuzzy 

systems provides a good framework to incorporate human expert’s knowledge in it, yet, it has a 

disadvantage of having fuzzy sets as inputs and outputs whereas the variables in engineering 

applications may vary and they are real-valued. 

Figure 2.5 shows fuzzy logic systems basic structure with Fuzzifier and Defuzzifier. 

Inputs and outputs are real-valued variables in engineering systems. Thus, to use the pure fuzzy 

logic system shown in Figure 2.4 above in engineering systems, adding a Fuzzifier and a 

Defuzzifier to the input and output of the system, respectively, is the most straightforward way. 

Crisp values into fuzzy sets are mapped by the Fuzzifier, while fuzzy sets to crisp values in the 

output section are mapped by the Defuzzifier. Nevertheless, and due to the fact that they are in a 
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pure fuzzy logic system, the fuzzy rule base and the inference engine remain unchanged. 

Mamdani was the first to propose such kind of fuzzy logic system [39] and he applied it 

successfully to many control problems. Fuzzy logic systems accompanied by a Fuzzifier and a 

Defuzzifier have a lot of advantages, which makes them suitable for engineering applications due 

to the crisp input and output values. They really do constitute some kind of a natural framework 

to incorporate human knowledge to the problem by having many choices for the Fuzzifier, the 

Inference Engine, and the Defuzzifier, to obtain the most suitable system for a specific problem 

under testing. There are many training algorithms that can be developed widely to specify the 

parameters of these systems. 

 

 

Figure 2.5: Fuzzy Logic System Basic Structure with a Fuzzifier and a Defuzzifier. 

 

2.4. SMC with GA 

 
The integration of GA and VSS control has some kind of an indirect nature. GA tune 

the control parameters of the VSS based on many reports in the literature. 2 examples on the use 

of GA in SMC construction were presented in [40]. In [41], a Fuzzy SMC structure was taken 

into consideration. In this structure, the consequents were control outputs and the antecedents 

were fuzzy sets on the sliding variable. Also, 2 kinds of GA-based fuzzy SMC design methods 

were studied. In the 1st kind, only the parameters in the THEN part were known, while in the 2nd 

kind, all the parameters in both the IF part and the THEN part were taken into consideration. Đn 

[42], in order to reduce chattering, GA were used to estimate the required magnitude of the 

switching control. In [43], GA was used in the computation of the most suitable membership 

functions for a smoother fuzzy SMC. Parameters of the controller were obtained by a GA by a 

SMC design in [44]. In [45], a reluctance motor optimal speed control was carried out where a 

GA system was used to search for the uncertain parameters. 
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2.5. SMC with FL 

 

Đf we have some implementation difficulties of the SMC, we can use a Fuzzy Logic 

alongaside a SMC to solve them by adding a Fuzzy Logic system. While it is true that the basic 

design and implementation of SMC is followed, but Fuzzy Logic systems are used to play a 

secondary role. Their implementation would be either to adapt the controller parameters, to 

handle the elimination process of the chattering, or to tackle the problems of modeling 

difficultueis and the calculations difficulties of the control equ . 

We can use a low pass filter as a common approach to prevent chattering by smoothing 

the control input in a SMC. If the filter bandwith is small, abrupt changes in the control signal 

can be prevented. But, if the filter bandwith is too small, the difference between the original and 

the filtered control signals can be too large, and thus, we will have a more significant deviation 

of the system from the ideal sliding mode. If the state is kept within the closeness of the sliding 

surface, then the bandwith shall be small, because the change in u  will be expected to be abrupt. 

In [16], a fuzzy system was used so that the bandwith was made large in order to maintain the 

advantages of the SMC. 

[18] used sliding mode parameters tuning via fuzzy systems. A discrete-time fuzzy-

sliding-mode controller applied to vibration control of a smart structure featuring a piezo film 

actuator was presented. Firstly, they considered a discrete-time model with mismatched 

uncertainties for the design of a discrete-time sliding-mode controller (it has two parts: an 

equivalent part and a discontinuous part). They employed a fuzzy technique to appropriately 

determine control parameters (discontinuous feedback gain was one of them) to formulate the 

fuzzy-sliding-mode controller, which was used in their experiments to demonstrate the 

effectiveness of the proposed method. 

The design of SMC difficul task because an exact knowledge of the plant is rarely (if 

ever) available, and the bounds of the uncertainties may not be known. Thus, the use of an 

adaptive Fuzzy Logic identifiers for the uncertainties was proposed by many researchers. In [19], 

to adaptively model the plant non-linearities, which have unknown uncertainties, a fuzzy system 

architecture was employed, in which, the modeling error bound (results from the error between 

the actual nonlinear plant and the fuzzy system - an inverted pendulum system) is identified 

adaptively, and by using this bound, the sliding control input was calculated. 
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In [20], a non-linear system was firstly linearized around some operating points, and 

then, the Fuzzy Logic principles were used to aggregate each locally linearized model into a 

global model representing the non-linear system, then, a vigirous SMC was proposed to 

guarantee system asymptotic stability. 

Fuzzy approximators in modeling uncertainties were also noticed [46, 47]. Both Fuzzy 

approximators and sliding control schemes were considered in [48], in which, 2 adaptive SMC 

schemes with fuzzy logic systems as approximators were designed. The Fuzzy Logic systems 

were used for the approximation of the unknown system functions. A fuzzy logic system 

approximates the nonlinear system buxfx += )(& unknown function, then a robust adaptive law 

was employed to minimize the approximation errors between the real system functions and the 

fuzzy approximators in the first method; while in the second method, two fuzzy logic systems 

were used to approximate f and b, respectively. Stability proofs of the control schemes were 

given too. 

