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ABSTRACT

Various neuroimaging studies aim to understand the com-
plex nature of human motor behavior. There exists a vari-
ety of experimental approaches to study neurophysiological
correlates of performance during different motor tasks. As
distinct from studies based on visuomotor learning, we in-
vestigate changes in electroencephalographic (EEG) activity
during an actual physical motor adaptation learning experi-
ment. Based on statistical analysis of EEG signals collected
during a force-field adaptation task performed with the dom-
inant hand, we observe a modulation of pre-movement up-
per alpha (10–12 Hz) and lower beta (13–16 Hz) powers over
the contralateral region. This modulation is observed to be
stronger in lower beta range and, through a regression analy-
sis, is shown to be related with motor adaptation performance
on a subject-specific level.

Index Terms— EEG; motor learning; force-field adapta-
tion; pre-movement; brain-computer interfaces

1. INTRODUCTION

Stroke is a common cause for restricted activities of daily liv-
ing for millions of patients. People severely affected by stroke
are often left in a locked-in state with sustained loss of volun-
tary muscle control. In order to provide valuable insights into
the understanding of stroke and the neural processes in the
brain related to the complex nature of human motor behav-
ior, post-stroke recovery is often studied as a form of motor
learning in several neuroimaging studies [1]. To date, vari-
ous experimental approaches have been proposed to identify
neurophysiological correlates of motor learning.

Several pieces of previous work have studied the concept
of visuomotor learning using simultaneously recorded EEG
data. Independently of the neural activity during motor exe-
cution, EEG correlates of visuomotor task performance dur-
ing pre-movement phases prior to motor execution and how
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this activity changes with visuomotor learning was particu-
larly studied [2–7]. Importantly, visuomotor tasks require
learning of an underlying mapping between the actual mo-
tor task space and the visual feedback environment [8], which
further incorporates separate processing of different mapping
aspects into the learning process [9, 10]. Hence, these studies
generally quantify visual mapping performance together with
motor execution skill, as visuomotor learning performance.
We argue that such neuroimaging studies should dissociate
learning of an underlying visual mapping from the pure mo-
tor learning process. In motor rehabilitation literature, motor
learning, evaluated either in the form of motor adaptation or
skill learning [11], is widely studied in force-field adaptation
tasks [12, 13]. With this object in mind, we investigate how
pre-movement EEG activity changes during pure motor learn-
ing without a separate artificial visual feedback environment,
throughout a force-field adaptation task performed within an
actual physical environment using a robotic setup.

Based on analysis of experimental data from fifteen
healthy subjects, we observe a modulation of upper alpha
(10–12 Hz) and lower beta (13–16 Hz) activity over the
contralateral region during pre-movement phases throughout
motor adaptation learning with the dominant hand. Moreover,
through a statistical analysis of the recorded EEG signals and
experimental data related to motor task performance, we
demonstrate that this modulation is stronger in lower beta
range and is associated with individual motor adaptation per-
formances of subjects. Finally we propose to exploit these
findings to potentially be used as a biomarker in novel stroke
rehabilitation approaches by means of a brain-computer in-
terface (BCI), which involves the idea of supporting motor
recovery as well as inducing neural plasticity [14, 15].

2. METHODS

2.1. Subjects and Experimental Data

Fifteen right handed healthy subjects (10 male, 5 female;
mean age 23.73 ± 3.03) participated in this study. All sub-
jects were naive to the force-field adaptation task. Before
the experiments, all participants gave their informed consent



after the experimental procedure was explained to them in ac-
cordance with guidelines set by the research ethics committee
of Sabancı University.

Throughout the experiments, the robotic setup recorded
data at 500 Hz sampling rate and a 64-channel EEG was
recorded at 512 Hz sampling rate, using active EEG elec-
trodes and a BioSemi ActiveTwo amplifier (Biosemi Inc.,
Amsterdam, The Netherlands). Electrodes were placed ac-
cording to the 10-20 system. All data were re-referenced to
common average reference offline.

2.2. Study Design

Participating subjects performed a force-field adaptation task
under simultaneous EEG recordings with the goal of perform-
ing planar center-out reaching movements under an unknown
force-field, as straightly as possible. During the experi-
ments, subjects sat in front of a horizontally placed board,
while holding an end-effector with their right hands that was
suspended from above onto the board (see Figure 1). The
end-effector was attached to a 3 degrees-of-freedom modified
delta robot with constrained motion on z-axis and was only
capable of two-dimensional movements that were restricted
to fall within a circle with a radius of 200 mm. Idle starting
position of the end-effector corresponded to the center of this
circle. The four target locations placed on the circle at the
northeast, northwest, southeast, and southwest positions were
indicated with holes over the board containing LEDs inside.

