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Abstract

Every elliptic curve E defined over C is analytically isomorphic to C∗/qZ for
some q ∈ C∗. Similarly, Tate has shown that if E is defined over a p-adic field K,
then E is analytically isomorphic to K∗/qZ for some q ∈ K∗. Further the isomor-
phism E(K) ∼= K

∗
/qZ respects the action of the Galois group GK/K , where K is

the algebraic closure of K. I will explain the construction of this isomorphism.
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Özet

Kompleks sayılar üzerinde tanımlanan her eliptik eğrin sıfır olmayan bir q
kompleks sayısı için C/Z yapısına izomorfiktir. Benzer şekilde, Tate göstermiştir
ki p-adic bir K cismi üzerinde tanımlanan br E eliptik eğrisi de q ∈ K∗ olmak
üzere, K∗/qZ yapısına izomorfiktir. Dahası, E(K) ∼= K

∗
/qZ izomorfizması K,

K ’nin cebirsel kapanı ş ı olmak üzereGK/K Galois grubunun etkisine saygı duyar.
Bu tezde bu izomorfizmaları kuracağız.
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CHAPTER 1

Introduction

In this thesis, I will consider elliptic curves over C and over Qp, which is the
completion of the field Q of rational numbers under a p-adic valuation.

In the Chapter I we will give some basic definitions and propositions that we
will need.

In Chapter II, we will consider the set of elliptic curves over C as a whole.
We will take the collection of C-isomorphism class of elliptic curves and make
it into an algebraic curve, which is an example of a modular curve. Then by
studying functions on this modular curve we will construct a bijection between
the isomorphism classes of elliptic curves and the homothety classes of lattices.
This is called the uniformization of elliptic curves over C.

In Chapter III, we will consider elliptic curves defined over a p-adic field K,
which is a finite extension of Qp. We will describe Tate’s theory of these elliptic
curves and we will derive a uniformization of elliptic curves over K.
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CHAPTER 2

Preliminaries

2.1 Elliptic Curves
Let K be a field and K be the algebraic closure of K. Consider a curve E over K
given by the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

where a1, . . . , a6 ∈ K̄.
If char(K) 6= 2, we can simplify the equation above by completing squares.

Replacing y by 1
2
(y − a1x− a3) gives an equation of the form

E : y2 = 4x3 + b2x
2 + 2b4x+ b6

where b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6.

Also, define b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = b2
2 − 24b4

Definition 2.1 The discriminant of this curve defined by the equation above is
defined by the quantity:

∆(E) = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

Definition 2.2 We call the curve given by an equation of the form (1) an elliptic
curve if ∆ 6= 0.

Definition 2.3 The quantity j =
c34
∆
is called the j-invariant of the curveE defined

above.

As it is customary, we will consider the curve E as a projective curve with its
points at infinity in the projective plane. It can be checked easily that a curve
defined by equation as given above has a unique point at infinity with projective
coordinates [0 : 1 : 0]. We will denote this point by O and call it base point of
E. We will define a group operation on E. Take any P,Q ∈ E. Let L be the line
connecting P andQ (tangent line to E if P = Q). By BÃľzout theorem, L intersect
the curve E at a third point. Denote this third point by R. Let L′ be be the line
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connecting R and O. Then, P ⊕ Q is the point such that L′ intersects E at R,O
and P ⊕Q.

Proposition 2.4 Let E be an elliptic curve with the base point O = [0, 1, 0]. Then,
E is an abelian group under the operation ⊕, where the identity element of this
group is O.

Proof : [5, Chapter III, Section 2]

Group Law Formula

Let E be an elliptic curve given by
E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6.
(a) Let P0 = (x0, y0) ∈ E. Denote by 	P0 the additive inverse of P0 = (x0, y0).

It is given by 	P0 = (x0,−y0 − a1x0 − a3).
Let P1 ⊕ P2 = P3 with Pi = (xi, yi) ∈ E.
(b) If x1 = x2 and y1 + y2 + a1x2 + a− 3 = 0 then P1 ⊕ P2 = O.
Otherwise, let
λ = y2−y1

x2−x1 , ν = y1x2−y2x1
x2−x1 if x1 6= x2

λ =
3x31+2a2x1+a4−a1y1

2y1+a1x1+a3
, ν =

−x31+a4x1+2a6−a3y1
2y1+a1x1+a3

if x1 = x2

(Then, y = λx+ ν is the line through P1, P2, or tangent to E if P1 = P2)
(c) P3 = P1 ⊕ P2 is given by x3 = λ2 + a1λ− a2 − x1 − x2

y3 = −(λ+ a1)x3 − ν − a3.

Definition 2.5 For projective curves E,E ′, a morphism φ : E −→ E ′ is defined by
a polynomial mapping

φ : [X : Y : Z] 7→ [φ0(X, Y, Z) : φ1(X, Y, Z) : φ2(X, Y, Z)]

where φi are homogeneous polynomials of equal degree such that [φ0(X, Y, Z) :
φ1(X, Y, Z) : φ2(X, Y, Z)] satisfies the equation which defines E ′ for any [X : Y :
Z] ∈ E.

To every morphism of curves we can associate an integer called its degree.

Definition 2.6 The degree of φ : E −→ E ′ is the degree of the function field exten-
sion K(E ′)/K(E) induced by φ.

A homomorphism of elliptic curves is a morphism of elliptic curves that
respects the group structure of the curves.

An isomorphism of elliptic curves is a morphism of degree 1.
Later on, we will see that there is a relation between "lattices" over C and

elliptic curves defined over C. This relation is given by "Weierstaß ℘−function".

Definition 2.7 Adiscrete subgroup of Cwhich contains anR-basis forC is called
a lattice. And, the number of basis is called the rank of the lattice.

Definition 2.8 Let Λ1,Λ2 be two lattices. We say Λ1 and Λ2 are homothetic if there
is a c ∈ C∗ with cΛ1 = Λ2.

3



Definition 2.9 An elliptic function (relative to the lattice Λ) is a meromorphic
function f(z) on C which satisfies

f(z + w) = f(z)

for all w ∈ Λ, z ∈ C.

Definition 2.10 Let Λ ⊂ C be a lattice.

(i) The function

℘(z; Λ) =
1

z2
+

∑
w∈Λ\{0}

(
1

(z − w)2
− 1

w2

)
is called the Weierstraß ℘-function associated to the lattice Λ.

