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Abstract

Synthetic aperture radar (SAR) returns from a scene with motion can be viewed as data from a stationary scene, but
with phase errors due to motion. Based on this perspective, we formulate the problem of SAR imaging of
motion-containing scenes as one of joint imaging and phase error compensation. The proposed method is based on
the minimization of a cost function which involves sparsity-imposing regularization terms on the reflectivity field to be
imaged, considering that it admits a sparse representation as well as on the spatial structure of the motion-related
phase errors, reflecting the assumption that only a small percentage of the entire scene contains moving objects. To
incorporate the spatial structure of the phase errors into the problem, we provide three different sparsity-enforcing
prior terms. In order to achieve computational gains, we also present a two-step version of our approach, which first
determines regions of interest that are likely to contain the moving objects and then applies our sparsity-driven
approach for joint image reconstruction and autofocusing in such a spatially constrained setting. Our preliminary
experiments demonstrate the effectiveness of this new moving target SAR imaging approach.
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1 Introduction

Moving object tracking and imaging is an important prob-
lem in a wide-range of radar systems and applications
including emerging systems such as radars with com-
mercial off-the-shelf (COTS) components or software-
defined radio (SDR)-based radars, which have attracted
interest in recent years. Imaging of moving objects is a
challenging problem for synthetic aperture radar (SAR)
as an imaging radar. Moving objects in the scene cause
phase errors in the SAR data and subsequently defocus-
ing in images reconstructed based on a stationary scene
assumption. The defocusing caused by moving objects
exhibits space-variant characteristics, i.e., the defocus-
ing arises only in the parts of the image containing the
moving objects, whereas the stationary background is not
defocused. This type of defocusing can be removed by
estimating two sets of unknowns, which are the locations
of the moving objects in the scene and the velocities of the
objects or the corresponding phase errors.
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For monostatic spotlight mode SAR which is the modal-
ity of interest in this paper, most of the published pieces
of work aim first to form the smeared imagery of mov-
ing objects and then to focus the smeared parts of the
image [1-4]. These kinds of approaches are based on
post-processing of an image reconstructed convention-
ally, e.g., by the polar-format algorithm [5]. As in many
other imaging problems, sparsity-based approaches have
recently been considered in the context of SAR mov-
ing object imaging as well. In [6—8], compressed sensing
(CS) techniques are used to search for a solution over
an overcomplete dictionary which consists of basis ele-
ments for several velocity-position combinations. The
method proposed in [6] for multistatic radar imaging
of moving objects facilitates linearization of the nonlin-
ear problem of target scattering and motion estimation
and subsequently solves the problem as a larger, uni-
fied regularized inversion problem subject to sparsity
constraints. Focusing on scenarios with low signal-to-
clutter ratio, the approach in [7] first applies a clutter
cancellation procedure and then solves an optimization
problem similar to the one in [6]. In [8], which concen-
trates on targets with micro-motions such as rotation
or vibration, generalized Gaussian and Student’s ¢ prior
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models are used to enforce sparsity. The approach in [9]
deals with the problem using a radon transform and a
CS-based method to achieve motion parameter estima-
tion of moving targets with Doppler spectrum ambiguity
and Doppler centroid frequency ambiguity encountered
in SAR systems with low pulse repetition frequency
(PRF). The sparsity information is used in [10] within a
Bayesian framework to determine velocities in a multi-
target scenario for low PRF wideband radar. In [11],
which also uses a Bayesian approach, not only the tar-
get signature is estimated using a prior distribution on
the target trajectory but also parameters related to nui-
sances such as clutter and antenna miscalibration are
estimated.

