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ABSTRACT

Shape Boltzmann machine (a type of Deep Boltzmann machine) is

a powerful tool for shape modelling; however, has some drawbacks

in representation of local shape parts. Disjunctive Normal Shape

Model (DNSM) is a strong shape model that can effectively repre-

sent local parts of objects. In this paper, we propose a new shape

model based on Shape Boltzmann Machine and Disjunctive Normal

Shape Model which we call Disjunctive Normal Shape Boltzmann

Machine (DNSBM). DNSBM learns binary distributions of shapes

by taking both local and global shape constraints into account using

a type of Deep Boltzmann Machine. The samples generated using

DNSBM look realistic. Moreover, DNSBM is capable of generat-

ing novel samples that differ from training examples by exploiting

the local shape representation capability of DNSM. We demonstrate

the performance of DNSBM for shape completion on two different

data sets in which exploitation of local shape parts is important for

capturing the statistical variability of the underlying shape distribu-

tions. Experimental results show that DNSBM is a strong model for

representing shapes that are composed of local parts.

Index Terms— Shape Boltzmann Machine, Disjunctive Normal

Shape Model, Shape Sampling, Gibbs Sampling

1. INTRODUCTION

Shape modelling has a variety of applications in computer vision

and image processing including object detection and image segmen-

tation [1] [2] [3] [4], shape matching [5], inpainting [6], and graph-

ics [7] [8]. In general, using a better shape model in these applica-

tions leads to better performance.

A strong shape model should contain two important properties:

realism and generalization [9]. The first property states that the

model should capture the correct shape distributions, i.e., samples

that are drawn from the distribution should be valid shapes. The sec-

ond constraint ensures that the samples generated from the learned

distribution should also cover unseen but valid shapes. There ex-

ist a variety of approaches for 2D shape modelling in the litera-

ture [10] [11] [12] [13] [14]. Shape Boltzmann machine (SBM) [9]

is a type of Deep Boltzmann machine (DBM) [15] designed for bi-

nary shape modelling. SBM learns binary distributions from a set

of binary training shapes and generates samples from the learned

distribution using block-Gibbs sampling. The advantage of SBM

over other undirected shape models (Restricted Boltzmann Machine

(RBM) [16] and DBM [15]) is its ability to learn shape distribu-

tions when the training set is limited. Local shape representation of
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Fig. 1: Local shape representation and shape sampling using SBM

(first row) and the proposed DNSBM (second row).

SBM enables the model to generate novel samples by exploiting lo-

cal shape parts when generating a new sample. It divides a given

shape into four slightly overlapping equal-sized patches as shown

with different colors in the first row of Fig. 1, where each patch plays

the role of a local shape part. However, these patches do not corre-

spond to a geometrically meaningful local shape parts. Here, a ge-

ometrically meaningful local shape part stands for a single physical

component of the shape, for example, a particular limb (e.g., head,

arm, etc.) of the standing person shown in Fig. 1. In patch-based

local shape representation, a geometrically meaningful local shape

part can appear in multiple patches. For example, the left arm of

the standing person shown in the first row of Fig. 1 is contained par-

tially in both red and yellow local regions in the first training image.

Therefore, samples generated by SBM may contain unrealistic sam-

ples. For example, the sample in the third column of the first row in

Fig. 1 contains two left arms; one is raised up and the other partially

appears just to the left of the body.

Our contribution in this paper is a new shape model called Dis-

junctive Normal Shape Boltzmann Machine (DNSBM) which ex-

ploits the property of SBM for learning complex binary distributions

and the property of DNSM [1] for representing local parts of shapes.

DNSM is an implicit and parametric model that represents a shape

by a union of convex polytopes. In DNSM, each polytope or union

of a subset of the polytopes can represent a physical local part of

an object as shown in the second row of Fig. 1. This property of

DNSM makes it a very powerful model for representing local shape

parts. As we exploit that property, samples generated by our pro-

posed DNSBM are realistic. Also, DNSBM is able to generate novel

samples which are not contained in the training set by exploiting lo-

cal shape parts in block-Gibbs sampling and by using the learned

distribution. We train DNSBM on two different data sets in which

local shape parts are important for capturing the statistical variability

of the whole shape distribution and show its performance by gener-

ating samples from the distribution for shape completion. Experi-

mental results show the effectiveness of DNSBM. Some exemplary

results of DNSBM using two training examples are shown in the

second row of Fig. 1. Here, our approach is able to generate realistic

and novel samples that are not contained in the training set.
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Fig. 2: Undirected models for modelling binary shapes.