To approximate the unknown dynamics in each sub-system of an interconnected 

nonlinear system, fuzzy logic systems were employed in [21]. In order to compensate for the 

fuzzy approximating errors and to attenuate the interactions between sub-systems, a fuzzy sliding 

mode controller was developed after that. With the tracking errors converging to a neighborhood 

of zero, a global asymptotic stability was established in the Lyapunov sense. 

In [49], a decentralized adaptive fuzzy control scheme was employed to overcome 

difficulties caused by coupling effects for a class of large-scale nonlinear systems (large scale 

plants) with unknown constant control gains was proposed, which does not require detailed 

models and accurate load forecasting. Thus, an adaptive fuzzy control scheme was obtained 

using the principle of sliding mode control and the approximation capability of fuzzy systems. 

Fuzzy systems are universal approximators. This was considered in the structure design 

expressed in [46], which used decentralized fuzzy systems to approximate the controlled process 

and to adaptively compensate for the plant uncertainties. They used the Lyapunov function 

method to obtain a proof for global stability. Moreover, the simulation results presented 

indicated clearly strong robustness against both model uncertainties and nonlinear sub-system 

interactions. In addition to all of that, the tracking errors converged to a neighborhood of zero, 

and the proper fuzzy logic switchings that were applied ensured the avoidance of the chattering 

phenomenon inherent in sliding mode control. 



14 
 

 [50] proposed modeling and control approaches for uncertain nonlinear dynamic 

systems using fuzzy set theory. A fuzzy-set based representation of the uncertain systems was 

developed for modeling. A robust control design was made feasible with neither resorting to 

model simplification, nor imposing restrictions on uncertainty and the fuzzy control design 

approach was developed with a fuzzy model representation of uncertain systems. To show 

usefulness of the method, a single-link robot arm with uncertain dynamics was used as a 

simulation test bed. 

Fuzzy Logic systems can be considered as complementary controllers to SMC schemes 

by some approaches. At the start, Sliding Mode Controllers have to be designed. Then, additional 

fuzzy control terms are used together with the sliding mode controller output for performance 

enhancement and chattering elimination. [22] presented a similar scheme for linearized systems 

suffering from uncertainties. To compensate for the influence of the un-modeled dynamics and 

chattering, SMC combined with fuzzy tuning was used. Then in [23] this approach was further 

generalized to a class of nonlinear systems, where the simulations on a robotic manipulator were 

presented. 

An adaptive SMC system with a fuzzy observer for uncertainties was proposed in [51].  
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Chapter 3 

 

3. THE SCARA-TYPE DIRECT-DRIVE TWO-DEGREES-OF-FREEDOM ROBOT 

 
The experimental manipulator used in the thesis is described in this Chapter. Figure 3.1 

shows the 2-DoF Direct Drive manipulator built at the Robotics Laboratory of Sabanci 

University. The arm is controlled by a dSPACE 1102 DSP-based system. The user interface 

software ran on a PC and C language servo routines were compiled in this environment. Then 

they were downloaded to the DSP. To provide position measurement signals with a resolution of 

1024000 pulses/rev, a Yokogawa Dynaserv direct drive motors were used at base and elbow 

joints. The torque capacity of the base motor was 200 Nm, while the one of the elbow motor was 

40 Nm. 

The robot dynamics equation is defined as 
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(3.1) 

where 1J  and 2J  represent the rotor inertia values of both the base and the elbow joints, 

respectively. D  is the inertia matrix of the manipulator. 1q  is the angular position of the base 

joint. 2q  is the elbow angular position shown in Figure 3.2. C  refers to the matrix for centripetal 

and Coriolis effects; while 1B  and 2B  are the constant coefficients of the viscous friction of the 

two joints. 1cF  and 2cF  refers to the torques of the Coulomb friction. 
MJ  is the manipulator 

Jacobian, but it is restricted to two dimensions in (3.1), and it is a 22×  matrix relating the 2-

dimensional linear Cartesian velocity to the 2-dimensional vector of the joint velocity. 
xe

F and 

ye
F  are the components of the exerted force on the environment by the tip of the manipulator 

tool, expressed in the x  and y  axis directions of the base frame of the robot. The joint actuation 

torques 1τ  and 2τ  control the robot. Actually, there is no gravity effect acting on the joints, simply 

because of the arrangement of the horizontal kinematic of the robot. The matrices C  and D  are 

given by 
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The various parameters of the link length, mass, and inertia, shown in (3.2) and (3.3), are 

described in Table 3.1. By using the CAD models of the links shown in Figure 3.1. Link inertia 

parameters and center of mass locations were computed. Link lengths and joint to center of mass 

distances ( 1l , 2l ) are indicated in Figure 3.1. The values of the link inertia 1I  and 2I  were 

computed about the axes perpendicular to the sketch plane and run through the center of mass 

points 1c  and 2c  shown. The values of the rotor inertia 1J  and 2J  were taken from the 

manufacturer’s documentation. We got (3.2) and (3.3) with the Euler-Lagrange method [52]. By 

using the parameters in Table 3.1, we obtained the numerical values of these expressions. Even 

though friction parameters, especially Coulomb friction, were difficult to model, but still, rough 

estimates of the coefficients of the viscous friction ( 1B̂ , 2B̂ ) were achieved experimentally by 

using force sensors. They are listed in Table 3.1. 
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Figure 3.1: The CAD Models of the direct drive SCARA type robot arm and link 