We handle the problem in the context of sparsity-driven
imaging as well. Our method is based on simultane-
ous imaging and phase error compensation. Consider-
ing that in SAR imaging, the underlying field usually
exhibits a sparse structure, we previously proposed a
sparsity-driven technique for joint SAR imaging of sta-
tionary scenes and space-invariant focusing by using a
nonquadratic regularization-based framework [12]. That
work was motivated by defocusing due to, e.g., platform
position uncertainties. Here, through a significant exten-
sion of that framework, we propose a method for joint
sparsity-driven imaging and space-variant focusing for
correction of phase errors caused by moving objects.
Preliminary pieces of this work have been presented at
[13, 14]. We formulate an optimization problem over the
reflectivities and potential phase errors due to motion
over the scene and solve it iteratively. In this formula-
tion, we not only exploit the sparsity of the reflectivity
field but we also impose a constraint on the spatial spar-
sity of the phase errors based on the assumption that
motion in the scene will be limited to a small number
of spatial locations. This constraint on phase errors helps
to automatically determine and focus the moving points
in the scene. We also discuss two possible extensions of
this primary approach, through two alternate choices for
the regularization term on the motion field. In the first
extension, we use group-sparsity enforcing regularization
term to impose the sparse structure. The second extension
is based on low-rank sparse decomposition of the phase
error matrix. More importantly, to reduce the computa-
tional complexity of this problem, we propose a second
approach within the same framework to make these ideas
practically applicable on relatively large scenes. In this
second approach, our aim is to improve the computa-
tional efficiency of the phase error estimation procedure
by first determining regions of interest (ROI) for potential
motion using a fast procedure and then performing phase
error estimation only in these regions. Here, note that
both of these two approaches provide advantages such
as increased resolution, reduced sidelobes, and reduced
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speckle in the imaging side thanks to the regularization-
based image formation, which can alleviate challenges
caused by incomplete data or sparse apertures [15] as well.

In Section 2, the observation model used for SAR mov-
ing object imaging is presented. In Section 3, the proposed
method is described in detail for our primary approach, its
extensions based on group sparsity and low-rank sparse
decomposition, and the ROI-based approach. After pro-
viding some additional remarks on the practical imple-
mentation of the proposed approaches in Section 3, we
present our experimental results in Section 5. We con-
clude the paper in Section 6.

2 SARimaging model
The discrete SAR imaging model of interest including all
returned signals is given by [15]:

I Cl
= f (1)
™ Cm
——— ———
r C

Here, rpy, is the vector of observed samples, Cy, is a
discretized approximation to the continuous observation
kernel at the mth aperture position, f is a vector repre-
senting the unknown sampled reflectivity image, and M
is the total number of aperture positions. The vector r
is the SAR phase history data of all points in the scene.
It is also possible to view r as the sum of the SAR data
corresponding to each point in the scene.

r = Cg—1f(1) + C—2£(2) +... + C—1f(J) (2)
S—— S—— N——
P1 p2 P1

Here, Cq_j is the ith column of the model matrix C and
f(i) and p; represent the complex reflectivity at the ith
point of the scene and the corresponding SAR data it pro-
duces, respectively. [ is the total number of points in the
scene.

The cross-range component of the target velocity causes
the image of the target to be defocused in the cross-range
direction, whereas the range component causes shifting
in the cross-range direction and defocusing in both cross-
range and range directions [1, 2]. Now, let us view the ith
point in the scene as a point target having a motion which
results in defocusing along the cross-range direction. In
this paper, we particularly focus on motions which result
in cross-range defocusing. The SAR data of this target can
be expressed as [1, 2]:

Pis, 9il) Pi;
. — . (3)

piMe e]¢l(M) Piy
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Here, ¢; represents the phase error caused by the
motion of the target and p;, and pj,, are the phase
history data for the stationary and moving point target,
respectively, at aperture position m. Similarly, this rela-
tion can be expressed in terms of the model matrix C as
follows:

Ccl—11 (¢) cl—iy

= : (4)
&9 C

ej¢i(1) C

Ca—iy (#)

Here, C._i(¢) is the ith column of the model matrix
C(¢) that takes the movement of the objects into account
and Cj_j,, (¢) is the part of C_i(¢) for the mth aper-
ture position. In the presence of additional observa-
tion noise, the observation model for the overall system
becomes

Cl—iM

g=C@f+v (5)

where v is the observation noise. In this way, we have
turned the moving object imaging problem into the prob-
lem of imaging a stationary scene with phase corrupted
data. Here, the aim is to estimate f and ¢ from the noisy
observation g.