2. RELATED WORK

Restricted Boltzmann Machine (RBM) [16] is a model that includes

a number of hidden variables h each connected to all image pixels

(units in the visible layer v) as shown in Fig. 2(a). Note that there

are no direct connections between the units of a layer, which makes

this a bipartite graph. Hence, the energy of a configuration can be

written as follows:

E(v,h) =
∑

i

bivi +
∑

i,j

wijvihj +
∑

j

cjhj (1)

where, i and j range over pixels and hidden variables, respectively.

Then, the model can learn constraints and dependencies between

pixels by learning the parameters wij , bi, and cj . The distribu-

tion over v is given by marginalizing over the hidden variables:

p(v) =
∑

h
exp(−E(v,h))/Z(θ), where θ represents the model

parameters and Z(θ) is the partition function. This marginalization

allows the model to capture dependencies between the image pixels.

RBM has edges between hidden and visible variables. Therefore, all

hidden units are conditionally independent given the visible units.

Similarly, all visible units are conditionally independent given the

hidden units. This property is useful for exact and efficient infer-

ence. Then, the conditional probabilities can be written as p(vi =
1|h) = σ(

∑

j
wijhj + bi) and p(hj = 1|v) = σ(

∑

i
wijvi + cj)

where, σ(◦) = 1/(1 + exp(−◦)) is the sigmoid function. Using

this property, v and h can be sampled consecutively, which can be

exploited during learning the model parameters [17].
RBMs can approximate any binary distribution if an exponential

number of hidden units and a large amount of training data are avail-
able [16]. The DBM is capable of learning more complex structures
in the data using additional hidden units as shown in Fig. 2(b). The
energy of a DBM with two hidden layers can be written as follows:

E(v,h1
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where, i, j, and k range over pixels, the first, and the second hidden

variables, respectively. Exact inference is no longer possible in this

model, however, the conditional distributions p(v|h1), p(h1|v,h2)
and p(h2|h1) can be computed as in RBMs [15]. Then, computa-

tionally efficient approximate inference can be established by block-

Gibbs sampling from the posterior p(h1,h2|v) [9].

RBM and DBM are powerful models, however, they require

a large number of binary images to learn the shape distributions

like the other recent and powerful generative models: Generative

Adversarial Network (GAN) [18] and Variational Autoencoders

(VAE) [19]. In most applications, sizes of the available data sets

are small since obtaining segmented binary images is an expensive

process. SBM [9] is a shape model based on RBM and DBM that

accurately captures the properties of binary shapes. Unlike RBM

and DBM, SBM is capable of learning shape distributions even

when the size of the training set is limited, by exploiting information

from local shape representations. The visible units v of the SBM

are the pixels of an X × Y binary image. SBM divides images

into four equal-sized slightly overlapping patches to represent local

shape parts as shown in Fig. 1. The first hidden layer h1 consists of

four blocks and each block is fully connected to a particular patch.

Finally, all units in h
1 are fully connected to the units in the second

hidden layer h
2. The structure of SBM for 1D images is shown

in Fig. 2(c). The structure can easily be generalized to 2D. SBM

follows the procedure in [15] to learn the model parameters and

generates a new sample using block-Gibbs sampling.

Recently, Erdil et al. [20] proposed a Markov chain Monte Carlo

method for generating samples from shape posterior densities. Since

the method represents local shape parts with patches as in SBM, it

suffers from similar issues when generating a new sample.

3. DISJUNCTIVE NORMAL SHAPE BOLTZMANN

MACHINE

3.1. Binary shape representation using DNSM

DNSM represents a shape by a union of convex polytopes. A poly-

tope can be represented by intersection of half-spaces as shown in

Fig. 3(a). Smooth convex polyopes can be obtained by increasing

number of half-spaces (see Fig. 3(b)).

