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ABSTRACT 

 

 

Catalyst nanoparticles inside PEM fuel cells are generally supported with a powdered 

material which has a high surface area, high mechanical and thermal stability, and 

preferably high conductivity. Vulcan®XC-72 which is a type of carbon black (CB) is the 

most conventional material that is used as catalyst support. It has a BET specific surface 

area of 250 m2.g−1 and conductivity of 4-7.4 S.cm-1. The usage of CB in fuel cells is 

beneficial in terms of this tempting features, however, the lack of tolerance to carbon 

monoxide (CO) poisoning due to the presence of deep cracks in its structure creates a 

great problem inside a harsh fuel cell environment. Graphene, on the other hand, provides 

a large surface area and high conductivity while providing a large and stable surface 

support as a result of its two dimensional structure. In this thesis study, the influence of 

using graphene derivatives (graphene oxide (GO), thermally reduced GO (TRGO) and 
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graphene nanoplatelets(GNP)) as catalyst support materials to the catalytic activity of 

platinum (Pt) nanoparticles and fuel cell performance was evaluated in combination with 

the utilization of various platinum impregnation methods (ascorbic acid, ethylene glycol 

reflux, sodium borohydride reduction). The synthesized materials were characterized by 

using XRD, Raman, FTIR, TEM, SEM, Cyclic Voltammetry (CV), BET Surface Area 

Analysis, XPS and Fuel Cell Performance Test. Ethylene glycol method and GO were 

determined to be the most effective impregnation method and the best catalyst support 

candidate respectively. Ethylene glycol reflux was further applied to impregnate Pt on 

Vulcan®XC-72.The results were compared with commercial Vulcan®XC-72 supported Pt 

nanoparticles and synthesized Pt/ Vulcan®XC-72.  
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ÖZET 

 

 

PEM yakıt pilleri içerisindeki katolizerler genellikle yüksek yüzey alanına, ısıl ve 

mekanik dayanlıklılığa, ve tercihen yüksek iletkenlikteki toz malzemeler tarafından 

desteklenmektedir. Çoğunlukla bu amaç için bir karbon siyahı (CB) türevi olan 

Vulcan®XC-72 kullanılmaktadır. BET yüzey alanı 250 m2.g−1 ve iletkenliği 4-7.4 S.cm-1 

olan Vulcan®XC-72, bu amaç için oldukça uygundur. Ancak yapısında bulunan derin 

çatlaklar sebebiyle ağır yakıt pili koşullarında karbon monoksit (CO) zehirlenmesine 

neden olmaktadır. Öte yandan grafen, yüksek iletkenlik ve yüzey alanına sahip olmasının 

yanında iki boyutlu yapısı sayesinde  dayanıklı bir yüzey desteği sağlamaktadır. Bu tez 

çalışmasında, grafen türevlerinin (grafen oksit (GO), ısıl olarak indirgenmiş GO (TRGO) 

ve grafen levhaları (GNP)) platin (Pt) nanoparçacıklarının elektrokatalitik aktiviteleri ve 

yakıt pili performansı üzerindeki etkileri, çeşitli Pt indirgeme methodlarının (askorbik 
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asit, etilen glikol geriakımı, sodium borhidrür indirgemesi) kullanımı ile birlikte 

değerlendirilmiştir. Sentezlenen malzemeler XRD, Raman, FTIR, TEM, SEM, Cyclic 

Voltammetry (CV), BET Yüzey Alanı Analizi, XPS ve yakıt pili performans testi 

yapılarak incelenmiştir. Sırasıyla, etilen glikol yöntemi ve grafen oksit en etkili indirgeme 

metodu ve en iyi katalizör desteği olarak belirlenmiştir. Daha sonra, etilen glikol methodu  

Vulcan®XC-72 üzerine Pt indirgemesi amacıyla da kullanılmıştır. Sonuçlar ticari Pt/ 

Vulcan®XC-72 ve sentezlenen Pt/ Vulcan®XC-72 ile kıyaslanarak yorumlanmıştır.    
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1. INTRODUCTION 

1.1. Background and Motivation 

In the working principle of fuel cell, a catalyst, where electrochemical reactions takes 

place, should be present inside electrodes. The most efficient catalyst for fuel cells known 

until now is Platinum (Pt). However, it is not very abundant in nature and very expensive. 

Pt nanoparticles inside a fuel cell electrode are ordinarily supported by carbon materials. 

The presence of carbon supporting materials inside electrodes is beneficial in both 

increasing the dispersion of Pt nanoparticles over electrode layers and decreasing the cost 

of the electrodes as well as improving the efficiency of the electrochemical reactions. 

With the appreciable effect of carbon support on properties of electrode layers, selection 

of carbon support gains a great importance. Carbon black (CB) is the most generally used 

catalyst support in fuel cells with its high specific surface area and easy production. 

However, commercially available CBs have many drawbacks such as having deep cracks 

in their structures which lead to high oxidation rates and carbon monoxide (CO) 

poisoning during the operation of fuel cells. CBs can be replaced with a better candidate 

that is graphene which has a higher conductivity and mechanical stability without cracks 

in the structure. Graphene may provide higher reaction rates with less CO poisoning and 

a better conductivity in parallel to higher utilization of Pt by decreasing the loading 

amounts. For this mentioned reasons, this thesis study is dedicated to synthesis of 

graphene supported Pt nanoparticles for PEM fuel cell electrodes, and characterization of 

synthesized materials in comparison with commercial carbon supports.  

1.2. Fuel Cell Overview and a Brief History 

The first illustration of a fuel cell was assembled by lawyer and scientist William Grove 

in 1839. Electrolysis is a process in which a voltage is applied and water decomposes to 

O2 and H2 as shown in Figure 1-1 (a). As a result of replacing the power supply with an 

ammeter, electrolysis is reversed and an electric current flow is observed with a 

simultaneous recombining of O2 and H2 (Figure 1-1 (b)). The chemical reaction for 
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reverse electrolysis is represented in Equation 1-1. This reaction can be considered similar 

to a burning process in which the fuel is hydrogen and electrical energy is produced 

eliminating heat generation. 

                2�� + �� → 2���           Equation 1-1       

 

Figure 1-1 (a) Electrolysis of water (b) Reverse electrolysis of water [1] 

However, the amount of electrical current produced is very limited due to the low 

electrode area, large distances between electrodes, gases, and electrolyte. Such limitations 

and the absence of a practical usage of this theory become a driving force for the evolution 

of fuel cells. In 1937, Francis Bacon started to work on practical fuel cells and he 

eventually developed a 6 kW fuel cell by the end of 1950s. The first practical fuel cell 

applications were in U.S Space program. General Electric produced the first PEM fuel 

cell and it was used in the Gemini program in the late 1960s. In the Apollo Space Program, 

fuel cells were used to generate electricity for life support, guidance and communication. 

Besides the usage in U.S Space programs, General Motors tried fuel cells for the 

automotive applications. Although the successful usage of fuel cell in U.S Space 

Program, very restricted interest arose for terrestrial applications of fuel cells until 1990s 

when Ballard Power Systems embodied fuel cell-powered buses. After the improvement 

in the production of fuel cells for transportation and stationary power generation, research 

and development of fuel cells have dramatically increased [2].  
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1.2.1. Working Principle of Fuel Cells 

Fuel cell is a type of electrochemical power source that converts chemical energy into 

electrical energy. It differentiates from the other types of electrochemical power sources 

such as batteries in terms of utilization of gaseous or liquid reactants, and it is considered 

as an open system because of the requirement for continuous supply of reactants and 

elimination of products. The great attention towards fuel cells are based on both economic 

and environmental reasons. Higher efficiency in the utilization of natural fuels for large 

scale power generation can be obtained by fuel cells with an inferior amount of toxic 

combustion products and contaminants released to atmosphere.   

A fuel cell constitutes of three main components which are anode, cathode and separator. 

Electrons are released at anode and conducted to external circuit resulting with oxidation 

whereas electrons that passed thorough external circuit are accepted by cathode electrode 

and reduction takes place. As the fuel cell is fed with oxygen and hydrogen gases, 

hydrogen oxidizes at anode side and produces electrons, then, which are conducted to the 

cathode side via an electrical circuit. At the time the electrons are accepted by oxygen 

atoms, and reduction takes place in cathode side with the product of water.  The scheme 

for the reactions for the current generation inside fuel cells shown in Figure 1-2.  

 

Figure 1-2. Electrode reactions and charge accumulation for an fuel cell [1]. 
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1.2.2. Thermodynamics of Fuel Cells 

Two main reactions take place inside a fuel cell and they can be seen in Figure 1-2 and 

Equations 1-2 and 1-3.  

Anode  (HOR)               ��	 → 2�� + 2	
                 Equation 1-2 

Cathode (ORR)       
�
��� + 2�� + 2	
 → ���                           Equation 1-3 

Overall     
�
��� + �� → ���                            Equation 1-4 

 

The importance of reaction kinetics will be further discussed in section 1.3. The anode 

potential is ��=0.000 V versus standard hydrogen electrode (SHE) and cathode potential 

is ���=1.229 V versus SHE. The electromotive force of a fuel cell at equilibrium with the 

reactants and products is calculated to be 1.229 V.  

Equation 1-4 is reported as the reaction of hydrogen combustion [3]. Enthalpy of this 

reaction (∆H) can be calculated from Equation 1-5. The heat of formation of liquid water 

is -286 kJ.mol-1 and heat of formation of elements are equal to zero. ∆H of the reaction is 

found out to be -286 kJ.mol-1. The negative sign of the enthalpy defines that this reaction 

is exothermic.  

                                        ∆� = (H�)H�O	–	(H�)H� 	− 1/2(H�)O�                Equation 1-5 

The change in Gibbs free energy of a reaction is very determinant to anticipate if a 

reaction is reversible or irreversible. The Gibbs free energy change can be calculated from 

the Equation 1-6. Furthermore, the change in Gibbs free energy is dependent on 

temperature and pressure, and Equation 1-6 can be extended to Equation 7. The calculated 

value of ∆��� at standard conditions for reaction seen in Equation 4 is 237.1 kJ.mol-1. 

                         ∆�� = ��,��� − ��,�� − ��,��                     Equation 1-6 

                                                     ∆�� = ∆��� − � !" #$%&	$%&
' &(

$%&) *                       Equation 1-7 

                                                                 ∆�� = −"+�                            Equation 1-8 
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This two equations are important to calculate change in Gibbs free energy of reaction, 

however, these are not enough to reach a conclusion about the reversibility of fuel cell 

reaction.  The meaning of reversibility in a fuel cell is the total conversion of all the Gibbs 

free energy into electrical energy. Equation 1-8 demonstrates the condition for Gibbs free 

energy to be equal to the electrical work. F is the faraday constant, n is the number of 

moles of electrons that pass through the external circuit and E is the reversible cell 

potential. 

                                                  , = ∆-./
∆�./ =

�01.�	34/567
�89	34/567 = 83%                        Equation 1-9 

Fuel cell efficiency is another thermodynamic aspect that should be mentioned. The 

efficiency for any kind of energy conversion device can be described as the ratio of energy 

output to energy input. The maximum theoretical value for energy efficiency of a heat 

engine is known as Carnot limit which is 52%. The maximum theoretical fuel cell 

efficiency at standard conditions is calculated as shown in Equation 1-9. 

1.2.3. Types of Fuel Cells 

Fuel cells are distinguished by the type of electrolyte. The summary of the fuel cell are 

present in the Table 1-1.  

Table 1-1. Types of Fuel Cells 

Type of Fuel Cell Type of 
Electrolyte 

Necessity for 
noble catalyst 

Temperature
(°C) 

Electrical 
Efficiency (%) 

PEMFC 
Polymer solid 

membrane  
Yes  50-100 

53-60 (mobile) 
and 25-35 

(stationary) 

AFC Aqueous alkaline  Yes  50-200 60 

PAFC Phosphoric acid  Yes  200-250 40 

MCFC 
Molten 

Carbonate  
No 600-700 45-47 

SOFC Solid oxide  No 500-800 45-70 
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Polymer electrolyte membrane (PEM) fuel cells have a solid electrolyte where electrons 

are mobile. They run in a temperature range between room temperature and 100°C. Low 

working temperature results with slow reaction rate and in order to overcome this problem 

special catalysts and electrodes should be used. Also, PEM fuel cells require pure 

hydrogen as fuel [1].   

Highly porous electrode layers with Pt catalysts were used in the alkaline fuel cells (AFC) 

in Apollo spacecraft. The fuel should be free from CO2 or pure O2 and H2 should be used. 

