QUANTUM CORRELATIONS IN SPIN
CHAINS AND HIGHLY SYMMETRIC
STATES

by
Baris Cakmak

Submitted to the Graduate School of Engineering and NaBai@nces
in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy

Sabanci University
Spring 2014



QUANTUM CORRELATIONS IN SPIN CHAINS AND HIGHLY SYMMETRIC
STATES

APPROVED BY

Assoc. Prof. Dr. Zafer Gedik e

(Thesis Supervisor)

Prof. Dr. Cihan Sach@lu e

Assoc. Prof. Drismetindnil Kaya oo,

Assoc. Prof. Dr. Ozgir Ergetin =~ oo

Prof. Dr. Ozgur Esat Mustecapiill oo

DATE OF APPROVAL e



(© Baris Cakmak 2014

All Rights Reserved



QUANTUM CORRELATIONS IN SPIN CHAINS AND HIGHLY SYMMETRIC
STATES

Baris Cakmak
Physics, Doctor of Philosophy Thesis, 2014

Thesis Supervisor: Assoc. Prof. Dr. Zafer Gedik

Abstract

Non-classical correlations arise in various quantum meiclahsystems. Character-
ization and quantification of these correlations is an intgodrand active branch of re-
search in the field of quantum information theory. Invest@aof non-classical corre-
lations in condensed matter systems gives important itsabout the characteristics of
these systems. In particular, systems possessing a quanitigal point in their phase
diagrams have attracted much attention due to the pecwdlzamior of correlations near
these points. In this thesis, we have investigated tworgistjuantum spin models from
the perspective of correlations and, we have discussedotielation content of an im-
portant subclass of bipartite states.

We start by an analytical calculation of the quantum disdor@ system composed of
spin4 and spini /2 subsystems possessing rotational symmetry. We have cethpar
results with the quantum discord of states having similansgetries and seen that in ro-
tationally invariant states the amount of quantum discerduch higher. Moreover, using
the well known entanglement properties of these statesawe tompared their quantum
discord with entanglement and seen that quantum discoighghthan the entanglement.
Next, we have investigated the thermal quantum correlataomd entanglement in spin-1
Bose-Hubbard model with two and three particles. We haveotstnated that the energy
level crossings in the ground state of the system are sgphaly both the behavior of
thermal quantum correlations and entanglement. Finalkyhave investigated various
thermal quantum and total correlations in the anisotropicsgin-chain with transverse
magnetic field. We have shown that the ability of the congideneasures to estimate
the critical points of this system at finite temperaturerggig depends on the anisotropy
parameter of the Hamiltonian. Furthermore, we have stutiie@ffect of temperature on
long-range correlations of the XY chain.



SPIN ZINCIRLERI VE SIMETRIK HALLERDE KUANTUM ILINTILERI

Baris Cakmak
Fizik, Doktora Tezi, 2014

Tez Danismani: Dog. Dr. Zafer Gedik

Ozet

Klasik olmayan ilintileri cok cesitli kuantum mekaniksestemdelerde gozlemek mumkundur.
Builintilerin karakterizasyonu ve 6lcimu, kuantum enfasyon teorisi icerisinde dnemli
ve halen aktif arastirmanin devam @itbir alandir. Cesitli ygun madde fiZji sistem-
lerinde klasik olmayan ilintileriinceleyerek, bu sistarik ilgili Gnemli bilgiler edinilebildgi
bilinmektedir. Ozellikle faz diyagraminda kuantum kritikktalar bulunduran modellerde
ilintilerin kritik nokta etrafindaki beklenmedik davranioldukca ilgi cekmistir. Biz bu
calismamizda, iki dgsik kuantum spin modelini klasik olmayan ilintiler gédé in-
celedik. Ayrica, iki alt sistemden olugan kuantum hatigrionemli bir alt kimesinde,
cesitli ilinti 6lcUtlerinin nasil davranduni tartistik.

Ik olarak, spinsj ve spind /2 altsistemlerden olusan, donmeler altindgidmez hallerde
kuantum uyusmazlik él¢itini analitik olarak hesaplaBdauclarimizi benzer simetrilere
sahip sistemlerin kuantum uyusmaglve dolasiki@i ile karsilastirdik. inceledimiz sis-
temdeki uyumgmazlik miktarinin karsilastggdniz hallerdekinden daha fazla ofglunu
gozlemledik.lkinci olarak, bir boyutlu XY spin modelinde sonlu sicakhk cesitli kuan-
tum ve toplam ilintilerin davranisini arastirdik. Buntiilerin kuantum kritik noktayi
dogru tespit etmesinin, Hamiltonyen gigkenlerine 6nemli dl¢iide Ba oldujunu gos-
terdik. Son olarak, iki ve ¢ parcacik icin spin-1 Bose-Hatbmodelinde sonlu sicak-
likta dolasiklik ve daha genel kuantum ilinti 6lcttlenrdavranisini inceledik. Sistemdeki
taban hal d@isikliklerinin iki 6lcut tarafindan da isaret edifgini gosterdik.
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Chapter 1
INTRODUCTION

Multipartite quantum states contain different kinds ofretations which can or cannot
be of classical origin. Entanglement has been recognizateafirst indicator of non-
classical correlations and it lies at the heart of quantuigrimation science [1]. In addi-
tion to considered as the main source of quantum computatigptography and infor-
mation processing, it also proved to be very useful in anatythe behavior of various
condensed matter systems [2]. However, entanglement ithaainly kind of meaning-
ful correlation present in quantum systems. Quantum dik¢QD) [3, 4], defined as
the discrepancy between the quantum versions of two cllsexjuivalent expressions
for mutual information, is demonstrated to be a novel resefwr quantum computation
[5—7]. Following the discovery of quantum discord, several quantifiers of quantum
correlations, that are more general than entanglemeng begn proposed recently [8-
11].

Quantum phase transitions (QPTs) are sudden changesiaogdarthe ground states
of many-body systems when one or more of the physical passetthe system are con-
tinuously varied at absolute zero temperature [8]. Thedeahchanges, which strongly
affect the macroscopic properties of the system, are m&tatfens of quantum fluctua-
tions. Despite the fact that reaching absolute zero tertyrerés practically impossible,
QPTs might still be observed at sufficiently low temperagurehere thermal fluctuations
are not significant enough to excite the system from its gilostate. In recent years,
the methods of quantum information theory have been widghyi@d to quantum critical
systems. Especially, the behavior of non-classical catigais in these systems has been
ingestigated.

In this thesis, we focus on two main subjects. First is théyasisof various quantifiers
of non-classical correlations in spin chains with a QPT girtiphase diagrams. Second,
is the analytical calculation of QD in some highly symmettates.

This thesis is organized as follows. In the second chaptepnvide a simple intro-
duction of the mathematical formalism and tools that willused throughout the thesis.



In the Chapter 3, we analytically calculate the QD of a rotadily invariant bipartite
system. We compare our results with the entanglement pgrepeaf rotationally invari-
ant states and other analytical calculations of quantueodisin systems having similar
symmetries. We have observed that even though the contentariglement decreases as
j increases, the amount of QD remains significantly largeln wét maximum value also
following a decreasing trend.

In Chapter 4, we investigate the pairwise thermal quantuchtatal correlations in
one-dimensional anisotropic spin2 XY chain with transverse magnetic field. As a
measure of genuine quantum correlations, we utilize thenghément quantified by con-
currence [9, 10], and a very recently proposed observabssure (OMQC) [11], which
is a simplified version of geometric measure of quantum ds¢b2]. OMQC has the
advantage of not requiring a full tomography of the systeraking it very accessible
experimentally. On the other hand, in order to quantify faoality or total correlations
in a quantum system, we employ measurement-induced ndityo@dIN) [13], and an
alternative new measure defined in terms of Wigner-Yanase giformation (WY SIM)
[14]. By comparatively studying the thermal quantum analtabrrelations in the pa-
rameter space of the Hamiltonian for the first and secondeseaeighbor spins, we have
observed that all of these measures are capable of indjcdteanCP of QPT at absolute
zero. When the temperature is slightly above absolute 2&ro,in the experimentally
accessible region, we analyze the ability of these coroglaheasures to accurately esti-
mate the CP of the transition. Finally, we study the longgeaoorrelations of the system
and the effect of temperature on these correlations.

In Chapter 5, we analyze the quantum correlations in a sfosk-Hubbard model
with two and three particles by considering periodic boupdanditions. As a measure
of quantum correlations, we use a recently introduced nreasu an arbitrary bipar-
tite system based on a necessary and sufficient conditioa f@ro-discord state in the
coherence-vector representation of density matrices [0B] the other hand, we adopt
negativity to measure the amount of entanglement in a quastate. We demonstrate
that the quantum correlations that are more general thamgletment and the negativity
can mark the critical points corresponding to energy levessings in the ground state
of the system. Although we only consider systems with only farticles in our study,
this interesting behavior have the potential to have camsaces even for actual quantum
critical systems, where the number of particles is verydangd the energy level crossings
really lead to quantum QPTs.



Chapter 2
BASIC NOTIONS

In the following Chapter, an introduction to elementary @gpts in quantum mechanics
and quantum information theory will be provided. We beginriyoducing how to refer to
guantum objects and continue with how to perform measuresranthem. Lastly, their
evolution in time will be introduced. For additional infoation on the topics discussed
in this chapter, we refer the reader to [16-23].