 

 

  

Figure 3.2: The Description of the Robot joint angle and length parameters 

  



18 
 

 

Table 3.1 

Robot Dynamics Parameters 
   

Link 1 weight 1m  

(including elbow 

motor) 

17.9 kg 

 

Link 2 weight 2m  3.25 kg 

Link 1 inertia 1I  

(Including elbow 

motor) 

0.54 kg m2 

 

Link 2 inertia 2I  0.04 kg m2 

Motor 1 rotor inertia 1J  0.167 kg m2  Motor 2 rotor inertia 2J  0.019 kg m2 

Link 1 length 1l  

(Joint center to joint 

center) 

0.4 m 

 Link 2 length 2l  

(Joint center to tool 

center) 

0.28 m 

Link 1 joint to center 

of mass distance 1cl  
0.277 m 

 Link 2 joint to center of 

mass distance 2cl  
0.09 m 

Joint 1 viscous friction 

coefficient 1B̂  
3 Nms/rad  

 Joint 2 viscous friction 

coefficient 2B̂  
0.6 Nms/rad  

 

 

 

The next chapter describes the force control algorithm with the fuzzy logic controller 

scheduling. 
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Chapter 4 

 

4. THE SLIDING MODE CONTROL METHOD 

 
In this section, the SMC method which was used in this thesis is presented. Firstly a 

general SISO controller scheme will be briefed. Next, its application on the direct-drive SCARA 

arm will be considered and simulation results will be obtained with the switching controller. 

Finally, a controller smoothing mechanism will be proposed and will be simulated. 

 

4.1. Sliding Mode Controller 

 
Second order SISO systems were focused on. Systems with the following state 

equations form were considered 

uXbXfx )()( +=&& . (4.1) 

X is an augmented vector of the scalar state variables x , x&  

[ ]TxxX &= . (4.2) 

u is the control input. The input gain )(Xb  takes strictly positive values. The tracking error is 

represented as 

xxe d −=  (4.3) 

in which dx  represents the desired value of x. The sliding variable s  is shown as  

eees λ+= &)( . (4.4) 

For this system, the desired dynamic response is given by 0=s . For stability, we introduced λ  

as a positive number. If we can force s to zero, then we can attain the desired dynamics, and the 

tracking error will converge to zero with the dynamics 0=+ ee λ& , which represents a line with 

slope λ−  in the phase plane as shown in Figure 4.1. In the literature, an approach which 

involves the selection of a Lyapunov function V of s, is followed mostly. This function is chosen 

as 
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2
2
1 sV = . (4.5) 

We need to construct a control law in such a way that the sliding line is attractive for the state 

trajectories on the phase plane. Thus, the closed loop system stability can be guaranteed, if the 

derivative of V is shown to be negative definite [12]. The Lyapunov function derivative is 

ssV && = . (4.6) 

By using (4.1 – 4.4), we can represent this equation as, 

))()(( euXbXfxsV d
&&&& λ+−−= . (4.7) 

Using the control input 

( ))(sign)()(
)(

1
sXKXfex

Xb
u d +−+= &&& λ

, 
(4.8) 

we can achieve he negative definiteness of V& . In the control input, the sign function is defined 

by 

. 

(4.9) 

)(XK  is a state dependent gain. It takes positive values only. With (4.8) we have 

sXKss )(−=&  (4.10) 

and thus, V& is negative definite. 

Due to the fact that we cannot know )(Xf  and )(Xb  exactly, we used their estimates 

)(ˆ Xf  and )(ˆ Xb  in the control law to have 

( ))(sign)()(ˆ
)(ˆ

1
sXKXfex

Xb
u d +−+= &&& λ . (4.11) 
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Figure 4.1: The sliding line 

 

If we can know the bound of the uncertainties on )(Xf  and )(Xb , we can select the gain )(XK  

adequately high to assure robustness in the face of these uncertainties. )(XF  is defined as a 

known upper bound on the uncertainty on )(Xf  with  

)()(ˆ)( XFXfXf ≤− . (4.12) 

Moreover, we define )(min Xb  and )(max Xb  to be known lower and upper bounds for )(Xb : 

)()()( maxmin XbXbXb ≤≤ . (4.13) 

Let’s define )(Xβ  as )()()( minmax XbXbX =β . Let’s assume that the geometric mean of the 

upper and lower bounds of )(Xb  was used as an estimate: )()()(ˆ maxmin XbXbXb = . Let 

)(ˆˆ Xfexu d −+≡ &&& λ and let’s choose the gain )(XK  such that  

uXXFXXK ˆ)1)(()()()( −+≥ ββ . (4.14) 

With such a choice of control parameters, the following will definitely hold for the Lyapunov 

function candidate V&  derivative 
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(4.15) 

Just for notational simplicity, the arguments of the functions were dropped in (4.15). If we 

multiply both sides of this equation by bb̂  , we obtain 
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With 0≥δ  defined as uFK ˆ)1( −+−= ββδ  we obtain 
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It is still possible to reorganize this equation further to have 
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bbbb ˆ
minmax ≥=β . Thus, we concluded that the sum of the first two terms on the right hand 

side of (4.19) was non-positive. The same is true for the sum of the 3rd and 4th right hand side 

terms, which enables us to obtain the following inequality  
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sV δ−≤&
. (4.20) 

Hence, V&  is negative definite. With a 2
2
1 sV = , s  will converge to 0  too along with V . Hence, 

the error of the tracking will converge to zero with the dynamics described by 0)( =+= eees λ& ,  

after the convergence of s  to 0 . 

