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ABSTRACT 

 
 

IDENTIFICATION OF PATZ1 TRANSCRIPTION FACTOR AS A NOVEL 

INTERACTING PARTNER AND REGULATOR OF THE p53 TUMOR 

SUPPRESSOR PROTEIN 

 

Nazlı Keskin 

Biological Sciences and Bioengineering, PhD. Thesis, 2014 

Thesis supervisor: Batu Erman 

 

Keywords: cancer, p53, PATZ1, transcription factor, DNA damage 

 

The tumor suppressor p53 is a stress responsive, sequence specific transcription 
factor that regulates genes controlling the cell cycle, senescence and apoptosis. 
Mutation and loss of p53 is the most common genetic event in human cancer resulting 
in the accumulation of different types of tumors such as testicular carcinoma, soft tissue 
sarcoma and lymphoma. The focus of this study, the PATZ1 transcription factor, has 
diverse roles in cancer, development and stem cell biology. Besides being a key 
transcriptional repressor in lymphocyte development, PATZ1 expression is 
misregulated in different tumor types such as testicular, colorectal and breast cancers. 
 

Because both proteins are significant modifiers of human cancer, we aimed to link 
the PATZ1 protein to p53 function using a biochemical approach. In this study, we 
discovered that both overexpressed and endogenous p53 and PATZ1 proteins interact. 
We identified a p53 binding region in the C-terminal domain of the PATZ1 protein. We 
further delineated the interaction region by generating site directed point mutant PATZ1 
variants which do not bind p53. The p53 – PATZ1 interaction is functionally significant 
as neither p53 nor PATZ1 can bind DNA in the presence of the other factor. We 
examined the cellular responses controlled by p53 in cells overexpressing PATZ1. 
Treatment with the DNA damage inducing cytotoxic drug doxorubicin activates p53 
related pathways. Overexpression of PATZ1 made cells more resistant to death by 
doxorubicin treatment. This study documents a novel player in the p53 pathway, a 
suppressor transcription factor, PATZ1. 
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ÖZET 

 
 

PATZ1 TRANSKRİPSİYON FAKTÖRÜNÜN TÜMÖR BASKILAYICI p53 

PROTEİNİNİN YENİ BİR BAĞLANMA PARTNERİ VE DÜZENLEYİCİSİ 

OLARAK BELİRLENMESİ 

 

Nazlı Keskin 

Biyoloji Bilimleri ve Biyomihendislik, Doktora Tezi, 2014 

Tez Danışmanı: Batu Erman 

 

Anahtar Kelimeler: kanser, p53, PATZ1, transkripsiyon faktörü, DNA hasarı 

 

Hücre döngüsünü, hücre yaşlanmasını ve apoptozu kontrol eden genleri 
düzenleyen tümor baskılayıcı p53, strese tepki veren, sekansa özel bir transkripsiyon 
faktörüdür. p53’ün mutasyona uğraması ve kaybı insan kanserlerinde en sık görülen 
genetik olay olup testiküler karsinoma, yumuşak doku sarkoması ve lenfoma gibi farklı 
tümörlerin oluşumuna neden olur. Bu çalışmanın odağı olan transkripsiyon faktörü 
PATZ1’in kanser, gelişim ve kök hücre biyolojisinde çok önemli görevleri vardır. 
Lenfosit gelişiminde önemli bir transkripsiyonel baskılayıcı olmanın yanı sıra, PATZ1 
testiküler, kolorektal ve göğüs kanseri gibi farklı tumor çeşitlerinde farklı miktarlarda 
ifade edilmektedir.  

 
Her iki protein de insan kanserini önemli ölçüde etkilileyici rollere sahip olduğu 

için biyokimyasal bir yaklaşım kullanarak PATZ1 proteni ile p53’ün fonksiyonları 
arasında bir ilişki kurmayı amaçladık. Bu çalışmada normalden fazla ve normal 
miktarda ifade edilen p53 ve PATZ1 proteinlerinin etkileşim içerisinde olduğunu 
keşfettik. PATZ1 proteininin C terminal bölgesinde p53 için bir bağlanma bölgesi tespit 
ettik. Bu etkileşim bölgesine has p53’e bağlanmayan nokta mutasyon varyantları 
yaparak bu bölgeyi daha detaylı olarak tanımladık. p53 – PATZ1 etkileşimi işlevsel 
olarak da önemlidir çünkü ne p53 ne de PATZ1 diğer faktörün olduğu yerde DNA’ya 
bağlanabilmektedir. Normal miktardan fazla PATZ1 ifade eden hücrelerde p53 
tarafından kontrol edilen hücresel tepkileri inceledik. Hücreleri DNA hasarı oluşturan 
sitotoksik bir ilaç olan doksorubisin ile muamele etmek p53 ile ilgili olan yolakları 
aktifleştirir. Normalden fazla PATZ1 ifade edilmesi, hücreleri doksorubisin muamelesi 
sonucu oluşan ölüme karşı daha dayanıklı yapmıştır. Bu çalışma, baskılayıcı 
transkripsiyon faktörü PATZ1’i p53 yolağında rol alan yepyeni bir protein olarak 
sunmaktadır.  
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1. INTRODUCTION 

 
 
 
 

1.1Scientific Background of p53 
 
 
 

1.1.1 p53 in Homeostasis 

 
 
p53 is a stress responsive, sequence specific transcription factor which has roles in 

cell cycle arrest, senescence, apoptosis, autophagy and DNA repair. In addition to these, 

p53 has functional roles in the regulation of metabolic pathways, inhibition of reactive 

oxygen species (ROS)  and angiogenesis 1–3. Under normal circumstances, intracellular 

p53 protein levels are very low. This is thought to be necessary for cell proliferation and 

viability 4. The mechanism that keeps p53 levels low is mediated by p53 binding 

proteins that cause p53 ubiquitination and degradation. Mouse double minute 2 

(MDM2) which is the first p53 E3 ubiquitin ligase described, binds to p53 and promotes 

its ubiquitination and degradation 5–8. MDM2 can either monoubiquitinate or 

polyubiquitinate p53 depending on cellular MDM2-p53 ratios. If MDM2 levels are low 

in the cell, p53 is monoubiquitinated. MDM2 is then dissociated from p53 and 

monoubiquitinated p53 is translocated from the nucleus to the cytoplasm due to the 

open nuclear export sequence of p53. Cytoplasmic MDM2 binds to monoubiquitinated 

p53 and polyubiquitinates it. After polyubiquitination, p53 undergoes proteasomal 

degradation in the cytoplasm (figure 1.1A). However, if MDM2 levels are high in the 

cell, p53 is directly polyubiquitinated in the nucleus. Polyubiquitins block the nuclear 

export sequence and therefore polyubiquitinated p53 is stuck in the nucleus. 

Polyubiquitinated p53 then undergoes proteasomal degradation the nucleus (figure 

1.1B) 9.  Therefore, MDM2 is a major protein that controls the protein level of p53 in 

normal unstressed cells 10. 
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Figure 1.1 Monoubiquitination and polyubiquitination of p53 by MDM2. A) p53 is 

monoubiquitinated in the nucleus and polyubiquitinated and degraded in the cytoplasm 
if the MDM2 levels are low in the cell. B) p53 polyubiquitinated and degraded in the 

nucleus if the MDM2 levels are high in the cell. MDM2 protein is represented as green 
ellipse, p53 protein is represented as pink ellipse, ubiquitin is represented as blue circle 

and 26s proteosome is represented as orange and brown circles. 
 

Besides controlling p53 protein levels, MDM2 can also control the transcriptional 

activity of the p53 protein. MDM2 binds the p53 transactivation domain and inhibits the 

interaction of p53 with essential transcriptional co-activators such as human positive 

cofactor (PC4) which is necessary for protein-protein interactions, DNA bending and 

posttranslational modifications of p53 11.  MDM2 can also promote the posttranslational 

modification of p53 by the small protein NEDD8. Neddylation of p53 results in the 

blockage of its transcriptional activity 12. Therefore, MDM2 not only determines the 

levels of p53 protein but also inhibits the transcriptional activity of p53 through several 

mechanisms. MDM4 (also known as MDMX), a close homolog of MDM2 was also 

identified as an interacting partner of p53 13. Like MDM2, MDM4 is a ubiquitin 
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ligase14. However, unlike MDM2, MDM4 does not ubiquitinate and degrade p53 15,16. 

Although MDM4 does not have a direct role on p53 stabilization, it has been reported 

that MDM4 can heterodimerize with MDM2 through its C terminal RING domain and 

stabilize MDM2 by inhibiting its autoubiqutination 17,18.  Therefore, MDM4 indirectly 

influences the low levels of p53 in normal cells by inducing MDM2 activity and 

resulting in p53 degradation. Because the MDM2 – p53 interaction is very important for 

p53 stabilization, it is a favorite target of therapeutic strategies for cancer. Nonpeptidic 

small molecules are designed and tested in order to block the MDM2-p53 interaction 

resulting in the accumulation and activation of p53. There are different classes of these 

small molecule inhibitors such as spirooxindole, benzodiazepine, terphenyl, quilinol, 

chalone, sulfonamide and cis-imidazoline compounds. Nutlin 3a which belongs to the 

cis-imidazoline group of inhibitors is one of the most highly published small molecule 

inhibitor of the MDM2-p53 interaction. Unlike other drugs, nutlin 3a is nongenotoxic 

and it induces cell cycle arrest instead of apoptosis19. In addition to these, doxorubicin 

which is also known as adriamycin, is also a chemical drug that inhibits MDM2 

mediated p53 degradation. Doxorubicin is a genotoxic, DNA damaging agent which 

causes double strand breaks in the DNA. Upon DNA damage induced by doxorubicin, 

serine 163 of p53 is phosphorylated by the S6K1 kinase. DNA damage induces the 

phosphorylation of S6K1 which makes it a direct target of MDM2. Therefore, upon 

DNA damage both S6K1 and MDM2 are phosphorylated and form a complex which 

results in the inhibition of the translocation of MDM2 from the cytoplasm to the 

nucleus. These cellular events prevent MDM2 mediated p53 ubiquitination and 

proteasomal degradation 20. On the other hand, MDM2 is not the only protein that leads 

to the proteasomal degradation of p53 because p53 is still degraded in Mdm2 null mice 
21. COP1 (constitutively photomorphogenic 1), Pirh2  (p53-Induced RING-H2) and Arf-

BP1 (Arf binding protein 1) are recently identified E3 ubiquitin ligases that have p53 

ubiquitination and degradation activity, independent from MDM2 22–24. 

  
 
1.1.2 p53 Upon Stress Inducing Conditions 

 
 

p53 activation starts with the stabilization of p53 induced by ATM/ATR mediated 

phosphorylation  in its N-terminus. As this phosphorylation site overlaps with the 

MDM2 binding site, phosphorylated p53 dissociates from MDM2, escapes from 
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ubiquitination and is accumulated in the cell. Accumulation of p53 is the first step in 

this pathway, followed by sequence specific DNA binding and target gene activation or 

repression through interactions with the general transcriptional machinery 25.  

 
 
 

1.1.2.1 Post-translational Modifications of p53 Upon Stress 

 
 

Under normal or stress conditions, p53 undergoes post-transcriptional 

modifications such as phosphorylation, ubiquitination, acetylation, methylation, 

sumoylation, neddylation, glycosylation and ribosylation. As described earlier, the p53 

– MDM2 interaction is inhibited due to the N terminal phosphorylation of p53 at Ser15 

(mouse Ser18) and Ser 20 (mouse Ser 23) in cells that undergo stress 26. This 

phosphorylation of p53 by the ATM/ATR/DNAPK or Chk1/Chk2 is the initial step of 

p53 stabilization (figure1.2) 27.   

 

 
Figure 1.2 Post-translational modifications of p53 upon DNA damage. After DNA 

damage p53 (represented as pink ellipse) is phosphorylated (represented as green circle) 
by ATM (represented as yellow circle), acetylated (represented as orange circle) by 
p300 (represented as purple circle) and metylated (represented as brown circle) by 

SET8 (represented as red circle). These post-translational modifications result in p53 
accumulation 
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The second important post-translational modification of p53 upon cellular stress is 

the acetylation of its C terminus by CBP (CREB binding protein)/p300. After CBP/p300 

mediated acetylation of six C terminal lysine residues (K370, K371, K372, K381, K382 

and K386) which are also the main ubiquitination sites, ubiquitination of p53 is 

disfavored and its protein levels start to accumulate 28–30. Methylation also has a 

significant role in the transcriptional activation of p53. Especially important is the 

methylation of p53 lysine 372 by the SET9 methyl-transferase. This modification 

results in the activation of p53 activity as can be seen by an increase in p21 levels, a 

major p53 target gene 31. On the other hand, methylation of lysine 382 by the SET8 and 

of lysine 370 by the Smyd2 methyl-transferase enzymes result in the suppression of p53 

activity 32,33. 

 
 
 

 1.1.2.2 p53-DNA Interactions 

 
 

p53 is a transcription factor that has a central DNA binding domain. The DNA 

binding domain of p53 is composed of a beta sandwich with a series of loops and short 

helices. p53 forms a complex that is composed of four p53 core domains bound to two 

cognate half sites on DNA, as a dimer of dimers 34,35. The consensus p53 binding 

sequence, is two repeats composed of RRRCWWGYYY, separated by 0-21 bases 

(where R is a purine, Y a pyrimidine and W either an A or T) 36. Each half site binds a 

p53 dimer and two p53 dimers form tetramers to bind DNA. It is not known if there is a 

functional significance of the distance between the half sites. In addition to the 

consensus, there are some exceptional p53 binding sequences such as the (TGYCC)n 

site in pig3 micorsatellite response elements, where n indicates the repeat number. p53 

can also bind the triplet pairs of pentameric element, RRRCWWGYYY in the aqp3 

(aquaporin3, a glycerol and water transporter) locus 37–40. Unlike some transcription 

factors, when p53 binds to DNA, a significant bend in the DNA structure is induced 11. 

The affinity of p53 for its binding site can be influenced by its interaction partners. For 

example, when c-abl or p53β binds p53 through its tetramerization domain, p53 binds 

easier to the target response element (figure 1.3) 41.   
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Figure 1.3 The binding of p53 to DNA consensus sites. p53 (represented as pink 
ellipse) binds to the DNA consensus RRRCWWGYYY where R is a purine, Y a 

pyrimidine and W either an A or T as a tetramer. 
 

p53 binding site can be located anywhere in the target gene locus. Most p53 

binding sites are in the promoters of the target genes. Classical examples of such p53 

responsive genes are p21 and Noxa. In genes like Mdm2 and Pcna, the p53 binding site 

is very close to the transcription start site. In other cases such as the puma and pig3 

genes, the p53 binding can be in intronic sequences. Moreover, in genes such as miR-

34a exonic regions can even contain functional p53 binding sites 42. 

 
 

1.1.2.3. Transcriptional Regulation By p53 

 
 
DNA damage,  telomere erosion, oxidative stress, incomplete mitotic stimulus, 

ribonucleotide depletion and oncogene activation are some of the factors that 

transcriptionally activates p53 43. p53 has been shown to control various cellular 

pathways. Activated p53 results in the transcription of p21, the cyclin dependent kinase 

inhibitor which inhibits cell cycle progression. Other well known p53 targets with p53 
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response elements are 14-3-3σ and GADD45. The expression of these proteins also 

causes cell cycle arrest, like p21.  Even very minor increases in p53 protein levels can 

cause p21 expression and result in  G1 arrest in the cell cycle 44. PAI1 (plasminogen 

activator inhibitor 1) is also a stress responsive gene, transcriptionally regulated by p53 

which promotes senescence 45,46. p53 also upregulates NOXA and PUMA gene 

expression that play a role in the induction of apoptosis. p53 can also increase DRAM 

levels which control the induction of autophagy. Futhermore, p53 induces TIGAR and 

SESTRINS which inhibit the production of reactive oxygen species (ROS), promoting 

cell survival. p53 has also transcription independent cytoplasmic roles linked to mTOR 

and autophagy 2. The tumor suppressive function of p53 likely results from a 

combination of all of these pathways (figure 1.4). In different types of tumors, p53 is 

the most frequently mutated gene. This finding defines this transcription factor as a 

tumor suppressor protein 47–49. p53 reactivation in cells expressing mutant p53 or in 

cells lacking p53 expression results in the regression of many different tumor types 50–

52. 

 
Figure 1.4 Transcription regulation by p53. p53 is a transcriptional activator of cell 

cycle arrest, senescence, apoptosis, DNA repair, metabolism and autophagy genes. In 
addition to being a transcriptional activator, p53 is also a transcriptional repressor for a 

different subset of genes. 
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1.1.3 Structure of p53 

 
 
Full length p53 is composed of a loosely structured N-terminal transactivation 

domain (TAD) that has two sub-domains (TAD-I (residues 1-40) and TAD-II (residues 

40-60)), a proline rich region (PR) (residues 63-97), a highly conserved DNA binding 

domain (DBD) (residues 100-292), a nuclear localization sequence (NLS) (residues 

305-322), a tetramerization domain (TET) (residues 326-356), a nuclear export signal 

within the TET (residues 340-351) and a C terminal basic region (BR) (residues 364-

393) (figure 1.5) 37,53. 

 

 
Figure 1.5 Structure of p53. p53 protein is composed of two transcription activation 

domains (TAD) such TADI (shown in yellow) and  TADII (shown in purple), a proline 
rich region (PR), shown in green, a DNA binding domain (DBD, shown in pink), a 

nuclear localization sequence (NLS, shown in blue), a tetramerization domain (TET, 
shown in orange) and a basic region (BR, shown in turquoise). 

 

In addition to full length p53, some cells express an alternative form (Δ40p53) 

which lacks the N terminal 40 amino acids corresponding to TADI. This isoform results 

from an alternative translation initiation event. As the alternative from lacks the strong 

transactivation domain, while retaining the DBD, it may be playing a dominant negative 

role, binding to DNA without the capability of activating the downstream genes. 