(ii) The Eisenstein series of weight 2k, k>1 (for Λ) is the series

G2k(Λ) =
∑

w∈Λ\{0}

w−2k.

Theorem 2.11 Let Λ ⊂ C be a lattice.

(i) The Eisenstein series G2k(Λ) for Λ is absolutely convergent for all k > 1.

(ii) The series defining the Weierstraß ℘-function converges absolutely and uni-
formly on every compact subset of C − Λ. It defines a meromorphic function
on C having a double pole with residue 0 at each lattice point, and no other
poles.

(iii) The Weierstraß ℘-function is an even elliptic function.

Proof : [5, Chapter VI, Section 3]

2.2 Foundations of Valuation Theory
Definition 2.12 Let A be a ring. A valuation v is a map

v : A −→ R
⋃
{∞}

such that

(i) v(xy) = v(x) + v(y)

(ii) v(x+ y) ≥ min{v(x), v(y)}

with v(x) = ∞ ⇔ x = 0. Here∞ is an abstract element added to R satisfying
∞+∞ = α +∞ =∞+ α =∞ for α ∈ R

The following are immediate consequences of the definition:

1. v(1) = 0.
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2. v(x−1) = −v(x) for x ∈ A.

3. v(−x) = v(x) for x ∈ A.

4. Take any x, y ∈ A. If v(x) 6= v(y), v(x+ y) = min{v(x), v(y)}.

Let K be the field of fractions of the ring A, i.e,

K = {a
b
|a, b ∈ A, b 6= 0}.

Proposition 2.13 There exists a unique valuation on K which extend v. This
valuation is defined as follows:

v(
x

y
) = v(x)− v(y).

Proof : Follows directly from the definition of field of fractions and the identity
a = a

b
· b

By this proposition, without loss of generality, we will focus on valuations on
the field K.

Definition 2.14 dfdf

(i) LetK be a ring with valuation v. The valuation v is called discrete if v(K∗) =
sZ for a real s > 1.

(ii) A discrete valuation v is called normalized if s = 1.

Definition 2.15 Let v be a discrete valuation on the field K.
(i)O := {x ∈ K|v(x) ≥ 0}.
The set O is called the ring of integers of K with respect to the valuation v.
(ii) P := {x ∈ K|v(x) > 0}.
The set P is called the ideal of the valuation v.
(iii) The set O∗ = O\P = {x ∈ K|v(x) = 0} is the set of invertible elements of

the ring O
(iv) The field k = O/P is called the residue field of the valuation v.

Proposition 2.16 (i) P is a principal ideal of O.
(ii) O is a local ring and P is its unique maximal ideal.

Proof :

(i) Before we give the proof, we need
Lemma: Let v be a normalized valuation onK. Then, any nonzero element
x ∈ K can be written as x = utn, where t ∈ P with v(t) = 1, u ∈ O∗ and
n ∈ Z.
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Proof of Lemma: Since v(K∗) = Z, there exists an element t ∈ K with
v(t) = 1. So, t ∈ P. Take any 0 6= x ∈ K. Then, v(x) = m for some m ∈ Z.
Hence, v(xt−m) = 0 and so u := xt−m ∈ O∗.
Finally, x = utm.

Now, take any 0 6= x ∈ P such that n := v(x) ≤ v(y) for all y ∈ P. By the
lemma above, x = utn for the element t ∈ P and for some u ∈ O∗. Hence,
tnO ⊂ P.
Conversely, take any y ∈ P. Again by the lemma, we can write y = wtm,
where t ∈ P and for some w ∈ O∗. Since y ∈ P, we have m := v(y) ≥ v(x) =
m, so we can write

y = (wtm−n)tn ∈ tnO,
hence P ⊂ tnO.

(ii) One can easily show that P is an ideal of O.

Claim 1 P is a maximal ideal of O.

Proof of Claim 1: Assume A is an ideal of O with P ( A. So, there exists
x ∈ O∗ ∩ A. Then, 1 ∈ A and hence A = O. Therefore, P is a maximal ideal
of O.

Claim 2 P is the unique maximal ideal.

Proof of Claim 2: Assume now there exists a maximal ideal B of O such
that B 6= P. Then, B ∩O∗ = {0}. Hence, for any nonzero element x ∈ B, we
have v(x) > 0, which implies that B ⊂ P, contradiction.

By the previous proposition, we know that P is generated by one element,
say t, i.e, P =< t >. The element t is called a uniformizing parameter for the
valuation v.

Example 2.17 Let Q be the field of rational numbers. Take any q ∈ Q\{0}. Then,
we can express q as a product of powers of prime numbers: q = ±pα1

1 p
α2
2 . . . pαnn for

some prime numbers p1, . . . , pn where α1, . . . , αn ∈ Z. If v is a valuation on Q, then
it is sufficient to know v on prime numbers since v(q) = α1v(p1) + · · ·+ αnv(pn).

If there is no prime number p with v(p) > 0, then v(q) = 0. Now assume there
exists a prime number with positive valuation.

Claim: There exists at most one prime number p with v(p) > 0.
Prrof of the Claim: Assume there exists two primes p1, p2 suvh that v(p1) > 0

and v(p2) > 0. Since gcd(p1, p2) = 1, there are a, b ∈ Z such that ap1 + bp2 = 1.
=⇒ 0 = v(1) = v(ap1 + bp2) ≥ min{v(ap1), v(bp2)} > 0

Let p be a prime number. Define, v(p) := 1 and for m ∈ Q, define v(m) := α
where α is the biggest power of p dividing m. Then, v gives us a valuation on Q

And, p is a uniformizing element and the residue field of Q with this valuation
is Z/ < p >.
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Definition 2.18 An absolute value of K is a function
|.| : K → R

satisfying for all x, y ∈ K
(i) |x| = 0 ⇐⇒ x = 0
(ii) |x| ≥ 0
(iii) |xy| = |x|.|y|
(iv) |x+ y| ≤ |x|+ |y|

Definition 2.19 An absolute value is called non-Archimedean if it satisfies |x +
y| ≤ max{|x|, |y|} for all x, y ∈ K.

An absolute value gives a topological structure on K by the metric d(x, y) =
|x− y|. So, we can talk about notions as convergence of series and dense subsets.

