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Eigenstates of permutation gates are either stabilizer states
(for gates in the Pauli group) or magic states, thus allowing
universal quantum computation (M. Planat and Rukhsan-Ul-
Haq, Preprint 1701.06443). We show in this paper that a subset
of such magic states, when acting on the generalized Pauli
group, define (asymmetric) informationally complete POVMs.
Such IC-POVMs, investigated in dimensions 2–12, exhibit
simple finite geometries in their projector products and, for
dimensions 4 and 8 and 9, relate to two-qubit, three-qubit and
two-qutrit contextuality.

1. Introduction
Sometimes a field of knowledge gets enriched just by looking
at it on a different perspective. Here we are interested in
informationally complete (IC) measurements on an unknown
density matrix ρ with the perspective of universal quantum
computing. In the former subfield, one knows how to build
group covariant symmetric measurements (SIC-POVMs) that
follow from the action of the generalized Pauli group Pd on
a well-chosen ‘fiducial’ state [1–3]. In the latter subfield, the
group Pd needs to be extended by a well-chosen ‘magic’ state
of the corresponding dimension to allow universal quantum
computation [4,5]. Bravyi & Kitaev [4] introduced the principle
of ‘magic state distillation’: universal quantum computation may
be realized thanks to the stabilizer formalism (Clifford group
unitaries, preparations and measurements) and the ability to
prepare an ancilla in an appropriate single qubit mixed state.
Following [6, §IIC], in this paper, a non-stabilizer pure state will
be called a magic state. When is such a ‘magic’ state ‘fiducial’ for
an IC-POVM? To address this question, we restrict our choice to
eigenstates of permutation gates not living in Pd (the stabilizer
subgroup of unitaries) as in the recent paper [7]. We recover the
Hesse SIC for d = 3 and discover asymmetric IC-POVMs for d > 3.

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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In this paper, we first remind in §1 a few necessary concepts for our purpose: POVM concepts and the
generalized Pauli group. In §2, we apply the methodology to the derivation of IC-POVM’s in dimensions
2–12, then we establish the link to some finite geometries and to two-qubit, three-qubit and two-qutrit
contextuality. Section 3 summarizes the results.

A POVM is a collection of positive semi-definite operators {E1, . . . , Em} that sum to the identity. In the
measurement of a state ρ, the ith outcome is obtained with a probability given by the Born rule p(i) =
tr(ρEi). For a minimal IC-POVM, one needs d2 one-dimensional projectors Πi = |ψi⟩⟨ψi|, with Πi = dEi,
such that the rank of the Gram matrix with elements tr(ΠiΠj), is precisely d2.

A SIC-POVM obeys the remarkable relation [1]

|⟨ψi |ψj⟩|2 = tr(ΠiΠj) =
dδij + 1
d + 1

that allows the recovery of the density matrix as [8]

ρ =
d2∑

i=1

[
(d + 1)p(i) − 1

d

]
Πi.

This type of quantum tomography is often known as quantum-Bayesian, where the p(i)’s represent
agent’s Bayesian degrees of belief, because the measurement depends on the filtering of ρ by the selected
SIC (for an unknown classical signal, this looks similar to the frequency spectrum).

In this paper, we discover new IC-POVMs (i.e. whose rank of the Gram matrix is d2) and with
Hermitian angles |⟨ψi |ψj⟩|i̸=j ∈ A = {a1, . . . , al}, a discrete set of values of small cardinality l. A SIC is
equiangular with |A| = 1 and a1 = 1/

√
d + 1.

The states encountered below are considered to live in a cyclotomic field F = Q[exp(2iπ/n)], with
n = GCD(d, r), the greatest common divisor of d and r, for some r. The Hermitian angle is defined as
|⟨ψi |ψj⟩|i̸=j = ∥(ψi,ψj)∥1/deg, where ∥.∥ means the field norm [9, p. 162] of the pair (ψi,ψj) in F and deg is
the degree of the extension F over the rational field Q. For the IC-POVMs under consideration below, in
dimensions d = 3, 4, 5, 6 and 7, one has to choose n = 3, 12, 20, 6 and 21, respectively, in order to be able
to compute the action of the Pauli group. Calculations are performed with Magma.

