
COUPLED THERMO-ELASTOHYDRODYNAMIC ANALYSIS OF A BUMP-

TYPE COMPLIANT FOIL JOURNAL BEARING 

 

 

 

by 

SERDAR AKSOY 

 

 

 

Submitted to the Graduate School of Engineering and Natural Sciences 

in partial fulfillment of 

the requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

SABANCI UNIVERSITY 

August 2014 

 

  



ii 

 

COUPLED THERMO-ELASTOHYDRODYNAMIC ANALYSIS OF A BUMP-

TYPE COMPLIANT FOIL JOURNAL BEARING 

 

 

 

 

 

APPROVED BY: 

 

Assoc. Prof. Mahmut F. AKŞİT (Thesis Advisor)       

Assoc. Prof. Serhat YEŞILYURT          

Assoc. Prof. Mehmet YILDIZ          

Assoc. Prof. Güllü KIZILTAŞ         

Prof. Dr. Yahya DOĞU          

 

 

 

DATE OF APPROVAL:      

 

 

 

  



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Serdar Aksoy 2014 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

  



iv 

 

COUPLED THERMO-ELASTOHYDRODYNAMIC ANALYSIS OF A BUMP-

TYPE COMPLIANT FOIL JOURNAL BEARING 

 

Serdar AKSOY 

Mechatronics, PhD. Dissertation, 2014 

Thesis Advisor: Assoc. Prof. Mahmut F. AKŞİT 

 

Keywords: Elasto-Hydrodynamic Analysis, Reynolds Equation, Aerodynamic 

Bearings, Fluid-Structure Interaction (FSI), Gas Turbine 

 

ABSTRACT 

This work presents a fully coupled thermo-elastohydrodynamic analysis of a bump-

type compliant foil journal bearing. The operational characteristics of compliant foil 

bearings have been evaluated under different operating conditions. Even though some 

experimental research data are available in literature, extended thermo-hydrodynamic 

analysis is required to better understand and optimize the system performance at the 

design level. The presented comprehensive model benchmarked to experiment data will 

help enable the widespread usage in novel turbomachinery applications. The proposed 

model predicts three-dimensional thermal, structural and hydrodynamic performance of 

a bump-type compliant foil bearing. The model couples finite element analysis of the 

structural deformation and hyrodynamic pressure to a finite difference code for film 

temperature. The Augmented-Lagrangian contact model and advanced thermal contact 

modeling is applied. The model involves complete bearing mechanism as well as the 

interacting section of the shaft with the bearing. Nickel-based superalloys are used as 

bearing material and temperature dependent thermo-mechanical properties are defined in 
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the solver. The thermal growth of the shaft, foil structure, bearing sleeve, and centrifugal 

growth of the shaft are considered. The model captures the physics very well and could 

be utilized to design more advanced bearings. The predictions of the proposed model are 

benchmarked to published experimental data and a reasonable correlation is obtained. 

Parametric study is conducted for various shaft speeds and loading conditions to predict 

thermal and structural performance. Derivation of governing momentum and energy 

equations, mechanical and thermal contact models, finite element and finite difference 

formulations are given in detail. 
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 KAYMALI ESNEK FOLYO YATAKLARIN TERMO-

ELASTOHİDRODİNAMİK AKIŞKAN-KATI ETKİLEŞİMLİ ANALİZİ 

 

Serdar AKSOY 

Mekatronik, Doktora Tezi, 2014 

Tez Danışmanı: Doç. Dr. Mahmut F. AKŞİT 

 

Anahtar kelimeler: Elasto-Hidrodinamik Analiz, Reynolds Denklemi, Aerodinamik 

Yataklar, Akışkan-Katı Etkileşimi, Gaz Türbini    

 

ÖZET 

Esnek folyo yatakların operasyonal kabiliyetleri çok farklı çalışma şartlarında 

gösterilmiştir. Literatürde deneysel birçok çalışma bulunamasına rağmen yatakların 

dizayn aşamasında geliştirilmesi ve optimize edilmesi için kapsamlı termal-hidrodinamik 

analizlere ihtiyaç bulunmaktadır. Deney sonuçlarıyla doğrulanmış modeller geliştirilmesi 

bu sistemlerin yeni turbomakinelerde uygulanmasını yaygınlaştıracaktır. Bu çalışmada 

birinci nesil bir kaymalı esnek folyo yatağın üç boyutlu termal, yapısal ve hidrodinamik 

performansını tahmin etmek üzere termo-elastohidrodinamik bir model geliştirilmiştir. 

Yapısal deformasyon ve hidrodinamik basınç sonlu elemanlar metoduyla çözülerek sonlu 

farklar metoduyla film sıcaklığını tespit için geliştirilen kod ile birleştirilmiştir. 

Augmented-Lagrangian mekanik temas ve ileri seviye termal kontak modelleri 

uygulanmıştır. Yatak mekanizmasının tamamı ve şaftın yatak ile etkileşen kısmı modele 

dahil edilmiştir. Yatak ve şaft malzemeleri olarak nikel-tabanlı süper alaşımlar seçilerek 

sıcaklığa bağımlı malzeme bilgileri çözücüye tanıtılmıştır. Şaft ve yatak sisteminin termal 

ve merkezkaç genleşmeleri çözüme dahil edilmiştir. Geliştirilen model folyo yatakların 
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gerçek fiziğini iyi bir şekilde tahmin ederek ileri seviye yatak tasarımlarında 

kullanılabilecektir. Önerilen modelden elde edilen tahminler literatürdeki deneysel 

sıcaklık ölçümleriyle kıyaslanmış ve aralarında kabul edilebilir uyum gözlemlenmiştir. 

Farklı şaft hızları ve yükleme koşulları için termal ve yapısal performansı tahmin etmek 

üzere parametrik çalışma yapılmıştır. Momentum ve enerji denklemleri, mekanik ve 

termal kontak modelleri, sonlu elemanlar ve sonlu farklar metotlarında uygulanan 

formulasyonlar detaylarıyla açıklanmıştır. 
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Say: “Are those equal, those who know and those who do not know? It is those who are 

endued with understanding that receive admonition” (The Holy Quran, 39:9) 

 

A learned guide should be a sheep, not a bird. A sheep gives its lamb milk, while a bird 

gives its chick regurgitated food. (The Letters, Bediuzzaman Said Nursî) 
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NOMENCLATURE 

     

Aapp apparent contact area [m2]  hc constriction conductance    

[W/(m2.K)] 

Acon contact area [m2]  hconv convective heat flux coefficient 

[W/(m2.K)] 

Arcon relative real contact area [m2]  hg gap conductance [W/(m2.K)] 

c Nominal clearance [m]  hs convective heat flux coefficient 

of shaft surface [W/(m2.K)] 

cp specific heat capacity of fluid 

[J/(kg.K)] 

 hjoint joint conductance [W/(m2.K)] 

C 4th order elasticity tensor  hmax maximum film thickness [μm] 

D diameter [m]  hmesh minimum mesh size for 

destination boundary 

D elasticity matrix  hr radiative conductance 

[W/(m2.K)] 

Davg average gas particle diameter 

[nm] (0.37 nm for air) 

 hnc natural convection coefficient 

[W/(m2.K)] 

Ds-i shaft inner diameter [m]  htf convective heat flux coefficient 

of topfoil surface [W/(m2.K)] 

Dsl-i sleeve inner diameter [m]  hw the distance of journal surface to 

reference plane [μm] 

Dsl-o sleeve outer diameter [m]  Hμ microhardness 

dg gap distance [m]  k thermal conductivity [W/(m.K)] 

or changed node index in FDM 

E Youngs modulus [Pa]  kcontact effective thermal conductivity of 

the joint [W/(m.K)] 

e eccentricity [m]  kB Boltzmann constant 1.3806488 × 

10-23 [m2.kg/(s2.K)] 

e enthalphy [J]  L bearing length [m] 

F load [N]  Lbf bump length [m] 

FB body force [N/m3]  M bending moment 

Fbase force affecting the topfoil 

surface [N] 

 m(x) the source point function in a 

augmented Lagrangian contact 

Fdef Deformation gradient matrix  m effective absolute mean asperity 

slope or node number in 

circumferential direction 

Fwall force affecting the moving shaft 

[N] 
 Mg gas parameter 

fp user defined normal penalty 

factor multiplier 

 n surface normal 

g gravitational accelaration [m/s2]  n air mol weight [kg] or node 

number in axial direction 

h(x,y) fluid film thickness [m]  nref reference plane normal 

HB Brinell hardness  nspot contact spot density 

Hb the distance of bearing surface 

to reference plane 

 Pg gas pressure [Pa] 
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Hbf bump height [m]  P pressure [Pa] 

 

Pa ambient pressure (101 [kPa])  v(x,y,z,) film velocity in y-direction 

[m/s] 

pn user defined normal penalty 

factor 

 vwall shaft surface velocity in y 

direction [m/s] 

𝑞𝑠
′′

 Shaft surface heat flux 

[W/(m2K)] 

 vbase topfoil surface velocity in y 

direction [m/s] 

𝑞𝑡𝑓
′′  Topfoil surface heat flux 

[W/(m2K)] 

 Welastic elastic energy [J] 

R radius [m]  Wstored total stored energy 

Rbf-sl thermal resistance between 

bumpfoil and sleeve 

[(m2K)/W] 

 w(x,y,z,) film velocity in z-direction 

[m/s] 

Rgc universal gas constant 

[kJ/(mol.K)] 

 Wx,y load capacity [N] 

Rs-i shaft inner radius [m]  z(x) finite difference function 

Rs-o shaft outer radius [m]  Zbf bump foil plain segment 

Rtf-bf thermal resistance between 

topfoil and bumpfoil 

[(m2K)/W] 

 Δx finite increment in x-direction 

[m] 

Sbf bump pitch [m]  Δy finite increment in y-direction 

[m] 

Sc centrifugal expansion of the 

shaft [m] 

 ΔY the distance between 

contacting surfaces [m] 

sk Newton step    

Sth thermal expansion of the 

shaft [m] 

   

T temperature [K or degC]   

t time [s]    

Ta ambient temperature (293.15 

[K]) 

   

tbf bump foil thickness [m]    

Tcool cooling flow temperature [K]    

Tgap gap temperature [K]    

ths shaft wall thickness [m]    

Tn normal contact pressure    

Tnp penalized contact pressure    

Tref reference temperature [K]    

Tsm shaft mean temperature [K]    

Tt friction traction vector    

U shaft surface velocity [m/s]    

ubase topfoil surface velocity in x 

direction [m/s] 

   

u(x,y,z,) film velocity in x-direction 

[m/s] 

   

û internal energy [J]    

V volume [m3]    
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Greek Letters  Abbreviations 

   

Γ gas mean free path [μm]  ACM Air Cycle Machine 

ΛB bearing compressibility number  AMB Active Magnetic Bearing 

Π thermal mixing parameter  BLAS Basic Linear Algebra 

Subprograms 

Ψ relative mean plane seperation  BRU Brayton Rotating Unit 

α thermal expansion coefficient  CFB Compliant Foil Bearing 

α thermal expansion tensor  CFD Computational Fluid 

Dynamics 

β gas property parameter (1.65 for 

air) 

 CLA Center-line average 

γ total strain tensor  CMY Cooper-Mikic-Yovanovich 

correlation 

γ̇ strain rate tensor  CP Cauchy Point 

δ some small value  deg Degrees 

ε eccentricity ratio  degC Degree Celsius 

εerr error rate for two consecutive 

iteration  

 DOF Degree of freedom 

εref reference for eccentricity ratio  FDM Finite Difference Method 

ζ ratio of the molecular weight of 

gas and solid 

 FE Finite Element 

η thermal accommodation 

parameter 

 FEA Finite Element Analysis 

θ circumferential angle  FEM Finite Element Method 

κ squeeze number  Fr Froude Number 

λ molecular mean free path [μm]  FSI Fluid Structure Interaction 

μ dynamic viscosity [Pa.s]  Gen Generation 

μa air viscosity in ambient 

conditions (1.9e-5 [Pa.s]) 

 Kn Knudsen number 

ν Poisson ratio  LE Leading Edge 

ξ viscous dissipation [W.kg/m3]  LHS Left Hand Side 

ρ density [kg/m3]  Lit. Literature 

σ stress [Pa]  ND or 

Non-Dim 

Non-dimensional 

σ' von Mises effective stress [Pa]  NS Navier-Stokes 

τij shear stress  Nu Nusselt number 

τ shear stress tensor  PARDISO Parallel Direct Solver 

φ attitude angle  Pr Prandtl number 

χ effective rms surface roughness 

[μm] 

 Re Reynolds number 

ψ constriction parameter  RHS Right Hand Side 

ω angular speed [rad/s]  RMS Root mean square 

∇∪ deformation rate tensor  TC Loc. Thermocouple locations 

ϵ relative contact spot size  TE Trailing Edge 

   TEHD Thermo Elasto 

Hydrodynamics 

   THD Thermo Hydrodynamics 
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Subscripts  Superscripts 

   

a ambient  k iteration number 

b bearing  n normal 

bf bumpfoil  t traction 

cool coolant    

d down    

f film gap    

fl fluid    

g gas    

i inner or tangential direction 

index in FDM 

   

j journal or axial direction index 

in FDM  

   

leading leading edge    

L length    

nc Natural convection    

o outer    

p point    

ref reference    

s shaft    

sf surface    

sl sleeve    

tf topfoil    

trailing trailing edge    

u up    

v volume    

x x direction    

y y direction    

z z direction    

0 initial    
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1 INTRODUCTION 

1.1 Motivation 

The machines that transfer energy between an operating fluid and a rotating 

structure are called as turbomachinery. All types of turbines including gas, steam and 

wind turbines, compressors, blowers, pumps and mills could be given as examples of this 

type of machinery. For instance, a gas turbine converts the thermal energy extracted from 

combustion gas of a hydrocarbon fuel into mechanical energy by rotating a shaft through 

turbine blades. The bearings are the main support and positioning mechanism of the 

rotating components for every type of turbomachinery. Different type of bearings 

perform various tasks in a turbomachine. Thrust bearings serve as axial positioners, 

journal or roller bearings support the rotor in radial direction whereas angular contact 

bearings can accomplish both tasks. The essential targets of bearing design are longer 

service life, improved reliability and efficiency. The critical factors and parameters that 

shape the bearing design can be listed as follows [1], 

1. Radial/axial or combined load capacity 

2. Shaft surface speed 

3. Operating temperature 

4. Lubrication method and lubricant type 

5. Demanded service life 

6. Reliability against failure 

7. Shaft arrangements or misalignment 

8. Mounting and dismounting method 

9. Vibration and noise level 

10. Environmental conditions 

      Oil-lubricated shaft support components, based on fluid film and rolling-element 

type bearings, have been an industrial standard for centuries and have served the 
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community successfully. Their reliable and sufficient performance even at extreme 

loading conditions, and proven long service life have enabled them to prevail in most 

mechanical systems. Commonly used systems include internal combustion engines, 

power plant turbines, fluid compressors and electric motors. During long-term productive 

research period, development and experience have resulted in well-established and 

acknowledged principles for successful applications and innumerable specific designs of 

these machine elements for particularly challenging applications [2]. This positive 

experience with conventional rotor support technologies, however, concealed the crucial 

role of rotor support technologies in the overall success and performance of rotating 

systems. When novel machinery forced the limits beyond the norm with respect to rotor 

speed, temperature or other factors, it is better conceived that closer attention must be 

devoted to the rotor support system including the consideration of alternate bearing 

technologies. To illustrate the recent requirements for support systems, in propulsion and 

stationary power generation areas [3], the bearing lubrication at the hot section (turbine 

side) requires very complicated oil-lubrication system and cooling devices to extend the 

life of the ball bearings. Future aircraft engines and weapon systems require breakthrough 

bearing system with much higher operating temperature than current oil-lubricated 

bearings. The maximum operating temperatures of various synthetic oils are about 250°C 

[4], and the temperature limit is one of the most significant factors that hinders the design 

of more efficient turbines. Replacing the radial bearings of the gas turbines with air-

lubricated bearings can eliminate the complicated oil lubrication circuit at the hot sections 

while allowing the design of environment-friendly high efficient turbines. Compliant air 

foil bearings (CFB) have been recognized as one of the most promising air bearings for 

the aforementioned applications. 

1.1.1 The Prominent Characteristics of CFB in Turbomachinery 

The use of foil bearings in turbomachinery has various advantages compared to the 

conventional rotor support technologies. The salient features of foil bearings are 

explained below in detail. 

Improved Reliability: Machines supported by foil bearings are more reliable 

because fewer parts are utilized to support the rotating components and there is no 

required lubrication and oil feeding system. During steady operation, hydrodynamic 
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pressure generated in the air/gas film prevents the bearing surface from physical contact 

with the shaft and thus, ideally no wear occurs at this state. The bearing surface comes 

into contact with the shaft surface only when the machine starts and stops. During this 

transient regime, special coatings developed for foil bearings to limit the wear rate. 

No Requirement for Scheduled Maintenance: Due to the elimination of the oil 

lubrication system, there is no need to check and replace the lubricant in foil bearing 

supported machines. This reduces the operating costs for long term. 

Soft Failure: Because of the compliant structure and low operation clearances 

inherent in foil bearing design and assembly, if a bearing failure occurs, the bearing foils 

confine the shaft assembly from excessive displacement such that the damage is most 

often limited to the bearings and shaft surface. The shaft may be re-used as before or can 

be repaired. Damage to the other hardware is expected to be minimal and fixable during 

overhaul. 

Environmental Sustainability: Foil bearings are inherently resistant to external 

disturbances like foreign substance ingestion. Large-sized particles could not enter into 

the bearing flow path because of tighter operating clearance between the shaft and the 

bearing. Smaller particles are rapidly flushed out of the bearing by means of cooling 

stream. This capability of foil bearings to endure against contamination eliminates the 

requirement for a filtering system. 

High Speed Operation: The efficiency of most turbomachinery such as compressor, 

turbine, and turbocharger are improving as the rotor speed has been increased. Foil 

bearings allow these machines to operate at higher speeds without any theoretical 

limitation as with ball bearings due to the centrifugal effects or as in oil-lubricated 

bearings due to the excessive shear heating of oil film. In fact, due to the hydrodynamic 

improvement, they have a higher load capacity as the speed increases.  

Low and High Temperature Capabilities: Many oil lubricants cannot operate at 

very high temperatures without breaking down due to the phenomena called as shear-

thinning. At low temperature, the viscosity of oil lubricants increases drastically and 

prevents stable operation. Foil bearings, however, operate efficiently at severely high 
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temperatures, as well as at cryogenic temperatures because dynamic viscosity of air does 

not get affected from temperature change significantly. 

Process Fluid Operations: Foil bearings enable operation with various kinds of 

process fluids including helium, xenon, refrigerants, liquid oxygen and liquid nitrogen. 

For applications in vapor cycles, the refrigerant can be used to cool and support the foil 

bearings without the need for oil lubricants that can contaminate the system and reduce 

efficiency [5]. 

A comparison for foil bearings to the conventional bearing systems is presented in 

Table 1.1. 

Property 
Compliant Foil 

Bearing (CFB) 

Oil-lubricated 

Bearing 

Rolling Element 

Bearing 

Active Magnetic 

Bearing (AMB) 

Maximum 

Operating Speed 

at Bearing Surface 

(Bore) for Radial 

Bearing 

Essentially 

unlimited, 150 to 

225 m/s is fairly 

typical 

Generally 75 to 

105 m/s or less 

Equal to a surface 

speed of 52 to 

157 m/s 

180 m/s for 

typical materials, 

200 m/s for 

special alloys 

Minimum 

Required 

Operating Speed 

Yes, application 

dependent 

Yes, application 

dependent 
None None 

Load Capacity 

and Typical 

Projected Area 

Loads 

Low to moderate 

50 to 100 psi 

(0.68 MPa) for 

radial 

25 to 35 psi (0.2 

to 0.25 MPa) for 

thrust 

Potentially very 

high 

100 to 450 psi 

(0.68 to 3.1 MPa) 

for radial 

250 to 500 psi 

(1.7 to 3.4 MPa) 

for thrust 

Moderate to high 

Low to moderate 

100 psi (0.68 

MPa) 

Short term 

overload 

capability 

Limited Substantial Good Limited 
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Bearing Operating 

Temperature 

Range 

Cryogenic to 

650˚C + 

Varies with 

construction and 

lubricant, but 

most babbitt 

surfaced industrial 

bearings operate 

in the range of 32 

to 82˚C, and 

alarm by 120˚C 

-30 to 230˚C 

-180 to 540˚C 

claimed by 

developers 

Power Loss 
Radial very low, 

thrust moderate 
Can be significant 

Generally low to 

moderate 

Generally very 

low 

Oil Free Yes No No 

Yes (although 

backup bearings 

could be grease 

lubricated) 

Misalignment 

Capability 
Low to moderate 

Moderate, 

depends on 

construction 

Very low (highly 

loaded angular 

contact) to 

moderate 

(spherical roller) 

Moderate 

Auxiliary Systems 

Source of a 

limited amount of 

low pressure 

"cooling" air 

Pumps, coolers, 

filters 

Nothing for 

grease lubricated 

bearings, ranging 

to pumps, filters, 

etc. for oil-jet 

lube at high 

speeds and loads 

Control system 

electronics, 

auxiliary 

bearings, 

generally some 

amount of cooling 

air 

Radial Envelope 

requirement 

Length in range 

of 0.5 to 2x shaft 

diameter, Do in 

range of 1.25 to 2 

times diameter 

Length in range of 

0.5 to 2x shaft 

diameter, Do in 

range of 1.25 to 2 

times diameter,  

plus lube oil 

system 

Length in range 

of 0.2 to 0.5x 

shaft diameter, 

Do in range of 1.5 

to 2 times 

diameter, plus 

lube oil system 

Length in range 

of 1 to 2x shaft 

diameter, Do in 

range of 1.5 to 4 

times diameter, 

plus electronics if 

external 
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Weight 
Generally the 

lightest option 

Generally pretty 

heavy when 

pumps, filters, 

piping etc. 

considered along 

with the actual 

bearings 

Relatively light 

Moderate 

including 

electronics 

Stiffness Low Moderate to high High 

Depends on 

tuning, generally 

are tuned soft 

Damping Low to moderate Generally High Very Low 

Moderate to high 

depending on 

tuning and system 

dynamics 

Shock Tolerance Good Very Good Moderate Can be poor 

Table 1.1:  Comparison of compliant foil bearings to conventional bearing types 

[6] 

During the last 25 years, significant progress has been achieved by utilizing foil 

bearings in turbomachinery. The reliability of the machines using foil bearings has 

increased over tenfold in comparison to those with rolling bearings. Air Cycle Machine 

(ACM) are serving for cabin pressurization, heating and cooling in aircrafts for many 

years. Almost every new ACM on military and civil aircrafts are supported by foil 

bearings, and the old systems already built with rolling element bearings are replaced 

with foil air bearings to improve reliability and overall performance. Some examples of 

ACMs developed for military aircrafts by AiResearch are displayed in Figure 1.1 and 

Figure 1.2. The section view of a turbocharger developed by NASA by using journal and 

thrust foil bearings is illustrated in Figure 1.3. Many machines with working fluids other 

than air, such as helium, xenon, refrigerants, liquid oxygen and liquid nitrogen, have been 

built and successfully tested [5]. 
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Figure 1.1: F-14 Foil Bearing ACM (Developed by AiResearch) [5] 

 

Figure 1.2: F-16 Foil Bearing ACM (Developed by AiResearch) [5] 
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Figure 1.3: Section view for NASA turbocharger supported by journal and 

thrust foil bearings [7] 

1.2 Operating Principles of Foil Bearings 

Compliant foil gas bearings are a class of hydrodynamic bearings that use ambient 

gas as their operating fluid and hence does not require any additional lubrication circuit. 

The hydrodynamic pressure is generated between the moving shaft surface and flexible 

bearing surface called as topfoil surface typically formed of numerous layers of sheet 

metal foils. To support radial or axial loads, foil bearings can be configured as journal or 

thrust bearings as in conventional oil-lubricated technologies. The main behavior of a 

shaft supported by foil-gas bearing is that it floats on a self-generated fluid film during 

normal operation but experiences a short-term dry sliding contact during low speed 

operation at start-up and shut-down periods. The bearing geometry and the fluid film 

thickness are shaped according to the equilibrium between the hydrodynamic film 

pressure, and the deformation of the topfoil surface with its bumpy underlying spring 

support structure [8]. Dynamic rotor movements or vibrations during operation induce 

fluctuations in the film pressure and results in small motions in the foils. The sliding 

contact mechanism due to the relative motions of the foil structures improves the overall 

damping capability of the bearing system [9]. From this point of view, one can 
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acknowledge a foil bearing both a supporting bearing mechanism and a damper system 

that reduces undesired oscillations by dissipating the energy through Coulomb friction. 

By means of the compliant structure, the bearing accommodates itself to thermal and 

mechanical distortions much more effectively than any other supporting technologies. 

These outstanding features of foil-gas bearings have long been known by many 

researchers and engineers. Gross [10] referred to these features in 1969 by stating that 

“Foil bearings were evolved to minimize instability problems, reduce manufacturing 

tolerances and permit adaptation of the bearing to changes in shaft diameter caused by 

centrifugal force or temperature gradients. The fluid film between the shaft and the foil 

is likely to have a greater stiffness than the foil itself”. The succeeding forty years of 

intensive research and development in foil bearings have greatly supported Gross’ 

summary and must be considered first when adapting foil bearings into new 

turbomachinery. On the otherside, foil bearings have a significant drawback of lower load 

capacity and dynamic properties due to the low viscosity of air compared to oil lubricants. 

This brings both assets and difficulties to the systems established using such rotor 

supports. The main benefit of gas bearings is the elimination of the lubrication system 

combined with the capability to operate at higher speeds and temperatures. The primary 

difficulty is to develop novel machine designs that can utilize the advantage of the 

performance characteristics of foil bearings while compensating their performance 

shortcomings [11]. Foil bearings offer very modest load capacity, stiffness and damping 

compared to conventional support systems. One can expect stiffness and damping of a 

foil bearing to be an order-of-magnitude lower than a similar size oil-lubricated bearing. 

On the other hand, friction can be lower especially at high rotational speeds and foil 

bearings have no intrinsic DN speed limitations, as do rolling-element type bearings. Foil 

bearing load capacity is heavily influenced by speed as well. At high speeds, foil-gas 

bearings exhibit comparable or even higher load capacity than rolling-element bearings 

but have limited capability at low speeds [12]. These characteristics of foil-gas bearings 

dictate that their successful application occurs when a rotor system is designed around 

the bearing capabilities in contrast to the current common practice of first designing the 

aero-components, determining speeds and loads from which the rotor design and bearing 

requirements follow [11]. 

The operational feasibility of the compliant foil bearing for small scaled gas 

turbines has been demonstrated for different temperature, load, vibration and load 
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conditions at speeds exceeding 700,000 rpm, temperatures exceeding 650˚C, and loads 

approaching 4200 N [13, 14]. Foil bearings have been applied to ACMs [15], industrial 

compressors [16], turboexpanders [17], turbochargers [18], cryocoolers, cryogenic 

pumps, and other systems operating at extreme environments [19, 20]. 

1.2.1 Structure of Compliant Foil Bearing 

Figure 1.4 demonstrates the schematic of a typical bump-type foil journal bearing. 

Foil bearing consists of three main parts namely top foil, corrugated bumps and bearing 

housing. This twofold structure providing stiffness and damping to the system makes foil 

bearing unique. Compliant support structure of the bearing can be made of more than one 

corrugated bump foil. This flexible structure improves dynamic properties of the bearing. 