Another alternative form of p53 results from the activity of an internal promoter found 

in the 4th intron of the TP53 gene which expresses a truncated version of p53 

(Δ133p53) which lack the N terminal 133 amino acids. Furthermore, all three forms of 

p53 (full length p53, Δ40p53 and Δ133p53) can undergo alternative splicing in the 

exons encoding their C terminus. There are three known alternative splice events 

encoding α, β, γ forms. Thus, in total the p53 gene is capable of encoding nine isoforms 

of the p53 protein: p53α, p53β, p53γ, Δ40p53α, Δ40p53β, Δ40p53γ, Δ133p53α, 

Δ133p53β and Δ133p53γ (figure 1.6) 53. 
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Figure 1.6 Isoforms of p53. There are nine isoforms of the p53 protein: p53α, p53β, 
p53γ, Δ40p53α, Δ40p53β, Δ40p53γ, Δ133p53α, Δ133p53β and Δ133p53γ. 

Transactivation domain I (TADI) is shown in yellow, transactivation domain II (TADII) 
is shown in purple, proline rich domain (PR) is shown in green, DNA binding domain 

(DBD) is shown in pink, nuclear localization sequence (NLS) is shown in blue, 
tetramerization domain (TET) is shown in orange and basic region (BR) is shown in 

turquoise. 
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Sub-cellular localization studies show that the different p53 isoforms are found in 

different cellular locations. For instance, although Δ133p53 and p53β are mainly 

localized in the nucleus, Δ133p53γ is mainly localized in the cytoplasm and Δ133p53β 

and p53γ can move between the nucleus and cytoplasm. These difference in the 

localization suggests that different isoforms of p53 may have different functions 41. For 

instance, the p53β and Δ40p53 isoforms are highly expressed at the mRNA level in 

primary melanoma cells, although they are at undetectable levels in normal cells 54. 

Also, the Δ133p53 isoform is shown to inhibit senescence and promote proliferation by 

binding and inhibiting full length p53 55.  

 
 
 

1.1.4 Interaction Partners of p53 

 
 
It has been reported that p53 has specific interacting partners which affects its 

activity. Among p53 interacting proteins, there are general transcription factors, protein 

kinases, protein acetylases/deacetylases, ubiquitin ligases, p53 regulatory proteins, viral 

proteins, p53 family members, replication and repair proteins 56. Among these, p53 

interacts with transcription factors such as TBP (TATA-binding protein) and TAFII31 

(TBP associated factorII31) and transcriptional co-activators such as p300/CBP through 

its N-terminal transactivation domain which results in the activity of on its response 

elements 57–62. 

  

Another group of interacting partners of p53 consists of the proteins that make 

post-translational modifications on p53. The interaction of p53 with protein kinases 

such as  casein kinase 2, HIPK2 (Homeodomain Interacting Protein Kinase 2) and 

JNK1 (C-Jun N-terminal kinase 1) results in the phosphorylation of p53 63–66. For other 

post-translational modifications, p53 has interacting partners which are protein 

acetylases such as p300/CBP and PCAF (p300/CBP-Associated Factor), protein 

deacetylases such as HDAC1 (Histone Deacetylase 1) and Sir2α and protein deacetylase 

adaptors such as Sin3a 61,62,67–72. Moreover, there are also other interacting partners of 

p53 which results in other post translational modifications that affect its stability such as 

ubiquitination and deubiquitination. In addition to MDM2 which was described earlier, 

E6AP is a ubiquitin ligase and HAUSP (Herpesvirus-Associated Ubiquitin-Specific 
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Protease) is a ubiquitin protease that interacts with p53 and results in the stability or 

instability, respectively 73–75. 

 

p53 regulatory proteins are the most important group of p53 interacting proteins 

due to their effects on p53 function. One of the regulating interacting partners of p53 is 

53BP1. The p53 - 53BP1 interaction, induces p53 to cause cell cycle arrest 76. 53BP2 is 

another p53 interactor that works as a co-activator of p53 resulting in cell cycle arrest 77. 

One protein family that has interactions with p53 is the ASPP (Apoptosis Stimulating 

Protein of p53) family which has an antiapoptotic mediator, iASPP and two 

proapoptotic mediators, ASPP1 and ASPP2. When iASPP binds p53, it inhibits 

transcriptional activation by p53 78. On the other hand, the interaction between p53 and 

ASPP1 and ASPP2 results in the apoptotic function of p53 through binding to the 

PUMA (p53 Upregulated Modulator of Apoptosis), PIG3 (p53-Inducible Gene 3) and 

BAX (BCL2-Associated X Protein) proapoptotic response elements 79. 14-3-3σ is 

another interacting partner of p53 which regulates p53 in a positive manner and leads 

p53 to induce G2/M cell cycle arrest 80. The balance between apoptosis and autophagy 

upon cell stress is affected by another p53 interacting partner, HMGB1 (High Mobility 

Group Protein B1). HMGB1 normally makes a complex with Beclin1 which has 

important roles in autophagy. The presence of HMGB1 promotes the formation of p53-

HMGB1 complexes and decreases the formation of p53-Beclin1 complexes regulating 

the balance between apoptosis and autophagy 81,82. 

 

One of the reasons for the preference of p53 to choose bind promoters of cell 

cycle arrest genes is due to HZF (Hematopoietic Zinc Finger Protein) which is a binding 

partner of p53. In the presence of HZF, p53 mediated cell cycle arrest is promoted, 

whereas in the absence of HZF, p53 mediated apoptosis is promoted 83. Conversely, 

APAK (ATM And p53-Associated KZNF Protein) is another p53 interactor which 

changes p53 activity to promote apoptosis through changing the target specificity of p53 
84. hCAS/CSE1L (Chromosome Segregation 1 Like) also regulates the selection of p53 

response elements by binding and modifying the target specificity of p53 85. Redox 

sensitive proteins HIF1α (Hypoxia Inducible Factor 1α) and REF-1 are also bound to 

p53. The interaction between p53 and HIF1α stabilizes p53 whereas REF-1 – p53 

interaction enhances p53 transcriptional activity 86,87. A final group of proteins that bind 

to and modify p53 function are viral proteins. AdE1B55kD, EBV ENBA-5, HBV X, 
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HPV E6 and SV40 bind to p53 and either interact or modify its function to promote 

viral infection 88–96. This large list of interacting proteins modifies the activity of p53 

towards the different pathways it controls. 

 
 
 
1.1.5 Mutations of p53 

 
 

In cancer cells the tumor suppressor proteins are commonly inactivated due to 

deletion or truncation. However most of cancer associated p53 mutations are only single 

base pair substitutions or missense mutations that do not affect the expression of the full 

length protein but only change one single amino acid. Mutation frequencies of different 

amino acids demonstrate that there are six hot spots that undergo mutations significantly 

more frequently than the others. These six hot spots are in the conserved DNA binding 

domain (residues 175, 245, 248, 249, 273 and 282) (figure 1.7) 35,97–99. 

 

 
 

Figure 1.7 Six hot spots of cancer related mutant p53. The six hot spot mutation spots 
(residues 175, 245, 248, 249, 273 and 282, shown with stars) of p53 are conserved in 

the DNA binding domain (DBD, shown in pink). 
 
 

Many of these missense mutations result in the increase of the half-life of the p53 

protein 100. Mutant forms of p53 have a dominant negative effect on wild type p53 by 

forming wild type/mutant co-tetramers 101–103. In human tumor cells, even if a single 

allele of p53 is mutated, loss of heterozygosity results in the loss of the remaining wild 

type p53 allele. According to the ‘gain of function hypothesis’, mutation of p53 does 

not simply mean p53 function loss. Instead, due to the strong selection to remove the 

wild type p53, mutant p53 seems to have gained new functions in tumorigenesis. 

Similar to wild type p53 (wt p53), mutant p53 (mt p53) has interacting partners for 

inducing different pathways 101. For instance, MRE11 (Mitotic Recombination 11) is a 

interacting partner that cannot bind the wild type p53 but it interacts with the two p53 

mutants: R248W and R273H 104. Of course there are some proteins that are common 
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interacting partners of wt p53 and mt p53. PML (Promyelocytic Leukemia) protein is 

one example. The interaction with PML protein transcriptionally activates not only wt 

p53 but also its mutant versions. However, p53 mediated transcriptional activation in 

two cases have different results. The PML – wt p53 interaction results in tumor 

suppression whereas PML – mt p53 interaction results in oncogenic activity 105. Another 

common interactor of wt p53 and mt p53 is the PIN1 (Peptidyl-Prolyl Cis-Trans 

Isomerase NIMA-Interacting 1) protein. Although the interaction of wt p53 and PIN1 

results in direction of p53 towards p21 promoter which finally results in cell cycle 

arrest, the interaction of mt p53 and PIN1 results in the agressiveness of breast cancer 

cells which indicates cell cycle is promoted rather than arrested 106. In addition to these, 

mt p53 can form different combinations of complexes with other p53 family members 

such as p63 and p73. Normally p63 and p73 can make homotetramers or 

heterotetramers with each other. However, neither p63 nor p73 makes heterotetramers 

with wt p53. On the other hand, mt p53 interacts with p63 and p73 and can form 

heterotetramers 107–111. Mt p53 inhibits the transcriptional activation of p63 and p73 by 

making heterotetramers with them. Heterotetramers of neither p63 – mt p53 nor p73 – 

mt p53 are incapable of activating normal p53 target genes involved in tumor 

suppression, senescence and genomic stability (figure 1.8) 112,113. 

 

Similar to wt p53, mt p53 is a transcription factor and can transcriptionally 

activate genes that have roles in tumorigenesis 100,101,114. Although wt p53 and mt p53 

share an intact transactivation domain, it makes wt p53 a tumor suppressor but mt p53 

an oncogenic protein 115–119. MYC, CXCL1 (Chemokine (C-X-C Motif) Ligand 1) and 

MAP2K3 (Mitogen Activated Protein Kinase Kinase3) which can promote proliferation 

of cancer cells, are some examples of genes that can be activated by mt p53 116,120,121. 

Moreover, mt p53 transcriptionally activates genes that inhibit cell death, such as BclxL 

(B-cell Lymphoma-extra large Protein), EGR1 (Early Growth Response Protein 1) and 

MDR1 (Multi drug transporter protein 1) 121–123. In addition to these, limitless 

replication causing TERT (Telomerase Reverse Transcriptase) is shown to be 

upregulated by mt p53 124. All of these results are point to the unique oncogenic 

functions of mt p53. 
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Figure 1.8 Mutant p53 blocks functional p53, p63 and p73 homotetramers by formation 

of heterotetramer. Heterotetramers of neither p63 (represented as turquoise ellipse) – 
mutant p53 (represented as green ellipse) nor p73 (represented as purple ellipse) – 

mutant p53 are incapable of activating normal p53 (represented as pink ellipse) target 
genes involved in tumor suppression, senescence and genomic stability. 
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1.2 Scientific Background of PATZ1 

 
 
 

1.2.1 Identification of PATZ1 

 
 
PATZ1 (POZ/BTB and AT-hook-containing zinc finger protein 1) which is also 

known as MAZR (MAZ-related factor), ZSG (zinc finger sarcoma gene) and ZNF278 

(zinc finger protein 278) is first identified as a transcription factor and an interacting 

partner of  the B cell and neuronal transcriptional repressor BACH2 (BTB and CNC 

Homology 1, Basic Leucine Zipper Transcription Factor 2) 125. Although being a 

transcription factor, N terminal part of PATZ1 does not show any transcriptional 

activity unlike other common transcriptional activators 125. PATZ1 mRNA levels are 

significantly high in the thymus, fetal liver and bone marrow. PATZ1-/- mice are born 

at a severely reduced Mendelian ratio, are much smaller compared to the wild type 

littermates and are infertile 125,126. 

 

1.2.2 Structure and Alternative Splice Variants of PATZ1 

 

PATZ1 is a member of the transcription factor family of proteins that share an N 

terminal BTB/POZ (Broad Complex, Tramtrack, and Bric a' brac / Poxviruses and Zinc-

finger (POZ) and Kruppel domain for protein-protein interaction which are involved in 

transcriptional regulation, chromatin structures and cytoskeleton organization and a C-

terminal zinc finger motif containing DNA binding domain 125,127. PATZ1  is a 

transcription factor that is composed of a N terminal BTB/POZ domain, two AT-hook 

domains and a DNA binding domain consisting of C2H2 type zinc finger motifs (figure 

1.9) 125,128,129. 

 

 
 
Figure 1.9 Structure of PATZ1 protein. PATZ1 is composed of a BTB domain (shown 

in pink, two AT-hook domains (shown in purple) and a DNA binding domain consisting 
of zinc finger motifs (shown in yellow). 
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There are four alternative splice variants of the PATZ1 protein which are PATZ1-

001, PATZ1-002, PATZ1-003 and PATZ1-004.  The isoforms of the PATZ1 protein 

share the same N terminal BTB/POZ domain and AT-hook domains but have different 

numbers of zinc finger domains in the DNA binding domain (figure 1.10). The most 

highly expressed alternative splice variants are PATZ1-004 and PATZ1-002. 

 

 
 

Figure 1.10 Alternative splice variants of PATZ1. There are four alternative splice 
isoforms of the PATZ1 protein: hPATZ1-004 (PATZ1, mPATZ1-001), hPATZ1-002 

(PATZ1Alt, mPATZ1-012), hPATZ1-003 (mPATZ1-003) and hPATZ1-001 (mPATZ1-
002). The BTB/POZ domain is shown in pink, the AT-hook domain is shown in purple 

and the zinc finger domains are shown in yellow. 
 

The N terminal BTB/POZ domain is mainly known as an interaction motif among 

proteins resulting in different roles in cytoskleton dynamics, targeting proteins for 

ubiquitination, ion channel assembly and regulation of transcription 130. The AT-hook 

domain is another important part of PATZ1 involved in the DNA binding of PATZ1 

protein. The AT-hook motif has a conserved palindromic, core sequence of proline-

arginine-glycine-arginine-proline 131. Besides the AT-hook domains, the major part of 

PATZ1 – DNA interaction is maintained by the zinc finger motifs. All the zinc finger 

motifs of PATZ1 protein are C2H2 type in which the zinc ion is coordinated by two 

cysteine and two histidine residues. In addition to the DNA binding, the zinc finger 

motifs contribute to the three dimensional conformation of the PATZ1 protein.  
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1.2.3 Functions of PATZ1 

 
  

PATZ1 was first identified as a transcriptional repressor of BACH2 which is 

specific to B cells 125. Later it was reported that PATZ1 interacts with BCL6 and 

negatively modulates its expression. Consistently, Patz1 knockdown mice showed up-

regulation of BCL6 expression and BCL6-dependent B cell neoplasias 132. In addition to 

the role in B cells, PATZ1 was shown to have an important role in cell fate 

determination of T lymphocytes in the thymus. As thymocytes decide to become either  

CD4 positive or CD8 positive lymphocytes, PATZ1 plays a critical role by 

transcriptionally repressing the Cd8 gene 133. PATZ1 is an important member of a 

transcription network that decides the CD4/CD8 lineage fate in double positive 

thymocytes 126. However, other publications show that the function of PATZ1 is not 

restricted to B and T lymphocytes. Chromatin immunoprecipitation (ChIP) sequencing 

experiments revealed that there are more than 5000 binding sites of PATZ1 in the 

mouse genome 134. PATZ1 transcriptionally  represses  the androgen receptor, activates 

mast cell protease 6 and either activates or represses c-Myc in a context dependent 

manner 125,128,135,136. 

 

Moreover, PATZ1 was shown to repress neuronal developmental genes 134. Patz1 

gene expression is evident in actively proliferating neuroblasts. However, more mature 

neurons, the expression of Patz1 gene becomes more restricted. Upon Patz1 gene 

disruption, embryos have severe defects in the central nervous system and in the cardiac 

outflow tract. Thus, PATZ1 has critical roles in embryonic development 137. PATZ1 is 

also shown to be an important regulator of pluripotency in embryonic stem cells. 

PATZ1 expression levels are much higher in pluripotent mouse ICM than in the non-

pluripotent trophectoderm 138. Moreover, transcription factors such as Oct4, Nanog, 

Sox2, Klf4, and c-Myc that are related with the pluripotency of embryonic stem cells 

can bind the PATZ1 genomic region 139,140. PATZ1 is reported to have also a role on the 

regulation of mast cells through interacting with the mi transcription factor (MITF) that 

has roles in mast cell differentiation and survival 136,141,142. Mast cells have a role in 

hypersensitivity reactions such as allergic asthma, allergic rhinitis and systemic 
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anaphylaxis 143,144. Still another report claims that Patz1 knock down results in the 

upregulation of apoptotic genes and downregulation of cell cycle and cellular 

metabolism genes 134. In human umbilical vascular endothelial cells (HUVECs), PATZ1 

expression levels decrease during cellular senescence. Patz1 knock down results in the 

acceleration of cellular senescence in young HUVECs whereas PATZ1 overexpression 

reverses the phenotypes of senescence in old HUVECs. Moreover, PATZ1 induced 

senescence is associated with ROS-mediated p53 dependent DNA damage responses 
145.  

 

Several studies report links between Patz1 gene expression and cancer 

development. The Patz1 gene is rearranged and deleted in small round cell carcinoma 
129. Furthermore, in human colorectal, breast and testicular tumors, PATZ1 mRNA is 

upregulated 146–148. The Patz1 gene maps on the FRA22B fragile site which results in 

loss of heterozygosity in several solid tumors and thus has a role in carcinogenesis 149.  

When PATZ1 is silenced by siRNA, the growth of colorectal cancer cells is blocked 146. 