2.2.1 Relation betweennon-Archimedean absolute value and

Valuation

Theorem 2.20 Let |.| be an absolute value on K and s ∈ R, s > 0. Then the
function

vs : K −→ R ∪ {∞}

x 7→

 −slog|x| if x 6= 0

∞ if x = 0

is a non-archimedean valuation on K.
Conversely, if v is a valuation on K and q ∈ R, q > 1 the function

|.|q : K −→ R

x 7→

 q−v(x) if x 6= 0

0 if x = 0

is an absolute value on K.

Definition 2.21 LetK be a field with an absolute value |·|. A sequence (an) called
a Cauchy sequence if for all ε > 0, there exists N ∈ N such that for all n,m > N ,

|an − am| < ε.

Definition 2.22 A field K with an absolute value |.| is called complete if any
Cauchy sequence (an) converges to an element a ∈ K.

Theorem 2.23 LetK be a field with an absolute value |.| onK. Then, there exists
a complete field K̂ with an absolute value |.|K̂ such that K is embedded in K̂ as
a dense subfield and |x|K̂ = |x| if x ∈ K. The field K̂ is unique up to continuous
K-isomorphism and hence is called the completion of K.

Proof : [2, Chapter II, Section 4]

Theorem 2.24 Let K be a valued field and K̂ be its completion with respect to
the valuation v on K. Denote by v̂ the corresponding valuation on K̂. Let
O (respectively Ô) be the valuation ring of K (respectively, K̂)
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P (respectively P̂) be the maximal ideal of O (respectively Ô)
and
K (respectively, K̂) be the residue field.
Then,
K ∼= K̂
if v is discrete then O/Pn ∼= Ô/P̂n, where n ≥ 1.

Proof : [2, Chapter I, Section 3]

Theorem 2.25 Take the same assumptions as in the previous theorem. Assume
also v is normalized. Let R ⊂ O be a set of representatives of K such that 0 ∈ R
and let t ∈ P be a uniformizing element. Then, we can represent all x ∈ K̂∗ as a
convergent series

x = tm(a0 + a1t+ a2t
2 + . . . )

with ai ∈ R, i ∈ N, a0 6= 0 and m ∈ Z.

Proof : Take any x ∈ K̂∗. Since t is a uniformizing element, we have x =

utm where u ∈ Ô∗. Since O/P ∼= Ô/P̂ by the previous theorem, u mod P̂ has a
representative 0 6= a0 ∈ R and hence we can write u = a0 + tb1 with b1 ∈ Ô.

By induction, there exists a1, . . . , an ∈ R such that

u = a0 + a1t+ · · ·+ an−1t
n−1 + tnbn

with bn ∈ Ô.
Similarly, there exists an ∈ R such that bn = an + tbn+1 where bn+1 ∈ Ô.
Hence,

u = a0 + a1t+ · · ·+ an−1t
n−1 + ant

n + tn+1bn+1.

We can do this for all n ∈ N. Hence, we obtain a series
∞∑
n=0

ant
n.

Claim: This series converges to u.
Proof of the Claim: For any n ∈ N, we have

v̂(u−
n∑
i=1

ant
n) = v̂(tn+1bn+1) = v̂(tn+1) + v̂(bn+1) = n+ 1 + v̂(bn+1) ≥ n+ 1.

Therefore, we get

lim
n→∞

v̂(u−
n∑
i=0

ait
i) =∞.

Hence, the series converges to u and so we are done.

Example 2.26 Consider the valuation on Q defined in the Example 1.17.
Denote by Qp the completion of Q with respect to the valuation vp.
We will use also vp for the extension of vp to Qp.
Denote by Kp the residual field O/P where O is the valuation ring and P is its

unique maximal ideal. Clearly, P is generated by the prime number p.
Claim: Kp ∼= Z/pZ.
Proof of the Claim: Follows from Theorem 1.24.
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By the claim, we can take {0, . . . , p−1} as set of representatives ofKp. According
to the theorem, for any 0 6= x ∈ Qp, we have

x = pm(a0 + a1p+ a2p
2 + . . . ) =

∞∑
i=0

aip
i+m

with ai ∈ {0, . . . , p− 1}, i ∈ N, a0 6= 0 and m ∈ Z.
Also, by the construction of the same theorem, we know

u = a0 + a1p+ · · · =
∞∑
i=0

aip
i

is a unit, i.e., vp(u) = 0. Hence, vp(x) = m.
Therefore, the valuation ring of Qp is

Zp = {
∞∑
i=m

aip
i|ai ∈ {0, . . . , p− 1},m ≥ 0},

with the unique maximal ideal pZp.
Zp is called the ring of p-adic integers

Example 2.27 LetK be a field andK((x)) be the field of formal power series over
K.

Take any f(x) ∈ K((x)), f(x) =
∞∑
r=m

arx
r. Define a function v : K((x)) −→

R ∪ {∞} as follows:
v(f(x)) = t, where at is the first nonzero coefficient in f , if f is a nonzero element

in K((x)) and v(0) = ∞. It can be easily seen that v is a discrete valuation on
K((x)).

The valuation ring of K((x)) consists of formal power series with nonnegative
exponent, with the unique maximal ideal

P = {f(x) ∈ K((x))|
∞∑
r=1

arx
r}.

So, x is a uniformizing element.

Now we will define a tool for understanding the behaviour of polynomials over
a valued field, which is called Newton Polygon.

Definition 2.28 Let K be a valued field with the valuation v defined on it. Take
any f(x) = anx

n + · · ·+ a1x+ a0 ∈ K[x] of degree n. The Newton polygon of f(x) is
the convex hull of the set of points

{(j, v(aj))|j ≥ 0} ∪ {Y+∞}

where Y+∞ denotes the set of at infinity of the positive vertical axis (i.e, if aj = 0
then (j, v(aj)) = Y+∞).

We can define the Newton polygon of a power series or Laurent series in a
similar way.
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Definition 2.29 LetK be a complete field with respect to valuation v. Let f(X) =∑
n≥0

anX
n with an ∈ K. The Newton polygon of f is defined to be the convex hull of

the set
{(j, v(aj))}j≥0 ∪ {Y+∞}

where Y+∞ defined as before.

Theorem 2.30 Let K be a complete field and let f =
∞∑
n=0

anX
n ∈ K[[X]]. Then, to

each side of the Newton polygon of f there correspond l zeros (counting multiplic-
ities) of f where l is the lenght of the horizontal projection of the side.