3 Sparsity-driven moving target SAR imaging
Using the observation model we have formulated in the
previous section, we handle the imaging and motion
correction problem as an optimization problem. Our
cost function involves sparsity-imposing side constraints
on both the field and the motion-induced phase errors
besides the data fidelity term. Phase errors are repre-
sented by a vector f of size K x 1 where K = MI.
The vector B includes phase errors corresponding to
all points in the scene, for all aperture positions as
follows:

B = [B183 ... 8%] ©)

Here, B,, is the vector of phase errors for the mth
aperture position and has the following form:

B = [0, ei¢1(M)]T @)

Our proposed cost function which is minimized with
respect to the field f and the phase error vector § is as
follows:

J&B) = ||g — C@E]s + A1 lIflly + 22 118 — 11,
st B =1k (8)
Here, 1 is a K x 1 vector of ones and f(k) denotes

the kth element of B. Since the number of moving points
is usually much smaller than the total number of points
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in the scene, most of the ¢ values in the vector B are
zero. Since the elements of B are in the form of ¢?s, the
elements of the vector B corresponding to the stationary
scene points become 1, whereas the elements correspond-
ing to the moving points take various values depending on
the amount of the phase error. Therefore, this sparsity on
the phase errors is incorporated into the problem by using
the regularization term || — 1||;.

This problem is solved similarly to the optimization
problem in [16]. In the first step of the (1 4 1)st iteration,
the cost function J(f, ) is minimized with respect to the
field f.

fontD argmfin] (f,ﬁ(n)>
— argmin [ - O+ 211y ©)

To avoid problems due to nondifferentiability of the /; —
norm at the origin, a smooth approximation is used [15]:

I

I ~ Y (F@) 2 + o)

i=1

(10)

where o is a small positive constant. In each iteration, the
field estimate is updated as follows:

fotD _ (C (é(n))” C (g,(n))

-1 o
AW (f(w))) c(q3<”>) g (11)

where W (™) is a diagonal matrix:
A . 2 1/2
W (f(”)) = diag {1/ ( f<">(i)] + cr) } (12)

In the second step of each iteration, we use the field esti-
mate f from the first step and estimate the phase errors by
minimizing the following cost function for each aperture
position:

~ 1 ~
pUY arg min JE™D, B st |Bm(d| = 1Vi
N 2
JETD, B) = gm = Co TV |+ B — 1,
(13)
Here, 1 is a I x 1 vector of ones and T is a diago-

nal matrix, with the entries %(i) on its main diagonal, as
follows:

T+ = digg {f(”“)(i)} (14)
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The constrained optimization problem in (13) is
replaced by the following unconstrained problem that
incorporates a penalty term on the magnitudes of 8, (i)s.

R 2
B = axgmin [m — Ca TV, 32 [ 1,

1
+13 ) (|Bm@®| —1)* vm

i=1

(15)
The expression in (15) can be rewritten as follows:
N 2
ﬂinrl) =arg I}glin Hgm - CmT(n—H)lgmH2 + X2 ”ﬂm - 1”1
+23 | Bl = 223 | B, ¥
(16)

This optimization problem is solved by using the same
technique as in the field estimation step. Using the esti-

A (n+1 . .
mate B, ), the following matrix is created:

Bm D — diag { Bf:f“)(i)} (17)
which is used to update the model matrix for the mth
aperture position.

Con (@) = CuBp "™ (18)

After these phase estimation and model matrix update
procedures have been completed for all aperture posi-
tions, the algorithm moves on to the next iteration.

3.1 Extensions

Within the same framework, we present two additional
methods for the phase estimation step. Both of them can
be regarded as extensions of our main method. One of
the methods is based on the idea of using group-sparsity
constraints whereas the other is based on using a low-
rank sparse matrix decomposition for the phase error
matrix.

3.1.1 Group-sparsity based regularization

Let us convert the phase error vector f in the previous
section to a matrix so that the columns of this matrix are
the B,, vectors as follows:

Q=[81 By --- Bu]
Jh1(D) b1 b D)
b2 b (D)
= . .. . (19)
JhD) b2 D)

IxM

Here, Q is the matrix of phase errors and each row
of the matrix Q consists of the phase error values for
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all aperture positions, for a particular point in the scene.
We expect each column of Q to exhibit sparse nature
across the rows, indicating the expectation that there are
small number of moving pixels in the scene. However, no
such sparsity is expected in general across the columns.
This structure motivates imposing sparsity in a group-
wise fashion, where groups in our setting corresponds to
rows of Q.

The method is performed by minimizing the follow-
ing cost function with respect to the field and phase
errors.