Also, silencing of PATZ1 resulted in induction of apoptosis in gliomas 150. Even though 

the mechanism is not known, in testicular tumors, the PATZ1 protein is localized to the 

cytoplasm instead of the nucleus where PATZ1 is normally localized 148,151. 
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2. AIM OF THE STUDY 

 
 
 
 

p53 mutations that allow cells to escape from death are the most common genetic 

event in human cancer. p53 is identified as a tumor suppressor protein because the 

deficiency of p53 results in the accumulation of different types of tumors such as 

carcinomas, osteocarcinomas testicular tumors, soft tissue sarcomas and lymphomas in 

mice. The aim of this project is to find a new interacting partner of p53 that can modify 

its role. One of the candidates that may have a regulatory role on p53 was a 

transcriptional repressor called PATZ1. Besides from its function during B and T cell 

development, PATZ1 protein is also involved in human colorectal, breast and testicular 

tumors. In the first part of the project we aimed to identify and characterize the 

interaction of p53 and PATZ1 proteins from different perspectives. We planned to 

overexpress p53 and PATZ1 proteins and confirm their interaction. By using N terminal 

and C terminal truncations of PATZ1, we wanted to find the domain required for this 

interaction. Furthermore, we aimed to find the amino acids necessary for the p53 – 

PATZ1 interaction by introducing site directed mutations in the required domain of 

PATZ1. For further characterization, we also planned to determine if the interaction 

between p53 and PATZ1 DNA dependent or not by treating with DNA damaging 

agents. In addition to these, we aimed to confirm the interaction in endogenous 

conditions and find if another isoform of p53 or PATZ1 is involved in the interaction. In 

the second part of the study, we wanted to investigate if there is a role of this interaction 

on p53 function. Thus, we planned to find out the effect of PATZ1 overexpression on 

the sub-cellular translocation of p53 from cytoplasm to nucleus and induction of 

apoptosis upon DNA damage. Finally, we aimed to reveal the effect of the formation of 

p53 – PATZ1 complex on p53 – DNA and PATZ1 – DNA interactions. Thus, in this 

project our aim was to investigate the functional interaction of p53 and PATZ1 which 

may have roles in tumor formation and cancer development. 
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3. MATERIALS AND METHODS 

 
 
 
 

3.1 Materials 

 
 

3.1.1 Chemicals 

 
 
All the chemicals used in this project are listed in the Appendix A. 

 
 
 
3.1.2 Equipment 

 
 
All the equipment used in this project are listed in the Appendix B. 

 
 
 
3.1.3 Buffers and Solutions 

 
 
Standard buffers and solutions used in the project were prepared according to the 

protocols in Sambrook et al ., 2001. 

 
 
 

3.1.3.1 Bacterial Transformation Buffers and Solutions 

 

Calcium Chloride (CaCl2) Solution: 60mM CaCl2 (diluted from 1M stock), 15% 

Glycerol, 10mM PIPES at pH 7.00 were mixed and the solution prepared was 

autoclaved at 121 °C for 15 min and stored at 4 °C. 
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3.1.3.2 Mammalian Cell Culture Buffers and Solutions 
 
 

Phosphate-buffered saline (PBS): 1 tablet of PBS (Sigma, P4417) was dissolved 

in 200mL ddH2O. 

 

Polyethylenimine (PEI): 100 mg PEI was dissolved in 90mL of ddH2O. pH was 

adjusted to 7.00 with 5 M NaOH and the solution was completed to 100mL with 

ddH2O. The buffer was filter-sterilized, stored at -20 °C. 

 

Trypan blue dye (0.4% w/v): 40µg of trypan blue was dissolved in 10mL PBS 

 

Hypotonic Lysis Buffer: The solution was prepared with a final concentration of 

10mM HEPES-KOH pH 7.9, 2mM MgCl2, 0.1mM EDTA, 10mM KCl, 0.5% NP-40. 1 

tablet protease inhibitor (complete mini EDTA free)/10mL buffer was mixed prior to 

using. 

 

Hypertonic Lysis Buffer: The solution was prepared with a final concentration of 

50mM HEPES-KOH pH 7.9, 2mM MgCl2, 0.1mM EDTA, 50mM KCl, 400mM NaCl, 

10% glycerol. 1 tablet protease inhibitor (complete mini EDTA free)/10mL buffer was 

mixed prior to using. 

 

Immunoprecipitation (IP) Buffer: The solution was prepared with a final 

concentration of 50mM HEPES-KOH pH 7.9, 5mM MgCl2, 100mM KCl, 0.1% NP-40, 

10% glycerol. 1 tablet protease inhibitor (complete mini EDTA free)/10mL buffer was 

mixed prior to using. 

 

3X Laemni Buffer: The solution was prepared with a final concentration of 175 

mM Tris pH 6.8, 30% glycerol, 3% SDS and 15% β-mercaptoethanol. 
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20X Oligo Annealing Buffer: The solution was prepared with a final 

concentration of 200mM Tris-HCl pH 8.0, 1M NaCl, 40mM MgCl2, 10mM EDTA. 

 

2X Bead – DNA Binding Buffer: The solution was prepared with a final 

concentration of 10mM Tris-HCl pH 7.5, 2M NaCl and1mm EDTA. 

 

5X Protein – DNA Binding Buffer: The solution was prepared with a final 

concentration of 50mM Tris-HCl pH 7.5, 250mM NaCl, 2.5mM EDTA, 2.5mM DTT, 

20%glycerol, 5mM MgCl2, 0.5µg/µL polydI/dC, 0.5µg/µL BSA. 

 

1X PBS-Tween20 (PBS-T) Solution: 0.5mL of Tween20 was dissolved in 1L of 

1X PBS. 

Blocking Buffer: 0.5g milk powder was dissolved 10mL 1XPBST. 

 
 
 

3.1.3.3 Gel Electrophoresis Buffers and Solutions 
 
 

Agarose gel: For 1% w/v agarose gel preparation, 1 g of agarose was dissolved in 

100 mL 0.5X TBE buffer by heating. 0.01% (v/v) ethidium bromide was added to the 

solution. 

 

10X Tris-Borate-EDTA (TBE) Buffer: 104g tris base, 55g boric acid and 40mL 

0.5M EDTA at pH 8.0 were dissolved in 1L of ddH2O. 

 

10X Tris – Glycine Buffer: 40g tris base and 144g glycine were dissolved in 

900mL ddH2O. pH was adjusted to 8.3 with 37% HCl and the solution was completed 

to 1L with ddH2O. 

 

1X Running Buffer: 100mL10X Tris – Glycine Buffer and 5mL 20% SDS 

solution were mixed and completed to 1L with ddH2O.  

 



23 
 

1X Transfer Buffer: 100mL 10X Tris – Glycine Buffer, 200mL methanol and 

1.8mL 20%SDS were mixed and completed to 1L with ddH2O. 

 

SDS Separating Gel (10%): For 10mL gel; 2.5mL Tris 1.5M at pH 8.8, 4mL 

ddH2O, 3.34mL Acryl: Bisacryl (30%), 100µL 10% SDS, 100µL 10% APS, and 10µL 

TEMED were mixed. 

 

SDS Stacking Gel (4%): For 5mL gel; 1.25mL Tris 0.5 M at pH 6.8, 2.70mL 

H2O, 1mL Acryl: Bisacryl (30%), 50µL 10% SDS, 15µL 10% APS, and 7.5µL TEMED 

were mixed. 

 
 
 

3.1.4 Growth Media 
 
 

3.1.4.1 Bacterial Growth Media 
 
 

Luria Broth from BD was used for liquid culture of bacteria. 20 g of LB Broth 

was dissolved in 1 L of distilled water and autoclaved at 121oC for 15 min. For 

selection, ampicillin with a final concentration of 100µg/mL, kanamycin with a final 

concentration of 50µg/mL and chloramphenicol with a final concentration of 

12.5µg/mL were added to the liquid medium after autoclave.  

 

LB agar from BD was used for preparation of solid medium for the growth of 

bacteria. 40g of LB agar were dissolved in 1L distilled water and autoclaved at 121oC 

for 15 min. For selection, ampicillin with a final concentration of 100µg/mL, kanamycin 

with a final concentration of 50µg/mL and chloramphenicol with a final concentration 

of 12.5µg/mL were added to the medium after cooling down to 50oC. Antibiotic added 

medium was poured onto sterile Petri dishes (~ 20 mL/plate). Sterile solid agar plates 

were kept at 4oC.  
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3.1.4.2 Tissue Culture Growth Media 

 
 

Growth Media For Adherent cell lines: HCT116 and HCT116 p53-/- cell lines 

were grown in filter-sterilized DMEM that was supplemented with 10% heat-

inactivated fetal bovine serum, 2mM L-Glutamine, 100 unit/mL penicillin and 100 

unit/mL streptomycin. 

 

Freezing Medium: All the cell lines were frozen in medium containing DMSO 

added into fetal bovine serum (FBS) at a final concentration of 10% (v/v) and stored at 

4oC. 

 
 
 

3.1.5 Commercial Molecular Biology Kits 
 
 

  QIAGEN Plasmid Midi Kit, 12145, QIAGEN, Germany 

  Qiaquick Gel Extraction Kit,28706, QIAGEN, Germany 

  Qiaquick PCR Purification Kit,28106, QIAGEN, Germany 

 
 
 

3.1.6 Enzymes 
 
 

All the restriction enzymes and their corresponding 10X reaction buffers, DNA 

modifying enzymes and polymerases used in this study were from New England 

Biolabs (NEB). 
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3.1.7 Cell Types 

 
 
 

3.1.7.1 Bacterial Cells 
 
 

E. coli DH-5α (F- endA1 glnV44 thi-1 relA1 gyrA96 deoR nupG lacZdeltaM15 

hsdR17) competent cells were used for bacterial transformation of plasmids.  

 
 
 

3.1.7.2 Tissue Culture Cell Lines 
 
 

Human colon carcinaoma cell lines HCT116 that has wild type p53 and HCT116 

p53-/- cells that lacks p53 were used in this study. 

 
 
 

3.1.8 Vectors and Primers 
 
 

Vectors and primers used in this project are listed in Table 3.1 and Table 3.2 
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Vector Name Use 
E.coli 

Resistance 
Marker 

pcDNA-GFP Transfection Control Vector Amp 

pCMV-HA 
Mammalian Expression 

Vector with N Terminal HA 
Tag 

Amp 

pCMV-HA-PATZ1 
Mammalian Expression 
Vector Encodes of HA-

PATZ1 
Amp 

pCMV-HA-PATZ1Alt 
Mammalian Expression 
Vector Encodes of HA-

PATZ1Alt 
Amp 

pCMV-HA-PATZ1D521Y 
Mammalian Expression 
Vector Encodes of HA-

PATZ1 D521Y Single Mutant 
Amp 

pCMV-HA-
PATZ1D521Y/D527Y 

Mammalian Expression 
Vector Encodes of HA-
PATZ1 D521Y/D527Y 

Double Mutant 

Amp 

pCMV-FLAG 
Mammalian Expression 
Vector with N Terminal 

FLAG Tag 
Amp 

pCMV-FLAG-p53 
Mammalian Expression 

Vector Encodes of FLAG-
PATZ1 

Amp 

pCMV-Myc 
Mammalian Expression 

Vector with N Terminal Myc 
Tag 

Amp 

pCMV-Myc-PATZ1 
Mammalian Expression 
Vector Encodes of Myc-

PATZ1 
Amp 

pCMV-Myc-deltaZF 
Mammalian Expression 
Vector Encodes of Myc-
PATZ1 ΔZF Truncation 

Amp 

pCMV-Myc-deltaBTB 
Mammalian Expression 
Vector Encodes of Myc-

PATZ1 ΔBTB Truncation 
Amp 

pCMV-Myc-BTB 
Mammalian Expression 
Vector Encodes of Myc-

PATZ1 BTB Only Truncation 
Amp 

 
Table 3.1 Vectors used in this project 
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Primer Name Sequence Use 

p53_GADD45_fwd (Biotin)GAACATGTCTAAGCATGCTG Pull down 

p53_GADD45_rev (Biotin)CAGCATTCTTAGACATGTTC Pull down 

p53_pg13_fwd (Biotin)CCAGGCAAGTCCAGGCAGG Pull down 

p53_pg13_rev (Biotin)CCTGCCTGGACTTGCCTGG Pull down 

MAZRtop 
(Biotin)AGGTGTGCTGCCCCCAGGTCC
ACCCGCAGGAGGAGAGGGGGCT Pull down 

MAZRbot 
(Biotin)AGCCCCCTCTCCTCCTGCGGG
TGGACCTGGGGGCAGCACACCT Pull down 

HAMAZRfwd 
CTAGAATTCCCCACCATGTACCCAT
ACGATGTTCCAGATTACGCTATGGA
GCGGGTCAACGACGCTTC 

Cloning of 
mPATZ1-002-
IRES-Cherry 

MAZRrev 
CTAGAATTCCGACGGGACACAGCAT
GTCTCAC 

Cloning of 
mPATZ1-002-
IRES-Cherry 

patz1-001/002Rev 
TAGGAGGCAGAGGAGAAACCTCGGT
TACAGATGCTACAGAAGT 

Cloning of 
mPATZ1-002-
IRES-Cherry 

patz1-002 For 
CTTCTGTAGCATCTGTAACCGAGGTT
TCTCCTCTGCCTCCTACTTAAAG 

Cloning of 
mPATZ1-002-
IRES-Cherry 

patz1-002 Rev 
TGATGTGAGCATTTCTGGCCTTCTTT
GTTGCCATAGGTCCTGGCG 

Cloning of 
mPATZ1-002-
IRES-Cherry 

patz1-002/001For 
CCAGGACCTATGGCAACAAAGAAG
GCCAGAAATGCTCAC 

Cloning of 
mPATZ1-002-
IRES-Cherry 

 
Table 3.2 Primers used in this project 

 
 
 
3.1.9   DNA and Protein Molecular Weight Markers 

 
 

DNA and protein molecular weight markers used in this project are listed in 
Appendix C. 
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3.1.10  DNA Sequencing 

 
 

Sequencing service was commercially provided by McLab, CA, USA.   

(http://www.mclab.com/home.php) 

 
 
 
3.1.11 Software and Computer Based Programs 

 
 

The software and computer based programs used in this project are listed in Table 
3.3 
 
 

Program Name Website/Company Use 

CLC Main Workbench QIAGEN 
Vector maps, primer 

design, restriction 
analysis, alignments 

FlowJo 7.6.1 Tree Star Inc. View and analyze flow 
cytometry data 

Finch TV 1.4.0 Geospiza Inc. View and analyze 
sequencing results 

ZEN 2009 Light Edition Carl Zeiss Inc. 
View and analyze 

confocal microscope 
data 

Quantity One Bio-Rad View and analyze DNA 
gel  images 

Ensembl Genome 
Browser http://www.ensembl.org View and analyze 

genomic sequences 
   

Table 3.3 Software and computer based programs used in this project 
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3.2 Methods 
 
 
 

3.2.1 General Molecular Cloning Methods 
 
 
 

3.2.1.1 Bacterial Cell Culture 
 
 

Bacterial Culture Growth:  E.coli DH5α strain was grown overnight (16h) at 37oC 

shaking at 250 rpm in Luria Broth (LB). For the glycerol stock preparation of bacterial 

cells, glycerol was added to the overnight grown bacterial cultures to a final 

concentration of 10%. Cells were frozen first in liquid nitrogen and stored at -80oC. 

Bacterial strains were either streaked or spread were on LB agar petri dishes overnight 

at 37oC. All growth medium were prepared with or without selective antibiotics prior to 

any application.  

 

 

Preparation of Chemically Competent Bacterial Cells: E.coli DH5α competent 

cells were prepared starting from a single colony previously streaked on LB agar 

without any selective antibiotics. This colony was inoculated in 50mL LB without any 

selective antibiotics in a 200mL flask and grown overnight at 37oC, 250 rpm. The next 

day, 4mL from the overnight culture was diluted in 400mL LB medium in a 2L flask 

and incubated at 37oC, 250 rpm until the optical density at 590nm reached 0.375. The 

culture was then transferred into 50mL falcon tubes (8 tubes in total) and incubated on 

ice for 10 minutes prior to centrifugation at 1600g for 10min at 4oC. After 

centrifugation, cell pellets were resuspended in 10mL (for each falcon tube) ice-cold 

CaCl2 solution and centrifuged at 1100g for 5 min at 4oC. The cell pellets were 

resuspended in 10mL (for each falcon tube) ice-cold CaCl2 solution again and incubated 

on ice for 30min. Following a final centrifugation at 1100g for 10 min at 4oC, the pellet 

was resuspended in 2mL (for each falcon tube) ice-cold CaCl2 solution and dispensed 

into 200µL aliquots into pre-chilled 1.5mL eppendorf tubes. Aliquotted competent cells 
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were frozen immediately in liquid nitrogen and then stored at -80oC. The transformation 

efficiency of the competent cells was tested routinely between 107-108 colonies/µg 

DNA by pUC19 plasmid transformation.  

 
Chemical Transformation of Bacterial Cells: Chemically competent DH5α E.coli 

were thawed from -80oC to 4oC and 100pg of DNA was added before the cells were 

completely thawed. The cells were then incubated on ice for 30 min.  After the 

incubation on ice, the cells were heat shocked for 90 seconds at 42oC and transferred 

back onto ice for 60 seconds. 800µL of sterile LB without any antibiotics was added on 

the cells and this culture was incubated for 45 min at 37oC for the recovery of the cells. 

After 45 min, the cells were spread with 4mm glass beads on the LB agar plate 

containing appropriate antibiotic for selection. The plate was incubated overnight at 

37oC.  

Plasmid DNA Isolation: Plasmid DNA isolation was performed with alkaline lysis 

protocols. The concentration and purity of the DNA isolated were determined by using 

a UV-spectrophotometer or nanodrop. Measurements for DNA concentration and purity 

were done at an optical density of 260nm by using quartz cuvettes.  

 
 
 
3.2.1.2 Vector Construction 

 
 

Polymerase Chain Reaction (PCR) Amplification:  
 
Optimized PCR conditions are shown in Table 3.4 

 
PCR Reaction Volume Used Final Concentration 
Template DNA 1-10µL 4pg/µL – 4ng/µL 

10X Pfu Polymerase Buffer 
with MgCl2 

2.5µL 1X 

dNTP mix (10mM) 0.5µL 0.2mM 
Forward Primer (10µM) 2µL 0.8µM 
Reverse Primer (10µM) 2µL 0.8µM 

Pfu Polymerase (2.5U/µL) 0.5µL 0.025U/µL 
ddH2O Up to 25µL  
Total 25µL  

 
Table 3.4 Optimized PCR conditions 
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Optimized PCR thermal cycle conditions are shown in Table 3.5 

 
Step Temperature (oC) Time (min) 

Initial Denaturation 95 4 
Denaturation 95 1 

Annealing 56 1 
Extension 72 2 

Final Extension 72 10 
Hold 4 ∞ 

 
Table 3.5 Optimized PCR thermal cycle conditions 

 
Restriction Enzyme Digestion: 
 
Components and the amounts for restriction enzyme digestion are shown in Table 

3.6 
 

Components Used Amount 

Plasmid DNA 1µg-10µg 

Restriction enzyme (10U/µL) 1.5µL 

Compatible Buffer (10X) 1.5µL 

ddH2O Up to 15µL 

Total 15µL 
 

Table 3.6 Components and amounts for restriction enzyme digestion 
 

Restriction enzyme digestion reactions were set by the mixture of ddH2O, DNA, 

the enzyme and the compatible buffer in a 1.5mL eppendorf tube and incubated at the 

optimum temperature for 2 hours. For diagnostic digestions 1µg of DNA was used. 