The compliant bumps can deform under load due to the hydrodynamic pressure and form 

the converging wedge between the shaft and bearing surface without being affected much 

from speed and temperature variations. Furthermore, shaft growth due to the centrifugal 

and thermal effects, and thermal and mechanical deformations of the bearing housing are 

compensated without significant performance loss thanks to the compliant mechanism 

[21]. 

 

Figure 1.4: Basic scheme of a compliant foil bearing 
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Typically, nickel-based alloys coated with soft film are used as top and bump foil 

material. The coating film abrades during start/stop cycles to accommodate itself to foil 

geometry distortions. The foil is not coated at elevated temperatures but the shaft is 

treated with solid lubricant coatings. Top foil provides required smooth surface to the 

lubricant to create hydrodynamic pressure with relative motion of the shaft surface. The 

behavior of bumps can be easily considered as a spring-damper system that supports the 

topfoil for desirable stiffness and damping. The relative motion of bumps with respect to 

the topfoil and housing during operation dissipates the vibration based energy due to the 

friction and supplies additional damping to the system. This characteristic behavior of 

foil bearing also improves its accommodation of thermal, and centrifugal expansions as 

well as misaligned assembly that results in more stable operation capability of the system. 

Another commonly used type of foil bearing is so-called multiple leaf-type bearing. 

In multiple leaf CFB, the compliance is achieved by bending of staggered structural foils 

and the dry-friction at the contact lines defines the operational characteristics [22]. In 

corrugated bump CFB, bump-strip layers supporting a thin top foil render an adjustable 

support. In this type of bearing, dry-friction effects arising between the bumps and 

topfoil, and the bumps and the bearing inner surface provide the energy dissipation or 

damping characteristics [23]. The published literature note that multiple leaf CFB are not 

the best supports in high performance turbomachinery, primarily because of their 

inherently low load capacity. A corrugated bump type CFB fulfills most of the 

requirements of highly efficient oil-free turbomachinery, with demonstrated ultimate load 

capacity up to 680 kPa (100 psi) [24]. The forced performance of a CFB depends upon 

the material properties and geometrical configuration of its support structure (the top foil 

and bump strip layers), as well as the hydrodynamic film pressure generated within the 

bearing clearance. In particular, the underlying support structure dominates the static and 

dynamic performance of heavily loaded CFB especially at high speeds [25]. For example, 

due to the elastic deflection of the bump strip layers, the operation film thickness remains 

almost constant compared to the shaft eccentricity. The overall stiffness mainly depends 

on the softer support structure, rather than the gas film, which “hardens” as the shaft 

speed and applied load increase. Material hysteresis and dry-friction dissipation 

mechanisms between the bumps and top foil, as well as between the bumps and the 

bearing inner surface, appear to enhance the bearing damping [26]. 
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1.3 Problem Statement and Scientific Contribution 

Due to the considerations stated above, the interest in oil-free gas turbine engines 

for both terrestrial power generation and propulsion including space applications is 

steadily increasing. The required load and speed capacity for more efficient high speed 

turbine designs severely challenge conventional rolling element bearing arrangements. 

Furthermore, an external lubrication system is required for the bearings, unless the 

process fluid can be used as lubricant. The oil lubricated hydrodynamic bearings is not 

much more appealing either. More advanced lubrication systems are required for this type 

of bearings. A considerable power loss also occurs due to the high viscous dissipation 

inherent in liquid lubricants. In addition, an advanced sealing system with its losses, 

leakage, and other environmental concerns is required due to the presence of a lubrication 

system. 

The rotor system can be simplified greatly by eliminating the lubrication 

mechanism. That will reduce overall system weight, and advance system performance. 

However, at high speeds and temperatures, gas bearing will also need to accommodate 

itself centrifugal and thermal growth as well as vibration conditions in order to prevent 

ultimate failure. Hence, the bearing surfaces should be sufficiently compliant to provide 

required operation region for the shaft [21]. 

The lubricant used in foil bearing applications is usually air that has a superior 

performance at elevated temperatures in terms of viscosity compared to the oil based 

lubricants. However, that property may result in thermal instability with increasing 

temperature. In addition, some limitations exist for the foil bearings due to the material 

property changes under some operation circumstances.  The foils soften at high 

temperatures and the stiffness drops rapidly. The most crucial problem faced in 

experiments at high speeds or overload conditions is the high local temperature gradient 

that causes  wavy deformation of the foil surface and catastrophic failure of the bearing 

[27]. Another important concern in terms of the thermal management is the weak 

conduction rate of the bearing due to the thin foil structure. The contact between the 

topfoil and bumps occurs at localized small areas that resists effective heat removal from 

the system. Inappropriate thermal management due to insufficient cooling and 

inapropriate coating may produce ultimate deterioration of the rotor-bearing system. 
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Even though experimental research data are available in open literature, extended thermo-

hydrodynamic analysis is required to better understand and optimize the system 

performance at the design level. Comprehensive modeling of CFB calibrated with 

relevant test data will help enable the widespread use of CFB in novel turbomachinery 

applications, such as hybrid fuel cell-turbine power systems and micro-engines 

recharging battery packs for clean hybrid electric vehicles [13]. 

Conventional models remain rather simplified as they include the bumps only as an 

equivalent stiffness uniformly distributed around the bearing circumference. More 

complex models couple directly the elastic deformations of the top foil to the bump 

mechanism as well as to the hydrodynamics of the gas film but by considerably 

simplifying the structural model. In the structure of an actual bump foil bearing, the role 

of the top foil is to generate air film force when the journal rotates. Therefore, it is 

important that bending stiffness of the top foil is sufficiently high to endure the pressure. 

However, the portions of the topfoil surface that are not in contact with the bumps have 

practically little stiffness and deflect more when exposed to hydrodynamic pressure. In 

many previous studies, this deflection of the top foil was ignored. Therefore, extraction 

of the damping characteristics due to the top foil deflection was impossible. However, 

the top foil deflecting phenomenon which is called as sagging radically affects the overall 

behavior of the bearing, and it is observed by many researchers during post-experimental 

investigation of bearing components.  

The model explained in this work couples the structural deformation of the 

underlying structure with hyrodynamic pressure generated in the film gap by solving the 

Reynolds Equation and Duhamel-Hooke’s relation for structural deformation that are 

directly coupled by utilizing a commercial Finite Element Analysis (FEA) code. The 

bending effects of the top foil are also investigated, considering energy dissipation due 

to deflection of top foil and bump foil. Furthermore, it accounts for temperature change 

in the film due to the viscous dissipation and compressibility of the fluid by solving the 

bulk flow energy equation using a custom written direct solver based on Finite Difference 

Method (FDM) that is iteratively coupled to the main FEA code. The physical contacts 

between bearing assembly components are modeled by utilizing Augmented-Lagrangian 

contact model. The thermal contact is also included in the model with an advanced 

approach called Cooper-Mikic-Yovanovich (CMY) correlation. The model involves 
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complete bearing mechanism as well as the shaft section interacting with bearing. 

Temperature distribution over the shaft due to the generated heat in the film is integrated 

to the model. The thermal growth of the shaft, foil structure, bearing sleeve, and 

centrifugal growth of the shaft are also considered. From this aspect, this model is the 

most complete and advanced model in open-literature for a bump-type compliant foil 

journal bearing that provides a deep insight into the structural and thermal characteristics 

of a CFB during steady-state operation. The proposed model is validated via the 

temperature measurements available in the literature. The effects of the shaft speed and 

static radial loading on hydrodynamic, thermal and structural properties including 

pressure distribution, velocity profile, film thickness, temperature distribution, thermal 

contact properties, deformation of topfoil and bumps, von Mises stress distribution and 

mechanical contact properties are investigated in detail. 

1.4 Literature Survey 

The foil gas bearings were invented during a research for faster magnetic tape 

recording. Recording performance was suffering due to the elevation of the recording 

head and floating of the tape. Underlying physics behind this phenomenon was first 

recognized by an IBM engineer Baumeister [28] and called it as “foil bearing problem” 

by inspiring from studies on flexible bearing technology. Gross developed the 

mathematical model of foil bearing problem to apply this issue to the bearing systems of 

high speed machines. The work done by Gross is extended to nuclear reactors that require 

high speed coolers and compression turbines [29]. These systems do not compensate 

contaminants that may occur due to oil lubricants and thus, requires a clean bearing 

mechanism. Furthermore, operating temperatures and speeds of these systems are 

considerably high. Taking these into account, Gross and his colleagues succeeded to 

develop a 15 kW Brayton rotating unit (BRU) supported by foil bearings. During the 

initial phase of BRU design, rigid gas bearings are utilized, and significant problems 

including instability and vibrations are faced due to inadequate performance of these 

bearings with respect to the thermal and centrifugal transients. The problems are greatly 

eliminated when foil bearings are replaced as supporting system. This positive 

achievement triggered an extensive conversion for bearing components of power 

conversion systems developed by NASA involving turboexpanders, auxiliary power units 

(APU) and ACM [29]. Foil bearings are adapted to ACMs by Garret-AiResearch to 
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provide cabin pressurization in aircrafts in the late 1960s [30]. This integration improved 

cabin pressurization without scheduled maintenance and lubrication system requirement 

as well as solving the oil filtering problem that was a common issue in 1950s and the 

1960s. Development of bump-type foil bearings for fighter jets by Mechanical 

Technologies Inc. and Hamilton Standard bring the design one step further. 

To operate the foil bearings at elevated temperatures, solid lubricant coatings 

should be applied properly. Significant amount of studies are performed by NASA and 

most of these works are released to open literature to share the fundamental technology 

advancements [7]. The first thriving engine of Capstone is developed during the 

beginning of 90s by exploiting NASA reports on special high temperature foil bearing 

coatings [31]. The company continued to extent its product portfolio in the following 

years and had sold over 4000 units all over the world. 

The requirement for more robust and more reliable turbomachinery in different 

areas including cryogenic turbopumps forced foil bearing technology steadily progress. 

Several experiments are conducted with various fluids to unveil the cryogenic 

performance of foil bearings until basic design parameters are determined. Nowadays, 

foil bearings are commercially applied to many cryogenic turbopumps and 

turbocompressors [32]. 

Foil bearings are essentially designed for bearing mechanism of lightly loaded 

systems. However, it is also attempted to support heavier rotors on foil bearings which 

eventually cause new challenges like limited damping capability, higher start torque 

requirement and limited loading capacity at low speeds because of accelerated wear [33]. 

To improve the loading and damping capacity especially at low speeds, foil bearings are 

hybridized either by magnetic or hydrostatic bearings [34]. 

1.4.1 Isothermal Models 

Outstanding structural properties of foil bearings make them unique and 

advantageous over other bearings. If a foil bearing is carefully designed, it will have 

suitable compliance that enables higher tolerance to assembly misalignments, erroneous 

manufacturing, thermal and centrifugal expansions [5, 35]. Additionally, friction between 
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the elements of the bearing structure results in improved damping properties of the 

bearing [35].  

On the other side, the relatively complex bearing structure and the interactions 

between the bearing elements complicates modeling of the foil bearing. Coupled fluid-

structure interaction solution techniques have to be applied to obtain a reasonable output 

in terms of understanding the underlying operation mechanism of foil bearings. The 

hydrodynamic flow profile and resulting bearing deformations are interacting with each 

other. Therefore, foil bearing system becomes a highly non-linear and iterative problem 

in which various parameters from different physics should be considered.   

In early studies for modeling foil bearing stiffness behavior, researchers modeled 

the bumps as independent simple springs, and did not consider the interaction between 

the bumps [25, 36, 37]. The structural stiffness of the bumps are calculated by Walowit 

[38] by applying the circular beam equation with plane strain assumption. Throughout 

this study, friction in between bumps and housing or bumps and top foil is ignored for 

the sake of simplicity. Heshmat et al. [25, 39, 40] numerically analyzed the bump foil 

bearing by using Walowit’s equation for bump stiffness. They detailed the bearings static 

load performance. In this study, bump foil is assumed to be an elastic foundation. They 

solved compressible Reynolds equation to calculate the flow profile in the hydrodynamic 

film between journal and top foil surfaces. The film pressure is coupled to the local 

deflection of the corrugated bumps in this approach. The effect of the top foil structure is 

completely eliminated in this simple model and the elastic displacement is assumed to be 

proportional to the local pressure difference. Another significant parameter comes with 

this approach is the structural compliance coefficient of the bumps that depends on foil 

thickness, geometric shape and material properties. This simple but useful model is 

known as simple elastic foundation model and utilized in many works. The load carrying 

capacity and bearing loss torque is calculated by means of FDM. The study reveals that 

for the same air film thickness distribution, foil bearings have greater load capacity 

compared to the rigid gas bearings. Peng and Carpino [40, 41] calculated the linearized 

stiffness and damping force coefficients of CFBs by using finite difference formulations. 

They solve the Reynolds equation simultaneously by combining equivalent stiffness of 

fluid film and structural bump. The thin compliant foil is positioned on top of the 

corrugated bumps. The equivalent viscous damping in an excitation cycle of the journal 
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was estimated by assuming that the dissipated energies due to the dry-friction between 

contacting pairs of bump-topfoil and bump-housing are equal. They also proved that this 

equivalent viscous damping increased the overall stiffness and damping of the bump foil 

bearing. In a following study [42], Peng and Carpino applied finite element perturbation 

approach to calculate the bearing stiffness and damping coefficients. The effects of the 

membrane, bending and elastic foundation as well as the viscous damping due to the 

Coulomb friction are considered in the structural model. The fluid film is assumed to be 

simplified isothermal ideal gas. They concluded that the dynamic coefficients of the foil 

bearing are affected by the stiffness of the foil membrane. They also note that finite 

element approach significantly contributes to the accuracy of the overall analysis. 

Carpino et al. [43-46] have improved the computational models by including the details 

of membrane and bending effects of the top foil, and integrating the elastic deformation 

of the sub-foil structure. In [43, 44], the FEA models for the gas film and the foil structure 

are coupled in an iterative scheme via the pressure field. Furthermore, Refs. [45, 46] 

introduced a more advanced finite element formulation that covers membrane and 

bending stresses in a cylindrical shell coupled through moment, tension, curvature, and 

strain expressions. Their analysis combines the hydrodynamic film pressure and the 

structural deformation of the top and bump foils in a single finite element model. Their 

predictions successfully captures the irregular distribution of the pressure and film 

thickness due to foil detachment in the exit region of the gas film. Heshmat et al. [47] 

predict the static load performance of thrust CFBs by coupling the finite element model 

of the structure generated in a commercial code to the finite difference formulation of the 

film hydrodynamics. The predictions are in a good agreement to the test measurements. 

Lee et al. [48] developed a computational model integrating the foil structure and fluid 

film. The structural FEA models for the top foil and corrugated bump geometry are 

coupled to the hydrodynamic film pressure model. The predictions for minimum bearing 

film thickness, attitude angle, and force coefficients are presented. In another study, Le 

Lez and his colleagues developed two new models. In the first model [49], they employed 

a commercial finite element analysis package to solve the problem numerically. In the 

second model [50], they proposed an analytic formula in which the bump foil-top foil 

assembly is replaced with a network of interconnected springs. The experimental data 

and the predictions are comparable for both models. DellaCorte and Valco [51] developed 

a useful estimation guideline for the load capacity of air-lubricated foil journal bearings 
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by utilizing the experimental data in literature. In this study, bearings are categorized as 

three different design generations with respect to the underlying bump geometry and 

related stiffness performance of the bearings. The details of each model are explained in 

the following sections. Radil et al. [52] illustrated the strong correlation between the load 

capacity of CFB and operating bearing clearance. Due to the thermal and centrifugal 

expansions of the journal during operation, the clearance is largely unknown for foil 

bearings. In a succeeding study, Radil et al. [53] evaluated three different thermal 

management techniques for foil bearings. They indicated that the cooling performance of 

each method are distinct. The analysis performed by Kim and San Andrés [54] is revised 

by including the impact of the assembly preload [55] in the model. They also 

implemented an analytical method to estimate load capacity, minimum film thickness and 

stiffness coefficients during operation at elevated shaft speeds. They found that the 

underlying bump foil geometry substantially dictates the load capacity, stiffness behavior 

and structural deformation of a CFB. In a more recent study, San Andres and Kim [56] 

compared one-dimensional and two dimensional finite element models for topfoil 

geometry to predict the static and dynamic load performance of the bearing. The 

deformation of the topfoil is coupled to the film pressure through a global stiffness matrix 

during calculations. The predicted results for attitude angle and minimum film thickness 

for various static loads are compared to the literature.  They found that the minimum film 

thickness for a given load is overestimated at bearing midplane and underestimated at 

bearing edges using two dimensional FEA model. Interestingly, the 1D top foil model 

yields more conforming results to the published experimental data in literature. 

1.4.2 Thermal Models 

Salehi et al. [57] performed the first study to characterize thermal properties of gas 

foil bearings by utilizing the simple elastic foundation model [25] to resolve bump 

deformation. The Couette flow approximation is applied to simplify the energy equation 

by neglecting the work done by pressure such that the energy and Reynolds equations are 

uncoupled. Their analysis calculates only the circumferential temperature distribution at 

the bearing mid-plane. The axial temperature distribution is assumed to linearly decrease 

towards the bearing edges. To predict the temperature increase of the cooling stream, the 

inlet and outlet temperatures of the flow are measured during tests. The peak temperatures 
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are measured in the direction of the radial load. The measurements also demonstrate that 

the temperature increases as the rotor speed and static load increase. A comparison of the 

predicted temperature-rise of the cooling flow to the experimental measurement shows 

good agreement with a deviation of ~20 %. Peng and Khonsari [58] proposed more 

advanced THD model to predict the performance of the CFB at steady state conditions. 

The foil structure is represented by simple elastic foundation whereas coupled Reynolds 

and thermal energy transport equations solved simultaneously for prediction of the gas 

film pressure and temperature fields. The heat convection coefficients on surrounding 

surfaces are obtained by means of the cooling flow thermal state. The thermal resistance 

of the topfoil structure is also defined in the thermal model. However, the heat flux 

towards the shaft and sleeve which is a significant source of heat dissipation mechanism 

of the thermal system is ignored. In addition, their model allows sub-ambient pressure 

values which is not realistic, as suction flows from the bearing side edges occurs. 

According to the predictions, temperature distribution in axial direction is almost 

uniform. Furthermore, the load capacity of the bearing improves due to the increase of 

air viscosity with respect to temperature rise. Their temperature predictions are in a good 

agreement with experiments. On the other hand, Radil and Zeszotek [59] found that load 

capacity of a CFB decreases almost 30% when temperature has increased from 25ºC to 

650ºC. To improve the accuracy of the predictions, thermo-mechanical properties of the 

structural components need to be calculated. Paulsen et al. [60] developed a mathematical 

approach by using linear perturbation theory to compare the difference between 

isothermal and thermal models for three different foil bearing geometries. To simplify 

the model, they did not includ the heat flux along the axial and circumferential directions 

of the housing and shaft that causes an overprediction for the temperatures.   Feng and 

Kaneko [61] presented a THD analysis of multi-wound foil bearing by utilizing Lobatto 

point quadrature to solve for energy equation. Reynolds equation, the foil elastic 

deflection, and the energy equation are solved in an iterative procedure until convergence 

achieved. They compared the results in Ref. [59] to benchmark their models. In a 

succeeding study [62], they implemented Lobatto point quadrature algorithm in a sparse 

mesh to reduce the computational cost of the analysis. The deflection of the foil geometry 

is modeled as link-spring structure and thermal growth of the bumps are also included 

into the model. The temperature predictions agree well with test data in Ref. [59]. San 

Andres and Kim [63] developed a 2D THD model which predicts the heat transfer only 
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in radial direction. To further simplify the model, they presumed the cooling flow as heat 

sink with constant temperature. Their model does not account heat convection between 

bump foils and cooling air either. However, the results are in a good agreement with the 

experimental data from Ref. [59] by adjusting the unknown parameters like mixing ratio, 

bearing clearance, bump geometry etc. Kim, et al. [64] investigated the effects of different 

mixing models in bearings. Kim and San Andres [65] measured rotor response with foil 

bearings cooled by pressurized side flow.  They benchmarked the measurements for onset 

speeds of instability and whirl sub-synchronous frequency to the predictions with a 

computational model. Sim and Kim [66] developed a 3D THD model for compliant 

flexure pivot tilting pad gas bearings. The model predicts the rotor and pad temperatures, 

as well as the gas film temperature, simultaneously preserving global thermal balance 

when sufficient thermal boundary conditions for the bearing housing and rotor ends far 

away from the bearing edges are defined. Lee and Kim [67] extended the study in Ref. 

[66] by introducing detailed thermal models of foil structures and cooling channels 

formed by bump foil geometry. Thermal contact resistance coefficients between top foil 

and bearing sleeve, and between bump foil and bearing sleeve were experimentally 

measured and included into the model. Similar to the work in Ref. [66], this work also 

investigates the 3D THD characteristics of CFB considering global energy balance of the 

film flow with surrounding components by solving generalized Reynolds equation, 3D 

energy equation, and heat balance equation simultaneously. Thermal expansion of 

top/bump foils, rotor, and bearing sleeve, as well as shaft centrifugal expansion are also 

considered in the model. A model simulation was implemented to correlate with 

experimental data for CFB temperature published in Ref. [59]. Even though the model 

includes relatively detailed physics of the problem, it does not account for the deflection 

of the topfoil geometry. Talmage and Carpino [68] proposed a coupled model to illustrate 

the significance of temperature effects and thermal distortion in the foil structure while 

using thermal and pressure models that incorporate the outstanding features of a gas-

lubricated foil journal bearing. Sim and Kim [69] presented an enhanced version of the 

THD analysis presented in Ref. [66] by adding analytic thermal contact formulation for 

the bumps and numerical inlet flow mixing models. The proposed model demonstrates 

the characteristics of the inlet flow mixing and determines the thermal mixing parameter. 

The model predictions are also validated by comparing to the experimental test data in 

Ref. [70]. San Andres and Kim [56] compared 1D and 2D finite element models to 
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estimate the static and dynamic load capacity of foil bearing. The deformation of the 

topfoil structure is coupled to Reynolds equation through a global stiffness matrix. It is 

found that predictions in 1D model are closer to the experimental data, but 2D model 

overestimates the minimum film thickness at the bearing center. Another interesting 3-D 

THD model presented by Kim et al. [71] in a recent work for a three-pad foil journal 

bearing and surrounding components including the shaft. The temperature profile of the 

inlet region is determined through a simple computational fluid dynamics (CFD) model 

using a commercial software. The dynamic performance of the bearing at elevated 

temperatures is also measured by using linear perturbation method. They found that due 

to the softening of the components at high temperature, the stiffness and damping 

coefficients decrease compared to the values at room temperature. Kim and San Andres 

[72] used the thermal energy transport model presented in Ref. [63] to simulate the 

temperature of a CFB at moderately high temperature. The effectiveness of the developed 

thermal management system is evaluated by comparing the predictions to the 

experimental measurements. The shaft motions are also investigated to identify the 

critical speeds at elevated temperatures. According to the measurements, they figured out 

that the critical speed hardly increases as temperature rises. Lee and Kim [73] presented 

another 3D THD model for double-acting foil thrust bearings considering cooling effect 

of the thrust runner disc by the cooling air plenum. Kim et al. [74] compared simulated 

THD performance of a three-pad CFBs with a single pad circular CFB for different 

cooling air pressures. Their results indicate that for lightly loaded cases, the three-pad 

CFBs have lower temperature than single pad bearing. Lee et al. [75] further advanced 

their 3D THD model to predict transient thermal behavior of three-pad radial air foil 

bearings. Their model incorporates transient energy equations for gas film and all main 

bearing components like top foil, bump foils, housing, and shaft and gas film to predict 

transient evolution of the foil bearing temperature during operation. The predictions yield 

good agreement with the experimental data. In a more recent study, Paouris et al. [76] 

proposed a finite element model for a hydrostatic foil bearing to solve coupled 

incompressible Reynolds equation and foil deformation by using shell elements in an 

iterative scheme. To better predict the thermal properties, a simple finite element model 

is developed for the cooling channel in-between bumps. The model does not account for 

material non-linearities but simulates sagging of the topfoil between the bumps well. 
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Furthermore, using shell elements to solve for deformation causes shear locking problem 

that is explained in the following sections. 
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2 FOIL BEARING STRUCTURE 

2.1 Description of Foil Bearing Geometry 

Figure 2.1 shows the configuration of a “first generation” bump type CFB. The 

CFB consists of a thin topfoil and a series of corrugated bump strip supports. The leading 

edge of the thin foil is free, and the foil trailing edge is welded to the bearing housing. 

Beneath the top foil, a bump structure is laid on the inner surface of the bearing. The 

smooth surface of the top foil is supported by a series of bumps acting as springs, which 

make the bearing compliant. The bump strip provides a tunable structural stiffness. 

Damping arises due to material hysteresis and dry-friction between the bumps and topfoil, 

and between the bumps and the bearing inner surface. 

Foil gas bearing technology evolved from rigid gas bearings as a means to 

overcome physical limitations that resulted from operating a bearing using low viscosity 

fluids and modest self- generated hydrodynamic fluid film pressures, namely the inability 

to tolerate misalignment and distortion and a lack of adequate damping and stability. By 

incorporating thin sheet metal foils in place of rigid bearing surface both compliance and 

coulomb friction damping capabilities were added to the bearing. The flexibility of the 

geometry influenced directly by the fluid film pressure gives rise to improved 

performance and more complexity in terms of bearing modeling. These characteristics 

were recognized early during the development progress of foil bearings. Despite the 

challenges that are faced for performance prediction, foil bearings followed a fairly 

routine experimentally driven development path. 

First Generation Bearings  

A 1967 gas bearing symposium, held in London, highlighted the concept of using 

several leafs of foil cantilevered to form a foil bearing [77]. This concept was turned into 

the first practical foil bearing developed by industry for air cycle machines used for cabin 

pressurization [78]. With this approach, the limited hydrodynamic gas film pressure was 

not utilized to overcome foil tension forces found in earlier tape type bearings. Other 
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bending dominated designs based upon small corrugations in underlying bump foils soon 

followed [79]. These first generation foil bearings are illustrated in Figure 2.1. 

 

 

Figure 2.1: First generation compliant foil bearings a) Leaf type foil bearing, b) 

Bump type foil bearing [80] 

Second Generation Bearings 

Following the commercialization of first generation bending dominated bump and 

leaf foil bearings in ACM’s, several new designs were developed in which the elastic 

bearing substructure was tailored to accommodate hydrodynamic phenomena such as 

edge leakage and environmental conditions like misalignment and gravitational load 

biases. These second generation foil bearings are shown in Figure 2.2 [81]. Second 

generation bearings showed double load capacity as compared to that of first generation 

designs and made possible the development of bearing for more demanding applications 

such as cryogenic turboexpanders.  

 

Figure 2.2: Gen II bump-type foil journal bearing [80] 
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Third Generation Bearings  

In the late 1980’s and early 1990’s Heshmat pioneered the development of third 

generation of foil bearings (Figure 2.3) in which the elastic foundation stiffness was 

tailored in more than one direction [82]. Employing multiple bump spring layers and 

circumferentially slit support foils, these Generation III bearings enabled the tuning of 

the bearing structural stiffness and damping properties. Gen III bearings display 

improved dynamic properties and load capacities nearly double Gen II designs. Since that 

time, others have developed alternative approaches to achieve similar structural design 

freedoms 

 

Figure 2.3: Gen III bump-type foil journal bearing [80] 
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2.1.1 Foil Bearing Geometry used in FEA Model 

A bump-type foil journal bearing (Figure 2.4) similar to the design illustrated in 

Figure 2.1 is used in the presented TEHD analysis. The bearing design parameters are 

given in Table 2.1. The topfoil consists of a single sheet welded to the sleeve from the 

trailing edge and the leading edge remains free. It is neither preferred nor necessary to 

model the full length of the shaft in axial direction which would increase the number of 

degree of freedoms (DOF) in finite element model drastically. The modeled portion of 

the free part of the shaft is elongated one-bearing length in both directions as shown in 

Figure 2.5. 