J@B) = g — C@)E]2 + 11 lIfily

I /M 1/2
+r ) (Z 1QQ, m) — 1|2)
i=1 \m=1

(20)

Since the number of moving points is much smaller than
the total number of points in the scene, most of the ¢
values in the vector # and subsequently in the matrix Q
are zero. Since the elements of Q are in the form of ¢/%s,
the elements of the rows corresponding to the stationary
scene points become 1, whereas the elements of the rows
corresponding to the moving points take various values
depending on the amount of the phase error. Therefore,
this group sparsity nature on the phase errors is incorpo-
rated into the problem by using the regularization term

S (S0 e m —17)

The field estimation step remains the same as in the
previous section. In the second step of each iteration,
we use the field estimate f from the first step and esti-
mate the phase errors by minimizing the following cost
function:

A (n+1)

B =arg n’lﬂln] (Af(”+1), ﬂ)

2
_ in le — HD®+D H
argmgn Hg Al, (21)

I /M 1/2
+aa ) (Z QU m) — 1|2)
i=1 \m=1

Here, H and D are matrices having the following forms

Ci 0 ...... 0
0 C, O 0
H = (22)
0 0 0 Cm
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where C,,, denotes the submatrix for the part of the model
matrix corresponding to the mth aperture position.

TEHD o L. 0
0o TD o ... 0
DD — (23)
0 0 0 T(’;+1)

Here, T is a diagonal matrix, with the entries f(i) on its
main diagonal, as follows:

TO+D — diag [i“'“)(i)] (24)

The convex optimization problem in (21) can be effi-
ciently solved via second-order cone programming [17].
For the sake of simplicity of the optimization process, in
(20), we have not used an additional constraint to force the
magnitudes of the vector 8 to be 1. Consequently, since in
this step, we want to use only the phase information and
to suppress the effect of the magnitudes, the estimate /.21 is
first normalized and then for every aperture position the
following matrix is created,

~ (n+1) }

B0 = diag { B () (25)

which is used to update the corresponding part of the
model matrix.

Cn(¢"™) = CuBp "™V (26)

3.1.2 Regularization via low-rank sparse decomposition
The phase error matrix Q we have defined in (19) can be
formulated as the sum of a low-rank matrix and a sparse
matrix. Let us explain with an example. If the nth and kth
(n < k) points in the scene have motions and the rest
of the scene is stationary, then Q could be expressed as
the sum of a low-rank matrix L and a sparse matrix S as
follows:

1L 17 r1.. .19 [ 0 ... 0]
D) GibaMD) 00 D) GibadD)

1. 1l=|1..1]+] o .. 0
) M) 0...0 o) (M)

1 ... 1 L1... 1] 0 ... 0
i i L _
Q L s

(27)
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Incorporating this structure of the matrix Q as a con-
straint to the optimization problem, we obtain the follow-
ing cost function:

. , 2
£8) = —CO|% + A IIf
argf'r;i%]( B) arg min, |lg — C@O||; + 21 1Ifll4

2P Ly

+ AL LI, + A5 ISl (28)

s£.Q=L+S§S

Here, B is the vector created by stacking the columns of
the matrix Q. Az and Ag are the regularization parameters.
|IL||, denotes the nuclear norm (trace norm) of the low-
rank matrix L. Using field estimate f from the first step,
we estimate the phase errors by minimizing the following
cost function:

B(HH)’ I:(n+1)’ g(n+1) = arg mir;](f(”ﬂ), 8,L,S)

i

2
_ in le — HD®+D H
arglg{lﬁg Hg B )

+ AL LIl + As (ISl

st.Q=L+S (29)
The augmented Lagrangian form of this cost function
can be expressed as follows:

2
LQLS,A) = [g— HD"B| + 4. ILI. + s Sl

+<A,Q—L—S>+g||Q—L—S||%
(30)

where A is the Lagrange multiplier and y > 0 penalizes
the violation of the constraint. To solve this minimization
problem, we use alternating direction method of multipli-
ers (ADMM) [18]. This problem is solved similarly to the
optimization problem in [19].

Motion compensation using ROI

The approach we have described in the previous section
looks for potential motion everywhere in the scene, e.g.,
it handles each point in the scene separately consider-
ing each point may potentially have a different motion.
However, moving points usually exist together in limited
regions of a scene. Let us consider a scene containing a few
linearly moving vehicles. In this case, all the points belong-
ing to a particular vehicle will have the same motion. In
order to exploit such a structure both for computational
gains and for improved robustness, we present a modi-
fied version of our method. First, we determine the range
lines ! that are likely to contain moving objects. This gen-
erates regions of interest which we use to estimate the
phase errors. Assuming that the moving points in each of
these regions have the same motion, we perform space-
invariant phase error estimation and compensation for
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Table 1 SAR system parameters for the experiments in Fig. 1

Range resolution p, and cross-range resolution pc Tm
Wavelength A, 002 m
Distance between the SAR platform and patch center dy 30000 m
Platform velocity v, 300 m/s
Aperture time T = Ay do/2Vppcr 1s

each region. Now let us describe the overall phase error
estimation step in detail.