10µg or more DNA was digested for gel extraction and cloning purposes. If the DNA 

was a digested vector that would be used in the ligation, the 5’ overhang of the linear 

plasmid was dephosphorylated by calf intestinal alkaline phosphatase, CIAP 

(Fermentas).   

 

Agarose Gel Electrophoresis:  PCR products, digestion products and DNA 

samples were observed on 1% agarose gels. Gels were prepared by dissolving 1g of 

agarose in 100mL 0.5X TBE. The mixture was heated in a microwave until the agarose 

30  
cycles 
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was completely dissolved (typically 2 minutes). The solution was then cooled down and 

ethidium bromide with a final concentration of 0.001v/v was added. After mixing, the 

gel was poured onto the gel cashing tray and let to cool down to room temperature and 

solidify.  When the gel was in solid form, the DNA samples which were previously 

mixed with 6X DNA loading dye reaching to a final concentration of 1X were loaded 

into the wells. 0.5X TBE was used as a running buffer. Agarose gels were run at 100V 

for 80 min and the bands were observed under UV in a BIO-RAD gel imager.   

 

DNA Extraction From Agarose Gel: DNA samples were extracted with Qiagen 

Gel Extraction Kits according to the manufacturers protocols. 

 

Ligation:  The ligation reaction mixtures were composed of insert either digested 

or amplified by PCR and digested thereafter, digested vector, T4 ligation buffer (NEB), 

T4 DNA ligase (NEB) and ddH2O. Ligation reactions contained 1:3, 1:5 or 1:10 

vector:insert molar ratio using 100ng of vector. For ligations, vectors which were 

dephosphorylated by using calf intestine alkaline phosphatase, CIAP (Fermentas) after 

digestion, in order to avoid self ligation.  Also for each ligation, a separate ligation 

reaction mixture without insert was always used as a negative control. Ligation 

reactions were incubated at 16oC for 16 hours. The mixture was then transformed into 

chemically competent bacterial cells.   

 
 
 

3.2.2 Mammalian Cell Culture 
 

 
 

3.2.2.1 Preparation and Maintenance of Mammalian Cells 
  

 
Maintenance of Adherent Cells: Adherent cells used in this project were HCT116 

and HCT116 p53-/- cells. These cell lines were grown in filter-sterilized DMEM that 

was supplemented with 10% heat-inactivated fetal bovine serum, 2mM L-Glutamine, 

100unit/mL penicillin and 100unit/mL streptomycin in 10mm tissue culture plates in a 

37oC, 5%CO2 incubator. When the plate reached to 70-80% confluency, cells were split 

into a pre-warmed, fresh medium with a ratio of 1:10. Adherent cells were trypsinized 

before splitting.  
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Trypsinization: Adherent cells were trypsinized to detach the cells both from the 

plate and from each other. After removing the old medium, plate was washed with 

serum free DMEM to remove the serum which would inactivate the trypsin enzyme. 

2mL of trypsin solution was added on the plate and incubated until the cells were 

detached from the plate (approximately 2 minutes) at 37oC.  8 mL of fresh medium 

containing serum was then added to the trypsin on the plate surface and cells were 

harvested to a 15 mL falcon tube. After centrifugation at 1000 rpm for 5 minutes, the 

medium was removed and cells were resuspended in pre-warmed fresh DMEM that was 

supplemented with 10% heat-inactivated fetal bovine serum, 2mM L-Glutamine, 

100unit/mL penicillin and 100unit/mL streptomycin for further incubation. 

 

Cell Freezing: 106 cells were centrifuged at 1000 rpm for 5 minutes and the 

medium was removed. The cells were then resuspended in 1 mL ice-cold freezing 

medium containing DMSO added into fetal bovine serum (FBS) at a final concentration 

of 10% (v/v) and were put in cryovials. They were stored at -80oC in a cryobox for 24-

48 hours and were then transferred to liquid nitrogen tank.  

 

Cell Thawing: Frozen cells in the cryovials were resuspended in 10mL complete 

growth medium in a 15mL falcon tube. The cells were then centrifuged at 1000 rpm for 

5 minutes. After removing the supernatant, the cells were resuspended in 10mL pre-

warmed fresh complete medium and transferred to either plates or flasks.  

 
 
 

3.2.2.2 Transient Transfection of Adherent Cells with PEI (Polyethylenimine) 
  

 
Adherent cells used in this project were HCT116 and HCT116 p53-/-. Transient 

transfection of these cell lines were done by using the PEI method. One day before 

transfection 4x106 cells were split onto 10-cm plates. On the transfection day, 10µg 

DNA was diluted in 1mL ddH2O followed by 30µgPEI addition. The mixture was 

vortexed immediately and incubated for 15 minutes at room temperature. After 

incubation, the mix was added dropwise on the cells.  
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3.2.2.3 Cell Lysis, Immunoprecipitation and DNA Pull Down 

 
 

48 hours after transfection of expression plasmids, 20x106cells were trypsinized 

and harvested in a 15mL falcon tube. After centrifugation at 1000 rpm for 5 minutes, 

the cells were washed with 1XPBS and transferred to a 1.5mL eppendorf tube. Another 

centrifugation at 1000 rpm for 5 minutes was done to remove the PBS and the cells 

were then resuspended in 1000 µL hypotonic lysis buffer. The cells were incubated with 

the hypotonic lysis buffer suspension on ice for 10 minutes and then centrifuged at 

13.200 rpm for 10 minutes. Cytoplasmic lysate (the supernatant after centrifugation) 

was transferred to a clean 1.5mL eppendorf tube. The pellet was dounce homogenized 

by 10 strokes in 150 µL hypertonic lysis buffer for nuclear extration. The suspension 

was incubated on ice for 15 minutes and then centrifuged at 13.200 rpm for 10 minutes. 

Nuclear lysate (the supernatant after centrifugation) was transferred to a clean 1.5mL 

eppendorf tube. Cytoplasmic and nuclear lysates were stored at -80oC for western blot 

experiments, however if there was an immunoprecipitation experiment going on, then 

the lysates were used fresh. For immunoprecipitation, nuclear lysates were diluted at a 

1:2 ratio in IP buffer. The dilution was incubated with anti-FLAG or anti-HA antibody 

conjugated sepharose beads or anti-p53 antibody conjugated magnetic beads at 4oC 

overnight, washed several times in ice-cold wash buffer. Finally, beads were boiled at 

95oC in 1X Laemni Buffer for 10 minutes leading the protein samples transfer from 

beads to the buffer. After centrifugation, the samples were loaded onto SDS-PAGE gels.  

 
For DNA pull down, biotinylated oligos were diluted with annealing buffer up to 

a concentration of 1X. The mixture was placed in a water bath at 100oC for 5 minutes 

and then the heater was shut off and the mixture was allowed to cool down slowly to 

room temperature in the water bath. Streptavidin coupled magnetic beads were 

conjugated with the annealed biotinylated double stranded probes in 1X Bead-DNA 

binding buffer at room temperature for 15 minutes. Nuclear lysates were incubated with 

the streptavidin beads conjugated with biotinylated probes in 1X Protein – DNA 

binding buffer at room temperature for 30 minutes. Protein contents of the bead 

conjugates were eluted in 1X Laemni Buffer. 
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3.2.3.4 SDS Gel, Transfer and Western-Blot 
 
 

The SDS gels used in this project had a 10% separating part and a 4% stacking 

part and their contents were explained in section 3.1.3.1. After the samples were loaded, 

the SDS gels were run with 1X running buffer at constant voltage 80V for 1.5-2 hours 

using a BIORAD MiniProtean Tetra Cell. After running, the gels were transferred to 

0.45µm PVDF membranes (Thermo Scientific) in 1X transfer buffer at constant current 

250mA for 105 minutes at 4oC using a BIORAD Mini Trans-blot wet electrophoretic 

transfer cells. Membranes were then blocked in 10mL blocking buffer at room 

temperature for 1 hour with constant shaking. Primary antibody incubations were 

performed overnight at 4oC and secondary antibody incubations were performed for 1 

hour at room temperature. Membranes were washed with PBS-T buffer 3 times for 10 

minutes after blockings, primary antibody incubations and secondary antibody 

incubations. After the final washing step, the membranes were incubated with an 

enhanced chemiluminescent substrate (Supersignal west pico chemiluminescent 

substrate, Thermo Scientific lot number JL126474) for 4 minutes at room temperature 

in the dark room for HRP detection. Membranes were then transferred to cassettes and 

exposed to X-Ray Films (Fuji), developed and fixed in the dark room.  

 
 
 

3.2.4  Subcellular Localization 
  
 

Prior to the transfection of cells with PEI, coverslides were attached to the surface 

of six-well plates and cells were seeded those cover slips. Transfection of the DNA into 

the cells was performed according to the protocol explained in section 3.2.3.3. 48 hours 

after from transfection, the medium was removed and the cover slips were washed with 

1XPBS twice. 4% paraformaldehyte (PFA) was then added to the plates and cells were 

incubated for 30 minutes in dark at room temperature for fixation of the cells to the 

cover slips. Then, the covers slips  were washed with 1XPBS twice and incubated in 

1µg/mL DAPI (4',6-Diamidine-2'-phenylindole dihydrochloride) soltion solution for 5 

minutes in dark at room temperature. Covers slips  were washed with 1XPBS two times 

again. 15µL ProLong Gold Antifade (Invitrogen) mounting medium was added on the 
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slides and the cover slips were inverted and seated on the slides. After the cover slips 

were fixed, the cells were visualized with the fluorescence microscope with GFP, 

dsRED and DAPI filters and Plan-Apochromat 63x/1.40 Oil DIC M27 objective. 

 
 
 
3.2.5   Flow Cytometric Analysis 

 
 

106 cells were used for each flow cytometric analysis. After centrifugation of the 

cells, the supernatant was removed and the cells were washed with PBS for two times. 

In order to exlude dead cells and detect the apoptotic cells, the cells were incubated with 

SytoxRED and AnnexinV-FITC at room temperature for 15 minutes in dark. The flow 

cytometric analysis of the cells was performed by using a BD FACSCanto flow 

cytometer. AnnexinV-FITC was excited by the 488 nm argon laser and fluorescence 

was detected with FITC 530/30nm band pass filter.  

 
 
 
3.2.6   Real Time Cell Growth and IC50 Analysis 

 
 

Cell proliferation was measured continuously with an RTCA DP system (ACEA 

Biosciences, San Diego), by seeding 10 000 cells in each well of an E-Plate VIEW 16 

tissue culture plates (10 000 cells/150μL) on the XCelligence station in 5%CO2 and 

37oC incubator. 24 hours after seeding, doxorubicin was added in 50μL with a final 

concentration of 1000 nM, 330 nM, 110nM, 37nM, 12nM and 4nM in different wells.   

Cell index measurements were taken from the beginning (20 minutes after the seeding) 

and every 15 minutes for up to 120 hours. Medium only wells were also included in the 

monitoring as a negative control of the experiment. The experiments were performed as 

triplicates. The results were analyzed by RTCA 2.0 software.  
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4.  RESULTS 

 
 
 
  

4.1 Subcellular Localization of p53 and PATZ1 Proteins 
 
 
 

In order to find the subcellular localization of p53 and PATZ1 proteins, we 

extracted the cytoplasm and the nucleus of human colon carcinoma cell line, HCT116 

wild type or p53-/- cells. We treated the cells with DNA damaging, genotoxic drug 

doxorubicin. 8 hours after treatment we performed cytoplasmic and nuclear lysis and 

the lysates separated on acyrlamide gels were immunoblotted with anti-PATZ1 and 

anti-p53 antibodies in a western blot experiment. As shown in figure 4.1B cytoplasmic 

and nuclear lysate fractions from HCT116 WT or HCT116 p53-/- cells treated (or not) 

with 1uM doxorubicin for 8 hours revealed the presence of  PATZ1 and PATZ1Alt 

variants in the nuclear fraction (top row). Same lysates blotted with anti-p53 (bottom 

row) revealed low levels of p53 before DNA damage (lanes 1, 5) and induced levels 

after DNA damage induced by doxorubicin treatment (lanes 2, 6) both in the 

cytoplasmic and nuclear fraction. In figure 4.1B, it is clearly seen that PATZ1 is a 

nuclear protein while p53 is present both in the cytoplasm and nucleus. Although, 

doxorubicin treatment dramatically increased the levels of cellular p53 both in 

cytoplasm and nucleus, the localization of the PATZ1 and PATZ1Alt transcription 

factors were predominantly nuclear, independent of doxorubicin treatment.  
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Figure 4.1 Expression patterns of PATZ1 and p53 before and after DNA damage 
induced by doxorubicin. A) Schematic representation of PATZ1 and its alternatively 

spliced variants. Grey boxes represent the protein-protein interaction BTB/POZ domain, 
black boxes represent the DNA binding AT-hook domains and numbered boxes 

represent the zinc finger motifs. The name and expected molecular size of the PATZ1 
isoforms are indicated on the left. B) Cytoplasmic and nuclear fractionation of 

HCT116WT and p53-/- cells before and after DNA damage for p53 and PATZ1 
expression. 
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4.2 The Effect Of PATZ1 In The Subcellular Translocation Of p53 

 
 
 
In normal unstressed cells, endogenous p53 was localized both in the cytoplasm 

and in the nucleus which is shown in figure 4.1. We wanted to test the effect of 

doxorubicin treatment on p53 localization and the effect of PATZ1 protein if there 

would be a change in the localization of p53. Therefore, we transfected HCT116 p53-/- 

cells with a p53-GFP fusion plasmid (map is shown in appendix figure D.13) alone or 

with HA-PATZ1. 40 hours after transfection, we treated the transfected cells with 

doxorubicin for 8 hours. In figure 4.2, DAPI reveals the nucleus of the cells and GFP 

fluorescence shows the localization of the p53-GFP fusion protein. In the absence of 

DNA damage, p53-GFP fusion protein is mostly in the cytoplasm.  Upon DNA damage 

induced by doxorubicin, all the p53-GFP fusion protein translocates to the nucleus. 

However, HA-PATZ1 overexpression did not have any significant effect on p53-GFP 

localization in either doxorubicin treatment or no treatment conditions. 
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Figure 4.2 Confocal microscopy images p53-GFP transfected HCT116 p53-/- cells 
before and after DNA damage induced by doxorubicin treatment in the presence or 

absence of HA-PATZ1. DAPI staining shows the nucleus of the cells, GFP shows the 
overxpressed p53-GFP protein. The images are taken with Zeiss LSM710 Confocal 

Microscope with 63X magnification. 
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4.3 The Interaction of Overexpressed p53 and PATZ1 Proteins 

 
 
 

A recent study reported the association of p53 with PATZ1 in HEK293 cells152. In 

order to confirm the physical interaction of p53 and PATZ1 proteins in other cells, we 

overexpressed FLAG epitope tagged p53 protein and HA epitope tagged PATZ1 or 

PATZ1Alt protein isoforms in HCT116 p53-/- cells which lack endogenous p53. To 

overexpress epitope tagged proteins, we transfected HCT116 p53-/- cells with plasmids 

encoding FLAG-p53 (pCMV-FLAG-p53, shown in appendix figure D.12) and HA-

PATZ1 (pCMV-HA-PATZ1 shown in appendix figure D.2) or HA-PATZ1Alt (pCMV-

HA-PATZ1Alt shown in appendix figure D.3). 48 hours after transfection, cells were 

lysed and lysates were immunoprecipitated with anti-FLAG antibody conjugated 

sepharose beads. Immunoprecipitates or whole cell lysates were separated on 

acrylamide gels and were immunoblotted with anti-HA-HRP antibodies in a western 

blot experiment.  

 

The schematic representation of HA epitope tagged PATZ1 and PATZ1Alt 

alternative splice variants are shown in figure 4.3A.  The only difference between the 

PATZ1 and PATZ1Alt protein is after the 6th zinc finger motif in their DNA binding 

domains. In this experiment anti-FLAG immunoprecipitation of the lysates brought 

down all proteins associated with FLAG epitope tagged p53 and anti-HA western 

blotting revealed the presence of PATZ1 in these immunoprecipitates. In figure 4.3B, 

anti-FLAG immunoprecipitation followed by anti-HA western blot shows the presence 

of HA-PATZ1 (lane 1) but not HA-PATZ1Alt (lane2) in transfected HCT116 p53-/- 

cells. Binding is specific as no co-immunoprecipitation is evident in lysates lacking HA-

PATZ1 (lane 5) or FLAG-p53 (lane 3). Lysates of transfected cells show that HA-

PATZ1 and HA-PATZ1Alt (middle row) and FLAG-p53 (bottom row) are expressed at 

equal levels in transfected cells. 
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Figure 4.3 FLAG-p53 binds to HA-PATZ1 but not HA-PATZ1Alt.  A)  Schematic 
representation of HA-PATZ1 and HA-PATZ1Alt variants. Grey boxes represent the 

protein-protein interaction BTB/POZ domain, black boxes represent the DNA binding 
AT hook domains and numbered boxes represent the zinc finger motifs. N-terminal 

epitope tags are indicated by boxes with HA. The name and expected molecular size of 
the PATZ1 and PATZ1Alt variants are indicated on the left. B) Anti-FLAG 

immunoprecipitation and anti-HA western blot to show FLAG-p53 – HA-PATZ1 
interaction. 
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4.4 Domain Requirements for the p53 – PATZ1 Interaction 
 
 
 

PATZ1 and PATZ1Alt isoforms share exactly the same N terminal BTB domain 

but differ after the 6th zinc finger motif in their DNA binding domain. Because p53 

could not be immunoprecipitated with PATZ1Alt, we hypothesized that p53 binds to the 

C terminal region of PATZ1. To test this hypothesis, we created various constructs that 

encode different truncated forms of the Myc epitope tagged PATZ1 protein shown in 

figure 4.2A. These truncation mutants encode all of the protein except the C terminal 

zinc finger domain (ΔZF), only the N terminal BTB domain (BTB) or all of the protein 

except for the N terminal BTB domain (ΔBTB). We transfected HCT116 p53-/- cells 

with plasmids encoding FLAG-p53 (pCMV-FLAG-p53, shown in appendix figure 

D.12) and Myc-PATZ1 (pcDNA-Myc-PATZ1 shown in appendix figure D.7) or Myc-

ΔBTB (pcDNA-Myc-deltaBTB shown in appendix figure D.8) or Myc-BTB (pcDNA-

Myc-BTB shown in appendix figure D.9) or Myc-ΔZF (pcDNA-Myc-deltaZF shown in 

appendix figure D.10). 48 hours after transfection, we lysed the cells and 

immunoprecipitated with anti-Myc antibody conjugated sepharose beads. We separated 

immunoprecipitates or whole cell lysates on acyrlamide gels and immunoblotted with 

anti-FLAG-HRP antibodies in a western blot experiment.  