Proof : [3, Chapter II, Section 2]

Theorem 2.31 (Schnirelmann) Let f(X) =
+∞∑
−∞

ciX
i be a formal Laurent series

with coefficient ci in a finite extension K of Qp. We suppose that f(X) converges
for all K∗. Then, f(X) can be written in the form

f(X) = cXk
∏
|α|<1

(1− α

X
)
∏
|α|<1

(1− X

α
)

with finite non-empty sets of roots α ∈ K occuring on the critical spheres of f .
Gathering these roots of given modulus together, we get a representation

f(X) = cXk
∏
i<0

ĝi(X)
∏
i≥0

gi(X)

with polynomials gi(X) ∈ K[X] or ĝi(X) ∈ K[X−1] having the same roots as f on
the critical spheres of radii ri, c ∈ K, k ∈ Z.

Proof : [4, Chapter II,Section 4]
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CHAPTER 3

Uniformization of Elliptic Curves
over C

It is known that each lattice Λ of rank 2 gives an elliptic curveE defined overC via
the complex analytic map given by the Weierstaß ℘-function and its derivative.

Let L be the set of lattices of rank 2 in C. Then, C∗ acts on L by multiplication
where

cΛ = {cw|w ∈ Λ}
for any c ∈ C∗. This action is called homothety. Since homothetic lattices give
isomorphic elliptic curves over C, we have an injection:

L/C∗ ↪→ {Elliptic curves over C}/C− isomorphism.

Actually, this map is a bijection. Our main aim in this section to prove that it
is indeed a bijection.

This is called Uniformization Theorem of Elliptic Curves over C.
Let Λ be a lattice in C. Choose a basis for Λ, say ω1, ω2. Then,

Λ = Zω1 + Zω2,

which is homothetic to Zω1

ω2
+Z. We choose ω1 and ω2 such that the angle between

ω2 and ω1 is between 0 and π. Since it is enough to consider the lattices up to
homothety, let us normalize our lattice

Z
ω1

ω2

+ Z.

This lattice is homothetic to the lattice
1

ω2

Z + Z.

Because of the choice of the angle between ω2 and ω1, we have im(ω1

ω2
) > 0, i.e.,

ω1

ω2
∈ H, where

H = {z ∈ C : im(z) > 0}.
Denote w1

w2
by τ . So, we can rewrite the lattice Zw1

w2
+ Z as Zτ + Z. We will denote

the latter lattice by Λτ . Therefore, there is a natural map:

11



H −→ L/C∗
τ 7→ Λτ

This map is surjective.
So, each element τ in the upper half plane gives us a lattice Λτ . However, this

is not a bijection. When do two elements in the upper plane give the homothetic
lattice? The answer will follow from

Lemma 3.1 Let a, b, c, d ∈ R with ad− bc 6= 0, τ ∈ C\R. Then,

im(
aτ + b

cτ + d
) =

(ad− bc)imτ
|cτ + d|2

.

Proof : [6, Chapter I, Section 1]
The complication here is choosing a basis for the lattice Λτ corresponding to

τ ∈ C. Let ω1, ω2 and ω′1, ω
′
2 be two bases for the lattice Λτ . Then, there are

a, b, c, d, a′, b′, c′, d′ ∈ Z such that
ω′1 = aω1 + bω2 ω1 = a′ω′1 + b′ω′2
ω′2 = cω1 + dω2 ω2 = c′ω′1 + d′ω′2.

Now, by substituing ω1 and ω2 in the expression of ω′1 and ω′2, we get:1 0

0 1

 ω′1
ω′2

 =

a b

c d

 a′ b′

c′ d′

 ω′1
ω′2


And hence, a b

c d

a′ b′

c′ d′

 =

1 0

0 1

 . (3.1)

Now, as im(
ω′1
ω′2

) > 0, by defining τ := ω1

ω2
and using the previous lemma we get:

0 < im(
ω′1
ω′2

) = im(aτ+b
cτ+d

) = (ad−bc)imτ
|cτ+d|2 . Hence, ad − bc > 0. Moreover, from (1) we

have,
(ad− bc)(a′d′ − b′c′) = 1.

Since, a, b, c, d, a′, b′, c′, d′ ∈ Z, either ad− bc = 1 ∧ a′d′ − b′c′ = 1 or ad− bc = −1

∧ a′d′ − b′c′ = −1. As ad − bc > 0, we have ad − bc = 1; which means

a b

c d


∈ SL2(Z).

Lemma 3.2 (a) Let Λ be a lattice in C, say Λ = Zω1 + Zω2 = Zω′1 + Zω′2. Then,

ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2 for some

a b

c d

 ∈ SL2(Z).

(b) Take any τ1, τ2 ∈ H. Then, Λτ1 is homothetic to Λτ2 if and only if there existsa b

c d

 ∈ SL2(Z) such that τ2 = aτ1+b
cτ1+d

.

(c) Let Λ be a lattice in C. Then, there exists an element τ ∈ C such that Λ is
homothetic to Λτ = Zτ + Z.
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Proof : (a) is proved above.
For the proof of (b) and (c), please see [6, Chapter I, Section 1].
By Lemma 2.1, we can define an action of SL2(Z) on the set H as follows:

SL2(Z)×H −→ Ha b

c d

 , τ

 7→ aτ + b

cτ + d

By this action we have an equivalence relation on H:
We say τ1 and τ2 are equivalent if there exists a γ ∈ SL2(Z) such that τ1 = γτ2

and by Lemma 2.2(b) equivalence classes of H corresponds to the set of homoth-
etic lattices. Therefore, we have a one-to-one correspondence

H/SL2(Z)←→ L/C∗

We will denote the elements

1 0

0 1

 and

−1 0

0 −1

 by simply 1 and −1 re-

spectively. Obviously, these elements act on H trivially. Moreover, these are the
only elements in SL2(Z) which fix H.

Definition 3.3 The modular group, Γ(1), is the quotient group SL2(Z)/{−1,+1}.

Consider two special elements in SL2(Z):

0 −1

1 0

 and

1 1

0 1

. Name them

S and T , respectively.
Take any τ ∈ H. Then, S(τ) = −1

τ
and T (τ) = τ + 1.

Later we will prove that the modular group Γ(1) is generated by S and T .
In this section we will be working with the modular group Γ(1) and the action

of it on the upper half plane H. First, we will give a description of the modular
space H/Γ(1).