2.1 Quantum States

Quantum mechanical states are rays in a Hilbert sgdamd they are denoted &8) in
so called Dirac notation. A-dimensional quantum state), is ad-dimensional complex
vector inH = C? which can be written, with its dudl)|, as

W]) - (617 Coy e >Cd)Ta <¢‘ = (CTa 037 o aCZ)T> (21)

with (|¢) = Z‘j lc;]* = 1, andT the transposition operation. The inner product of two

statesy)) = (c1, 9, -+, )t and|p) = (e1, eq,- -+ ,e4)" is defined as
(Wlo) =) cre. (2.2)
We need a set of vectofs$r, ), |z2), - - -, |zx) }, Spanning the whole Hilbert space that we

are working in such that any state in this Hilbert space cawtitten as a linear combi-
nation of these vectors. This set of vectors is called theshastors of the Hilbert space,
and they have to be orthogonal to each otleyz;) = J;;, wherej,; is the Kronecker-
Delta symbol, for ali andj. In terms of these basis vectors, an arbitrary state/$gy
can be written as

) = cila), (2.3)

)



wherec; = (¢|x;). Since, in quantum mechanics the interpretatiof0f is a probability
density,c;s have to be normalized to unity;, |¢;|* = 1. Another property of the Hilbert
space is its linearity which results in one of the most imaatrfeatures of quantum me-
chanics; superposition. If we are given two stdtgs and |¢), a state made up of the
linear superposition of these two, is also a valid quantatesand it can be written as

X} = al¢) +blo) (2.4)

with |a|?+|b|> = 1. While a relative phase difference between the superpdatzbssuch
asaly) + be™|¢), is physically significant and makes up a different state tie one in
Eq. 2.2, an overall phase is physically irrelevant.

For a system composed of more than one quantum state, wemnerdtge the Hilbert
space accordingly. Consider two quantum systems$ = (cai, caz, -+ ,cada,)’ € Ha
and [¢5) = (ci,cpa, -+ ,CBay)’ € Hp. Then the composite system of these two
particles (a bipartite state) can be represented as a t@nsduct of them|iy4p) =
|V4) @ [¥g) € Ha® Hp. In particular,|i 1) can be written as

|¢AB> = (CA10B1>CA1032> *+ 3, CA1CBdp, CA2CB1, " >CAdACBdB)T- (2-5)

The generalization of this procedure to multiple stateslfjpartite state) is straightfor-
ward. If we have a set of states{|,)} withn = 1,2, --- we can write the collective
state of these states as

(W) = [1) @ [¢h2) @ - @ [thn). (2.6)

In common quantum information theory notation, such statesvritten asl) = |15 - - - 9,,),
omitting the tensor product symbol.

2.2 The Density Matrix

We have introduced the state space of quantum states. Howegeme cases, it is not
possible to have an exact knowledge about the system analtalk a single state vector.
Instead, the system might be composed of a mixture of malgfate vectors. In order to
extend our formalism to also cover these kind of quantunestate now introduce the
density matrix formalism.

Consider a quantum system which is in one of the statgswith probability p;.
These quantum states along with their probabilities fornemsemble{p;, ;) }. In this



case, we can write the density matrix of the system in theoig way
P = Zpi|¢i><¢i‘a (2.7)

where, due to the normalization of probabiliti®s, p; = 1. Quantum systems for which
the state vector is known we can write the density matrix as|) ()|. These states are
called as pure quantum states. On the other hand, if thedemesi system is a mixture
of state vectors from an ensemble of pure stafes,;)}, it is called a mixed state.
Here, mixing is completely classical and should not be ceaduvith the purely quantum
feature of superposition.

We now list the general properties that must be satisfied touadid density matrix:

e pis an Hermitian matrix
p= sz|¢z><¢z| = PT~ (2.8)
e pis a positive operator

xlelx) = 22 pilx|va) (Wil x), (2.9)
Zz'pi|<X|¢z‘>\2 > 0.

e The sum of the diagonal elementsofust add up to unity

Tr(p) = 1. (2.10)

A natural consequence of the above properties is that thguadiey Tr(p?) < 1 holds
for all p with inequality saturated only for pure states for whigh= [} (1;]1;) (5] =
[1i)(1;] = p. This inequality gives us an easy way to determine if a givesmtum state
is pure or mixed.

Similar to the case of state vectors, the density matrix apartite state is written as
the tensor product of its subsystems

PAB = pa @ pB. (2.11)

It is important to note that not all composite bipartite dgnsatrices admit such a nice
decomposition in terms of the density matrices of their gatesns. Such states are called
entangled, and they will be further discussed in the suls#aqhapter.



2.2.1 The Reduced Density Matrix

The density matrix can also be used as a tool to describebts/stems. The way to do
this is to obtain the reduced density matrix of the compasstem, which corresponds
to the density matrix for one of the subsystems. For exangsla bipartite system 3.
Then, the reduced density matrix fof is

pa=Trg(pan), (2.12)

where Tz is the the partial trace operation. We can perform this djpsras follows
Trs(jas){asl @ [bi)(ba]) =) (eil(lar)(az| © [br) (ba])]es) (2.13)

= lan) asl(ealbr) (bes)

= |a1){az|(Tr(|b1){b2])
= |a1)(az|(y1y2),

where the sefe;} denoted an orthonormal basis H#z. As demonstrated above, the
partial trace operation is the same as the usual trace opesdcept that it is performed
only on the subsystem that we want to leave out.

2.3 Measurement

All physical theories have physical observables which eambasured by an observer. In
quantum mechanics, the observablésare Hermitian (self-adjoint) operators,= Af.
The measurements of these observables are described bgfapetators{ 1/, }, where
m labels the possible outcomes of the measurement. Thesatofgeact on the Hilbert
space of the measured system. The probability of gettingethdtm after a measurement
on a given staté)) is given as

with the post-measurement state in the following form

My |¢)

VWM |0)

(2.15)



The set of measurement operators have to satisfy the ceemplet relatiod >, M M,, =
1, due to the fact that the probabilities measurement outsamest add up to unity. Main
principles behind the measurement of a quantum system gs/ego important items of
information about the system. First one is the probabilftgetting a specific outcome
and the post-measurement state.

The measurement theory introduced for state vectors céy bagyeneralized to den-
sity matrix formalism. In this case, the probability of gett the outcomen after a
measurement is calculatedjas = Tr(M] M,,p) and the post measurement state can be
written as

MP—M. (2.16)
Tr(M, M, p)

In many applications of quantum theory when we are talkinguala measurement,
we are talking about a projective measurement which is aapsse of the general mea-
surements introduced above. After such a measurement,d¢hsured state is projected
on the measured eigenstate of the observable. Therefoaesetond measurement is
made just after the first one, the outcome will be the samerettie, one can repeatedly
perform the projective measurements on a given system. aoftihe conditions that are
listed above, a set of projective measurement operatoestbasatistyP,, P, = 6,nm P,
i.e. they must be orthogonal to each other.

On the other hand, in real physical scenarios, sometimes ayenot know the post
measurement state, but we may want to learn the possibleieeasnt outcomes. In such
cases the Positive Operator-Valued Measure (POVM) fosmais a very powerful tool
to analyze such cases. There two widespread jargon to nefbrreeasurements. They
are either called POVM measurements or non-orthogonal uneaents. We have seen
that the probability of getting the outcome after the measurement,,, is performed is
Pm = (Y| M M,,|b). Suppose now, we define

E,, = M! M,,. (2.17)

The set of operator§E,, } satisfies all the criteria to be a measurement operator heayd t
are sufficient to determine the probability of a measurereitome. The setFE,,} is
called POVM and a single operatét, in this set is called a POVM element. POVM mea-
surements are non-repeatable, contrary to the case otpvejeneasurements, since the
post-measurement state of the system is unknown. Also theptihave the restriction
to be orthogonal to each other, hence the name non-prageo@asurements.

POVM measurements provide a more general approach to treunegaent of a quan-



tum system compared to the projective measurements. Howeigimportant to note
that, projective measurements in an enlarged Hilbert sgacempletely equivalent to
POVM measurements in the Hilbert space before the enlanggije This result is called
the Neumark’s Theorem [x].

2.4 Dynamics

In this section we will introduce how closed quantum statedwes in time. The word

closed here refers to to an isolated system where no ini@nacivith the surrounding
environment is allowed. For such a system, the evolutiorescdbed by a unitary trans-
formation

[U(t2)) = Ulta, t1)b(t1)), (2.18)

whereU satisfies the relatioi —! = U with U being the Hermitian conjugate (conjugate-
transpose) of/. Necessity for a unitary operator rises from the fact thgtteansforma-
tion made on a quantum state has to conserve the length dbtieevectors. However, up
to this point we do not have any information about which ugitaansformations corre-
spond to the dynamics realized in a quantum system. To havessknowledge, we need
to know how a particular quantum stdte) changes in time. Answer to this question is
given by the Schrédinger equation

d
ih—lw) = HJt) (2.19)

where H is the Hamiltonian of the system which is an Hermitian ma#mnd # is the
Planck’s constant. In fact, the operatoft,, t1), which characterizes the transformation
of the quantum state from timg to ¢,, can be deterministically found by solving the
Scrodinger equation. As a special case, for a time-indegrgrtdamiltonian, it is possible
write U (t2, t1) in @ compact form

—ZH(tg — tl)

ot2)) = exp| ~

} Ut )1, (2.20)

HereU(ty, t1) = expl(—iH (t2 — t1))/h] is defined as the time evolution operator, also
known as the propagator.

Time evolution of the density matrices isolated from theiemment can also be
formulated in the same framework. An arbitrary density matt an arbitrary time, can



be written as
tr) = Zpi‘¢i(t2)><¢i(t2)~ (2.21)
Then, following from (2.18)

p(ta) = ZPz’U(t2,t1)|¢z‘(t1)><¢z‘(t1)m(t2,tl) (2.22)

= U(tg, tl)p(tl)UT(tz, t1>

Scrodinger equation can be employed to determine the eguatimotion for density
matrices

@0 =Sn e ) worme (Geel) e

- %(Hp(t) — p(t)H) = %[H, p(t)].

Above equation is known as the von-Neumann equation.