 

Figure 2.4: Foil bearing assembly and detailed view for bumps and topfoil 
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Figure 2.5: Foil bearing and shaft geometry from isometric view (Due to the axial 

symmetry front half of the system is displayed) 

The simple bumpy structure displayed in Figure 2.6 reduces the possibility for the 

bumps to slide in axial direction due to the irregular hydrodynamic pressure distribution 

on bearing surface. 

 

Figure 2.6: Bumpfoil geometry from isometric view 

The head section of the bumps are modeled as plain geometry as depicted in Figure 

2.7 to reduce the contact pressure and related stress concentration. If the bumps would be 

modeled fully round as in conventional approach, the contact between the bumps and 

topfoil would be a line contact which would result in very high stress concentration. This 

will cause rapid failure of the bumps either due to the low-cycle fatigue during start-stop 
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cycles or high-cycle fatigue because of the vibration and transient motion during 

operation. Most significantly, it would improve the convergence performance of TEHD 

model during contact formulations. 

 

Figure 2.7: Geometry parameters for a single bump 

The model includes 24 equally aligned bumps in circumferential direction which 

corresponds to one bump per 14.16˚. The numbering convention of the bumps is shown 

in Figure 2.8. The shaft diameter and the bearing length are determined according to the 

experimental work published by Radil and Zeszotek [59] to benchmark the predictions 

in TEHD model to the measurements in that study. However, they did not give details for 

the foil material or bump geometry. The remaining bearing parameters are obtained from 

the study of San Andres and Kim [63] in which they present this information according 

to the assumptions based on industry experience. The sleeve outer diameter is defined 

arbitrarily because it would not affect the solution considerably. 

 

Figure 2.8: Bump numbering convention for the CFB model 
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CFB Parameters SI Units 

Number of bumps 

Bearing inner diameter, D 

Bearing axial Length, L 

Nominal clearance, c 

Bump foil plain segment, Zbf 

Bump length, Lbf 

Bump foil thickness, tbf 

Bump height, Hbf 

Bump pitch, Sbf=2Lbf+Zbf 

Bearing angle covered by bumps 

Shaft inner diameter, Ds-i 

Shaft outer diameter, Ds-o=D-2c 

Shaft axial length, Ls 

Sleeve inner diameter, Dsl-i 

Sleeve outer diameter, Dsl-o 

24 

50 mm 

41 mm 

20 μm 

1.8082 mm 

2.5 mm 

127 μm 

0.70 mm 

6.30 mm 

340˚ 

45 mm 

49.96 mm 

82 mm 

51.91 mm 

54 mm 

Table 2.1: Foil bearing model parameter list 

2.2 Material Properties 

The commonly used material for corrugated sheet metal and smooth foil is a special 

nickel-chromium alloy called INCONEL® X-750 due to its superior spring properties at 

elevated temperatures. It is a precipitation-hardenable alloy used for its resistance against 

corrosion and oxidation, and high strength up to temperatures over 700˚C. Alloy X-750 

has satisfactory properties down to cryogenic temperatures. The chemical composition 

of this alloy is given in the Table 2.2. 
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Nickel (plus Cobalt) 70.00 min. 

Chromium 14.0-17.0 

Iron 5.0-9.0 

Titanium 2.25-2.75 

Aluminum 0.40-1.00 

Niobium (plus Tantalum) 0.70-1.20 

Manganese 1.00 max. 

Silicon 0.50 max. 

Sulfur 0.01 max 

Copper 0.50 max. 

Carbon 0.08 max. 

Cobalt 1.00 max. 

Table 2.2: Chemical Composition, % for Inconel® X750 [83] 

Thermal properties including thermal expansion coefficient and thermal 

conductivity are provided by Special Metals Co. [83]. Effect of temperature on modulus 

of elasticity, poisson ratio and tensile strength are given in Appendix A. The material 

properties are defined as piece-wise interpolation polynomials with respect to the 

temperature to include the effect of temperature. 

Inconel® 718 is selected as journal and sleeve material due to common experience 

and its satisfactory strength at elevated temperatures. Temperature dependent data for the 

thermal properties like thermal conductivity and thermal expansion coefficient, and the 

structural properties such as modulus of elasticity and poisson ratio for this material [84] 

are detailed in Appendix A. 

The lubricant used in this work is air. For a perfect ideal gas, physical properties 

follow a relationship known as the ideal gas law: 

𝑃𝑉 = 𝑛𝑅𝑔𝑐𝑇 (2.1) 

where V is the volume occupied by n kg mol of a gas at the absolute temperature, T  in 

Kelvin and Rgc is the universal gas constant, Rgc=8.3143 kJ/(mol.K). 

 The dynamic viscosity is one the most significant material property that designates 

the flow profile in the wedging film. The viscosity of a fluid is dominated by the 

combined effect of intermolecular forces and momentum transfer between molecules. 
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The viscous properties of a liquid primarily governed by intermolecular forces whereas 

the momentum transfer is more effective in gases. Increasing temperature causes a 

decline in dynamic viscosity in liquids since it weakens intermolecular forces. On the 

other hand, as temperature increases, momentum transfer between gas molecules 

increases due to increased number of molecular collisions. Therefore, the dynamic 

viscosity of gases increases with temperature, which allows higher load capacity at 

elevated operation temperatures. There are several emprical relations to estimate the 

viscosity of gases with respect to the temperature. 

2.3 Finite Element Grid Generation 

The mesh resolution and mesh element quality are significant measures to verify 

the quality of a finite element model. Low mesh resolution or improper element 

formulation are the main sources of inaccurate results and convergence problems in FEA 

studies. Generating a well-organized mesh is very critical to obtain valuable output and 

accurate predictions. Before going into analysis directly, the element quality should be 

checked in terms of distortion (warpage), aspect ratio, minimum and maximum allowable 

angles, skewness and the Jacobian number.  

2.3.1 Shear Locking 

One of the critical problems that may cause underprediction of foil deformation is 

shear locking which is a problem with all fully integrated first order solid elements [86]. 

Shear locking causes the elements to behave too stiff in bending. Consider a small piece 

of material in a structure subjected to pure bending. The material will distort as illustrated 

in Figure 2.9. 

 

Figure 2.9: Deformation of material subjected to bending moment M [86] 
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Figure 2.10: The deformation of a linear element subjected to bending 

moment M [86]. 

The lines that are initially parallel to the horizontal axis will take a constant 

curvature, and the lines through the thickness of the material remain straight. The angle 

between the horizontal and vertical lines remains at 90˚. However, the edges of a linear 

element cannot curve, hence, if the small piece of material is modeled by using a single 

linear element, edges of the deformed shape will be a straight as shown in Figure 2.10. 

The dotted lines are representing the integration points over the element. The upper 

line has increased length, indicating that the direct stress in the direction 1, σ11, is tensile. 

On the other hand, the length of the lower dotted line is decreased indicating that σ11 is 

compressive. Assuming displacements are very small, direct stress in direction 2 is zero 

at all integration points. These are expected results for a small material subjected to pure 

bending. However, the angle between the vertical and horizontal lines, which was 90˚, 

has changed. This shift indicates that the shear stress, σ12, at these points is not zero. This 

additional stress appears due to inability of element edges to curve. It also means that 

strain energy is generated in the element under bending deformation such that the overall 

deflections will be less than actual case.  

Shear locking merely affects the linear elements, and for the quadratic elements it 

is not a problem since their edges are able to curve when bending moment is applied as 

shown in Figure 2.11. However, even quadratic elements will exhibit some locking if 

they are distorted too much or if the applied bending stress has a gradient. Thus, the 

generated mesh must be free of distorted elements and the order of the elements should 

be at least second order [86]. 
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Figure 2.11: Deformation of a quadratic element subjected to bending 

moment M [86]. 

2.3.2 Mesh Dependency Study 

The effect of grid resolution on model accuracy is investigated in this section. The 

model is run with isothermal conditions. The shaft speed is 30 krpm and the radial static 

load is 60 N for all cases. The properties of the selected mesh structures are given in Table 

2.3. The detailed view of the meshes are illustrated in Figure 2.12.  

 

Mesh Number Mesh 1 Mesh 2 Mesh 3 Mesh 4 

Number of 

elements 
14,900 28,800 41,086 60,640 

Total number 

of DOF 
610,303 966,631 1,671,593 2,447,586 

Table 2.3: Statistics for the meshes used in the mesh dependency analysis 

 

Figure 2.12: Grid structure for a) Mesh 1 b) Mesh 2 c) Mesh 3 d) Mesh 4 
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Figure 2.13: Topfoil deformation for different meshes 

 

The deformation of the topfoil with different mesh structure is investigated to 

observe the dependency of the analysis to the mesh resolution. As seen in Figure 2.13, 

the deformation profile is changing slightly as the mesh resolution changes. However, 
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the change becomes negligible after some point. Hence, it is decided that the mesh 

resolution is sufficient to capture the physics of the problem accurately.  

Element type 2nd Order Hexahedral elements 

Number of elements 66,586 

Average element quality 0.3741 

Total number of DOF 1,866,904 

Number of DOF for film pressure 53,202 

Number of DOF for displacement field 1,671,453 

Number of DOF for temperature 133,608 

Number of DOF for contact pressure 8,640 

Table 2.4: Detailed mesh parameters for selected mesh structure 

The detailed information for the selected mesh structure is listed in Table 2.4. 

Selected mesh structure is given in Figure 2.14. The critical regions are meshed finer to 

capture the physics of the problem more accurately. The high quality mesh grid at contact 

surfaces which are the most critical regions due to higher momentum and heat flux are 

shown in Figure 2.15. This figure demonstrates the quality index of the elements 

estimated according to the several quantities including aspect ratio, element Jacobian, 

distortion, skewness and orthogonality. The low quality elements are avoided in this 

model to improve convergence performance and accuracy of the results. 

 

Figure 2.14: The mesh generated for foil bearing model. The elements are 

second-order hexagonal mesh 
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Figure 2.15: The quality index of the mesh is a useful measure the appropriateness 

of the mesh for the analysis 
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3 THEORETICAL BACKGROUND 

This chapter discusses theoretical fundamentals of foil bearing TEHD model. The 

aim here is to apply this knowledge to develop a physically realistic and computationally 

robust solution algorithm. For this purpose, we will cover all governing equations step-

by-step to build a suitable format to be used in the developed algorithm. The three basic 

governing laws; the conservation of mass, momentum, and energy are discussed in detail 

to deduce useful forms for parameters including flow velocity, pressure, temperature, 

load and deformation. Formal derivations of these equations from the very basics of 

thermodynamic laws will not be repeated here. In addition to conservation laws, 

theoretical background for structural deformation, contact algorithms and thermal contact 

behavior are also explained in separate sections, for the sake of completeness. Finally, a 

new 4-point finite difference approximation is proposed to improve the convergence 

performance of the solver. Non-dimensionalization techniques to normalize the 

Reynolds’ and energy equations are given in related sections. Order of magnitude 

analysis to determine the relatively significant terms is carried out to simplify the 

equations. 

3.1 Derivation of 4-point Finite Difference Approximation 

The aim of the finite difference method is essentially to approximate solutions to 

differential equations by replacing the derivatives in the differential equations with finite 

difference approximations. This formulation gives large but finite algebraic systems of 

equations that can be solved via a specially written code [87]. We want to derive a two-

sided finite difference approximation to 𝑧(𝑥̅) based on some given set of points in the 

neighborhood. Taylor series can be used to find an appropriate formulation by means of 

the method of undetermined coefficients. To improve the accuracy and easy convergence, 

unsymmetric backward-skewed 4-point approximation is used. Taylor series expansion 

is as follows, 
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𝑧(𝑥̅ + 𝛿) = 𝑧(𝑥̅) + 𝛿𝑧′(𝑥̅) +
1

2
𝛿2𝑧′′(𝑥̅) +

1

6
𝛿3𝑧′′′(𝑥̅) + 𝑂(𝛿4) 

𝑧(𝑥̅ − 𝛿) = 𝑧(𝑥̅) − 𝛿𝑧′(𝑥̅) +
1

2
𝛿2𝑧′′(𝑥̅) −

1

6
𝛿3𝑧(𝑥̅) + 𝑂(𝛿4) 

𝑧(𝑥̅ − 2𝛿) = 𝑧(𝑥̅) − 2𝛿𝑧′(𝑥̅) +
1

2
(2𝛿)2𝑧′′(𝑥̅) −

1

6
(2𝛿)3𝑧′′′(𝑥̅) + 𝑂(𝛿4) 

(3.2) 

For 𝑧′(𝑥̅) approximation function can be defined as, 

𝑧′(𝑥̅) = 𝑚1𝑧(𝑥̅) + 𝑚2𝑧(𝑥̅ − 𝛿) + 𝑚3𝑧(𝑥̅ + 𝛿) + 𝑚4𝑧(𝑥̅ − 2𝛿) (3.3) 

By using the expanded terms, the function becomes: 

𝑧′(𝑥̅) = (𝑚1 + 𝑚2 + 𝑚3 + 𝑚4)𝑧(𝑥̅) + (−𝑚2 + 𝑚3 − 2𝑚4)𝛿𝑧′(𝑥̅)

+
(𝑚2 + 𝑚3 + 4𝑚4)

2
𝛿2𝑧′′(𝑥̅)

+
(𝑚2 − 𝑚3 − 8𝑚4)

6
𝛿3𝑧′′′(𝑥̅) 

(3.4) 

where 𝑚1, 𝑚2, 𝑚3 𝑎𝑛𝑑 𝑚4 are coefficients. The coefficients of each term for a first order 

derivative will form following equation system: 

(𝑚1 + 𝑚2 + 𝑚3 + 𝑚4) = 0 

(−𝑚2 + 𝑚3 − 2𝑚4) = 1
𝛿⁄  

(𝑚2 + 𝑚3 + 4𝑚4)

2
= 0 

(𝑚2 − 𝑚3 − 8𝑚4)

6
= 0 

(3.5) 

By using matrix algebra, the equation system can be solved easily. The approximation 

for a first order derivative with unsymmetric backward-skewed 4-point approximation 

becomes; 

𝑧′(𝑥̅) =
𝑧(𝑥̅)

2𝛿
−

𝑧(𝑥̅ − 𝛿)

𝛿
+

𝑧(𝑥̅ + 𝛿)

3𝛿
+

𝑧(𝑥̅ − 2𝛿)

6𝛿
 (3.6) 

The approximation for partial derivatives of temperature can be expressed as; 

𝜕𝑇

𝜕𝑥
=

𝑇𝑖,𝑗

2∆𝑥
−

𝑇𝑖−1,𝑗

∆𝑥
+

𝑇𝑖+1,𝑗

3∆𝑥
+

𝑇𝑖−2,𝑗

6∆𝑥
 

𝜕𝑇

𝜕𝑦
=

𝑇𝑖,𝑗

2∆𝑦
−

𝑇𝑖,𝑗−1

∆𝑦
+

𝑇𝑖,𝑗+1

3∆𝑦
+

𝑇𝑖,𝑗−2

6∆𝑦
 

(3.7) 
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Similar approach is used to calculate the approximation for second-order derivatives. The 

equation system for this case becomes; 

(𝑚1 + 𝑚2 + 𝑚3 + 𝑚4) = 0 

(−𝑚2 + 𝑚3 − 2𝑚4) = 0 

(𝑚2 + 𝑚3 + 4𝑚4)

2
= 1

𝛿2⁄  

(𝑚2 − 𝑚3 − 8𝑚4)

6
= 0 

(3.8) 

The approximation with 4-points is identical to a central difference approach as, 

𝑧′′(𝑥̅) =
𝑧(𝑥̅ + 𝛿) − 2𝑧(𝑥̅) + 𝑧(𝑥̅ − 𝛿)

𝛿2
 (3.9) 

Second-order partial derivatives for temperature are expressed as in the following form, 

𝜕2𝑇

𝜕𝑥2
=

𝑇𝑖+1,𝑗−2𝑇𝑖,𝑗 + 𝑇𝑖−1,𝑗

∆𝑥2
 

𝜕2𝑇

𝜕𝑦2
=

𝑇𝑖,𝑗+1−2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗−1

∆𝑦2
 

(3.10) 

Partial derivatives in the governing conservation equations are replaced by these 

approximations as presented in the coming sections to make the equation systems 

appropriate for a computational solution. 

3.2 Derivation of Reynolds Equation for Hydrodynamic Pressure Estimation 

The derivation of the classical Reynolds equation based on the work of Osborne 

Reynolds [88] is discussed in this section. It provides an insight into fluid behavior in 

bearing lubricant films. If this equation is solved appropriately, one can find pressure 

distribution in a bearing with an arbitrary film shape [89]. Once the pressure profile is 

obtained, all remaining bearing performance parameters including load capacity, friction 

force, flow rates etc. can be estimated. Throughout this analysis, it is assumed that the 

fluid is a Newtonian type, the flow is laminar and steady, and variation of the pressure 

and temperature across the film is negligible. Furthermore, the inertia and body force 

terms are also assumed to be negligible. Due to physics of the thin film geometry, all 

these assumptions are considered proper and commonly used in lubrication problems. 

The governing equations for conservation of mass (continuity) and conservation of 
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momentum (Navier-Stokes (NS) equation) for a domain as in Figure 3.1 are given 

respectively as: 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑉) = 0 (3.11) 

𝜌
𝐷𝑉

𝐷𝑡
     =       𝐹𝐵      −      ∇𝑃    +     ∇. 𝜏𝑖𝑗 (3.12) 

 

 

Figure 3.1: Coordinate system for the converging film between stationary bearing 

surface and rotating shaft surface 

 

In Cartesian coordinates, conservation of momentum equations for 3D takes the 

following form corresponding to the x, y, and z directions, respectively: 

x-Momentum 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = (

𝜕

𝜕𝑥
𝜏𝑥𝑥 +

𝜕

𝜕𝑦
𝜏𝑦𝑥 +

𝜕

𝜕𝑧
𝜏𝑧𝑥) −

𝜕𝑃

𝜕𝑥
+ 𝐹𝐵𝑥 (3.13) 

y-Momentum  

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = (

𝜕

𝜕𝑥
𝜏𝑥𝑦 +

𝜕

𝜕𝑦
𝜏𝑦𝑦 +

𝜕

𝜕𝑧
𝜏𝑧𝑦) −

𝜕𝑃

𝜕𝑦
+ 𝐹𝐵𝑦 (3.14) 
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z-Momentum  

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = (

𝜕

𝜕𝑥
𝜏𝑥𝑧 +

𝜕

𝜕𝑦
𝜏𝑦𝑧 +

𝜕

𝜕𝑧
𝜏𝑧𝑧) −

𝜕𝑃

𝜕𝑧
+ 𝐹𝐵𝑧 (3.15) 

The relationship between the shear stress and strain rate for a Newtonian fluid is given as 

𝜏 = 𝜇𝛾̇ (3.16) 

where μ is the fluid viscosity and strain rate tensor is defined by following relation, 

𝜸̇ = ∇ ∪ +(∇ ∪)𝑇 (3.17) 

where τ, 𝜸̇, ∇ ∪, (∇ ∪)𝑇 are shear stress tensor, strain rate tensor, deformation rate tensor 

and transpose of deformation rate tensor, respectively. The deformation and shear stress 

tensors can be expressed in matrix form in Cartesian coordinates as follows, 

∇ ∪=

[
 
 
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥

𝜕𝑤

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑦
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑧 ]
 
 
 
 
 
 

 (3.18) 

𝜏 = [

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

] (3.19) 

Normal stress components are, 

𝜏𝑥𝑥 = 𝜎𝑥𝑥 = 2𝜇
𝜕𝑢
𝜕𝑥

;  𝜏𝑦𝑦 = 𝜎
𝑦𝑦

= 2𝜇
𝜕𝑣
𝜕𝑦

;  𝜏𝑧𝑧 = 𝜎𝑧𝑧 = 2𝜇
𝜕𝑤
𝜕𝑧

 (3.20) 

Shear stress components are, 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) ; 

𝜏𝑥𝑧 = 𝜏𝑧𝑥 = 𝜇 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) ; 

(3.21) 
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𝜏𝑦𝑧 = 𝜏𝑧𝑦 = 𝜇 (
𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
) ; 

Applying the stress components to Navier-Stokes, equations take following form, 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) −

𝜕𝑃

𝜕𝑥
+ 𝐹𝐵𝑥 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) −

𝜕𝑃

𝜕𝑦
+ 𝐹𝐵𝑦 

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = 𝜇 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) −

𝜕𝑃

𝜕𝑧
+ 𝐹𝐵𝑧 

(3.22) 

3.2.1 Order of Magnitude Analysis 

To simplify the equations and to eliminate the terms that are relatively not 

significant, an order of magnitude analysis is conveyed. The change of the velocity terms 

over film thickness in z-direction is much more dramatic compared to the remaining 

directions as shown in the following comparison: 

𝜕2

𝜕𝑥2
~

1

𝐷2
,
𝜕2

𝜕𝑦2
~

1

𝐿2
≪ 

𝜕2

𝜕𝑧2
~

1

ℎ2
 

⟹ 
𝜕2𝑢

𝜕𝑧2
 & 

𝜕2𝑣

𝜕𝑧2
≫ 𝑜𝑡ℎ𝑒𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

(3.23) 

Since the film thickness is very small compared to other dimensions, the pressure 

almost does not change over film thickness: 

𝜕𝑃

𝜕𝑧
≪

𝜕𝑃

𝜕𝑥
&

𝜕𝑃

𝜕𝑦
 (3.24) 

The system is assumed to be in steady-state such that: 

𝜕𝑢

𝜕𝑡
=

𝜕𝑣

𝜕𝑡
=

𝜕𝑤

𝜕𝑡
= 0 (3.25) 

The flow in film thickness direction is immaterial, and thus, w=0. The NS equations 

take the following simpler form: 
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𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝜇 (

𝜕2𝑢

𝜕𝑧2
) −

𝜕𝑃

𝜕𝑥
 

𝜌 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = 𝜇 (

𝜕2𝑣

𝜕𝑧2
) −

𝜕𝑃

𝜕𝑦
 

(3.26) 

Let us compare inertial terms with viscous terms, 

𝜌 (𝑢
𝜕𝑢
𝜕𝑥

)

𝜇 (
𝜕2𝑢
𝜕𝑧2)

~
𝜌𝑈. 𝑈 𝐷⁄

𝜇 (𝑈 𝑐2⁄ )
=

𝜌𝑈

𝜇
(
𝑐2

𝐷
) =

𝜌𝑈𝐷

𝜇
(
𝑐

𝐷
)
2

 (3.27) 

For a typical case we work on, 

𝐷 = 0.05𝑚,
𝑐

𝐷
≅ 16𝑥10−8, 𝑈 ≈ 50

𝑚

𝑠
, 𝜌 = 1.2

𝑘𝑔

𝑚3
,

𝜇 = 2𝑥10−5𝑃𝑎. 𝑠 

𝜌𝑈𝐷

𝜇
(
𝑐

𝐷
)
2

= 
1.2(𝑘𝑔 𝑚3⁄ )𝑥50(𝑚 𝑠⁄ )𝑥0.05𝑚

2𝑥10−5(𝑁 𝑚2⁄ )𝑠
16𝑥10−8 ≅ 0.024 

(3.28) 

Therefore, we can conclude that viscous terms are more dominant than inertial terms in 

this study. Contribution of gravitational force is, 

𝐹𝐵𝑦 = 𝜌𝑔 (3.29) 

When inertia forces are compared to gravitational force, dimensionless Froude Number, 

Fr becomes as, 

𝜌 (𝑢
𝜕𝑢
𝜕𝑥

)

𝜌𝑔
~

𝜌𝑈.𝑈 𝜋𝐷⁄

𝜌𝑔
=

𝑈2

𝜋𝐷𝑔
= 𝐹𝑟 ≅

(50)2

3.14𝑥0.05𝑥9.81
≈ 162 (3.30) 

Apparently, body forces due to gravity are also negligible compared to inertial forces. 

Comparison of the pressure terms with respect to the inertial forces gives dimensionless 

Euler Number, Eu, 

𝜕𝑃 𝜕𝑥⁄

𝜌 (𝑢
𝜕𝑢
𝜕𝑥

)
~

𝑃𝑎 𝜋𝐷⁄

𝜌𝑈.𝑈 𝜋𝐷⁄
=

𝑃𝑎

𝜌𝑈2
= 𝐸𝑢 ≅

1𝑥105𝑁
𝑚2

1.2𝑥(50)2
= 33.33 (3.31) 
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This implies that contribution of the pressure forces is much greater than inertial forces 

and must be considered in conjunction with viscous forces as shown in the following 

comparison of pressure and viscous forces; 

𝜇 (
𝜕2𝑢
𝜕𝑧2)

𝜕𝑃 𝜕𝑥⁄
=

𝜇 (𝑈 𝑐2⁄ )

𝑃𝑎 𝜋𝐷⁄
=

𝜇𝑈𝜋𝐷

𝑃𝑎𝑐2
= 𝛬𝐵 ≅

2𝑥10−5𝑥50𝑥3.14𝑥0.05

1𝑥105𝑥(2𝑥10−5)2
≈ 1.96 

(3.32) 

The non-dimensional term, ΛB here is the bearing compressibility number and commonly 

used in bearing analysis as a performance criteria. The comparison reveals that pressure 

and viscous forces are both significant in a typical hydrodynamic bearing problem. By 

using the relations above, NS equations take the following simpler form, 

0 = 𝜇 (
𝜕2𝑢

𝜕𝑧2
) −

𝜕𝑃

𝜕𝑥
 

0 = 𝜇 (
𝜕2𝑣

𝜕𝑧2
) −

𝜕𝑃

𝜕𝑦
 

(3.33) 

Assuming no-slip wall boundary condition, laminar flow profile and 𝜇 ≠ 𝜇(𝑧), boundary 

conditions for NS equations can be defined as 

𝑢 = 𝑈 @ 𝑧 = 0 

𝑢 = 0 @ 𝑧 = ℎ(𝑥, 𝑦) 

𝑣 = 0 @ 𝑧 = 0 

𝑣 = 0 @ 𝑧 = ℎ(𝑥, 𝑦) 

(3.34) 

To solve for fluid velocities u and v, the equations from 0 to h(x,y) is integrated in z-

direction and velocity profiles become as, 

𝑢 =
1

2𝜇

𝜕𝑃

𝜕𝑥
𝑧2 + 𝐶1𝑧 + 𝐶2 

𝑣 =
1

2𝜇

𝜕𝑃

𝜕𝑦
𝑧2 + 𝐶3𝑧 + 𝐶4 

(3.35) 

Applying boundary conditions specified above, 

𝑢 =
1

2𝜇

𝜕𝑃

𝜕𝑥
(𝑧2 − 𝑧ℎ) + 𝑈 (1 −

𝑧

ℎ
) 

𝑣 =
1

2𝜇

𝜕𝑃

𝜕𝑦
(𝑧2 − 𝑧ℎ) 

(3.36) 
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The first terms on the right hand side of the equations are Poiseuille flow terms indicating 

the effect of pressure on velocity. The second term of u shows the Couette flow effect 

because of the relative surface velocity difference between shaft and bearing surfaces. 