(a) (b) (c) (d) (e)

Fig. 3: DNSM shape representation.

DNSM approximates the characteristic function of a shape as

a union of convex polytopes which themselves are represented as

intersections of half-spaces. Consider the characteristic function of

a D-dimensional shape f : RD → B where B = {0, 1}. Let Ω+ =
{x ∈ R

D : f(x) = 1} represent the foreground region. Ω+ can be

approximated as a union of N convex polytopes, Ω+ ≈
⋃N

i=1 Pi.

The ith polytope is defined as the intersection Pi =
⋂Mi

j=1 Hij of

Mi half-spaces. The half-spaces are defined as Hij = {x ∈ R
D :

hij(x)} where

hij(x) =

{

1, if
∑D

k=1 δijkxk + cij ≥ 0

0, otherwise

Therefore, Ω+ is approximated by
⋃N

i=1

⋂Mi

j=1 Hij and equiv-

alently f(x) is approximated by the disjunctive normal form
∨N

i=1

∧Mi

j=1 hij(x). Converting the disjunctive normal form to a dif-

ferentiable shape representation requires the following steps: First,

De Morgan’s rules are used to replace the disjunction with nega-

tions and conjunctions, which yields f(x) ≈
∨N

i=1

∧Mi

j=1 hij(x) =

¬
∧N

i=1 ¬
∧Mi

j=1 hij(x). Since conjunctions of binary functions are

equivalent to their product and negation is equivalent to subtrac-

tion from 1, f(x) can also be approximated as 1 −
∏N

i=1(1 −
∏Mi

j=1 hij(x)). The final step for obtaining a differentiable rep-

resentation is to relax the discriminants hij to sigmoid functions

σij = 1/(1 + e−(
∑D

k=1
δijkxk+cij)). The resulting approx-

imation to the shape characteristic functions is then given by

f(x) = 1 −
∏N

i=1

(

1−
∏Mi

j=1 σij

)

, where x = {x, y} for two-

dimensional (2D) shapes and x = {x, y, z} for three-dimensional

(3D) shapes [1].
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Fig. 4: Decomposing a shape into polytopes. (a) A shape with

DNSM representation. (b) Binary images corresponding to each

physical shape part (polytope).

The only free parameters of the model are δijk and cij , which

determine the orientation and location of the sigmoid functions (dis-

criminants) that define the half-spaces. The level set f(x) = 0.5
is taken to represent the interface between the foreground (f(x) ≥
0.5) and background (f(x) < 0.5) regions.

The DNSM discriminant parameters, ∆t, that represent the tth

training sample can be obtained by choosing the weights that mini-
mize the following energy function

E(∆t) =

∫
x∈Ω

(f(x)− qt(x))
2
dx + η

N∑
i

N∑
r 6=i

∫
x∈Ω

gi(x)gr(x)dx (3)

where, gi(x) =
∏Mi

j=1 σij represents the individual polytopes of

f(x). qt(x) is the tth binary training image (1 for object and 0

for background) to be represented by DNSM and η is a constant

that controls the allowed degree of overlap between polytopes. We

find that having slightly overlapping polytopes is important to ensure

shape continuity in the generated samples by DNSBM. We minimize

Equation (3) using gradient descent to obtain ∆
t which represents

the tth training sample. DNSM representation of the binary image in

Fig. 3(c) is given in Fig. 3(d). Note that each polytope may not cor-

respond to a local geometrically meaningful shape part since large

number of convex polytopes are required for representing complex

shapes. One can consider combining polytopes manually to obtain

local shape parts when constructing the training set. We use the

approach proposed in [21] that relaxes the convexity constraint of

DNSM and represents complex shapes by a smaller number of ap-

proximately convex polytopes each corresponding to a geometrically

meaningful local shape part. Fig. 3(e) shows the approximately con-

vex polytopes obtained using the approach in [21].