Let F be the 2D conventional image (reconstructed by
the polar-format algorithm). Since we assume that the
field to be imaged has a sparse structure (strong scatter-
ers on a background of weak reflectivities), range lines,
having much higher reflectivity values than the others,
are likely to contain strong scatterers (belonging to mov-
ing and/or stationary objects). To find the range lines
with strong scatterers, we first calculate the mean and
standard deviation of reflectivities throughout the con-
ventional image. The range lines in the image domain
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having at least one pixel with a reflectivity greater than the
mean plus one standard deviation are selected as poten-
tial range lines including objects. To decide which of these
range lines include moving objects, we use the idea of [20]
which is based on the mapdrift autofocus technique [21].
First, two images are reconstructed from data correspond-
ing to each of the two half apertures. While stationary
objects lie in the same position in both images, mov-
ing objects will not appear in the same position since
phase errors caused by moving objects will be differ-
ent for each sub-aperture data. Therefore, if we compute
the correlation coefficient for these range lines between
the two sub-aperture images, we obtain small correla-
tion coefficients for range lines including moving objects.
Consequently, range lines having a correlation coeffi-
cient less than a pre-determined threshold are declared
to be range lines with potential moving objects, i.e., the
ROI. We have empirically chosen this threshold to be
0.7. When one is not sure how to choose this thresh-
old, using a large value erring on the side of declaring
more range lines as potentially containing moving objects

0
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10 20 30 40 40

a
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by the proposed method

10 20 30 40
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d

Fig. 1 a Original scene. b Image reconstructed by conventional imaging. ¢ Image reconstructed by sparsity-driven imaging. d Image reconstructed
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Fig. 2 a Original scene. b Image reconstructed by conventional imaging. ¢ Image reconstructed by our proposed ROI-based approach. d Target
centroids on the conventional defocused image. e Target centroids on the image reconstructed by the ROI-based approach. f Final image with
shifted objects
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would be the safe approach with a less reduction in com-
putational cost with respect to the original version of our
approach.

After this simple region determination process, the
framework constructed earlier in this paper can be used.
While the field estimation step remains the same, phase
error estimation is performed region-wise. We assume
that there is a single object in each distinct ROI and adja-
cent range lines correspond to the same object. Accord-
ingly, we apply space-invariant focusing [12] for each
distinct ROL This reduces the number of unknown phase
error terms significantly as compared to our original
approach and leads to improved robustness in cases where
the assumption that there is a single motion in each ROI
is valid. Here, a questionable assumption can be the back-
ground clutter level. Note that the single motion assump-
tion in each ROI applies to all pixels in that region. In
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order for this model to be accurate, the clutter reflec-
tivities in the ROI must be small enough. However, in
many cases, the clutter does not affect the phase error
correction performance.

For a simple description of the ROI-based phase error
estimation procedure, let us first assume that there is only
one moving object in the scene. Let the parts of the model
matrix and the field corresponding to the ROI be C,¢j and
froi and the parts of model matrix and the field corre-
sponding to the outside of this region be Coyt and fout,
respectively. Then, the phase error ¢,,; is estimated by
minimizing the following cost function for every aperture
position:

(n+1) — ei¢r0i(m)c

groim

~(n+1)
) 10im Lyoj

Proi (m)=arg min
roi (771

A 2
t(n+1)H2 Vi

31)

c

Fig. 3 a Original scene. b Conventional defocused image with target centroid. ¢ Image reconstructed by the ROI-based approach. d Final image

with shifted object
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where gyoi is the phase history data corresponding to the
ROI and is given by:

+1) w(n+1)
giﬁi =8 COUtff)’;llt

(32)
The problem in (19) is solved in closed form for every

aperture position [12]. Using the phase error estimate, the

corresponding part of the model matrix is updated.