2.5 Spin of a Particle

Spinis a fundamental property of all elementary quantureatbj such as mass or charge.
It interacts with external magnetic fields or with the spiraafother particle, just like the
charged particles interact with external electric fieldotirer charged particles. It is a
vector quantity; it has both a direction in the space and anmade. Magnitude of the
spin is quantized on a given direction. Allowed values of mn@gnitude of the spin is
determined by the spin quantum numBewhich can take the values = n/2 with n
being a non-negative integer. The spin quantum number dispamy on the type of the
quantum particle. Mathematically, we can express the Sga follows

S=S,+8S,+8.. (2.24)

whereS,, S, andS, denotes the components of the vecsorThese components obey
the following relation

Here,i, j. k € {z,y, 2}, [A, Bl = AB — BA denotes the commutator ang; is the an-
tisymmetric Levi-Civita symbol. Before proceeding to siacases, it is very important



to note that, although the name suggests a picture of ratafia particle around its own
axis, this is wrong. Spin has no classical counterpart.

2.5.1 Spini/2

The special case of = 1/2 is important because the well-known elementary particles,
such as electron, proton and neutron, fall into this caseredr, central to quantum
information theory, the quantum bit, widely known as qubdtn be represented by a spin-
1/2 particle. For a spin-/2 particles components of the spin operator are denoted by
and have the following explicit matrix forms

(0 1) (0 —i) (1 0 )
Op = , oy = , 0, = . (2.26)
10 i 0 0 —1

These matrices are also called Pauli matrices and togeitietive identity matrix, any
2 x 2 Hermitian matrix can be written as a linear combination efith In a given direction
in space, spin-/2 particles can either be parallel to that direction or améfel to it, with
its magnitude equal th/2 or —h /2, respectively.

Connection with the qubit comes at this point. A classicaldain only have two
values0 or 1. However, in guantum mechanics we can have a superpositibese two
states

[¥) = al0) + 1), (2.27)

where|a|?+|b]? = 1. Since spint /2 particles can be in two different states, as mentioned
earlier, they provide a natural physical setting for qubiieneralization to higher dimen-
sional states, for example a three level system (qutridgein possible by considering
particles with higher spin quantum numbers.

10



Chapter 3
QUANTUM CORRELATIONS

In this chapter we will review the main concepts and measofrgsiantum correlations.
We will start our discussion by introducing the concept ddaglement and continue with
its quantifiers. Next, we will turn our attention to the quantcorrelations that are more
general than entanglement. Our main focus in this part wilbb the notion of quantum
discord. We will finish this chapter by introducing quanti§i®ef total correlations.

3.1 Entanglement

Entanglement has been recognized as the first indicatorretlassical correlations and
lies at the heart of quantum information science [21-23% phoperties and behavior
in various different settings have been vastly investigatethe literature [1]. In the
following chapters, we will consider the behavior of diet entanglement quantifiers in
two different spin chain models. We start by defining theestathich are not entangled.
These states are called separable states and they haveua @wriop. Consider a pure
bipartite statejy 4z), living in the Hilbert spacé{ 4 ® Hz. |{ap) is separable if and only
if it can be written in the form

[VaB) = [a) ® |¥B). 3.1)

Here,|v4) € H4 and|g) € Hp are the two subsystems ph4z. In other words, if
a composite system can be written as a direct product of fistitaents, it is separable.
Next, we turn our attention to mixed bipartite states. Weehexplained that for mixed
states, it is not possible to characterize the system withgdesstate vector. In this case,
if the density matrix the total system, 5, admits a decomposition of the form

paB =Y _PiPa © pp, (3.2)

)
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with > . p;, it is said to be separable, otherwise it is entangled [24]haugh criterion
for separability is straightforward to check for pure statihe task of determining if an
arbitrary mixed state is separable or not in not easy in gén&ve will now introduce a
general strict criterion for separability.

3.2 Peres-Horodecki Criterion for Separability

There is a necessary condition for separability of biparsitates introduced by Peres,
based on the partial transposition operation [25]. Letsvgahave the following density
matrix

pas = > _ DIl @ k). (3.3)

ijkl

Taking the partial transpose of this matrix with respecthte subsystens3, yields the
following result

i = plliy(j| @ 1) (kl. (3.4)
ijkl

Separability criterion states that;if 5 is separable, thep5, has non-negative eigenval-
ues. It is also known as the positive partial transpose (RHR@Erion. It is important to
note that this criterion is only necessary and not sufficiergeneral. However, if the
Hilbert space dimensions of the subsystems are Bdtivo spind /2 particles) or one
of them is2 while the other is3 (a spindi/2 and a spint particles), the criterion is both
necessary and sufficient [26].

3.3 Entanglement Measures

Now that we know how to determine the separable states, wenail move on to the

subject of how to quantify the entanglement contained inrgtargled state. This is a
vastly explored subject, since entanglement is centrainost all applications in quan-
tum information theory [1]. But first, we need to introduce ttoncept of local operations
and classical communication (LOCC) [27-30]. In LOCC settidistant parties that are
sharing a quantum system can only apply local operationiseio subsystems and they
can only classically communicate with each other, trantémgitguantum information is

forbidden. The natural necessity for this protocol arisemfthe fact that classical com-
munication cannot increase entanglement and as a resslképt as a resource to be
manipulated. For an arbitrary bipartite density matrix,X@© operations can be written
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in the form
T(p) = > A ® BipAl @ B], (3.5)

where A; and B; are the generalized measurement operators acting on thertipace
of subsystemsl and B, respectively.

There is a list of reasonable assumptions in order fully attarize the entanglement
content of a given state. Any good measure of entanglemantfZ’sis a mapping that
takes density matrices as input and produces positive rgabars as output. Such a
mapping is expected to satisfy the following features

e FE(p) vanishes iy is a separable state.

e Entanglementis invariant under local unitary transfoiote, £ (p) = Us@UppU &
Uf

e The mappingF is an entanglement monotone, meaning it does not increaks un
LOCC operations on average

E(p) > ZpiE(pz-), (3.6)

wherep; denotes the probability of obtaining after the LOCC.

There are some other properties such as normalization egiywetc., which may be
useful in some context. But the above requirements are tlyeoes that is necessary for
an entanglement measure [31-36]. We will now move on todhice some entanglement
measures, that will be utilized in the following chapters.

3.3.1 Entropy of Entanglement

In order to define entropy of entanglement, we first define treNeumann entropy,
which is the generalization of Shannon entropy in classiti@rmation theory to the
guantum systems. Shannon entropy [37], gives us the améinfoomation that we get
after measuring a random variabfewith possible value$zx,, =5, - - - , x,, }. Explicitly, it
is given by the expression

H(p(xl)ap(xQ)a e ,p(.Tn)) - = Zp(xz)logp(xz)a (37)

where the log denoted the logarithm to the basBy replacing the probability distribu-
tion with density matrix, quantum version of Shannon engrepn-Neumann entropy is
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defined as
S(p) == _ Alogh;, (3.8)

where)\; are the eigenvalues of the density matrix.

Having defined the von-Neumann entropy, we now have the sapetols to define
the entropy of entanglement [38]. For a pure bipartite dgmsatrix, p 5, the entropy of
entanglement is given by

Eg(pap) = S(pa) = S(pp)- (3.9)

Here, pa = Trp(pag) andpp = Tra(pap) are the reduced density matrices for the
subsystemsl and B, respectively. The fact that the composite system is a pate,sloes
not guarantee that its reduced density operators will aésspure. In fact, a maximally
mixed reduced density matriyy = pp = I/2 where[ is the identity matrix in the
appropriate Hilbert space dimension, implies that the pameposite system is maximally
entangled, hence the entropy entanglement is maximum.ii@smum scales with the
logarithm of the Hilbert space dimension, tbg

3.3.2 Concurrence

Concurrence is a well-defined and remarkably easy entarglemeasure for two spin-
1/2 density matrices [9, 10]. In order to evaluate concurreane,first needs to calculate
the time-reversed or spin-flipped density magriwhich is given by

p=(c"®@c")p"(c¥®adY). (3.10)

Here oV is the Pauli spin operator ang is obtained fromp via complex conjugation.
Then, concurrence reads

C(p) = max {0? \/)‘71 - \/)‘72 - \/)‘73 - \/)‘747 } ) (311)

where{\;} are the eigenvalues of the product majsjxin decreasing order.
In the special case of X-shaped density matrix

piir 0 0 py
0 0
ab _ P22 P23 7 (3.12)
0 pag p22 O

pia 0 0 pu
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which we will encounter in the following chapters, concmae reduces to

C = 2max{0, [p1a]| — |p22l, |p23| — v/P11paa}- (3.13)

3.3.3 Entanglement of Formation

Aresource based measure of entanglement for an arbitiaaytibe state (including mixed
states) is given by the entanglement of formation [10]. tefined as follows

Er(pap) = minp; E(|¢)). (3.14)

Here, the minimization is made over all possible sets of tmesE = {p;, |¢)} that
yields the given stateaz = ) . ps|¢s) (¢;] and E(.) is the entropy entanglement. Actu-
ally, EoF is nothing but an extension of entropy of entangletrio mixed states. Natu-
rally, it converges tdv for pure states. The reason that EoF is a resource basednmeasu
is that it quantifies the number of maximally entangled stédeconstruct the given state.
Therefore, it is of operational importance. For pure twanspi2 density matrices, EoF
can be expressed in terms of the concurrence

EoF(p) = h (1 v 12_ Cz@) , (3.15)

whereh(z) = —zlog(z) — (1 — x)log(1 — x). However, in most cases it is not possible
to find an analytic formula for EOF due to the optimizationgadure.