Proposition 3.4 Let F ⊂ H be the set

F = {τ ∈ H : |τ | ≥ 1 ∧ |Re(τ)| ≤ 1

2
}.

Then;
(a) For any τ ∈ H there exists γ ∈ Γ(1) such that γ.τ ∈ F .
(b) Suppose that both τ and γ.τ are in F for some γ ∈ Γ(1), γ 6= 1. Then one of

the following holds:

• Re(τ) = −1
2
and γ.τ = τ + 1;

• Re(τ) = 1
2
and γ.τ = τ − 1;

• |τ | = 1 and γ.τ = −1
τ
.

(c) Take any τ ∈ F . Let I(τ) = {γ ∈ Γ(1) : γ.τ = τ} be the stabilizer of τ . Then,
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I(τ) =



{1, S} if τ = i

{1, ST, (ST )2} if τ = ρ = e
2iπ
3

{1, TS, (TS)2} if τ = −ρ̄ = e
2iπ
6

{1} otherwise

Proof : [6, Chapter I]

Definition 3.5 The extended upper half plane H∗ is the union of the upper half
plane H and the Q-rational points of the projective line.

H∗ = H
⋃
Q
⋃
{∞}

We have seen that SL2(Z) acts on the upper half plane H. We can extend this
action to H∗ as follows:

Take any (x : y) ∈ P1(Q) in homogeneous coordinates and let γ =

a b

c d

.

Then.
γ.(x : y) = (ax+ by : cx+ by)

Now, defineX(1) := H∗/Γ(1) and Y (1) := H/Γ(1). The points inX(1)\Y (1) are
called the cusps of X(1).

Lemma 3.6 (a) X(1)\Y (1) = {∞}.
(b) The stabilizer of∞ ∈ H∗ in Γ(1) is

I(∞) =


1 b

0 1

 ∈ Γ(1)

 =< T >≤ Γ(1)

.

We will investigate the structure of X(1).

Definition 3.7 LetX be a topological space. A complex structure onX is an open
covering {Ui}i∈I of X and homeomorphisms

ψi : Ui −→ ψi(Ui) ⊂ C

such that each ψi(Ui) is an open subset of C and such that ∀i, j ∈ I with Ui∩Uj 6= 0,
the map

ψj ◦ ψ−1
i : ψi(Ui ∩ Uj) −→ ψj(Ui ∩ Uj)

is holomorphic.
The map ψi is called a local parameter for the points in Ui.

Definition 3.8 A Riemann surface is a connected Hausdorff space which has a
complex structure defined on it.

Theorem 3.9 The following defines a complex structure on X(1) which gives it
the structure of a compact Riemann surface:

For x ∈ X(1), choose τx ∈ H∗ with φ(τx) = x and let Ux ⊂ H∗ be a neighborhood
of τx satisfying

14



I(Ux,Ux) = I(τx).

Then, I(τx)\Ux ⊂ X(1) is a neighborhood of x, so {I(τx)\Ux}x∈X(1) is an open
cover of X(1).

x 6=∞ : Let r be the cardinality of I(τx) and let gx be the holomorphic isomor-
phism

gx : H −→ {z ∈ C||z| < 1}
defined by gx(τ) = τ−τx

τ−τ̄x
Then, the map ψx : I(τx)\Ux −→ C defined by ψx(φ(τ)) = gx(τ)r

is well defined and gives a local parameter at x.
x =∞ : We may take τx =∞, so I(τx) = {T k}.

Then, ψx : I(τx)\Ux −→ C, ψx(φ(τ)) =

 e2iπτ if φ(τ) 6=∞

0 if φ(τ) =∞
is well defined and gives a local parameter at x.

Proof : [6, Chapter I, Section 2]
After defining complex structure on X(1), we can talk about holomorphic and

meromorphic functions.

Definition 3.10 Let k ∈ Z and f(τ) be a function on H. We say that f is weakly
modular of weight 2k (for Γ(1)) if

(i) f is meromorphic on H,

(ii) f(γτ) = (cτ + d)2kf(τ) for all γ=

a b

c d

.

From (i), we can express f as a function of q = e2iπτ and f will be meromorphic
in the punctured disc {q : 0 < |q| < 1}. Then, f has a Laurent series expression
f̃ in the variable q as

f̃(q) =
∞∑
−∞

anq
n.

Definition 3.11 With the notation above f is said to be
meromorphic at∞ if f̃ =

∞∑
−n0

anq
n for some n0 ∈ N.

holomorphic at∞ if f̃ =
∞∑
n=0

anq
n.

If f is meromorphic at∞, say f̃ = a−n0q
−n0 + . . . with a−n0 6= 0 then

ord∞(f) = ordq=0(f̃) = −n0.

If f is holomorphic at∞, its value at∞ is defined to be f(∞) = f̃(0) = a0.

Definition 3.12 (i) Aweaklymodular function that ismeromorphic at∞ is called
modular function.

(ii) A modular function that is everywhere holomorphic is called a modular
form.
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Definition 3.13 The modular j-invariant j(τ) is the function

j(τ) = 1728
g2(τ)3

∆(τ)
,

with g2(τ) = 60G4(τ) where G4(τ) is the Eisenstein series of weight 4.
Therefore, j(τ) is the j-invariant of the elliptic curve

EΛτ : y2 = 4x3 − g2(τ)x− g3(τ)

and EΛτ (C) has a parametrization using the Weierstraß ℘-function:

C/Λτ −→ EΛτ (C)

z 7→ (℘(z; Λτ ), ℘
′(z; Λτ ))

Theorem 3.14 j(τ) is a modular function of weight 0. It induces a (complex
analytic) isomorphism j : X(1)→ P1(C).

Proof : [6, Chapter I, Section 4]

Theorem 3.15 (Uniformization Theorem for Elliptic Curves over C) Let A,B
∈ C satisfying 4A3 + 27B2 6= 0. Then, there exists a unique lattice Λ ⊂ C such that

g2(Λ) = 60G4(Λ) = −4A

and
g3(Λ) = 140G6(Λ) = −4B.

The map
C/Λ −→ E : y2 = x3 + Ax+B

z 7→ (℘(z; Λ),
1

2
℘′(z; Λ))

is a complex analytic isomorphism.
Proof : By the previous theorem, there exists τ ∈ H such that

j(τ) = 1728
4A3

4A3 + 27B2
.