 

4.2. Application of the SMC to the Direct Drive Robot 

 
 
In the following, the control system described below was applied on the direct drive 

robot model introduced in the previous chapter. For controller development, the base and elbow 

were treated as SISO systems, whereas the full dynamics model with coupling effects was used 

in simulations. 

In the simplified model derivation, it is aimed to express the dynamics of the individual 

joint motion in form (4.1) to create estimates f̂  and b̂  for the base and elbow joints. 1f̂  and 1b̂

will denote the estimated dynamics variables of the base. The ones belonging to the elbow will 

be called 2f̂  and 2b̂ . By defining the effective inertia and the effective damping parameters 
1effJ  

and 
1effB for the base as  

)( nominal1111 −+= DJJ eff ,      
1
ˆ

1
BBeff = , (4.21) 

the simplified dynamics of the base joint can be shown as 

111 11
τ=+ qBqJ effeff

&&& . (4.22) 

In (4.21), nominal11−D  is the upper-left diagonal entry of the inertia matrix ),( 21 qqD  computed at a 

nominal configuration. The pose corresponding to a stretched elbow ( 02 =q ) as the nominal 

configuration in this thesis was used. Coupling between the joints, Coulomb friction, and 

centripetal and Coriolis effects, were omitted from the equations. With 
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(4.22) can be represented in the form (4.1) too 
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111111 )(ˆ)(ˆ uXbXfx +=&& . (4.24) 

By denoting the reference position of the base joint by dx1 , by defining the base tracking error as 

111 xxe d −= , and by letting the base sliding variable be 1111 ees λ+= & , the control law (4.41) was 

applied as 
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The next step in the SMC application would be the selection of the controller gain 

function )( 11 XK  and the sliding line slope 1λ . Practically speaking, it should be noted that it is 

difficult, or even too conservative, to obtain uncertainty bounds for 1f  and 1b . Thus, manual 

tuning of the parameters including )( 11 XK  was carried out in this work with simulations. It is a 

trial and error based process. A constant value 1K  was used for )( 11 XK , and not a function 

varying over the domain of 1X , because it is more suitable for the manual tuning. We tuned the 

slope 1λ  manually.  

Following similar derivation steps to (4.21-4.25), we could obtain the control law for 

the elbow as  
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The control parameters were obtained for the elbow too by manual tuning.  

A 1 ms control cycle time was used in the simulations. The position reference trajectory, 

which consists of step joint references of 1 rad, was applied to the two joints after the beginning 

of the simulation by 0.2 seconds. The initial condition corresponds to a stationary pose with 

extended elbow. The step references were applied to the joints simultaneously. The values of the 

control parameters are listed in Table 4.1. 
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Table 4.1 

Controller Parameters 
 

1K  100  2K  50 

1λ  2  2λ  3 

 

 

Figures 4.2 and 4.3 show the simulation results with the trial-error tuned parameters. 

The tracking performances in Figure 4.2 are acceptable. However, the control signals are not. 

They exhibit an extreme chattering behavior.  

 

 

Figure 4.2: Sliding mode control without control signal smoothing. Joint positions, step position 

references and control torques for the base and elbow are shown. 
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The same behavior can be seen in Figure 4.3 too. The sign function requires infinite 

switching frequency, in the theory, to keep the system states on the sliding line. However, 

because of some factors like actuator limitations and delays which are inevitable when the 

controller is implemented on digital computers, infinite frequency switching cannot be realized. 

As a result, frequent state trajectory jumps across the sliding line are observed. 

 

 

Figure 4.3: Sliding mode control without control signal smoothing. Phase plane trajectories for 

the base and elbow joints. The dashed lines are the sliding surfaces. 
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4.3. Sliding Mode Controller with Modified Controller Gain for Smoothing 

 
This section addresses the smoothing of the control signal and proposes a scheme in 

which the controller corrective gains 1K  and 2K  are functions of the absolute values of 

corresponding sliding variables 1s  and 2s . In particular, for example for the base joint, 1K  is 

modified into the new form 

)( 11max1 1
sKK ρ=  (4.27) 

where, 
1maxK  is a positive constant and )( 11 sρ  is defined as in Figure 4.3. As seen in this figure, 

five parameters, namely, 
11

ε , 
12

ε , 
13

ε , 
11

η  and 
12

η , define the function 1ρ  as a combination of 

linear segments (Figure 4.4). The six parameters (
1maxK , 

11
ε , 

12
ε , 

13
ε , 

11
η ,

12
η ) defining 1K  

provide extensive freedom in tuning. More than or less than three intervals could be used for the 

description of the Smoothing Function, 1ρ , too. Still, three intervals are rich enough to describe 

a curve for control signal smoothing purposes and simple enough for controller tuning. 

 

 

 

Figure 4.4: The smoothing function 1ρ  for the base joint control signal 
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Similarly, the controller gain 2K  is replaced by the expression 

)( 22max2 2
sKK ρ= , (4.28) 

and 2ρ  is defined by parameters 
21

ε , 
22

ε , 
23

ε , 
21

η  and 
22

η . 
2maxK  is a positive constant too. 

