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Abstract— In this paper, we present a robust system of self-
directed autonomous robots evolving in a complex and public
spaces and interacting with people. This system integrates high-
level skills of environment modeling using knowledge-based
modeling and reasoning and scene understanding with robust
image and video analysis, distributed autonomous decision-
making using Markov decision process and Petri-Net planning,
short-term interacting with humans and robust and safe navi-
gation in overcrowding spaces. This system has been deployed
in a variety of public environments such as a shopping mall,
a center of congress and in a lab to assist people and visitors.
The results are very satisfying showing the effectiveness of the
system and going beyond just a simple proof of concepts.

I. INTRODUCTION

Public spaces in large cities are increasingly becom-
ing complex and unwelcoming environments. Public spaces
progressively become more hostile and unpleasant to use
because of the overcrowding and complex information in
signboards. It is in the interest of cities to make their
public spaces easier to use, friendlier to visitors and safer to
increasing elderly population and to citizens with disabilities.
Meanwhile, we observe, in the last decade a tremendous
progress in the development of robots in dynamic, complex
and uncertain environments. The new challenge for the near
future is to deploy a network of robots in public spaces
to accomplish services that can help humans. Inspired by
the aforementioned challenges, COACHES project addresses
fundamental issues related to the design of a robust system
of self-directed autonomous robots with high-level skills of
environment modeling and scene understanding, distributed
autonomous decision-making, short-term interacting with hu-
mans and robust and safe navigation in overcrowding spaces.

COACHES project provides a modular architecture inte-
grated in robots. We deployed COACHES at Caen city in
the ”Rives de l’Orne” shopping mall. It is a cooperative
system based on fixed cameras and mobile robots. The
fixed cameras can do object detection, tracking and events
detection (objects or behavior). The robots combine these
information with the ones perceived via their own sensors,
to provide information through its multi-modal interface,
guide people to their destination, show tramway stations and
transport goods for elderly people, etc.... The COACHES
robots use different modalities (speech and displayed in-
formation) to interact with the mall visitors, shopkeepers
and mall managers. The project has enlisted an important

end-user (Caen la mer) providing the scenarios where the
COACHES robots and systems will be deployed.

II. OVERALL SYSTEM DESCRIPTION

A. General Architecture and functionalities

The general architecture of the embedded software, in each
robot, has the following components (Figure 1): (i) Modelling
and reasoning: Modelling a variety of static/dynamic knowl-
edge about the environment formally in three knowledge
bases (KB): (SEM) static properties of entities in the environ-
ment and their relations, (COM) general static common sense
knowledge about shopping malls (taxonomic knowledge
and defaults), and (TEMP) short-term/long-term temporary
knowledge about entities in the environment obtained from
observations and interactions with humans. Utilizing SEM
and TEMP, COM also involves common sense knowledge to
derive simple goals of assistance, advertisement and security.
These goals are sent to the planner. (ii) Perception: A system
for detecting and tracking people using fixed cameras has
been implemented. Such a system is able to detect particular
events such as entering in a particular area of the shopping
mall and sending an advertising message to the robot. (iii)
Interaction interface: A GUI has been developed allowing
a person to interact with the robot and expressing his
requests in terms of assistance. The GUI has been realized
in order to be fully customizable for different scenarios
and different user profiles, allowing for personalized short-
term interactions as described in [1]. (iv) Markov Decision
Process and Petri-Net Plans planning: a task language based
on Progressive Reasoning Units (PRUs) has been developed
to express all assistance tasks of the robot, an appropriate
MDP-based planning algorithm to computed the policy to
accomplish the task and PNP-based planning to transform a
policy into an execution Petri-Net plan to deal with execution
error. Details on the implementation of this framework are
provided in [2]. For the development of the software robotics
components, we used the Robot Operating System (ROS)
(www.ros.org), which is the standard middleware for robotics
applications. In particular, we used the last stable version
ROS Indigo and the last LTS (Long Term Support) version
of the Linux/Ubuntu Operating System.