(i) First assume AB 6= 0. By definition of j(τ), we get

27B2

4A3
=

1728

j(τ)
− 1 =

27g3(τ)2

g2(τ)3
.

So, (
B

g3(τ)

)2

.

(
g2(τ)

A

)3

= −4.

Let

α =

√
Ag3(τ)

Bg2(τ)

and Λ = α.Λτ = Zατ + Zα.
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Then,

g2(Λ) = α−4g2(Λτ ) =
B2g2(τ)3

A2g3(τ)2
= −4A,

g3(Λ) = α−6g3(Λτ ) =
B3g2(τ)3

A3g3(τ)2
= −4B.

(ii) A=0: Then, j(τ) = 0 and g2(τ) = 0. It is enough to take Λ = αΛτ with

α =
6

√
g3(τ)

−4B
.

(iii) B=0: Then, j(τ) = 1728 and g3(τ) = 0. Similar with case (ii), it is enough
to take Λ = αΛτ where

α =
4

√
g2(τ)

−4A
.

q-Expansions of Some Modular Functions
As we have seen in the Chapter I, the Eisenstein series G2k(τ) is a modular func-
tion of weight k. It satisfies G2k(τ + 1) = G2k(τ), so it has a Fourier expansion
in terms of q = e2iπτ . Now, we will compute this Fourier series and use it to get
Fourier expansions of ∆(τ) and j(τ).

Proposition 3.16 Let k ≥ 2. Then

G2k(τ) = 2ζ(2k) + 2
(2iπ)2k

(2k − 1)!

∑
n≥1

σ2k−1(n)qn,

where ζ(s) =
∑
n≥1

1
ns

is the Riemann ζ-function and σk(n) =
∑
d|n
dk is the kth-power

divisor function.

Proof : [6, Chapter I, Section 7]

Proposition 3.17 The modular j-function has the Fourier expansion

j(τ) =
1

q
+
∑
n≥0

c(n)qn,

where c(n) ∈ Z for all n.

Proof : [6, Chapter I, Section 7]

Theorem 3.18 (Jacobi)

∆(τ) = (2π)12q
∏
n≥1

(1− qn)24.

Proof : [6, Chapter I, Section 8]
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CHAPTER 4

Uniformization of Elliptic Curves
over Qp

In the previous chapter we saw that each elliptic curve C comes from a lattice
over C. In this chapter we will answer the question what happens if we change
the base field. We will be considering the p-adic field Qp and finite extensions K
of Qp. The same question arises: Is there any relation between the set of lattices
in K and the set of elliptic curves defined over K?

The first approach would be to use the same argument that we have used
for elliptic curves over C. However this directly fails since Qp has no nontrivial
lattices. Indeed, let Λ be a subgroup in Qp. Take any t ∈ Λ. Then,

limn→∞p
nt = 0.

So, each nontrivial element of Λ would cause 0 to be an accumulation point.
Hence, Qp has no nontrivial discrete subgroup.

Tate’s idea to avoid this situation is to exponentiate first and then consider
lattices. This approach works since Q∗p has nontrivial lattices.

More generally, we will be working in a finite extensionK ofQp, which we call
a p-adic field.

Theorem 4.1 Let K be a p-adic field with absolute value |.| and let K be the al-
gebraic closure of K. Let q ∈ K∗ with |q| < 1 and for every k ∈ Z let

sk(q) =
∑
n≥1

nkqn

1− qn
,

a4(q) = −5s3(q),

a6(q) = −5s3(q) + 7s5(q)

12
.

(a) The series sk(q), a4(q) and a6(q) converge in K.
Define the Tate curve Eq by

Eq : y2 + xy = x3 + a4(q)x+ a6(q).
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(b) The Tate curve is an elliptic curve over K with discriminant

∆ = q
∏
n≥1

(1− qn)24

and j-invariant
j(Eq) =

1

q
+
∑
n≥1

c(n)qn

with c(n) ∈ Z.

(c) The series
X(u, q) =

∑
n∈Z

qnu

(1− qnu)2
− 2s1(q)

Y (u, q) =
∑
n∈Z

(qnu)2

(1− qnu)3
+ s1(q)

converge for all u ∈ K,u /∈ qZ. They define a surjective homomorphism
φ : K∗ −→ Eq(K)

u 7→

 (X(u, q), Y (u, q)) if u /∈ qZ

0 if u ∈ qZ

with kerφ = qZ, where 0 is the base point of the elliptic curve.

(d) φ is compatible with the action of the Galois group GK/K in the sense that

φ(uσ) = φ(u)σ for all u ∈ K∗, σ ∈ GK
∗
/K .

In particular, for any algebraic extension L/K, φ induces an isomorphism:
φ : L∗/qZ −→ Eq(L).

Proof :

(a) The proof of the convergence of the series sk(q) follows immediately from the
fact:
Let K be a valued field with valuation v. A series

∑
n≥1

an with an ∈ K is con-

vergent if and only if v(an)→∞ whenever n→∞

Write a4(q) = −5s3(q) = −5
∑

n≥1
n3qn

1−qn

Denote the valuation corresponding to the absolute value |.| by vp. Then,

vp(n
3 qn

1− qn
) = vp(n

3) + vp(
qn

1− qn
) = 3vp(n) + nvp(q)− vp(1− qn).

We know that vp(1− qn) ≤ inf{vp(1), vp(−qn)} where vp(1) = 0.
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As |q| < 1, we have vp(q) > 1. Therefore, vp(1) and vp(−qn) have different
values. Hence,

vp(1− qn) = inf{vp(1), vp(−qn)} = 0.

Therefore, we get:

vp(n
3 qn

1− qn
) = 3vp(n) + nvp(q)− vp(1− qn) = 3vp(n) + nvp(q).

If we let n tend to infinity, we see that vp(n3 qn

1−qn ) also tends to infinity, which
means the series a4(q) is convergent.
To see that the series a6(q) is convergent, first we will show that the coeffi-
cients of a6(q) are in Z, when a6(q) considered as a power series in q:

a6(q) = −5s3(q) + 7s5(q)

12
= −

5
∑
n≥1

σ3(q)qn + 7
∑
n≥1

σ5(q)qn

12
= −

∑
n≥1

[5σ3(q) + 7σ5(q)]

12

Claim: 5σ3(q) + 7σ5(q) ≡ 0 mod 12

Proof of the Claim:

5σ3(q) + 7σ5(q) = 5
∑
d|q

d3 + 7
∑
d|q

d5 =
∑
d|q

[5d3 + 7d5].