Now, we can plug the resulting equations into the continuity equation. In the 

Cartesian coordinate system, the continuity equation takes the following form, 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0 (3.37) 

Integration of continuity equation with respect to z yields, 

𝜕

𝜕𝑥
(
𝜌ℎ3

𝜇

𝜕𝑃

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝜌ℎ3

𝜇

𝜕𝑃

𝜕𝑦
) = 6𝑈

𝜕(𝜌ℎ)

𝜕𝑥
 (3.38) 

For the ideal gas property of air, incompressible steady state Reynolds Equation 

gets the following form, 

𝜕

𝜕𝑥
(
𝑃ℎ3

𝜇𝑇

𝜕𝑃

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝑃ℎ3

𝜇𝑇

𝜕𝑃

𝜕𝑦
) = 6𝑈

𝜕

𝜕𝑥
(
𝑃ℎ

𝑇
) (3.39) 

By using the relations below, Reynolds equation can be defined in a different more 

useful form for this problem,  

𝜕𝑃2

𝜕𝑥
= 2𝑃

𝜕𝑃

𝜕𝑥
,

𝜕𝑃2

𝜕𝑦
= 2𝑃

𝜕𝑃

𝜕𝑦
 

(3.40) 

1

2

𝜕

𝜕𝑥
(
ℎ3

𝜇𝑇

𝜕𝑃2

𝜕𝑥
) +

1

2

𝜕

𝜕𝑦
(
ℎ3

𝜇𝑇

𝜕𝑃2

𝜕𝑦
) = 6𝑈

𝜕

𝜕𝑥
(
𝑃ℎ

𝑇
) (3.41) 

3.2.2 Non-dimensionalization Process for Reynolds Equation 

In engineering analysis, normalizing the terms in governing equations provides an 

insight to the behavior of the problem. To non-dimensionalize the Reynolds equation 

following relations are applied, 

 

𝑥̅ =
𝑥

𝜋𝐷
, 𝑦̅ =

𝑦

𝐿
, 𝑢̅ =

𝑢

𝑈
, 𝑇̅ =

𝑇

𝑇𝑎
, 𝑇𝑥̅ =

∆𝑇̅̅̅̅

∆𝑥̅̅̅̅
= 𝑇𝑥

𝜋𝐷

𝑇𝑎
, 

  𝑇𝑦
̅̅ ̅ =

∆𝑇̅̅̅̅

∆𝑦̅̅̅̅
= 𝑇𝑥

𝐿

𝑇𝑎
, 𝜇̅ =

𝜇

𝜇𝑖
, 𝑃̅ =

𝑃

𝑃𝑎
, 𝑃𝑥̅ =

∆𝑃̅̅̅̅

∆𝑥̅̅̅̅
= 𝑃𝑥

𝜋𝐷

𝑃𝑎
, 

(3.42) 
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  𝑃𝑦̅ =
∆𝑃̅̅̅̅

∆𝑦̅̅̅̅
= 𝑃𝑦

𝐿

𝑃𝑎
, ℎ̅ =

ℎ

𝑐
  

After inserting non-dimensional terms, Reynolds Equation becomes 

⟹
1

2

𝜕

𝜕𝑥̅𝜋𝐷
(
ℎ̅3𝑐3

𝜇𝑇̅𝑇𝑎

𝜕𝑃̅2𝑃𝑎
2

𝜕𝑥̅𝜋𝐷
) +

1

2

𝜕

𝜕𝑦̅𝐿
(
ℎ̅3𝑐3

𝜇𝑇̅𝑇𝑎

𝜕𝑃̅2𝑃𝑎
2

𝜕𝑦̅𝐿
) = 6𝑈

𝜕

𝜕𝑥̅𝜋𝐷
(
𝑃̅𝑃𝑎ℎ̅𝑐

𝑇̅𝑇𝑎

) (3.43) 

⟹
𝑐3𝑃𝑎

2

2𝜇(𝜋𝐷)2𝑇𝑎

𝜕

𝜕𝑥̅
(
ℎ̅3

𝑇̅

𝜕𝑃̅2

𝜕𝑥̅
) +

𝑐3𝑃𝑎
2

2𝜇𝐿2𝑇𝑎

𝜕

𝜕𝑦̅
(
ℎ̅3

𝑇̅

𝜕𝑃̅2

𝜕𝑦̅
) =

6𝑈𝑃𝑎𝑐

𝜋𝐷𝑇𝑎

𝜕

𝜕𝑥̅
(
𝑃̅ℎ̅

𝑇̅
) 

(3.44) 

 

⟹
𝜕

𝜕𝑥̅
(
ℎ̅3

𝑇̅

𝜕𝑃̅2

𝜕𝑥̅
) + (

𝜋𝐷

𝐿
)

2 𝜕

𝜕𝑦̅
(
ℎ̅3

𝑇̅

𝜕𝑃̅2

𝜕𝑦̅
) = 12𝛬𝐵

𝜕

𝜕𝑥̅
(
𝑃̅ℎ̅

𝑇̅
) 

(3.45) 

 

By applying the derivatives and assuming that T(x,y) is constant for pressure step during 

iterative solution, 

3ℎ̅2
𝜕ℎ̅

𝜕𝑥̅
𝑃̅

𝜕𝑃̅

𝜕𝑥̅
+ ℎ̅3 (

𝜕𝑃̅

𝜕𝑥̅
)

2

+ ℎ̅3𝑃̅
𝜕2𝑃̅

𝜕𝑥̅2

+ (
𝜋𝐷

𝐿
)

2

[3ℎ̅2
𝜕ℎ̅

𝜕𝑦̅
𝑃̅

𝜕𝑃̅

𝜕𝑦̅
+ ℎ̅3 (

𝜕𝑃̅

𝜕𝑦̅
)

2

+ ℎ̅3𝑃̅
𝜕2𝑃̅

𝜕𝑦̅2
] 

= 6𝛬𝐵 (𝑃̅
𝜕ℎ̅

𝜕𝑥̅
+ ℎ̅

𝜕𝑃̅

𝜕𝑥̅
) 

(3.46) 

Dividing both sides by ℎ̅3𝑃̅ we get, 

3

ℎ̅

𝜕ℎ̅

𝜕𝑥̅

𝜕𝑃̅

𝜕𝑥̅
+

1

𝑃̅
(
𝜕𝑃̅

𝜕𝑥̅
)

2

+
𝜕2𝑃̅

𝜕𝑥̅2
+ (

𝜋𝐷

𝐿
)
2

[
3

ℎ̅

𝜕ℎ̅

𝜕𝑦̅

𝜕𝑃̅

𝜕𝑦̅
+

1

𝑃̅
(
𝜕𝑃̅

𝜕𝑦̅
)

2

+
𝜕2𝑃̅

𝜕𝑦̅2
]

= 6𝛬𝐵 (
1

ℎ̅3

𝜕ℎ̅

𝜕𝑥̅
+

1

ℎ̅2𝑃̅

𝜕𝑃̅

𝜕𝑥̅
) 

(3.47) 

3.2.3 Finite Difference Approximation and Solution Approach 

By using the finite difference approximation derived in previous sections for partial 

derivative terms, Eq. 3.47 could be expressed as, 
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3

ℎ𝑖,𝑗
(

ℎ𝑖,𝑗

2∆𝑥
−

ℎ𝑖−1,𝑗

∆𝑥
+

ℎ𝑖+1,𝑗

3∆𝑥
+

ℎ𝑖−2,𝑗

6∆𝑥
)(

𝑃𝑖,𝑗

2∆𝑥
−

𝑃𝑖−1,𝑗

∆𝑥
+

𝑃𝑖+1,𝑗

3∆𝑥
+

𝑃𝑖−2,𝑗

6∆𝑥
)

+
1

𝑃𝑖,𝑗
(
𝑃𝑖,𝑗

2∆𝑥
−

𝑃𝑖−1,𝑗

∆𝑥
+

𝑃𝑖+1,𝑗

3∆𝑥
+

𝑃𝑖−2,𝑗

6∆𝑥
)
2

+ (
𝑃𝑖+1,𝑗−2𝑃𝑖,𝑗 + 𝑃𝑖−1,𝑗

∆𝑥2
) 

+(
𝜋𝐷

𝐿
)
2

[
3

ℎ𝑖,𝑗
(

ℎ𝑖,𝑗

2∆𝑦
−

ℎ𝑖,𝑗−1

∆𝑦
+

ℎ𝑖,𝑗+1

3∆𝑦
+

ℎ𝑖,𝑗−2

6∆𝑦
)(

𝑃𝑖,𝑗

2∆𝑦
−

𝑃𝑖,𝑗−1

∆𝑦
+

𝑃𝑖,𝑗+1

3∆𝑦
+

𝑃𝑖,𝑗−2

6∆𝑦
)

+
1

𝑃𝑖,𝑗
(
𝑃𝑖,𝑗

2∆𝑦
−

𝑃𝑖,𝑗−1

∆𝑦
+

𝑃𝑖,𝑗+1

3∆𝑦
+

𝑃𝑖,𝑗−2

6∆𝑦
)
2

+ (
𝑃𝑖,𝑗+1−2𝑃𝑖,𝑗 + 𝑃𝑖,𝑗−1

∆𝑦2
)] 

(3.48) 

Let us define the left and right hand side of the Eq. 3.48 by LHS and RHS respectively as 

follows, 

𝐿𝐻𝑆 = (
𝑃𝑖+1,𝑗−2𝑃𝑖,𝑗 + 𝑃𝑖−1,𝑗

∆𝑥2
) + (

𝜋𝐷

𝐿
)
2

(
𝑃𝑖,𝑗+1−2𝑃𝑖,𝑗 + 𝑃𝑖,𝑗−1

∆𝑦2
) 

(3.49) 

𝑅𝐻𝑆 = 6𝛬𝐵 (
1

ℎ𝑖,𝑗
3 (

ℎ𝑖,𝑗

2∆𝑥
−

ℎ𝑖−1,𝑗

∆𝑥
+

ℎ𝑖+1,𝑗

3∆𝑥
+

ℎ𝑖−2,𝑗

6∆𝑥
)

+
1

ℎ𝑖,𝑗
2𝑃𝑖,𝑗

(
𝑃𝑖,𝑗

2∆𝑥
−

𝑃𝑖−1,𝑗

∆𝑥
+

𝑃𝑖+1,𝑗

3∆𝑥
+

𝑃𝑖−2,𝑗

6∆𝑥
))

−
3

ℎ𝑖,𝑗
(

ℎ𝑖,𝑗

2∆𝑥
−

ℎ𝑖−1,𝑗

∆𝑥
+

ℎ𝑖+1,𝑗

3∆𝑥
+

ℎ𝑖−2,𝑗

6∆𝑥
) (

𝑃𝑖,𝑗

2∆𝑥
−

𝑃𝑖−1,𝑗

∆𝑥

+
𝑃𝑖+1,𝑗

3∆𝑥
+

𝑃𝑖−2,𝑗

6∆𝑥
) −

1

𝑃𝑖,𝑗
(
𝑃𝑖,𝑗

2∆𝑥
−

𝑃𝑖−1,𝑗

∆𝑥
+

𝑃𝑖+1,𝑗

3∆𝑥
+

𝑃𝑖−2,𝑗

6∆𝑥
)

2

− (
𝜋𝐷

𝐿
)
2

[
3

ℎ𝑖,𝑗
(

ℎ𝑖,𝑗

2∆𝑦
−

ℎ𝑖,𝑗−1

∆𝑦
+

ℎ𝑖,𝑗+1

3∆𝑦
+

ℎ𝑖,𝑗−2

6∆𝑦
)(

𝑃𝑖,𝑗

2∆𝑦

−
𝑃𝑖,𝑗−1

∆𝑦
+

𝑃𝑖,𝑗+1

3∆𝑦
+

𝑃𝑖,𝑗−2

6∆𝑦
)

+
1

𝑃𝑖,𝑗
(
𝑃𝑖,𝑗

2∆𝑦
−

𝑃𝑖,𝑗−1

∆𝑦
+

𝑃𝑖,𝑗+1

3∆𝑦
+

𝑃𝑖,𝑗−2

6∆𝑦
)
2

] 

(3.50) 
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Boundary conditions for pressure distribution are, 

𝑃(0, 𝑦) = 𝑃𝑎 

𝑃(𝜃𝑙𝑒𝑎𝑑𝑖𝑛𝑔 , 𝑦) = 𝑃𝑎 

𝑃(𝑥, 𝐿) = 𝑃𝑎 

𝜕𝑃

𝜕𝑦
|𝑦=0 = 0 

(3.51) 

To solve for 𝑃𝑖,𝑗 RHS is evaluated by using initial values of eccentricity ratio and 

pressure. Then the equation is solved iteratively for pressure. After convergence is 

achieved film thickness is updated by using current eccentricity. If the generated bearing 

load is not sufficient to carry the applied load, eccentricity ratio is increased with a small 

increment until lifting load is satisfied or reached to a previously defined minimum film 

thickness after that physical contact is assumed to occur between the top foil and the shaft 

surfaces. Typically, under relaxation is used to improve the convergence especially at 

large bearing compressibility numbers and eccentricity ratio. The film thickness is 

updated in each iteration as follows, 

ℎ̅𝑘+1 = 1 + (𝜀𝑟𝑒𝑓 + ∆𝜀𝑘) cos(𝜃 − ∆𝜑𝑘) + 𝛿𝑓 (3.52) 

where ∆𝜀 is the change of the eccentricity due to the deformation of the top foil and ∆𝜑 

is the change of the attitude angle, δf is thickness change in the film due to deformation 

and superscript k gives the iteration number. The resulting non-dimensional bearing loads 

are calculated by integrating the generated hydrodynamic pressure over the top foil 

surface as, 

𝑊𝑥 = ∫∫ (𝑃 − 1)𝑐𝑜𝑠𝜃𝑑𝜃𝑑𝑦

2𝜋

0

1

−1

 

𝑊𝑦 = ∫∫ (𝑃 − 1)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝑦

2𝜋

0

1

−1

 

𝑊 = √𝑊𝑥
2 + 𝑊𝑦

2 =
𝑊

𝑃𝑎𝑅𝐿
 

(3.53) 
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Figure 3.2: Eccentric position of the shaft during operation under a given load and 

related parameters 

 

The attitude angle displayed in Figure 3.2 is calculated by taking the ratio of the bearing 

loads as, 

𝑡𝑎𝑛𝜑 = −
𝑊𝑦

𝑊𝑥
 (3.54) 

The updates for the attitude angle is calculated as, 

∆𝜑𝑘 = 𝑎𝑡𝑎𝑛 (
−𝑊𝑦

𝑘

𝑊𝑥
𝑘 ) − 𝑎𝑡𝑎𝑛 (

−𝑊𝑦
𝑘−1

𝑊𝑥
𝑘−1 ) 

(3.55) 

The change of the attitude angle is taken into account by rotating the coordinate 

frame according to that angle which provides force balance by eliminating the horizontal 

force terms. The following rotation matrix is used to apply the change of the attitude 

angle, 

[
𝑥′
𝑦′

𝑧′

] = [
cos (𝜑 + 𝜋 2)⁄ 𝑠𝑖𝑛(𝜑 + 𝜋 2)⁄ 0

−𝑠𝑖𝑛(𝜑 + 𝜋 2)⁄ 𝑐𝑜𝑠(𝜑 + 𝜋 2)⁄ 0
0 0 1

] [
𝑥
𝑦
𝑧
] (3.56) 
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3.2.4 Solving Reynolds Equation by FEM 

The derivation of the Reynolds Equation starting from the general momentum 

equations and finite difference formulation for an iterative solver is presented in the 

previous section. However; for TEHD model developed in this work, Reynolds Equation 

is solved by using commercial software capable of solving fluid structure interaction and 

thin film flows successfully by utilizing direct solvers. A typical system where 

hydrodynamic lubrication/lift is expected is illustrated in Figure 3.3 below. 

 

 

Figure 3.3: An example illustrating a typical configuration for thin-film flow [90] 

 

The air film applies two kinds of forces to the shaft and the top foil. At initial state, 

both structures are surrounded by ambient gas. Due to the relative movements of the 

structures, hydrodynamic film pressure develops inside the gap. The normal force 

affecting the moving shaft is 𝐹𝑤𝑎𝑙𝑙
𝑛 = −𝒏𝒓𝒆𝒇𝑃𝑎. The tangential force on the moving wall 

is the viscous drag force of the air 𝐹𝑤𝑎𝑙𝑙
𝑡 , which resists the rotation of the structure. In our 

problem, the viscosity of the air is so small, such that tangential force due to viscous 

friction could be easily eliminated [90]. 

3.2.4.1 The Effect of shaft thermal and centrifugal expansion to bearing clearance 

The load capacity of a CFB occurs in excess of the nominal bearing clearance due 

to compliant structure. In fact, the nominal clearance in a CFB is not well-defined because 

the topfoil surface is in contact with shaft surface at start-up. In that sense, the bearings 

are preloaded to minimize the film gap between topfoil and shaft surface, and applying 

an initial torque to the shaft. The expansion of the shaft due to thermal and centrifugal 
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effects contributes to bearing clearance during operation where c = c0 – Sth - Sc. For a 

hollow shaft, the thermal expansion is defined as, 

𝑆𝑡ℎ ≈ 𝛼(𝑅𝑜 − 𝑅𝑖)(𝑇𝑠𝑚 − 𝑇𝑎) (3.57) 

where α is the thermal expansion coefficient of the shaft material and 𝑇𝑠𝑚 is mean shaft 

temperature. The linear expansion is depicted in Figure 3.4. The centrifugal growth of 

the shaft, 𝑆𝐶 is a function of its geometry and material properties [63] as in the following 

relation, 

𝑆𝑐 =
𝑅𝑜𝜌𝑠𝜔

2

8𝐸𝑠
{(1 − 𝜐𝑠)𝐴1 + (1 − 𝜐𝑠)𝐴2 − (1 − 𝜐𝑠

2)𝑅𝑜
2} (3.58) 

where 

𝐴1 = (𝑅𝑜
2 + 𝑅𝑖

2)(3 + 𝜐𝑠), 𝐴2 = 𝑅𝑖
2(3 + 𝜐𝑠) (3.59) 

and 𝐸𝑠, 𝜐𝑠, 𝑎𝑛𝑑 𝜌𝑠 are the shaft material elastic modulus, Poisson ratio, and density, 

respectively. Figure 3.5 shows the predicted centrifugal growth with respect to increasing 

speed for an Inconel 718 shaft.  The plot reveals the quick growth of outer shaft diameter 

for a thin walled structure. The bearing designer must consider this behavior of the shaft 

to prevent failure due to seizure, as mentioned in Ref. [27]. 

 

Figure 3.4: Thermal expansion of the Inconel 718 shaft with respect to 

temperature 
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Figure 3.5: Shaft centrifugal growth with respect to the shaft speed for Inconel 718 

shaft material. Shaft outer diameter is 50 mm and wall thickness, 𝒕𝒔 = 𝑹𝒐 − 𝑹𝒊 is 

2.5 mm 

 

3.2.4.2 No-Slip boundary condition 

The aspect ratio between the film thickness and remaining bearing dimensions in 

lubrication problems is always very large. Since the film thickness is very thin, the inertial 

effects in the fluid can be ignored compared to the viscous effects as discussed before. 

Additionally, the pressure and temperature can be assumed constant through the film 

thickness depth for the same reason. Due to small curvature of the channel for a thin film 

gap, it is assumed that the channel boundaries are parallel to each other. With these 

assumptions, the fluid problem in the bearing gap described by NS equations reduces to 

the Reynolds equation in the channel boundary as explained previously.  Another crucial 

measure to validate the Reynolds equation is the squeeze number, κ [89]. 

𝜅 =
12µ𝐿2𝜔

𝑃𝑎ℎ0
2  (3.60) 
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For the Reynolds equation to describe the flow problem properly, κ must be much 

smaller than unity. For typical values of, μ=2e-5 Pa.s, L=100 mm, ω=1500 rad/s, Pa=101 

kPa, h0=10 µm, κ becomes around 0.0035 which is far beyond the critical value of one. 

The Reynolds equation assumes that continuum flow holds such that the mean free 

path of the gas molecules is relatively small compared to the film thickness. The 

continuum condition is determined by calculating the Knudsen number, Kn=λ/h, where 

λ represents the molecular mean free path of operating fluid. The continuum assumption 

for the governing equation holds only when Kn < 0.01. Physical meaning of the mean 

free path is the distance travelled by a gas particle between two consecutive collisions. 

Hence; if the film thickness is sufficiently narrow, the mean free path becomes on the 

same order with film thickness. Slip flow occurs between the lubricating surfaces when 

0.01<Kn<15. Fully developed molecular flow occurs when Kn is increased beyond 15 

[91].  

The common lubricant in foil bearings is air whose mean free path is 0.064 µm in 

room conditions. Typical minimum film thickness encountered in foil bearing 

applications is around 7-8 µm. The Knudsen number becomes Kn=0.064/7=0.00914. For 

most applications, continuum flow holds. However, in some cases film thickness 

becomes less than 6 µm, and Reynolds equation must be modified for slip flow condition. 

For the sake of generality, continuum flow is assumed throughout this work. 

3.3 Derivation of the Bulk Energy Transport Equation for Film Temperature 

The first law of thermodynamics for a differential element of fluid is stated as 

conservation of energy [89]. It shows the equilibrium between the total energy of a 

system, which consists of internal, kinetic and potential energies, and the energy added 

to and the work done by the system. The terms in left-hand side of Eq. (3.61) are called 

as convective terms because they represent relative motion of the fluid to the boundaries. 

The first term in right hand side expresses the energy transfer rate by means of 

conduction. In the scope of this study, this term is converted to a convection term in bulk 

flow equation. Second term in right hand side presents the rate of work done by the 

differential fluid volume in expansion or compression. The last term represents the rate 

of viscous energy dissipated as heat due to shear effect and called as viscous dissipation 
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that contributes to elevating the temperature of the fluid. The energy equation is defined 

as follows, 

 𝜌
𝐷𝑒

𝐷𝑡
= ∇. (𝑘∇𝑇) +

𝐷𝑃

𝐷𝑡
+ 𝜉 (3.61) 

where e is enthalphy defined as, 

𝑒 = 𝑢̂ + 𝑃
𝜌⁄ => 𝐷𝑒 = 𝑐𝑝(𝑇)𝐷𝑇 (3.62) 

In Cartesian coordinates, assuming cp≠cp(T) energy equation can be expressed as, 

𝜌𝑐𝑝 (𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
)

= 𝑘
𝜕2𝑇

𝜕𝑥2
+ 𝑘

𝜕2𝑇

𝜕𝑦2
+ 𝑘

𝜕2𝑇

𝜕𝑧2
+ 𝑢

𝜕𝑃

𝜕𝑥
+ 𝑣

𝜕𝑃

𝜕𝑦
+ 𝑤

𝜕𝑃

𝜕𝑧
 

+𝜇 [2 (
𝜕𝑢

𝜕𝑥
)
2

+ 2(
𝜕𝑣

𝜕𝑦
)
2

+ 2(
𝜕𝑤

𝜕𝑧
)
2

+ (
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
)
2

+(
𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
)
2

+(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)
2

] 

(3.63) 

As in the conservation of momentum equation, 

𝜕𝑢

𝜕𝑧
&

𝜕𝑣

𝜕𝑧
≫ 𝑜𝑡ℎ𝑒𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

(3.64) 

The relation between pressure components are also same as given in Eq. 3.14. Since the 

film thickness is very small, the conduction in radial direction through gas film is much 

higher compared to circumferential and axial directions, 

𝑘
𝜕2𝑇

𝜕𝑧2
≫  𝑘

𝜕2𝑇

𝜕𝑥2
 & 𝑘

𝜕2𝑇

𝜕𝑦2
 

(3.65) 

When this relation is applied, the conductive terms in circumferential and axial directions 

drop and the energy equation takes the following simpler form, 

𝜌𝑐𝑝 (𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝑘

𝜕2𝑇

𝜕𝑧2
+ 𝑢

𝜕𝑃

𝜕𝑥
+ 𝑣

𝜕𝑃

𝜕𝑦
+ 𝜇 [(

𝜕𝑢

𝜕𝑧
)
2

+ (
𝜕𝑣

𝜕𝑧
)
2

] (3.66) 

where the last term in the left hand side is called as viscous dissipation, 

𝜉 = 𝜇 [(
𝜕𝑢

𝜕𝑧
)
2

+ (
𝜕𝑣

𝜕𝑧
)
2

] (3.67) 
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Remember the velocity components are calculated as, 

𝑢 =
1

2𝜇

𝜕𝑃

𝜕𝑥
(𝑧2 − 𝑧ℎ) + 𝑈 (1 −

𝑧

ℎ
) 

𝑣 =
1

2𝜇

𝜕𝑃

𝜕𝑦
(𝑧2 − 𝑧ℎ) 

(3.68) 

Let us define the partial derivative terms as follows for the sake of simplicity, 

𝜕𝑃

𝜕𝑥
= 𝑃𝑥,

𝜕𝑃

𝜕𝑦
= 𝑃𝑦,

𝜕𝑇

𝜕𝑥
= 𝑇𝑥,

𝜕𝑇

𝜕𝑦
= 𝑇𝑦 (3.69) 

 The gradients of the velocities across film thickness become as follows: 

𝜕𝑢

𝜕𝑧
=

1

2𝜇
𝑃𝑥(2𝑧 − ℎ) −

𝑈

ℎ
 (3.70) 

𝜕𝑣

𝜕𝑧
=

1

2𝜇
𝑃𝑦(2𝑧 − ℎ) (3.71) 

The square of equations (3.70) and (3.71) are also used. They are calculated as, 

(
𝜕𝑢

𝜕𝑧
)
2

= (
1

2𝜇
𝑃𝑥(2𝑧 − ℎ))

2

− 
𝑈

ℎ. 𝜇
 𝑃𝑥(2𝑧 − ℎ) +

𝑈2

ℎ2
 

(3.72) 

(
𝜕𝑣

𝜕𝑧
)

2

= (
1

2𝜇
𝑃𝑦(2𝑧 − ℎ))

2

 
(3.73) 

The viscous dissipation can be represented in simpler form as in, 

𝜉 =
𝑎2

4𝜇
(𝑃𝑥

2 + 𝑃𝑦
2) −

𝑈. 𝑎

ℎ
𝑃𝑥 +

𝑈2

ℎ2
𝜇 

(3.74) 

where following relations are used to reduce the complexity of the equations; 

𝑎 = (2𝑧 − ℎ), 𝑏 = (𝑧2 − 𝑧ℎ), 𝑑 = (1 −
𝑧

ℎ
) (3.75) 

3.3.1 Derivation of the Bulk-flow Transport Equation 

Integration across the film thickness of the steady state thermal energy transport 

equation gives the bulk-flow equation for transport of gas film [63]. Integrating each term 

by ∫ 𝑑𝑧
ℎ

0
, 
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∫𝑎. 𝑑𝑧

ℎ

0

= 0, ∫ 𝑎2. 𝑑𝑧

ℎ

0

=
ℎ3

3
, ∫ 𝑏. 𝑑𝑧

ℎ

0

= −
ℎ3

6
, ∫𝑑. 𝑑𝑧

ℎ

0

=
ℎ

2
 

(3.76) 

∫(𝑢𝑇𝑥 + 𝑣𝑇𝑦). 𝑑𝑧

ℎ

0

= −
ℎ3

12𝜇
(𝑃𝑥𝑇𝑥 + 𝑃𝑦𝑇𝑦) +

𝑈ℎ

2
𝑇𝑥 

(3.77) 

∫(𝑢𝑃𝑥 + 𝑣𝑃𝑦). 𝑑𝑧

ℎ

0

= −
ℎ3

12𝜇
(𝑃𝑥

2 + 𝑃𝑦
2) +

𝑈ℎ

2
𝑃𝑥 

(3.78) 

∫𝜉. 𝑑𝑧

ℎ

0

=
ℎ3

12𝜇
(𝑃𝑥

2 + 𝑃𝑦
2) +

𝑈2

ℎ
𝜇 

(3.79) 

The relation between conditions in the boundary layer and the convection heat 

transfer can be illustrated as in Figure 3.6. 