~(n+1)

A (n+1)
Croiy, (Pro; (M) = &Prot M Coi Vm (33)

If there are multiple moving objects in the scene, then
this procedure is implemented for all regions with a
potentially moving object, sequentially. After the model
matrix has been updated, the algorithm passes to the next
iteration, by incrementing » and returning to the field
estimation step.
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4 Additional remarks

Before presenting experimental results, we find it valu-
able to mention some issues related to the proposed
algorithms. The proposed algorithms are insensitive to
constant and linear phase errors (as a function of the aper-
ture position) like other existing autofocus techniques.
Actually, a constant phase on the data has no effect on
the reconstructed image [22]. However, a linear phase
causes a spatial shift in the reconstructed image with-
out blurring the image. Although the proposed method
can remove all types of phase errors (parametric or ran-
dom) which cause blurring, it cannot handle the shifts
arising due to linearly varying phase terms. Such a phase
error can be compensated by appropriate spatial oper-
ations on the scene [23]. For our ROI-based approach,
we have applied such a spatial operation to move the
focused but shifted objects to their true positions. This
operation is based on determining the weighted centroid
of the binarized reflectivities in each distinct ROI of the

§1 3
50 100 150 200 250 300 350 400 450 500

a

50 100 150 200 250 300 350 400 450 500

Cc

Fig. 4 a Original scene. b Conventional defocused image. ¢ Image reconstructed by sparsity-driven imaging. d Image reconstructed by the

ROI-based method with shifted object
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b
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conventionally reconstructed defocused image. Here, we
have two assumptions. The first assumption is that each
ROI involves only one moving object and the second
assumption is that the motion of the object causes a slowly
varying phase error, e.g., a quadratic phase error, which
causes a smearing-like blurring. Quadratic phase errors
are very common: a constant velocity in the cross-range
direction induces a quadratic phase error function in the
data. Non-constant velocities can also be handled reason-
ably well by this operation if the data collection duration
is relatively small. Note that the object centroid estimation
procedure does not give always the exact true position of
the object but quite a good approximation. In the next
section, we demonstrate examples of the application of
this procedure.

5 Experimental results

We present experimental results on various scenes
consisting of synthetic or real clutter and synthetic
moving or stationary objects. Images reconstructed by
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conventional imaging and sparsity-driven imaging assum-
ing a stationary scene [15] are presented as well. Before
getting to the results, let us first establish the physical
relationship between the phase errors and the velocity of
an object having a constant motion in the cross-range
direction. The SAR system parameters for our experi-
ments are shown in Table 1.

In the first experiment, the scene involves many station-
ary point objects and two moving objects with constant
velocities of 2 and 4m/s in the cross-range direction. For
the two moving objects, the cross-range velocity induced
quadratic phase error is computed as follows [2]:

¢ (ts) = (4mvevpt?) / (hwdo) (34)

Here, £, is the slow-time variable (continuous variable
along the aperture) and v, is the constant cross-range

velocity of the object. According to this relationship, the

1000
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100 200 300 400 500 600 700 800 900 1000
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ROI-based method with shifted target

Fig. 5 a Original scene. b Conventional defocused image. € Image reconstructed by sparsity-driven imaging. d Image reconstructed by the

100 200 300 400 500 600 700 800 900 1000

b

100 200 300 400 500 600 700 800 900 1000

d




Onhon and Cetin EURASIP Journal on Advances in Signal Processing (2017) 2017:10

object with velocity 2m/s and the object with veloc-
ity 4m/s will induce a quadratic phase error defined
over an aperture —7/2 < ; < T/2 with a cen-
ter to edge amplitude of # radians and 2x radians,
respectively. In Fig. 1, the results for this experiment
are displayed. In the results for conventional imaging
and sparsity-driven imaging without any phase error
correction, the defocusing and artifacts in the recon-
structed images caused by the moving objects can be
clearly observed. On the other hand, images recon-
structed by the proposed method are well focused and
exhibit the advantages of sparsity-driven imaging such
as high resolution, reduced speckle, and sidelobes. For
the images of the first experiment, we provide the
corresponding colormap as well. For improved visibil-
ity, the logarithm of the intensities are used. There-
fore, the interval of the colormap is chosen as [ —40,0].
All images in the paper are displayed using the same
colormap.
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In the following four experiments, we employ our ROI-
based approach. For these experiments, we use real clutter
scenes of size 256 x 256, 512 x 512 and 1024 x 1024
from the TerraSAR-X public data set. These scenes are
produced by putting synthetic targets on the patches from
real SAR images. In these experiments, the SAR data are
simulated by taking the 2D discrete Fourier transform
(DFT) of the scene, e.g., we use a 2D DFT matrix as
model matrix. The scene in Fig. 2a involves two small
strong-scattering objects. The phase history data of these
two objects are corrupted by quadratic phase errors of
different center to edge amplitudes. The conventionally
reconstructed image without any motion compensation
is displayed in Fig. 2b. In Fig. 2c, the result obtained by
the proposed approach is displayed. Although the objects
are well focused, they are displaced along the cross-range
direction due to a linear phase term to which our algo-
rithm is insensitive as we have mentioned in the previous
section. To shift the objects to their true positions, we