We then extend this architecture to multi-robot settings
by developing the following general principles : let robots
A = {A1, A2, . . . , An} receive from different KB modules



a set of goals G = {g1, g2, . . . , gk} where goals concern ad-
vertisement, patrolling, assisting and escorting. We consider
that goals are sorted according to their type assuming that the
type convoys some goal’s priority. In our case, we consider
that security goals have a higher priority than assistance goals
and the advertisement goals have the lowest priority.

Let assume that KB modules communicate their local
generated goals to each other leading to the same set of
goals handled by different decision-making modules of dif-
ferent robots (Figure 1). The general principale consists in
receiving information from external sensor (external cameras
in our case) by communicating these information through
the network (wireless). The KB modules receive the same
information and thus generate the same list of goals. Each
KB sends this list of goals to its decision making module to
generate a policy of accomplishing one or many goals.
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Fig. 1. General architecture of multi-robot decision-making module

B. Communication

KB modules communicate to exchange the informa-
tion concerning the status of execution and also the
level of interruptibility allowing, at the receipt of a
list of goals, to consider only robot that could ac-
complish the goals according to their current status.
The list of messages exchanged between different mod-
ules (KB, DEC and EXEC) and between robots are :
msg new facts #id coming from the local perception to
the local KB; msg new external facts #id coming from
the local KB to the other robots; msg end local goals #id
coming from the local EXEC module to the local
KB; msg end external goals #id coming from the lo-
cal KB to the other robots; msg selected goals #id
coming from the local DEC module to KB local;
msg selected external goals #id coming from the local
KB to the other robots; msg goals values #idrobot com-
ing from the other robots.

The general principal is depicted in Figure 2 where each
robot has a local Knowledge base, a local decision maker
and a local executor interacting each other and exchanging
information with the other robots through a communication
infrastructure. In our current case, we consider a direct
communication between robots assuming that they evolve
in an environment where their ranges of communication

cover all the space as in the mall. Limited communication
ranges issues are let to the future work. However, we use a
procedure allowing robots to move towards a central point
to establish the communication and update their KB.
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Fig. 2. Communication between KB, decision and execution modules

III. IMAGE AND VIDEO ANALYSIS FOR PERCEPTION

In this section, we describe the adopted techniques for
detecting and tracking people from fixed and mobile cameras.
Fixed cameras are mounted in the shopping mall to analyze
the behavior of the people in order for detecting particular
events (e.g. interactions, standing in front of a shop for a
while, etc.). Mobile cameras, mounted on the robot, are used
for detecting and tracking people in the environment during
the navigation of the robot and are useful for approaching
people. A detailed description of both the systems is provided
in the following sections.

A. Fixed Camera System

The fixed cameras are used for detecting specific events,
like entering a specific area of the shopping mall, and sending
the coordinates of the detected event to the robot. The system
is based on the following steps: (i) Background Subtraction,
(ii) Person Detection, (iii) Re-projection on the map, (iv)
Tracking, and (vi) Event Detection (see the general scheme
in Fig. 3).

In order to reduce the person search space in the image, a
background subtraction method has been adopted. In partic-
ular the Fastest Adaptive Foreground EXtraction (FAFEX)
method of Pennisi et al. [3] has been used. The output of
FAFEX is a foreground mask containing the blobs, which are
the possible candidates to be people. Each blob is classified
as person or not a person by using a Support Vector Machine
(SVM) classifier, based on Histograms of Oriented Gradients
(HOG) [4], trained on the INRIA Person dataset 1. Then,
the detections are reprojected onto a map of the shopping
mall by using a Homography technique. To track the people
inside the environment, a tracker, called PTracking [5], has
been used. Then, in order to detect events such as entering
a particular area of the shopping mall, an event detection
module has been developed. By selecting specific areas of
the shopping mall, such a module is able to recognize if a
person entered one of those areas, which could be used as
inputs to the navigation system of the robot.