3.2. From DNSM to DNSBM

Our proposed approach, DNSBM is a type of Deep Boltzmann Ma-

chine having the structure shown in Fig. 2(d). In DNSBM, each

pre-aligned binary training shape in an X×Y image is initially rep-

resented with N polytopes such that each polytope corresponds to a

physically meaningful (local) shape part as explained in Section 3.1.

Then, each shape is decomposed into N binary images where each

binary image represents a single local shape part as shown in Fig. 4.

Each red block in the visible layer v of DNSBM (see Fig. 2(d)) cor-

responds to a binary image that represents a particular local shape

part. Therefore, there are N red blocks each containing X×Y units

in the visible layer of DNSBM as exemplified by the binary images

in Fig. 4(b). The first hidden layer h1 of DNSBM is composed of

N blocks (shown in gray in Fig. 2(d)). The units in each block of v

are fully connected with the units in the corresponding block of h1.

Each unit of h1 is also connected to all units of h2. While the con-

nections between v and h
1 capture the dependencies between pix-

els, the connections between h
1 and h

2 capture the inter-relations

of local shape parts.

Learning of the model involves maximizing log p(v; θ) of the

observed data v with respect to its parameters θ = {b,W1,W2, c1, c2}.

The work in [15] proposes a two-phase learning procedure. In the

pre-training, the model is trained bottom up, one layer at a time,

to find a good initial estimates of the model parameters. Once the

parameters are initialized, parameters of the full model can be fine-

tuned by backpropagation. In DNSBM, each connected red-gray

block pair between v - h1 and each connected gray-blue pair be-

tween h
1 - h2 forms an RBM. Although a more effective learning

of the model parameters using the procedure in [15] is possible, we

found sufficient to train each RBM in DNSBM from bottom-up in a

greedy manner using approximate gradient descent [22]. Once the

parameters of DNSBM are found, we generate samples from the

model using block-Gibbs sampling.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results of DNSBM on two

data sets in which local shape parts play an important role for iden-

tifying shape densities when the training set is limited. We com-

pare the performance of the DNSBM with SBM. The implementa-

tion of DNSBM and the data sets are available at github.com/

eerdil/dnsbm_icassp17.

The first data set is the standing person data set [23]. The data

set contains 50, 170 × 170 binary images of a standing person with

varying arm postures. We construct a training set with 28 images

by using shapes each containing a particular posture of either left or

right arm as shown in Fig. 5. Each of the remaining 22 shapes in the

data set contains arm postures of both left and right arms. Since each

arm posture is contained for both left and right arms separately in the

training set, the remaining 22 shapes can be explored by exploiting

these local shape parts. Note that, exploitation of local shape parts

is not done simply by combining all possible local shapes, it natu-

rally emerges as a result of block-Gibbs sampling. We obtain local

shape (head, left arm, right arm, etc.) representations of the standing

person for each binary training shape using DNSM. When training

DNSBM on this data set, we empirically set sizes of h1 and h
2 to

2000 and 500, respectively. Increasing the size of h
2 may cause

overfitting whereas h
1 should be large enough to capture pixel de-

pendencies.

Fig. 5: Training set of the standing person data set.

Test DNSBM SBM

Likelihood Generated Samples Likelihood Generated Samples

Fig. 6: Samples generated by DNSBM and SBM for completion of

the shapes in the first column. Pixels in the red region are missing.

We design 3 test cases having different missing regions to be

completed in our experiments as shown in the first column of Fig. 6.

Image completion is established by generating samples from both

DNSBM and SBM using the observed part of the shape. Some shape

completion results of each approach are shown in Fig. 6. We also



provide likelihood images in the first column for each approach in

Fig. 6. These images are obtained by summing up all generated

samples and normalizing with the total number of samples [24]. We

further enhance the likelihood images in Fig. 6 for visualization pur-

poses. Note that in the likelihood images, bright pixels indicate high

occurrence of the corresponding pixel in foreground region of the

generated samples. In this data set, all samples of DNSBM appear

realistic, i.e., there is no sample that does not look like a standing

person, whereas SBM generates some unrealistic samples (see the

standing person samples in Fig. 9(b)).