Electrode used in AFC should be an alkaline solution such as sodium hydroxide, 

potassium hydroxide, sodium carbonate and potassium carbonate. The solubility and 

corrosiveness of alkaline solution are significant in choosing suitable electrolyte [1].  

Phosphoric acid fuel cells (PAFCs) contain porous electrodes and Pt catalysts, and 

operate at a higher operating temperature above 200°C.  Fuel that is used in this type of 

fuel cell can be reformed from natural gas (methane) to H2 and CO2. The reforming 

process increases the cost of the fuel cell as well as the size of it. PAFCs are very effective 

to produce 200 kW of electricity parallel to 200 kW of heat. This property gives them the 

name of “combined heat and power” systems.  Although PAFCs have limitations due to 

their cost and size, they are greatly reliable and maintenance free systems [1].  

Solid oxide fuel cells (SOFCs) operate at a temperature range in between 600°C and 

1000°C so that expensive catalysts are not required to reach high reaction rates. Fuel used 

in SOFC might be natural gas and any further processing of fuel is not required.   SOFCs 

intrinsically possess simplicity of the fuel cell concept. Besides these advantages, the cost 

of the ceramic materials which are used as electrolyte, are very high to manufacture. The 

SOFC systems require extra plants that include air and fuel pre-heaters. As a result of 

high operating temperatures, a special and more complex cooling system is necessary. 

Finally, the startup of the SOFC systems are not straightforward [1].  

Molten Carbonate Fuel Cells (MOFCs) have higher operating temperatures as SOFCs. 

Unlike SOFCs, MOFCs have non-solid electrolytes at high temperatures. Enhanced 

reaction rates is achieved with a low-cost catalyst, Nickel, which constitutes electrical 

basis of the electrode. Gases such as natural gas and coal gas (H2 and CO) can be used as 

fuel directly. Interestingly, MOFCs need CO2 in the air to work. The nature of the 

electrolyte, which contains a hot, corrosive mixture of lithium, potassium and sodium 
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carbonates, constitutes a drawback by eliminating the simplicity of the fuel cell system 

[1].  

1.2.4. Advantages of PEM Fuel Cells 

PEM fuel cells are differentiated from other types of fuel cells containing a semisolid 

electrode composed of a polymer backbone with acidic functional groups attached to this 

backbone. The required temperatures to activate the catalyst in the PEM fuel cells are 

relatively low and this feature makes their usage more appealing in the scope of 

applications such as transportation, household-based distributed power, and portable 

power devices. PEM fuel cells provide a high power density and quick start-up at 

relatively low temperatures [3]. Membrane electrode assembly (MEA) is the most 

significant part of a PEM fuel cell. MEA consists of two porous conductive electrodes 

which are separated by a polymer electrolyte membrane. The electrode layers are mostly 

carbon cloth or carbon fiber paper which allows the permeation of gases. These layers 

hold the catalyst particles which are generally supported on carbon materials. An 

illustration of MEA can be found in Figure 1-3. Since higher efficiencies are strongly 

related with the catalyst surface, MEAs are fabricated in a flat shape to enhance the larger 

surface area of the catalyst. The thin and flat morphology of MEAs actualize compact 

fuel cells.  

 

Figure 1-3. Illustration of membrane electrode assembly (MEA) [4] 
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In addition, fuel cells are electrochemical power plants that accomplish conversion of 

chemical energy into electrical energy efficiently without emission of pollutant gases [5]. 

A PEM fuel cell does not contain corrosive fluid hazards such as the corrosive electrolytes 

used in MCFCs, and as a result it can work in any orientation. This property enlarges the 

extent of fuel cell usage to vehicles industry and portable applications.  

1.3. Importance of Catalyst Layer 

As it is explained briefly in the section 1.2.4, MEA includes two electrode layers, which 

are called cathode and anode separated by a polymer electrolyte membrane. These 

electrode layers are fabricated by coating of carbon supported metal nanoparticles on gas 

diffusion layers (GDLs). Fabricated electrodes are also known as catalyst layer as a result 

of metal catalyst incorporation. Catalyst layer functions as the main place for 

electrochemical reactions. The catalyst nanoparticles are the active sites where all the 

reactions takes place on their surface, and in the absence of catalyst nanoparticles, the 

required energy to break bonds of fuel molecules at low operating temperatures cannot 

be reached. Catalyst layer basically consists of metal catalyst, carbon support and ion 

conducting polymer electrolyte (ionomer). Anode catalyst layer has a negative potential 

and carries electrons that are produced in hydrogen oxidation reaction (HOR) to external 

circuit. Cathode catalyst layer is the electrode with a positive potential, and accepts 

electrons back from the external circuit and water is produced by recombination of 

electrons with hydrogen ions and oxygen.  The anode and cathode reactions are 

demonstrated in the Equation 1-2 and 1-3. The overall reaction is represented in Equation 

1-4. The cathode catalysts layer in PEM fuel cells contain mostly Pt group metal/alloy 

nanoparticle supported on a carbon support to enhance the rates of ORRs [6]. Pt is also 

used in anode catalyst layer even though there is an immense potential differences 

between ORR and HOR reaction rates.  

The design of catalyst layer should be done very meticulously in order to obtain high 

reaction rates from anode and cathode reactions, and to optimize the amount of catalyst 

for attaining the essential levels of power output. A catalyst layer should satisfy many 

objectives to perform efficiently. A three phase interface where electrode, electrolyte and 
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reactant gases interact has to be as large as possible to provide sufficient area for 

electrochemical reactions (Figure 1-4). 

   

Figure 1-4. Three phase interface in catalyst layer 

Moreover, catalyst layer has to allow transport of protons efficiently. Transport of 

reactant and product gases as well as removal of water product out of cell reactions has 

to persist without any interruption. Additionally, electronic current between reaction sites 

inside catalyst layer and current collector should flow continuously.  

1.4. Catalyst Support Materials 

The distinctive elements of catalyst support are synthetic composition of materials used, 

surface area, stability and durability. The basic role of catalyst support is to maintain a 

catalytically active phase in a highly dispersed state. A high value of surface area and 

developed porosity help to achieve large metal dispersion. The stability of support 

materials to the aggressive fuel cell environment is a significant achievement. Carbon 

based materials have been predominantly used as catalyst supports in PEM fuel cell 

electrodes. Graphitic structures in carbon supports were reported as important elements 

to enhance better resistance towards corrosion. However, as corrosion resistance 

increases with highly graphitized structures of carbon support, fuel cell performance 

decreases. The performance of fuel cell, electrocatalysts stability and membrane 

degradation is strongly affected by the morphology, and the physical and chemical 

characteristics of these carbon supports [6]. 
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The affinity of carbon supports to metal nanoparticles is also very significant to attain 

higher performances. Carbon supports are crucial in the dispersion of Pt nanoparticles in 

order to enhance a higher active Pt surface area. The properties of carbon supports may 

have effects on electrical conductivity, corrosion resistance, surface properties and cost.  

At a given catalyst loading, the performance of a catalytic layer depends on the 

distribution of catalyst and electrolyte chains, and the microstructure of a layer. Pore 

structure is strongly related to gas transport through the catalytic layer. Easy transport and 

access through all of the catalyst particles increases the interaction between the gases and 

catalyst with a positive effect on cell performance [7]. Carbon support materials possess 

an excellent electron conductivity, corrosion resistance, and surface properties as well as 

providing cost advantage for integration of fuel cells into market. Also, carbon supports 

significantly contribute in obtaining expanded active Pt surface area by enabling a better 

dispersion of small Pt particles [8]. 

CBs are the main carbon materials for catalyst support. Their conductivity range from 0.1 

to 10 S.cm-1  [9]. Vulcan®XC-72 (BET specific surface area of 250 m2.g−1) is the most 

regularly used carbon support which was primarily utilized for PAFC catalysts but also 

applicable to PEMFC as catalyst supports [5]. The conductivity of Vulcan®XC-72 was 

reported to be 4-7.4 S.cm-1 at different packing pressures [10]. Studies showed that the 

surface area of CBs affects the particle size of Pt nanoparticles in an inversely 

proportional manner, and the method for the catalyst preparation has a tremendous effect 

on the surface area and catalytic activity of Pt/C [11]. As CBs are the mainstream 

materials for PEM fuel cell catalyst layers, recent studies have focused on problems with 

CBs and tried to enhance improved activities with alternative preparation methods [11-

13]. Another approach to develop catalyst activities is based on replacing CBs with 

conventional carbon materials.  

Carbon nanotubes (CNTs) have attracted a great amount of attention due to their high 

mechanical and electrical properties [14]. They have also became good candidates for 

catalyst support materials for direct methanol fuel cells (DMFC). Wenzhen Li et al. 

reported the utilization of CNT with a BET surface area of 42 m2.g-1 as catalyst support 

for Pt nanoparticles [15]. The idea to improve ORR kinetics of cathode materials has 

developed the approach towards the utilization of novel carbon materials as catalyst 

supports. Articles have supported this approach by showing better ORR activity and 
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higher performance of  DMFC in comparison to commercial carbons [15]. Different 

synthesis methods were also reported in which MWCNT was used as catalyst supports 

for Pt and the surface modification of MWCNT was examined. CNT utilization in cathode 

and its ORR activity was investigated [16, 17]. The importance of the synthesis methods 

has attracted a great amount of attention due to their effect on particle size, dispersion and 

cost reduction. CNT and other carbon based materials such as carbon nanofibers (CNF) 

are functioned as catalyst support to increase Pt utilization by reducing the Pt loading and 

to enhance a better catalytic performance [18]. In the case of Pt deposition on CNT, CNT 

surface was treated with aggressive reagents in order to create surface groups such as 

hydroxyl (–OH), carboxyl (–COOH) and carbonyl (–C=O) for a better Pt adsorption on 

CNT [19]. 

CNTs have been considered to be more corrosion resistant than CBs; however, the cost 

of CNT production stands as a barrier for commercialization. In addition to CNT and 

conventional CBs, mesoporous carbons (MPCs) containing monodispersed mesopores 

(pore size >2 nm) were considered as possible candidates for catalyst supports and ORR 

kinetics of MPCs were investigated for PEM fuel cell applications [20, 21]. One drawback 

of MPCs is that they show similar corrosion behavior to CBs due to similarities in the 

graphitization rates. Further improvements were accomplished in order to solve this 

problem by increasing the graphitization of MPCs with hard template synthesis at high 

temperatures, and materials were reported as having better corrosion resistance whereas 

they showed catalyst loss [22] . Studies about the effect of using MPCs as catalyst 

supports on catalytic activity have been conducted and the results were showed that MPCs 

were not effective in improving catalytic activity of MEAs, whereas they were considered 

to improve the mass transport properties of the catalyst layer [23]. 

It is already mentioned that CBs are not resistant to corrosion due to excess 

electrochemical oxidation. Additionally, carbon is impermeable to the gases and liquids 

and this feature of carbon leads to limited catalyst performance, low catalyst utilization 

and reduced cell performance. An ionomer (Nafion® solution) functioning as a binder for 

catalyst support and catalysts particles should be introduced to the catalyst layer. The idea 

to replace both carbon and Nafion® ionemer brought the attention to an alternative group 

of materials which are conjugated heterocyclic conducting polymers. This group of 

materials captivate interest due to their unique metallic/semiconductor characteristics and 

their potential use in areas such as electronics, biosensors and actuators, electrochemistry 
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and electrocatalysis [24]. Among conducting polymers, polypyrrole (PPy) can be 

distinguished as a prosperous catalyst support material with its good environmental 

stability, facile synthesis, and high conductivity [25]. The presence of connected pyrrole 

rings in the structure gives rise to the mobilization of electrons and facilitates the electrical 

conductivity of PPy. PPy can be synthesized via chemical or electrochemical 

polymerization which increase the control chance of the properties of synthesized 

nanoparticles. PPy provides a good adhesion between Nafion membrane and Pt 

nanoparticles, and Pt utilization can be improved in the presence of PPy [25]. Polyaniline 

(PANI) is another conducting polymer that has been investigated as possible catalyst 

support materials owing to high accessible surface area, good electronic conductivity, 

stability over a wide potential range. PANI nanofibers can easily synthesized by a 

interfacial polymerization and a subsequent process can be conducted to decorate Pt 

nanoparticles on PANI nanofibers [26]. The usage of conducting polymers as catalysts 

supports for Pt nanoparticles in fuel cells demonstrated comparable results with Pt/C 

catalyst. However, there should be further investigations for stable and reproducible 

performance [27].  