 

Anti-Myc immunoprecipitation followed by anti-FLAG western blot shows that 

FLAG-p53 interacts with Myc-PATZ1 (lane 1) and Myc-ΔBTB (lane 3) but not Myc-

BTB (lane 2) or Myc-ΔZF (lane 4) (top row). Binding is specific as no co-

immunoprecipitation is evident in lysates lacking FLAG-p53 (lanes 6-9). Lysates of 

transfected cells show that FLAG-p53 (middle row) and Myc-PATZ1 and its 

truncations (bottom row) are expressed at equal levels in transfected cells. The 

interaction of FLAG-p53 with Myc-ΔBTB lacking the N terminal BTB domain and the 

absence of an interaction with Myc-BTB and Myc-ΔZF lacking the C terminal DNA 

binding domain indicate that the C terminal domain of PATZ1 is necessary for the 

interaction between p53 and PATZ1 proteins. 
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Figure 4.4 C-terminal tail of PATZ1 is required for binding p53. A) Schematic 

representation of Myc-PATZ1, Myc-ΔZF, Myc-BTB and Myc-ΔBTB truncation forms. 
Grey boxes represent the protein-protein interaction BTB/POZ domain, black boxes 

represent the DNA binding AT hook domains and numbered boxes represent the zinc 
finger motifs. N-terminal epitope tags are indicated by boxes with Myc. The name and 
expected molecular size of the full length PATZ1 and truncated proteins are indicated 
on the left. B) Anti-Myc immunoprecipitation and anti-HA western blot to show the 

interaction between FLAG-p53 – and Myc-PATZ1 or Myc epitope tagged truncations. 
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4.5 Amino Acids of PATZ1 Necessary for the p53 – PATZ1 Interaction 
 
 
 

In order to narrow down the p53 – PATZ1 interaction region to a domain between 

the 6th and 7th zinc finger motifs of the PATZ1 protein, we aligned the sequences of this 

region from PATZ1 proteins of several species. This region which is necessary for the 

p53 – PATZ1 interaction is highly conserved among many species. We observed that 

most of the amino acids in this region are bulky and negatively charged. Therefore, we 

hypothesized that, the negatively charged amino acids form an interaction region for 

p53 and PATZ1. To test this hypothesis, we generated site directed mutants that 

substitute the bulky negatively charged amino acids with bulky non-charged amino 

acids. We surmised that if our hypothesis was correct, the non-charged mutant PATZ1, 

would not able to interact with p53. To identify the critical negatively charged amino 

acids that have a role in this interaction, we created single (D521Y) and double 

(D521Y/D527Y) site directed mutant versions of the HA-Patz1 cDNA shown in figure 

4.5A. We transfected HCT116p53-/- cells with FLAG-p53 and HA-PATZ1 or HA-

PATZ1D521Y Single Mutant (SM) or HA-PATZ1D521Y/D527Y Double Mutant (DM) 

cDNAs (shown in appendix figure D.13,D.2, D.4, D.5, respectively). 48 hours after 

transfection, tansfected cells were lysed and lysates were immunoprecipitated with anti-

FLAG sepharose beads. Immunoprecipitates and lysates separated on acyrlamide gels 

were immunoblotted with anti-HA-HRP antibody in a western blot experiment. In this 

experiment anti-FLAG immunoprecipitation of the lysates brings down all proteins 

associated with the FLAG epitope tagged p53. Anti-HA western blotting reveals if HA-

PATZ1WT or its mutant derivatives are present in these immunoprecipitates. In figure 

4.5B, we show that the negatively charged amino acids encoded by codon 521 and 527 

of PATZ1 were necessary for the p53 – PATZ1 interaction. In this experiment, anti-

FLAG immunoprecipitations from lysates of transfected cells revealed the presence of 

WT HA-PATZ1 (lane1), albeit only reduced (40%) levels of single mutant HA-

PATZ1(D521Y) (lane2) and undetectable double mutant HA-PATZ1(D521Y/D527Y) 

(lane3).  Binding is specific as no co-immunoprecipitation is evident in lysates lacking 

FLAG-p53 (lanes 5-8). Lysates of transfected cells show that HA-PATZ1 and its 
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mutants (middle row) and FLAG-p53 (bottom row) are expressed at equal levels in 

transfected cells. 

 
Figure 4.5 Aspartic acids in residue 521 and 527 of PATZ1 protein are necessary for 

p53 – PATZ1 interaction. A) Sequencing histogram analysis of the HA-Patz1 wild type 
and mutant constructs. Sequencing histograms indicate the WT codons in Patz1 (top 

row), the D521Y encoding mutation in single mutant (HA-PATZ SM) (middle row) and 
the D521Y and D527Y encoding mutations in double mutant (HA-PATZ DM) (bottom 

row) encoding constructs. B) Anti-FLAG immunoprecipitation and anti-HA western 
blot to show the interaction between FLAG-p53 – and HA-PATZ1 or mutants. 
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4.6 DNA Independence of the p53 – PATZ1 Interaction 
 
 
 

To investigate the requirements for the interaction between p53 and PATZ1 in 

detail, we next assessed if this interaction depended on the presence of DNA. We 

repeated our immunoprecipitations in the presence of two different chemical agents. 

The first chemical doxorubicin damages DNA in vivo and the second, ethidium bromide 

intercalates into DNA in vitro. We transfected HCT116 p53-/- cells with FLAG-p53 and 

HA-PATZ1 cDNAs. 40 hours after transfection, we treated cells with doxorubicin for 8 

hours and lysed the cells and performed anti-HA immunoprecipitation followed by anti-

FLAG-HRP western blotting. Figure 4.6 top row, lane 3, demonstrates that the p53 – 

PATZ1 interaction was stable in cells undergoing DNA damage, as anti-HA 

immunoprecipitates from cells treated with doxorubicin continued to reveal the 

presence of FLAG-p53.  Next, we treated anti-HA immunoprecipitates form FLAG-p53 

and HA-PATZ1 co-transfected HCT116 p53-/- cells with ethidium bromide. Compared 

to the immunoprecipitated FLAG-p53 from non-treated anti-HA immunoprecipitates, 

equal amounts were evident in the ethidium bromide treated samples (lane 4). We 

conclude that the interaction between p53 and PATZ1 is independent of DNA. 

 
 

Figure 4.6 Interaction of FLAG-p53 and HA-PATZ1 is independent of DNA.  Anti-
FLAG immunoprecipitation and anti-HA western blot to show FLAG-p53 – HA-

PATZ1 interaction still exists in the presence of doxorubicin and ethidium bromide. 
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4.7 The Interaction of Endogenous p53 and PATZ1 Proteins 
 
 
 

After revealing the nuclear expression of PATZ1 and its alternatively spliced 

variants, we wanted to confirm the interaction of endogenous p53 and PATZ1 in 

HCT116 WT cells and also used HCT115p53-/- cells lacking endogenous p53 as a 

negative control. To this end, we either treated the cells with doxorubicin for 8 hours or 

left the cells untreated. After treatment, we performed nuclear extraction and 

immunoprecipitation with anti-p53 antibody conjugated protein A magnetic beads. 

Immunopresipitates and nuclear lysates separated on acyrlamide gels were 

immunoblotted with anti-PATZ1 and anti-p53 antibodies in a western blot experiment.  

 

In this experiment anti-p53 immunoprecipitation of the nuclear lysates brings 

down all proteins associated with the endogenous p53. Anti-PATZ1 western blotting 

reveals if PATZ1 is present in these immunoprecipitates.  In figure 4.7, we showed that 

anti-p53 immunoprecipitation followed by anti-PATZ1 antibody blotting revealed the 

presence of PATZ1 and PATZ1Alt in complex with p53, in the absence (lane 1) or 

presence of doxorubicin treatment (lane 2) from HCT116 WT cells (top row). Binding 

was specific as immunoprecipitates from HCT116 p53-/- cells (lane 3, 4) did not reveal 

the presence of PATZ1 or PATZ1Alt. Anti-p53 immunoprecipitation followed by anti-

p53 antibody blotting revealed that doxorubicin treatment induced p53 expression, as 

expected (lane 1,2, middle row). Nuclear lysates of transfected cells showed that 

PATZ1 and PATZ1Alt proteins were expressed at equal levels (bottom row). 
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Figure 4.7 Endogeonus p53 binds to endogenous PATZ1 in HCT116 cells. Anti-p53 
immunoprecipitation and anti-PATZ1 western blot to show endogenous p53 and 

PATZ1 proteins interact. 
 
 
 

4.8 Heterodimerization of PATZ1 and PATZ1Alt Alternative Splice Variants 
 
 
 
We found that endogenous p53 and PATZ1 proteins interacted like overexpressed 

p53 and PATZ1. However, we were surprised to see the endogenous PATZ1Alt isoform 

in p53 immunoprecipitates, beceause overexpressed PATZ1Alt had failed to interact 

with p53. It was previously shown that PATZ1 could form homodimers (Koboashi et 

al., 2000). Therefore, we hypothesized that PATZ1 could also form heterodimers with 

PATZ1Alt and this complex would bind to p53. If the hypothesis was correct, 

PATZ1Alt and p53 could be in the same complex although they did not have a direct 

interaction. PATZ1 would be protein that would interact with both PATZ1Alt and p53 

at the same time and form a complex which would bring PATZ1Alt and p53 together 

without a direct interaction. 

 

In order to test this hypothesis, we transfected HCT116 p53-/- cells with Myc-

Patz1, HA-Patz1Alt and FLAG-p53 cDNAs. 48 hours after transfection, the cells were 

lysed and nuclear lysates were immunoprecipitated with anti-HA sepharose beads. 
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Immunoprecipitates and lysates were separated on acyrlamide gels and were 

immunoblotted with anti-Myc-HRP and anti-FLAG-HRP antibodies in a western blot 

experiment.  In figure 4.8, we show that anti-HA immunoprecipitation followed by anti-

Myc antibody blotting revealed the presence of Myc-PATZ1 and HA-PATZ1Alt 

complex (lane 1,3 top row). On the other hand, anti-HA immunoprecipitation followed 

by anti-FLAG antibody blotting revealed the presence of HA-PATZ1Alt and FLAG-

p53 complex only in the presence of Myc-PATZ1 (lane 1 second row). Nuclear lysates 

of transfected HCT116 p53-/- cells blotted with anti-Myc, anti-HA and anti-FLAG 

antibodies showed that Myc-PATZ1, HA-PATZ1Alt and FLAG-p53 proteins were 

expressed at equal levels (bottom three rows). Thus, this experiment reveals the reason 

behind the difference of overexpressed and endogenous PATZ1Alt isoform binding to 

p53. PATZ1Alt could heterodimerize with full length PATZ1 protein and indirectly be 

co-immunoprecipitated with p53 in a three molecule complex.  

 

 
 

Figure 4.8 PATZ1Alt can interact with p53 only in the presence of PATZ1. Anti-HA 
immunoprecipitation - anti-Myc western blot to show Myc-PATZ1 and HA-PATZ1Alt 
heterodimerize and anti-HA immunoprecipitation – anti-FLAG western blot to show the 

interaction of HA-PATZ1Alt with FLAG-p53 only in the presence of Myc-PATZ1 
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4.9 Domain Requirements for the PATZ1 – PATZ1Alt Heterodimerization 

 
 
 

As we found out that PATZ1 and PATZ1Alt alternatively spliced variants could 

heterodimerize, we wanted to further characterize this heterodimerization by identifying 

the domain requirements for the heterodimer between the PATZ1 and PATZ1Alt 

isoforms. Therefore, we co-transfected HCT116 cells with HA-Patz1Alt and Myc-Patz1 

full length or Myc epitope tagged truncations (Myc-ΔBTB, Myc-BTB and Myc-ΔZF). 

The schematic representation of the Myc epitope tagged full length protein and the 

truncations were shown in Figure 4.4. 48 hours after transfection, the cells were lysed 

and nuclear lysates were immunoprecipitated with anti-Myc sepharose beads. 

Immunoprecipitates and nuclear lysates were separated on acrylamide gels and were 

immunoblotted with anti-HA-HRP antibody in a western blot experiment. In this 

experiment anti-Myc immunoprecipitation of the nuclear lysates brings down all 

proteins associated with the HA-PATZ1Alt. In figure 4.9, we identified that anti-Myc 

immunoprecipitation followed by anti-HA antibody blotting revealed the presence of 

the Myc-PATZ1 and HA-PATZ1Alt complex only in cells expressing BTB containing 

Myc-PATZ1 proteins (lane 1,2 and 4, top row). Myc-∆BTB could not bind to HA-

PATZ1Alt (lane 3, top row). Lysates of transfected HCT116 cells blotted with anti-HA 

and anti-Myc antibodies showed that full length PATZ1, truncation variants of PATZ1 

and PATZ1Alt proteins were expressed at equal levels (bottom two rows). 

 

As we have shown that anti-Myc immunoprecipitates from nuclear lysates of 

transfected cells revealed the presence of all truncated PATZ1 variants except the 

truncation lacking the BTB domain and in fact, the BTB domain by itself was sufficient 

to heterodimerize with the PATZ1Alt protein, we concluded that the BTB domain of 

PATZ1 and PATZ1Alt proteins is the region necessary for heterodimerization of these 

variants. 
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Figure 4.9 The BTB domain of PATZ1 and PATZ1Alt proteins is necessary for 
heterodimerizaiton of the alternative splice variants. Anti-Myc immunoprecipitation and 
anti-HA western blot to show the interaction of HA-PATZ1Alt and Myc-PATZ1 is lost 

when the BTB domain of PATZ1 is truncated. 
 
 

 

4.10 The Interaction of the Δ40p53 Isoform with PATZ1 

 
 
 

In order to assess if other isoforms of p53 can also interact with PATZ1, we 

repeated the endogenous anti-p53 immunoprecipitation followed by anti-PATZ1 

western blot using a different p53 antibody that can detect the Δ40p53 isoform in 

addition to the full length p53 protein. Therefore, we treated HCT116 WT and p53-/- 

cells with Doxorubicin for 8 hours. After treatment, we performed nuclear extraction 

and immunoprecipitation with protein A magnetic beads which are conjugated with a 

different p53 antibody that can detect the other p53 isoforms. Immunoprecipitates and 

nuclear lysates separated on acrylamide gels were immunoblotted with anti-PATZ1 and 



53 
 

anti-p53 antibodies in a western blot experiment. In this experiment anti-p53 

immunoprecipitation of the nuclear lysates brings down all proteins associated with the 

endogenous p53 and its isoforms. Anti-PATZ1 western blotting reveals if PATZ1 is 

present in these immunoprecipitates. In figure 4.10, we show that anti-p53 

immunoprecipitation followed by anti-PATZ1 antibody blotting revealed the presence 

of PATZ1 and PATZ1Alt in complex with p53, in the absence (lane 1) or presence of 

doxorubicin treatment (lane 2) from HCT116 WT cells (top row). Anti-p53 

immunoprecipitation followed by anti-p53 antibody blotting revealed that doxorubicin 

treatment induced p53 expression, as expected (lane 1,2, middle row). On the other 

hand Δ40p53 is expressed much higher levels in HCT116 p53-/- cells than in 

HCT116WT cells (lane1,3, middle row). Unlike p53, the protein levels of Δ40p53 are 

not affected by DNA damage induced by doxorubicin. (lane 3,4, middle row).  Anti-p53 

immunoprecipitation followed by anti-PATZ1 antibody blotting revealed the presence 

of PATZ1 and PATZ1Alt in complex with Δ40p53, only in the presence of doxorubicin 

treatment from HCT116 p53-/- cells (lane4, top row). Nuclear lysates of transfected 

cells showed that PATZ1 and PATZ1Alt proteins were expressed at equal levels 

(bottom row). Therefore, we concluded that in addition to full length p53, the Δ40p53 

isoform which lacks the first 40 amino acids, can bind to PATZ1. Although the p53 – 

PATZ1 interaction was seen in either absence or presence of the DNA damaging agent, 

doxorubicin, the Δ40p53 isoform – PATZ1 interaction was evident only upon 

doxorubicin treatment.  

 
Figure 4.10 Δ40p53 isoform of p53 binds to PATZ1 upon doxorubicin treatment in 

HCT116 cells. Anti-p53 immunoprecipitation and anti-PATZ1 western blot to show the 
interaction of endogenous PATZ1 and p53 or Δ40p53 isoform in the presence or 

absence of doxorubicin. 
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4.11 Construction of a mPATZ1-002-IRES-Cherry Plasmid 

 
 

PATZ1 protein has 4 alternative splice variants with a molecular weight of 69kDa 

[PATZ1 (hPATZ1-004/mPATZ1-001)], 58kDa [PATZ1Alt (hPATZ1-002/mPATZ1-

012)], 74kDa [hPATZ1-001/mPATZ1-002] and 57kDa [hPATZ1-003/mPATZ1-003]. It 

is not possible to differentiate between the 57 and 58 kDa alternative splice variants by 

SDS-PAGE. Although it is also difficult to discriminate between the 74 and 69kDa 

proteins, we decided to generate a cDNA expression construct for the 74kDa hPATZ1-

001/mPATZ1-002 variant to compare its properties to the 69kDa hPATZ1-

004/mPATZ1-001 cDNA expression construct. The mPATZ1 cDNA is encoded in the 

HA-PATZ1 plasmid shown in appendix figure D.2. The 5’ and 3’ cDNA sequences of 

the PATZ1 and 74kDa mPATZ1-002 variants are exactly the same. However, the 

74kDa mPATZ1-002 variant has an additional zinc finger motif, 6a between the 6th and 

7th zinc finger motifs. Hence, we decided to amplify the 5’ and 3’ regions of the 

mPATZ1-002 cDNA from the HA-PATZ1 plasmid and the 6a zinc finger motif from 

the genomic DNA of RLM11 cells which are mouse CD4 single positive T lymphocytes 

expressing PATZ1. Therefore, we planned to have three amplified PCR constructs: F1 

(5’ cDNA sequence upto zinc finger 6a), F2 (sequence of zinc finger 6a) and F3 (from 

zinc finger 6a to the end of the 3’ cDNA sequence). These fragments have overlapping 

regions in order to assemble and form the complete mPATZ1-002 cDNA sequence.  
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Figure 4.11 PCR amplification and assembly of three fragments for construction of 
mPATZ1-002 cDNA. M symbolizes DNA marker, F1 symbolizes fragment 1, F2 

symbolizes fragment 2, F3 symbolizes fragment 3 and A symbolizes assembly of the 
three fragments. 