1http://pascal.inrialpes.fr/data/human/



Fig. 3. Fixed Camera System scheme.

Fig. 4. The 3D Person Detection and Tracking module is based on 3 main
steps: 1) 3D Segmentation, 2) Person Detection, and 3) Tracking.

Fig. 5. The bounding box of the 3D cluster is converted in 2D image
coordinates for extracting the correspondent RGB patch.

B. Robot Perception

The cameras mounted on the robot are used for detecting
and approaching the people inside the shopping mall. To this
end, we developed a framework for 3D person detection and
tracking framework as shown in Fig. 4. The system is based
on three steps: (i) scene segmentation, (ii) person detection,
and (iii) person tracking. The robot is equipped with an
RGB-D camera (i.e. Asus Xtion), which is mounted on the
top of the robot. Thanks to the depth and camera location
information, the system is able to straighten the 3D scene and
to compute the point cloud. Then, the points under 5cm of
height are excluded from the cloud assuming that they belong
to the floor. The same assumption is made for all the points
above 2m of height (we assume that a person is tall less
than 2 meters). The remaining points are grouped by using a
clustering method based on the Euclidean distance [6]. Each
cluster is considered as a candidate to be a person. In order
to verify this, RGB patches are extracted by converting the
3D bounding box of each cluster in a 2D image bounding
box (see Fig. 5).

To recognize if a patch is a person, an approach based on
the Aggregate Feature Channels (ACF) [7] has been adopted.
The ACF method computes the features as the aggregation
of multiple features. In our current implementation we used

Fig. 6. a) Detection: the green bounding boxes represent the detections
and b) the numbered box are the tracks.

Fig. 7. Multi-modal HRI architecture.

the L, U, and V color components, the HOG features and,
the gradient magnitude. All these features are integrated into
the Fastest Pedestrian Detector in the West (FPDW) [8].
Then, to classify a single patch, a boosting tree classifier
has been trained by using the INRIA person dataset. Such
a strategy increases the detector speed maintaining robust
detection performance (see Fig. 6a). Finally, a multiple target
tracker is used for tracking the detected people. The tracker
uses the appearance model of each detection together with
a euclidean distance approach for carrying out the data
association step. The target appearance is represented by
using the combination of the RGB color information and
the Speed Up Robust Features (SURF) [9]. Such features
are reduced by using a sparse dictionary. Then, an on-
line Adaboost classifier, one for each detection, is trained
using such a dictionary. A Kalman filter is used for filtering
out the noise of each detection (see Fig. 6b). A track
is assigned to the current detection if, the confidence of
one classifier is the largest possible and is greater than a
minimum threshold c (experimentally evaluated), and if the
euclidean distance between the related Kalman prediction
and the current detection position is less than a predefined
threshold e (experimentally evaluated).

Thanks to such a system, the robot is able to track the
people inside the environment and to understand if a person
wants to approach it by measuring the relative proximity
distance.

IV. MULTI-MODAL HUMAN-ROBOT INTERACTION

The interactions realized in the COACHES scenario are
characterized by being short in time with many users who
are not expert and who have not been trained about the
capabilities of the robot. In this context, the use of an HRI
system offering multiple modalities of interaction can greatly
increase its usability and improve user experience, since the
users can choose the modality more comfortable to them.



Figure 7 illustrates the overall architecture of our HRI
system. Inputs to the system are a Petri Net Plan (PNP)
describing the robot behavior, a user profile and a multi-
media library.

The PNP is generated by the reasoning and planning
module of the system (as it will be described in next
section V) and contains both robotic actions (e.g., move,
goto) and interaction actions. The execution of this plan is
managed by the PNP Executor module which derives the
execution of each action to the safe navigation component
in the case of robotic actions or to the multi-modal HRI
component in the case of interaction actions.