3.3.4 Negativity

Negativity is a measure of entanglement that can be stfaigverdly calculated for an
arbitrary bipartite system in all Hilbert space dimensioAkhough we cannot conclude
whether a PPT state (zero negativity state) is entangleeiparable in general, negativity
is still a reliable measure for all negative partial trarspstates [39]. For a given bipartite
density matrixp 5, it can be defined as the absolute sum of the negative eigess/af
partial transpose i,z with respect to the smaller dimensional system,

1
N(pap) = B Z mil = i, (3.16)

wherer); are all of the eigenvalues of the partially transposed dgnsatrix (p45)7=.
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3.4 Quantum Discord

Recent research on quantum correlations has shown thapger@ent is not the only kind
of useful quantum correlation. Quantum discord (QD), whgHdefined as the discrep-
ancy between two classically equal descriptions of quamtwiual information, has also
proven to be utilizable in quantum computing protocols [3{8oreover, QD is more
general than entanglement in the sense that it can be piasayparable mixed quantum
states as well. Following this discovery, much effort hasrbput into investigating the
properties and behavior of QD in various systems rangingn fgorantum spin chains to
open quantum systems [7]. Nevertheless, since evaludtiQDaequires a very complex
optimization procedure, the significant part of the develept in the field is numeric and
analytical results are present only for some very resttistt of states. In general, these
restrictions are introduced by forcing certain symmetead limiting the size and the
dimension of the system under consideration. A short ligtralytical results would in-
clude the progress itk -shaped states of different dimensions [40—24],d dimensional
two-parameter class of states [48}p d dimensional Werner and pseudo-pure states [46],
general real density matrices displayifg symmetry [47], two-mode Gaussian states
[48], and2 ® d dimensional mixed states of rakf49-51] whered denotes the Hilbert
space dimension of the system under consideration. QD sg&sehave also been intro-
duced for2 ® d systems [52]. Following QD, many other quantum and totatetation
quantifiers have been introduced [12—-14, 53-55].

We will now review the concept of quantum discord. We have \erefly mentioned
that quantum discord is the difference between the quantiengions of the classical
mutual information. First and direct generalization ofssi@al mutual information is
obtained by replacing the Shannon entropy with its quantoaitog, the von Neumann
entropy

I(p™) = S(p") + S(p°) = S(p™). (3.17)

Here,p® andp® are the reduced density matrices of the subsystems @njd= —trplog, p

is the von Neumann entropy. On the other hand, in classiéainration theory, mutual

information can also be written in terms of the conditionallgability. However, gen-

eralization of conditional probability to quantum case @t straightforward since the
uncertainty in a measurement performed by one party depmntige choice of measure-
ment. Therefore, one has to optimize over the set of measmmsnmade on a system
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[3, 4]

{1}

C(p™) = S(p") — min ¥ " pS(pf), (3.18)
k

where, in this work, {12} is always understood to be the complete set of one-dimeasio
projective measurements performed on subsystamd p¢ = (I @ I12)p* (I @ 11%) /py,

are the post-measurement states of subsystafter obtaining the outcomewith prob-
ability p, = tr(I* ® 112 p™) from the measurements made on subsysteni’(p) can
physically be interpreted as the maximum information gaialkout the subsystemaf-

ter the measurements on subsystewhile creating the least disturbance on the overall
quantum system. This quantity is also referred as class@aélations contained in a
state [4, 7]. Since classical versions of the aforementang@ressions for quantum mu-
tual information are the same, one can define a measure fatuiquaorrelations, namely
the quantum discord as

D(p™) = 1(p™) = C(p™). (3.19)

Main challenge in the calculation of quantum discord is tha&eation of classical cor-
relations, since it requires a complex optimization oveneasurements on the system.
The reason that there is no general analytical results ontgoediscord except for very
few special cases, is due to this difficulty. It is importamiibte that quantum discord
is dependent on which subsystem the measurements are dowe. nsaking the mea-
surements on spin-subsystem will make the optimization procedure even hanal¢nis
work, all measurements are made on the dpihsubsystem. Furthermore, QD can in-
crease or decrease under local operations and classicahwoication (LOCC) if the
LOCC is performed on the measured part of the system [56F38%.is a rather peculiar
behavior since invariance under LOCC is the defining prgpefrentanglement.

3.4.1 Geometric quantum discord

Geoetric measure of quantum discord (GMQD) has been intextltio overcome the
difficulties in the evaluation of the original QD [12]. It maaes the nearest distance
between a given state and the set of zero-discord statebeMatically, it is given by

Da(p™) = 2min|p* — x|, (3.20)

where the minimum is taken over the set of zero-discord stéea recent work, Girolami
et al. have obtained an interesting analytical formulaier@MQD of an arbitrary two-
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qubit state [11]
Dg(p™) = 2(trS — max{k;}), (3.21)

whereS = 22 + TT* and

2 _ 2 .
b — trs N \/6trS2 — 2(trS) o (9+o¢2) | (3.22)

3 3 3

with {o;} = {0, 27, 47} andd = arccos{(2trS3—9trStrS?+9trS3)/2/(3trS2? — (trs)2)3}.
Furthermore, observing thabs ("*Ta) reaches its maximum far; = 0 and choosing
to be zero, they have found a very tight lower bound to the GM@Zen by

Q(p™) = %(QtrS — /6trS2 — 2(trS)2). (3.23)

This quantity, that we will refer as observable measure ahtum correlations (OMQC),
can be regarded as a meaningful measure of quantum carnsatn its own and it has the
desirable feature that it needs no optimization procedBesides being easier to manage
than the original GMQD, it can be measured by performing séveal projections on up
to four copies of the state. Thug(p) is also very experimentally friendly since one does
not need to perform a full tomography of the state.

3.5 Non-classical Correlation Measures

In this section, we briefly review the remaining non-clagstorrelation measures used
in our this thesis.

3.5.1 Coherence-vector based measure

We first introduce a measure of non-classical correlatisapgsed by Zhou et al. based
on a necessary and sufficient condition for a zero-discat# $1.5]. A general bipartite
statep® can be expressed in coherence-vector representation as

2m

"‘i 2751_1 Z;i;l ti; Xi @Yy, (3.24)

2_ a n2—
Pt = Ll Y e X e Lk o Sy,

where the matrice§X; : i = 0,1,--- ,m?—1}and{Y; : j = 0,1,--- ,n?—1}, satisfying
tr( Xy X;) = tr(Y,Y;) = 26, define an orthonormal Hermitian operator basis associated
to the subsystems andb, respectively. Herel is the identity matrix for the specified
subsystem. The components of the local Bloch vecioes {z;}, ¥ = {y;} and the
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correlation matrix" = t;; can be obtained as

Ti = trpab(Xi ® [b)7
y; =tp?(I°®Y;),
tz‘j = trpab(XZ- (29 }/J> (325)

By making use of the above representation of bipartite quargtates, the measure of
non-classical correlations is given by

1'%

=1 Z A, (3.26)

whereA; are the eigenvalues of the criterion matfix= T'T* — 4'4/7#" in decreasing
order. The motivation behind the definition of this measurée details of its derivation
can be found in Ref. [6].

3.5.2 Measurement-induced non-locality

We will commence by introducing measurement-induced raaiity (MIN) which en-
capsulates more general kind of correlations than quantumacality connected with
the violation of Bell inequalities [13]. It is defined by (iak into account the normaliza-
tion)

N(p™) = 2max | p" — II(o")||*, (3:27)

where the maximum is taken over the von Neumann measureriiénts {I1¢} that do
not changey® locally, meaning}_, I1¢p°I1¢ = p%, and||.||* denotes the square of the
Hilbert-Schmidt norm. MIN aims to capture the non-locakeffof the measurements on
the statep® by requiring that the measurements do not disturb the |desd g®. It is
always possible to represent a general bipartite statedaorBbasis as

m2—1 b

1 I It I
° = —= iXi @ —(=
\/—mnm®ﬁ+zx T

n2—1 m2—1n2-1

Vit Y ) X0, (3.28)

=1 j=1

he)

where the matrice§X; : ¢« = 0,1,---,m? — 1} and{Y; : j = 0,1,---,n? — 1},
satisfying t{ X, X;) = tr(Y,Y;) = &, define an orthonormal Hermitian operator basis
associated to the subsystemandb, respectively. The components of the local Bloch
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vectors? = {z;}, ¥ = {y;} and the correlation matriX = ¢,; can be obtained as

XT; = trpab(Xi ® [b)/\/ﬁ,
y; = tp™(I° @ Y;) /v/m,
ty = trp”(X; @ Y)). (3.29)

Although a closed formula for the most general case of bigagiantum systems is not
known, provided that we have a two-qubit system=£ n = 2), MIN can be analytically
evaluated as

2UTT! — 2-BTTE) if £ 40,

N = {2 E ) s (3.30)

2(trT Tt — \3) if 7 =0,
whereTT"! is a3 x 3 dimensional matrix with\; being its minimum eigenvalue, and
1Z]|? = >, 2? with & = (21, 22, x3)". Due to the symmetries of the considered system in
this work, the two-spin reduced density matrixXisshaped

pii 0 0 piy
0 0
p“b _ P22 P23 . (3.31)
0 pa3 p O

pa 0 0 py

Since the local Bloch vectar is never zero in our investigation, MIN takes the simple
form

N(p) = 4(p33 + ply)- (3.32)

3.5.3 Wigner-Yanase information based measure

A new measure of total correlations has been proposed in[Rgfby making use of the
notion of Wigner-Yanase skew information

I(p, X) = —%tr[\/ﬁ, XP2, (3.33)

which has been first introduced by Wigner and Yanase [60]e Heis an observable (an
Hermitian operator) anf, .| denotes commutator. For pure statég, X ) reduces to the
variancelV/ (p, X) = trpX? — (trpX)?. Since the skew informatiof(p, X) depends both
on the state and the observabl&’, Luo introduced an average quantity in order to get
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an intrinsic expression
Qlp) =D _1(p, X)), (3.34)

where{X;} is a family of observables which constitutes an orthonorbaalis. Global
information content of a bipartite quantum systgfhwith respect to the local observables
of the subsystem can be defined by