Therefore to prove our claim, it is enough to prove that 5d3 + 7d5 ≡ 0 mod
12 where d ∈ Z. As d ∈ Z, d can be congruent one of 0,1,2,3,4,5,6,7,8,9,10,11
modulo 12. After doing some computation, one can see easily that our claim
is true.

(b) Follows by an analogous idea as Jacobi identity. For the complete proof please
see [6, Chapter 5, Section 3]

(c) (i) To prove the series X(u, q) is convergent, we need:
Claim: The series s1(q) is equal to

∑
n≥1

qn

(1−qn)2
.

Proof of the Claim: To see this equality, first note that

t

(1− t)2
= T.

d

dT
(

1

1− T
) = T.

d

dT

∑
m≥0

Tm =
∑
m≥1

mTm.

Now, substitute T = qn and sum over n ≥ 1, and we get∑
n≥1

qn

(1− qn)2
=
∑
n≥1

∑
m≥1

mqnm =
∑
m≥1

m
∑
n≥1

qnm =
∑
m≥1

mqm

1− qm
,

which proves our claim.
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Therefore,
X(u, q) =

∑
n∈Z

qnu

(1− qnu)2
− 2

∑
n≥1

qn

(1− qn)2
.

Let us consider the first series in the sum:
∑
n∈Z

qnu
(1−qnu)2

(∗)

For n = 0, the series (∗) is u
(1−u)2

. Then, we can rewrite the series as

u

(1− u)2
+
∑
n≤−1

qnu

(1− qnu)2
+
∑
n≥1

[
qnu

(1− qnu)2
− 2

qn

(1− qn)2
].

Denote by A the second series
∑
n≤−1

qnu
(1−qnu)2

in the new sum. By rewriting the

index, we can write A as
∑
n≥1

q−nu
(1−q−nu)2

. Then,

X(u, q) =
u

(1− u)2
+
∑
n≥1

[
qnu

(1− qnu)2
+

q−nu

(1− q−nu)2
− 2

qn

(1− qn)2
]

Now, multiply the numerator and the denominator of the term of series A by
q2n

u2
:

q−nu

(1− q−nu)2
.
q2n

u2

q2n

u2

=
q−nu. q

2n

u2

(1− q−nu)2. q
2n

u2

=
qnu−1

((1− q−nu). q
n

u
)2

=
qnu−1

( q
n

u
− 1)2

=
qnu−1

(1− qnu−1)2
.

Consider the first term in the sum: u
(1−u)2

. Dividing the numerator and de-
nominator of this term by u, we get: 1

u+u−1−2
.

Therefore, the series X(u, q) becomes:

1

u+ u−1 − 2
+
∑
n≥1

[
qnu

(1− qnu)2
+

qnu−1

(1− qnu−1)2
− 2

qn

(1− qn)2
].

To see that this series is convergent we will use the fact that a series
∞∑
n=m

anx
n

is convergent if and only if vp(an)→∞ as n→∞.

Now,
vp

(
qnu

(1−qn)2
+ qnu−1

(1−qnu−1)2
− 2 qn

(1−qn)2

)
≥ min

{
vp

(
qnu

(1−qnu)2

)
, vp

(
qnu−1

(1−qnu−1)2

)
, vp

(
−2 qn

(1−qn)2

)}
.

Let us consider the valuations separately.

vp(
qnu

(1− qnu)2
) = vp(q

n) + vp(u)− 2vp(1− qnu).

Here since vp(1) 6= vp(q
nu), we have vp(1 − qnu) = min{vp(1), vp(q

nu)} = vp(1),
which is 0. Hence,

vp(
qnu

(1− qnu)2
) = vp(q

n) + vp(u) = nvp(q) + vp(u).
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And,
vp(

qnu−1

(1− qnu−1)2
) = nvp(q)− vp(u)− 2vp(1− qnu−1).

By a similar argument as above, here vp(1− qnu−1) = 0. Hence,

vp(
qnu−1

(1− qnu−1)2
) = nvp(q)− vp(u).

Similarly,
vp(

qn

(1− qn)2
) = vp(q

n)− 2vp(1− qn)2.

The latter one is equal to 0 by the same argument. So,

vp(
qn

(1− qn)2
) = vp(q

n) = nvp(q).

Therefore,
vp(

qnu
(1−qn)2

+ qnu−1

(1−qnu−1)2
−2 qn

(1−qn)2
) ≥ min{vp( qnu

(1−qnu)2
), vp(

qnu−1

(1−qnu−1)2
), vp(−2 qn

(1−qn)2
)}.

By the calculations above, the latter one in the inequality is equal to

min{nvp(q) + vp(u), nvp(q)− vp(u), nvp(q)},

which tends to infinity as n→∞.
Therefore, the series X(u, q) is convergent.
Now, let us consider the series Y (u, q) =

∑
n∈Z

(qnu)2

(1−qnu)3
.

Similar to the above, we can write it as

Y (u, q) =
u2

(1− u)3
+
∑
n≥1

[
(qnu)2

(1− qnu)3
+

qn

(1− qn)2
] +

∑
n≤−1

(qnu)2

(1− qnu)3
.

We can write the latter term in the sum as
∑
n≥1

(q−nu)2

(1−q−nu)3
by changing the index.

As we did for the series X(u, q), we multiply the numerator and denominator
for this series by q3n

u3
. Hence we get:∑
n≥1

(q−nu)2

(1− q−nu)3
=
∑
n≥1

− qnu−1

(1− qnu−1)3
.

Then, we can write the series Y (u, q) as follows:

u2

(1− u)3
+
∑
n≥1

[
(qnu)2

(1− qnu)3
− qnu−1

(1− qnu−1)3
+

qn

(1− qn)2
].

By a similar calculations as for the series X(u, q), we get

vp(
(qnu)2

(1− qnu)3
− qnu−1

(1− qnu−1)3
+

qn

(1− qn)2
)→∞
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as n tends to infinity.
Hence Y (u, q) is convergent.