1.1. The single qubit SIC-POVM
To

Q2

introduce our methodology, let us start with the qubit magic state

|T⟩ = cos(β)|0⟩ + exp
(

iπ
4

)
sin(β)|1⟩, cos(2β) = 1√

3
,

employed for universal quantum computation [4]. It is defined as the ω3 = exp(2iπ/3)-eigenstate of the
SH matrix (the product of the Hadamard matrix H and the phase gate S = ( 1 0

0 i )].
Taking the action on |T⟩ of the four Pauli gates I, X, Z and Y, the corresponding (pure) projectors

Πi = |ψi⟩⟨ψi|, i = 1 . . . 4, sum to twice the identity matrix thus building a POVM and the pairwise
distinct products satisfy |⟨ψi |ψj⟩|2 = 1/3. The four elements Πi form the well known two-dimensional
SIC-POVM [1, §2].

By contrast, there is no POVM attached to the magic state |H⟩ = cos(π/8)|0⟩ + sin(π/8)|1⟩.

1.2. The generalized Pauli group
Later, we construct IC-POVMs using the covariance with respect to the generalized Pauli group. Let d be
a prime number, the qudit Pauli group is generated by the shift and clock operators as follows:

X|j⟩ = |j + 1 mod d⟩

and Z|j⟩ =ωj|j⟩,

⎫
⎬

⎭ (1.1)

with ω= exp(2iπ/d) a dth root of unity. In dimension d = 2, X and Z are the Pauli spin matrices σx and σz.
A general Pauli (also called Heisenberg–Weyl) operator is of the form

T(m,j) =
{

ijmZmXj if d = 2

ω−jm/2ZmXj if d ̸= 2.
(1.2)

where (j, m) ∈ Zd × Zd. For N particules, one takes the Kronecker product of qudit elements N times.
Stabilizer states are defined as eigenstates of the Pauli group.
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ZX

Magic qutrit POVM’s
(0,1,1) or (0,1,–1)

2QB IC-POVM : Mermin square

XZ YY

IX

I Z
Z2

XZ 2

(XZ2)2 (XZ)2

XZ
X

X2

XI XX

ZI IZ ZZ

(b)(a)

Figure 1. (a) TheHesse configuration resulting from thequtrit POVM. The lines of the configuration correspond to traces of triple products
of the corresponding projectors equal to 1/8 (for the state (0, 1,−1)) and±1/8 (for the state (0, 1, 1)). The configuration is labelled in
terms of the qutrit operators acting on themagic state. Bold lines feature the lines where all operator pairs are commuting. (b) The triple
products of the four dimensional IC-POVMwhose trace equal±1/27 and simultaneously equal plus orminus the identitymatrixI (−I
for the dotted line). This picture identifies to the well-known Mermin square which allows a proof of the Kochen–Specker theorem.

2. Permutation gates, magic states and informationally complete
measurements

In the approach of magic states through permutation groups, dimension 2 is trivial as the symmetric
group S2 only contains the identity I = (1, 2) and the shift gate X = (2, 1) ≡ ( 0 1

1 0 ), that live in the ordinary
Pauli group P2. No magic state may be derived from two-dimensional permutation groups.

The situation changes as soon as d ≥ 3 with a wealth of magic states [7] having a potential usefulness
for our purpose of defining IC-POVMs. From now we focus on magic groups generated by two magic
permutation gates.