 

 

Figure 3.6: Coordinate systems and heat transfer in the film 

 

The local heat flux can be obtained by applying Fourier’s law as follows: 

𝑞𝑠𝑓
′′ = −𝑘𝑓

𝜕𝑇

𝜕𝑧
|𝑧=0 (3.80) 

The subscription, sf refers the surface heat flux because there is no fluid motion and 

energy transfer at the surface except conduction [92]. Newton’s law of cooling gives the 

heat flux as, 

𝑞𝑠𝑓
′′ = ℎ(𝑇𝑠 − 𝑇𝑎) (3.81) 

Combining Equations (3.80) and (3.81) convective heat flux coefficient, hconv becomes, 
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ℎ𝑐𝑜𝑛𝑣 =
−𝑘𝑓

𝜕𝑇
𝜕𝑧⁄ |𝑧=0

𝑇𝑠 − 𝑇𝑎
 (3.82) 

By using the relation between convection and conduction coefficients at boundary 

surfaces, integration of the conductive term across film thickness could be expressed as 

∫𝑘
𝜕2𝑇

𝜕𝑧2
. 𝑑𝑧

ℎ

0

= 𝑘
𝜕𝑇

𝜕𝑧
|0
ℎ = 𝑘

𝜕𝑇

𝜕𝑧
|𝑧=ℎ − 𝑘

𝜕𝑇

𝜕𝑧
|𝑧=0

⟹ ℎ𝑠(𝑇𝑠 − 𝑇𝑔) − ℎ𝑡𝑓(𝑇𝑔 − 𝑇𝑡𝑓) 

(3.83) 

Final form of the bulk flow equation for transport of gas film becomes, 

⟹ 𝜌𝑐𝑝 [−
ℎ3

12𝜇
(𝑃𝑥𝑇𝑥 + 𝑃𝑦𝑇𝑦) +

𝑈. ℎ

2
𝑇𝑥]

= ℎ𝑠(𝑇𝑠 − 𝑇) + ℎ𝑡𝑓(𝑇𝑡𝑓 − 𝑇) +
𝑈. ℎ

2
𝑃𝑥 +

𝑈2

ℎ
𝜇 

(3.84) 

3.3.2 Heat Convection Coefficient Models 

The heat convection coefficients for heat flux from the gas film into the journal 

outer surface and topfoil inner surface calculated by using the Reynolds-Colburn analogy 

which defines the relation between fluid friction and heat transfer [93]. The Nusselt 

number, Nu is defined by:  

𝑁𝑢𝐿 =
ℎ𝑡𝑓ℎ

𝑘𝑔
= 0.664𝑅𝑒𝐿

1
2⁄ 𝑃𝑟

1
3⁄  (3.85) 

where Pr is the Prandtl number and ReL is Reynolds number expressed respectively as 

 𝑃𝑟 =
𝑐𝑝𝜇

𝑘𝐺
 (3.86) 

𝑅𝑒𝐿 =
𝜌𝑢∞ℎ

𝜇
 (3.87) 

From here convection coefficients become as follows: 

ℎ𝑡𝑓 = ℎ𝑠 = 𝜌𝑢∞𝑐𝑝0.664𝑅𝑒𝐿
−1

2⁄ 𝑃𝑟
−2

3⁄  
(3.88) 
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There are several approaches to define conductivity and dynamic viscosity of gases with 

respect to the temperature. Throughout this work following relations are selected for air 

conductivity and dynamic viscosity [68]: 

𝑘𝑔 = 7.4𝑥10−5𝑇𝑔 + 4.25𝑥10−3 (3.89) 

𝜇 = 1.4566𝑥10−6𝑇𝑔
0.5 (1 + 110.33

𝑇𝑔
⁄ )

−1

 
(3.90) 

3.3.3 Non-Dimensionalization of Solution Parameters 

Similar normalization procedure performed to derive the dimensionless form of 

Reynolds equation. Following normalization relations are applied to the parameters in 

bulk-flow energy equation: 

𝑥̅ =
𝑥

𝜋𝐷
, 𝑦̅ =

𝑦

𝐿
, 𝑢̅ =

𝑢

𝑈
, 𝑇̅ =

𝑇

𝑇𝑎
, 𝑇𝑥̅ =

∆𝑇̅̅̅̅

∆𝑥̅̅̅̅
= 𝑇𝑥

𝜋𝐷

𝑇𝑎
, 

  𝑇𝑦
̅̅ ̅ =

∆𝑇̅̅̅̅

∆𝑦̅̅̅̅
= 𝑇𝑥

𝐿

𝑇𝑎
, 𝜇̅ =

𝜇

𝜇𝑖
, 𝑃̅ =

𝑃

𝑃𝑎
, 𝑃𝑥̅ =

∆𝑃̅̅̅̅

∆𝑥̅̅̅̅
= 𝑃𝑥

𝜋𝐷

𝑃𝑎
, 

  𝑃𝑦̅ =
∆𝑃̅̅̅̅

∆𝑦̅̅̅̅
= 𝑃𝑦

𝐿

𝑃𝑎
, ℎ̅ =

ℎ

𝑐
 

(3.91) 

By using the non-dimensional parameters in left hand side (LHS) and right hand 

side (RHS), the Eq. (3.84) takes the following form: 

𝐿𝐻𝑆 = −𝜌𝑐𝑝 [−
ℎ̅3𝑐3

12𝜇̅𝜇𝑖
(𝑃̅𝑥

𝑃𝑎

𝜋𝐷
𝑇̅𝑥

𝑇𝑎

𝜋𝐷
+ 𝑃̅𝑦

𝑃𝑎

𝐿
𝑇̅𝑦

𝑇𝑎

𝐿
) − 𝑇𝑥̅

𝑇𝑎

𝜋𝐷

𝑈ℎ̅𝑐

2
] (3.92) 

𝑅𝐻𝑆 = 𝑇𝑎(ℎ𝑠𝑇𝑠 + ℎ𝑡𝑓𝑇𝑡𝑓) − 𝑇̅𝑇𝑎(ℎ𝑠 + ℎ𝑡𝑓) +
𝑈. 𝑐. 𝑃𝑎

2𝜋𝐷
ℎ̅𝑃𝑥̅ +

𝑈2𝜇̅𝜇𝑖

ℎ̅𝑐
 

(3.93) 

Multiplying both sides with  
2𝜋𝐷

𝜌𝑐𝑝𝑈𝑇𝑎𝑐
 , LHS and RHS become:  

𝐿𝐻𝑆 =
−𝑐2𝑃𝑎

6𝜇𝑖𝜋𝐷𝑈

𝑃𝑥̅𝑇𝑥̅ℎ̅
3

𝜇̅
+ 𝑇𝑥̅ℎ̅ +

−𝑐2𝑃𝑎𝜋𝐷

6𝜇𝑖𝐿2𝑈

𝑃𝑦̅𝑇𝑦
̅̅ ̅ℎ̅3

𝜇̅
 

(3.94) 
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𝑅𝐻𝑆 =
2𝜋𝐷

𝜌𝑐𝑝𝑈𝑐
[ℎ𝑠(𝑇𝑠̅ − 𝑇̅) + ℎ𝑡𝑓(𝑇𝑡𝑓

̅̅ ̅̅ − 𝑇̅)]

+
1

𝜌𝑐𝑝𝑇𝑎
(𝑃𝑎 . ℎ̅. 𝑃𝑥̅ +

2𝜋𝐷𝑈𝜇𝑖𝜇̅

ℎ̅𝑐2
) 

(3.95) 

Let us define additional parameters to reduce the number of terms, and to further simplify 

the equations for coding, 

𝑎1 =
−𝑐2𝑃𝑎

6𝜇𝑖𝜋𝐷𝑈
, 𝑎2 =

−𝑐2𝑃𝑎𝜋𝐷

6𝜇𝑖𝐿2𝑈
, 𝑎3 =

ℎ𝑠2𝜋𝐷

𝜌𝑐𝑝𝑈𝑐
, 𝑎4 =

ℎ𝑡𝑓2𝜋𝐷

𝜌𝑐𝑝𝑈𝑐
, 

  𝑎5 =
𝑃𝑎

𝜌𝑐𝑝𝑇𝑎
, 𝑎6 =

2𝜋𝐷𝑈𝜇𝑖

𝜌𝑐𝑝𝑇𝑎𝑐2
 

(3.96) 

The bulk-flow equation now takes the following simpler form: 

⟹ 𝑎1

𝑃𝑥̅𝑇𝑥̅ℎ̅
3

𝜇̅
+ 𝑇𝑥̅. ℎ̅ + 𝑎2

𝑃𝑦̅𝑇𝑦
̅̅ ̅ℎ̅3

𝜇̅
+ (𝑎3 + 𝑎4)𝑇̅

= 𝑎3𝑇̅𝑠 + 𝑎4𝑇̅𝑡𝑓 + 𝑎5ℎ̅. 𝑃𝑥̅ + 𝑎6

𝜇̅

ℎ̅
 

(3.97) 

3.3.4 Finite Difference Formulation for Temperature Nodes 

The 4-point backward-skewed finite difference formulation explained in previous 

sections is applied to approximate the partial derivatives of temperature except in 

symmetry plane where Neumann boundary condition is approximated with backward 

difference. 

𝑎1

𝑃𝑥̅ℎ̅
3

𝜇̅∆𝑥̅̅̅̅
(
𝑇𝑖,𝑗

2
− 𝑇𝑖−1,𝑗 +

𝑇𝑖+1,𝑗

3
+

𝑇𝑖−2,𝑗

6
)

+ 𝑎2

𝑃𝑦̅ℎ̅3

𝜇̅∆𝑦̅̅̅̅
(
𝑇𝑖,𝑗

2
− 𝑇𝑖,𝑗−1 +

𝑇𝑖,𝑗+1

3
+

𝑇𝑖,𝑗−2

6
)

+
ℎ̅

∆𝑥̅̅̅̅
(
𝑇𝑖,𝑗

2
− 𝑇𝑖−1,𝑗 +

𝑇𝑖+1,𝑗

3
+

𝑇𝑖−2,𝑗

6
) + (𝑎3 + 𝑎4)𝑇𝑖,𝑗 = 𝐹 

(3.98) 

Collecting the coefficients of same finite difference nodes together, 

𝑇𝑖,𝑗 (𝑎1

𝑃𝑥̅ℎ̅
3

2𝜇̅∆𝑥̅̅̅̅
+ 𝑎2

𝑃𝑦̅ℎ̅3

2𝜇̅∆𝑦̅̅̅̅
+

ℎ̅

2∆𝑥̅̅̅̅
+ 𝑎3 + 𝑎4) + 𝑇𝑖−1,𝑗 (−𝑎1

𝑃𝑥̅ℎ̅
3

𝜇̅∆𝑥̅̅̅̅
−

ℎ̅

∆𝑥̅̅̅̅
)

+ 𝑇𝑖+1,𝑗(−
𝑐1

3⁄ ) + 𝑇𝑖−2,𝑗(−
𝑐1

6⁄ ) + 𝑇𝑖,𝑗−1 (−𝑎2

𝑃𝑦̅ℎ̅3

𝜇̅∆𝑦̅̅̅̅
)

+ 𝑇𝑖,𝑗+1(−
𝑐4

3⁄ ) + 𝑇𝑖,𝑗−2(−
𝑐4

6⁄ ) = 𝐹 

(3.99) 
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where  

𝑐0 = 𝑎1

𝑃𝑥̅ℎ̅
3

2𝜇̅∆𝑥̅̅̅̅
+ 𝑎2

𝑃𝑦̅ℎ̅3

2𝜇̅∆𝑦̅̅̅̅
+

ℎ̅

2∆𝑥̅̅̅̅
+ 𝑎3 + 𝑎4;   𝑐1 = −𝑎1

𝑃𝑥̅ℎ̅
3

𝜇̅∆𝑥̅̅̅̅
−

ℎ̅

∆𝑥̅̅̅̅
; 

𝑐2 = −
𝑐1

3⁄ ;  𝑐3 = −
𝑐1

6⁄  

𝑐4 = −𝑎2

𝑃𝑦̅ℎ̅3

𝜇̅∆𝑦̅̅̅̅
;   𝑐5 = −

𝑐4
3⁄ ;  𝑐6 = −

𝑐4
6⁄  

(3.100) 

The final compact form of the non-dimensional energy equation in finite difference 

formulation becomes as, 

𝑐0𝑇𝑖,𝑗 + 𝑐1𝑇𝑖−1,𝑗 + 𝑐2𝑇𝑖+1,𝑗 + 𝑐3𝑇𝑖−2,𝑗 + 𝑐4𝑇𝑖,𝑗−1 + 𝑐5𝑇𝑖,𝑗+1 + 𝑐6𝑇𝑖,𝑗−2 = 𝐹 (3.101) 

3.4 Underlying Equations for Structural Deformation 

Total Lagrangian formulation is used for structural analysis in COMSOL 

Multiphysics for both small and finite deformations. This means that rather than the 

current position in space, the computed stress and deformation state is always referred to 

the material configuration. Likewise, material properties are always defined for material 

particles and with tensor components referring to a coordinate system based on the 

material frame. This brings significant advantage that material properties depending on 

spatial position can be evaluated just once for the initial material configuration and do 

not change though the solid deforms and/or rotates [94]. 

 The total strain tensor for an elastic material could be defined in terms of the 

displacement gradient components as, 

𝜀𝑖𝑗 =
1

2
(𝑢𝑗,𝑖 + 𝑢𝑖,𝑗) 

(3.102) 

The stress tensor is related to the strain tensor and temperature by the Duhamel-

Hooke’s law as follows, 

𝜎 = 𝜎0 + 𝐶: [𝜀 − 𝜀0 − 𝜶∆𝑇] (3.103) 

where C denotes the 4th order elasticity tensor, “:” stands for the double-dot tensor 

product, σ0 and ε0 are initial stresses and strains, ΔT=T-Tref , and α is the thermal 

expansion tensor. The elastic energy by using the tensor components expressed as, 
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𝑊𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = ∑
1

2
𝐶𝑖𝑗𝑚𝑛(𝜀𝑖𝑗 − 𝜀𝑖𝑗

0 − 𝛼𝑖𝑗∆𝑇)(𝜀𝑚𝑛 − 𝜀𝑚𝑛
0 − 𝛼𝑚𝑛∆𝑇)

𝑖,𝑗,𝑚,𝑛

 (3.104) 

The strain tensor could be written by using the symmetry in matrix form as, 

[

𝜀𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧

𝜀𝑥𝑦 𝜀𝑦 𝜀𝑦𝑧

𝜀𝑥𝑧 𝜀𝑦𝑧 𝜀𝑧

] (3.105) 

Stress and thermal expansion tensors are also similarly represented as in the following 

matrices: 

[

𝜎𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑥𝑦 𝜎𝑦 𝜎𝑦𝑧

𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧

]   , [

𝛼𝑥 𝛼𝑥𝑦 𝛼𝑥𝑧

𝛼𝑥𝑦 𝛼𝑦 𝛼𝑦𝑧

𝛼𝑥𝑧 𝛼𝑦𝑧 𝛼𝑧

] (3.106) 

For an isotropic material, the elasticity matrix becomes, 

𝐷 =
𝐸

(1 + 𝜈)(1 − 2𝜈)

[
 
 
 
 
 
1 − 𝜈

𝜈
𝜈
0
0
0

    

𝜈
1 − 𝜈

𝜈
0
0
0

   

𝜈
𝜈

1 − 𝜈
0
0
0

 
   

0
0
0

0.5 − 𝜈
0
0

   

0
0
0
0

0.5 − 𝜈
0

   

0
0
0
0
0

0.5 − 𝜈]
 
 
 
 
 

 (3.1076) 

and the thermal expansion matrix is: 

[
𝛼 0 0
0 𝛼 0
0 0 𝛼

] (3.108) 

The strain conditions for a node are totally defined by the deformation components 

and their derivatives. The relation between the strain and deformation relies on the 

relative magnitude of the displacement. Assuming small displacement, the normal and 

shear strain components are related to the deformation as follows, 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
, 𝜀𝑦 =

𝜕𝑣

𝜕𝑦
, 𝜀𝑧 =

𝜕𝑤

𝜕𝑧
 

𝜀𝑥𝑦 =
1

2
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) , 𝜀𝑦𝑧 =

1

2
(
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
) , 𝜀𝑥𝑧 =

1

2
(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) 

(3.109) 

In cases involving combined tensile and shear stresses acting on the same point, it 

is appropriate to define an effective stress that can represent the stress combination. The 

distortion energy approach explained in [95] could be utilized to perform this for ductile 
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materials. The von Mises effective stress, 𝜎′  is defined as the uniaxial stress that would 

create the same distortion energy as it is created by the actual combination of applied 

stresses. The von Mises effective stress, 𝜎′ for three dimensional Cartesian system is 

defined as, 

𝜎′ = √
(𝜎𝑥 − 𝜎𝑦)2 + (𝜎𝑦 − 𝜎𝑧)2 + (𝜎𝑧 − 𝜎𝑥)2 + 6(𝜎𝑥𝑦

2 + 𝜎𝑦𝑧
2 + 𝜎𝑧𝑥

2 )

2
 (3.110) 

The nonlinear solver implementation of the equations explained above is based on 

the principle of virtual work. According to this principle, the sum of virtual work from 

internal strain is equal to work done by external loads. The total stored energy, Wstored, 

for a linear material from external and internal strains and loads equals: 

𝑊𝑠𝑡𝑜𝑟𝑒𝑑 = ∫(−𝜀: 𝜎 + 𝒖. 𝑭𝒗)𝒅𝒗 + ∫(𝒖.𝑭𝒔)𝒅𝝈 + ∫(𝒖. 𝑭𝑳)𝒅𝒍 + ∑(𝒖. 𝑭𝒑)

𝒑

 (3.111) 

where Fv, Fs, FL and Fp are body, surface, line and point loads respectively. The principle 

of virtual work states that δW = 0 and the solver tries to provide this equation by 

estimating the displacement, u. 

3.5 Mechanical Contact Formulation: Augmented Lagrangian Penalty Method 

When two separate surfaces touch each other such that they become mutually 

tangent, they are said to be in contact. In the common physical sense, surfaces that are in 

contact have these characteristics: 

o They do not interpenetrate. 

o They can transmit compressive normal forces and tangential friction forces.   

o They often do not transmit tensile normal forces. 

o They are therefore free to separate and move away from each other. 

Physical contacting bodies do not interpenetrate. Therefore, the program must 

establish a relationship between two surfaces to prevent them from passing through each 

other in the analysis (Figure 3.7). When the program prevents interpenetration, we say 

that it enforces contact compatibility[96]. 
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Figure 3.7: The penetration of the source boundary to the destination surface if 

contact formulation is not defined properly (Reprinted from [96]) 

 

The nonlinearity in contact problems occurs due to changing-status of the contact 

property. That is, the stiffness of the system depends on the contact status whether parts 

are touching or separated. 

In studying the contact between two bodies, one of the surfaces is taken as source 

surface and the other as destination. For rigid-flexible contact, the source surface is 

associated with the deformable body and the destination surface must be the rigid surface. 

For flexible-flexible contact, both source and destination surfaces are associated with 

deformable bodies. The source and destination surfaces constitute a "Contact Pair". The 

contact pair is asymmetric (source/destination pair). The destination contact domain is 

constrained not to penetrate the source domain, but not vice versa (Figure 3.8). 

 

 

Figure 3.8: Asymmetric contact pair definition (Reprinted from [96]) 

 

Here are some guidelines for proper selection of contact surfaces [96]:  

• If a convex surface comes into contact with a flat or concave surface, the source 

should be concave and the destination must be convex rather than the opposite. 
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• If one surface has a coarse mesh and the other has a fine mesh, the surface with the 

coarse mesh should be the destination surface. 

• If one surface is stiffer than the other, the stiffer surface should be the destination 

surface. 

• If one surface is higher order and the other is lower order, the lower order surface 

should be the destination surface. 

• If one surface is larger than the other, the larger surface should be the destination 

surface. 

The contact pair surfaces for foil bearing THD model is selected according to the 

recommended guidelines to obtain more accurate results and a better convergence profile. 

The selected boundaries could be seen in Figure 3.9. 

 

 

Figure 3.9: The contact pair definition for foil bearing model according to the 

listed guidelines 

 

The Figure 3.10 indicates where the penetration distance is defined in a contacting 

pair. The penetration distance is measured along the normal direction of the contact 

surface (at integration points) to the target surface [97]. 
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Figure 3.10: The penetration distance measurement in a contact pair [94] 

 

The commerical solver utilizes an augmented Lagrangian method to solve contact 

problems. It means that the software solves the system in a segregated way. The 

augmented Lagrangian method performs iterative series of penalty updates to find the 

Lagrange multipliers (i.e., contact tractions). Compared to the penalty method, the 

augmented Lagrangian method usually leads to better conditioning and is less sensitive 

to the magnitude of the contact stiffness coefficient. However, in some analyses, the 

augmented Lagrangian method may require additional iterations, especially if the 

deformed mesh becomes excessively distorted.  

Augmentation components are introduced for the contact pressure, Tn and the 

components, Tti of the friction traction vector, Tt. An additional iteration level is added 

where the usual displacement variables are solved separately from the contact pressure 

and traction variables. The algorithm repeats this procedure until it fulfills a convergence 

criterion. For the sake of simplicity and better convergence of the problem, frictional 

components are ignored in this study and left to future work. 

In the following equations, Fdef is the deformation gradient matrix. When looking 

at expressions evaluated on the destination boundaries, the expression map(E) denotes 

the value of the expression E evaluated at a corresponding source point. 

The penalized contact pressure is defined on the destination boundary by [94]: 

𝑇𝑛𝑝 = {
𝑇𝑛 − 𝑝𝑛𝑑𝑔 𝑖𝑓 𝑑𝑔 ≤ 0

𝑇𝑛𝑒
−

𝑝𝑛𝑑𝑔

𝑇𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.112) 

where dg is the gap/distance (Figure 3.11) between the destination and source boundary, 

and pn is the user-defined normal penalty factor defined as follows, 
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𝑝𝑛 = 𝑓𝑝
𝐸𝑒𝑞

ℎ𝑚𝑒𝑠ℎ
 (3.113) 

where Eeq is the mean of elastic modulus for the source and destination boundaries, hmesh 

is the minimum mesh size for destination boundary, and fp is user-defined penalty factor 

multiplier which is determined by trial-error after several tests. 

 

Figure 3.11: The penetration distance is used to calculate the penalized contact 

pressure by using spring analogy 

 

The definition of the initial contact pressure is another critical issue that influences 

the convergence of the contact algorithm. To start with a good guess that is in the close 

vicinity of the final solution enables an easy convergence for the contact problem. Hence, 

the initial contact pressure is defined as, 

𝑇𝑛
0 =

𝑊

𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡
 

(3.114) 

3.6 Thermal Contact Formulation: Cooper-Mikic-Yovanovich Correlation 

Modeling thermal contacts are quite intricate due to thermal constriction and heat 

flux as well as the random distribution of asperities and the unknown boundary condition 

of micro-contact properties [98]. Several models are developed to predict the contact gap 

and joint conductance between nominally flat rough surfaces. The models depends on the 

assumption that the surface asperities have Gaussian height distributions and they are 

spread over randomly on the contacting surface which has an apparent contact area, 𝐴𝑎𝑝𝑝. 

A portion of the contacting surface asperities under a mechanical load is illustrated in 

Figure 3.12. As indicated by dashed lines, each surface has a mean plane, and the distance 

between them, denoted as ∆𝑌, is related to the apparent contact pressure, the effective 

surface roughness, χ and plastic or elastic properties of the surfaces. 
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The surfaces contain irregularities of various orders ranging from shape deviations 

to irregularities of the order of interatomic distances. Usually, surface roughness relates 

to the fluctuations in the height of the surface asperities relative to a reference plane. Two 

essential methods are utilized to characterize the statistical heights of the asperities. These 

are CLA (center-line average) or arithmetic average and the standard deviation or root 

mean square (RMS) [99]. 

𝐶𝐿𝐴 =
1

𝐿
∫|𝑦(𝑥)|𝑑𝑥

𝐿

0

 
(3.115) 

𝑅𝑀𝑆 = √
1

𝐿
∫𝑦2(𝑥)𝑑𝑥

𝐿

0

 
(3.116) 

For Gaussian asperity heights with respect to the mean plane these two measures 

are related as [100]; 

𝜒 = √
𝜋

2
. 𝐶𝐿𝐴 

(3.117) 

Another critical roughness parameter is the absolute mean asperity slope defined as 

[101]: 

𝑚 =
1

𝐿
∫ |

𝑑𝑦(𝑥)

𝑑𝑥
| 𝑑𝑥

𝐿

0

 (3.118) 

The effective rms surface roughness and the effective absolute mean asperity slope 

are defined as follows; 

𝜒 = √𝜒1
2 + 𝜒2

2 
(3.119) 

𝑚 = √𝑚1
2 + 𝑚2

2 
(3.120) 
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Figure 3.12: Asperity contact parameters reprinted from [102] 

 

For standard foil bearing components, the roughness values are given by Radil et 

al. [52] as follows, 

𝜒𝑡𝑜𝑝𝑓𝑜𝑖𝑙 = 𝜒𝑏𝑢𝑚𝑝𝑓𝑜𝑖𝑙 = 0.15 𝜇𝑚, 𝜒𝑠𝑙𝑒𝑒𝑣𝑒 = 0.1 𝜇𝑚 (3.121) 

Lambert et al. [103] provide the asperity slope with an empirical equation as, 

𝑚 = 0.076𝜒0.52 (3.122) 

When roughness parameters are calculated by using these relations, we obtain the 

numbers as, 

𝜒𝑡𝑓−𝑏𝑓 = √0.152 + 0.152 = 0.212 𝜇𝑚 

𝑚𝑡𝑓−𝑏𝑓 = 0.076𝑥0.2120.52 = 0.0339 

𝜒𝑏𝑓−𝑠𝑙 = √0.12 + 0.152 = 0.18 𝜇𝑚 

𝑚𝑏𝑓−𝑠𝑙 = 0.076𝑥0.180.52 = 0.0311 

(3.123) 

The model developed by Yovanovich et al. [104] is valid for isotropic rough 

surfaces and assumes plastic deformation of the softer of the contacting surface asperities. 

The model gives three significant geometric parameters at the contact, namely, the 

relative real contact area, 𝐴𝑟𝑐𝑜𝑛/𝐴𝑎, the contact spot density n, and the mean contact spot 

radius rcon in terms of the relative mean plane separation which is defined as 𝜆 = ∆𝑌 𝜒⁄ . 
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The heat flux values at the upside and downside boundaries are determined by the 

temperature difference according to the following relations: 

−𝑛𝑑. (−𝑘𝑑∇𝑇𝑑) = −ℎ(𝑇𝑢 − 𝑇𝑑) 

−𝑛𝑢. (−𝑘𝑢∇𝑇𝑢) = −ℎ(𝑇𝑑 − 𝑇𝑢) 

(3.124) 

Three conductance parameters contribute to the joint conductance, h that are the 

constriction conductance, hc, comes from the contacting asperity spots, the gap 

conductance, hg because of the gas at the gap due to the rough surface property, and the 

radiative conductance, hr. 

ℎ = ℎ𝑐 + ℎ𝑔 + ℎ𝑟 (3.125) 

When the temperature is less than 600˚C, hr is relatively small compared to other 

conductance components and could be neglected for the sake of simplicity since the 

temperature does not exceed 200˚C for most of the cases presented in this work. 