The parameters 
ji

ε represent intervals in the 
is  axis. It should be noted that 1ρ  and 2ρ  are 

restricted to have zero value when their argument is zero. Also they are defined to have unity 

value at the end of the third interval. The 
ji

η  parameters are restricted to belong to the closed set 

[0,1].  

When the absolute value of the sliding variable exceeds beyond the third interval, the 

control gain becomes a constant, like in the case of the controller derived in the previous section. 

When the system trajectory comes close to the sliding line (when the sliding variable is small) 

the value of the control gain is reduced in this scheme, to avoid chattering. As the simulation 

results below suggest, proper choice of the smoothing parameters above can alleviate the 

chattering problem.  

The simulations are repeated and trial-error based tuning is applied again. The 

smoothing functions are tuned too. The performances of the controllers are shown in Figures 4.5 

and 4.6. The smoothing functions 1ρ  and 2ρ  are displayed in Figure 4.7. The values of the 

control and smoothing parameters are tabulated in Table 4.2. As can be observed from Figure 

4.5, the chattering behavior in the control signal disappeared and the steady state error is small. 

Figure 4.6 displays the phase plane trajectories. The sliding line is followed after a reaching 

phase. This behavior is in parallel with exponential (first-order) decay of the errors in Figure 4.5 

towards zero. 

The experience with the sliding mode controller and smoothing operation described in 

(4.27) and (4.28) indicate that admissible performance and chattering levels can be attained. 

However, this work also showed that tuning of the many parameters simultaneously is an 

elaborate task. This motivates an automatic tuning mechanism. The next chapter handles this 

problem by the use of GA. 
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Figure 4.5: Sliding mode control with control signal smoothing. Joint positions, step 

position references and control torques for the base and elbow are shown. 
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 Figure 4.6: Sliding mode control with control signal smoothing. Phase plane trajectories for the 

base and elbow joints. The dashed lines are the sliding surfaces. 
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Figure 4.7:  Smoothing functions 1ρ  and 2ρ  obtained by trial and error and used for the results 

presented in Figures 4.5 and 4.6. 

 

Table 4.2 

Controller and Control Smoothing Parameters 
 

1maxK  100  
2maxK  50 

1λ  2  
2λ  3 

11
ε  0.2  

21
ε  0.2 

12
ε  2  

22
ε  2 

13
ε  10  

23
ε  10 

11
η  0.4  

21
η  0.4 

12
η  0.8  

22
η  0.8 
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Chapter 5 

 

5. GENETIC TUNING OF THE SMC ROBOT CONTROLLER 

 

In this chapter the SMC control and control output smoothing parameters are optimized 

using GA. The work concentrates on the base axis. The elbow axis is still active in the 

simulations and it is used to generate a coupling effect disturbances for the base joint. The elbow 

axis parameters are the ones listed in Table 4.2 throughout this chapter. The chromosome 

structure and choices for the GA parameters are presented. A fitness function of performance and 

smoothing virtues is introduced and simulation results are obtained. 

 

5.1. The Setting of the Chromosome 

 

The parameters for control and smoothing, listed in Table 4.2, for the base joint make 

the chromosome of an individual. Table 5.1 tabulates these parameters with the allocated number 

of bits and binary to decimal coding schemes. In this table, br  stands for the integer value of the 

binary representation of the variable at focus. For example when the binary representation of the 

8-bit 
1maxK  is 00000101, br  is equal to the integer 5. It should be noted from this table that three 

different coefficients of value decoding is employed for the parameters 1λ  and 
1maxK  in order to 

cover very small and large values with a reasonable number of bits. Also to be noted is that 
11

ε  is 

regarded as an important parameter because it is the length of the interval closest to zero absolute 

sliding variable value (Figure 4.3). The value of
11

ε  plays a dominant role in defining an abrupt 

or smooth switching of the control signal over the sliding line. Altogether the chromosome of an 

individual contains 50 bits. 
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Table 5.1 

The Chromosome Structure 
 

Parameter Number of bits Binary to decimal coding 

1λ  8 ( )
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1max
 

11
ε  10 br001.0

11
=ε  

12
ε  6 br005.0

12
=ε  

13
ε  6 br005.0

13
=ε  

11
η  6 br0156.0

11
=η  

12
η  6 br0156.0

12
=η  

 

 

5.2. The Fitness Function 

 

The fitness function, denoted by 1F , is computed as a weighted combination of various 

indicators of time domain performance and control signal smoothness: 

∫∫∫ Γ+++++= Γ

s

ss

ss T

ososrrisesse

T

e

T

s dtWMWtWeWdteWdtsWF
0 10 10 11                     

111111111
, (5.1) 

In this expression six different aspects of controller performance of control signal smoothness 

are addressed. The index 1 of 1F  stands for the first axis, which is the base joint. sT  is the 

duration of simulations which are used to compute the fitness values for the individuals. 
1s

W  is 

the weight of the integral of the base absolute sliding variable 1s . This integral is an indicator of 

sliding line tracking performance. 
1e

W  is the weight of integral of the base absolute error variable 
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1e . This integral is an indicator of the tracking performance and speed of convergence. The 

steady state error is weighted by the coefficient 
1ss

eW . 
1r
t  is the rise time of the base joint and it is 

multiplied by the coefficient 
1riseW . The overshoot variable 

1os
M  which is obtained by dividing 

the overshoot by the reference step signal magnitude is weighted by the constant 
1os

W . 
1Γ

W  is the 

coefficient of the integral of 1Γ , a variable used to assess the level instantaneous of chattering in 

the system. The index 1 1Γ  indicates that it is the chattering variable of the base joint. This 

variable can be defined in a number of ways. Similar measures of chattering are used in [53], 

[54], and [55], for the online tuning of control parameters of sliding mode controllers. In this 

work, it is defined as the absolute derivative of the control input for the base.  