1.5. Graphene as a Support Material in PEM Fuel Cells 

Graphene is a single atom thick material with a very good hexagonal lattice structure. 

Graphene has become a very hot topic after the study of Novoselov et al. [28] in which 

they obtained very few graphene layers by the mechanical cleavage of graphite, and they 

were rewarded with the Nobel prize in physics in 2010. After that advancement, many 

scientists have been working on graphene in various areas such as chemistry, physics, 

electronics and so forth. The properties of graphene such as conductivity, high surface 

area, thermal and mechanical stability are very appealing for practical application. 

The above mentioned properties of graphene distinguishes from the other carbon supports 

and have been considered to be a new candidate for catalyst supports in low temperature 

fuel cells.  The roles of graphene in fuel cells were reviewed by Hur and Park [29]. The 

uniformity in the distribution of nano-sized particles, and the increased enhancement 

between defect sides of graphene and nanoparticles have been highlighted as two 
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significant conditions that might likely be satisfied by graphene for better catalytic 

activity and fast charge transfer.   

The quality and preparation method of graphene have also a great impact on the efficiency 

of chemical reactions that are taking place in the catalyst layer.  Graphene can be prepared 

by top-down or bottom-up methods, and the preparation method strongly affects the 

structural properties of graphene. Chemically converted graphene, which is obtained by 

oxidation of graphite, has many defect sides whereas chemical vapor deposition (CVD) 

method can provide one layer graphene without defects. Computational studies about the 

interaction of Pt nanoclusters with point defects of graphene revealed that on the defect 

sides  strong Pt–carbon bonds are formed and showed improved tolerance toward CO 

poisoning [30]. Graphene sheets prepared by thermal expansion of graphene oxide (GO) 

have been selected as promising support materials for electrocatalysts due to higher 

electrochemical surface area (ECSA) and better oxygen reduction activity [31]. Graphene 

nanoplatelets (GNPs) consisting of  10 or more layers of graphene sheets were reported 

to have characteristics of both single-layer graphene and  highly ordered graphitic carbon 

[32]. The integration of graphene into the catalyst layer have been accomplished via both 

chemical and electrochemical methods which will be further explain in section 1.6.  

1.5.1. Graphene Synthesis 

Graphene has been synthesized by various methods such as mechanical cleavage of 

graphite [33], CVD [34], chemical exfoliation methods. Even though mechanical 

cleavage method is an effective method to obtain defect free graphene layers, it is not 

suitable for large scale production and that constitutes a drawback for industrial 

applications. CVD method is a bottom-up method to nucleate and grow single layer of 

graphene on top of transition metal surfaces after decomposition of hydrocarbons such as 

ethylene, methane, or acetylene at high temperatures.  The problem with CVD method is 

that the transmission of graphene to a rigid, insulating substrate for practical application.  

Chemical exfoliation of graphene is a top-down method which utilizes graphite 

containing many stacked graphene layers and aims to isolate single or few layered 

graphene. The isolation of graphene has been achieved by various approaches. The most 

common approach is the chemical oxidization of graphite layers which enables separation 
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of graphene layers by inserting functionalities in between them.  The chemical oxidation 

of graphite is carried out using potassium chlorate and fuming nitric acid in Brodie’s 

method [35]. Concentrated sulfuric or nitric acid and chlorate is used for graphite 

oxidation in Staudenmaier method [36] and Hummer’s method oxidizes graphite with 

potassium permanganate and sodium nitrate in concentrated sulfuric acid [37]. All of 

these chemical procedures are highly effective in oxidizing of graphite layers, however, 

the generation of toxic gases such as NO2, N2O4, and/or ClO2 creates practical problems. 

Consequent studies in literature mostly have preferred to use Hummer’s method or 

various modifications of Hummer’s method by changing the ratio of reactants or the 

reaction conditions in order to have a milder reaction medium. A very recent Hummer’s 

method is reported by Marcano et al. in the name of  “Improved Synthesis of Graphite 

Oxide” [38]. Instead of using highly toxic reactants, oxidation is achieved by a mixture 

of concentrated sulfuric acid and phosphoric acid. Resulting GO is compared with the 

GO produced by Hummer’s method and a modified Hummer’s method. Improved GO is 

underlined to have higher amount of oxygen containing groups and fewer defects on basal 

plane compared to other two methods.  The conductivity of improved GO is also 

measured, however, none of the GO samples provide effective conductivity values. The 

presence of oxygen containing functionalities composes interruption areas for electronic 

conduction. Removal of these surface functionalities by hydrazine reduction or thermal 

treatment is noted to be effective in obtaining a higher conductivity. 

A general route has been mostly followed in the synthesis of graphene sheets. Oxidation 

of graphite provides an enlargement in the interlayer spacing of graphite and thermal 

exfoliation or ultrasonication might boast the degree of sheet separation.  A consecutive 

reduction of surface groups has to be performed in order to reach optimum properties in 

conductivity. The conditions of reduction process has a tremendous effect on the quality 

of final graphene product because excessive removal of functionalities should be 

accomplished while preventing graphene layers from restacking. Chemical reduction of 

GO is reported to be attained by hydrazine hydrate [38, 39], hydroquinone [40, 41], 

sodium borohydride [42], Fe powder [43]. Instead of a chemical reduction or in 

combination with a chemical process, thermal treatment of GO surfaces are used in order 

to obtain graphene sheets [44, 45]. A simple and combined method utilizing thermal 

treatment and ultrasonic irradiation is also worth to mentioned [46]. Electrochemical 

reduction of GO is also reported in the literature in small scale. GO dispersion is applied 
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onto a glassy carbon electrode and immersed into Na2SO4 solution, and electrochemical 

reduction is achieved during extended cyclic voltammetry [42, 47].  

1.6. Catalyst Deposition Methods on Graphene Supports 

Electroless deposition enables the reduction of metal ions which are dispersed in an 

aqueous solution in the presence of a chemical reducing agent. This process aims to 

deposit metal nanoparticles on a carbon support without using electrical energy. The 

integration of metal platinum ions into catalyst layers is extensively enhanced by a wide 

range of electroless deposition techniques. The reduction of Pt cations into Pt metal can 

be accomplished via chemical reducing agents, thermal treatment or a combination of 

different techniques.  

Pt deposition on functionalized graphene sheets (FGSs) with H2 gas at 300°C were 

reported by Liu et al. [31]. Although they did not investigated fuel cell performance of 

electrocatalysts, oxygen reduction activity with an improved ECSA was accepted as 

promising compared to commercial catalyst E-TEK and the durability of Pt/FGS was 

found out to be more durable than commercial one.  

Chemical reducing agents are widely used to obtain reduced nanoparticles deposit on 

carbon supports. Sodium borohydride (NaBH4) is one of the most common reducing 

agents utilized in reduction process of metal cations. In an article published by Xin et al., 

the reduction of GO and Pt cations in  solution with pH adjusted to 10 were concurrently 

completed by NaBH4 treatment [48]. Products of this treatment (Pt/G) were dried with 

lyophilization and further annealed at 300°C under N2 atmosphere.   Methanol oxidation 

on Pt/G were tested and they demonstrated higher catalytic activity than Pt/C. The authors 

were remarked that the distinctive interaction between Pt and graphene might be the 

reason for this improvement parallel to obtaining larger ECSA of Pt/G which can perform 

as Pt activity sites for chemisorption of methanol. In another study, different platinum 

precursors were dissolved in deionized water in the presence of GO as catalyst support 

and polyvinylpyrrolidone (PVP) as stabilizer [49]. Immediate color change was observe 

when freshly prepared NaBH4 solution was added to Pt/GO/PVP suspension and this 

color change was attributed to successful reduction of GO. The physical and 

electrochemical examination of products of this study were done, and superior activities 
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were obtained for the electrooxidation of methanol and ethanol in acid media. A similar 

stabilizer usage for Pt nanoparticles during the reduction process were explored in other 

studies. One of this studies were used a cationic polyelectrolyte, 

poly(diallyldimethylammonium chloride) (PDDA) in order to stabilize Pt nanoparticles 

by avoiding  their agglomeration in the solution [50]. The stabilization of Pt nanoparticle 

prior to NaBH4 reduction was achieved and Pt nanoparticles were decorated on CB 

support. The presence of PDDA was pointed out to be significant in the improvement of 

both oxygen reduction activity and electrocatalysts durability. The same approach also 

employed in the preparation of Pt nanoparticles on top of graphene supports [51]. Another 

study attributed PDDA to functionalize GO and proposed a subsequent Pt reduction on 

PDDA/GO supports with NaBH4 [52]. Although a stabilizer assists to reach a more steady 

dispersion, on the other hand, its molecules might be placed in catalytic sites of 

electrocatalysts and that would result in a lower the catalytic performance [53]. A recent 

study proposed a colloidal method without the use of any stabilizer in the reduction 

process of Pt nanoparticles [54]. Colloidal platinum oxides were prepared with the 

addition of NaOH followed by vortex mixing, and they kept undisturbed at room 

temperature. The colloidal platinum oxides was effectively mixed with partially reduced 

GO. NaBH4 was added to the final solution under continuous stirring and nanoparticles 

obtained at the end of centrifuging. The quality of colloids was very important for 

effective reduction so that the influence of solution pH in colloid preparation step was 

further investigated. Electrocatalytic oxidation toward formic acid and ethanol of the final 

products were found out to be 3 times higher than the commercial Pt/C catalysts.  

Ascorbic acid was noted as an effective reagent in reduction due to its strong reducibility 

at high temperatures [55]. Ascorbic acid was added to GO suspension under continuous 

stirring. After that, chloroplatinic acid (H2PtCl6) was added, and the solution was 

transferred into a Teflon beaker in order to increase the temperature up to 160°C. The 

catalytic activities of Pt/G nanoparticles were investigated via methanol oxidation and 

Pt/G were regarded as having a higher catalytic performance compared to only Pt 

nanoparticles toward methanol oxidation.  

Many different reducing agents have been functioned in nanoparticle synthesis for fuel 

cell application. The effectiveness, activation conditions and hazardous rates of reducing 

agents are crucial. A very common reducing agent NaBH4 was indicated as highly 

hazardous, and researchers observed inhomogeneous distribution of Pt nanoparticles on 
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GO supports when NaBH4 was used as reducing agent [52]. Polyol process have been 

considered to be milder and environmental friendly. Ajayan et al. stated the usage of 

ethylene glycol as both reductive and dispersive agent [56]. The dispersion of GO and 

H2PtCl6 in water-ethylene glycol mixture was ultrasonically treated and successive 

reduction was carried out at 120°C under continuous stirring. The similar process was 

repeated in many other studies in order to compare with different techniques and to have 

a detailed insight about the reaction parameters [57-60]. Further, the dispersion of Pt 

nanoparticles was aimed to be improved with the addition of PDDA while utilizing polyol 

method in the reduction of Pt nanoparticles [61]. GO was grafted with PDDA by addition 

of GO powder into PDDA solution. The pH of the solution was adjusted to 2. After 

GO/PDDA particles were prepared, they combined with H2PtCl6 solution in ethylene 

glycol followed by pH adjustment to 10. The reduction of resulting solution was 

completed with microwave heating. In a similar study, the PDDA functionalized GO was 

prepared in EG and  then transferred into H2PtCl6 solution followed by a microwave 

heating process [62]. The pH adjustment was involved just before centrifuging step. In 

another study, PDDA was also adsorbed on the hydrophobic surface of GNPs by simply 

adding PDDA solution into GNPs dispersion [32]. A better attachment of PDDA onto 

GNP was achieved by ultrasonication, and KNO3 was added to obtain a stronger attraction 

between them. A similar Pt deposition technique to previous mentioned procedures was 

utilized to produce Pt decoration onto PDDA/GNP. 

1.6.1. Electrodeposition of Catalyst Particles 

Electrodeposition is a process in which electrical current is employed to reduce dissolved 

metal cations in order to obtain a coherent metal coating within the electrode layer. The 

electrodeposition method have drawn attention due to efficient Pt utilization by achieving  

the deposition of Pt particles at the most efficient contact zones with both ionic and 

electronic accessibility on the electrode layer [63, 64]. The first patent detailed 

electrodeposition method and reported the fabrication of a non-catalyzed carbon electrode 

with Pt loadings as low as  0.05 mg.cm-2 [65].  