The execution of interaction routines is managed by the
Interaction Manager (IM). The IM acts as a server that
executes the interaction actions when requested by the PNP
Executor and returns the input of the user in the form of
PNP conditions which are evaluated by the PNP Executor
to enable the corresponding transitions to make evolve the
course of the PNP.

Currently, the IM manages two components: a C# speech
server using the multi-language Microsoft Speech Recogni-
tion and Synthesis engine and, a Python GUI on a touch-
screen. This allows for the use of the following modalities
of interaction: output of information is provided visually in
the form of texts or images displayed on the Python GUI or
by voice using a Text-to-Speech (TTS) component while the
input from the user can be given by using the touch-screen or
via spoken commands interpreted by the Automatic Speech
Recognition (ASR) system.

V. DISTRIBUTED REASONING, DECISION-MAKING AND
EXECUTION

A. Semantic reasoning

Since the relevant knowledge about the environment is
heterogeneous (e.g., static/dynamic, spatial/nonspatial), we
classify the knowledge bases into three parts: Semantic Map
(SEM), Commonsense Knowledge Base (COM), and Tem-
porary Knowledge Base (TEMP). SEM and COM represent
the static knowledge about the environment while TEMP
represents the temporary knowledge and can be updated due
to observations or human-robot interactions.

1) Knowledge Base for Semantic Map: We define a
semantic map (SEM) for an environment which consists
of a set of entities, a set of spatial relations and a set of
non-spatial relations. The entities include access points (e.g.,
doors) of places like stores, restaurants, elevators, escalators,
restrooms, etc. The spatial relations include qualitative spa-
tial relations, like “next-to” and “up-down” directions. The
nonspatial relations include the names of stores, what kind
of objects they sell and wheel-chair accessibility condition.
Overall, these two sorts of relations describe static knowl-
edge about the shopping mall.
Entities of a shopping mall can be represented by a set
of atoms of the form entity(entityID). Qualitative
spatial relations of the entities in the environment can
be represented by a set of atoms, like acc(store1,

store2) (to describe accessibility of store1 from store2)

or dir(store1, store2, next-to) (to describe relative
direction of store1 from store2). Nonspatial relations of
entities can be represented by atoms, like name(store1ID,
abc), sells(abc, shirts), and hasRamp(store1ID).
We represent the names of the stores, which product they
sell and if they have a ramp for stroller or wheelchair
access as nonspatial relations. These nonspatial relations are
necessary for computing a personalized path. For example, if
a customer with stroller asks “Where can I buy shoes?”, the
robot should consider stores which sell shoes and has ramp
for stroller access. After finding the possible goal locations,
the path finder module computes the path. This computation
also requires nonspatial relations, because the path should
not include routes without stroller access.

We can represent the entities and qualitative spatial rela-
tions as a directed graph. The vertices of the graph denote
the entities, whereas the edges denote the accessibility rela-
tions of the entities. We can also label the edges with the
directionality relations.

2) Knowledge Base for Commonsense Knowledge: We
define commonsense knowledge base (COM) in a shopping
mall with two parts. The first part is about taxonomic
relations between entities (e.g., “French restaurant is a restau-
rant”). We represent these relations as an ontology. The
second part is about default knowledge related to shopping
malls (e.g., “Children usually desire toys”). Since these
relations necessitate nonmonotonicity, we represent them as
ASP rules.
Taxonomic knowledge of a shopping mall consists of hi-
erarchies of classes and their relationships. We model the
nonspatial relations of entities, and taxonomic commonsense
knowledge about these entities as a formal Shopping Mall
Ontology. We represent this ontology in OWL (Web Ontol-
ogy Language) [10], [11], and use DL reasoners, such as
PELLET [12], to extract relevant knowledge from the ontol-
ogy using the query language Sparql [13]. Default knowl-
edge about entities in a shopping mall can be represented in
Answer Set Programming (ASP) [14]. For instance, we can
represent the default commonsense knowledge “Normally, a
package belongs to the adult next to it.” by the following
rule:

belongs(X,P) :- object(X,package), nextTo(X,P),
instanceOf(P,adult), not -belongs(X,P).