 

After individually PCR amplifying the three fragments, we assembled them to 

constuct the complete cDNA sequence of mPATZ1-002 and reamplified these 

fragments. We cloned the mPATZ1-002 construct into the pMIGII-IRES-Cherry 

mammalian expression plasmid through the single EcoRI restriction site. The mPATZ1-

002 cDNA was flanked with EcoRI sites at the both ends during PCR. After purification 

steps followed by EcoRI restriction digestion of the vector, pMIGII-IRES-Cherry and 

the insert, mPATZ1-002, we performed a ligation and obtained the mPATZ1-002-IRES 

Cherry expression plasmid.  
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Figure 4.12 Ligation of mPATZ1-002 into the pMIGII-IRES-Cherry plasmid. 
Schematic representation of cloning of the mPATZ1-002 into pMIG-II IRES-Cherry 

plasmid. 
 

We extracted DNA from the colonies containing ligated plasmid and confirmed 

the ligation by restriction digestion. Due to having EcoRI at the both ends of the 

sequence, mPATZ1-002 could be inserted either in the correct or wrong orientation. 

Therefore, we decided to use the XhoI restriction site for the confirmation digestion 

because both the vector and the insert have only one XhoI site each and XhoI site in the 

insert is very close to the end of the insert. Therefore, the band sizes after XhoI 
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restriction site would not ony confirm the success of the ligation but also its orientation. 

If the ligation is in the correct orientation we expect to see 750 and 7709bp bands 

wheras if it is in the reverse orientation we expect to see 1337 and 7322bp bands. We 

screened 20 colonies after the ligation and 5 of them were in the correct orientation 

(colony 2,6,10,18 and 20).  

 

 

 
 

Figure 4.13 Conformation digestion of the mPATZ1-002-IRES-Cherry ligation. The 
ligation is confirmed with Xho I restriction digestion. Upon XhoI restriction digestion, 

colonies that have the empty vector should generate a linearized 8459 bp band, colonies 
that have the insert in the correct orientation should generate two bands of 750 and 

7709bp and colonies that have the insert in the wrong orientation should generate two 
bands of 1337 and 7322bp. 
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4.12 The Effect of the p53 – PATZ1 Interaction on p53 – DNA Binding in EMSA 

Assays 

 
 

Both p53 and PATZ1 are transcription factors which interact with DNA using 

their DNA binding domains. In order to further analyze the p53 and PATZ1 interaction, 

we wanted to examine the effect of this interaction on the ability of p53 DNA binding. 

For this purpose, we performed electro mobility shif assays (EMSA) with a consensus 

p53 binding site and overexpressed FLAG epitope tagged p53 protein. We transfected 

HCT116 p53-/- cells with FLAG-p53 with or without HA-Patz1 cDNA. 48 hours after 

transfection, we lysed the cells and incubated the nuclear lysates with biotinylated p53 

probes in the presence or absence of non-biotinylated (cold) probes. The incubated 

samples were then loaded onto non-denaturing acrylamide DNA gels and imunoblotted 

with Streptavidin-HRP antibodies. In figure 4.14, the free biotinylated probe (lane 1) 

was shifted after the FLAG-p53 binding (lane2). This binding was specific because the 

addition of 200 fold excess non-biotinylated cold probe reduced the shift of biotinylated 

probe which resulted in more free biotinylated probe (lane3). However, we could not 

observe any significant changes in the FLAG-p53 – biotinylated probe interaction in the 

presence of HA-PATZ1 (lane 4).  

 
 

Figure 4.14 EMSA assay for p53-DNA binding. Electro mobility shif assay is 
performed with a consensus p53 binding site and overexpressed FLAG epitope tagged 

p53 protein. Free probes and shifted probes are indicated on the right.  
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4.13 The Effect of the p53 – PATZ1 Interaction on p53 – DNA Binding in Pull 

Down Assays 

 
 
 

4.13.1 The p53 – PATZ1 Interaction Inhibits p53 – DNA Binding 

 
 
In EMSA experiments we observed multiple shifted bands which may be 

obscuring the effect of PATZ1 on p53 DNA binding. These multiple bands result from 

impurities in the nuclear lysates. Also, it is known that palindrome p53 sequences in 

EMSA probes could generate higher order DNA structures which could bind multiple 

p53 proteins 153. Therefore, we changed our strategy to find the PATZ1 effect on p53-

DNA binding. We performed a DNA pull down experiment followed by western 

blotting which would specifically show the DNA bound form of p53. In this 

experiment, we overexpressed FLAG-p53 in HCT116 p53-/- cells in the presence or 

absence of HA-PATZ1 or HA-PATZ1Alt. 48 hours after transfection, we lysed the cells 

and incubated the nuclear lysated with biotinylated p53 probes. After incubation, the 

biotinylated probes were captured with streptavidin magnetic beads and anti-FLAG 

western blot was performed. In figure 4.15A, we demonstrate that PATZ1 inhibited p53 

binding to its consensus site. In the absence of PATZ1, p53 could bind to probe 5 fold 

more (top row, lane 1 and 5). In addition to this, we did not observe any significant 

changes in p53-DNA binding in the presence of PATZ1Alt which cound not bind to p53 

(top row, lane 6). Neither HA-PATZ1 not HA-PATZ1Alt were bound to p53 probes in 

this experiment (second row). Lysates of transfected cells show that FLAG-p53 (third 

row) and HA-PATZ1 and HA-PATZ1Alt (bottom row) are expressed at equal levels in 

transfected cells. Therefore, we conluded that when p53 and PATZ1 were forming a 

complex together, p53 could not bind to its probe as efficiently as when it was alone. In 

figure 4.15B, the quantification of the amount of DNA bound p53 from 3 different 

experiments are shown. 
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Figure 4.15 p53 – PATZ1 interaction inhibits p53 - DNA interaction. A) DNA pull 
down assay is performed with biotinylated DNA probes (probe 1; derived from the 

pG13 p53 reporter) and lysates from HCT116 p53-/- cells transfected with the indicated 
plasmids B) Quantification of the amount of DNA bound p53 from 3 different 

experiments 
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4.13.2 PATZ1 Mutants Cannot Inhibit p53 – DNA Binding 

 
 
In order to confirm that the inhibition of PATZ1 on p53 – DNA binding, we tested 

the ability of the PATZ1 site directed mutants that fail to interact with p53 to inhibit p53 

DNA binding. In this experiment, we performed the DNA pull down assay by using 

overexpressed FLAG-p53 with or without single mutant PATZ1 SM (D521Y) or double 

mutant PATZ1 DM (D521Y/D527Y) in HCT116 p53-/- cells. In figure 4.16A, we 

demonstrate that single mutant PATZ1 SM which has an impaired interaction with p53 

could not prevent p53 DNA binding as effectively as wild type PATZ1 (lane 6) and 

double mutant PATZ1 DM which has no interaction with p53 has no inhibitory effect 

on the p53 – DNA interaction (lane 7). In figure 4.16B, the quantification of DNA 

bound p53 from 3 different experiments are shown. When immunoprecipitation results 

which show the interactions between p53 and PATZ1 and pull down results which show 

the effect of the interactions on p53 bound DNA are combined, it is clearly seen that 

there is an inverse correlation between p53 – PATZ1 and p53 – DNA interactions. The 

more p53 is bound to PATZ1, the less it binds to DNA. Therefore, we concluded that 

PATZ1 forms a complex with p53 which prevents p53 to bind to its specific DNA 

sequence.  
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Figure 4.16 PATZ1 mutants that are incapable of interacting with p53 cannot prevent 
p53 – DNA interaction. A) DNA pull down assay is performed with biotinylated DNA 
probes (probe 1; derived from the pG13 p53 reporter) specific to the p53 protein and 

lysates from HCT116 p53-/- cells transfected with the indicated plasmids B) 
Quantification of the amount of DNA bound p53 from 3 different experiments 
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4.14 The Inhibitory Effect of the p53 – PATZ1 Interaction on  

p53 – DNA Binding on Other p53 Targets 

 
 
 
In order to determine if the ability of PATZ1 to inhibit p53 – DNA binding could 

be generalizable to other p53 consensus DNA binding sites, we repeated the DNA pull 

down assay with a different probe which is derived from the GADD45 gene promoter 

(probe 2). GADD45 is a known p53 responsive gene whose promoter has a specific p53 

binding site. In this experiment, we again incubated the biotinylated probes (probe 2) 

with nuclear lysates from HCT116 p53-/- cells transfected with FLAG-p53 in the 

presence or absence of HA-PATZ1 and captured the biotinylated beads with 

streptavidin magnetic beads. DNA pull down was followed by anti-FLAG or anti-HA 

western blots.  

 

In figure 4.17A, we show that similar to the previous DNA pull down experiment, 

the amount of FLAG-p53 binding to DNA is decreased 50% in the presence of HA-

PATZ1 (lane 3, top row) compared to the absence of HA-PATZ1 (lane1, top row). 

Interestingly, HA-PATZ1 could also bind to this DNA probe, as pulled down 

biotinylated DNA probes obtained from GADD45 promoter revealed HA-PATZ1 upon 

blotting with anti-HA-HRP antibody (second row). Moreover, DNA bound HA-PATZ1 

was significantly decreased in the presence of FLAG-p53 (second row, lane 3) 

compared to samples only containing HA-PATZ1 (second row, lane 2). The lysates of 

the transfected cells show that FLAG-p53 (third row) and HA-PATZ1 and HA-

PATZ1Alt (bottom row) were expressed at equal levels. In figure 4.17B, the 

quantification of the DNA bound p53 from 3 different experiments are shown. 
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Figure 4.17 The inhibitory effect of PATZ1 in p53 – DNA interaction is valid for a 

different p53 binding consensus sequence. A) DNA pull down assay is performed with 
biotinylated DNA probes (probe 2; derived from the GADD45 promoter) specific to the 

p53 protein and lysates from HCT116 p53-/- cells transfected with the indicated 
plasmids B) Quantification of the amount of DNA bound p53 from 3 different 

experiments 
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4.15 The p53 – PATZ1 Interaction Inhibits PATZ1 – DNA Binding 
 
 
 

Up to this point, we checked the effect of the p53 – PATZ1 interaction on the p53 

– DNA binding. PATZ1 is also a transcription factor like p53 and specifically binds to 

DNA. Therefore we next tested the effect of p53 on PATZ1 – DNA binding. In this 

experiment, we performed a DNA pull down assay with a double stranded biotinylated 

PATZ1 probe instead of a p53 probe. We incubated, these biotinylated ds DNA probes 

specific to PATZ1 with HA-PATZ1 or HA-PATZ1Alt overexpressing HCT116 p53-/- 

nuclear cell lysates. Because PATZ1 and PATZ1Alt share exactly the same DNA 

binding domain, we expected these proteins to bind the probes with the same 

specificity. After incubation, the biotinylated probes were captured with streptavidin 

magnetic beads and anti-HA and anti-FLAG western blots were performed. 

 

In the experiment depicted figure 4.18A, we found that the presence of p53 

resulted in a 3 fold inhibition of PATZ1 – DNA binding (top row, lane 4) compared to 

the PATZ1 alone expressing samples (top row, lane 1). On the other hand, the presence 

of p53 did not have any significant changes in PATZ1Alt – DNA binding likely because 

PATZ1Alt and p53 do not interact in the absence of PATZ1 (top row lane 2 and 5). 

DNA pull down followed by anti-FLAG western blot revealed that FLAG-p53 did not 

bind to PATZ1 specific probes (second row). Lysates of transfected cells show that 

FLAG-p53 (third row) and HA-PATZ1 and HA-PATZ1Alt (bottom row) were 

expressed at equal levels in transfected cells. Surprisingly the amount of PATZ1Alt that 

can bind these probes in this in vitro binding reaction is roughly double of amount of 

PATZ1 that can bind the same probes. This indicates that the C-terminal domain of 

PATZ1 is inhibitory to DNA binding. In figure 4.18B, the quantification of DNA bound 

p53 from 3 different experiments are shown. As a result of this experiment, we 

concluded that the presence of p53 inhibits PATZ1 – DNA binding. 

 
 

.  
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Figure 4.18 p53 – PATZ1 interaction inhibits PATZ1 - DNA interaction. A) DNA pull 
down assay is performed with biotinylated DNA probes specific to the PATZ1 protein 

and lysates from HCT116 p53-/- cells transfected with the indicated plasmids B) 
Quantification of the amount of DNA bound PATZ1 from 3 different experiments 
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4.16 The Effect of the p53 – PATZ1 Interaction on Apoptosis 

 
 
 

We wanted to find out if the interaction of p53 and PATZ1 would have an effect 

on apoptosis which is one of the outcomes of an activated p53 pathway. We 

hytpothesized that if the p53-PATZ1 interaction has an inhibitory role on p53 function, 

the number of cells that undergo apoptosis as a result of DNA damage would vary 

compared to the normal cells. Therefore, we used HCT116WT cells stably infected with 

retroviruses encoding mock cDNA, PATZ1 or PATZ1Alt. Cells that stably express 

mock, PATZ1 or PATZ1Alt protein were either treated with 25mJ/cm2 UV light or 

were left untreated. 24 hours after UV treatment, cells were stained with AnnexinV-

FITC and SytoxRED prior to flow cytometry analysis. In this experiment, we identified 

live cells by forward scatter, side scatter and SytoxRED exlusion.  

 

In this experiment SytoxRED only stained the dead cells, so that the alive cell 

population was SytoxRED negative. On the other hand, the apoptotic cells were stained 

with AnnexinV-FITC because this cell population is expected to express the ligand of 

AnnexinV on the cell surface due to the induction of apoptosis. Therefore, in order to 

determine the amount of the apoptotic cell population, we quantified the percentage of 

AnnexinV positive – SytoxRED negative cells falling in the Q3 electronic gate. In 

figure 4.19 we showed that after UV treatment, the percentage of apoptotic cells 

increased. Moreover, PATZ1 overexpressing HCT116WT cells were a higher 

percentage of apoptotic compared to either mock infected or PATZ1Alt overexpressing 

cells. Therefore, overexpression of PATZ1 affects the percentage of cells that become 

apoptotic after UV treatment likely by interfering with p53 function. A better inducer of 

apoptosis may exacerbate this difference between mock infected and PATZ1 

overexpressing cells.  
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Figure 4.19 Flow cytomery analysis of stably PATZ1 or PATZ1Alt expressing 
HCT116 cells before and after DNA damage upon UV treatment. Mock cDNA, PATZ1 

and PATZ1Alt overexpressing HCT116 cells are stained with Annexin-V and 
SytoxRED 24 hours after 25mJ/cm2 UV treatment. 

 
 
 
4.17 The Effect of the p53 – PATZ1 Interaction on Cellular Growth Rate 

 
 
 
Another outcome of the activated p53 pathway is on cellular growth rate. 

Therefore, we decided to test the cell growth and dose response upon DNA damage 

induced by doxorubicin in stably PATZ1 overepxressing cells in the xCELLigence 

RCTA-DP system. In this system, cell growth was monitored in real time, and a cell 

index value was calculated every 15 minutes for 1 week. Doxorubicin was applied in 

the growth phase of the cells at different dilutions. In figure 4.20, we calculated the IC50 

values for doxorubicin’s effect on HCT116 cells stably expressing PATZ1. IC50 values 

were calculated from a 40 hour time window after doxorubicin treatment. Growth 

curves analysis and dose response curve analysis indicated that stably PATZ1 

overexpressing HCT116 cells had 2 fold higher IC50 values compared to control cells. 

This indicated that stably PATZ1 overexpressing cells were more resistant to 

doxorubicin compared to mock cDNA overexpressing cells.   
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Figure 4.20 Dose response curve and IC50 analysis of stably PATZ1 or mock cDNA 
overexpressing HCT116 cells after DNA damage induced by doxorubicin. Cell growth 
of mock cDNA and PATZ1 overexpressing cells was monitored in real time, and a cell 
index value was calculated every 15 minutes for 1 week in the xCELLigence RCTA-DP 
system upon DNA damage induced by doxorubicin. Dose response and IC50 analysis are 
performed by RTCA 2.0 software. 
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5.  DISCUSSION AND CONCLUSION 

 
 
 
 

The tumor suppressor p53 is a stress responsive, sequence specific transcription 

factor which has roles in cell cycle arrest, senesence, apoptosis, autophagy, DNA repair 

and regulates metabolic pathways. More than 50% of human cancers have p53 

mutations that allow cells to escape from death. In normal cells although p53 mRNA 

levels are high, the protein levels of p53 are kept low. This is due to the activity of 

interacting proteins such as MDM2 which ubiquitinates p53 and results in its 

proteasomal degradation. Upon cellular stress, such as DNA damage, p53 is 

posttrancriptionally modified and escapes from MDM2 mediated degradation which 

results in its accumulation. Posttranscriptionally modified p53 is active and begins its 

function as a transcription factor of genes related to cell cycle arrest, senescence and 

apoptosis. Like p53, the PATZ1 protein is also a transcription factor that specifically 

binds DNA through its C2H2 type zinc finger motifs. The PATZ1 transcription factor 

regulates important genes not only in B and T cell development, but also in embryonic 

stem cell development and differentiation, cell cycle and apoptosis. Moreover, the 

upregulation of PATZ1 mRNA levels is found to be the correlated with colorectal, 

breast and testicular tumors146–148. 