2.1. In dimension 3
The symmetric group S3 contains the permutation matrices I, X and X2 of the Pauli group, where X =( 0 1 0

0 0 1
1 0 0

)
≡ (2, 3, 1) and three extra permutations

( 1 0 0
0 0 1
0 1 0

)
≡ (2, 3),

( 0 0 1
0 1 0
1 0 0

)
≡ (1, 3) and

( 0 1 0
1 0 0
0 0 1

)
≡ (1, 2), that do

not lie in the Pauli group but are parts of the so-called Clifford group (the normalizer of the Pauli group
in the unitary group).

Taking the eigensystem of the latter matrices, it is not difficult check that there exists two types of
qutrit magic states of the form (0, 1, ±1) ≡ 1/

√
2(|0⟩ + |1⟩ ± |2⟩). Then, taking the action of the nine qutrit

Pauli matrices, one arrives at the well-known Hesse SIC [10–12].
The Hesse configuration shown in figure 1a is a configuration [94, 123] with 9 points and 12 lines, 4

lines incident on every point and 3 points on a line. It can also be seen as the three-dimensional affine
plane. The reason it occurs in the context of the three-dimensional SIC is as follows. The SIC relations are
tr(ΠiΠj)i̸=j = 1/4 and, if one takes all projectors satisfying the triple product relation tr(ΠiΠjΠk)i̸=j̸=k =
±1/8, the corresponding triples (i, j, k) define the Hesse configuration. For the Hesse SIC built from the
magic state (0, 1, −1), one only needs the plus sign to recover the Hesse geometry, but for the Hesse SIC
built from the magic state (0, 1, 1) both signs are needed (see also [11]).

Observe that the configuration in figure 1a is labelled in terms of qutrit operators acting on the magic
states instead of the projector themselves.

2.2. In dimension 4
In dimension 4 and higher, the strategy is to restrict to permutation groups whose two generators are
magic gates, gates showing one entry of 1 on their main diagonals. From now, we call such a group a
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(a) (b)

1 6 3

42

5

X

X2

X3X4

X

IX2

X3 X4

I

component of a 6-dit IC-POVMcomponent of a 5-dit IC-POVM

Figure 2. (a) A one-point intersection graph for the lines of the 5-dit equiangular IC-POVM defined from the triple products of constant
trace−1/43. (b) A component of the 6-dit IC-POVM with magic state (0, 1,ω6 − 1, 0,−ω6, 0) through the action of Pauli operators
1–6: the lines correspond to 4-tuples products of projectors with constant trace 1/9 and simultaneously of products equal to ±I .
There are two disjoint copies looking like Borromean rings with points as [1 . . . 6]= [I , ZX3, Z2, Z3X3, Z4, Z5X3] and [1 . . . 6]=
[X4, Z, Z2X3, Z3, Z4X3, Z5].

magic group. This only happens for a group isomorphic to the alternating group

A4 ∼=
〈(

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

)

,

(
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

)〉

.

One finds magic states of type (0, 1, 1, 1) and (0, 1, −ω6,ω6 − 1), with ω6 = exp(2iπ/6) [7, §3.3].
Taking the action of the two-qubit Pauli group on the latter type of state, the corresponding pure

projectors sum to four times the identity (to form a POVM) and are independent, with the pairwise
distinct products satisfying the dichotomic relation tr(ΠiΠj)i̸=j = |⟨ψi |ψj⟩|2i̸=j ∈ {1/3, 1/32}. Thus, the 16
projectors Πi build an asymmetric informationally complete measurement not discovered so far.

The organization of triple products of projectors whose trace is ±1/27 and simultaneously equal plus
or minus the identity matrix I is shown in figure 1b. Instead of labelling coordinates as projectors one
may label them with the two-qubit operators acting on the magic state. As a result, the two-qubit (3 ×
3)-grid identifies to the standard Mermin square that is known to allow an operator proof of the Kochen–
Specker theorem [13,14].