11 u&=Γ . (5.2) 
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, (5.3) 

the fitness function 1F  can be seen as the sum of six fitness functions, too 

11111
          11 cosriseees FFFFFFF

ss
+++++= . (5.4) 

The weights used are listed in Table 5.2. 

  



35 
 

 

Table 5.2 

The Coefficients used in the Fitness Function 
 

1s
W  300 

1e
W  1 

1ss
eW  1000 

1riseW  400 

1os
W  500 

1Γ
W  0.01 

 
 

 

5.3. GA Parameters 

 

The GA parameters mentioned in Chapter 2 are selected as shown in Table 5.3. 

 

 

Table 5.3: GA parameters  

Parents chosen for cross-over 15 

The amount of individuals exposed to mutation 3 

Amount of elite individuals 3 

Population size 30 

Number of iterations 20 
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5.4. Results of the Tuning Process 

 

The convergence of the fitness function is displayed in Figure 5.1. The components of 

the overall fitness function, introduced in (5.1) are shown too. It is observed that convergence 

takes place in the first eight generations. While the overall fitness function is getting smaller, 

there are components which increased over generations. The fitness component weights 

determine the fitness components “favored” over the others. The performance of the tuned 

controller is displayed in Figures 5.2 and 5.3. Figure 5.2 shows that, for the GA tuned base joint, 

a quite fast response and very small steady state error is obtained without overshoot and 

chattering in the control signal. Figure 5.3 indicated a very successful phase trajectory in that the 

sliding line is followed closely. The GA tuned parameters values are tabulated in Table 5.4. The 

smoothing function 1ρ  obtained by these parameters is plotted in Figure 5.4. It is remarkable that 

this smoothing function has almost a linear curve saturated at the value 1. This is a finding which 

supports the merits of the “Boundary Layer” SMC smoothing approach, which is equivalent to 

replacing the Sign Function in the control law with a Saturation Function. 
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Figure 5.1: Convergence of the fitness function. The first six plots are components of the 

combined fitness function shown in the last plot. 
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Figure 5.2: GA tuned sliding mode control with control signal smoothing. Joint 

positions, step position references, control torques and chattering variables for the base and 

elbow are shown. Note that GA tuning is applied for the base joint only. 
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Figure 5.3: GA tuned sliding mode control with control signal smoothing. Phase plane 

trajectories for the base and elbow joints. The dashed lines are the sliding surfaces. Note that GA 

tuning is applied for the base joint only. 
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Table 5.4 

The GA Tuning Results 
 

1λ  6.2 

1maxK  440 

11
ε  0.516 

12
ε  0.1050 

13
ε  0.175 

11
η  0.9828 

12
η  0.9672 

 

 

 

 

Figure 5.4: Smoothing function 1ρ  obtained via GA tuning. 
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The results obtained with GA based tuning are quite successful. However, it should be 

stated that the simulations which are carried out in the tuning process concentrated only on a 

single position reference and a single payload setting. The next chapter investigates the cases 

with different reference step sizes and different payloads; and finally develops a fuzzy on-line 

tuning method for adjusting the smoothing action for a wider range of operation. 

 

  



42 
 

Chapter 6 

 

6. SMC ON-LINE PARAMETER ADJUSTMENT BY A FUZZY LOGIC SYSTEM 

 

Simulations with the controller parameters obtained in the previous chapter via GA 

tuning are carried out for a variety of reference step sizes and payloads. Typical simulation 

results are shown in Figures 6.1-6.4. Figures 6.1 and 6.2 are obtained with a different reference 

step size and Figures 6.3 and 6.4 are recorded with a different payload.  

The step references shown in Figure 6.1 have a size of 2 radians, as opposed to the 1 rad 

references used during the GA tuning. It can be observed that the smoothness and performance 

properties are kept. The phase plane trajectories shown in Figure 6.2 are in parallel with this 

observation. This was the case with other, smaller and larger reference step sizes too. The 

simulations indicate that the performance and smoothness characteristics of the GA tuned 

controller do not vary significantly with changing step reference sizes. 

Experiments with different payloads however reveal a drawback: There was no payload 

attached to the robot model tool tip in the GA tuning process and increasing payload may lead to 

performance deteriorations and chattering. Figure 6.3 shows the controller performance and 

chattering variable with a 15 kg payload attached at the end effector of the robot. This figure and 

the phase plane trajectories shown in Figure 6.4 indicate a dramatic increase in the chattering 

behavior. The performance worsens too. 
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Figure 6.1: GA tuned sliding mode control with control signal smoothing with larger step 

references than used in the tuning process. Joint positions, step position references, control 

torques and chattering variables for the base and elbow are shown. Note that GA tuning is 

applied for the base joint only. 
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Figure 6.2: GA tuned sliding mode control with control signal smoothing with larger step 

references than used in the tuning process.  Phase plane trajectories for the base and elbow joints. 