 

To identify the structure of the DNA binding domain of PATZ1, Jitka Eryılmaz, a 

post-doctoral fellow in the lab, performed homology modelling with known crystal 

structures in the PDB database. In figure 5.1, we show the homology model of PATZ1 

interacting with double stranded DNA through its C2H2 type zinc finger domain in such 

a way that positively charged zinc fingers (shown in blue) are bound to the negatively 

charged double stranded DNA (shown in orange). Negatively charged residues in the 

structure (shown in red) tend to face away from DNA. 



71 
 

 
Figure 5.1 Homology model of PATZ1. In the shown homology model, PATZ1 is 

interacting with double stranded DNA through its C2H2 type zinc finger domain in such 
a way that positively charged zinc fingers (shown in blue) are bound to the negatively 
charged double stranded DNA (shown in orange). Negatively charged residues in the 

structure (shown in red) tend to face away from DNA. 
 

We identified a pocket between the 6th and the 7th zinc finger motifs in the DNA 

binding domain of PATZ1 which is shown in figure 5.2. This putative pocket is located 

in a linker domain between zinc fingers 6 and 7 of the PATZ1 protein and is predicted 

to have a 9Å diameter. As seen from figure 5.2, this putative binding pocket is highly 

negatively charged and is enriched for amino acid such as aspartic acid and glutamic 

adic.  
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Figure 5.2  Identificaiton of the putative binding pocket between the 6th and 7th zinc 

finger motifs of PATZ1 in the homology model. This putative binding pocket is located 
in a linker domain between zinc fingers 6 and 7 of the PATZ1 protein and is predicted 

to have a 9Å diameter.  
 

Because this region of the PATZ1 protein was necessary for interacting with p53 

in in vitro binding assays, we performed in silico docking studies. We found that, 

petpide sequence which contains lysine 382 in the C terminal regulatory region of p53 

perfectly fit the putative binding pocket of PATZ1.  

 
Figure 5.3 In silico docking study to find an interacting partner for PATZ1. Petpide 
(shoewn in green) sequence which contains lysine 382 in the C terminal regulatory 

region of p53 perfectly fit the putative binding pocket of PATZ1. 

PATZ1 

Putative binding pocket 



73 
 

Therefore, computational based homology modeling agrees with 

immunoprecipitation experiments and shows that the C terminal tail of p53 binds to the 

negatively charged region of PATZ1. For this immunoprecipitation experiment, we 

overexpressed HA epitope tagged PATZ1 and FLAG epitope tagged p53 proteins in 

HCT116 p53-/- cells. Here, we used p53 deficient cells to focus on the interaction of 

PATZ1 with transfected but not endogenous p53. As shown in figure 4.1, p53 bound 

PATZ1 but not PATZ1Alt.  

 

The BTB/POZ domain is known to be used for protein – protein interactions of 

BTB/POZ containing zinc finger proteins. PATZ1 which is also a BTB/POZ containing 

zinc finger protein, interacts with p53. However, the alternative form that shares the 

same N terminal BTB/POZ domain does not interact with p53. Therefore, we conclude 

that unlike other protein – protein interactions, the p53 – PATZ1 interaction is not 

mediated by the BTB/POZ domain. In fact this interaction does not require the N 

terminal BTB/POZ domain because Myc epitope tagged truncations of the PATZ1 

protein lacking the N terminal BTB domain continue to bind p53. 

 

To test if residues in the putative pocket between the 6th and 7th zinc finger motifs 

of PATZ1 protein are important for p53 binding, we generated site directed mutants of 

the PATZ1 protein and tested its p53 binding ability. Specifically we mutated 521 and 

527 aspartic acid which are negatively charged and bulky amino acids. We introduced a 

single mutation to the residue 521 and we generated a double mutant by introducing a 

second mutation to the residue 527 in addition to 521. We changed these negatively 

charged aspartic acids into tyrosines which are noncharged and as bulky as aspartic 

acids in order not to change the 3D conformation of the putative binding pocket. The 

single mutant PATZ1 had an impaired interaction with p53 whereas the double mutant 

PATZ1 lost the interaction completely. We conclude that the residues 521 and 527 in 

the binding pocket of PATZ1 are crucial for the p53 – PATZ1 interaction. A crystal 

structure of this region of the PATZ1 protein will be instrumental in defining it as a p53 

binding motif. Homology searches showed that this region is not conserved among the 

other p53 binding proteins and that it is not similar in structure of sequence to other 

known p53 binding motifs such as the tudor domain of 53BP1 protein.  
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We predict that PATZ1 binds to the conserved RHK/RK sequence in the C 

terminal regulatory domain of p53. According to the docking studies the methylated 

form of p53K382 was a perfect candidate to be an interacting partner of the PATZ1 

protein. In addition to p53, this conserved sequence is also present in the histone H4 

protein. The region around methylated K20 of histone H4 is homologous to p53. Thus, 

we predict that histone H4 may also be an interacting partner of PATZ1. Moreover the 

methylation of histone H4 is also DNA damage mediated similar to the modification of 

p53. Like PATZ1, histones are localized in the nucleus and like p53 histone proteins 

play an important role in the DNA damage response. 

  

 
Figure 5.4 The conserved protein sequence that PATZ1 is predicted to bind. PATZ1 

proein is expected to bind to the conserved ‘RHK/RK’ sequence of p53 and histone H4 
as a result of the homology modeling.   

 

We know that both p53 and PATZ1 are transcription factors that interact with 

each other. Therefore, this interaction may either be DNA dependent or independent. In 

order to understand if this interaction is DNA dependent or not, we repeated the p53 – 

PATZ1 interaction experiments in the presence of the DNA damaging agent, 

doxorubicin and the DNA intercalating ethidium bromide. Doxorubicin which is a 

genotoxic DNA damaging agent makes double strand breaks in the DNA and blocks 

MDM2 mediated p53 ubiquitination and the resulting proteosomal degradation20. We 

overexpressed p53 and PATZ1 proteins and treated the cells with doxorubicin for 8 

hours which is long enough to induce DNA damage and p53 accumulation. Compared 

to the p53 – PATZ1 interaction without doxorubicin treatment, there was no significant 

difference in the amount of PATZ1 that could bind p53. Therefore, we conclude that 

DNA damage does not affect the p53 – PATZ1 interaction. On the other hand, we 

wanted to see the effect of ethidium bromide which intercalates into DNA and is known 

to disrupt DNA dependent transcription factor interactions154. Ethidium bromide 

treatment could not disrupt the interaction of p53 and PATZ1. Therefore, we conclude 

that this interaction is independent of DNA. 
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As we first detected the p53 – PATZ1 interaction under overexpression 

conditions, the overexpression of two proteins may result as an artifact of 

overexpression. Thus, we also demonstrated that endogenous p53 and PATZ1 proteins 

also interact. We confirmed the localization of these two proteins. p53 is known to be 

both in the cytoplasm and nucleus because it has both nuclear localization and export 

sequences. PATZ1 is predicted to be in the nucleus because it is a transcription factor, 

however we wanted to confirm if significant levels can be detected in the cytoplasm. 

Therefore, we performed cytoplasmic and nuclear fractionation during cell lysis. We 

performed western blot experiments with these lysates to identify the location of the p53 

and PATZ1 proteins in HCT116 cells. We showed that p53 is both in the cytoplasm and 

nucleus as expected while PATZ1 is localized only to the nucleus. Therefore, we tested 

the endogenous p53 – PATZ1 interaction by immunoprecipitating nuclear fraction of 

the cell lysates. 

 

p53 protein levels are very low in normal unstressed cells. Cells treated with 

doxorubicin dramatically increase the protein levels of p53. When we 

immunoprecipitated the endogenous p53 protein with an antibody that has an epitope on 

the N terimus of p53, endogenous PATZ1 protein interacted with p53 in both 

doxorubicin untreated and treated cells. Thus, even the minute amount of p53 in 

unstressed cells was enough to interact with PATZ1 protein. Upon doxorubicin 

treatment, p53 accumulated as expected. However, we were surprised to see that 

although doxorubicin treated cells have more p53, the amount of p53 that interacts with 

PATZ1 was same. This may be due to limiting amounts of PATZ1 protein. If nuclear 

levels of PATZ1 are lower than the levels of p53, then the interaction between these two 

proteins would be dependent on the PATZ1 protein levels. Then, regardless of the 

amount of p53 in doxorubicin treated or untreated cells, the amount of limiting PATZ1 

that binds to this p53 would be the same. In order to test this hypothesis, we will 

perform an interaction assay with a fixed concentration of p53 but an increasing 

concentration of PATZ1. If our hypothesis is correct, we expect to see an increase in the 

amount of p53 bound PATZ1 as the levels of PATZ1 increase.  
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Surprisingly, there was an additional endogenous protein in p53 

immunoprecipitates. The molecular weight of this protein indicated  that it could either 

be the alternative splice variants of PATZ1, PATZ1Alt or PATZ1-003. PATZ1Alt could 

not bind to p53 in the overexpression experiments while the p53 binding ability of 

PATZ1-003 is not known. It is known that PATZ1 can form homodimers through its 

BTB/POZ domain125. Therefore, we hypothesized that similar to homdimerization, 

PATZ1 may heterodimerize with its alternative splice form PATZ1Alt. If these two 

alternative isoforms are heterodimerizing, this heterodimer complex may interact with 

p53 through PATZ1. In order to test this hypothesis, we epitope tagged PATZ1 with 

Myc, PATZ1Alt with HA and p53 with FLAG and performed a triple 

immunoprecipitaiton experiment. We immunoprecipitated HA-PATZ1Alt and checked 

if there is Myc-PATZ1 in the precipitates and showed its presence with anti-Myc 

western blots. We also blotted these HA immunoprecipitates with anti-FLAG 

antibodies. These experiments demonstrate that PATZ1 and PATZ1Alt interact and that 

PATZ1Alt and p53 can interact only in the presence of PATZ1. Therefore, we 

concluded that p53 binds to PATZ1 but if there is PATZ1Alt around, PATZ1 can also 

heterodimerize with PATZ1Alt forming a p53-PATZ1-PATZAlt triple protein complex. 

Like other known interactions between BTB domain containing proteins, it was likely 

that the PATZ1 and PATZ1Alt interaction was mediated by the BTB domain. To 

identify the domain necessary for PATZ1 and PATZ1Alt heterodimerization, we 

overexpressed PATZ1Alt and the truncations of PATZ1 and repeated the 

immunoprecipitation experiment. We found that the loss of the BTB domain results in 

the loss of heterodimerization of the alternative splice variants. Therefore, we concluded 

that PATZ1 and PATZ1Alt heterodimerize through their identical N terminal BTB 

domains.  

 

 
Figure 5.5 p53-PATZ1-PATZ1Alt complex. Schematic representation of the interaction 
of p53 (shown in pink) with the PATZ1 (shown in yellow) – PATZ1Alt (shown in blue) 

heterodimer. 
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Although we confirmed the interaction of p53 and PATZ1 in endogenous 

HCT116 cells, we wanted to repeat the same experiment with a different p53 antibody 

that sees a different epitope. In the previous endogenous immunoprecipitation 

experiment we used a p53 antibody that recognized an epitope in the N terminal part of 

p53. Next, we used a different p53 antibody that has an epitope on the C terminal part of 

the p53 protein. We immunoprecipitated endogenous p53 protein with the new antibody 

and confirmed the interaction again with anti-PATZ1 western blotting. Surprisingly, we 

found that PATZ1 could be immunoprecipitated even in the HCT116 p53-/- cells. This 

was unexpected because this cell line is known to be p53 deficient and cannot express 

the p53 protein. In the lysates of these cells we detected a 47 kDa band which 

corresponds to the Δ40p53 isoform of p53. Although the cell line is p53-/-, it can 

express the Δ40p53 isoform53. The previous p53 antibody could not detect this 

alternative isoform because its epitope was in the N terminal part of p53 which is 

lacking in the Δ40p53 isoform. With a new antibody that can detect p53 from the C 

terminus, we demonstrate that the Δ40p53 isoform can also interact with PATZ1. This 

is expected because the Δ40p53 isoform only lacks the N terimal first 40 amino acids. It 

has an intact C terminal domain exactly the same as p53. We think that PATZ1 interacts 

with p53 through its C terminal region from our homology modeling studies. Unlike 

p53, the Δ40p53 protein level is not DNA damage responsive. Surprisingly, although 

the protein levels of Δ40p53 isoform are not changed, its interaction with PATZ1 is 

seen only upon doxorubicin treatment. Therefore, we conclude that both p53 and 

Δ40p53 can interact with PATZ1 but with different mechanisms. p53 binds to PATZ1 

even in unstressed cells however, Δ40p53 may need to be post transcriptionally 

modified upon DNA damage to interact with PATZ1.  

 

We showed the interaction of p53 and PATZ1 proteins in both overexpression and 

endogenous conditions. Moreover we identified the required regions of the proteins for 

this interaction. Also, we tested the specificity of the p53 – PATZ1 interaction using 

mutant PATZ1 variants. There are other interacting partners of p53 such as MDM2 and 

MDM4 that can form heterodimers which is reminiscent of the PATZ1 and PATZ1Alt 

heterodimerization. The MDM2-p53 complex may also be able to interact with the 

PATZ1 and PATZ1Alt heterodimer. After the formation of the MDM2-p53-PATZ1-

PATZ1Alt complex, MDM2 may ubiqiutinate PATZ1 resulting in the proteosomal 
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degradation. Emre Deniz, another graduate student in our lab found that upon longer 

incubation with doxorubicin, PATZ1 levels fall in MEF and NIH3T3 cells. Therefore, 

further studies should try to identify any MDM2-PATZ1 interactions. If these two 

proteins are found in the same complex, then whether the degradation mechanism of 

PATZ1 is ubiquitination dependent should be tested. If indeed PATZ1 degradation is 

ubiquitin dependent, its ubiquitin ligase enzyme should be identified. 

 

 The start point for stress mediated functions of p53 after its activation through 

posttranslational modifications is the binding to the response elements of its target 

genes. Therefore, p53 – DNA binding is very important for p53 to act as a 

transcriptional activator or repressor. We wanted to find out if PATZ1 has an effect on 

the interaction between p53 and DNA. In order to understand this, we performed EMSA 

assays in which we used a biotinylated p53 probe consisting of the p53 binding 

consensus. We incubated FLAG-p53 overexpressed nuclear cell lysates with the 

biotinylated probe and later run the samples in non-denaturing polyacrylamide gels. In 

EMSA assays, the unbound free probe has a higher mobility than the protein bound 

probes. Therefore, if the protein binds to the probe, then in the gel we would detect a 

shift in the size of the probe. Addition of lysates containing PATZ1 to the reaction is 

expected to result in either a lower mobility complex resulting in a bigger shift or in the 

dissociation of the p53 – DNA complex resulting in a band similar to the unbound probe 

size. We observed a similar pattern in the probes incubated with FLAG-p53 alone or 

together with HA-PATZ1. This result may arise from the impurity of the lysates. In this 

assay, although we overexpress the p53 and PATZ1 proteins, we use complete nuclear 

lysates which contain many non-specific proteins that may interfere with protein – 

probe bindings. We performed DNA pull down assays in which biotinylated probes 

incubated with the protein of interest are pulled down with streptavidin beads and the 

associated proteins are identified by western blotting. We found that the presence of 

PATZ1 decreased the amount of p53 bound to probe almost 5 fold. PATZ1Alt that does 

not interact with p53 did not affect p53 DNA binding, as expected. In further 

experiments we found that the single point mutant of PATZ1 that has an impaired 

interaction with p53 could not inhibit p53 DNA binding as much as the wild type 

PATZ1 protein. Moreover, a double mutant which cannot bind to p53 has no significant 

effect on p53 DNA binding. There was a direct correlation between the strength of the 

p53 – PATZ1 interaction and the inhibition of p53 – DNA binding: the stronger the 
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protein – protein interaction, the more inhibited was the p53 – DNA binding. 

Surprisingly, we found that PATZ1 also bound to same probes containing p53 binding 

site. Moreover, the amount of PATZ1 bound to the probe is decreased significantly in 

the presence of p53 compared to PATZ1 alone. This converse inhibition of PATZ1 

DNA binding by p53 was also evident on other probes. Therefore, we concluded that 

p53 and PATZ1 form a complex that is incapable of binding to DNA. By inhibiting 

p53- DNA interaction, PATZ1 may result in a completely unfunctional p53 because the 

p53- DNA interaction is the first step in the activation or repression of the downstream 

elements. It has been shown that PATZ1 mRNA is upregulated in human colorectal, 

breast and testicular tumors 146–148. In those tumors, PATZ1 upregulation may inhibit 

the tumor suppressor p53 resulting in tumor formation. Cancer related mutations of p53 

are generally in the conserved DNA binding domain of the protein97–99. The peptide 

sequence that PATZ1 is predicted to bind is in the C terminal regulatory region which is 

conserved in mutant p53 proteins. Thus, cancer related mutant p53 may also bind to 

PATZ1. Moreover, it is known that mutant p53 forms heterotetramers with wild type 

p53 resulting in the dominant negative inactivation of wild type p53108. We showed that 

the PATZ1-PATZ1Alt heterodimer can bind to p53. Similar to mutant p53, the PATZ1 

homodimer or the PATZ1-PATZ1Alt heterodimer may form a multi-protein complex 

that inhibits p53 tetramerization resulting in the inhibition of p53 – DNA binding.   

 

The interaction of a transcription factor and DNA is critical for its function. It has 

been reported that a single mutation in the zinc finger domain of another BTB/POZ zinc 

finger protein, Th-POK which is a master regulator of T helper lymphocyte lineage 

development, resulted in  mice that are helper deficient (HD) 155,156. This naturally 

occurring mutation of residue 389 of Th-POK converts an arginine into glycine 

(R389G). When the sequences of the DNA binding domain of the members of this 

transcription factor family such as PATZ1, Bcl6, Bcl6b and ROG are aligned with Th-

POK, it is evident that the arginine residue is conserved suggesting that it may be very 

important in DNA binding by all of these BTB/ZF transcription factors. 
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Figure 5.6 Conservation of the residue that is important for helper lineage commitment.  