Contact conductance is defined as, 

ℎ𝑐 =
2𝑛𝑠𝑝𝑜𝑡𝑟𝑐𝑜𝑛𝑘𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝛹(𝜖)
 [𝑊 𝑚2𝐾⁄ ] (3.126) 

where the effective thermal conductivity of the joint is 

𝑘𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
2𝑘𝑢𝑘𝑑

𝑘𝑢𝑘𝑑
 [𝑊 𝑚𝐾⁄ ] (3.127) 

and the constriction parameter Ψ, is approximated by 

𝛹(𝜖) = (1 − 𝜖)1.5 𝑓𝑜𝑟 0 < 𝜖 < 0.3 (3.128) 

where the relative contact spot size 𝜖 = √𝐴𝑟𝑐𝑜𝑛/𝐴𝑎. 

For assumed plastic deformation of the contacting asperities, following equations 

are utilized to obtain the contact geometric parameters [101, 104]: 

𝐴𝑟𝑐𝑜𝑛

𝐴𝑎
=

1

2
𝑒𝑟𝑓𝑐 (

𝜆

√2
) (3.129) 

𝑛 =
1

16
(
𝑚

𝜒
)
2 exp (−𝜆2)

𝑒𝑟𝑓𝑐 (
𝜆

√2
)
 (3.130) 
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𝑟𝑐𝑜𝑛 = √
8

𝜋

𝜒

𝑚
𝑒𝑥𝑝 (

𝜆2

2
)𝑒𝑟𝑓𝑐 (

𝜆

√2
) 

(3.131) 

𝑛𝑟𝑐𝑜𝑛 =
1

4√2𝜋

𝑚

𝜒
𝑒𝑥𝑝 (

−𝜆2

2
) (3.132) 

The correlation for the parameters are as follows, 

⟹
𝐴𝑟𝑐𝑜𝑛

𝐴𝑎
= exp (−0.8141 − 0.61778𝜆 − 0.42476𝜆2 − 0.004353𝜆3) (3.133) 

n = (
𝑚

𝜒
)
2

exp (−2.6516 − 0.6178𝜆 − 0.5752𝜆2 − 0.004353𝜆3) (3.134) 

𝑟𝑐𝑜𝑛 =
𝜒

𝑚
(1.156 − 0.4526𝜆 + 0.08269𝜆2 − 0.005736𝜆3) (3.135) 

The relative mean plane separation for plastic deformation is given by 

𝜆 = √2𝑒𝑟𝑓𝑐−1 (
2𝑇𝑛

𝐻𝜇
) (3.136) 

where Hµ is the microhardness of the softer of the contacting asperities. The required 

microhardness value could be obtained from the relative contact pressure Tn/Hμ. The 

explicit relationship for plastic deformation is defined by Song and Yovanovich [105] as 

𝑇𝑛

𝐻𝜇
= [

𝑇𝑛

𝑏1(1.62𝜒/𝑚)𝑏2
]
1/(1+0.071𝑏2)

 (3.137) 

where the coefficients b1 and b2 are obtained from Vickers microhardness tests. Sridhar 

and Yovanovich [106] developed correlation equation for Vickers measurements to 

Brinell hardness, HB  as follows, 

𝑏1

𝐻0
= 4 − 5.77

𝐻𝐵

𝐻0
+ 4(

𝐻𝐵

𝐻0
)
2

− 0.61 (
𝐻𝐵

𝐻0
)

3

 
(3.138) 

𝑏2 = −0.37 + 0.442 (
𝐻𝐵

𝑏1
) (3.139) 

where H0 =3.178 GPa. For similar materials used in the analysis, the coefficients are 

given by Hegazy [102] as follows, 
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𝑏1 = 6.271 𝐺𝑃𝑎, 𝑏2 = −0.229 (3.140) 

The contact pressure, Tn is dynamically updated from the contact formulation 

solutions during Newton-Raphson iterations. 

Finally, the contact conductance, hc is given as, 

ℎ𝑐 =
𝑚𝑘𝑐𝑜𝑛𝑡𝑎𝑐𝑡

2𝜒√2𝜋

exp (−
𝜆2

2 )

[1 − √0.5𝑒𝑟𝑓𝑐 (
𝜆

√2
)]

1.5 
(3.141) 

For a wide range of λ and Tn/Hμ, the correlation equation is defined by Yovanovich [104] 

as 

ℎ𝑐 = 1.25
𝑚𝑘𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝜒
(
𝑇𝑛

𝐻𝜇
)

0.95

 (3.142) 

The gap conductance due to the interstitial fluid could not be neglected for high 

contact pressure or thermally high conductive fluids. Even though the conductivity of air 

is very small, due to the small contact area between bumpfoil and topfoil structures, the 

contact pressure reaches up to 30-40 MPa in some cases. Hence, the gap conductance 

should be taken into consideration. For the parallel-plate assumption gap conductance 

due to the air is defined as, 

ℎ𝑔 =
𝑘𝑔

∆𝑌 + 𝑀𝑔
 (3.143) 

where kg is the gas conductivity and Mg is the gas parameter equal to: 

𝑀𝑔 = 𝜂𝛽𝛤, 𝛤 =
𝑘𝐵𝑇𝑔

√2𝜋𝐷𝑎𝑣𝑔
2𝑃𝑔

 (3.144) 

Here η is the contact thermal accommodation parameter, β is a gas property 

parameter (equal to 1.65 for air), Γ is the gas mean free path, kB is the Boltzmann constant, 

Davg is the average gas particle diameter (equal to 0.37 nm for air), Pg is the gas pressure 

and Tg is the gap temperature calculated as: 
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𝑇𝑔 =
𝑇𝑢 + 𝑇𝑑

2
 (3.145) 

Song and Yovanovich [105] developed a correlation for the contact thermal 

accommodation parameter, η as follows: 

𝜂 = 𝑒𝑥𝑝 [𝐶0 (
𝑇𝑔 − 𝑇0

𝑇0
)] (

1.4𝑚𝑔

𝐶1 + 1.4𝑚𝑔
)

+ {1 − 𝑒𝑥𝑝 [𝐶0 (
𝑇𝑔 − 𝑇0

𝑇0
)]} (

2.4𝜇

(1 + 𝜁)2
) 

(3.146) 

where the ratio of the molecular weight of gas and solid, 𝜁 =
1.4𝑚𝑔

𝑚𝑠
,  and the constants C0 

= -0.57, C1 = 6.8, and T0 = 273 K. The accommodation parameter, η changes from 0.8414 

to 0.7929 when Tg has increased from 300˚K to 400˚K. Thus, for the sake of simplicity 

we could take a mean value for η as 0.82 without any significant deviation from reality. 
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4 NUMERICAL SOLVER PROPERTIES 

The purpose of the method presented here is to directly couple the finite difference 

approach for temperature distribution of the lubricant film to the bearing deformation and 

hydrodynamic flow that are coupled within a single finite element formulation. The 

model couples the deformation of the underlying foil structure with hyrodynamic 

pressure generated at the hydrodynamic film by solving Reynolds Equation within a 

commercial Finite Element Analysis (FEA) code. The bending effects of the top foil were 

also investigated, considering energy dissipation due to deflection of top foil and bump 

foil. Furthermore, it accounts for temperature change in the film gap due to the viscous 

dissipation and compressibility of the fluid by solving the bulk flow energy equation in 

an in-house routine exploits Finite Difference Method (FDM) that is iteratively coupled 

to the FEA code. The mechanical contacts between bearing assembly components are 

modeled with Augmented-Lagrangian penalty method. The thermal contact is also 

included into the model with an advanced approach called Cooper-Mikic-Yovanovich 

(CMY) correlation which is discussed in previous sections. The model involves complete 

bearing mechanism as well as the interacting section of the shaft with the bearing. The 

thermal growth of the shaft, foil structure, bearing sleeve, and centrifugal growth of the 

shaft are also taken into account. The details of each section is explained below. 

4.1 Finite Element Model for Fluid-Structure Interaction (FSI) Model Including 

Shaft Heat Transfer 

The finite element model presented here couples the hydrodynamic pressure 

created in the wedging film gap between shaft and topfoil surfaces, and the deformation 

of the compliant topfoil surface due to this pressure. The code also accounts for conjugate 

heat transfer mechanisms and related thermal effects on the structure by relating the film 

temperature to the surrounding surfaces through convective heat transfer model. 
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Structural and thermal boundary conditions defining the problem is given in following 

sections. The solver configuration and solution procedure is also detailed below. 

4.1.1 Structural Boundary Conditions for FSI Problem 

The welded sections of the bumps are displayed in Figure 4.1. The bumps in the 

neighborhood of the welded regions will have higher stiffness values. The topfoil is 

welded merely from the trailing edge to enable free deflection. The sleeve is fixed 

everywhere. 

 

Figure 4.1: Bumps are fixed at specific regions to provide adequate stiffness 

distribution for expected pressure profile 

 

Cartesian coordinate system is used for the foil bearing assembly and the shaft. The 

coordinate system is illustrated in Figure 4.2. The x-coordinate axis indicates the 

circumferential direction, the y-coordinate axis indicates the axial direction and the z axis 

states for radial direction. Since the radius of the bearing is very large compared to the 

bump radius and film gap thickness, the cylindrical coordinate system is not preferred for 

the sake of simplicity. 
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In the foil bearing assembly, the bump geometry is equivalent in axial direction. 

Hence, to reduce the computational effort for the problem, the model is assumed to be 

symmetric in y-direction as shown in Figure 4.3. This will result in more deformation on 

the bumps that are close to the center because higher pressure load is expected around the 

center. 

 

Figure 4.2: The coordinate system for foil bearing assembly and the shaft 

 

 

Figure 4.3: The model is symmetric in axial direction and the symmetry 

boundaries are shown as highlighted 



76 

 

 

Figure 4.4: The detailed view of the underlying bump geometry 

4.1.2 Thermal Boundary Conditions 

 

Figure 4.5: Schematic representation of radial heat flow paths in CFB 

 

The proposed model integrates different radial and axial heat flow paths that are 

listed in Table 4.1. Radial and axial heat flow directions are represented in Figure 4.5 and 

Figure 4.6, respectively. In the thin film gap between the shaft and the topfoil, heat is 
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generated due to the compressibility of the air and viscous dissipation. Conjugate heat 

transfer happens between interacting fluid and solid domains. Thermal resistance effects 

between contacting surfaces, which is explained in previous sections, are also considered 

during calculation of heat transfer. The released heat is partially absorbed by surrounding 

components until the system reaches thermal equilibrium. When system comes into 

steady state, additional heat is removed through convection and conduction to the shaft 

and topfoil. If a cooling stream inside the hollow shaft exist, it carries out the removed 

heat from the shaft. Otherwise, heat is removed slowly by natural convection from shaft 

surfaces that are open to ambient as shown in Figure 4.6. 

 

Figure 4.6: Schematic representation of axial heat flow paths in CFB and shaft 

 

Outer surface of the shaft and inner surface of the topfoil are interacting directly 

with the fluid film. If the transient physical contact at start/stop cycles are ignored, the 

main heat flow mechanism is convective heat transfer between the fluid in the film gap 

and surrounding components. The temperature of the fluid, Tg is calculated by finite 

difference code and applied to the surrounding surfaces by one-to-one mapping method. 

The calculated temperature values and heat transfer coefficients are exported to a file in 
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harddisk and it is then imported to FEA code as interpolation function for ambient 

temperature convective heat transfer coefficient. 

Temperature 

Node 
Description 

𝑻𝟏 Ambient or coolant temperature inside the hollow shaft.  

𝑻𝟐 

Temperature of the inner surface of the shaft. Heat flux is estimated 

by solving the following equation: 

 𝑞2
′′ = −𝑘𝑠

𝜕𝑇

𝜕𝑧
= ℎ13(𝑇1 − 𝑇2)  

𝑻𝟑 

Temperature of the outer surface of the shaft. Heat flux is defined 

by equating the conduction and convection from the film: 

 𝑞𝑠
′′ = ℎ𝑠(𝑇𝑔 − 𝑇3) = −𝑘𝑠

𝜕𝑇

𝜕𝑧
 

𝑻𝟒 

Inner surface temperature of topfoil. Heat flux by convection from 

the film and conduction through foil is defined as: 

 𝑞𝑡𝑓
′′ = ℎ𝑡𝑓(𝑇𝑔 − 𝑇4)−= −𝑘𝑡𝑓

𝜕𝑇

𝜕𝑧
 

𝑻𝟓 

Outer surface temperature of topfoil. Heat flux through convection 

from outer cooling stream and conduction to the bumps considered 

thermal resistance between bumpfoil and topfoil: 

 𝑞5
′′ = ℎ𝑐𝑜𝑜𝑙(𝑇𝑐𝑜𝑜𝑙 − 𝑇5) +

1

𝑅𝑡𝑓−𝑏𝑓
(
𝑘𝑏𝑓+𝑘𝑡𝑓

2
)

𝜕𝑇

𝜕𝑧
= −𝑘𝑡𝑓

𝜕𝑇

𝜕𝑧
 

𝑻𝟔 

Outer surface temperature of bumpfoil. Heat flux is defined by:  

𝑞6
′′ = ℎ𝑐𝑜𝑜𝑙(𝑇𝑐𝑜𝑜𝑙 − 𝑇6) + 𝑘𝑏𝑓

𝜕𝑇

𝜕𝑧
=

1

𝑅𝑡𝑓−𝑏𝑓
(
𝑘𝑏𝑓 + 𝑘𝑡𝑓

2
)

𝜕𝑇

𝜕𝑧
 

𝑻𝟕 

Inner surface temperature of bumpfoil. Heat flux is defined by:  

𝑞7
′′ = ℎ𝑐𝑜𝑜𝑙(𝑇𝑐𝑜𝑜𝑙 − 𝑇7) +

1

𝑅𝑏𝑓−𝑠𝑙
(
𝑘𝑏𝑓 + 𝑘𝑠𝑙

2
)

𝜕𝑇

𝜕𝑧
= −𝑘𝑏𝑓

𝜕𝑇

𝜕𝑧
 

𝑻𝟖 

Inner surface temperature of sleeve. Heat flux is defined by:  

𝑞8
′′ = ℎ𝑐𝑜𝑜𝑙(𝑇8 − 𝑇𝑐𝑜𝑜𝑙) + 𝑘𝑠𝑙

𝜕𝑇

𝜕𝑧
=

−1

𝑅𝑡𝑓−𝑏𝑓
(
𝑘𝑏𝑓 + 𝑘𝑠𝑙

2
)

𝜕𝑇

𝜕𝑧
 

𝑻𝟗 

Outer surface temperature of sleeve. Heat flux is defined by: 

𝑞9
′′ = ℎ𝑠𝑙(𝑇𝑎 − 𝑇8) = −𝑘𝑠𝑙

𝜕𝑇

𝜕𝑧
 

𝑻𝟏𝟎 Ambient temperature, 𝑇𝑎 

𝑻𝟏𝟏 Symmetry plane temperature where heat flux is defined by: 
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−𝒏. (−𝑘
𝜕𝑇

𝜕𝑦
) = 0 

𝑻𝟏𝟐 

Front surface temperature of the sleeve. Net heat flux is 

approximated by: 

−𝑘𝑠𝑙

𝜕𝑇

𝜕𝑦
= ℎ𝑛𝑐(𝑇12 − 𝑇𝑎) 

𝑻𝟏𝟑 

Outer surface temperature of the shaft subjected to open air: 

−𝑘𝑠

𝜕𝑇

𝜕𝑦
= ℎ𝑛𝑐(𝑇13 − 𝑇𝑎) 

𝑻𝟏𝟒 

Cross-section surface temperature of shaft: 

−𝒏. (−𝑘𝑠

𝜕𝑇

𝜕𝑦
) = 0 

Table 4.1: Heat flow paths for the CFB and shaft 

4.1.3 Solver Configurations 

Fluid-structure interaction with contacting surfaces including Reynolds equation 

makes the problem highly nonlinear. Moreover, thin structure of the foil over a larger 

geometry converts the problem to a stiff one. To yield a reasonable output, the analysis 

must be carefully configured and an optimized solver for this problem must be selected. 

For this type of problems, COMSOL applies a fully coupled nonlinear solver that uses an 

affine invariant form of the damped version of Newton’s method [107] which is explained 

in [108]. The linear solver for the intermediate calculations are realized by the parallel 

sparse direct linear solver PARDISO (Parallel Sparse Direct and Multi-Recursive 

Iterative Linear Solvers). In the following sections, the solvers are explained in detail. 

4.1.3.1 PARDISO direct solver 

The PARDISO solver operates on general systems of the form Ax = b. To enhance 

sequential and parallel sparse numerical factorization performance, the underlying 

algorithm of the solver is based on a Level-3 BLAS update. The BLAS (Basic Linear 

Algebra Subprograms) are routines that provide standard building blocks for performing 

basic vector and matrix operations where the Level 1 BLAS perform scalar, vector and 

vector-vector operations, the Level 2 BLAS perform matrix-vector operations, and the 
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Level 3 BLAS perform matrix-matrix operations [109]. This system benefits from 

pipelining parallelism with a combination of left-looking and right-looking supernode 

techniques. PARDISO is multithreaded parallel solver on platforms that support 

multithreading [110]. By means of multithreading, the computational time greatly 

reduces especially if the degree of the freedom in the system is considerably high. The 

numerical stability and scalability during element factorization is provided by means of 

supernode pivoting in parallel pivoting methods.  

PARDISO calculates the solution of a set of sparse linear equations with multiple 

right-hand sides, Ax=b; using a parallel LU, LDL or LLT factorization, where A and x are 

n-by-n matrices and b is n-by-one vector [111]. First of all, the solver computes a 

symmetric permutation based on either the minimum degree algorithm [112] or the nested 

dissection algorithm from the METIS package [113] (which  is a set of serial programs 

for partitioning graphs, partitioning finite element meshes, and producing fill reducing 

orderings for sparse matrices [114]), followed by the parallel left-right looking numerical 

Cholesky factorization [115]. Diagonal pivoting for symmetric indefinite matrices is used 

by the solver and an approximation of x is found by forward and backward substitution 

through iterative refinement. The coefficient matrix is perturbed whenever numerically 

acceptable pivots cannot be found within a diagonal supernode block. One or two passes 

of iterative refinement may be required to correct the effect of the perturbations. 

Furthermore, this method is accurate for large set of matrices from different applications 

areas as accurate as a direct factorization method that uses complete sparse pivoting 

techniques [116]. 

4.1.3.2 Nonlinear solver: Double Dogleg 

Numerical methods used to solve for nonlinear optimization problems are iterative. 

For example, at the kth iteration, a current approximate solution for the problem xk is 

available. A new point xk+1 is computed by certain techniques, and this process is repeated 

until the solver converges to an accepted optimum point. The classical conventional 

methods for optimization problems are line search algorithms like conjugate gradient 

descent, Newton’s method or Quasi-Newton method. Such an algorithm obtains a search 

direction in each iteration according to some pre-defined criteria, and searches along this 

direction to obtain a better optimum point. The search direction is a descent direction, 
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normally computed by solving a sub-problem that approximates the original optimization 

problem near the current iterate. Thus, there always exist better points along the search 

direction unless a stationary point is reached.  

Trust region algorithms are a class of relatively new algorithms. The trust region 

approach is strongly related with approximation techniques. An approximate model can 

be constructed near the current point if a current guess of the solution for the optimization 

problem exists. The next iteration point is evaluated by using the solution of the 

approximate model. Actually, most line search algorithms also solve approximate models 

to determine search directions. However, in a trust region algorithm, the approximate 

model is selected merely in a region close to the current iteration point. The reason behind 

this idea is that for general nonlinear functions local approximation models can only fit 

the original function locally. The region that the approximate model is trusted as a good 

fit to the original problem is called as the trust region. A trust region is defined normally 

in a neighborhood centered at the current iterate. The trust region could be adjusted from 

iteration to iteration according to the quality of the approximation model. If the 

computations indicate a well approximation to the original problem, the trust region can 

be expanded. On the other hand, when the approximate model does not work well enough, 

the trust region should be shrinked. 

Due to the bounded nature of the trust region approach, trust region algorithms can 

use non-convex approximate models. This property brings an advantage to trust region 

algorithms compared to line search algorithms. Trust region algorithms are thus, reliable 

and robust, they can be applied to ill-conditioned problems, and they have very strong 

convergence properties. 

Trust region sub-problems are essential to trust region algorithms. Since each 

iteration of a trust region algorithm requires a solution to a trust region sub-problem, 

finding an efficient solver for trust region sub-problems is very critical [117]. An efficient 

method to solve the trust region sub-problems is the so-called Dogleg method which was 

presented by Powell [118]. To find an approximate solution for the sub-problem, i.e., to 

find 𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘 such that ‖𝑠𝑘‖ = ∆𝑘, Powell used a path composed of two line 

segments to approximate sk. The first line segment runs from the current iteration point 

to the Cauchy point (which is a point generated by the steepest descent method and solves 

the quadratic model with the given current values); the second line segment runs from 

the Cauchy point to the Newton point (next iteration point). Let 𝑥𝑘+1 be the intersection 
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point of the path and the trust-region boundary. Obviously, ‖𝑥𝑘+1 − 𝑥𝑘‖ = ∆𝑘. If the 

Newton step satisfies ‖𝑠𝑘‖ ≤ ∆𝑘, the new iterate 𝑥𝑘+1 becomes the Newton point.  

Dennis and Mei [119] proposed that if the point generated by trust region iteration 

is biased towards the Newton direction, the behavior of the algorithm is further improved. 

Then we choose a point 𝑁̅ on the Newton direction, and connect the Cauchy point to 𝑁̅. 

The intersection point of the connection line and the trust region boundary is considered 

as the new iterate 𝑥𝑘+1. So, the algorithm follows 𝑥𝑘 → 𝐶𝑃 → 𝑥𝑘+1
𝑁  for dogleg, and 𝑥𝑘 →

𝐶𝑃 → 𝑁̅ → 𝑥𝑘+1
𝑁  for double dogleg approach [120]. 

4.2 Finite Difference Code for Film Temperature 

The energy equation for the film temperature between the shaft and topfoil is solved 

by utilizing the finite difference approximation explained in previous sections. The 

structure of the solution matrix depends on the order chosen to enumerate the unknowns. 

A 2D domain is required to define the film temperature. Unfortunately, in two space 

dimensions the structure of the stiffness matrix is not compact, and the nonzero terms 

cannot be regularly clustered near the main diagonal [87]. The natural rowwise ordering 

is a good alternative where the unknowns along the bottom row, u11, u21, u31, … um1, 

followed by the unknowns in the second row u12, u22, …, um2, and so on, as shown in 

Figure 4.7. Following index change formula is used to define the node order in the code. 

𝑘 = (𝑗 − 1)𝑚 + 𝑖 (4.1) 

The origin is placed on the left corner where x and y axes correspond to the 

circumferential and axial directions respectively. The boundary conditions for the domain 

are defined as follows; 

 𝑇(0, 𝑦) = 𝑇𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 

𝑇(𝜃𝑙𝑒𝑎𝑑𝑖𝑛𝑔 , 𝑦) = 𝑇𝑙𝑒𝑎𝑑𝑖𝑛𝑔 

𝑇(𝑥, 𝐿) = 𝑇𝑎 

𝜕𝑇

𝜕𝑦
|𝑦=0 = 0 

(4.2) 
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Figure 4.7: A portion of the computational grid for the two-dimensional thermal 

model of the film gap. The nodes are ordered in the natural row-wise. 

 

Topfoil detachment leads gas film pressure to decrease below ambient pressure 

[121]. Therefore, fresh cold air is not expected to enter from the axial boundaries into the 

film. Near the leading edge of the top foil, a thermal mixture between coolant and 

circulating flows will occur, as shown in Figure 4.8. Mass conservation and energy 

balances gives the leading edge temperature as 

 

𝑇𝑙𝑒𝑎𝑑𝑖𝑛𝑔 =
(1 − 𝛱)𝑚̇𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔𝑇𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 + 𝛱𝑚̇𝑐𝑜𝑜𝑙𝑇𝑐𝑜𝑜𝑙

𝑚̇𝑙𝑒𝑎𝑑𝑖𝑛𝑔
 (4.3) 

where   

𝑚̇𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔 = ∫(𝜌ℎ𝑈)|𝜃=𝜃𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔
𝑑𝑦

𝐿

0

, 𝑚̇𝑙𝑒𝑎𝑑𝑖𝑛𝑔 = ∫(𝜌ℎ𝑈)|𝜃=𝜃𝑙𝑒𝑎𝑑𝑖𝑛𝑔
𝑑𝑦

𝐿

0

 
(4.4) 
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Figure 4.8: An illustration for thermal mixing conditions within the film between 

trailing and leading edges of top foil 

 

The thermal mixing parameter, Π <1 is determined empirically and it is a function 

of the externally applied cooling flow and the bearing configuration [63]. 

Temperature values at trailing and leading edges of the topfoil surface are taken 

from FEA to the FDM code to define boundary conditions. In addition, the node 

temperatures of the topfoil and shaft surfaces are included in the FDM solver as explained 

in Section 3.3. Typical temperature distribution on topfoil and shaft surfaces are given in 

Figure 4.9. 

 

Figure 4.9: Typical temperature distribution in a) Topfoil b) Shaft 

 

There are essentially two different approaches to solve the large linear systems 

arising from discretizing elliptic equations as in this study. An iterative method starts with 

an initial guess for the unknowns and attempts to improve the solution via iterative 
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procedure. The code stops when the difference between two consecutive iterations falls 

below a pre-defined error criteria. Another approach is using a direct method such as 

Gaussian elimination which yields an exact solution in a finite number of iterations [87]. 

Iterative methods are more economic in terms of memory storage but less stable for most 

cases. If adequate storage and efficient elimination techniques are used, direct method 

provided much more stable solutions in fewer number of iterations. Therefore, direct 

method is selected due to its superior properties even though it requires more complex 

coding algorithms and computational resources. 

Hydrodynamic pressure distribution and film thickness change over the domain are 

also included in the solution process. Typical pressure distribution and film thickness 

change in a foil bearing are displayed in Figure 4.10. They are also exported to the FDM 

code, and used in calculation of the fluid film temperature. 