Similarly, we can represent “Normally, a package is sus-
picious if it does not belong to anyone.” by a rule in ASP.
Then, if the robot sees a package which does not belong to
anyone, it can infer (using the ASP solver CLINGO [15]) that
the package is suspicious with the commonsense knowledge.

3) Knowledge Base for Temporary Knowledge:
We define temporary knowledge base (TEMP) in a
shopping mall as ASP facts, like disabled(c1),
promotionAt(store1), noAccess(elevator), and
interestedToBuy(c1, cosmetic). These knowledge
can be obtained from observations via perception or from
human-robot interactions. The mall manager may tell the
robot that the elevator is broken. The robot can recognize



that the customer asking a question is at a wheelchair.
The shopkeepers may tell the robot that they have some
promotions over the weekend. These temporary knowledge
can be represented as follows:

The robot will use this temporary knowledge, in addition
to the knowledge bases SEM and COM, to infer a list
of possible goals. Whenever a customer asks for a place,
we add that place with goalLoc(X) predicate. Whenever
a customer asks for a product, we add that product with
interestedToBuy(C,X) predicate.

B. Distributed decision-making

Once local KB synchronized, each robot computes the
value of its optimal policy to accomplish a goal and thus
communicates a vector of values to the other robots. Each
robot computes the vector values of the goals and receives
from the others their vector values. From these exchanged
information, each robot maintains a matrix of values of
the couple (robot, goal). This global information gathered
from local information allows each robot to select the best
goal using a distributed market-based auctioning. Indeed,
each robot i maintains a matrix Mh

i per goal priority h.
Robots concern goals of lower priority when goals of higher
priorities are allocated. The matrix is constructed as follows:

1) each robot i computes the optimal value
V ∗,gli to accomplish goal gl. Value vector
(V ∗,g1i , V ∗,g2i , . . . , V ∗,gki ) represents the values of
optimal policies accomplishing goals in the list. This
vector represents the line i of the matrix.

2) Each robot j sends its value vector to each others,
allowing them to complete their matrix

3) Each robot i has thus a matrix :

Mh
i =


V ∗,g11 V ∗,g21 . . . V ∗,gk1

V ∗,g12 V ∗,g22 . . . V ∗,gk2

. . .
V ∗,g1n V ∗,g2n . . . V ∗,gkn


The allocation of goals to the robots is performed by

a distributed decision-theoretic market auction, where each
robot i computes for each goal g a value Vi(g )of following
a policy accomplishing it. The agent α proposing the best
value is elected to accomplish this task.

(α, g∗) = argmaxAi,gkVAi(gk) (1)

It’s possible there exist many robots α able to accomplish
the goal g∗ with the same value and thus the equation has
a lot of solutions. When many robots optimize the accom-
plishment of the goal g∗, we allocate the goal to the robot
with the minimum regret. The Regret of not accomplishing a
goal g∗ is a loss in value when accomplishing the best goal
other than g∗. More formally,

regretj(g) = V π
∗

j (g)−max
g′ 6=g

V π
∗

j (g′)

Let Sg be the set of robots α optimizing the value of
accomplishing the goal g (solutions of Equation 1), the

best robot to which we allocate the goal g is given by the
following equation:

α∗ = min
α∈Sg

regretα(g)

If this equation has many solutions, we can proceed in the
same way with the other goals and so on.

C. Execution monitoring

A crucial feature for deploying robots in public spaces is
their ability of reliably executing their plans in presence of
uncertainty about the world and the user interactions and of
perception noise.

During the COACHES project, we have studied a method
for improving robustness of the plan generated by the deci-
sion making modules. This processing step (called Robusti-
fication) during the plan generation phase aims at improving
the robustness of the plan to situations that are not modelled
in the planning domain.