Before the experiments, all subjects performed a pre-flight
phase of eight trials (i.e., reaching movements) without any
force-field to get familiar with the task workspace and trial
flow. As part of the force-field adaptation task, each subject
performed 200 trials in total, which were divided into three
blocks of 40, 80, and 80 trials. Within each of these blocks,
there were equal number of trials per target location. After
the task, subjects also performed a washout phase of 20 tri-
als which involved no force-field. Additionally, throughout
the experiment, four blocks of five minute resting-state EEG
recordings were performed; first resting-state recording be-
fore the force-field adaptation task, second recording after the

Fig. 1. Illustration of the task workspace. Four target loca-
tions are placed on the board, each at 200 mm distance.

first block of 40 trials, third recording at the end of the force-
field adaptation task, and fourth resting-state recording after
the washout phase. During these recordings, subjects were
placed approximately 1.5 meters in front of a computer screen
and instructed to relax with eyes open. Same experimental
setup and data were also presented and used in our previous
work for a different analysis [16].

2.3. Force-Field Adaptation Task

During reaching movements within the task workspace, a ve-
locity dependent force-field was applied to the end-effector
by the robotic setup. Specifically, end-effector velocity vec-
tor ~v was multiplied with a constant matrix B, representing
the viscosity of the imposed environment, to compute ~f = B~v
at each time point, where ~f represented the forces that the
robotic setup is programmed to produce on the end-effector
as the subject performed reaching movements. The constant
matrix B was the same as in [17].

Each trial began with a planning phase, where the subjects
were instructed to hold the end-effector at the starting posi-
tion and plan the upcoming movement. The planning phase
lasted 2.5–3.5 seconds, chosen randomly from a uniform dis-
tribution. Within the first second of this phase, the robotic
setup assisted the subjects to center the end-effector position
and directed the end-effector to the pre-calibrated starting po-
sition. During the planning phase, one of the four possible
targets was selected by the system randomly and indicated by
a blinking LED light. Each trial began with a new target lo-
cation. At the end of the planning phase, the LED turned on
steadily, signaling the beginning of the go phase. The time
interval after the first second, until the end of the planning
phase is referred as the pre-movement phase.

In the go phase, subjects were instructed to reach for the
target by moving the end-effector over the board. A trial was
considered complete when the subject moved the end-effector
to within 20 mm of the target or if the subject exceeded a time
limit of 3 seconds. After the go phase, the subjects were in-
structed to move the end-effector back to the starting position.
At the end of the trials, to quantify motor adaptation amount,
a calculated auditory feedback score within a range of 0–100
was provided from a speaker. The score in each trial indi-
cated how straight the movement trajectory was in the cor-
responding trial. The area between the curve defined by the
movement trajectory and a straight line to the target served as
the basis kinematic measure for the score [18]. Aim of the
subjects was to increase the feedback score throughout trials.

2.4. EEG Artifact Correction

In order to identify and attenuate potential artifactual activ-
ity from the EEG as part of pre-processing, we employed
independent component analysis (ICA) [19]. We pooled all
resting-state EEG data from all subjects, by concatenating



high pass filtered data at 3 Hz, and separated this data into
group-wise statistically independent components (ICs) that
represent cortical patterns consistently found across all sub-
jects. This was done by first transforming the data into 64
principal components and then running the SOBI-algorithm,
which computes the ICs [20]. We inspected each IC’s topog-
raphy, spectrum and time-series manually and rejected those
which were not of cortical origin [21]. We then reprojected
the remaining ICs to the scalp.

2.5. Pre-Movement EEG Activity Modulation

Using the artifact-corrected EEG data, each subject’s pre-
movement activity (i.e., EEG signals extracted from the plan-
ning phase of each trial) was transformed into the spectral do-
main. Specifically, we computed spectral powers of data from
each electrode during pre-movement as mean log-bandpowers
in sixteen frequency sub-bands. Log-bandpowers were com-
puted at center frequencies from 9 Hz to 24 Hz, in 3 Hz-wide
bands, using an FFT in conjunction with a Hanning window
of one second length and a step-size of 100 ms.

To observe any frequency sub-band specific modulation in
data from any particular region of the head surface throughout
the experiments, we computed mean log-bandpowers across
all subjects, at each electrode and frequency sub-band during
each trial. For each frequency sub-band, at each electrode,
R2 between mean log-bandpowers at each trial and temporal
order of 200 trials was computed. A higher R2 value denoted
a stronger modulation of activity at that particular electrode.
Then, for each frequency sub-band, R2 values corresponding
to each electrode was displayed as a modulation topography.

2.6. Relation of Modulation with Motor Adaptation

Frequency sub-bands and electrodes that showed modulation
on the topographies were further inspected on whether this
pre-movement modulation is associated with motor adapta-
tion learning on a subject-specific level. For this purpose,
firstly motor adaptation performance was quantified with four

different kinematic measures in every trial of all subjects: (1)
auditory feedback scores, (2) total area between the curve de-
fined by the movement trajectory and a straight line to the
target, (3) maximum deflection from the straight line path to
the target during movement, (4) coefficient of determination
between vertical and horizontal position vectors during reach-
ing movement.