The dashed lines are the sliding surfaces. Note that GA tuning is applied for the base joint only. 
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Figure 6.3: GA tuned sliding mode control with control signal smoothing with larger 

payload than used in the tuning process. Joint positions, step position references, control torques 

and chattering variables for the base and elbow are shown. Note that GA tuning is applied for the 

base joint only. 
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Figure 6.4: GA tuned sliding mode control with control signal smoothing with larger payload 

than used in the tuning process. Phase plane trajectories for the base and elbow joints. The 

dashed lines are the sliding surfaces. Note that GA tuning is applied for the base joint only. 
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With the motivation explained in the above paragraph, an on-line fuzzy parameter 

adjustment system is developed as a second contribution of this thesis. The development is quite 

parallel to the one in [56], which uses a fuzzy system for the tuning of a boundary layer SMC. 

The fuzzy system aim is to find a balance between chattering and performance. This can be 

accomplished by introducing a “Scaling Variable” ( 1ψ ) that multiplies the interval parameters 

21
ε , 

22
ε , and 

23
ε , to obtain a steeper (smoother) smoothing function ( )11 sρ . 1ψ  is tuned on-line 

by a fuzzy system, which uses both the chattering variable 1Γ  and the absolute value of the 

sliding function 1s . 

We can devise many parameter adjustment methods equipped with a measure of 

chattering, which relate the scaling variable 1ψ  to the control activity. The main idea can be 

summarized as following: 

(i) When chattering occurs, and to force the control input to be smoother, the scaling 

variable should be increased. 

(ii) If the control activity is low, the scaling variable should be decreased. It should be 

the case because in order to obtain the best tracking performance, some amount of activity in 

control is needed. Our aim here is to operate the system at the limit of chattering. Small values of 

the chattering variable Γ identify low control activity. 

The guidelines (i) and (ii) on their own can be used to devise some adjustment methods 

of the scaling variable; yet, these two guidelines use the information about the chattering in the 

system only. The sliding variable is another source of valuable information. The following 

guidelines describe the role of the sliding variable in the adjustment of the boundary layer used 

in this work: 

(iii) If the sliding variable absolute value is low, the phase trajectory is close to the 

sliding line. Thus, a steep smoothing function may introduce chattering effect. 

(iv) If the sliding variable absolute value is high, the phase trajectory is far away from 

the sliding line. Thus, a steep smoothing function is desirable in order to decrease the duration of 

reaching phase.  

This thesis proposes a fuzzy system for the online tuning of 1ψ . Fuzzy systems are to be 

considered as natural choices to exploit verbal descriptions (similar to the four guidelines above) 

of the plant or the problem to obtain adaptation mechanisms or control. 
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Table 6.1 and Figure 6.5 describe the four fuzzy rules used in the tuning. In Table 6.1, 

the subscript “NB” is equivalent to Negative Big, “NS ” is Negative Small, and “ PB ” is 

Positive Big. The numerical values for NBψ∆ , NSψ∆ , PBψ∆  and the corner positions 
Small

s , 

Big
s , BigΓ , and SmallΓ , of the trapezoidal membership functions in Figure 6.5 are tabulated in the 

experimental results section. The defuzzification was carried out according to the following 

expression 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Γ+Γ+Γ+Γ

∆Γ+∆Γ+∆Γ
=∆

ΓΓΓΓ

ΓΓΓ

        

      

BigsSmallSmallsSmallBigsBigSmallsBig

PBBigsSmallNSBigsBigNBSmallsBig

ssss

sss

µµµµµµµµ

ψµµψµµψµµ
ψ , (6.1) 

which is a function that characterizes a fuzzy system with singleton fuzzification, center average 

defuzzifier, and product inference rule. Notice that ( ) ( )ΓΓ  SmallsBig
s µµ  is the truth value of Rule 

A computed using s  and Γ  as inputs. The truth values of the other three rules were similarly 

computed. 

Then, 1ψ  was updated by 

)1()1()( 111 −∆+−= kkk ψψψ  (6.2) 

at every control cycle k . 

 

 

Table 6.1 
The Fuzzy Rules 

 
  Γ  
  Small Γ  Big Γ  

 
s  

Big s  

 
 

NBψ∆  

 
Rule A 

 
 

NSψ∆  

 
Rule C 

Small s  

 
 
0 
 

Rule D 

 
 

PBψ∆  

 
Rule B 
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Figure 6.5: The membership functions 

 
 

The choice of the rule base and the membership functions satisfies the conditions from 

(i) to (iv) mentioned above. The rules summarized in Table 6.1 can be easily restated and 

explained in more detail as following: 

  

Rule A: If 1Γ  is small and 1s  is big, then decrease 1ψ  with the high rate NBψ∆ . 

 

The scaling variable 1ψ  should be decreased according to guideline (ii), because 

chattering is small. Guideline (iv) states that when s  is large, the scaling variable should be 

decreased. Thus, a decrease in 1ψ  with the high rate NBψ∆  was commanded in Rule A. 

 

Rule B: If 1Γ  is big and 1s  is small, then increase 1ψ  with the high rate PBφ∆ . 

 

Both guideline (i) and guideline (iii) suggests an increase in the scaling variable. The 

ideas in these guidelines were reflected in Rule B which commands an increase of 1ψ  with a high 

rate. 