Cc

low-rank sparse decomposition approach

Fig. 6 a Original scene. b Conventional defocused image. ¢ Image reconstructed by the group sparsity approach. d Image reconstructed by the
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use the target centroid estimations obtained from the
defocused image as seen in Fig. 2d and from the image
reconstructed by the ROI-based approach as seen in
Fig. 2e. The image with shifted objects is demonstrated
in Fig. 2f.

In the next experiment, whose results we present in
Fig. 3, we have applied our ROI-approach to another scene
including one larger rigid-body object. The phase history
data of this object are corrupted by a quadratic phase
error. In Fig. 3c, it is seen that the proposed method can
correct the phase errors effectively and produces a well-
focused image. However, the object is displaced. To shift
the target to its true position, we benefit again from the
target centroid information extracted from the defocused
image. In this case, the centroid information (Fig. 3b) is
not exactly true but it is a good estimate for the true posi-
tion of the object. The final image with the shifted object
is displayed in Fig. 3d.

In Fig. 4, the results of our ROI-based method on a
512 x 512 scene are displayed. The phase history data
of the distributed object in the scene are corrupted by
a quadratic phase error function with a center to edge
amplitude of 357 radians. Figure 4a shows the origi-
nal image. The target is marked with a red rectangle. In
Fig. 4b, c, the conventional image with defocused target
and the image produced by sparsity-driven imaging with-
out any motion compensation are displayed respectively.
As it is seen from the image in Fig. 4c, sparsity-driven
imaging itself cannot handle the motion-induced smear-
ing in the image. Figure 4d demonstrates the result of
our ROI-based method. We observe that with the ROI-
based method, the artifacts caused by the moving object
are completely removed and a focused image of the object
is obtained.

Figure 5 demonstrates the results of the ROI-based
method on a 1024 x 1024 scene including an extended tar-
get. The phase history data of the extended target in the
scene are corrupted by a quadratic phase error function
with a center to edge amplitude of 507 radians. Figure 5a
shows the original image. In Fig. 5b, ¢, the conventional
image with defocused target and the image produced
by sparsity-driven imaging are displayed. As it is seen
from the image in Fig. 5d, the ROI-based method pro-
duces promising results even on larger scenes containing
extended targets.

Finally, in Fig. 6, we present on a toy example of prelim-
inary results for the group sparsity and low-rank sparse
decomposition approaches to provide a basic proof-of-
principle for these extensions. Due to the high com-
putational cost of our current implementation of both
algorithms, we perform the experiment on a small scene
containing 5 point targets. Two of these point targets
are stationary. The phase history data of two of the
other three targets are corrupted with a quadratic phase
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error function of amplitude 7, and the phase history
data of the third one are corrupted with a quadratic
phase error function of amplitude 1.57. The results show
that both approaches are capable of correcting the phase
errors. In this example, the only visual difference between
the images reconstructed by both approaches is that
the target-background ratio of the image obtained by
the group-sparsity approach is better than the target-
background ratio of the image obtained by the low-rank
sparse decomposition approach. This may have resulted
from non-optimal parameter selection.

6 Conclusions

We have presented a sparsity-driven framework for SAR
moving target imaging. In this framework, the sparsity
information about both the field and the phase errors are
incorporated into the problem. To enforce the sparsity
of the phase errors three different regularization terms
are proposed within the same framework. The method
produces high-resolution images thanks to its sparsity-
driven nature and simultaneously removes phase errors
causing defocusing in the cross-range direction. Addition-
ally, we provide an ROI-based variation of the method
as well for a reduced computational cost and an efficient
phase error estimation.
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