2.3. In dimension 5
Still restricting to permutation groups generated by two magic gates (magic groups), the smallest group
is isomorphic to the semidirect product Z5 ! Z4 of cyclic groups Z4 and Z5 [7, §3.4]. One finds magic
states of type (0, 1, 1, 1, 1), (0, 1, −1, −1, 1) and (0, 1, i, −i, −1). The latter two types allow to construct
IC-POVM’s such that the pairwise distinct products satisfy |⟨ψi |ψj⟩|2 = 1/42, that is the POVM is
equiangular with respect to the field norm defined in the introduction. The first type of magic state
is dichotomic with values of the products 1/42 and (3/4)2. The trace of pairwise products of (distinct)
projectors is not constant. For example, with the state (0, 1, −1, −1, 1), one gets a field norm equiangular
IC-POVM in which the trace is trivalued: it is either 1/16 or (7 ± 3

√
5)/32. For the state (0, 1, i, −i, −1),

there are five values of the trace.
With the symmetric group S5, one builds magic states of type (0, 0, 1, 1, 1) and IC-POVM’s with

dichotomic values of the distinct pairwise products equal to (1/3)2 and (2/3)2.
Let us concentrate on the equiangular POVM. Traces of triple products with constant value −1/43

define lines organized into a geometric configuration of type (2512, 1003). Lines of the configuration have
one or two points in common. The two-point intersection graph consists of 10 disjoint copies of the
Petersen graph. One such a Petersen graph is shown in figure 2a, the vertices of the graph correspond to
the lines and the edges correspond to the one-point intersection of two lines. As before the labelling is in
terms of the operators acting on the magic state.



233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

ARTICLE IN PRESS

5
rsos.royalsocietypublishing.org

R.Soc.opensci.4:170387
................................................

Similar Petersen graphs occur in the organization of triple products for the other five-dimensional
IC-POVMs.

2.4. In dimension 6
With the alternating group A6 generated by two magic gates, one finds an IC-POVM associated to a
magic state such as (0, 1,ω6 − 1, 0, −ω6, 0) with tr(ΠiΠj)i̸=j = |⟨ψi |ψj⟩|2i̸=j = 1/3 or 1/32.

Taking the trace of 4-tuple products of projectors whose value is 1/9 and simultaneously equal ±I,
one gets two copies of a geometry looking like a Borromean ring as shown in figure 2b.

2.5. In dimension 7
Using a magic group isomorphic to Z7 ! Z6 and the magic state (1, −ω3 − 1, −ω3,ω3,ω3 + 1, −1, 0), one
arrives at an equiangular IC-POVM satisfying |⟨ψi|ψj⟩|2i̸=j = 1/62. Other magic states are also found that
define IC-POVM’s with dichotomic products. But no simple structure of the higher order products has
been found.

2.6. In dimension 8
In dimension d = 8, no IC-POVM was discovered from permutation groups. But it is time to introduce
the well-known Hoggar SIC [15,16]. The Hoggar SIC follows from the action of the three-qubit Pauli
group on a fiducial state such as (−1 ± i, 1, 1, 1, 1, 1, 1, 1).

It has been found that triple products are related to combinatorial designs [16]. There are 4032 (resp.
16128) triples of projectors whose products have trace equal to −1/27 (resp. 1/27) [16, (29)]. Within the
4032 triples, those whose product of projectors equal ±I (with I the identity matrix) are organized
into a geometric configuration [633] whose incidence graph is of spectrum [61, 331, −127, −314] and
automorphism group G2(2) = U3(3) ! Z2 of order 12 096, as in [17]. It is known that there exists two
isospectral configurations of this type, one is the so-called generalized hexagon GH(2,2) (also called split
Cayley hexagon) and the other one is its dual [18]. These configurations are related to the 12 096 Mermin
pentagrams that build a proof of the three-qubit Kochen–Specker theorem [17,19]. From the structure of
hyperplanes of our [633] configuration, one learns that we are concerned with the dual of G2 as shown
in figure 3 (see also [20, Fig. 6a]).