The parameters that directly influence electrodeposition performance reported as current 

density, pulse conditions, duty cycle, and electrode surface condition [66]. Pulse 
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electrodeposition was regarded as a preferable method over DC electrodeposition due to 

controlled particle size, stronger adhesion and uniform electrodeposition in the study of 

Choi et al.. This superiority  was associated with the fact that only one variable, current 

density, alters the performance of DC electrodeposition whereas pulse electrodeposition 

provides a better control over performance with the help of three variables which are ton 

(time-on), toff (time-off) and ip peak current density. This study further reported that 

catalysts with smaller particle size would be obtained via pulse electrodeposition method.  

Electrodeposition method was improved, and the utilization of a Pt plating bath for direct 

deposition of Pt particles on the carbon blank electrode was reported by Kim et al. in 

2004 [67]. In this improved method, the blank carbon electrode was coupled with a copper 

plate and this copper plate functioned as a current collector. The anode was a Pt gauze. 

The pulse wave and the deposition current density was regulated with a pulse generator. 

The authors emphasized the possibility to enhance a Pt/C ratio up to 75 wt% close to the 

electrode surface. In a consequent article of Kim et al., pulse electrodeposition parameters 

were examined to enhance a better performance from the catalyst layer [68]. Therefore, 

the results of this studies are proclaimed that pulse electrodeposition is a very strong 

candidate to replace the traditional MEA preparation methods with the benefit of catalyst 

cost reduction and increased PEMFC efficiency.  

 

Figure 1-5. Design of an electrodeposition cell comprising a Hydrogen Depolarized 

Anode (HDA) [69] 
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The electrodeposition method have been further adopted to reduce Pt nanoparticles onto 

graphene supports. The electrochemical reduction of Pt was attained by potentiostatic 

electrodeposition using a hydrogen depolarized anode (HDA) on graphene layers [57]. 

The theory of HDA method was explained accurately in a previous article by Mitzel et 

al., and a scheme of this method can be seen in the Figure 1-5 [69]. The benefit of this 

method in which the ionomer is only used as ion conducting phase in the electrodeposition 

process is the absence of liquid phases on that electrode. This property provides the 

necessary contact of the build catalyst particles to the ion conducting phase in the fuel 

cell while it eliminates the precursor diffusion. MEAs were prepared by coating graphene 

ink containing Pt cations on GDLs and dried subsequently, and then directly integrated 

to the potentiostat as cathode. The results of the electrochemical deposition method with 

the HDA revealed to be advantageous in terms of enabling low amount of catalyst loading 

by providing a uniform distribution of the platinum particles on the supporting material. 

The electrochemical reduction method contributes to the alignment of platinum catalysts 

at the three phase boundaries (TPB).  

1.7.  Hybrid materials as Catalyst Supports in PEM fuel cells 

In the process of membrane electrode assembly (MEA) fabrication, graphene sheets are 

inclined to stack to form graphite as a result of its 2D nature and strong van der Waals 

interactions. This behavior of graphene sheets leads to a decrease in the surface area of 

graphene and inevitably to a lower fuel cell performance. One method for better Pt 

utilization and electrocatalytic activity is to increase the amount of ionomer used in MEA 

fabrication. However, high amount of ionomer can be a drawback by decreasing the 

conductivity and creating mass transport limitations. There are other proposed methods 

in the literature such as introducing spacer particles in between graphene sheets resulting 

with a larger interface. The crucial point about spacer introduction to the structure of 

graphene is to protect the conductive network of graphene sheets. CB is one of the 

candidates to intercalate graphene sheets by virtue of its high electrical conductivity and 

cheap price. In literature, the use of CB as spacer for graphene was first reported by Yan 

et al. [70]. The integration of CB in between graphene nanosheets (GNSs) was underlined 

to be effective in decreasing the agglomeration of GNSs while minimizing the diffusion 

path in double layer capacitance. GNS/CB hybrids were prepared by a chemical reduction 
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with hydrazine at higher temperatures after exfoliation of hybrids in ultrasonic bath. 

Another study utilized a similar method in preparation of r-GO/CB hybrid dispersion to 

be used in formation of r-GO/CB hybrid gel films by a simple vacuum filtration [71]. 

However, these two studies did not give information about the application of this hybrids 

as catalyst supports in fuel cell electrodes. The study of Park et al. provides an insight 

about the effect of spacer in the electrochemical features of the cathode in PEM fuel cells 

[72]. In this study, Pt nanoparticles firstly deposited on TRGO via polyol method, and the 

resulting powder was combined with CB in Nafion® solution, DI water and methanol in 

order to be used as catalyst ink. The prepared catalyst ink was used to fabricate electrodes. 

The analysis of ECSA and double-layer capacitance of electrodes containing different CB 

amount revealed that Pt/G with CB spacer had a higher ECSA value in comparison with 

the ECSA of plain Pt/G.  

The above mentioned hybrid structures with CB are mostly prepared to observe 

intercalation of graphene sheets and lower amount of agglomeration without decreasing 

conductivity. Apart from CB usage, CNTs were also mentioned in the literature as an 

intercalating agent. Additionally, CNTs can provide mechanical stability due to their 

orientations in hybrid structures [73]. As the agglomeration of graphene sheets increases, 

the presence of graphitic structures leads to a dramatic decrease in the stability of 

graphene. The loss in mechanical strength can compensate with the flexible and robust 

properties of CNTs. With this integrated structure of graphene and CNTs, the fast charge 

transport pathways in polycrystalline graphene sheets can be enhanced as a result of lower 

sheet resistance. A study published by Cheng et al. promoted single-walled carbon 

nanotubes (SWCNTs) which have high surface area (407 m2.g-1) and high conductivity 

(100 S.cm-1) as conductive additive, spacer, and binder in the G/CNT supercapacitors 

[74]. Besides the applications of G/CNT hybrids on supercapacitors, very limited number 

of studies were reported on G/CNTs on fuel cell applications. Jha et al. published research 

on G/MWCNT as catalysts support for Pt and PtRu electrocatalysts [75]. Thermally 

reduced and functionalized graphene were combined with MWCNT in deionized water 

and dispersed via ultrasonication.  H2PtCl6 solution was added to the resulting mixture 

and chemical reduction by NaBH4 was conducted. The physical and electrochemical 

analysis of resulting products proved the successful reduction of Pt on G/MWCNT 

supports. MEAs of this hybrid materials were fabricated and further tested for methanol 

oxidation and ORR. The outstanding results of prepared MEAs with high power densities 
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were recorded and the improvement was correlated with the improved accessibility of 

reactant gases to catalyst particles.  

1.8. Objectives 

The studies replacing CB supports with graphene derivatives demonstrated promising 

results for fuel cell applications. The superiority of graphene with enhanced stability and 

CO tolerance toward fuel cell applications were reported in various articles as mentioned 

in the literature review above. Additionally, graphene provides a large area for the 

integration of Pt and assists to create a conductive network for electronic applications. 

The deposition methods gain a great importance to incorporate Pt on graphene support 

with high Pt utilization and low particle size. The proposed methods for Pt deposition on 

carbon supports have been applied for graphene supports and the results of the studies 

were mostly compared with commercial Pt/C catalysts. However, the detailed comparison 

between Pt deposition methods on graphene supports have not been done. The reaction 

conditions such as temperature, time, and the ratio of reactants, the amount and the type 

of reducing agents should be controlled and kept constant while making a reliable 

comparison in between type of catalyst supports and reduction methods. According to the 

literature review, the most promising methods were determined and the interesting 

derivatives of graphene were chosen as catalysts supports to be investigated. In the light 

of pre-investigation, this thesis attempts to give a perception in the area of Pt deposition 

(EG, NaBH4 and ascorbic acid) methods on several graphene supports (GNP, GO and 

TRGO) in comparison with each other as well as commercial Pt/C catalysts. In addition, 

different Pt precursors (K2PtCl4, H2PtCl6) were compared after the comparison in 

reduction methods were concluded. After the physical and electrochemical 

characterization of products, electrode layers were prepared with the most promising 

catalyst and the electrodes and tested in-situ fuel cell conditions. The theoretical benefits 

of graphene supports are intended to be supported with experimental findings. 

As a future work, an alternative aspiration was also determined. The remarkable 

properties of hybrid structures were mentioned quite promising for fuel cell applications 

and graphene in corporation with other carbon supports would even result with higher 

fuel cell performances. With the guidance of concluded study about Pt deposition 
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methods and graphene supports, the most prosperous method and graphene derivative 

will be selected and utilized in preparation of hybrid structures as catalyst supports 

materials.  
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2. EXPERIMENTAL 

2.1. Materials 

The graphite flakes used in graphene oxide synthesis were obtained from Sigma Aldrich. 

Potassium permanganate (KMnO4), sulfuric acid (H2SO4), phosphoric acid (H3PO4), 

peroxide (H2O2), hydrochloride (HCl), chloroplatinic acid (H2PtCl6), potassium 

tetrachloroplatinate (K2PtCl4), L-Ascorbic acid (C6H8O6), ethylene glycol 

(HOCH2CH2OH), sodium borohydride (NaBH4), isopropyl alcohol (C3H8O),   perchloric 

acid ( HClO4), Nafion® (5 wt. % in alcohol) were also purchased from Sigma-Aldrich. 

Vulcan®XC-72, Pt / Vulcan®XC-72, Toray carbon paper (THP-H-030,110 µm) and 

Nafion® PFSA NR211 membrane were supplied from Fuel Cell Earth LCC, and graphene 

nanoplatelets (GNP) were purchased from XG Sciences. All chemicals were used without 

further purification.  

2.2. Methods 

2.2.1. Graphene Oxide Synthesis 

GO was synthesized by improved Hummers method [38]. Graphite flakes were weighed 

and placed into a round bottom flask. After addition of KMnO4 with a known ratio on top 

of graphite flakes, solids were magnetically stirred. Then, acid mixture of H2SO4:H3PO4 

was slowly added onto the solid mixture of graphite and KMnO4 inside an ice bath. Gas 

evolution which is the indication of oxidation was started immediately. The reaction flask 

was placed into the oil bath at 50°C just after the gas evolution stopped and left under 

reflux in overnight stirring. Transition of the reaction color from purple to yellow-brown 

after 24 h was enhanced. In order to ensure that the oxidation of graphite was completely 

accomplished, H2O2 was added as a further utilized as an oxidizing agent. The resulting 

solution was centrifuged and washed with water, diluted HCl solution and ethanol several 

times. The final product was dried in oven at 70°C. 
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2.2.2. Thermal Reduction of Graphene Oxide 

The reduction of functional surface groups on GO was processed via heating up to higher 

temperatures. Thermal treatment contributed in expansion of interlayer distance between 

the sheets. The GO nanoparticles were put into a quartz tube and placed into the Protherm 

ASP 11/300/400 furnace. The thermal reduction was conducted under the Argon 

atmosphere at 1000°C for 10 minutes to obtain TRGO. 

2.2.3. Synthesis of Platinum/GO and Platinum/GNP  

Pt nanoparticles were impregnated on commercial GNP, synthesized GO and TRGO by 

various chemical reduction processes. In case of GNP, prior to the deposition of Pt 

nanoparticles, a mild and environmentally friendly citric acid was used to increase the 

anchoring surface groups on GNP. Consequently, the most common chemical reduction 

agents in literature were chosen and implemented for GNP, GO and TRGO. Table 2-1 

summarizes the utilized graphene supports and reduction methods. The impregnation 

methods are explained in details on below. 

Table 2-1. Catalyst supports and the methods that were used to reduced Pt precursor 

(H2PtCl6) 

Sample Name 
Functionalization Reducing Agent 

Citric acid NaBH4 Ascorbic Acid  Ethylene Glycol 

GNP + + + + 

GO - + + + 

TRGO - - - + 

Vulcan®XC-72  - - - + 
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2.2.3.1. Ascorbic Acid Reduction 

Both GNP and GO (0.5 mg.mL-1) were ultrasonicated with DI water for 30 minutes to 

have homogenous dispersions. Afterwards, 45 mg ascorbic acid and H2PtCl6 (0.25 

mg.mL-1) were added to the graphene dispersion. The reaction continued at 160°C for 1 

h. Finally, the resultant mixture was centrifuged, the solid was washed with DI water and 

ethanol several times, and subsequently dried in the oven at 60°C. 