Qu(p™) =D 10", X; 0 1"), (3.35)

which does not depend on the choice of the orthonormal BaSis. Then, the difference
between the information content pf’ andp® ® p® with respect to the local observables
of the subsystem can be adopted as a correlation measurefor

F(5) = 2(Qulr”) ~ Qulp" ® ),
= 2(Qul") ~ Qul"), (3.36)

where we add a normalization factdf3. Despite the fact that the evaluation of most
of the measures requires a potentially complex optimingtimcessF'(p*) (referred as
WYSIM) has the advantage that it can be calculated straightfrdly. At this point, we
note that quantum mutual information (QMI) has been widedgduas the original mea-
sure of total correlations contained in quantum statesn@based on the von Neumann
entropy, QMI is a well established measure from the comnatiuin perspective, while
WYSIM is based on the skew information and has a fundameoi@im quantum estima-
tion theory [14].
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Chapter 4

QUANTUM DISCORD OF SU(2) INVARI -
ANT STATES

4.1 Definition and Entanglement Properties ofSU(2) In-

variant States

Bipartite SU(2) invariant states are defined by their invariance under iootadf both
spins,U; ® UypUf @ US = p, wherel ) = exp(id@ - Sy(2)) is the usual rotation operator
and the length ofi is chosen according to the spin Iengﬁj [61, 62]. In other words,
these states commute with every component of the total gpémator/ = S; + Ss.
Explicitly, in the total spin basis, for a spifj-and sping, system, the density matrix of
SU(2) invariant states can be written as

S1+S2 A(J) J
p= D 557 2 LI (4.1)
J:‘Sl—SQ‘ Jo=—

where A(J) > 0 and)_; A(J) = 1. Entanglement structure of states under certain
symmetries has been vastly explored in the literature. &laee number of analytical
results on the entanglement propertie$S6f(2) invariant states. The simplest setting for
analytical calculations is thg = j, j» = 1/2 case which is characterized by a single
parameterF' (instead ofA(J)). In this case, negativity has shown to be a necessary
and sufficient condition and these states were found to barakle if and only ifFF <
27/(25 + 1) [61]. Another important analytical result on the same sestafes is the
evaluation of entanglement of formation (EoF)

0, Fe[0,25/(2j +1)]

H (ﬁ (ﬁ— NoT F))z) , Fel2j/(2j+1),1],

EoF =
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whereH (z) = —zlogz — (1 — x)log(1 — x) is the binary entropy [x]. One can see that
entanglement goes to zero as the length of the arbitraryispircreased, i.e. becomes
more classical [x]. Extending the result on EoF to the nextpéést case, two spiih-
particles, was not possible since now the most general istatearacterized by two pa-
rameters which complicates the optimization procedur@bedyhe analytically traceable
level. Although analytical formula for EoF is not present liigher dimensions, PPT cri-
terion gives important information about the separabiktyr example, the case gf = 7,

jo > 1 gives different results for integer and non-integgfor integerj PPT is necessary
and sufficient for separability, on the other hand, thereahsays entangled PPT states
[63, 64]. Also, relative entropy of entanglement, which jigar bounded by the EoF, has
been analytically calculated fgk = j, j» = 1/2 case andj; = j, jo = 1 case with
integer; [65].

In real physical systems$U(2) invariant density matrices arise when, for example,
considering reduced state of two spins described ¥ &) invariant Hamiltonian. There
are great number of Hamiltonians that possess this symjretpecially, in the vastly
explored area of quantum spin chains [66]. Apart from thé8é(2) invariant states is
also present in some quantum optical setups, such as nmaltop states generated by
parametric down-conversion and then undergo photon I§63gs

4.2 Quantum Discord for j; = j, jo = 1/2

We will now consider the bipartite state which is composeé apins and a spint /2
subsystems. As mentioned before, in this case, we can Wwigestate as a function of a
single parameter. Density matrix for our system in totahgpsis is given as [61]

j—1/2
ab F

pr=o D li=12mG-1/2ml (4.2)
']m:—j+l/2
1_F j+1/2
+ i +1/2, i+ 1/2,m].
2(9+1)m:§1/2‘] /2,m)(j +1/2,m|

To obtain an analytical formula for the quantum discord, \wellsstart by calculating
the quantum mutual information. Bipartite density matrashtwo eigenvalues; =
F/25 and s = (1 — F)/(25 + 2) with degeneraciegj and2; + 2, respectively. On
the other hand, the reduced density matrices of the sulmsgstan be found ag® =
Li11/(25 + 1) andp® = I, /2 wherel,;,, and [, is the identity matrix in the dimension
of the Hilbert space for spig-and spini /2 particle, respectively. Note that boph and
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o’ are maximally mixed independent gf Thus the mutual information of our system is

I(p) = S(p*) + S(p") = S(p™) (4.3)
1-F
25 +2°

F
:1+log2(2j+1)+Flog22—j+(1—F)log2

We now turn our attention to the calculation of the classocatelations which is the
non-trivial part in our calculation. We will perform projige measurements on the spin-
1/2 part of the density matrix. Performing POVMs complicates ¢lalculation beyond
the point of handling it analytically. In order to measuree@ubsystem, first we need to
write the density matrix in the product basis. By using thelSh-Gordan coefficients for
coupling a spiny to spin- /2, density matrix in product basis can be written as

j—1/2
p“b:% > dm—1/2)(m—1/2|@[1/2)(1/2| (4.4)
m=—j+1/2
+a_b_(jm—1/2)(m+1/2| @ [1/2)(—1/2]
+lm+1/2)(m—1/2| @ | - 1/2)(1/2))
+ 02 m+1/2)(m +1/2| @ | = 1/2)(=1/2|
1_F Jj+1/2 ,
TG D ng_l/f”m —1/2)(m —1/2|® [1/2)(1/2|

T asb (jm — 1/2)(m + 1/2| @ [1/2)(~1/2]
Flm+1/2)(m - 1/2) @ | - 1/2)(1/2])
+ bi|m+ 1/2)(m+1/2|® | —1/2)(—1/2].

Herear = +/(j+1/2£m)/(2j + 1) andby = /(5 + 1/2F m)/(2j + 1) are the
appropriate Clebsh-Gordon coefficients. We want to comsidemost general projective
measurement which can be in any direction. So, we take thplasiprojectors ontz-
and—z-direction and rotate then to an arbitrary direction. Esiflly, these measurement
operators on’ can be written as

(B, =VILV': k=0,1}, (4.5)

where{Il; = |k)(k| : k = 0,1} andV = tI + iy - &, any unitary matrix in SU(2). Here,
botht andy are real and? +v? +y3+y32 = 1[40]. After the measurements are performed,
p® will transform into an ensemble of post-measurement staitistheir corresponding
probabilities{ p, px }. In order to calculate possible post-measurement spatasd their
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corresponding probabilities,, we write

prpr = (I ® By)p™ (I ® By) = (1 @ VILV)p®(I @ VI VT) (4.6)
— IV I QI @VH)p®Ie V) @I (I V.

Since transformation of the usual Pauli matrices undandll, is known [40], itis easier
to calculate the post-measurement states when thelgpipart of the density matrix is
written in terms of them. In order to do that, we will use foliog identities

1/2)(1/2] = 211 + 03] (.7)
1/2)(-1/2] = 5lon + i
|~ 1/2){1/2] = Slor — i
|~ 1/2){-1/2] = 51 ~ 3]
We are now ready to use the transformation properties of Reaitices as given in [40]

VTUJ/ = (t2 + yf - y% — yg)al + 2(ty3 + y1y2)02 + 2(—ty2 + y1y3)0'3, (48)

VTUQV = 2(—ty3 + y1y2)01 + (t2 + y% - yf — yg)ag + 2(—ty1 + y2y3)0'3, (49)

ViosV = 2(tys + y1ys)or + 2(—tys + yay3)o2 + (2 +y3 —yf —y3)os,  (4.10)

andH00'3H0 = Ily, IT1o31l; = —IIy, HjO'kHj =0 fOI’j = 0,1, k= 1,2. The middle
section of the second line of Eq. (4.6) can be explicitly tentas

j—1/2
(1®VT)p“b(1®V):2—j > a’lm—1/2)(m—1/2|@ VI|1/2)(1/2]V  (4.11)
m=—j+1/2
+a b_(jm—1/2)(m+1/2| @ VI1/2)(-1/2|V
+m 4+ 1/2)(m — 1/2| @ V| — 1/2)(1/2|V)
+ 0% |m+1/2)(m+1/2| @ V| = 1/2)(-1/2|V
1_F j+1/2 ,
G D) m:§l/2a+|m—1/2><m—1/2\®VT|1/2)(1/2|V

+ayby(jm—1/2)(m+1/2| @ VI1/2)(-1/2|V
+im+1/2)(m —1/2| @ VT| — 1/2)(1/2|V)
+ b2 |m+1/2)(m+ 1/2| @ VT — 1/2)(=1/2|V.
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Using the identities introduced in Eq. (4.7) through Eg.1(QJ, we have calculated the
probabilities of obtaining two possible post-measurerst&tes ag, = p; = 1/2 and the
corresponding post-measurement states themselves as

j—1/2
py = {% > a1+ z)m—1/2)(m—1/2| (4.12)
m=—j+1/2
+a b ((z +iz)|m—1/2)(m+1/2|
+ (21 — i29)|m + 1/2)(m — 1/2])
+ 0% (1 — z3)|m + 1/2)(m + 1/2|
1_F j+1/2 ,
2(j + 1) m:§1/2a+(1 +23)lm —1/2)(m — 1/2|

+a;by((z1 +iz9)|m —1/2)(m +1/2]
+ (21 — 129)|m + 1/2)(m — 1/2])