Similarly within the 16 128 triples, set of projectors whose triples equal ±I are organized
into a configuration [6312, 2523] whose incidence graph has spectrum [331, 1514, 921, 527, −3189] and
automorphism group G2(2) again. The graph shows 63 maximum cliques of size 4 and 72 of size 7.
Every maximum clique of size 4 is a Pasch configuration as shown in figure 4.

2.7. In dimension 9
Let us consider a magic group isomorphic to Z2

3 ! Z4 generated by two magic gates. One finds a few
magic states such as (1, 1, 0, 0, 0, 0, −1, 0, −1) that, not only can be used to generate a dichotomic IC-POVM
with distinct pairwise products |⟨ψi|ψj⟩|2 equal to 1/4 or 1/42, but also show a quite simple organization
of triple products. Defining lines as triple of projectors with trace 1/8, one gets a geometric configuration
of type [813] that split into nine disjoint copies of type [93]. One of the copies is shown in figure 5.

The configuration [93] labelled by the operators of figure 5 may be used to provide an operator proof
of the Kochen–Specker theorem with two qutrits. The proof is in the same spirit than the one derived
for two or three qubits [14] (see also [21] for two-qutrit contextuality). The vertices are projectors instead
of just Hermitian operators. On one hand, every operator O can be assigned a value ν(O) which is an
eigenvalue of O, that is 1, ω3 or ω2

3 (with ω3
3 = 1). Taking the product of eigenvalues over all operators on

a line and over all nine lines, one gets 1 since every assigned value occurs three times.
On the other hand, the operators on a line in figure 5 do not necessarily commute but their product

is I = I ⊗ I , ω3I or ω∗
3I, depending on the order of operators in the product. Taking the ordered triples

[1, 6, 9], [9, 7, 8], [2, 4, 8], [1, 3, 2], [8, 5, 1], [3, 5, 7], [3, 4, 9], [4, 5, 6] and [2, 6, 7], the triple product of these
operators from left to right equals I except for the dotted line where it is ω3I.

Thus the product law ν(Π9
i=1Oi) =Π9

i=1[ν(Oi)] is violated. The left-hand side equals ω3 while the right-
hand side equals 1. No non-contextual hidden variable theory is able to reproduce these results. Since
the lines are not defined by mutually commuting operators, it is not possible to arrive at a proof of the
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Figure 3. The dual of the generalized hexagon GH(2,2). Grey points have the structure of an embedded generalized hexagon GH(2,1) [18].

(a) (b)

ZZZZIZIZI
ZXXZXIIIX

IXI

ZIX

YIY

XZX

YZYIXX

Figure 4. Two types of Pasch blocks in the structure of trace 1/27 triple products of a Hoggar SIC. Thin (resp. thick) lines are for triple
products equal toI (resp.−I ).

two-qutrit Kochen–Specker based on vectors instead of operators. In this sense, the proof of contextuality
is weaker that the one obtained for two or three qubits.

2.8. Higher dimensions
The same method based on eigenstates of permutation matrices leads to IC-POVMs in dimensions higher
than 9. In the next subsection, we provide details about a 12-dimensional IC-POVM covariant under the
two-qubit/qutrit Pauli group because the associated triple products contain some geometrical structures
as it was the case in lower dimensions.

2.9. In dimension 12
One can build an IC-POVM using a magic group isomorphic to Z2

2 ! (Z2
3 ! Z2

2). A magic state can be
taken as (0, 1,ω6 − 1,ω6 − 1, 1, 1,ω6 − 1, −ω6, −ω6, 0, −ω6, 0) or the state obtained from it by permuting
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3

4

2 6 7

8

5

1
7

5

61

3

2 4

component of a 2-qutrit IC POVM

8

9
(b)(a)