2.2.3.2. Sodium Borohydride Reduction 

Both GNP and GO (0.5 mg.mL-1) were ultrasonicated with DI water for 30 minutes. Then, 

the solid dispersion and H2PtCl6 was mixed with ratio of 2:1 (w:w) respectively. Obtained 

solution was ultrasonicated for 30 minutes. Afterwards, pH was adjusted to be below 2 in 

the presence of HCl. This solution was left undisturbed for 2 h to be stabilized. Finally, 

50 mM NaBH4 solution was added drop wise until all the H2PtCl6 was reduced to metallic 

Pt. Resultant solution was centrifuged 3 times with 0.1 M HCl and the final solid product 

was dried in the oven at 60°C. 

2.2.3.3. Ethylene Glycol Reduction 

Separated homogenous dispersions of GNP, GO, and TRGO (0.5 mg.mL-1) in DI water 

subsequent to mixing with H2PtCl6 (0.25 mg.mL-1) were ultrasonicated for 30 minutes. 

The resulting mixture was added to reaction flask, then 5:4 (w:w)  ratio of GO, ethylene 

glycol and heated up to 150°C under continuous stirring for 12 h. To end the reaction, the 

temperature was left to go down to room temperature and the solid products were 

collected by centrifuging followed by drying process at 60°C inside the vacuum oven. 
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2.2.3.4. Citric Acid Functionalization 

GNPs (1 mg.mL-1) were ultrasonicated with DI water for 30 minutes. Then, known 

amount of citric acid was added to the dispersion for overnight stirring. Solution pH was 

adjusted to be below 2 in the presence of HCl. The resulting mixture filtered, washed with 

deionized water and heat treated at 300 °C for 30 minutes. H2PtCl6 was added into the 

dispersion of functionalized GNP in 2:1 (w:w) ratio respectively The resulting mixture 

was again ultrasonicated for 30 minutes. For chemical reduction NaBH4 was added to 

GNP/H2PtCl6 dispersion by dropwise under continuous stirring and refluxed at 90 ° C 

with for 3 h. Finally, solid products were collected by centrifuging and then, dried at 60°C 

inside the vacuum oven. 

2.2.4. Comparison of Platinum Precursors  

Ethylene glycol reduction was chosen as the most promising chemical reduction method 

as discussed in further sections to impregnate the Pt nanoparticles  both on GNP and GO. 

In the previous experimental sections, H2PtCl6 salt was performed as catalyst metal 

precursor. The effect of Pt precursor was also aimed to be discussed, and the other 

common platinum precursor in chemical reduction processes, K2PtCl4 was also employed 

onto the GO/TRGO in order to compare with H2PtCl6 (Table 2-2). 

Table 2-2. The effect of platinum precursor change in the reduction processes 

Pt Support H2PtCl6 K2PtCl4 

GO + + 

TRGO + + 

Vulcan®XC-72  + + 
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2.3. Characterization Methods 

2.3.1. Material Characterization 

2.3.1.1. X-ray Diffraction (XRD) 

X-ray diffraction (XRD) is a physical characterization method to gather information 

about crystalline structures of materials. X-ray diffractometer utilizes X-rays that are 

generated at the end of an acceleration process of electron beams to be focused onto a 

pure metal material. A diffractometer assembly controls the positioning of the generated 

beam in coordination with the position of the specimen and the X-ray detector  [76].   

The requirement for a neat diffraction pattern is to employ the radiation with a wavelength 

analogous to the interatomic spacing in the lattice. X-rays with λ close to 1 nm are suitable 

to be adsorbed by engineering materials and chiefly functions to analyze crystalline 

structure of fine powders or small crystals [76].  

             

Figure 2-1. The diagram showing the working principle of an XRD  [77] and (b) the 

XRD set up at Sabanci University. 
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Figure 2-2. Schematic of Bragg diffraction [77] 

The relationship between the angular distribution of the peak intensities in the diffraction 

spectrum from a regular lattice is explained by Braggs equation (Equation 2-1) [76]. The 

path difference created between the incident beam and the diffracted beams from two 

adjacent planes can be calculated with this equation where n is an integer, λ is the 

wavelength of X-ray radiation, d is the interlayer spacing of the crystal lattice planes and 

θ is the angle of the incident beam makes with lattice planes (Figure 2-2).  

                                                       "=	 = 2>?@"A                             Equation 2-1 

XRD measurements of Pt impregnation onto the carbon supports were performed with 

Bruker D-8 Advance X-Ray Diffractometer. The wavelength of irradiation of Cu Kα was 

0.154 nm. The scan rate was 2.4° per min with the operating voltage of 40 kV and current 

of 40 mA. XRD measurements were carried out at 2θ angles from 5° to 90°.   

The calculation of particle size with respect to XRD spectra is an important method 

invented by Debye and Scherer in 1916. The formulation is represented in Equation 2-2. 

              B = CD
E�6FG                  Equation 2-2  

λ is the wavelength of the incident beam. β is the line broadening at half-maximum in 

radians and θ is the diffraction angle. K is the dimensionless shape factor which can be 

range in between 0.9 and 1 [78, 79]. 
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2.3.1.2. Raman Spectroscopy 

Raman spectroscopy is a vibrational spectroscopy method based on optical excitation in 

which the wavelength of absorbed light is different from the wavelength of emitted light 

[80]. This differentiation in wavelength is called as inelastic phonon scattering [81]. 

Vibrational transitions inside the nuclei of a molecule are inspected in Raman spectra in 

UV-vis region (400-800 nm). The sample is exposed to intense laser beams and scattered 

light which contains Rayleigh scattering and Raman scattering  is generated perpendicular 

to the incident beam [82]. The information out of scattering and energy of vibrational 

transitions for different molecules inside the sample is significant in identification of 

sample (Figure 2-3).  

Raman spectroscopy of nanoparticles was measured with Renishaw inVia Raman 

Spectrometer with a laser with an excitation line at 532 nm, a spectral range of 100 to 

3200 cm−1. 

 

Figure 2-3. Schematic of Raman scattering and possible vibrations of a diatomic 

molecule [82] 

2.3.1.3. Fourier Transform Infrared Spectroscopy (FT-IR) 

Infrared (IR) spectroscopy is an effective and fast technique to extract structural 

information from sample in solution, liquid, solid or gaseous forms. The samples are 

exposed to infrared radiation which covers the part of electromagnetic spectrum between 
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the visible and microwave regions. In theory, the absorption of the radiation frequency 

less than 100 cm-1 by a molecule leads to energy generation of molecular rotation and this 

energy is converted into a form of spectra consisting of discrete lines. The absorption of 

radiation in the range of 100-1000 cm-1 results with molecular vibrations whose energies 

are counted and appeared as bands due to the association of vibrational energy change 

with the number of rotational energy changes [83]. The parameters that affects the 

wavelength of absorption are the relative masses of atoms, the force constants of bonds 

and the geometry of the atoms. The intensities of appeared bands in spectra is formulated 

as Equation 2-3 in terms of absorbance and transmittance.  

H = !IJ��(1  ( )                           Equation 2-3 

Only the vibrations that result in a change in the dipole moment of a molecule are present 

in IR spectra. Functional groups with a strong dipole moment generate strong peaks in 

spectra.  

 

Figure 2-4. Schematic of FTIR spectrometer [84] 

FTIR utilizes a radiation to be passed through the sample, containing all IR wavelengths, 

which is split into two beams. One beam is directed to a mirror with a fixed length and 

the other beam is sent to a movable mirror to vary the length. The two path lengths differ 

from each other and give rise to a number of constructive and destructive interferences. 

At the end an interferogram is obtained with a variety of intensities. Fourier Transform 

(FT) converts this interferogram from time domain into one spectral point on the form of 

frequency domain [83].   
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Fourier transform infrared spectroscopy (FT-IR) analyses were performed via Nicolet 

iS10 model spectrometer with Germanium (Ge) crystal. Samples were used in their 

powder form and used without further preparation.  

2.3.1.4. Transmission Electron Microscopy (TEM) 

TEM is a very effective technique that provides high resolution for primarily 

morphological studies by enlarging the imaging range from 0.3 µm to 0.15 nm [85]. It 

gives information on diffraction patterns of layers, defects in crystal structures, 

microstructure and nanoscale image of carefully prepared specimen. 

 

Figure 2-5. Schematic of the path of the electron beam in a TEM [86] 

High energy electrons are generated by an electron gun which is made of tungsten, LaB6. 

Then, generated electrons are focused onto specimen by electromagnetic condenser lens 

system. The resolution of the image is strongly affected by the electromagnetic lens that 

focuses elastically scattered electrons transmitted through specimen. Finally, image is 
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formed on a fluorescence screen. The measurements are conducted vacuum environment 

in order to avoid specimen contamination.  

The morphologies of Pt nanoparticles supported with graphene and CB were 

characterized by using high resolution-transmission electron microscopy, JEOL 2100 

JEM HRTEM. 

2.3.1.5. Scanning Electron Microscopy (SEM) 

Topographical images and elemental analysis of conductive specimens can be obtain 

effectively by using SEM.  Non-conductive specimens can also be analyzed after coated 

with a conductive material. A beam of electrons are used in SEM to scan the surface of 

the specimen. Electrons are generated by applying a current to an electron gun which is 

mostly made of tungsten. As the current applied on electron gun, it is heated up and 

electrons are emitted. When the generated beam interacts with specimen, various signals 

which contains secondary electrons, back scattered electrons, X-rays, heat and light. 

Secondary electrons have relatively low energy and low penetration depth and they are 

detected by a radiation detector close to the surface of the specimen. Back-scattered 

electrons which have higher energy would be detected with another detector and provide 

information about the differences in atomic numbers inside the sample. At the end of 

signal detections and amplification, images with high magnification (10000x) and high 

resolution (up to 40 Å) [3].  

2.3.1.6. Brunauer–Emmett–Teller (BET) Surface Area Analysis 

The surface area of powders and porous structures is strongly related with measurements 

of physical adsorption of gas molecules on solid surfaces [87]. Brunauer–Emmett–Teller 

(BET) method has been widely used in determination of surface area of adsorbents, 

catalysts and plenty of porous materials. The specific surface area of a sample is 

formulated as in Equation 2-4 and used in the analysis of by physisorption isotherm data 

taken from multiple point measurements.  
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K K/(

LM�
K K/( N = �
LOP + P
�

LOP MQ Q�( N           Equation 2-4 

The parameters of the Equation 2-4 are explained below: 

P = partial vapor pressure of adsorbate gas in equilibrium with the surface at 77.4 K 

P0 = saturated pressure of adsorbate gas 

V = volume of gas adsorbed at standard temperature and pressure (STP) [273.15 K and 

atmospheric pressure (1.013 × 105 Pa)] 

Vm = volume of gas adsorbed at STP to produce an monolayer on the sample surface 

C = dimensionless constant  

The slope of t BET plot 
K K/(

LM�
K K/( N with respect to MQ Q�( N enables the calculation of Vm. 

The specific surface area of the sample is calculated by inserting the Vm into Equation 2-

5 where N is the Avogadro constant and σ is the monolayer molecular cross-sectional 

area specific to the adsorbate. 

                                         RS	T@U@T	?VWUXT		XW	XYZ[ = LO
\]      Equation 2-5 

The BET surface areas of the resultant samples were measured by Quantachrome NOVA 

2200e series surface analyzer. The determination was based on the measurements of the 

adsorption and desorption isotherms of nitrogen at 77 K. The total surface areas were 

evaluated with the BET method in the P/P0 range of 0.05–0.35. Also for all total pore 

volume calculations, highest P/P0 value was selected and pore volume calculated. All 

samples were degassed before analysis for 24 h at 150 °C. 

2.3.1.7. X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy provides great information about surface structure and 

surface chemistry of materials. The indication of surface properties are determined by 

measuring the energy difference between the incident photons in a monochromatic X-

rays and ejected secondary electrons after they are adsorbed by the atoms on the surface 

[81].  Equation 2-6 demonstrates the formulation for binding energy of photoelectron. 
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                                               �^ = ℎ` − (�F + a)                            Equation 2-6 

Es is the kinetic energy of ejected secondary electrons. The energy of incident photon is 

represented as hν. Eb is the binding energy of electrons that is necessary to raise the 

electron to the Fermi level and ϕ is the work function that is necessary to raise the electron 

from the Fermi level to vacuum level.  

The XPS analysis were completed by Thermo Scientific X-ray Photoelectron 

Spectrometer with monochromatic Al Kα (hv=1486.6 eV) X-ray source. The binding 

energy of a photoelectron is tightly correlated with the chemical state and the same atomic 

species will lead to multiple peaks in the resultant spectrum due to a different coordination 

and binding states of this atomic species.   