Note that u /∈ K, but u ∈ K. But, K(u) is a finite extension of K, hence
complete. All series are in K(u)[[q]], and therefore the series converge to an
element in K(u), which is in K.
Next we prove that φ is a homomorphism.
Take any u1, u2 ∈ K

∗. Let u3 = u1u2. Denote by Pi the image of ui under the
map φ for i = 1, 2, 3, i.e,

Pi = φ(ui) for i = 1, 2, 3.
Our aim is to show that P3 = P1 ⊕ P2. We prove it case by case.
By the periodicity φ(qu) = φ(u), it is enough to consider u1, u2 in the ranges
|q| < |u1| ≤ 1 and 1 ≤ |u2| ≤ |q|−1, which gives us |q| < |u3| < |q|−1

(i) First assume that u1 = 0. Then by definition of φ, P1 = φ(u1) = 0. So,

P3 = (X(u2, q), Y (u2, q) = P2 + 0 = P2 + P1.

Hence, φ is a homomorphism if u1 = 0. Since the situation is symmetric, same
argument hold if u2 = 0. So, we have proved our claim if u1 = 0 or u2 = 0.
(ii) Now, let us assume u1u2 = 1. Then, u2 = u−1

1 . So,

P3 = φ(u3) = (X(u1u2, q), Y (u1u2, q)) = φ(1) = 0.

Claim: P1 ⊕ P2 = 0 if and only if X(u1, q) = X(u2, q) and Y (u1, q) + Y (u2, q) =
−X(u1, q)

Proof of the Claim: Claim follows from the identities
X(u−1, q) = X(u, q) and Y (u−1, q) = −Y (u, q)−X(u, q)

Now, as u1u2 = 1, u2 = u−1
1 . So, by using the identities for the series X(u, q)

and Y (u, q), we get directly P1 ⊕ P2 = 0.
Therefore, we are in the case that P1, P2, P3 are all different from 0.
Write Pi = (xi, yi) where xi = X(ui, q), yi = Y (ui, q) for i = 1, 2, 3.
(iii) Assume x1 6= x2. By the group law on Eq, we have

x3 = λ2 + a1λ− a2 − x1 − x2

where λ = y2−y1
x2−x1 .

⇒ x3(x2 − x1)2 = (y2 − y1)2 + (y2 − y1)(x2 − x1)− (x1 + x2)(x2 − x1)2

Similarly, we get
y3 = −(λ+ a1)x3 − ν − a3

where ν = y1x2−y2x1
x2−x1 .

⇒ y3(x2 − x1) = x3(y1 − y2 + x2 − x1)− (y1x2 − y2x1).
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We know that if we substitute for these any complex numbers u1, u2, q in the
ranges that we considered at the beginning of the proof of part (c), these
identities still hold. Hence they are identities in the ring Q(u1, u2)[[q]], the
ring of formal power series in q with coeffiecients that are rational functions
of u1, u2. So they are true for u1, u2, q ∈ K.
(iv) Suppose that x1 = x2. Note that x1 = x2 if and only if P1 =©± P2

We need:

Lemma 4.2 Let φ be a map of a multiplicative group into an additive group
which takes on an infinite number of distinct values and satisfies

φ(u1u2) = φ(u1) + φ(u2) whenever φ(u1) 6= ±φ(u2)

Then, φ is a homomorphism.

Proof : [6, Chapter V, Section 3]
By the lemma, to finish the proof we need to show that φ takes on infinitely
many distinct values:
The series for X(u, q) shows that for any t ∈ K with |t| < 1, we have

|X(t+ 1, q)| = |t|−1.

Therefore, by lemma 3.2, φ is a homomorphism.
The only thing remaining is to show that φ is surjective.
Let f be a meromorphic elliptic function, i.e, f = g

h
where g, h are holomor-

phic functions and f satisfies f(z) = f(qz). Let us consider the zeros of the
functions g and h. As f(z) = f(qz) and the zeros of g gives us the zeros of
f , zeros of g are invariant under multiplication by q. The same is true for h,
zeros of h are invariant under multiplication by q. Let us consider the func-
tions g(t) and g(qt). Since zeros of g are invariant under multiplication by
q, zeros of these two functions are the same. By Schnirelmann, g satisfies
g(t) = ctng(qt) for some t ∈ Z and for some constant c. By similar as above,
h(t) = dtmh(qt) wherem ∈ Z and d constant. Since, f = g

h
and f(t) = f(qt), we

get that c = d and n = m, otherwise g
h
is not invariant under multiplication

by q. Such functions are called theta functions of type ctn and n is called the
order of the theta function. So, g and h are theta functions of type ctn of order
n. Hence, we see that a meromorphic function can be written as a fraction
of two theta functions of the same order. Consider the Laurent series of the
function g. Since g(t) = ctng(qt), the Newton polygon of g is invariant under
the map (x, y) 7→ (x+ n, y − log|c| − xlog|q|). Hence, we see that g has n roots
in the annulus r|q| < |t| < |r|. Similarly, as g and h are theta functions of the
same type h also has n roots in the same annulus.
Now we are ready to prove that φ is surjective.
Take any (x0, y0) ∈ Eq. Consider the map ψ : K

∗
/qZ → Eq which is defined by

u 7→ ψ(u) = X(u, q) − x0. By the definition of X(u, q), the map ψ has a pole
in qZ. Then, by the discussion above ψ also has a root, i.e, X(u0, q) − x0 = 0

for some u0 ∈ K
∗
/qZ, which implies that there exists u0 ∈ K

∗
/qZ such that

x0 = X(u0, q).
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Now, if we consider Y (u0, q), then Y (u0, q) = y0 or Y (u0, q) = −y0. If necessary,
by taking 1

u0
, we can say that Y (u0, q) = y0.

Therefore, φ is surjective.

(d) The series X(u, q) and Y (u, q) are convergent in the complete field K(u) as
explained above. So, it suffices to prove the claim for σ ∈ GL/K , where L is a
finite Galois extension of K containing K(u).
Take any σ ∈ GL/K . Denote by P, the maximal ideal of the valuation ring of
L. Then, σ(P) = P. Hence,

|ασ| = |α|

for all σ ∈ GL/K and α ∈ L.
Claim: If

∑
αi is a convergent series with αi ∈ L and

∑
αi = α, then

(
∑

αi)
σ =

∑
(αi)

σ.

Proof of the Claim: As

|ασ1 + · · ·+ ασn − ασ| = |(α1 + · · ·+ αn − α)σ| = |α1 + · · ·+ αn − α|,

we are done.
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