+ 0% (1 — z3)|m + 1/2)(m + 1/2\} ® VH(I)VT,

wherez; = 2(—tys + y1y3), 22 = 2(tyr + y2u3), 23 = 1* + y3 — y? — y2 with 27 +

22 4+ 22 = 1. In order to write the post-measurement density matric@snrore compact
form, will make a couple of simplifications. These simplitioas will also prove to be
useful in calculating the eigenvalues of the post-measen¢rstates. First, we take out
m = —j — 1/2 andm = j + 1/2 terms out from the second summation and merge two
sums. Second, we make the following observation: fomaim the summation range we
have(|m —1/2)(m —1/2|)|m = (|m+1/2)(m+ 1/2]|)|,—1, thus we can combine their
coefficients accordingly. After these modifications, thetpmeasurement states can be

written as
BE= 1 m(2Fj + F — j)
Po —{ m;j {72]' 1 23].(]. T2+ ) [m)(m| (4.13)
ViGH D) —m(m+ D)(2Fj + F — j)
~ (&1 Fiz) 2j(j +1)(2j + 1) o m + 1
(i) AU D S 1><m|} VIV
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and

BN 1 m(2Fj + F — j)
a _{ 2 {23‘ 1 PG DE ) [} {m| (4.14)

m=—j

W(j +1)—m(m +1)(2Fj + F — j)
2j(7 +1)(25+1)

Vi +1) —m(m+1)2Fj + F —j)
2j(j +1)(2j + 1)

+ (21 + 129 [m)(m + 1]

+ (Zl — ZZQ)

|m + 1)(m|} ® VI, VT,

The eigenvalues of the post-measurement states are theasanby inspection, they can
be found as

1 j—n

Ay = + F(2j+1)—j 4.15
wheren = 0, - - - , | j| for half-integerj with | .| being the floor functionand = 0, - - - , j

for integer;.

In calculation of the post measurement states, we havenfetldhe way introduced
in [40]. Considering the symmetry of the states considenetthis work, an alternative
and a more direct way to obtain the eigenvalues of the possumement states is present.
Continuing directly from Eq. (4.6)

e = (I @ VILVYp® (I © VILVT) (4.16)
=@ VILVHV V) (VIe V(I @ VILVT)
=(IQVIL)(VDp®VIe ) oIV
= (Ve VIL)p®(V oIV
= (Ve VI I )(Vie V).

We only need the eigenvalues of the post-measurement statethe eigenvalues of a
matrix does not change under local unitary operations. &fbeg, it is sufficient for us to
calculate the eigenvalues of ® I1,)p® (I @ II,). Applying the projection operators to
the spind /2 part of the density matrix we get

j—1/2 | iHe
ab _ 2 2
(I®11y)p™ (I®Ily) = 57 E'Hm a_\m—1><m—1\+2(j Y E y a’|m—1)(m—1]|
m=—j m=—j—

(4.17)
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Figure 4.1: On the left panel QD vs. F and on the right panel CC vs. Ffer1/2 (d = 2),
j=3/2(d=4),j=9/2 (d=10) andj = 49/2 (d = 50).

and
j—1/2 1_F J+1/2
IQI) p™(IR]I1,) = — b2 lm—1){m—1]+—— b2 lm—1){(m—1|.
(&I (IS = o Z/ 2 Im=1)(m—1l+ 37— Zm Hm—1)(m—1]
m=—j m=—j—

(4.18)

Since both of these matrices are diagonal and free of measuteparameters, it is
straightforward to calculate the eigenvalues and evelgiube QD of these states. The
eigenvalues obtained from these post measurement stategj@ivalent to the ones pre-
sented in Eq (4.15). This alternative method is especiatiyartant because it points a
way to generalize the calculation of QD for bipartite statEkigher spin.

It can be clearly seen that that the eigenvalues do not deperide measurement
parameters. Therefore, calculation of the classical tairoms do not require any opti-
mization over the projective measurements. Then, theicEs®orrelations can be written

as

Cp™) = S = S mS (o) = logy(2 + 1) + S Aflog, (V). (4.19)
k

n=0
Combining the above equation with Eq. (4.3), we have obthareanalytical expression
for QD in the system under consideration

F 1-F
D(,oab):1—|—Flog22—j—|—(1—F)log22j+2

=) Arlogy(AD), (4.20)
n=0

where)\* is given at Eq (4.15). In Fig. 1, we present our results on QB E(p™) as

a function of our system parameterfor different dimensions. We recover the results
obtained in [40, 68] in the special case of two spjf2-system. We know that fop®,
the boundary between separable and entangled statesiis-a®;/(2;5 + 1) [61], which

is half of the value that both QD ar@(p®) vanishF; = j/(2j + 1). One can observe
that as the dimension of the system increases, both Qépd) increase in the region

28



— Qp

-~ EoF
0.8

0.6 -

041 7 )

02F
02}

‘ ‘ ‘ ‘ o e g ‘ ‘ .
0.6 0.7 0.8 0.9 1o 0.92 0.94 0.96 0.98 1.00

Figure 4.2: QD (solid line) and EoF (dashed line) vB.for j = 1/2 (d = 2) (left panel) and
for j =9/2 (d = 10) (right panel)

F < F,and decrease inthe regiéh> F;. Eventually, in the infinitg limit, both of them
become symmetric around the pofit= 1/2 where they are exactly zero. The symmetry
aroundF' = 1/2 clearly starts to manifest itself at system dimensions asal®; = 9/2
(d = 10). The maximum value of QD is attained fér = 1 for all system dimensions
which corresponds to the state that is the projector on tepire(; — 1/2) subspace. It
is important to note that as— oo, our system becomes completely separable while QD
remains finite except for a certain point, with its maximunueafollowing a decreasing
trend. This behavior can also be seen explicitly if we loothatlarge; limit of (20) as
j
D(p™) =1+ Flog, F + (1 — F)logy(1—F) —log,(2j + 1) — Z AZlog, A, (4.21)
n=0

whereA* = 1/2j £ (j — n)|(2F — 1)|/(25%). The symmetry poinf’ = 1/2 is apparent
in the above equation and decreasing trend of the maximune dlQD can also be seen
analytically as a function of. In the same limit fod @ d Werner stateg, = F, = 1/2
and QD is again symmetric around this point. Therefore¢fbr < 1, itis possible to find
an entangled and a separable state possessing same amQih{46]. From the right
panel of Fig. 1, it is clear that classical correlations gdoahe limit ; — oo. However,
its maximum settles to a fairly high value as compared tod Werner states [46].

We will now compare the amount of QD and entanglement posddasour system.
EoF for a spint/2 and a spinj SU(2) invariant states is given in the beginning of this
chapter. In contrast td® d Werner states, the point in the parameter space for which EoF
becomes non-zero is dependentjonin [46], it was shown that EoOF becomes a general
upper bound for QD il ® d Werner states. However, in figure 2, we can see that except
j = 1/2 case, QD always remains larger than EoF forFathnd the difference between
these quantities increase as— oo. Note that the region in which EoF remains zero
covers the whole parameter space in the same limit.
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Chapter 5

QUANTUM CORRELATIONS IN SPIN -1 BOSE-
HuBBARD MODEL

In this last chapter of the thesis, we investigate the quarand total correlations in spin-
1 Bose-Hubbard Model. Since there exists no analyticaltwwidor arbitrary number of
particles for this model, we have used analytical diagaasibn technique. However, the
Hilbert space dimension, i.e. the dimension of the Hamitomatrix to be diagonalized,
grows very rapidly with increasing number of particles. fdiere, we have restricted
our analysis for two and three particles. Even in this casepbtained interesting results
regarding the phases of the system via the correlation mesasu

5.1 Spin-1 Bose-Hubbard Model

We will start by describing the physical setting of the systender consideration. The
Hamiltonian describing the system of spin-1 atoms in arcaplattice is given by [69, 70]

H =-t Z(ij),a(a;roajo' + CLZ'O-CL;U) + % ZZ ﬁl(ﬁl - 1)
+% Zi((stiot)2 - Qﬁz)a (51)

whereajo (ai») is the creation (annihilation) operator for an atom on &itéth = compo-

nent of its spin being equal o = —1,0, 1. Heren; = > al_a;, is the total number of

atoms on sité andS;,, gives the total spin ofth lattice site. The parameterepresents
the tunneling amplitude/, is the on-site repulsion and, differentiates the scattering
channels between atoms with differé&, values.

From this point on, we assume that the temperature is lowginand the tunneling
amplitudet is small so that the overlap between the wavefunctions ofptrécles in
neighboring sites is almost zero. Under these assumpttbasspin-1 Bose-Hubbard

Hamiltonian can be treated perturbatively. Second ordeugzation theory irt gives the
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effective Hamiltonian as [70]

e

Hj 2

p sz+rI+T%(SZ sj)ﬂ%(sl SHE (5.2)
In addition to the original spin-1 Bose-Hubbard Hamiltanian external magnetic field
w has been added to the effective Hamiltoni&nis the spin operator of the particle on
sitei with J = > . S; and! represents the identity operator. In terms of the origiredd3
Hubbard Hamiltonian parametetsU,, U,, the effective coupling constants , ~ for
single particle per site are given by

r = 4t - 4t
3(U0+U2) 3(U0—2U2)’
_ 2t
T Uo+Uz?

2t 412
T T 300+ + 3(Uo—2U2)" (5.3)

T

with » = 7 — ~. In what follows, we will consider the two and three partickses with a
single particle per site.