2.3.2. Electrochemical Characterization 

2.3.2.1. Cyclic Voltammetry (CV) 

Cyclic voltammetry is an electroanalytic technique which provides both thermodynamic 

and kinetic information about many chemical reactions. CV technique is widely used in 

the area of fuel cell research, chiefly in characterization of catalytic activities of materials 

used in fuel cell and ECSA analysis of GDLs [88].  

 

Figure 2-6. Three electrode cell system used in CV [89] 

An electrochemical cell system (Figure 2-6) that contains a counter or auxiliary electrode, 

a reference and a working electrode, immersed into an electrolyte solution is set up to 
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measure cyclic voltammograms [90]. Reference electrodes (RE) are generally chosen to 

be Ag/AgCl or saturated calomel electrode. Counter electrodes (CE) are made of non-

reactive materials and has high surface area. A platinum gauze, a graphite rod or a 

titanium wire can be used as counter electrodes in a three-electrode cell system. Working 

electrodes (WE) preferably possess a well-defined area and made of some of the 

following materials: Pt, Au, graphite or glassy carbon. Consequent to setting up the three 

electrode cell system, it is connected to a potentiostat/galvanostat. The two potential 

limits are selected and the cell potential is varied back and forth in between this two 

boundaries. A potentiostat works to control the potential difference between RE and WE 

with minimal interference from ohmic (IR) drop. In addition, the current that flows 

through the RE is aimed to be minimized in order to avoid polarization of RE and the 

stable applied potential distribution can be obtained between WE and RE. 

ECSA is a term used to define the numbers of electrochemically active sites per gram of 

catalyst [91]. The total charge exchanged in H+ adsorption/desorption reactions 

(Equation 2-7) are determined from the integration of H+ adsorption/desorption peaks in 

cyclic voltammograms after subtracting the amount of change from electric double layer 

region. 

             Qb − �cF ↔ Qb +	�� + 	
      Equation 2-7 

 �eRH	[	Tg� Khi IU	Qb] = 	
Pklim	[n%,o p

qO&]
���	r	o p

qO&st	m7m�hl6cm	76cuvi	[i	6� wx
qO&]                    Equation 2-8 

The formulation in Equation 2-8 is utilized to calculate ECSA of different electrocatalysts 

by inserting the extracted charge value (QH) from cyclic voltammograms, electrode 

loading is calculated prior to CV measurements and the constant value of 210 y P
�5& 

represents the required amount of charge to oxidize one layer of hydrogen that is 

adsorbed/desorbed on Pt.  

In electrochemical tests, a Ag/ AgCl electrode was used as RE, a platinum wire was 

chosen as CE and WE was a glassy carbon electrode (d: 3 mm) on which dispersions of 

synthesized electrocatalysts were placed. Cyclic voltammograms were measured by 

sweeping a potential region from -0.2 to 1.2 V vs. RE with a sweep rate of 50 mV.s-1. All 

electrochemical tests were conducted in a N2 purged 0.1 M HClO4 solution. The amounts 

of the Pt catalyst in these two electrodes were maintained at 28 µg.cm-2. 
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2.3.3. In-situ Fuel Cell Characterization 

2.3.3.1. Electrode Preparation  

Toray carbon paper (THP-H-030,110 µm) purchased from Fuel Cell Earth LLC in was 

used as gas GDL. The electrodes were prepared by ultrasonic blending 0.1 g of carbon 

catalyst, 0.353 g of Nafion® solution (5 wt% alcohol based from Aldrich) and 2 mL of 

isopropyl alcohol for 1 hour. The catalyst solution was sprayed on the surface of a single-

sided uncatalyzed GDL by using a Paasche® air brush. After the catalyst was sprayed, 

the electrode was dried at 70°C for 30 min. The process was repeated until a total Pt 

loading of 0.25 mg.cm−2 was achieved. 

2.3.3.2. Membrane Electrode Assembly (MEA) Fabrication 

Membrane electrode assembly (MEA) was developed by electrodes and Nafion®-NR211 

membrane using hot press technique. Nafion®-NR211 membrane was preconditioned by 

waiting 1 hour in 3% (v:v) H2O2, de-ionized water, 0.5 M H2SO4 and then de-ionized 

water at 80°C respectively. MEAs with active area of 25 cm2 were fabricated by hot 

pressing the cathode and anode electrodes to a pre-conditioned membrane at 120°C at 

533.8 kPa for 3 minutes. 
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2.3.3.3. Single Cell Testing 

 

Figure 2-7. Schematic of a fuel cell test station [92] 

One of the most direct and powerful method to assess the quality of a catalyst layers is  

single cell testing conducted inside a fuel cell test station (Figure 2-7). A fuel cell test 

station contains sub-systems that control several parameters such as temperature, flow 

rate of the reactant gases, and measures current and voltage values of the fuel cell [92]. 

Fuel cell station measures cell voltage adjusting current density and vice versa. 

Afterwards, voltage values are plotted against current density and polarization curves 

which are very fundamental to evaluate cell performance. The polarization curves are 

subsequently used to calculate power density (cell voltage times current density) [3].  

The fabricated MEA was located in the test cell and a 3 Nm torque was applied on each 

bolt to tighten the bolts. The cell temperature was adjusted 65°C at 100% relative 

humidity. After the preset temperatures were reached, the cell was supplied with 

hydrogen and oxygen at stoichiometric ratios 1.5 and 2 for hydrogen and oxygen 

respectively. The cell operation voltage was set to be 0.5 V until it reached steady state. 

After steady state was obtained, the current-voltage data was collected with varying load 

starting with the open circuit value. 
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3. RESULTS AND DISCUSSION 

3.1. Graphene Oxide Synthesis 

3.1.1. XRD Results 

 

Figure 3-1. XRD spectra, graphite, GO and TRGO 

The differences between XRD spectra of graphite, GO and TRGO can be found in Figure 

3-1. Graphite was the precursor for the oxidation reaction. Two sharp peaks, at 2θ=26.5° 

and at 55°, in graphite XRD spectrum are attributed to C (002)  (d spacing=0.339 nm) and 

C (004) planes respectively. The latter one relates with the hexagonal lattice structure of 

graphite whereas the broadness of first peak implies the degree of graphitization and 

disorder in the structure [93]. After graphite was oxidized and GO was obtained, the peak 

at 2θ=26.5° was broadened and shifted to 2θ=12°  (d spacing=0.72 nm) [94]. The broadening 

of the peak demonstrates a disorder in graphitic structure and that would be associated 

with the generation of oxygen containing functionalities on the surface of graphite layers. 

The generation of functional groups were also responsible for the increase in the interlayer 

spacing of graphite from 0.339 nm to 0.72 nm.  
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3.1.2. Raman Results 

 

Figure 3-2. Raman spectra graphite, GO and TRGO 

The indicative Raman peaks of graphitic structure are observed at ~1590 cm-1  (G band) 

which resembles an E2g mode of graphite involving in-plane stretching bonds and at 

~1350 cm-1  (D band) corresponding to A1g breathing mode of graphite (Figure 3-2) [95]. 

The G peak was shifted up to 1610 cm-1 and broadened, and D peak at 1350 cm-1  was 

also broadened and intensity of it was increased as observed in Raman spectra of GO. 

The change in the peak intensities and width would be correlated with the reduction in 

the thickness of graphitic structure and deformation of ordered hexagonal lattice [41]. 

The intensity ratio of the D and G bands (ID/IG) is typically used to perceive the virtue of 

carbon materials [95]. The ratio of ID/IG increases gradually from natural graphite (0.403) 

to GO (1.234) indicating an increase disorder in graphitic structure with the generation of 

functionalities on the surface of graphite layers.  
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3.1.3. SEM and TEM Results 

 

Figure 3-3.SEM image of a) Graphite flake, b) GO, c) TRGO and TEM image of         

d) TRGO 

The morphologies of graphite flake, GO and TRGO was characterized by SEM and TEM. 

Figure 3-3 (a) shows SEM image of graphite flake which looks very rigid and lack of 

details. After oxidation of graphite, layers which are not visible in SEM image of graphite, 

were separated from each other due to integration of functional groups in between 

graphite sheets and observed in Figure 3-3 (b) SEM image of TRGO taken after thermal 

treatment of GO can be seen in Figure 3-3 (c) The separated layers of graphite were re-

stacked to some extent, however, the presence of layers are obvious compared to graphite 

flakes. TEM image of TRGO in Figure 3-3 (d) revealed that thermal expansion of GO 

results with a crumbled transparent layers of graphite.   
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3.2. Comparison of Methods Used in Preparation of r-GO and GNP 

Supported Pt Catalyst  

3.2.1. BET Results  

Table 3-1. The total surface area values of samples measured by BET analysis 

Sample 

Total Specific 

Surface Area 

(m²/g) 

Total Pore 

Volume 

(cc/g) 

Pore Size 

(Radius) (Å) 

Graphene platelet 759.4 1.321 >551.0 

Pt-GN-Ethylene glycol 680.2 1.114 >605.3 

FGN-citric acid-Pt 458.2 0.873 >572.5 

NaBH4 red-GN/Pt 649.9 1.069 >545.9 

 

Table 3-2. The surface area of samples by BJH analysis 

Sample 
Surface Area 

(m²/g) 

Pore Volume 

(cc/g) 

Pore Size (Å 

(Radius)) 

Graphene platelet 762.8 1.254 >10.99 

Pt-GN-Ethylene glycol 495.6 0.991 >10.09 

FGN-citric acid-Pt 415.3 0.758 >15.78 

NaBH4 red-GN/Pt 339.1 0.877 >17.958 

 

The BET analysis of N2 desorption-absorption isotherms of GNP and GNP supported Pt 

nanoparticles are demonstrated in Table 3-1. The total specific surface area of GNP was 

measured as 759.4 m2.g-1 from multi point BET analysis, and pore volume was recorded 

as 1.321 cc.g-1. The effect of Pt decoration on GNP was aimed to be investigated and for 

that purpose, the surface areas of GNP supported Pt nanoparticles which were prepared 

via different methods were compared. The closest total SSA value to total SSA of GNP 

between all prepared electrocatalysts was obtained from the sample that was reduced with 

ethylene glycol and it was noted as 680.2 m2.g-1. Nanoparticles prepared by NaBH4 

reduction has a relatively low total SSA of 649.9 m2.g-1. FGN/Pt had a total SSA of 458.2 
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m2.g-1 which can be framed as a dramatic deviation from total SSA of GNP. Total pore 

volume of the samples demonstrated a similar behavior with total SSA by decreasing after 

Pt decoration and the amount of decrease between the samples was also comparable with 

the sequence experienced in the case of total SSA. Pore size of the samples were measured 

in between 50 to 60 nm according to multi point BET analysis. These values may be 

attributed to the presence of mesopores (d: 2-50 nm). Additionally, the Barret–Joyner–

Halenda (BJH) desorption analysis revealed that pores whose diameter below 2 nm and 

these were attributed to the presence of micropores in the structure (Table 3-2). A 

descending trend in the fraction of mesopores and ascending trend in micropores were 

observed after Pt decoration on GNP.  

The functionalization of GNP was reported to decrease the total SSA [96, 97] and the 

authors explained that behavior with an increase in the GNP density in the presence of 

other particles. The decrease in the total SSA also may be correlated with the stacking of 

layers of GNP after the reduction process. Stacking of layers prevents the accessibility of 

N2 to each layer and adsorption-desorption values of only the outside layers and edges 

would be measured resulting with a lower SSA. Although Pt decoration of GNP via 

ethylene glycol and NaBH4 methods resulted with very close SSA values, functionalized 

GNP was distinguished from them. Here, the functionalization with citric acid should be 

underlined as ineffective in terms of the protection of SSA during the Pt decoration.  

3.2.2. FTIR Results  

 

Figure 3-4. FTIR Results of Pt/r-GO prepared by various Pt impregnation methods 
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The chemical structures of GO and the GO supported electrocatalysts were examined 

with FTIR and the results were compared as seen in Figure 3-4. FTIR spectra of GO 

contains a broad peak around 3270 cm-1. Additionally, sharp peaks at 1720, 1613, 1160, 

1037 and 876 cm-1 are observed. The broad peak is attributed to O-H stretching of 

carboxylic acid groups. The peak at 1720 cm-1 can be correlate with aromatic stretching 

of carbonyl groups in the chemical structure of GO.  The presence of C=C groups in GO 

layers give rise to the peak at 1613 cm-1. The peaks at 1160 and 1037 cm-1 are most 

probably observed due to in-plane stretching of C-H or stretching of C-O in cyclic ether 

groups that can be seen in the chemical structure of GO (Figure 3-5). The last peak is 

present due to out-of-plane stretching of C-H [98].  