 

 

Figure 4.10: Typical a) Hydrodynamic pressure distribution and b) Film thickness 

in a foil bearing 

4.2.1 The Flowchart of Finite Difference Code 

The overall flow of the finite difference code is given in Figure 4.11. The code 

starts by taking the input parameters for the current iteration including hydrodynamic 

pressure distribution, film thickness change over topfoil surface, temperature distribution 

on topfoil and shaft surfaces, initial clearance between shaft and topfoil surface, shaft 

surface speed, trailing and leading edge temperatures. The initialization for parameters 



86 

 

involves initial definitions for temperature dependent material properties, geometry 

dimensions and temporary vectors/matrices. Non-dimensional forms of the solution 

parameters are used to avoid the matrices to become numerically stiff. The grid numbers 

are chosen carefully such that the position of the nodes in FDM code exactly corresponds 

to the nodes in FEA. This is critical because the temperature values of the nodes are 

assigned to the FEA nodes by using the position information. Another alternative might 

be using a mapping algorithm which would increase the complexity of the code further, 

and most probably cause additional instabilities. The code continues with the calculation 

of the coefficients of the surrounding nodes given in Eq. 3.87. Non-symmetrical sparse 

stiffness matrix is constructed by using these coefficients as shown in Figure 4.12. The 

matrix is solved by using LU matrix factorization technique which expresses the stiffness 

matrix A as the product of two essential triangular matrices, one of them a permutation 

of a lower triangular matrix, L and the other an upper triangular matrix, U [122]. To 

improve the stability of the calculation further, row permutation matrix satisfying the 

equation L*U=P*A is also utilized.  
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Figure 4.11: The flowchart of the Finite Difference Code to solve for film gap 

temperature 

 

When the factorization completes, the algorithm checks whether following error 

criteria is satisfied; 

‖𝑇𝑘 − 𝑇𝑘−1‖ = 𝜀𝑒𝑟𝑟 (4.5) 

𝜀𝑒𝑟𝑟 is taken as 0.01 which is sufficient to decide on convergence for film temperature 

change. If the difference between two consecutive iterations does not satisfy the error 

criteria, material properties including dynamic viscosity, μg, thermal conductivity, kg and 

density, ρg are updated with respect to the current temperature values for each node. The 
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calculation and required updates keep going until convergence is achieved. When the 

convergence is obtained, the gas film temperature, Tg and convection coefficients of 

topfoil and shaft surfaces, htf,, hj are written to a text file in harddisk. This file is imported 

by FEA code to estimate the convective heat flux between fluid film and interacting 

surfaces. The details for this process are explained in the next section. 
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Figure 4.12: Non-symmetrical sparse matrix for fluid film temperature 
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4.3 Coupling FEA and FDM 

The flow diagram for coupled TEHD solver is displayed in Figure 4.13. The code 

initiates by solving coupled hydrodynamic pressure and structural deformation in FEA 

model. The film thickness in Reynolds’ Equation is a function of deformation. On the 

other hand, the deformation is basically calculated by applying hydrodynamic pressure 

on topfoil surface and also taking thermal effects into account. Hence, the problem is a 

kind of fully coupled two way fluid-structure interaction (FSI) type. The solution of FEA 

problem gives the pressure distribution on topfoil surface, film thickness change and 

temperature distributions both on topfoil and shaft surfaces. These parameters are utilized 

in FDM to calculate the film temperature by solving the energy equation described in 

Section 4.2. When film temperature code converges, the temperature of the fluid film and 

convection coefficients for shaft and topfoil surfaces are exported to a file in harddisk. 

Actually, there are more obvious ways to connect two softwares such as using special 

functions that simultaneously solve both code. However, this reduces the speed of the 

solver drastically and causes unnecessary additional calculations. Thus, an iterative 

sequential solving methodology is preferred to simplify and accelerate the solver. The 

exported file is imported by FEA model to be utilized in interpolation functions. 

Interpolation functions are beneficial to eliminate or reduce the cost for possible problems 

that may be encountered during exporting the position information of element nodes. 

These parameters are used to define convection boundary conditions on topfoil and shaft 

surfaces. FEA code reruns with newly given structural and thermal boundary conditions. 

The convergence criteria for the solver is the difference of temperature of the fluid film 

for two consecutive sequential iterations. If the temperature does not change significantly, 

the solver decides that the analysis is sufficiently converged. If the change is 

considerable, material properties are updated according to the new temperature values 

and analysis continues until convergence criteria satisfied. 
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Figure 4.13: Flow diagram for coupled TEHD analysis including FDM and FEA 
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5 RESULTS AND DISCUSSION 

5.1 Model Validation: TEHD Model Predictions versus Experimental Data 

The TEHD model developed in this study is benchmarked to the experimental work 

of Radil and Zeszotek [59] that presented measurements of temperature in a CFB for a 

number of speed and load conditions. The temperature data is collected by attaching nine 

K-type thermocouples underneath certain bumps that are in the center and along the 

bearing edges. The thermocouples are welded to the backside of the contacting region of 

the bumps to the bearing surface to observe maximum temperatures in the air film. The 

temperature readings from the TEHD model is performed for similar regions by putting 

measurement probes in the model as illustrated in Figure 5.1. The axial length of the 

tested CFB is 41 mm and the diameter is 50 mm. Note however that Ref. [59] does not 

provide the details for the foil material or the bump strip layers geometry. The assumed 

parameters for bearing geometry are taken from Ref. [63] and listed in Table 2.1. The 

material for the bearing is considered to be Inconel X750 which is common for foil 

bearings due to its superior spring properties especially at elevated temperatures. The 

shaft material is assumed to be Inconel 718. Temperature dependent material properties 

for both materials are given in Appendix A. 

The tests are conducted for applied static load of increments increasing from 9 N 

to 222 N. After reaching steady state condition, thermocouples welded beneath certain 

bumps record metal temperatures. The measurements indicate sudden increase in 

temperature as the shaft starts to rotate because of the tight assembly clearance. Similarly, 

as static radial load increases temperature readings steadily increase. Axial temperature 

gradients are also increasing as the shaft speeds up. The peak temperature measurements 

are along the bearing midplane independent from tangential position of the bumps. 
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Figure 5.1: Schematic view of the thermocouple locations and numbering 

convention of the bumps. The model is axially symmetric in the center and the 

locations at the edges are identical. 

 

 

Figure 5.2: Comparison of the film temperatures prediction at bearing center and 

edges for various shaft speeds. The comparison is performed for the radial load of 

222 N. The dashed lines belong to the TEHD model whereas the continuous lines 

are for experimental data taken from Ref. [59]. 

80

100

120

140

160

180

200

220

4 5 6

Te
m

p
e

ra
tu

re
 [

d
e

gC
]

Thermocouple Location

20 krpm Exp 30 krpm Exp 40 krpm Exp 50 krpm Exp

20 krpm CAE 30 krpm CAE 40 krpm CAE 50 krpm CAE



94 

 

 Temperature readings from the experiment for thermocouple locations of #4, #5 

and # 6 that shows the axial temperature distribution in the vicinity of maximum pressure 

zone are compared to the results obtained from TEHD model as given in Figure 5.2. The 

results are in agreement in terms of magnitude except that axial temperature gradient is 

smaller in the model compared to the test results. The temperature values are higher in 

the center than the edges independent from the shaft speed. The shaft speed has a drastic 

effect on temperature increase for all locations. The difference between the model and 

the test results indicate the transient characteristics of the viscous heating. The steady 

state model does not capture the transient effects adequately but simulates the average 

trend very well. 

 

Figure 5.3: Prediction of the film temperatures at the bearing center and edge with 

respect to the radial load. The data are taken for the shaft speed of 40 krpm. The 

dashed lines belong to the TEHD model whereas the continuous lines are for 

experimental data taken from Ref. [59] 

 

 The change of the temperature readings at the bearing midplane and bearing edge 

from the experiment and corresponding values from the TEHD analysis with respect to 

the increasing radial load is displayed in Figure 5.3. The trend of the temperature increase 

is parabolic as the applied load increases. The TEHD study predicts slightly higher 
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temperatures than the experiment but captures the behavior very well. The agreement is 

more obvious for intermediate loading values. 

 Figure 5.4 depicts the role of the changing shaft speed on bearing surface 

temperature both at the bearing center and edges. The temperature is increasing quickly 

as shaft speed increases. Note that temperature nearly doubles when the speed doubles. 

This is an expected result due to the increasing shear heat effect of the shaft surface due 

to thin film. Both the predictions and measurements illustrate that the temperature is 

higher in the bearing center compared to the edges. Another critical observation from this 

plot is the requirement to an external axial cooling system that would replace the heated 

circulating fluid with fresh air and prevent a possible failure of the bearing due to thermal 

runaway. As stated in previous sections, one of the advantages of the foil bearing is its 

operation capability at very high surface speeds. However, this analysis demonstrates that 

without an advanced cooling mechanism the bearing could not operate at high speeds due 

to the rapid heat generation in the fluid film. 

 

Figure 5.4: Prediction of the film temperatures at the bearing center and edge with 

respect to the shaft speed. The data are taken for the radial load of 133 N. The 

dashed lines belong to the TEHD model whereas the continuous lines are for 

experimental data taken from Ref. [59]. 
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 The comparison of the predictions of the TEHD study and measurements from the 

experiment for the effect of the shaft speed and radial load on temperature increase in the 

bearing center is given in Figure 5.5. The predicted temperatures correlate favorably with 

the measurements especially for low speeds but begin to deviate as shaft speed increases. 

The shaft speed increase contributes to the heating of the bearing surface more than the 

radial load. Accelerating the shaft 10 krpm results approximately 30˚C temperature 

increase in bearing center.  

 

Figure 5.5: Prediction of the film temperatures at the bearing center in 

thermocouple location of #1 with respect to the radial load. The data are taken for 

various shaft speeds. The dashed lines belong to the TEHD model whereas the 

continuous lines are for experimental data taken from Ref. [59] 

 

 The complete list for the temperature measurements and corresponding predictions 

from the TEHD model is presented in Table 5.1 There is a good agreement between the 

predicted temperatures from the developed TEHD model and measurements from the 

experiment detailed in Ref. [59]. This benchmark study indicates that the proposed model 

captures the physics of the CFB under various operation conditions and could be utilized 

in further investigation of foil bearings. 
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Shaft 
Speed 

TC 
Loc. 

Radial Load 

44 N 
Lit. 

44 N  
CFD 

89 N  
Lit. 

89 N  
CFD 

133 N  
Lit. 

133 N  
CFD 

178 N  
Lit. 

178 N  
CFD 

222 N  
Lit. 

222 N  
CFD 

20 
krpm 

1 69 72.3 74 72.3 81 81.6 86 84.7 90 92.6 

2 65 70.8 70 70.8 76 80 81 83.1 85 90.9 

3 61 70.8 66 70.8 72 80 77 83.1 80 90.9 

4 77 73.6 82 73.9 90 82.9 96 86.4 101 94.2 

5 67 71.4 71 71.2 77 80.6 82 83.5 86 91.2 

6 66 71.4 71 71.2 77 80.6 82 83.5 86 91.2 

7 72 72.9 78 73 86 82.6 92 85.5 97 93.4 

8 65 71.1 69 71.1 76 80.6 81 83.6 84 91.4 

9 61 71.1 65 71.1 72 80.6 77 83.6 81 91.4 

30 
krpm 

1 92 97.6 98 100.7 104 110 110 116.4 117 122.3 

2 88 95.9 94 89.9 100 108.3 106 114.6 112 120.6 

3 79 95.9 83 89.9 89 108.3 94 114.6 100 120.6 

4 106 99.3 112 102.4 119 111.8 126 118.2 134 124.2 

5 90 96.3 96 99.4 102 108.7 108 115 113 121 

6 87 96.3 92 99.4 98 108.7 103 115 109 121 

7 98 98.3 105 101.4 112 110.9 119 117.2 127 123.4 

8 88 96.3 93 99.4 99 108.8 106 115.1 112 121.2 

9 79 96.3 84 99.4 89 108.8 96 115.1 102 121.2 

40 
krpm 

1 116 125.9 121 129 128 128.8 137 135.1 152 163.1 

2 113 124.1 118 127 124 127.1 133 133.3 148 161.3 

3 97 124.1 101 127 107 127.1 114 133.3 127 161.3 

4 136 127.4 141 130.8 149 130.8 160 136.9 176 165.2 

5 114 124.8 119 127.6 126 127.4 134 133.6 149 161.6 

6 107 124.8 111 127.6 118 127.4 127 133.6 141 161.6 

7 125 127 131 129.8 139 129.8 150 136.2 167 164.5 

8 112 124.7 117 127.6 124 127.6 133 133.8 148 162.1 

9 97 124.7 102 127.6 109 127.6 117 133.8 131 162.1 

50 
krpm 

1 144 157.3 152 157.2 162 176 172 188.5 183 202.2 

2 146 155.4 156 155.3 166 174 176 186.4 188 204 

3 117 155.4 124 155.3 132 174 141 186.4 151 204 

4 168 159.2 181 159.2 193 177.9 205 190.4 217 206 

5 146 155.8 154 155.8 162 174.4 172 186.8 183 202.2 

6 128 155.8 136 155.8 143 174.4 154 186.8 163 202.2 

7 156 158.2 166 158.2 177 177 190 189.8 202 205.4 

8 142 156 151 156 160 174.8 171 187.4 181 203 

9 118 156 126 156 134 174.8 144 187.4 154 203 

Table 5.1: Complete list of the prediction of the film temperatures for all locations 

with respect to the increasing radial load and various shaft speeds. The 

experimental data taken from Ref. [59] is given in blue and the predictions are in 

orange columns. 
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5.2  Performance Parameters Evaluation 

In the previous section, the TEHD model predictions for temperatures at certain 

bumps are compared to the readings from the experiment conducted by Radil and 

Zeszotek [59] in a CFB. Although the details of the bearing geometry, shaft inner 

diameter and many other test parameters are not given exactly by the researchers, the 

presented study provides evidence for good correlation between the developed TEHD 

model and experiments. In the following sections, the behavior of a CFB is investigated 

for significant parameters including hydrodynamic pressure, film thickness, temperature 

distribution, thermal gradients, contact properties, thermal contact resistance, stress 

distribution and deformation characteristics. These are the essential parameters to 

determine the performance of a foil bearing for various operating conditions and should 

be clarified before applying this bearing mechanism to a system or machine. 

5.2.1 Hydrodynamic Parameters 

The basic hydrodynamic or actually aerodynamic parameters for an air foil bearing 

are film pressure generated due to the relative motion of the bearing and shaft surfaces, 

the wedging film thickness that is a function of both eccentric position of the shaft and 

deformation of the compliant bearing surface and fluid velocity in the film gap. These 

parameters are also utilized commonly to determine the loading capacity of the bearing, 

reverse torque applied to the shaft because of the viscous shear friction, drag coefficient, 

power losses and attitude angle. 

5.2.1.1 Pressure field 

The predictions for the film pressure in the mid-plane of the foil bearing with the 

given parameters in Table 2.1 are shown in Figure 5.6. The pressure on bearing surface 

for different loading conditions is compared with respect to the tangential position at a 

shaft speed of 40 krpm. The gradient of the pressure with same conditions is also given 

in Figure 5.7. As seen in both figures, pressure values are highly dependent on bump 

positions and rippling between two consecutive bumps because of the deformation of the 
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topfoil/bearing surface under pressure. The peak values for the pressure are occurring at 

places contacting with bumps where film thickness is also minimum. This behavior is 

very specific for foil bearings and cannot be observed in conventional bearings due to 

their rigid bearing surface. The ripples are damped as the flow is approaching to leading 

and trailing edges. The magnitude of the pressure gradient is also growing as static radial 

load is increased. The mean value of the pressure predictions in this study is similar to 

the results obtained in literature. However, the resolution capability of the proposed 

model is apparently stronger than the previous analyses. While the previous models 

estimate the deformation of the bearing surface with a simple elastic formulation, 

presented model employs the power of finite element method combined with a fine grid 

of the solution domain as well as simultaneous multi-physics solver approach. 

 

Figure 5.6: Predictions for the film pressure in the mid-plane of the bearing 

surface in tangential direction for different loading conditions. The shaft speed is 

40 krpm. 

 

 Note that the pressure gradient is significantly high as radial load is increased and 

reaches almost 1 bar/mm which may be critical for structural durability of the bearing 

surface and supporting bumps for long operation periods. This should be investigated in 

detail to predict possible fatigue failure mechanisms and propose better bearing designs 

especially for heavily loaded conditions. 
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Figure 5.7: Predictions for the gradient of the film pressure in the mid-plane of the 

bearing surface in tangential direction for different loading conditions. The shaft 

speed is 40 krpm. The second figure displays the critical section along the 

circumferential position between 125 to 175 deg. 

 

 Figure 5.8 depicts 2D pressure distribution for various radial load conditions at 

shaft speed of 30 krpm. Although there are several peak points, highest pressures are 

predicted along the circumferential coordinates of 160 to 175 degrees. The highest 

pressure values are highly dependent on radial load and increase almost linearly with a 

slope of 550 to 850 Pa/N. For lightly loaded conditions, high pressure zone constitutes 
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almost continuous characteristics with evenly distributed peaks. On the other hand, as 

radial load is increased, the pressure region separate into smaller sections with higher 

pressure peaks and very high pressure gradient. This behavior may cause buckling of the 

bearing surface under heavily loaded conditions which may eventually result in an 

ultimate failure of the bearing due to seizure to the shaft surface.  

 

Figure 5.8: Predicted pressure fields on bearing surface of the CFB for different 

static radial loads. The results are given for the shaft speed of 30 krpm. The radial 

loads are a) 44 N b) 89 N c) 133 N d) 178 N e) 222 N. The units are in Pascal [Pa]. 
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Figure 5.9: Predictions for the film pressure in the mid-plane of the bearing 

surface in tangential direction for different shaft speeds. The static radial load is 

133 N. The second figure displays the critical section along the circumferential 

position between 125 to 175 deg. 

 

To prevent such conditions, advanced design techniques should be applied to 

optimize the film pressure distribution on bearing surface. Note that the axial gradient of 

the pressure is also very high as radial load increases. This might be another source of 
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failure due to the detachment of the topfoil surface from edges that may contact to the 

shaft surface. The intuitive solution to such problems is adjustment of the stiffness by 

playing with geometrical dimensions of the supporting bumps. As a matter of fact, new 

generations of foil bearings are proposed to solve these problems by distributing the bump 

stiffness with respect to the load conditions and related film pressure such that stiffness 

is higher where maximum pressure values are expected. 

 

 

Figure 5.10: Predictions for the gradient of the film pressure in the mid-plane of 

the bearing surface in tangential direction for different shaft speeds. The static 

radial load is 133 N. The second figure displays the critical section along the 

circumferential position between 125 to 175 deg. 

 

The predictions for film pressure distribution in the bearing center along the 

circumferential direction for different shaft speeds are displayed in Figure 5.9. The static 

radial load is 133 N for all cases. Although the peak values are very close to each other, 
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the bandwidth of high pressure zone grows as the shaft speed is increased. Furthermore, 

significant pressure gradients are observed at elevated shaft speeds as shown in Figure 

5.10.  

The maximum pressure values are almost independent from the shaft speed for the 

same radial load of 133 N as shown in Figure 5.11. On the other hand, high pressure 

regions appear when the shaft speed is increased. Note that similar response is observed 

when the load has increased. The peak values are also predicted along the circumferential 

coordinates of 160 to 175 degrees.  

 

Figure 5.11: Predicted pressure fields on the bearing surface of the CFB for 

different shaft speeds. The results are given for the static radial load of 133 N. The 

shaft speeds are a) 20 krpm b) 30 krpm c) 40 krpm d) 50 krpm. The units are in 

Pascal. 

 

Also note that when the shaft speed reaches to 50 krpm, the pressure locally 

increases around trailing edge where the topfoil structure is tack welded to the sleeve. As 

already stated previously, the topfoil structure starts to buckle due to the high pressure 

gradients and film thickness shrinks as the topfoil surface approaches to the shaft surface. 

Therefore, the tendency of the topfoil structure to buckle at elevated shaft speeds and/or 
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heavily loaded cases should be carefully examined to prevent ultimate bearing failures 

by tailoring the design according to the operating conditions. 

 

Figure 5.12: Comparison of the predicted pressure fields on bearing surface of the 

a) THD model b) Rigid bearing c) Isothermal. The results are given for the shaft 

speed of 30 krpm and the static radial load of 133 N. 

 

The pressure field of the CFB obtained from TEHD model is compared to a rigid 

bearing and isothermal model for the same foil bearing as displayed in Figure 5.12. The 

shaft speed is 30 krpm and the radial load is 133 N. The dimensions and operating 

conditions are identical for all cases except that deformation of the bearing surface is not 

allowed for rigid bearing model. The isothermal model assumes a constant temperature 

that is equivalent to ambient temperature. Note that the peak pressure values are higher 

in a rigid bearing to sustain the radial load. Because the bearing surface is compliant in a 

foil bearing, it enables deformation under pressure. Therefore, the pressurized region 

easily extends to relatively larger area than a rigid bearing and the total force exerted in 

vertical direction is adequate to bear the applied load with a lower film pressure. On the 

other hand, the isothermal model does not account thermal expansion of bearing 

components and material property changes in the fluid but the pressure profiles are very 
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similar to each other. The peak pressure predictions in isothermal model is even less than 

TEHD model. 

 The predictions for the film pressure at the bearing center is illustrated in Figure 

5.13 for TEHD and isothermal models of the foil bearing, and a rigid gas bearing. The 

radial static load is 133 N and the shaft speed is 30 krpm. The pressure profile is very 

smooth in a rigid bearing compared to the ripples in foil bearing. Furthermore, the peak 

pressure is predicted along the circumferential coordinate of 160 deg in rigid bearing 

whereas it occurs around 175 deg for foil bearing. It also appears that subambient pressure 

is possible in a rigid bearing but it is not allowed in a foil bearing due to the deflection of 

the bearing surface.

 

Figure 5.13: Comparison of the predictions for the film pressure in the mid-plane 

of the bearing surface in tangential direction for the TEHD model, isothermal 

model and rigid bearing. The results are given for the shaft speed of 30 krpm and 

the static radial load of 133 N. 

5.2.1.2 Film thickness 

Film thickness in a foil bearing is a function of both hydrodynamic pressure 

generated in the film and the deformation of the bearing surface due to this pressure load. 
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The TEHD model developed in this study considers both effects effectively by solving 

the hydrodynamic pressure equation (Reynolds Equation) and structural deformation 

simultaneously.  

 

 

Figure 5.14: Predictions for the film thickness in the mid-plane of the bearing 

surface in tangential direction for different loading conditions. The shaft speed is 

40 krpm. The second figure displays the critical section along the circumferential 

position between 125 to 175 deg. 

 

Figure 5.14 displays the film thickness change in the mid-plane of the bearing for 

various loading conditions at the shaft speed of 40 krpm. The wavy distribution of the 
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film thickness is a result of foil deflection between consecutive bumps in a similar fashion 

of pressure profile. The amplitude of the ripples grows as the load is increased. Minimum 

film thickness reduces down to 5.8 μm for a static load of 222 N at tangential position of 

145 degrees. It is also noteworthy that film thickness increases in the vicinity of leading 

edge rapidly due to the deflection of the topfoil towards shaft and losing contact from the 

bumps. 

 

 

Figure 5.15: Predictions for the film thickness in the mid-plane of the bearing 

surface in tangential direction for different shaft speeds. The static radial load is 

133 N. The second figure displays the critical section along the circumferential 

position between 150 to 200 deg. 
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The change of the film thickness in the mid-plane with respect to the shaft speed is 

illustrated in Figure 5.15. The static radial load is 133 N for all cases. The profile is very 

similar at maximum pressure region which corresponds to 100 to 200 degrees along the 

tangential direction but deviates significantly as approached to the edges. Remember 

from Figure 5.9 that positive pressure is predicted everywhere when the shaft speed is 50 

krpm. Hence, film thickness distribution is more balanced at that speed.  

On the contrary, pressure is exerted in a smaller region for shaft speed of 20 krpm 

and film thickness is thin locally in that region and thicker elsewhere. The minimum film 

thickness predictions at bearing surface mid-plane are 7.67 μm, 9.53 μm, 9.68 μm, and 

7.32 μm for shaft speeds of 20, 30, 40, and 50 krpm, respectively.  

Film thickness distributions for bearing mid-plane and one of the symmetric edges 

are compared in Figure 5.16. The shaft speed is 40 krpm and applied radial load is 133 N 

for this case. The topfoil buckles near trailing and leading edges because of the high 

pressure at the center. This is why the film thickness grows rapidly at side edges 

especially when approached to the free standing leading edge. 

 

Figure 5.16: Comparison for the film thickness in the mid-plane and the edge of 

the bearing surface in tangential direction for shaft speed of 40 krpm and radial 

load of 178 N. 
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The film thickness predictions acquired from TEHD model are compared to an 

isothermal model and a rigid bearing in Figure 5.17. The shaft speed is 30 krpm and the 

radial load is 133 N. The film thickness distribution is very smooth for a rigid bearing in 

contrast to the ripples in a foil bearing. Minimum film thickness for a rigid bearing is less 

than a foil bearing due to the higher pressure rates for the same radial load. This indicates 

that foil bearings could operate under heavier loads without any significant contact 

problem between the shaft and bearing surfaces due to its compliant mechanism. The 

predictions for the film thickness in TEHD model is also thicker around leading edge in 

comparison to the isothermal model which does not take thermal expansions into account. 

However, the predictions are comparable to each other near high pressure section of the 

bearing surface. This situation can be observed better in Figure 5.18 where 2-D film 

thickness distributions are presented for the TEHD and isothermal models, and a rigid 

bearing. 

 

Figure 5.17: Comparison for film thickness predictions in the mid-plane for the 

TEHD, isothermal model and rigid bearing. The speed is 30 krpm and load 133 N. 
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Figure 5.18: Comparison for film thickness predictions in the mid-plane for a) 

TEHD b) Rigid bearing c) Isothermal. The speed is 30 krpm and load 133 N. 

5.2.1.3 Fluid velocity 

Figure 5.19 displays average velocity distribution in the hydrodynamic film 

including both Poiseuille and Couette flow effects for shaft speed of 30 krpm and static 

radial load of 133 N. The flow accelerates when approaches to bump peaks where film 

thickness shrinks and a converging gap is created. The film thickness rapidly expands 

near trailing edge as shown in Figure 5.16. Moreover, the continuity of the flow is 

disturbed in this region due to the attached edge of the topfoil to the sleeve. Hence, the 

flow drastically decelerates around this region. 
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Figure 5.19: Predicted average fluid velocity distribution in the film gap of the 

CFB for static radial load of 133 N and shaft speed of 30 krpm. The unit is in 

meters per second [m/s]. 

 

The effect of the radial load on average film velocity in the mid-plane of bearing 

surface is illustrated in Figure 5.20. The shaft speed is taken as 40 krpm for all cases. The 

flow accelerates when enters the narrow gap between shaft surface and the region on the 

peaks of the bumps and quickly decelerates as exits from this gap. This behavior is 

common for all loading conditions but more dramatic for heavily loaded cases because 

of high pressure gradients and related rapid film thickness change along tangential 

direction. The velocity magnitudes are less than shaft surface speed for all cases because 

of averaging of the flow domain. The flow almost converges to the mean value when it 

is approaching to the leading edge independent from the radial load. However, flow 

profiles are different around trailing edge due to dissimilar buckling characteristics with 

respect to loading condition. 
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Figure 5.20: Predictions for the average fluid velocity in the mid-plane of the 

bearing surface in tangential direction for different loading conditions. The shaft 

speed is 40 krpm. The second figure displays the critical section along the 

circumferential position between 150 to 200 deg. 

 

Figure 5.21 depicts average film velocity in the bearing center for various shaft 

speeds. The static radial load is taken as 133 N for all runs. The Couette flow effect due 
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with wavy flow profile in circumferential direction grows as well as the amplitude of the 

waves as the shaft speed is increased. 

 

Figure 5.21: Predictions for the average fluid velocity in the mid-plane of the 

bearing surface in tangential direction for different shaft speeds. The radial load is 

133 N. 

5.2.2 Thermal Parameters 

In this section, thermal properties of the foil bearing acquired from TEHD study 

are investigated in detail. To develop an effective thermal management system in a foil 

bearing, all heat flux paths including cooling flow should be considered in the model. 

The fully coupled TEHD model proposed in this study takes all these aspects into 

account. Thermal properties of a bearing cover many topics but the main focus is given 

to temperature distribution, temperature gradients, heat flux paths and thermal contact 

properties. Temperature is one of the most critical physical properties for this type of 

bearings because it has implications both on flow domain and surrounding structure. 

Especially at elevated shaft speeds and heavily loaded cases, temperature directly affects 

the loading capacity of the bearing and deformation of the underlying structure. 

Remember that dynamic viscosity of air is a strong function of temperature and steadily 

increases as temperature goes up. That property would contribute to the load capacity at 

high temperatures. Furthermore, thermal contact resistance in between contacting 
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elements determines heat flux from the hydrodynamic film towards surrounding medium. 