5.1.1 Two particles

In this setting, the explicit form of the effective Hamilian given by Eq. (5.2) reads
Hy=wl, +rI+7S-S,+7(S - S)°. (5.4)

Using the identityS, - S, = (J? — S — S%)/2, the two particle Hamiltoniar#/, can be
written in the total spin basis as

Hy = wl, + g(ﬁ A+ %(ﬁ — AT 411, (5.5)

where the energy eigenvalues are determinedas = wM + 7(j(j + 1) — 2)/2 +
v[(5(5 +1) — 4)* — 4] /4. The density matrix of our system at finite temperaffirean be
written as

e PH
pT = 7 (56)

with the partition function of the system is given By= tr(e %) = ¢=#7[2 cosh f7(1 +
2 cosh fw) +ePB31727) 126787 cosh 237] andB = 1/T with Boltzmann constaritz = 1.
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Figure 5.1: The thermal entanglement (a) and quantum correlations f(ljpm-1 Bose-
Hubbard model with two particles as a function of the par@metwheny = w = 1 for
T = 1 (dotted line), T = 0.5 (dashed line) and’ = 0.05 (solid line). The low lying energy
levels and their crossings in the ground state of the systerdigplayed in (c).

In Fig. 5.1 (a) and (b), we present our results related totteenal entanglement and
quantum correlations in the system of two particles as atfomof - wheny = w = 1 for
T = 0.05,0.5, 1. Leggio et al. have recently discussed the behavior of theemtangle-
ment in this model, revealing a connection between therdiffiephases of entanglement
and the energy level crossings in the ground state of thems)stl]. We demonstrate here
that not only the negativity but also the non-classical@ations of the system experience
two sharp transitions at points= 0.5 and7 = 4 when the temperature is sufficiently
low. Examining the Fig. 5.1 (c), it is not difficult to see thhese sharp transitions are
connected with the appearance of energy level crossinggiground state of the system.
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In fact, ground state crossings occur at the pdints- w andr = w+ 3+, and the connec-
tion between the crossings and the considered correlate@sunes is independent of the
values ofy andw. We also note that when < 0, non-classical correlations in the system
grows and reaches to a constant value in this regime as thpetatare is increased.

5.1.2 Three particles

When it comes three particles, the effective Hamiltoniathvieriodic boundary condi-
tions takes the form

Hy =wl,+71+7($-$+S-$+S3-S)
(S - S)? + (S - $)* + (S5 S1)2. (5.7)

Similarly to the case of two patrticles, we straightforwgrdbtain the energy eigenvalues
of the Hamiltonian and the thermal density mafixto evaluate the negativity and non-
classical correlations in the system. In this case, neigatimd quantum correlations are
calculated considering the bipartition®® 9, that is, we look at the correlations between
the first particle and the remaining two patrticles in the eyst Despite the fact that we
do not investigate the multipartite non-classical cotrefes, one can indeed use tripartite
negativity defined in Ref. [72] to analyze the multipartiteanglement. It is easy to see
that, due to the symmetry of the considered system, thertitgpaegativity reduces to
usual negativity which is calculated by taking the partiahtpose with respect to any of
the three qubits. Fig. 5.2 (a) and (b) display our resultsherthermal entanglement and
quantum correlations in the system of three particles wetigolic boundary conditions as
afunction ofr wheny = w = 1for 7" = 0.05, 0.5, 1. The low lying energy levels and their
crossing points are also shown in Fig. 5.2 (¢). Looking afidngres, we observe that the
two sudden jumps of negativity and quantum correlationsesmond to the crossings of
the energy levels in the ground state of the system-atl /3 andr = 2/3. We note that,
different from the case of two particles, negativity andmjuan correlations do not show a
decreasing behavior about the second transition poiat2/3, in case of three particles.
Moreover, the plateau occurring after the first transitienehis considerably shorter as
compared to the two particle case. Lastly, the revival of-oassical correlations with
increasing temperature can also be seen whero.
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Chapter 6

CRITICAL POINT ESTIMATION AND THER-
MAL CORRELATIONS IN ANISOTROPIC
XY-CHAIN

In this Chapter, we will discuss the behavior of various quanand total correlation
measures both in zero and finite temperature in the anisodpspin-chain. The model
we are using here exhibits a quantum phase transition as foitine parameters in its
Hamiltonian is varied. We will also compare the ability anttsess of the correlation
measures to detect this critical point.

6.1 Correlations in the XY Model

Entanglement and quantum discord (QD) have been shownmtiféhe critical points
(CPs) of QPTs with success in several different criticahsyhiains, both at zero [47, 66,
73-83] and finite temperature [84—86]. It has also been nbidunlike pairwise entan-
glement, which is typically short ranged, QD does not vaeisen for distant spin pairs
[76]. Another interesting aspect of quantum spin chainsandverse magnetic field is the
occurrence of a non-trivial factorized ground state [8idJoider to gain a complete under-
standing of these factorized states, the effects of spentesymmetry breaking (SSB)
should be considered [88-90]. In fact, concurrence is kntmasignal the factorization
point of the anisotropic XY chain corresponding to a prodyrctund state [90]. More-
over, it has been demonstrated that QD is also able to datebtmints, provided that
either SSB is taken into account or QD is calculated for ciifié spin distances [91, 92].
In the latter case, the factorization point appears via glsimtersection of the curves of
QD.

We start with the analysis of the thermal quantum and totaktations in the one-
dimensional XY spin chain in transverse magnetic field. Theniftonian of the model is
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given by

g -
Hyy = D) Z[(l + 7007+ (L =v)ofo] ] — ZUJZ' (6.1)

j=1 j=1
whereN is the number of sping;' (a = z, v, 2) is the usual Pauli operators for a spin-
1/2 at jth site,y (0 < v < 1) is the anisotropy parameter ands the strength of the
inverse external field. Foy = 0 the above Hamiltonian corresponds to the XX model.
When~ > 0 it is in the Ising universality class, and reduces to thegditamiltonian
in a transverse field foty = 1. We are interested in the region where the XY model
exhibits two phases, a ferromagnetic and a paramagnetsephdnich are separated by
a second-order QPT at the CR = 1. In the thermodynamic limit, the XY model can
be solved exactly via a Jordan-Wigner map followed by a Boigolv transformation.
Reduced density matrix of two spingand; depends only on the distance between them,
r = |i — j|, due to the translational invariance of the system. The Hanian is also
invariant under parity transformation, meaning it extgbit, symmetry. Taking these
properties into account, and neglecting the effects of sp@ous symmetry breaking
(which are studied in Ref. [88-92]), the two-spin reducedsity matrix of the system is
given by [73]
1 1
por = 7llor + (o) (o5 + o))+ D {ofor)ofor, (6.2)

a=x,Y,z

wherel, , is the four-dimensional identity matrix. The transversegn&tization is given
by [93]

o T (14 Acos @) tanh(Swy)
(0%) = — /0 o 0o, 6.3)

wherews = /(yAsin¢)? + (1 + Acos ¢)?2/2, 8 = 1/k,T with k, being the Boltzmann
constant and T is the absolute temperature. Two-point letioa functions are defined
as [94]

G, G, - G,
G G_ e G_T
(opomy=| T T (6.4)
Gr—2 GT—3 o G—l
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Gy Gy - G_,q9
oy = |02 G G (6.5)
Gr Gr—l . Gl
(0507) = (0% — G, Gy, (6.6)
where
c. :/ tanh(Swy) cos(r@)(1 + A cos ¢) do (6.7)
0 2wy
o /7r tanh(Bwy) sin(re) sin(¢) do
v 0 2wy '

6.1.1 Behavior of correlations

In Fig. 6.1, we present our results regarding the thermal tairrelations quantified by
MIN and WY SIM for first nearest neighbors as a function\dfor 7" = 0,0.1, 0.5 and

~ = 0.001,0.5, 1. We note that although MIN and WYSIM behave in a similar fashi
for v = 1, they show qualitatively different behaviors in the case ef 0.001. Namely,
WYSIM experiences a more dramatic increase about th& €R than MIN, and reaches
to a constant value more quickly. Furthermore, it is alsodrtgmt to observe that as
temperature increases, both of the measures cease totexhim-trivial behavior about
the CP.

It has been shown that QPTs can be characterized by lookihg &tvo-spin reduced
density matrix and its derivatives with respect to the tgrmparameter driving the transi-
tion [66, 74]. Since correlation measures are directly reiteed from the reduced den-
sity matrix, they provide information about the CPs and trgeoof QPTs. The CP for
a second-order QPT at zero temperature is signalled by ageivee or discontinuity in
the first derivative of the correlation measures. If the fifstivative is discontinuous,
then the divergence of the second derivative pinpoints 1442, 66, 74]. In Fig. 6.2,
we plot the derivatives of MIN and WYSIM as a function dffor 7" = 0,0.1,0.5 and
~v = 0.001,0.5,1. We observe that both of the measures are capable of sgotlighe
CP atkT = 0 for all values ofy. It is worth to note that with increasing temperature, the
divergence at CP disappears and the peaks of the derivatastso shift. Therefore, the
measures lose their significance in determining the CP afémsition.

We now turn our attention to the analysis of thermal quantometations quantified
by OMQC and concurrence.
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In Fig. 6.3 and Fig. 6.4, we plot these measures and thevates@s with respect to
the driving parametex for first nearest neighbors as a function\dor k7" = 0, 0.1, 0.5.
While concurrence suffers a drastic decrease as tempelatreases, OMQC still cap-
tures significant amount of correlation, making it more sthagainst thermal effects. It
can also be seen that/df’ = 0 the CP can be detected by analyzing the non-analyticities
in the first derivatives of the measures. The fact that thestsa relation between the ap-
pearance of a divergence in the derivatives of the coraglatieasures of the ground state
and the occurrence of the QPT can be understood within a @en@mework developed
by Wu et al. [74]. The energy of two spins at the siteand; is given by

E(pij) = Z Tr{H;jpi}, (6.8)

wherep;; is the reduced density matrix of the spins difg is their reduced Hamiltonian
whose summation over all sites restores the full Hamiltowitthe chain ;. H;; = H.