The main difference between GO spectra and other GO supported electrocatalysts is the 

presence of broad peak representing O-H stretching of carboxyl group. Most oxygenated 

functional groups, mainly carboxyl groups, disappeared during reduction process [99].   

 

Figure 3-5. Chemical structure of graphene oxide [99] 

Electrocatalysts prepared by ethylene glycol reduction prevents the all peaks in GO 

spectra except the one at 3270 at cm-1 whereas the broad peak responsible for O-H 

stretching. The spectra of Pt/r-GO by ascorbic acid reduction contains peaks at 1714, 

1567, and 867 cm-1. The peaks at 1160 and 1037 cm-1 in GO spectra are seemed to be 

broadened here and disappeared. In the case of Pt/r-GO by NaBH4 reduction, most visible 

peaks are at 1721 and 867 cm-1. The O-H peak is also slightly visible in that spectra. The 

comparison of reduction methods distinguishes NaBH4 method to be less effective than 

other two methods as the carboxyl groups are not completely disappeared. However, all 

three methods seem quite effective to decrease the number of functional groups on the 

surface of GO. The functional groups on the surface of GO is reported as a positive effect 

to nucleate nanoparticles [16] and after a reduction takes place functional groups are 
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occupied with Pt nanoparticles. The decrease in the number of functional groups would 

also suggest a clear prediction on effective reduction of Pt nanoparticles on GO.  

3.2.3. XRD Results  

 

Figure 3-6. XRD spectra of various Pt impregnation methods on a) GNP, b) GO 

XRD spectra of Pt/GNP and Pt/r-GO can be seen in Figure 3-6 (a) and (b) respectively. 

The peak at 2θ=26.23° is associated with (0 0 2) diffraction peak of graphitic structure 

[100]. This peak was generated via the movement of characteristics peak of GO at 2θ=12° 

at the end of reduction process. Amorphous structure of GO was transformed into a more 

crystalline form and a sp2 carbon network was regenerated [56].  

Successful Pt decoration on GNP and GO was confirmed by analysis of XRD spectra. 

The peaks at 2θ= 39.5, 46.2, 67.1°, and 81.2° are implicated to the (111), (200), (220), 
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and (311) crystalline planes which indicate face-centered-cubic structure of Pt. The 

differentiation of Pt peak intensities may attract attention and would be correlated with 

the effectiveness of reduction method. The sharpest peaks between the samples where 

GNP was used as the catalyst support were observed in Pt/GNP prepared via ethylene 

glycol. Among the electrocatalysts where GO was used as the catalyst support, the highest 

intensity of Pt peaks were observed for ascorbic acid reduction method. However, the 

comparison of peak intensities might be misleading as non-homogenous dispersion of Pt 

nanoparticle on top of carbon supports might result with high intensities independent of   

the preparation methods.  

Table 3-3. Platinum particle size calculation with Debye-Scherer equation 

Sample Name d(nm) 

Pt/GNP by citric acid functionalization 8.7 

Pt/GNP by ethylene glycol reflux 6.3 

Pt/GNP by NaBH4 reduction 6.5 

Pt/GNP by ascorbic acid reduction 4.8 

Pt/r-GO by NaBH4 reduction 8.5 

Pt/r-GO by ascorbic acid reduction 7.4 

Pt/r-GO by ethylene glycol reflux 4.7 
 

Average Pt nanoparticle size was calculated by Debye-Scherer equation (d=0.89 λ/ βcosθ) 

in which Bragg angles, θ, obtained from Pt (111) peak were inserted [101, 102]. The 

calculated values are presented in Table 3-3. The smallest particles with a diameter of 4.8 

nm were obtained by ascorbic acid reduction of Pt/GNP. In the case of Pt/r-GO, ethylene 

glycol was found to be effective to reduce particle size down to 4.7 nm.  
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3.2.4. Raman Results  

 

Figure 3-7. Raman Spectroscopy results of Pt impregnation on a) GNPs, b) GO 

Raman spectroscopy results of Pt deposition on GNP supports and GO supports are 

demonstrated in Figure 3-7 (a) and (b) respectively. The characteristic peaks of graphitic 

structures are the G peak around 1340 cm-1 which is generated due to sp2 hybridized 

carbon atoms and D peak around 1590 cm-1 which is generated due to sp3 hybridized 

carbon atoms of disordered graphene [60]. The intensities of G and D peaks and the 

comparison of them provide a significant information about structural organization of 

atoms. Ferrari et al. documented that in amorphous carbon structures, broadening of D 

peak might be associated with distortion of aromatic ring in other words a decrease in the 

number of sp2 hybridized domains [95]. The ratio of D peak intensity to G peak intensity 

is mostly used as a parameter to define the disorder amount in carbon materials.  
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Table 3-4. Calculated ID/IG ratios for various methods 

Sample ID/IG ratio 

Pt/GNP by citric acid functionalization 0.88 

Pt/GNP by NaBH4 reduction 0.87 

Pt/r-GO by NaBH4 reduction 0.94 

Pt/GNP by ascorbic acid reduction 0.99 

Pt/r-GO by ascorbic acid reduction 1.02 

Pt /GNP by ethylene glycol reflux 0.92 

Pt/r-GO by ethylene glycol reflux 1.05 
 

ID/IG ratio were calculated with respect to Raman spectra and showed in Table 3-4. The 

samples were compared according to reduction methods while keeping the catalyst 

support the same. As long as the catalyst supports are the same, Pt decoration of these 

supports would create defects and the ID/IG ratio would differentiate in each sample 

related with the introduction of Pt nanoparticles into the structure of support material. The 

D peak intensity increases with the interaction of graphene lattice with metal 

nanoparticles resulting with defects in the structure [103, 104] . The unloaded catalyst 

supports GO and GNP owns ID/IG ratio of 0.89 and 0.80 (± 0.01) respectively. The Pt 

decoration in both of the groups resulted with an increase in ID/IG ratio supporting the 

defect generation. In either case, the reduction methods were concluded to be more 

effective if the Pt decoration leads to a higher defect in graphene structure. In between 

the samples where GO was used as catalyst support, the highest ID/IG ratio was observed 

in Pt/r-GO by ethylene glycol reflux and Pt/GNP by ascorbic acid reduction had highest 

ID/IG ratio in between  the samples where GNP was used as catalyst support. The type of 

catalyst support is a parameter in choosing the most effective method in Pt reduction. 
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3.2.5. TEM Results  

 

Figure 3-8. TEM images of Pt/GNP nanoparticles by a) ethylene glycol reflux and b) 

sodium borohydride reduction c) citric acid functionalization d) ascorbic acid reduction 

The homogeneity of Pt dispersion on carbon supports and particle size of Pt were aimed 

to be figured out with TEM analysis. TEM images of Pt/GNP nanoparticle which were 

prepare via different reduction methods can be seen in Figure 3-8. The dispersion of Pt 

on GNP was achieved successfully by ethylene glycol reflux and ascorbic acid reduction 

in Figure 3-8 (a) and (d) whereas TEM images of NaBH4 reduced Pt/GNP and citric acid 

functionalized Pt/GNP demonstrated agglomeration of Pt nanoparticles. Agglomeration 

of nanoparticles results with a larger diameter. Calculated particle size values from 

Debye-Scherer equation for NaBH4 reduced Pt/GNP and citric acid functionalized 

Pt/GNP were 6.5 and 8.7 nm which seems quite compatible with TEM results. 
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Figure 3-9. TEM images of Pt/r-GO nanoparticles by a) ethylene glycol reflux              

b) ascorbic acid reduction c) sodium borohydride reduction and d) Pt/ Vulcan by 

ethylene glycol reflux 

Reduction methods has an influence on the dispersion of Pt nanoparticles on GNP and 

GO supports. Figure 3-9 shows TEM images of Pt/r-GO prepared by various methods. 

Ethylene glycol reflux seems to be very promising as having an extremely homogenous 

distribution of Pt nanoparticles on graphene sheets. Ascorbic acid and NaBH4 reduction 

methods were unable to disperse Pt nanoparticles and ended up with Pt agglomerations 

having large diameters as large as 40 nm. Figure 3-9 (a) is TEM image of Pt nanoparticles 

supported with commercial Vulcan prepared by ethylene glycol reflux. Comparison of 

Figure 3-9 (a) and (d) provides the evidence GO might be a better candidate than Vulcan 

as having a larger area for Pt nanoparticles to be distributed homogenously.  
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3.3. Comparison of Pt Precursors  

In section 3.2, comparison of Pt reduction methods on GNP and GO provides a very large 

insight about efficient preparation of electrocatalysts and some of the methods have 

distinguished from other methods. According to XRD results ascorbic acid and ethylene 

glycol reflux methods were found very effective in Pt impregnation. Additionally, TEM 

results showed that homogenous distribution of Pt nanoparticles with smaller sizes were 

obtained by ethylene glycol reflux for both GNP and GO containing samples.   BET, 

FTIR and Raman results were also supported that ethylene glycol reflux was effective in 

Pt impregnation on GNP and GO supports. The research was directed to the comparison 

of Pt precursors on GO, TRGO and Vulcan supports by employing the reduction method 

which was found effective in reduction.  

3.3.1. XRD Results  

 

Figure 3-10. XRD spectra of samples prepared by different Pt precursors 

In Figure 3-10, XRD spectra of Pt/r-GO, Pt/TRGO and Pt/Vulcan samples which were 

prepared by using two different Pt precursors which are H2PtCl6 and K2PtCl4 is 

demonstrated. Among the Pt peaks, the one around 2θ=39.5° that represents (111) crystal 

plane was pointed out to be highly conspicuous and present in all of the samples indicating 

that Pt was successfully reduced to its metallic form. Other peaks at 2θ= 46.7°, 68°, and 

82° which are attributed to the (111), (200), (220), and (311) fcc planes were additionally 
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distinctive for Pt/TRGO with K2PtCl4, Pt/TRGO with H2PtCl6 and Pt/Vulcan with 

H2PtCl6  whereas Pt/r-GO samples slightly showed these peaks in their XRD spectra.  The 

specific C (002) peak is present in all the samples, however, the broadness of the peak 

differentiates. In the samples where GO was used as catalyst support, the C (002) peak 

was generated after C (001) peak elimination due to reduction, however, the partial 

reduction of oxygen containing functional groups might result with a wider peak covering 

a range of different oxidation states. On the other hand, TRGO has a sharper C (002) peak 

which points out highly ordered graphitic structure with less amount of sp3 domains.  

3.3.2. Raman Results 

 

Figure 3-11. Raman Spectra samples prepared by different Pt precursors 

The Raman spectra of Pt/r-GO and Pt/TRGO prepared utilizing K2PtCl4 and H2PtCl6 is 

shown in Figure 3-11. The characteristic peak of graphitic structure, G, and the peak 

representing the defect amount in the structure, D, is observed at 1590 cm-1 and 1340 cm-

1 respectively. The calculated ID/IG were compared in Table 3-5 and highest ratio was 

discovered to be 1.07 for Pt/r-GO with H2PtCl6 suggesting that highest Pt decoration was 

achieved while disturbing the graphene lattice.  
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Table 3-5. Calculated ID/IG ratios for different Pt precursors 

Sample ID/IG ratio 

r-GO by ethylene glycol reflux 0.86 

Pt/r-GO with H2PtCl6 1.07 

Pt/TRGO with H2PtCl6 1.05 

Pt/r-GO with K2PtCl4 0.98 

Pt/TRGO with K2PtCl4 0.93 
 

3.3.3. TEM Results 

 

Figure 3-12. TEM micrographs of ethylene glycol reduction a) Pt/r-GO with H2PtCl6 

precursor b) Pt/TRGO with H2PtCl6 precursor c) Pt/TRGO with K2PtCl4 d) Pt Vulcan 

with H2PtCl6 



53 
 

The distribution of Pt nanoparticles were analyzed with TEM. Figure 3-12 (a) maintains 

a perfectly distributed Pt nanoparticles on top of thin layer of graphene sheets and average 

particle size of Pt/r-GO with H2PtCl6 proved to be smaller compared to other samples free 

from agglomerated Pt clusters with large diameters. The comparison of Figure 3-12 (b) 

and (c) implies that utilizing H2PtCl6 in Pt deposition on top of TRGO provides a better 

Pt distribution and lower Pt particle size. Figure 3-12 (d) shows Pt decoration pattern on 

Vulcan with H2PtCl6 and Pt agglomeration is one of the outcomes from that TEM image. 