The correlation developed by Cooper-Mikic-Yovanovich (CMY), which has been 

already explained in Section 3.6, is utilized to estimate thermal conductance values. 

5.2.2.1 Temperature distribution 

The temperature gradient given in Figure 5.22 depicts sudden change of the 

temperature between two consecutive bumps. The temperature changes more than 8˚C 

per one millimeter in some regions. This may cause thermal buckling of the topfoil 

structure, if not managed by an adequate cooling mechanism. Predicted temperatures on 

bearing components for the shaft speed of 30 krpm and radial load of 133 N are displayed 

in Figure 5.23. Peak temperature values are predicted in high pressure zone as expected. 

On the other hand, in the vicinity of the bump peaks temperature begins to drop because 

of the heat conduction over bumps to the sleeve. More interestingly, temperature declines 

and begins to climb again before the flow reaches to the section contacting with bumps. 

Similarly but in reverse direction, temperature continues to increase after leaving the 

bump and makes a peak point between two consecutive bumps. 

 

Figure 5.22: Predicted temperature gradient distribution on the CFB including the 

sleeve. The shaft speed is 30 krpm and the static radial load is 133 N. The unit is in 

degree Celsius per millimeter [degC/mm]. 
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Figure 5.23: Predicted temperature distribution on the CFB including the sleeve. 

The shaft speed is 30 krpm and the static radial load is 133 N. The unit is in 

Celsius. 
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 The change of the bearing surface temperature along circumferential direction is 

given in Figure 5.25 for various loading conditions at a shaft speed of 40 krpm. The 

temperature values grow as the load increases. The peak temperature predictions are 135, 

139, 144, 158 and 178˚C for radial loads of 44, 89, 133, 178, and 222 N, respectively. 

Note that, the mean temperature increases parabolically when the load increases. As 

previously explained, the pressure distribution is greatly dependent on applied radial 

load; however, the gradient of the temperature does not get affected notably from this 

change, as illustrated in Figure 5.26. Therefore, it can be stated that the temperature 

profile is essentially determined by convective and conductive heat transfers rather than 

compressibility effects.  

 

Figure 5.24: The relation between hydrodynamic film pressure, film thickness and 

surface temperature. The parameters are given in non-dimensional forms for the 

sake of comparison. The shaft speed is 40 krpm. The static radial load is 222 N. 
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Figure 5.25: Predictions for the film temperature in the mid-plane of the bearing 

surface in tangential direction for different loading conditions. The shaft speed is 

40 krpm. The second figure displays the critical section along the circumferential 

position between 150 to 200 deg. 
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Figure 5.26: Predictions for the gradient of the film temperature in the mid-plane 

of the bearing surface in tangential direction for different loading conditions. The 

shaft speed is 40 krpm. 

 

Figure 5.27: Predictions for the film temperature in the mid-plane of the bearing 

surface in tangential direction for various shaft speed conditions. The static radial 

load is 133 N. 
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The change of the topfoil surface temperature in the midplane for various shaft 

speeds is given in Figure 5.27. The radial load is 133 N for all cases. The mean 

temperature is almost constant along circumferential direction with a small negative slope 

towards leading edge. Note that, increase in the shaft speed by 10 krpm causes an increase 

in the mean temperature 30 to 40˚C which reveals the dominant role of viscous dissipation 

in heat generation. The peak temperature predictions are 90.1, 119.5, 144.1 and 188.2˚C 

for shaft speeds of 20, 30, 40, and, 50 krpm respectively. The gradient of temperature for 

the same cases is displayed in Figure 5.28. Similar to the radial load change, the 

temperature gradient is almost not affected from the change of shaft speed.  

 

Figure 5.28: Predictions for the gradient of the film temperature in the mid-plane 

of the bearing surface in tangential direction for various shaft speed conditions. 

The static radial load is 133 N. 

 

Figure 5.29 depicts predicted temperature distribution on the shaft for a radial load 

of 133 N and speed of 30 krpm. Flow temperature estimations for the fluid film are 

mapped to the shaft surface and thus, similar temperature profile is observed in that 

section. However, the values are slightly lower than the bearing surface due to the higher 

heat conduction rate over shaft towards free ends. The peak temperature prediction for 

the bearing surface is 119˚C whereas it is 114.5˚C on shaft surface. Shaft surface 

temperature drops remarkably outside the bearing region as shown in Figure 5.30. High 

temperature gradient on the shaft combined with centrifugal effects may cause significant 
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instabilities. Therefore, foil bearing designers must analyze the rotordynamics of the 

system considering the thermal implications both on the shaft and the bearing. 

 

Figure 5.29: Predicted temperature distribution on the shaft. The shaft speed is 30 

krpm and the static radial load is 133 N. The unit is in degree Celsius. 

 

 

Figure 5.30: Predicted temperature gradient distribution on the shaft geometry. 

The shaft speed is 30 krpm and the static radial load is 133 N. The unit is in degree 

Celsius per millimeter. 

 

 Convective heat flux distribution on bearing surface for the shaft speed of 30 krpm 

and radial load of 133 N is displayed in Figure 5.31. The convective heat flux increases 

as the flow approaches to the bumps due to the acceleration of the flow, and it decreases 

as the flow exits from the narrow gap in between the bump peaks and shaft surface. The 
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convective heat flux is very strong especially in high pressure zone due to the thin film 

thickness and high flow velocities. 

 

Figure 5.31: Predicted convective heat flux distribution on the CFB including the 

sleeve. The shaft speed is 30 krpm and the static radial load is 133 N. The unit is in 

Watt per meter square [W/m^2]. 

 

 

Figure 5.32: Estimated convective heat transfer coefficient on the bearing surface. 

The shaft speed is 30 krpm and the static radial load is 133 N. The unit is in 

[W/(m2K)]. 

 

The heat convection coefficients for heat flux from the gas film into the shaft outer 

surface and topfoil inner surface are calculated by using the Reynolds-Colburn analogy 
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between fluid friction and heat transfer as explained in detail in Section 3.3.2. Due to the 

variation in material properties of the fluid with respect to the temperature and pressure, 

the convection coefficients vary on different regions of the topfoil surface as illustrated 

in Figure 5.32. The peak values reach to 6917 W/m^2/K because of high relative 

velocities between operating surfaces and narrow film gaps in some regions. 

5.2.2.2 Thermal contact properties 

Modelling thermal contact is naturally challenging due to the thermal constriction 

and spreading of heat flux lines as well as the random distribution of asperities and the 

unknown boundary condition of micro-contacts. Various models are proposed in 

literature to predict the contact and joint conductance between nominally flat rough 

surfaces. In this study, the correlation developed by Cooper, Mikic and Yovanovich 

(CMY) is utilized to predict thermal conductance coefficients between contacting 

elements. The details of the model is already explained in detail in Section 3.6. The outer 

surface of topfoil and the inner surface of the bearing sleeve experience mechanical and 

thermal contact with the bump foil. The heat generated in the air film gap transported to 

the bearing sleeve through bump foil with a certain thermal resistance and related thermal 

conductivity of the contact region as illustrated in Figure 5.33. Figure 5.34 displays the 

predicted thermal conductance coefficients for the contacting regions of the bump foil 

and the sleeve. The shaft speed is 30 krpm and the radial load is 133 N for this case. The 

conductance coefficient is around 23 W/(m2K) around the center of contact but 

decreasing steadily to null as the contact pressure declines. Similarly, predicted thermal 

conductance coefficients for the contact regions between the bump and topfoil structure 

are illustrated in Figure 5.35. 
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Figure 5.33: Illustration of the thermal contact resistances in topfoil-bump and 

bump-sleeve contact regions 

 

 

Figure 5.34: Predicted thermal conductance coefficients for the contact surfaces 

between the bumps and the sleeve surface. The shaft speed is 30 krpm and the 

static radial load is 133 N. The unit is in [W/(m2K)]. 
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Figure 5.35: Predicted thermal conductance coefficient for the contact surfaces 

between the bumps and the topfoil surface. The shaft speed is 30 krpm and the 

static radial load is 133 N. The unit is in [W/(m2K)]. 

5.2.3 Structural Parameters 

5.2.3.1 Deformation 

The compliant components such as bump-foil and topfoil of the foil bearing deform 

due to the combined effect of hydrodynamic pressure in the film and thermal expansions. 

The outstanding deformable property of the foils brings extra reliability and loading 

capacity to the bearing mechanism as previously explained. The behavior of the 

underlying mechanisms during various loading and surface speed conditions is 

investigated in this section. 
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Figure 5.36: Total deformation of the bearing surface and underlying bump 

structure. The bump movement into the leading edge by sweeping between the 

topfoil structure and sleeve surface is displayed in the zoom image. The 

deformation is magnified with a scale factor of 20 to observe clearer. The shaft 

speed is 30 krpm and the static radial load is 133 N. The unit is in micrometers. 
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Figure 5.37: The deformation of the bearing surface and underlying bump 

structure from isometric view. The shaft speed is 30 krpm and the static radial 

load is 133 N. The unit is in micrometers. 

 

Figure 5.36 and Figure 5.37 illustrate classical deformation characteristics of the 

bumps during operation. The shaft speed is 30 krpm and the radial load is 133 N for this 

case. The bumps close to the leading edge deform more since they are free at this end. 

Therefore, the deformation of the bumps increases from trailing edge to the leading edge 

in clock-wise direction. The bumps are squeezed between topfoil and sleeve surfaces with 

certain contact pressures in both side. The deformation in radial direction forces the 

bumps to sweep in tangential direction towards leading edge. Note that this tendency 

strictly depends on the position of the fixed or welded region of the bumps. If the bumps 

are fixed in center instead of the trailing edge, the sweep would occur in both directions 

by starting from the fixed region. Therefore, foil bearing designers must consider this 

mechanism to prevent possible failure modes due to undesired bump motions. 

The thermal deformation of the bearing components in axial direction is shown in 

Figure 5.38. The amount of the deformation is equal in both sides due to the symmetry. 

The axial deformation may cause irregular sliding of the bumps over sleeve surface. This 
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should be prevented by adding additional ribs between bump series (if exists) to preserve 

relative axial distances.  

 

Figure 5.38: The deformation of the bearing in axial direction. The shaft speed is 

30 krpm and the static radial load is 133 N. The unit is in micrometers. 

 

Figure 5.39:  The deformation of the topfoil surface in radial direction from 

isometric view. The shaft speed is 30 krpm and the static radial load is 133 N. The 

unit is in micrometers. 
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The deformation of the topfoil surface in radial direction is displayed in Figure 5.39  

for the same operation conditions. The foil is deflected more in high pressure zone as 

expected but with an exception near trailing and leading edges. The corners of topfoil are 

deflected outwards in trailing edge and inwards in leading edge. This provides evidence 

for the buckling of the topfoil structure because it is fixed in one edge and subjected to 

high pressures in the center. To overcome such problems, topfoil surface is split into 

several pieces in some foil bearing designs. 

 

 

Figure 5.40: Radial deformation of the topfoil near weld region of the trailing 

edge. The y-direction shows the radial direction whereas the z-direction indicates 

the axial direction. The shaft speed is 30 krpm and the static radial load is 133 N. 
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The buckling of the topfoil is better observed in Figure 5.40 where the radial 

deformation of the topfoil close to the trailing edge is shown with respect to the axial 

direction. The topfoil deflects towards the shaft surface in edges but it deforms in the 

opposite direction at bearing center. Note that the nominal clearance is just 20 microns 

for this study and thus, a difference of almost 25 microns in radial position of the center 

and edges of the topfoil incurs the risk of mechanical contact with shaft surface which 

would damage the topfoil easily. Figure 5.41 depicts that this situation is not peculiar to 

the trailing/leading edges and also occurs in the center of the topfoil but with smaller 

amplitude. Also note that, the radial deformation of the topfoil more than 10 microns 

explains how foil bearings could operate with eccentricity ratios of more than unity. This 

compliant mechanism makes foil bearing unique in terms of sustaining high rates of radial 

distortions and misalignments.  

 

Figure 5.41: Comparison of the radial deformation of the topfoil in the midplane 

and edge in radial direction. The shaft speed is 30 krpm and the static radial load 

is 133 N. 

 

 The radial deformation profiles for the topfoil midplane along the circumferential 

direction for various shaft speeds and radial loading conditions are given in Figure 5.42 

and Figure 5.43, respectively. The deformation is not affected significantly from the shaft 

speed change except in the vicinity of trailing and leading edges. Even so, the deformation 

is slightly decreases as the speed increases. On the other hand, the deformation is radically 
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affected from loading conditions. Even though the profiles are very similar, the amount 

deformation increases as the load increases. 

 

 

Figure 5.42: The radial deformation of the topfoil in the midplane for various shaft 

speeds. The static radial load is 133 N. The second figure displays the critical 

section along the circumferential position between 150 to 200 deg. 
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Figure 5.43: The radial deformation of the topfoil in the midplane for various 

radial loads. The shaft speed is 30 krpm. The second figure displays the critical 

section along the circumferential position between 150 to 200 deg. 
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5.2.3.2 Stress  

To assess failure modes, an accurate stress analysis must be performed by 

estimating the largest stresses that occur at a critical point in the component [123]. 

Leaving the details of the underlying stress theory to the explanations in Section 3.4, the 

Von Mises stress results obtained from TEHD analysis are investigated in this section. 

 

Figure 5.44: Von Mises stress distribution on the bumps and contact regions. The 

shaft speed is 30 krpm and the static radial load is 133 N. 
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Recall that top- and bump foil materials are defined as Inconel X-750, and Inconel 

718 for the sleeve and shaft geometry in TEHD model. Temperature dependent material 

properties are given in Appendix A. The yield strength of Inconel X-750 is approximately 

650 MPa for the temperature range of this study. The stress distribution on bearing 

components according to Von Mises stress theory is displayed in Figure 5.44. Maximum 

stress values are predicted in welded regions of both top- and bump foils as shown in 

Figure 5.45. The contact regions experience higher stress concentrations as well. 

 

Figure 5.45: The stress concentration in welded regions of the topfoil and bump 

structure. The shaft speed is 30 krpm and the static radial load is 133 N. 
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Figure 5.46: Von Mises stress on topfoil in the midplane for various shaft speeds. 

The radial load is 133 N. The second figure displays the critical section along the 

circumferential position between 150 to 200 deg. 
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 The stress distribution in the midplane of the topfoil along the circumferential 

direction for various shaft speeds is shown in Figure 5.46. The static radial load is 133 N. 

The peak values in the second plot belong to the contact region between the topfoil and 

bumps where stress values reach 50 MPa for the shaft speed of 20 krpm. Note that, the 

stress predictions are higher at slower shaft speeds for the same radial load. The stress 

predictions are highest near trailing edge independent from the shaft speed as already 

stated before. 

 Figure 5.47 demonstrates the stress distribution on topfoil midplane for different 

loading conditions. The shaft speed is selected as 30 krpm for all cases. The radial load 

has more dramatic influence on stress values compared to shaft speed. As shown in Figure 

5.6, the pressure profile changes with the radial load. Hence, the peak values for Von 

Mises stress predictions shifts as the load changes. Maximum pressure estimation for 

radial load of 222 N reaches to 85 MPa. Although this stress level individually appears 

to be far away from yield strength, it may be problematic for dynamic loading conditions 

in terms of fatigue failure. Note that, the stress level is oscillating along circumferential 

direction more than 65 MPa which is relatively high for an alternating load. Therefore, it 

would be wise for foil bearing designers to perform fatigue failure analysis especially 

when considering heavily loaded scenarios. 
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Figure 5.47: Von Mises stress distribution on topfoil in the bearing midplane for 

various radial loads. The shaft speed is 30 krpm. The second figure displays the 

critical section along the circumferential position between 150 to 200 deg. 
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5.2.3.3 Mechanical contact properties 

The FEA solver of TEHD analysis utilizes an augmented Lagrangian penalty 

method for contact formulations. The contact pressures are estimated according to the 

distance between contacting surfaces. To prevent interpenetration of the surfaces, a type 

of penalty method is applied during calculations. The details of the contact formulation 

is already given in Section 3.5. 

The penalized contact pressure estimations on the contact surfaces between the 

topfoil and bumps at a shaft speed of 30 krpm and radial load of 133 N is given in Figure 

5.48. The numbering convention of the bumps are already given in Figure 5.1. The 

numbers are increasing from leading edge side towards trailing edge. The contact 

pressures rise as approached to the high pressure zone on topfoil surface. The z-

coordinate corresponds to axial direction and starts from the center of the bearing. The 

contact pressures for many bumps around high pressure zone drop below zero near 

bearing edges which is the evidence of the separation of the contact between bumps and 

topfoil due to the deflection of the topfoil surface towards shaft surface in radial direction. 

The same behavior could be also observed in Figure 5.49. The contact gap becomes 

positive near bearing edge that shows contact separation. Also note that, the contact gaps 

for bump 16 and bump 17 are all positive in axial direction which proves that these bumps 

are not supporting the radial load. This is not efficient for the bearing performace and 

should be improved by tailoring the bump geometry to adjust the stiffness characteristics 

of the bearing. Actually, it is partially achieved in new generations of foil bearings by 

changing the bump geometry both in circumferential and axial directions to optimize the 

bearing capabilities. 
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Figure 5.48: Predictions for the contact pressure on some contact surfaces between 

the topfoil and bumps in axial direction starting from the bearing center towards 

front edge. Numbering convention of the bumps are already given in previous 

sections. The shaft speed is 30 krpm and the radial load is 133 N. 

 

Figure 5.49: Predictions for the contact gaps on some contact surfaces between the 

topfoil and bumps in axial direction starting from the bearing center towards front 

edge. Numbering convention of the bumps are already given in previous sections. 

The shaft speed is 30 krpm and the static radial load is 133 N. 
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6 CONCLUSION 

Compliant surface foil gas bearings are a class of hydrodynamic bearings that use 

ambient gas as their operating fluid. Therefore, they do not require any additional 

lubrication circuit. Their hydrodynamic pressure is generated between the moving shaft 

surface and a flexible bearing surface called as topfoil surface that is typically formed by 

numerous layers of sheet metal foils. To support radial or axial loads, foil bearings can 

be configured as journal or thrust bearings as in conventional oil-lubricated technologies. 

The main behavior of foil-gas bearings is that they float on a self-generated fluid film 

during normal operation but experience a short-term of dry sliding contact during low 

speed operation at start-up and shut-down. The bearing geometry and the fluid film 

thickness are shaped according to the equilibrium between the hydrodynamic film 

pressure, and the deformation of the foil surface and its underlying spring support 

structure. 

Using compliant foil bearings in turbomachinery brings many advantages 

compared to the conventional rotor support technologies. The outstanding features of foil 

bearings involves improved reliability of the bearing mechanism, no requirement for 

scheduled maintenance, soft failure, elimination of lubrication system, environmental 

sustainability, high speed operation, capability at cryogenic and elevated temperatures, 

feasibility of operating with different process fluids and compensation for higher 

misalignment.  

The operational feasibility of the compliant foil bearing has been demonstrated for 

different temperature, vibration and load conditions in a number of systems including air 

cycle machines, turbochargers, small scale gas turbines and cryogenic pumps. 

The lubricant used in foil bearing applications is usually air that has a superior 

performance at elevated temperatures in terms of viscosity compared to the oil based 

lubricants. However, that property may result in thermal instability with increasing 

temperature. Some limitations also exist for the foil bearings due to the material property 

changes at some operation circumstances.  The foils soften at high temperatures and the 
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stiffness drops rigidly. The most crucial problem faced in experiments at high speeds or 

overload conditions is the high local temperature gradient that causes deformation of the 

foil surface and catastrophic failure of the bearing. Another important concern in terms 

of the thermal management is the weak conduction rate of the bearing due to the thin foil 

structure. The contact between the top foil and bumps occurs at localized small areas that 

resists the heat removal from the system. Inappropriate thermal management due to 

inadequate coatings and insufficient cooling techniques may produce ultimate 

deterioration of the rotor-bearing system. Even though some experimental research data 

are available in open literature, extended thermo-hydrodynamic analysis is required to 

advance and optimize the system performance at the design level. Comprehensive 

modeling of CFBs that is benchmarked to relevant test data will enable the widespread 

usage of CFBs into novel turbomachinery applications. 

Conventional models include the bumps only as an equivalent stiffness uniformly 

distributed around the bearing circumference. More complex models couple directly the 

elastic deformations of the top foil to the bump mechanism as well as to the 

hydrodynamics of the gas film but by considerably simplifying the structural model. In 

the structure of an actual bump foil bearing, the role of the top foil is to generate air film 

force when the shaft rotates. Therefore, it is important that bending stiffness of the top 

foil is high enough to endure the pressure. However, the top foil surface that does not 

contact with the bump foil has practically little stiffness because the distributed load does 

not act partially on the top foil and more deflection occurs on the part which is not in 

contact with bumps. In many previous studies, this deflection of the top foil was ignored 

and extraction the damping characteristic due to the top foil deflection was impossible. 

However, the top foil deformations derived from many former experiments show the top 

foil deflection phenomenon which is called as sagging is radically affects the overall 

behavior of the bearing. The model explained in this work couples the structural 

deformation of the underlying structure with hyrodynamic pressure generated at the film 

gap by solving the Reynolds Equation and Duhamel-Hooke’s relation for structural 

deformation that are directly coupled by utilizing a commercial FEA code. The bending 

effects of the top foil are also investigated, considering energy dissipation due to 

deflection of top foil and bump foil. Furthermore, it accounts for temperature change in 

the film due to the viscous dissipation and compressibility of the fluid by solving the bulk 

flow energy equation in a custom written FDM that is iteratively coupled to the FEA 
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code. The physical contacts between bearing assembly components are modeled by 

utilizing Augmented-Lagrangian contact model. The thermal contact is also included in 

the model with an advanced approach called CMY correlation. The model involves 

complete bearing mechanism as well as the interacting section of the shaft with the 

bearing. The thermal growth of the shaft, foil structure, bearing sleeve, and centrifugal 

growth of the shaft are also considered. From this aspect, this model is the most complete 

and advanced model in the open-literature for a bump-type compliant foil journal bearing. 

It aims to obtain a deep insight into the structural and thermal characteristics of a CFB 

during steady-state operation. The proposed model is first validated via the results 

available in the literature and then used to conduct a parametric study to investigate the 

the speed of the shaft surface and radial loading on structural and thermal properties of 

the bearing. 

A bump-type foil journal bearing is used in the presented TEHD analysis. The 

topfoil consists of a single sheet welded to the sleeve from the so-called trailing edge and 

the other edge, which is called as leading edge, remains free. The shaft is not modeled 

fully in axial direction to avoid increase of the number of DOF in finite element model 

drastically. The modeled portion of the free part of the shaft is elongated one-bearing 

length in both directions. 

All governing equations are utilized step-by-step to build a suitable format to be 

used in the developed algorithm. The three basic governing laws the conservation of 

mass, momentum, and energy are implemented in detail to deduce into useful forms for 

parameters including flow velocity, pressure, temperature, load etc. In addition to 

conservation laws, theories for structural deformation, contact algorithm and thermal 

contact behavior are also explained in separate sections. Finally, a new 4-point finite 

difference approximation is proposed to improve the accuracy of the solver algorithm. 

The applied non-dimensionalization techniques to normalize the Reynolds’ and energy 

equations are also given in related sections. Total Lagrangian formulation is used for 

structural analysis in COMSOL Multiphysics for both small and finite deformations. The 

contact problems are solved using an augmented Lagrangian method. This means that 

the code solves the system in a segregated way. In this study, the correlation developed 

by CMY is utilized to predict thermal conductance coefficients between contacting 

elements. 
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The model couples the structural deformation of the underlying structure with 

hyrodynamic pressure generated at the film gap by solving the Reynolds Equation and 

structural deformation that are directly coupled by utilizing a commercial FEA code.  

The model involves complete bearing mechanism as well as the interacting section 

of the shaft with the bearing. The thermal growth of the shaft, foil structure, bearing 

sleeve, and centrifugal growth of the shaft are also considered. 

The TEHD model developed in this study is benchmarked to the experimental work 

of Radil and Zeszotek [59] that presented measurements of temperature in a CFB for a 

number of speed and load conditions. The axial length of the tested CFB is 41 mm and 

the diameter is 50 mm. The model predictions match well with provided experimental 

data.  

The predictions for hydrodynamic pressure, film thickness, flow velocity in the film 

gap, temperature distribution, thermal contact conductance, deformation of the geometry, 

stress distribution and mechanical contact properties are presented for various shaft 

speeds and radial loading conditions. The results are interesting in terms of providing a 

detailed insight to possible problems encountered in foil bearings during operation. 

Moreover, useful recommendations for bearing designers are provided by commenting 

on the outputs. This model can be further improved, as always, by including frictional 

effects at contacts and shaft transients. It can be also extended to cover new foil bearing 

generations. 

In consequence, the contributions of the presented model to the literature can be 

summarized as follows: 

o A fully coupled thermo-elasto-hydrodynamics (TEHD) model is developed that 

couples the flow effects in the film gap to the structural properties of the 

components including heat generation in the film and transfer of this energy to 

the foils as well as to the shaft. 

o To solve 2D energy equation for the film flow, a finite difference code utilizing 

a robust direct solver is developed. 

o To integrate the energy equation to the FEA solver code, a coupling code is 

developed. 
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o An advanced FEA model is developed to solve for Reynolds equation coupled 

with structural deformation of the geometry. This code also solves for the heat 

transfer on bearing components and hollow shaft. 

o The derivation of the governing equations including conservation of mass, 

momentum and energy equations, elastic theory for structural deformation and 

stress, augmented Lagrangian formulation for mechanical contact properties, 

Cooper-Mikic-Yovanovich (CMY) correlation for thermal contact problem are 

presented in Section 3. 

o Nickel-based superalloys are used as bearing material and temperature 

dependent thermo-mechanical properties are defined to the solver. 

o A finite difference iterative solver for Reynolds Equation is provided as an 

option to the code in FEA solver. 

o The results obtained from the proposed TEHD model are in good agreement 

with the experimental data. 

o TEHD model predicts the real physics of foil bearings very well and could be 

utilized to design more advanced bearings. 

o The model has a modular structure and could be improved to analyze magnetic, 

hydrostatic and leaf-type foil bearings with minor revisions. 

o The frictional effects can be included in the model with a cost of computational 

expense. 

o Transient behavior of the shaft can be simulated with this model by defining 

the motion profile to the FEA solver. 

o The analysis can be repeated at high temperatures and/or shaft speeds 

considering the thermal properties of the materials. 

o The model capabilities can be extended to cover cooling flow streams by 

coupling it with an additional CFD model. 
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APPENDIX A: Temperature Dependent Material Properties                                                          

A.1 Inconel X-750 

 

Figure A.1. The effect of temperature on tensile and yield strengths of INCONEL 

X-750 [83] 
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Figure A.2. The effect of temperature on thermal conductivity of INCONEL X-750 

[83] 

 

Figure A.3. The effect of temperature on thermal expansion coefficient of 

INCONEL X-750 [83] 
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Figure A.4. The effect of temperature on modulus of elasticity of INCONEL X-750 

[83] 

 

 

Figure A.5. The effect of temperature on Poisson ratio of INCONEL X-750 [83] 
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A.2 Inconel 718 

 

Figure A.6. The effect of temperature on thermal conductivity of INCONEL 718 

[84] 
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Figure A.7. The effect of temperature on thermal conductivity of INCONEL 718 

[84] 

 

 

Figure A.8. The effect of temperature on thermal expansion coefficient of 

INCONEL 718 [84] 
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Figure A.9. The effect of temperature on modulus of elasticity of INCONEL 718 

[84] 

 

 

Figure A.10. The effect of temperature on Poisson ratio of INCONEL 718 [84] 
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