Figure 5. Lines of one component of the two-qutrit IC-POVM built from the magic state (1, 1, 0, 0, 0, 0,−1, 0,−1) alias the Pappus
configuration (b). The points are labelled in terms of the two-qutrit operators [1, 2, 3, 4, 5, 6, 7, 8, 9]= [I ⊗ Z, I ⊗ XZ, I ⊗ (XZ2)2, Z ⊗
I, Z ⊗ X , Z ⊗ X2, Z2 ⊗ Z2, Z2 ⊗ (XZ)2, Z2 ⊗ XZ2], where X and Z are the qutrit shift and clock operators. The IC-POVM, as labelled, can
be used to prove the Kochen–Specker theorem for two qutrits. This is related to the fact that the selected product of operators on a line
is the identity matrixI except for the dotted line where it isω3I (see details in the text).

(7, 8)

(9, 10)

component of a 2QBQT ICPOVM

(11, 12)1/3

11 12 1
2

(1, 2)

(3, 4)

(5, 6)

33 4

4

21 5
6

1/3
1/9

1/27

1/3

7/81

1/27

Figure 6. Schematic of a 12-projector component for the IC-POVM built from the magic state given in the text. Each circle contains two
triples (e.g. (1, 2, 3) and (1, 2, 4) for the upper left circle). The 12 projectors numbered 1–12 are passed by pairs from one circle to the other
(as shown) so that empty circles are easily filled. The four types of pair products 1/3, 1/9, 1/27, 7/81 occurring are also shown.

the entries ω6 − 1 and −ω6 and vice versa. The IC is obtained tanks to the action of the 2QB-QT
Pauli group on this state. The distinct trace products are multivalued with eight values. There is an
interesting structure of the 144 triple products whose trace is −1/27. There are organized into 12 distinct
configurations of the type shown in figure 6 (with only four values of pair products occurring).

3. Summary and conclusion
The main contribution of our work is the construction of asymmetric IC-POVMs built thanks to the
action of the Pauli group on appropriate permutation generated magic/fiducial states. A summary of
the work is in table 1. It is remarkable that the same corpus of ideas may be used simultaneously for
permutation groups, universal quantum computing, unambiguous quantum state recovery and also
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Table 1. A summary of magic states and the corresponding signatures of IC-POVMs in dimensions 2–12.

dim magic state |⟨ψi |ψj⟩|2i ̸=j geometry
2 |T⟩ 1/3 tetrahedron [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 (0, 1,±1) 1/4 Hesse SIC [10]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 (0, 1,−ω6,ω6 − 1) {1/3, 1/32} Mermin squarea
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 (0, 1,−1,−1, 1) 1/42 Petersen graph
(0, 1, i,−i,−1)
(0, 1, 1, 1, 1) {1/32, (2/3)2}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 (0, 1,ω6 − 1, 0,−ω6, 0) {1/3, 1/32} Borromean rings
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 (1,−ω3 − 1,−ω3,ω3,ω3 + 1,−1, 0) 1/62 unknown
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 (−1 ± i, 1, 1, 1, 1, 1, 1, 1) 1/9 Hoggar SIC [16], [633]a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 (1, 1, 0, 0, 0, 0,−1, 0,−1) {1/4, 1/42} [93] configurationa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 (0, 1,ω6 − 1,ω6 − 1, 1, 1, 8 values figure 6
ω6 − 1,−ω6,−ω6, 0,−ω6, 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aIn dimensions 4, 8 and 9, a proof of the two-qubit, two-qutrit and three-qubit Kochen–Specker theorem follows from the IC-POVM. For d ≥ 6, the
magic states leading to an IC (as distinguished) become rare.

quantum contextuality. Further work may focus on extending the range of dimensions where IC-POVM’s
may be derived, relate the useful magic states to quantum error correction and state distillation [4] and
the Bayesian interpretation of quantum mechanics [8].

It is expected that this type of work will clarify the observed efficiency of quantum algorithms based
on permutations [22] and the relation between contextuality and quantum computing [23,24].
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