The second data set is the walking silhouette data set [4]. The

walking silhouette data set contains 150 binary images of a walking

person. Similar to the experiments on the standing person data set,

we choose a subset of 24 images (see Fig. 7) for training. We obtain

the local shape parts of walking silhouettes using 6 polytopes with

DNSM. We train the DNSBM on this data set using 1000 units for

h
1 and 50 units for h2 for 78× 52 images.

Fig. 7: Training set of the walking silhouette data set.

We design 5 test cases for shape completion using shapes not

included in the training set and with different missing regions to be

completed as shown in the first column of Fig. 8. We perform shape

completion on these test images by generating samples from both

DNSBM and SBM. Some completion results of each method to-

gether with the likelihood images for the corresponding input shape

are shown in Fig. 8. The walking silhouette data set is a more chal-

lenging data set than the previous one since it contains more local

shape parts that change their posture. In this data set, DNSBM pro-

duces better results than the SBM in terms of the number of realistic

samples, as well as its generalization capability to generate valid and

diverse shapes, as shown particularly in the 2nd, 3rd, and 5th rows

of Fig. 8. Some unrealistic samples generated by both DNSBM and

SBM on the walking silhouette data set are given in Fig. 9. The

patch-based local shape representation of SBM is not a good rep-

resentation for this data set, since almost each physical shape part,

especially legs of the silhouette, appears in more than one patch.

This leads SBM to generate a large number of unrealistic samples in

this data set.

Table 1: Comparison of DNSBM and SBM using Dice score.

DNSBM SBM

Walking silhouette 0.6526 0.6112

Standing Person 0.5935 0.5825

Quantitative evaluation of sampling-based approaches is not

a trivial task and requires considering different metrics. First, we

compute the similarity between the ground truth and the completion

results using Dice score [25], since it is expected that a sampling-

based approach generates many samples that are similar to the

ground truth. The average Dice score results of all test cases for

both data sets are shown in Table 1. Note that, high values of Dice

score indicate higher similarity with the ground truth. Second, we

expect to obtain realistic samples. We measure this by computing

the probability of sampling the completed region given the observed

data using the imputation score [9]. The average of all imputation

scores in all test cases of both data sets are 0.085 for DNSBM and

0.014 for SBM where higher is better. Finally, a good sampling

Test DNSBM SBM

Likelihood Generated Samples Likelihood Generated Samples

Fig. 8: Samples generated by DNSBM and SBM for completion of

the shapes in the first column. Pixels in the red region are missing.

(a) DNSBM (b) SBM

Fig. 9: Some unrealistic samples generated by DNSBM and SBM.

approach is expected to generate diverse samples. We demonstrate

the diversity of samples by plotting the precision-recall (PR) values

of all samples generated in all test cases in the walking silhouette

data set as shown in Fig. 10. The results demonstrate that the sam-

ples of DNSBM spread in the precision-recall space more than the

samples of SBM. Note that a large number of blue crosses in Fig. 10

correspond to unrealistic samples produced by SBM. Therefore, the

superiority of the DNSBM over SBM in terms of diversity becomes

more evident if we consider Fig. 10 without such samples.
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Fig. 10: PR values of the samples generated using the walking sil-

houette data set.

Since DNSBM uses a representation of each physical local part

individually by a single polytope, it does not suffer from having mul-

tiple pieces for a single local part in the generated samples. However,

in some cases, exploiting different local shape parts in the training

set does not yield a visually appealing sample as shown in Fig. 9.

This problem originates at places where local shape parts are con-

nected to each other. Although we have solved this problem up to

some level by generating overlapping polytopes, we can still en-

counter such samples in some rare cases. Some possible solutions

of this problem might be incorporating information about tie loca-

tions of polytopes to the sampling process. One can also consider

performing a local registration as a post-processing step.

5. CONCLUSION

We have presented a shape model, DNSBM, that is based on the

SBM and the DNSM. DNSBM is able to represent physically mean-

ingful local shape parts individually and exploits this representation

when the training set size is limited. We have shown the performance

of DNSBM on two data sets for shape completion. The proposed

method exhibits better performance than SBM.
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