The comparison of this image with other ones would bring the conclusion that Pt 

decoration of graphene supports results with a better distribution than CB supports.  

The differences in the degree of Pt reduction by utilization of H2PtCl6 versus K2PtCl4 

might be related with the reduction mechanism of Pt (IV) and Pt (II). The reduction of 

H2PtCl6 is a two-step process in which Pt (IV) reduces to Pt (II) and then reaches to its 

metallic form. This reduction mechanism is demonstrated in Equation 3-1 and 3-2. 

                                       Qbe!9�
 	+ 	2	
 	→ Qbe!z�
 	+ 	2e!
                        Equation 3-1 

                                             Qbe!z�
 + 2	
 →	Qb� + 4e!
                             Equation 3-2 

The equilibrium of H2PtCl6 reduction is reached after a relatively long time [105].  Pt in 

metallic form starts to deposit on graphene supports as the reduction starts. When the 

reduction methods and Pt precursor amount is the same, the initial deposition of Pt would 

be higher in the case of K2PtCl4, and Pt is susceptible to be agglomerated due to limited 

reduction time. In the case of H2PtCl6, the initial Pt deposited on the surface of graphene 

would be low while Pt (II) ions are still present in the medium and they might be dispersed 

all over the graphene surface likely to find and attach to the unoccupied parts of the 

surface. This reasoning is supported by the TEM images of Pt/GNP and Pt/r-GO with 

H2PtCl6 exhibiting highly distributed Pt nanoparticles with lower particle size.  
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3.4. XPS Results 

 

Figure 3-13. High resolution de-convoluted XPS spectra a) C1s for GO b) C1s for r-GO 

c) C1s for Pt/r-GO d) Pt 4f for Pt/r-GO e) C1s for TRGO f) C1s for Pt/TRGO 

Chemical structure of GO, TRGO, Pt/GO and Pt/TRGO was analyzed with XPS and 

exhibited in Figure 3-13. The C1s XPS peak of GO is de-convoluted into five types of 

peaks such as C=C (sp2), C-C (sp3), C-OH, O-C-O and C=O/O-C=O corresponding to the 

binding energy of around 282, 282.93, 284.07, 285.02, and 286.66 eV, respectively, 

which coincides with oxidized functional groups including hydroxyl (C-OH), epoxy-

ether (C-O-C) and carbonyl-ketone, carboxyl (C=O/O-C=O) that are present in GO [54]. 

Figure 3-13 (b) demonstrates partial reduction of oxygenated surface functional groups 
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on GO and restoration of sp2 domains due to ethylene glycol reduction. Pt/r-GO samples 

contains a dominant peak of C=C/C-C whereas peak intensity of functional groups in the 

range of 283-290 eV dramatically decreases due to the interaction Pt nanoparticles with 

functional groups during Pt impregnation on GO [54, 100]. De-convoluted Pt 4f spectra 

of Pt/r-GO is displayed in Figure 3-13 (d) providing peaks representing three oxidation 

states of Pt. Peaks at 70.9 eV (Pt 4f7/2) and 74.36 eV (Pt 4f5/2) are the characteristic of 

the metallic Pt0. Peaks centered at 71.8 eV (Pt 4f7/2) and 76.8 eV (Pt 4f5/2) are the 

indication of the PtII, and the broad peaks at 77.7 eV is assigned to the PtIV species. 

Comparison of Figure 3-13 (a) and (e) illustrates successful removal of oxygen containing 

surface groups which functions as Pt anchoring sides for impregnation process, and 

additionally points out an increase in the amount of sp3 domain size due to the generated 

defects during removal of surface functional groups [106, 107]. Absence of oxygen 

containing surface groups constitutes a drawback for Pt attachment on the surface. Figure 

3-13 (f) also shows the partial restoration of sp2 domains which were achieved 

simultaneously with Pt impregnation on TRGO.  
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3.5. Electrochemical Test Results 

 

Figure 3-14. Cyclic voltammograms of a) Pt/GNP b) Pt/r-GO c) Comparison of Pt/r-GO 

by ethylene glycol refluxed nanoparticles with commercial Pt/Vulcan and Pt/Vulcan by 

ethylene glycol reflux. 
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Cyclic voltammograms of Pt/GNP, Pt/r-GO, Pt/Vulcan prepared by ethylene glycol reflux 

and commercial Pt/Vulcan is demonstrated in Figure 3-14. The intensities of hydrogen 

adsorption and desorption peaks of polycrystalline Pt that are present in voltammograms 

are firmly informative about electrocatalytic activities of catalyst nanoparticles. The 

peaks at CV of Pt/GNP prepared by ethylene glycol reflux have attracted attention due to 

having highest intensity compared to Pt/GNP prepared by other methods. Ethylene glycol 

method is also produced the Pt/r-GO with highest electroactive material compared to the 

other Pt reduction methods on GO. To fulfill a further comparison among the most 

promising methods according to their electroactivity, Pt/Vulcan prepared by ethylene 

glycol reflux, and Pt/GNP and Pt/r-GO are compared with both commercial Pt/Vulcan 

and Pt/Vulcan prepared by ethylene glycol reflux in Figure 3-14 (c). The Pt/r-GO by 

ethylene glycol reflux has an immense superiority over other samples. Additionally, the 

positive effect of ethylene glycol reflux is pronounced throughout the comparison of 

commercial Pt/Vulcan with the synthesized Pt/Vulcan via ethylene glycol reflux.  

 

Figure 3-15. Cyclic voltammograms of a) Pt/r-GO b) Pt/TRGO, with different Pt 

precursors 
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The impact of using a different Pt precursor (K2PtCl4) for GO and TRGO supports was 

also aimed to be investigated. Cyclic voltammograms of Pt/TRGO and Pt/r-GO samples 

using both K2PtCl4 and H2PtCl6 prepared by ethylene glycol reflux were measured and 

shown in Figure 3-15. Both Pt/r-GO and Pt/TRGO prepared in the presence of H2PtCl6 

showed higher hydrogen adsorption/desorption peaks. 

Area under the peaks of CV is utilized to calculate ECSA of Pt/GNP, Pt/r-GO and 

Pt/Vulcan and calculated values are displayed in Table 3-6. The highest ECSA, 148 m2.g-

1, is calculated for Pt/r-GO by ethylene glycol reflux which is 55% higher than that of 

commercial Pt/Vulcan, and this value is asserted to be compelling for higher 

electroactivity. The Pt/Vulcan by ethylene glycol has an ECSA value 40% higher than 

that of commercial Pt/Vulcan. This results support TEM results showing improved Pt 

dispersion with smaller Pt particle size and catalytic activity for all Pt/GNP, Pt/r-GO and 

Pt/Vulcan has enhanced.  

Table 3-6. Calculated ECSA values of various GNP/Pt and GO/Pt 

Sample ECSA (m2/ g) 

Pt/r-GO by ethylene glycol reflux 148 

Pt/r-GO by NaBH4 reduction 17 

Pt/r-GO by ascorbic acid reduction 34 

Pt/GNP by ethylene glycol reflux 85 

Pt/GNP by NaBH4 reduction 22 

Pt/GNP by ascorbic acid reduction 51 

Pt/Vulcan  (commercial 20% w:w) 95 

Pt/Vulcan  by ethylene glycol reflux 134 

Pt/r-GO by ethylene glycol reflux (K2PtCl4) 60 

Pt/TRGO by ethylene glycol reflux (H2PtCl6) 135 

Pt/TRGO by ethylene glycol reflux (K2PtCl4) 70 
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3.6. In-situ Fuel Cell Testing Results  

 

Figure 3-16. Polarization curves taken at 60°C 

Fuel cell performance tests were conducted at 60°C with both anode and cathode 

containing synthesized Pt/r-GO, Pt/GNP and Pt/Vulcan XC-72 electrode. The 

polarization curves taken out of this measurements are shown in Figure 3-16. The Pt/GNP 

has a high open circuit voltage, however, the maximum current density that Pt/GNP can 

reach is relatively low compared to the other samples. The low amount of Pt nanoparticles 

attached on the surface of the GNP surface which has less Pt anchoring groups, results 

with a lower fuel cell performance. This result is supported with ECSA calculations in 

Table 3-6 out of CV measurements showing low Pt utilization of GNP.  

Pt/r-GO electrodes demonstrates a superior performance over Pt/GNP and Pt/Vulcan 

electrodes at high current densities due to its high electrical conductivity, better dispersion 

of Pt nanoparticles on GO and lower Pt particle size. The performance of Pt/r-GO makes 

GO a very strong candidate to replace Vulcan usage in electrode layers. The calculated 

values of maximum power density of Pt/r-GO and Pt/Vulcan is about 320 mW.cm-2 and 

202 mW.cm-2 respectively. The 40% increase in power density reveals that graphene 

support has much higher catalytic activity than commercial Vulcan XC-72. 
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4. CONCLUSION AND FUTURE WORK 

This study was attributed to the detailed investigation of Pt impregnation methods 

(sodium borohydride, ethylene glycol, and ascorbic acid) on various graphene supports 

(GNP, GO, TRGO).  The quality of synthesized electrocatalysts nanoparticles were 

analyzed by structural, chemical, optical and electrochemical characterization methods. 

In addition, fuel cell performance tests were conducted in order to anticipate practical 

applications of synthesized materials in fuel cell electrode layers.  

According to XRD characterization, Pt impregnation on catalysts supports was successful 

for all reduction methods, however, the intensity of characteristic Pt peaks revealed that 

the degree of impregnation differentiates in each method. XRD spectra of Pt/GNP 

samples prepared by ethylene glycol reflux contains the most intense Pt peaks among the 

samples utilized GNP as catalyst support. The average particle size of Pt nanoparticles 

was calculated with Debye-Scherer equation. Pt/GNP by ethylene glycol was found out 

to have a particle size of 6.3 nm and Pt/GNP by ascorbic acid had a particle size of 4.8 

nm. The results of the particle size was further investigated with TEM micrographs.  TEM 

results showed that ethylene glycol reflux and ascorbic acid reduction produced samples 

with better distribution and lower particle size compared to NaBH4. In the comparison of 

synthesized electrocatalysts in which GO was used as catalyst support, Pt/r-GO by 

ethylene glycol reflux was concluded to have superior properties according to XRD and 

TEM results. The average article size of Pt inside this sample was calculated with Debye- 

Scherer equation and noted as 4.7 nm, and homogenous dispersion of Pt on r-GO surface 

was indicative about positive effect of ethylene glycol method on GO supports.  

The most significant property of graphene supported electrocatalysts that investigated in 

this study was electrocatalytic activity concerning possible fuel cell application. CV tests 

were conducted and ECSA values for each sample were calculated. Pt/r-GO samples 

showed the highest electrocatalytic activity with immense ECSA (148 m2.g-1). ECSA of 

Pt/r-GO by ethylene glycol method was disclosed to be 55% higher than commercial 

Pt/Vulcan. Ethylene glycol method was also very effective when GNP and TRGO was 

used as catalyst support. In consideration of characterization results, the most compelling 

impregnation method was noted as ethylene glycol reflux and GO was functions better as 

a catalyst support for Pt due to having Pt anchoring functional groups on its surface.  
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In the next step of this study, in-situ fuel cell characterizations of samples were completed 

to conclude which method shows a higher fuel cell performance. According to 

polarization curves, maximum power densities of samples were calculated and compared 

with synthesized Pt/Vulcan by ethylene glycol reflux. Pt/r-GO has a maximum power 

density of 320 mW.cm-2 and this value is 40% higher than maximum power density of 

synthesized Pt/Vulcan (202 mW.cm-2). 

The use of a single type of catalyst support (GO) was finalized to demonstrate higher 

catalytic activity and fuel cell performance compared to Pt/C when ethylene glycol reflux 

was conducted for Pt reduction. In literature, the combination of two or more type of 

carbon supports has exhibit a distinct improvement over single type of catalyst supports. 

The proposed Pt impregnation method, ethylene glycol reflux, was concluded to be quite 

effective for graphene based supports. The validity of this impregnation method will be 

examined for hybrid structures in which GO is combined with other carbon supports such 

as CB, CNT, PANI, PPy and carbon nanopowder.  

The most promising hybrid structures in terms of fuel cell performance will be further 

analyzed in order to obtain optimum combination of hybrid structures. Another important 

challenge for fuel cell is the cost of MEA. One of the future work will be dedicated to 

diminishing the Pt amount inside the catalyst layer.  
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