To this end, we use the Petri Net Plan (PNP) formalism
[16] and the plan execution framework is formed by the
following elements: 1) Plan translation into PNP [17], 2)
Execution Rules (ER) [2], 3) ROS action execution.

Briefly, the policy or the conditional plan generated by the
planner is first transformed into a PNP. This is a straightfor-
ward procedure since Petri Nets can easily represent trees
and DAG. Finally, the actual execution of the robot actions
and interactions is performed by the PNP engine. Each
action name in PNP is mapped into an action that can be
either a robotic action or an interaction action (interpreted
by MODIM, as described in Section IV).

VI. EVALUATION METHODOLOGY AND RESULTS ON
REAL ROBOTS

A. Evaluation methodology

Evaluation of a complex system like the one developed in
the COACHES project requires a specific methodology and
setup. While the evaluation of the components presented in
the previous sections of this paper is described in the relative
papers, here we want to focus on the overall evaluation of
the entire system by the actual users (i.e., customers of the
shopping mall).

For such a user evaluation, we have designed the experi-
mental protocol that is described in this section. The actual
execution of the experiment is planned for July 6-9, 2017
in a public event in the shopping mall Rives de l’Orne in
Caen, where we aim at involving around 100 users2. The
experimental protocol we propose here has been successfully
applied in the different scenario of a teaching assistant robot
[18], where several COACHES components were used to
implement the system.

More specifically, the experimental protocol will be based
on the Godspeed Questionnaire Series (GQS) [19], a com-
mon evaluation method for HRI. GQS will be used to asses
the success of the robot, evaluating the emotional states

2Results of these experiments will thus be ready by mid-July 2017.



of people during the interaction. The questionnaire will be
submitted to users (customers and vendors of the shop-
ping mall) characterized by different features (independent
variables). The measure of the GQS features (dependent
variables) and the consequent statistical analysis will allow
for an important user evaluation of the COACHES robots.A
sketch of the experimental methodology is the following: (1)
Definition of the independent variables (e.g., type of user:
customer/vendor, gender, age, task to be executed, type and
level of interaction with the robot, etc.); (2) Selection of the
users, following a between-user approach, each user will par-
ticipate to a single test; (3) Filling the paper questionnaires
by the users before and after the experience with the robot;
(4) Statistical analysis of all the collected data.

The output of the statistical analysis will be useful to
assess the effectiveness of the COACHES approach in
achieving the considered tasks as well as the user feelings
about the system.

B. Public demonstration

We ran a demonstration of the two robots collaborating to
guide visitors to researchers offices and to various services
in our lab with the same tasks as in the mall. The mission
was made of 3 layers: first, the robots come to predefined
wait-points near entrances, where they offer assistance to
visitors. Second, visitors use the touchscreen (fig.8) to ask
for services like a specific office. Finally, the robot escorts
the visitor (fig. 9.a) to the destination and then returns to
a free wait-point. Each step is planned jointly by the two
robots to avoid conflicts (fig. 9.b).

Fig. 8. Interaction with visitors

(a) (b)
Fig. 9. a) Escorting to office; b) Robots coordination

VII. CONCLUSION AND FUTURE WORKS

We presented a practical and novel models for cooperative
robots for assistance in public areas by sharing tasks and
interacting with people. We developed a framework allowing
a fleet of robots to reason and synchronize their local static
and dynamic KBs by exchanging appropriate information
and to develop an augmented MDP using a value matrix for
a marked-based auctioning to better coordinate the robot ac-
tivities. We also presented a module of perception dedicated

to the people detection and tracking, face detection and 2D
escorting with different algorithms and a multi-modal human
robot interaction. We developed a software allowing a fleet
of robots to assist in a cooperative way a group of peoples
by sharing autonomously tasks and maintain interaction with
people they assist. A video is available on the web site
presenting the overall behavior of the system with two robots
at greyc.coaches.fr.
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