It is straightforward to obtain the first two derivatives béttwo-site energy given by Eq.
(6.8) with respect to the field as

OE(pi;) OH;;
=2 T e (6.9)

O’E(pij) O Hy OHy; Opi;
N2 _Z{Tr{ N2 pij}*“{ oh O H

Considering that the derivatives of the reduced Hamiltomige continuous with respect
to the magnetic field, we realize that possible discontinuities in the derivedigf ground
state energy have their roots at the elements of the reduaesitg matricegp,;. Specif-
ically, whereas a discontinuity in the first derivative oétground state energy (a first
order QPT) hints at a discontinuity in at least one of the elet® of the reduced density
matrix p;;, a discontinuity or divergence in the second derivativehefground state en-
ergy (a second order QPT) suggests a divergence of at leasifahe elements of the
derivative of the reduced density matdy;;/0O\. Having this discussion in mind, it is
rather straightforward to comprehend why two-spin or eveglse-spin coherence might
be sufficient to pinpoint the CP of the QPT. However, it is viemportant to note that such
a correspondence between the non-analyticities in pHygiEmtities, that are functions
of the reduced density matrix elements, and the CPs of QPds wmiat always hold. De-
pending on the mathematical properties of the consideradtgy (correlation measures,
coherence measures, etc.), it is possible that the CP of aiQ#k caught by a measure
due to some unlucky coincidences.

Next, we discuss the question of whether the studied coivalaneasures can signal
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the emergence of non-trivial product ground state in the ¥ <hain. Despite the
fact that the ground state of the model is entangled in gérnferasome special values
of v and ), the ground state becomes completely factorized. In pdaticexcept the
trivial factorization points\ = 0 and\ — oo, there also exists a non-trivial factorization
line corresponding to? + A2 = 1. Accordingly, as can seen from the behavior of
concurrence in Fig. 6.3 foy = 0.5, entanglement vanishesat- 1.15, which spotlights
the occurrence of a product ground state. It is shown in Figttgat, unlike OMQC and
MIN, WYSIM can signal this factorization point through a ranalytical behavior in its
derivative. For QD to identify this point when the distanavieeen the spins is fixed,
the effects of SSB must be taken into account [91, 92, 95].r&fhee, it is important to
recognize that the calculation of WY SIM between the spiresfated distance enables us
to detect the product ground state even in the absence of SSB.

6.1.2 Critical point estimation at finite temperatures

Having discussed the behaviors of the thermal total andtquacorrelations, we now
explore the ability of these measures to correctly estirtet€P of the QPT at finite tem-
perature. Despite the disappearance of the singular bahalvMIN, WY SIM, OMQC
and concurrence with increasing temperature, it migHttstipossible to estimate the CP
at finite temperature [86]. For sufficiently low temperagjrdivergent behaviors of the
first derivatives of correlation measuresiat= 0 will be replaced by a local maximum
or minimum about the CP. Therefore, in order to estimate thew® search for this ex-
tremum point. On the other hand, a discontinuous first dewevat7 = 0 requires us to
look for an extremum point in the second derivative Tor> 0. In Fig. 6.5, we present
the results of our analysis regarding the estimation of C#faaction ofkT for first and
second nearest neighbors whenr= 0.001, 0.5, 1. Before starting to compare the ability
of MIN, WYSIM, OMQC and concurrence to indicate the CP in detae notice that
the success rates of these measures strongly depend onishapy parameter of the
Hamiltonian. In the case of first nearest neighborsg; at 1, all of the correlation mea-
sures are able to predict the CP reliably, with concurreetegthe most effective among
them. Wheny = 0.5 MIN turns out to be the worst CP estimator. While WYSIM and
concurrence points out the CP relatively well as compardditd, OMQC clearly out-
performs all others and estimates the CP in a exceptionetiyrate way. Foty = 0.001,
MIN and OMQC become identical, and they predict the locatibthe CP significantly
worse than WYSIM and concurrence.

For second nearest neighbors, even though we do not préasegiaphs of correlation
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Figure 6.5: The estimated values of the CP as a functioGffor three different values of
the anisotropy parameter= 0.001,0.5,1. The CPs in the graphs are estimated by OMQC
(denoted by 0), WYSIM (denoted by +), MIN (denoted ¥yand concurrence (denoted by
x). Concurrence is not included for = 1 andr = 2, since it vanishes at even very low
temperatures.
measures and their derivatives, the CP has been inspecpeifoyming the same analysis
as in the first nearest neighbor case. The CPs estimated byiWYGBVIQC and MIN
for v = 1 deviate from the true CP by the same amount but they are stiéable. In
the case ofy = 0.5, both concurrence and OMQC estimate the CP very well in esntr
to WYSIM and MIN. Finally, wheny = 0.001, while WY SIM and concurrence spotlight
the CP remarkably well, OMQC and MIN perform very poorly.dtalso worth to notice
that concurrence performs even better than the first neaeggihbors case foy = 0.5
and~y = 0.001.

Furthermore, the ability of entanglement of formation (B@kRd QD to estimate the
CP of the XY spin chain at finite temperature has been recenilyied by Werlang et al.
[86]. The performance of the correlations measures usdddmiork as compared to QD
and EOF depend on the anisotropy parameter of the Hamihi@me also on the distance
between the spin pairs. For instance, in the first neareghhers case at = 0.5, among
the correlation measures considered here, only OMQC pesfas well as QD and EOF.
On the other hand, for the second nearest neighboys-at0.001, while WYSIM and
concurrence turn out to be better CP estimators than QD ark] BON and OMQC do
not perform as well. We lastly note that apart from a limiteder of special cases, QD
still proves to be the most accurate CP estimator for theotoigic XY spin chain.
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6.1.3 Long-range correlations

Inspired by the methods of Ref. [79], we now examine the lcargge behavior of the
thermal total and quantum correlations for the one-dinmeradi XY model in transverse
magnetic field. While entanglement vanishes for distamt ppirs even in the ordered fer-
romagnetic phase, QD has been shown to remain non-zeroql&;ig. 6.6 demonstrates
our results related to the dependence of MIN, WYSIM and OMQ@Ghe distance be-
tween the spin pairs at finite temperature, for 0.75,0.95,1.05, 1.5 and~y = 0.001, 1.

In case ofy = 0.001, neither of the correlation measures remain significantnathe
distance between the spin pairs is increased. We can aldbagabe decay of the corre-
lations hasten when the temperature rises. For the Isinghtiodt (v = 1), even though
MIN, WYSIM and OMQC approach to a finite value in the orderedgfor sufficiently
low temperatures, thermal effects wipe out the correlatibetween distant spin pairs
after a certain temperature.
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Chapter 7

CONCLUSION

In this thesis, we have analytically calculated the quardisoord for theSU (2)-invariant
systems consisting of spihand spini /2 and presented a recipe to generalize the calcu-
lation to arbitrary spin subsystems. Furthermore, we hawestigated various measures
of quantum and total correlations in anisotropic XY spiraichand in few-atom spin-1
Bose-Hubbard model. The main results presented in ChapterS were also published

in three different papers.

In Chapter 2, we have analytically calculated the QD &f{a(2) invariant system,
consisting of a spig-and a spint/2 subsystems. We have compared our results with
entanglement structure of these systems and QD of stat@sghsiwnilar symmetries.

It is known that a very small subset of the set of states addcem this work possess
entanglement as the dimension of the spparticle becomes larger. We have shown that
in the largej limit, QD remains significantly larger than the entangleimén the other
hand, we have seen that maximum value of QD decreases witfctieasing system size.
We have also suggested a way to generalize the calculatidmgfartite spins of arbitrary
magnitude. Observation ¢fU(2) invariant states in many real physical systems, make
them a good candidate for utilization in quantum computirajqrols that rely on QD.

In the third chapter, we have investigated the thermal quardorrelations and en-
tanglement in a spin-1 Bose-Hubbard model with two and tpaséicles with periodic
boundary conditions. Our results demonstrate that botb¢havior of thermal quantum
correlations and entanglement spotlight the energy lewsisings in the ground state of
the system. Despite the fact that our discussion is limddw particle systems, the con-
nection between the behavior of correlations measures amohd state crossings might
have consequences even for real quantum critical systewsghi@arge number of par-
ticles. Finally, we suggest that it would be interesting talsize the relation of some
thermodynamical quantities (such as the specific heat) armélations measures since
various non-trivial behaviors of certain thermodynamupaéntities might give informa-
tion about the correlations in the system.
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In the fourth and final chapter, we have discussed the thegoeitum and total cor-
relations in the one-dimensional anisotropic XY model angverse magnetic field from
several perspectives. We have quantified the correlatisimgyuecently proposed cor-
relation measures such as WYSIM, MIN and OMQC, and a well knewtanglement
measure concurrence. Analyzing these measures in the gaspace of the Hamil-
tonian for first and second nearest neighbors, we have fcuatdatl of the considered
measures are capable of indicating the CP of the transifithough the interesting be-
havior of the measures in the vicinity of the CP disappeath@semperature increases,
for sufficiently low temperatures, it is still possible taiesate the CP by looking at the
derivatives of the correlation measures. We have obsehatdtte ability of the measures
to predict the CP strongly depend on the anisotropy parametd-or instance, while
OMQC spotlights the CP with a remarkably high accuracy at 0.5 for first nearest
neighbors, it performs very poorly at= 0.001. On the other hand, WYSIM points out
the CP reasonably well gt = 0.001 for both first and second neighbors. Moreover, we
have shown that, among the new measures considered in tisavdy WYSIM is able
to identify the factorization point of the XY spin chain evémwe disregard the effects of
SSB. These results demonstrate for the first time that OMQCVeMSIM are relevant
quantities for identifying CPs in concrete physical prolde Next, we have investigated
how WYSIM, MIN and OMQC are affected as we increase the disdmetween spin
pairs. We have found that the caseyof= 0.001 is more susceptible to both increasing
distance of spin pairs and thermal effects.
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