Then, all electrodes and frequency sub-bands that showed
modulation were investigated individually for each subject on
whether any of those activities is correlated with motor adap-
tation across trials. Specifically, the four kinematic measures
computed at each trial served as the independent variables to a
multivariate linear regression model and measured electrode
sub-band powers at each trial served as the dependent vari-
ables, to predict EEG powers for 200 trials. For every sub-
ject, the electrode and frequency sub-band pair that showed
maximum R2 between measured electrode sub-band powers
and the corresponding model’s predicted EEG powers across
200 trials was determined. Significance of this R2 was tested
with a random permutation test. To test the null-hypothesis
of zero correlation, we randomly permuted the assignment of
kinematic measures to EEG powers across trials 10,000 times
and estimated the frequency at which the prediction model
achieved a higher R2 than with the true assignment of EEG
powers to kinematic measures as the p-value.

3. RESULTS

Modulation topographies across frequency sub-bands with
center frequencies from 9 Hz to 24 Hz showed apparent mod-
ulation in upper alpha (10–12 Hz) and lower beta (13–16 Hz)
frequencies over the contralateral region (see Figure 2). This
modulation was stronger and significant in lower beta range;
highest for electrode C1 at sub-band center frequency 15 Hz
(R2 = 0.16, p < 10−3 for a random permutation test). Here,
the correlation coefficient between mean log-bandpowers and
temporal order of trials was positive (ρ = 0.40), indicating an
increase of activity rather than a suppression.
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Fig. 2. Modulation topographies of bandpowers in 3 Hz-wide sub-bands with center frequencies ranging from 9 Hz to 24 Hz.



Table 1. Subject-level most significant results of R2 values between motor adaptation performance and modulation in low beta
sub-bands over the contralateral region.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

Electrode Location CP5 C3 C1 FC1 CP3 CP5 CP1 FC1 CP5 FC5 CP1 C1 CP1 CP1 FC1

Center Frequency (Hz) 15 13 16 14 15 15 14 13 14 15 15 16 13 13 13

R-Squared (R2) 0.05∗ 0.05∗ 0.03 0.04 0.05∗ 0.07† 0.06∗ 0.06∗ 0.05∗ 0.04 0.04 0.06∗ 0.17† 0.03 0.07†

∗ p < 0.05, † p < 0.01

Based on this initial analysis, six electrodes over the con-
tralateral region (C1, C3, C5, CP1, CP3, CP5, FP1, FP3, FP5
sites from the 10-20 electrode placement system [22]) in four
frequency sub-bands in low beta range (with center frequen-
cies from 13 Hz to 16 Hz) were selected for subject-specific
analyses on the relation of EEG activity modulation and mo-
tor adaptation learning. For each subject, the electrode and
frequency sub-band pair with highest R2 values among these
are presented in Table 1 with the corresponding p-values. Ten
out of fifteen subjects showed specific pre-movement low beta
activity over the contralateral region that is significantly cor-
related with trial-wise motor adaptation performance. More-
over, we observe that a whole low beta band (13–16 Hz) mod-
ulation topography of the mean activity over these ten sub-
jects showed stronger modulation than the other five subjects’
mean activity modulation topography (see Figure 3).

4. DISCUSSION

In this study we implemented a force-field adaptation task
with simultaneous EEG recordings to study the changes in
neural activity during motor adaptation learning. The task
was performed within an actual physical environment as dis-
tinct from conventional neuroimaging studies based on visuo-
motor learning tasks. Using an ICA-based artifact removal
procedure and an EEG signal processing pipeline, we ob-
served a modulation of contralateral upper alpha and lower
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Fig. 3. Low beta modulation topographies for mean activity
of the: (a) ten subjects with significant correlation between
modulation and motor performance, (b) other five subjects.

beta powers throughout motor adaptation learning, which was
strongly evident for lower beta range. Moreover using a mul-
tivariate linear regression approach, we present that this mod-
ulation is associated with motor learning on a subject-specific
level. This demonstrates that it might be possible to predict
motor learning performance from EEG data.

We argue that these findings can be used as a biomarker
for current BCI-assisted stroke rehabilitation approaches. In
such protocols, BCIs are often used to decode movement in-
tent from EEG data that is synchronized to a rehabilitation
robot with haptic feedback to provide movement support dur-
ing rehabilitation exercises [23–25]. Similarly during reha-
bilitation exercises a BCI can monitor the EEG of the patient,
and provide movement support whenever an individually spa-
tially and spectrally characterized increase of pre-movement
EEG activity is detected, with the goal of supporting motor
learning. This artificial neurofeedback loop can possibly fur-
ther incorporate adaptive approaches as proposed in [26], or
likewise studied in [27, 28]. However, whether reinforcing
this change in pre-movement activity by such rewards would
indeed support motor recovery of stroke patients remains as
an interesting question inspired by the study presented here.
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M. Grosse-Wentrup, and M. Çetin, “Resting-state EEG
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