Sequence alignment of the DNA binding domain of the members of BTB/ZF 
transcription factor family such as PATZ1, Bcl6, Bcl6b and ROG with Th-POK and 

conservation of R389 in Th-POK. 
 

The arginine 389 residue in Th-POK corresponds to the arginine 403 in PATZ1. If 

a mutation in the DNA binding domain of PATZ1 at this residue interferes with DNA 

binding, it may be possible to understand general structural features necessary for 

BTB/ZF transcription factor DNA binding. Moreover, homology models of Th-POK 

and PATZ1 indicate that this residue is predicted to hold the 3rd and 4th zinc finger 

domains together. If the arginine 403 residue is important for PATZ1 structure, its 

mutation may cause conformational changes and decreased stability of the protein. Even 

if the protein would be stable, due to losing the direct interaction with DNA, this 

mutation may cause interfere with the ability of PATZ1 to bind to DNA as a 

transcription factor. Thus, the roles of PATZ1 in tumor formation may be blocked. 

Moreover, if the mutation of the arginine residue 403 results in a 3D conformational 

change, the p53 – PATZ1 interaction may be affected. If this interaction is impaired, 

then p53 would bind to DNA more efficiently. In order to understand this mutation in 

the DNA binding domain of PATZ1, we plan to repeat the interaction and pull down 

assays with mutant versions of PATZ1. 

  

It has been reported that some gene specific transcription factors such as the ones 

that contain C2H2 type zinc finger motifs are inactivated during the G2/M transition of 

the cell cycle. This inactivation is due to the G2/M specific phosphorylation of SGEKP 

and SVGKP sequences in the linker domain between the zinc finger motifs 157. PATZ1 

protein has also these two motifs in the linker regions between the 2nd – 3rd and 3rd – 4th 

zinc fingers. These potential phosphorylation sites may result in the inactivation of the 

protein through the blocked interaction with DNA upon G2/M transition dependent 
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phophorylation. Therefore, in order to understand if these residues have a functional 

role on PATZ1, we plan to mutate these potential phosphorylation motifs. In addition to 

this, if these motifs may cause the inactivation of PATZ1 in the G2/M transition, the 

inhibition of p53 by PATZ1 would also be blocked resulting in the activation of p53 due 

to binding to its target DNA more efficiently. Mutation or complete deletion of this site, 

would block the G2/M transition dependent phosphorylation of PATZ1. Therefore, 

during the G2/M transition, PATZ1 would be still active and may inhibit p53 to 

functionally act as a tumor suppressor protein.  

 

 

 
Figure 5.7 G2/M dependent phosphorylation motif in the linker domains of PATZ1. 
G2/M specific phosphorylation sequences, ‘SGEKP’ and ‘SVGKP’ are present in the 

linker domain between the 2nd – 3rd and 3rd – 4th zinc finger domains of the PATZ1 
protein. 

 

In unstressed conditions, p53 can be localized either to the cytoplasm or nucleus. 

Upon DNA damage, p53 is localized to the nucleus to act as a transcription factor. In 

order to test if the p53 interacting partner, PATZ1 has an effect on the translocation of 

p53 from the cytoplasm to the nucleus, we analyzed this translocation on the confocal 

microscope. We overexpressed GFP fused p53 proteins in HCT116 p53-/- cells. With 

confocal microscopy, we visualized the p53-GFP protein mostly in the cytoplasm of the 

cells. Although, this was an overexpression situation, p53-GFP intensity was low. This 

may be due to the unstability of the p53 protein in normal conditions. After DNA 

damage induction with doxorubicin, we clearly saw that p53-GFP fusion proteins 

translocated from the cytoplasm to the nucleus. Moreover, the intensity of p53-GFP 

increased upon DNA damage as expected. Next, we overexpressed PATZ1 protein in 

either nontreated or doxorubicin treated cells. However, there was not a significant 

change in the translocation of p53-GFP proteins. In this experiment, we could only 

visualize the p53 protein because it was fused to GFP. For further experiments, we plan 

to stain the HA-PATZ1 protein overexpression with HA-Rhodamine. This experiment 

would allow us to see the co-localization of the proteins. On the other hand, this 

experiment was performed with overexpressed proteins. For the further experiments, we 

plan to stain the endogenous p53 protein with an Alexa 488 conjugated antibody and the 
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PATZ1 protein with an Alexa 647 conjugated antibody. Therefore, we could detect both 

of the enodogenous proteins stained with dyes with different excitation and emission 

wavelengths.  

 

The main roles of p53 upon stress are to induce senescence, cell cycle arrest and 

apoptosis. In order to test if the p53 – PATZ1 interaction has a function on the induction 

of apoptosis, we used UV light to induce stress and apoptosis. Using flow cytometry, 

we analyzed the percentage of the cells that express Annexin-V receptor on their cell 

surface because apoptotic cells reverse their Annexin-V receptor from the inner part of 

the cell membrane to the cell surface. In this analysis we excluded the dead cells with 

SytoxRED staining. The percentage of the the alive (SytoxRED negative) and apoptotic 

(Annexin-V positive) cell population is approximately 2 fold higher in stably PATZ1 

expressing HCT116 cells than in stably mock or PATZ1Alt expressing cells. From this 

experiment, we can conclude that PATZ1 may help p53 to function as an apoptosis 

inducer upon UV stress through interaction.  

 

In addition to these, we wanted to analyze the real time growth of the stably 

PATZ1 overexpressing HCT116 cells upon doxorubicin treatment. We used different 

concentrations of doxorubicin to see the response on cellular growth. We measured the 

cell index numbers in the RTCA-DP system in every 15 minutes for a week. At the end 

of the experiment, we plotted a sigmoidal dose response curve for mock cDNA and 

PATZ1 overexpressing cells. Later, we calculated the inhibitiory concentration 

necessary for inhibiting the 50% of the cells (IC50). Stably PATZ1 overexpressing cells 

have a 2 fold higher IC50 value than mock cDNA expressing cells. In other words, 

PATZ1 overexpressing cells are more resistant to doxorubicin induced growth arrest 

and cell death. 2 fold concentration of doxorubicin is required to see the same death 

effect in the PATZ1 expressing cells which may indicate that PATZ1 inhibits the 

activity of p53 to induce cell death induced by doxorubicin. Although, we have found a 

different result in the FACS analysis, the stress inducers of the two experiments were 

different. Thus, the effect of PATZ1 on p53 function may be context dependent. 
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In light of our results showing the inhibition of p53 – DNA binding in the 

presence of PATZ1, we hypothesized that PATZ1 may have an inhibitory role on p53 to 

function as a transcriptional repressor. Therefore, we plan to see the functional activity 

of p53 in HCT116 cell lines that express PATZ1. In order knock out PATZ1 in a cell 

line, we plan to use transcription activator like effector nucleases (TALENs). TALENs 

bind to the target sequence and introduce a double strand break in the DNA resulting in 

the activation of DNA repair mechanisms such as non-homologous end joining (NHEJ) 

and homologous recombination. Unless there is a rescue sequence homologous to the 

site of DNA break, the NHEJ mechanism is preferred, resulting in insertions or 

deletions in the DNA sequence 158–161. Nowadays, TALENs are commonly used for 

mutating genomic sequences in order to knock out the desired gene in the genome. For 

the knock out strategy of PATZ1, we also plan to design a forward and reverse TALEN 

targeting the first exon of the genomic sequence of PATZ1. In the spacer region of the 

forward and reverse TALENs, the nuclease of TALEN, FokI would form a homodimer 

and cut the DNA which would probably result in the destruction of the coding sequence 

through insertions or deletions. At the theoretical cut site of TALENs, there is an MboII 

restriction site. If there would be an insertion or deletion after TALEN activity, then the 

restriction site would be destroyed. Therefore, we would amplify the region with PCR, 

after genomic DNA isolation, and perform restriction digestion with MboII to perform 

an RFLP (restriction fragment length polymorphism) assay. If the DNA fragments are 

not cut, this means the restriction site is destroyed. Therefore, the DNA sequence in the 

exon is modified and coding sequence may be changed resulting in the stop of PATZ1 

expression. The planned TALEN targets on the mouse Patz1 gene are shown in figure 

5.8. 

 
Figure 5.8 TALEN design for PATZ1 knock out cell lines. A forward and a reverse 

TALEN (shown in blue) targeting the first exon (shown in green) of the genomic 
sequence of PATZ1 are designed. After TALEN activity, the region is planned to be 

PCR amplified by forward and reverse primers (shown in pink) and mutation would be 
confirmed by RFLP assays and sequencing. 
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In addition to the results shown in this thesis, we also performed experiments to 

identify the downstream outcomes of the p53 – PATZ1 interaction. We performed 

luciferase assays with pG13, p21 and PUMA reporter plasmids. In all of the luciferase 

experiments, we saw a significant decrease in the transcriptional activity of p53 in the 

presence of PATZ1. Consistent with our pull down results, PATZ1 forms a complex 

with p53 and inhibits its binding to DNA, resulting in the inhibition of p53 dependent 

transcriptional activity. Moreover, we checked the mRNA levels of p53 target genes 

such as p21 and PUMA upon DNA damage induced by doxorubicin. PATZ1 

overexpressing cells could increase their p21 and PUMA mRNA levels less than the 

control cells. This result demonstrated that PATZ1 overexpressing cells could repress 

p53 activity upon DNA damage. In addition to these, we performed RNA Sequencing in 

wild type and PATZ1-/- mouse embryonic fibroblasts with or without DNA damage 

induced by doxorubicin. We analyzed the levels of p53 target genes and revealed that 

PATZ1 differentially regulates p53 target genes.  

 

Considering all of our results, we prepared a model which explains the functional 

interaction of p53 and PATZ1. Both p53 and PATZ1 are transcription factors and have 

specific binding sites as represented in figure 5.9A. Overexpression of p53 or 

accumulation of p53 upon DNA damage results in the specific binding of p53 to its 

target DNA. Like p53, in the presence of PATZ1, we observe the specific interaction 

between its target DNA which is represented in figure 5.9B. However, when p53 and 

PATZ1 are together, they prefer to make a complex that is incapable of binding to DNA 

(figure 5.9C).  
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Figure 5.9 Model for functional interaction of p53 and PATZ1. Overexpression of p53 

(shown in pink) or accumulation of p53 upon DNA damage results in the specific 
binding of p53 to its target DNA (shown in green). Like p53, in the presence of PATZ1 
(shown in yellow), we observe the specific interaction between its target DNA (shown 
in red). However, when p53 and PATZ1 are together, they prefer to make a complex 

that is incapable of binding to DNA. 
 

Neither p53 nor PATZ1 can bind to its target DNA, upon formation of the p53-

PATZ1 complex as modeled in figure 4.18C. Because p53 and PATZ1 are both 

transcription factors, they can perform their transcriptional activation or suppression 

roles only by binding to DNA. Their interaction with DNA starts all the activation or 

repression of the target pathways. Therefore, the p53 – PATZ1 complex that is 

incapable of DNA binding, is very important in tumor suppression pathways. In 

conclusion, we demonstrated the interaction of p53 and PATZ1 and the effect of this 

interaction on DNA binding. p53 has many target genes which it can either activate or 

repress. p53 is mainly responsible for tumor suppression by inducing senescence, cell 

cycle and apoptosis. On the other hand, PATZ1 expression was shown to be induced in 

some cancer and tumor types. In addition to the literature that links not only p53 but 

also PATZ1 with cancer, our results also suggest that the formation of the p53 – PATZ1 

complex may be critical for tumor formation and cancer. 
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APPENDIX 

 
 
 

APPENDIX A: Chemicals Used In The Study 
 
 

Chemicals and Media Components 
 
Supplier Company 
 

Acetic Acid Merck, Germany 
Acid Washed Glass Beads Sigma, Germany 
Acrylamide/Bis-acrylamide Sigma, Germany 

Agarose peQLab, Germany 

Anti c-Myc Antibody Roche, Germany 

Anti-GFP Antibody Roche, Germany 

Anti-HA Affinity Matrix Roche, Germany 

Anti-Myc Peroxidase Roche, Germany 

Ammonium Persulfate Sigma, Germany 

Ammonium Sulfate Sigma, Germany 

Ampicillin Sodium Salt CellGro, USA 

Bacto Agar BD, USA 

Bacto Tryptone BD, USA 

Boric Acid Molekula, UK 

Bradford Reagent Sigma, Germany 

Bromophenol Blue Sigma, Germany 

Chloramphenicol Gibco, USA 

D-Glucose Sigma, Germany 

Distilled water Milipore, France 

DMEM PAN, Germany 

DMSO Sigma, Germany 

DNA Gel Loading Solution, 5X Quality Biological, Inc, USA 

DPBS CellGro, USA 

EDTA Applichem, Germany 
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Chemicals and Media Components Supplier Company 
 

Ethanol Riedel-de Haen, Germany 

Ethidium Bromide Sigma, Germany 

Fetal Bovine Serum (FBS) Biological Industries, Israel 

Glycerol Anhydrous Applichem, Germany 

Glycine Applichem, Germany 

HBSS CellGro, USA 

HEPES Applichem, Germany 

Hydrochloric Acid Merck, Germany 

Isopropanol Riedel-de Haén, Germany 

Kanamycin Sulfate Gibco, USA 

LB Agar BD, USA 

LB Broth BD, USA 

L-Glutamine Hyclone, USA 

Liquid nitrogen Karbogaz, Turkey 

Magnesium Chloride Promega, USA 

2-Mercaptoethanol Sigma, Germany 

Methanol Riedel-de Haen, Germany 

Monoclonal Anti-HA Antibody Sigma, Germany 

Penicillin-Streptomycin Sigma, Germany 

Phenol-Chloroform-Isoamylalcohol Amersco, USA 

PIPES Sigma, Germany 

Potassium Acetate Merck, Germany 

Potassium Chloride Fluka, Germany 

Potassium Hydroxide Merck, Germany 

Protease Tablets (EDTA-free) Roche, Germany 

ProtG Sepharose Amersco, USA 

RNase A Roche, Germany 

SDS Pure Applichem, Germany 
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Chemicals and Media Components Supplier Company 
 

Skim Milk Powder Fluka, Germany 

Sodium Azide Amresco, USA 

Sodium Chloride Applichem, Germany 

TEMED Applichem, Germany 

Tris Buffer Grade Amresco, USA 

Tris Hydrochloride Amresco, USA 

Triton X100 Promega, USA 
Tween20 Sigma, Germany 
SuperSignal West Pico Chemiluminescent 
Substrate Thermo Scientific, USA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



   
 

 
 
 

APPENDIX B: Equipment Used In The Study 
 
 
 

Equipment Company 
Autoclave Hirayama,Hiclave HV-110,Japan 
Balance Sartorius, BP221S, Germany 

 Schimadzu, Libror EB-3200 HU, Japan 

Cell Counter Cole Parmer, USA 

Centrifuge Eppendorf, 5415D, Germany 

 Hitachi, Sorvall RC5C Plus, USA 

CO2 Incubator Binder,Germany 

Deepfreeze -80oC, Forma,Thermo ElectronCorp.,USA 

 -20oC,Bosch,Turkey 

Distilled Water Millipore, Elix-S, France 

Electrophoresis Apparatus Biogen Inc., USA 

 Biorad Inc., USA 

Elecroporation Cuvettes Eppendorf, Germany 

Electroporator BTX-ECM630, Division of Genetronics, 
Inc, USA 

Filter Membranes Millipore,USA 

Flow Cytometer BDFACSCanto,USA 

Gel Documentation Biorad, UV-Transilluminator 2000, USA 

Heater ThermomixerComfort,Eppendorf,Germany 

Hematocytometer Hausser Scientific,Blue Bell Pa.,USA 

Ice Machine Scotsman Inc., AF20, USA 

Incubator Memmert, Modell 300, Germany 

 Memmert, Modell 600, Germany 

Laminar Flow Kendro Lab. Prod., Heraeus, HeraSafe 
HS12, Germany 

Liquid Nitrogen Tank Taylor-Wharton,3000RS,USA 

Magnetic Stirrer VELP Scientifica, ARE Heating Magnetic 
Stirrer, Italy 

Microliter Pipettes Gilson, Pipetman, France 

 Eppendorf, Germany 
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Microscope Olympus CK40,Japan 

 Olympus CH20,Japan 

 Olympus IX70,Japan 

  Zeiss Confocal LSM710, German 

Microwave Oven Bosch,Turkey 

pH meter WTW, pH540 GLP MultiCal, Germany 

Power Supply Biorad, PowerPac 300, USA 

Refrigerator Bosch,Turkey 

Shaker Incubator New Brunswick Sci., Innova 4330, USA 

Spectrophotometer Schimadzu, UV-1208, Japan 

 Schimadzu, UV-3150, Japan 

Thermocycler Eppendorf, Mastercycler Gradient, 
Germany 

Vortex Velp Scientifica,Italy 
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APPENDIX C: DNA and Protein Molecular Weight Marker 
 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Gene Ruler TM DNA Ladder Mix                               Page RulerTM Prestained Protein 
         Fermentas, Germany                                             Ladder Fermentas, Germany                                        
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APPENDIX D: Plasmids Used In This Project 
 
 
 

 
 

Figure D.1 Map of pCMV-HA plasmid 
 

 
Figure D.2 Map of pCMV-HA-PATZ1 plasmid 
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Figure D.3 Map of pCMV-HA-PATZ1Alt plasmid 

 

 

Figure D.4 Map of pCMV-HA-PATZ1D521Y plasmid 

 

 



105 
 

 

Figure D.5 Map of pCMV-HA-PATZ1D521Y/D527 plasmid 

 

 

 

Figure D.6 Map of pCMV-Myc plasmid 
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Figure D.7 Map of pCMV-Myc-PATZ1 plasmid 

 

 

Figure D.8Map of pCMV-Myc-deltaBTB plasmid 
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Figure D.9 Map of pCMV-Myc-BTB plasmid 

 

 

Figure D.10 Map of pCMV-Myc-deltaZF plasmid 
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Figure D.11 Map of pCMV-FLAG plasmid 

 

 

 

Figure D.12 Map of pCMV-FLAG-p53 plasmid 
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Figure D.13 Map of p53-GFP plasmid 

 

 