  

Rule C: If 1Γ  is big and 1s  is big, then decrease 1ψ  with the low rate NSψ∆ . 
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According to guideline (i), the scaling variable should be increased, if large chattering 

was encountered. However, according to guideline (iv), the scaling variable should be decreased, 

if 1s  is large. These two guidelines may seem to be conflicting with each other, if large 

chattering and large 1s  were observed simultaneously. However, the idea here is that if 1s  is 

large, the guideline (iv) should dominate. If the error trajectory is far from the sliding line, the 

control effort (also chattering) is large in reaching phase; but still we have to consider guideline 

(i) too, and by Rule C, 1ψ  is decreased with the low rate denoted by NSψ∆  only and not with the 

high rate denoted by NBψ∆ . 

  

Rule D: If 1Γ  is small and 
1s  is small, then do not change 1ψ . 

 

Since both small chattering and small s  is a desirable condition, the scaling variable 

which achieves them should be kept without a change. The shapes of the Small Γ  and the Small 

s  membership functions assume a value of 1 in their respective neighborhoods of zero. These 

regions close to zero play roles of dead-zones that stop the evolution of 1ψ  by commanding zero 

ψ∆ . The characteristics of this dead-zone are quite useful for the convergence of 1ψ . The 

membership corner positions SmallΓ  and 
Small

s  play the role of the dead-zone borders, which 

makes them very important design parameters, because they let us convey the acceptable 

performance and the acceptable level of chattering into the controller design. Nonzero 1ψ∆  will 

be computed in (6.1), and 1ψ  will continue evolving, whenever the pair ( 1Γ , 1s ) leaves the dead-

zone.  

In the following, simulation studies with this fuzzy system are presented. The 

smoothing function and other SMC parameters are as obtained by the GA system, except that the 

newly introduced and on-line tuned scaling variable 1ψ  multiplies the intervals 
21

ε , 
22

ε  and 
23

ε  

to obtained updated interval variables. Four example cases are demonstrated: 

i) 1 rad step references and zero payload (Figures 6.6 and 6.7) 

ii) 2 rad step references and zero payload (Figures 6.8 and 6.9) 

iii) 1 rad step references and 15 kg payload (Figures 6.10 and 6.11) 
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iv) 2 rad step references and 15 kg payload (Figures 6.12 and 6.13) 

It can be observed from the data in the figures that the fuzzy scaling variable adjustment 

system is quite successful in eliminating chattering even when the payload is much larger than 

the one used in the GA simulations. Also worth mentioning is that the fuzzy system is 

compatible with the zero payload case too: Figures 6.6-6.9 display that the controller with the 

on-line fuzzy system does not degrade the performance of the manipulator when the payload is 

zero. Simulation case (iv) is the most demanding one, requiring 2 rad angular displacements 

under 15 kg payload. We observe from Figure 6.13 that the state trajectory deviates once fully 

from the sliding line. However, it safely returns to it and no performance degradation is 

observed. 
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Figure 6.6: GA tuned sliding mode control with control signal smoothing with the same 

size of step references and same payload used during the GA process. Fuzzy adaptation is active. 

Note that GA and fuzzy tuning are applied for the base joint only. 
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Figure 6.7: GA tuned sliding mode control with control signal smoothing with the same size of 

step references and same payload used during the GA process. Fuzzy adaptation is active. Note 

that GA and fuzzy tuning are applied for the base joint only. 

 

 

 



54 
 

 

Figure 6.8: GA tuned sliding mode control with control signal smoothing with 2 rad 

step references and same payload used during the GA process. Fuzzy adaptation is active. Note 

that GA and fuzzy tuning are applied for the base joint only. 
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Figure 6.9: GA tuned sliding mode control with control signal smoothing with 2 rad step 

references and same payload used during the GA process. Fuzzy adaptation is active. Note that 

GA and fuzzy tuning are applied for the base joint only. 
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Figure 6.10: GA tuned sliding mode control with control signal smoothing with the 

same size of step references used during the GA process and 15 kg payload. Fuzzy adaptation is 

active. Note that GA and fuzzy tuning are applied for the base joint only. 
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Figure 6.11: GA tuned sliding mode control with control signal smoothing with the same size of 

step references used during the GA process and 15 kg payload. Fuzzy adaptation is active. Note 

that GA and fuzzy tuning are applied for the base joint only. 
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Figure 6.12: GA tuned sliding mode control with control signal smoothing with 2 rad 

step references and 15 kg payload. Fuzzy adaptation is active. Note that GA and fuzzy tuning are 

applied for the base joint only. 
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Figure 6.13: GA tuned sliding mode control with control signal smoothing with 2 rad step 

references and 15 kg payload. Fuzzy adaptation is active. Note that GA and fuzzy tuning are 

applied for the base joint only. 
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Chapter 7 

7. CONCLUSION 

 

In this thesis SMC control law was briefed, a smoothing technique was proposed and 

two SMC tuning techniques were applied. The first tuning technique employed an off-line 

strategy based on GA whereas the second tuning method, which was complementary to the first 

method, was an on-line fuzzy parameter adaptation system. These systems were tested in the 

position control of a direct drive manipulator model, via simulations. 

It was observed that the GA tuning results in a smoothing system very similar to the one 

used in the boundary layer smoothing approach: The obtained smoothing function closely 

resembled a saturation function. 

A fixed reference and fixed payload simulation scheme was employed for the GA 

tuning. It was observed that, while the obtained parameters serve successfully under varying 

references, the system was not robust to payload variations. The additional fuzzy adaptation 

mechanism solved this problem by applying a varying smoothing function. 

Application of the control scheme on a real robot is considered as a future work. 
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