
Reordering Matrices for Optimal Sparse Matrix
Bipartitioning

Aras Mumcuyan
Computer Science and Engineering,
Sabancı University, Istanbul, Turkey
arasmumcuyan@sabanciuniv.edu

Kamer Kaya
Computer Science and Engineering,
Sabancı University, Istanbul, Turkey

kaya@sabanciuniv.edu

Hüsnü Yenigün
Computer Science and Engineering,
Sabancı University, Istanbul, Turkey

yenigun@sabanciuniv.edu

Abstract—Sparse-matrix vector multiplication (SpMV) is one
of the widely used and extensively studied kernels in today’s sci-
entific computing and high-performance computing domains. The
efficiency and scalability of this kernel is extensively investigated
on single-core, multi-core, many-core processors and accelerators,
and on distributed memory. In general, a good mapping of an ap-
plication’s tasks to the processing units in a distributed environ-
ment is important since communication among these tasks is the
main bottleneck on scalability. A fundamental approach to solve
this problem is modeling the application via a graph/hypergraph
and partitioning it. For SpMV, several graph/hypergraph models
have been proposed. These approaches consider the problem as
a balanced partitioning problem where the vertices (tasks) are
partitioned (assigned) to the parts (processors) in a way that the
total vertex weight (processor load) is balanced and the total
communication incurred among the processors is minimized.

The partitioning problem is NP-Hard and all the existing stud-
ies and tools use heuristics to solve the problem. For graphs, the
literature on optimal partitioning contains a number of notable
studies; however for hypergraphs, very little work has been done.
Unfortunately, it has been shown that unlike graphs, hypergraphs
can exactly model the total communication for SpMV.

Recently, Pelt and Bisseling proposed a novel, purely
combinatorial branch-and-bound-based approach for the
sparse-matrix bipartitioning problem which can tackle relatively
larger hypergraphs that were impossible to optimally partition
into two by using previous methods. This work can be considered
as an extension to their approach with two ideas. We propose to
use; 1) matrix ordering techniques to use more information in the
earlier branches of the tree, and 2) a machine learning approach
to choose the best ordering based on matrix features. As our
experiments on various matrices will show, these enhancements
make the optimal bipartitioning process much faster.

Index Terms—Sparse-matrix bipartitioning, hypergraphs,
branch-and-bound, matrix ordering, machine learning.

I. INTRODUCTION

The sparse-matrix vector multiplication (SpMV) is the most
time consuming kernel for many applications in scientific
computing. SpMV on a distributed setting is a well stud-
ied problem, and as for many applications, processors with
unequal loads and the communication among the distributed
tasks is the main obstacle for scalability. The problem is
usually modeled as a graph/hypergraph partitioning problem;
the objective is minimizing the number (or total weight) of
the cut edges where a small imbalance on the part weights is
allowed [1], [2], [3], [4], [5].

For SpMV, unlike graphs, hypergraphs can exactly model
the communication [6]. There exist tools in the literature to

partition the hypergraphs, e.g., PaToH [7] and Mondriaan [8];
we will also employ these tools. They have been widely used
in practice and for research purposes on various problems such
as data-intensive computing [9], recommendation systems [10]
and iterative sparse-matrix vector multiplication [1], [2], [11].
Although we assume that, and feel by experience, the tools
provide high-quality solutions, one cannot evaluate their real
performance with respect to the best solution without the
optimal results at hand. Some studies and surveys compare
the tools; we know their relative performance but we also
know that this differs with respect to the application, matrix
class, graph type etc. If we had the optimal results, we could
identify the weaknesses of these tools, if they exist, in a clear
fashion and use them to make the tools better. Unfortunately,
the problem is NP-Hard [12]. For graph partitioning, there are
numerous studies on optimal (bi)partitioning, bur for hyper-
graphs, only a few studies exist which are not capable to tackle
optimal sparse-matrix bipartitioning problem for matrices with
reasonable sizes. A short review of these optimal graph- and
hypergraph-partitioning literature can be found in [13].

Recently, based on their medium-grain method [14], Pelt
and Bisseling proposed a purely combinatorial, branch-and-
bound-based approach that computationally does not explore
the nonzeros of the sparse matrix but consider the rows and
columns [13]. Since the number of nonzeros is much more
than the number of rows and columns this approach reduces
the complexity in practice. For this task, they implemented
MondriaanOpt1 which is publicly available. Our work is
built on their software and uses two ideas: 1) ordering the
matrices to use more information in the earlier branches/levels
of the tree, and 2) designing a machine learning approach
to choose the best ordering based on the matrix features.
As our experiments on various matrices will show, these
enhancements make the optimal sparse-matrix bipartitioning
process much faster.

The rest of the paper is organized is as follows: In Sec-
tion II, we introduce the sparse-matrix bipartitioning problem.
Section III describes the ordering algorithms we used and Sec-
tion IV introduces the machine learning method we employed.
The experimental results are given in Section V. Section VI
concludes the paper and discusses possible future work.

1http://www.staff.science.uu.nl/ bisse101/Mondriaan/Opt/



II. NOTATION AND BACKGROUND

Sparse-matrix bipartitioning: Given a sparse matrix A and a
load imbalance parameter ε, we want to divide the matrix into
two matrices A = A1 + A2 such that

max(nnz(A1), nnz(A2)) ≤ (1 + ε)

⌈
N

2

⌉
where nnz(A) denote the number of nonzeros in A. For
simplicity and to avoid the possibility of sharing a nonzero
in both of the matrices, we ignore the numerical values and
only consider the sparsity pattern of A; that is A, A1 and A2

can be considered as 0-1 matrices. While doing that, we want
to minimize the communication incurred by the partitioning
during a parallel iterative SpMV with two processors; one
working on A1 and the other working on A2. Let us first
define the analogy between a matrix and a fine-grain hyper-
graph for 2D-decomposition [15], [14]; Figure 1 shows an
example; the rows and columns of the matrix correspond to
the hyperedges/nets (squares and diamonds in the figure) and
the nonzeros are its vertices (black circles).

Fig. 1: A 6×6 sparse matrix A on the left and its correspond-
ing hypergraph for the sparse-matrix partitioning problem; the
nonzeros in the matrix are shown with grey squares. The white
squares are empty.

Formally, a hypergraph H= (V,N ) is defined as a set of
vertices V and a set of nets N among those vertices. A net
n ∈ N is a subset of vertices and the vertices in n are called
its pins . Vertices can be associated with weights, denoted with
w[·], and nets can be associated with costs, denoted with c[·].
In this work, for the sparse-matrix bipartitioning problem, all
the weights and the costs are equal to one.

A K-way partition of a hypergraph H is denoted as Π =
{V1,V2, . . . ,VK} where

• parts are pairwise disjoint, i.e., Vk ∩ V` = ∅ for all 1 ≤
k < ` ≤ K,

• each part Vk is a nonempty subset of V , i.e., Vk ⊆ V and
Vk 6= ∅ for 1 ≤ k ≤ K,

• union of K parts is equal to V , i.e.,
⋃K

k=1 Vk =V .

Let Wk denote the total vertex weight in Vk (i.e., Wk =∑
v∈Vkw[v]) and Wavg denote the weight of each part when

the total vertex weight is equally distributed (i.e., Wavg =

(
∑

v∈V w[v])/K). If each part Vk ∈ Π satisfies the balance
criterion

Wk ≤Wavg(1 + ε), for k = 1, 2, . . . ,K (1)

we say that Π is ε-balanced where ε represents the maximum
allowed imbalance ratio.

For a K-way partition Π, a net that has at least one pin
(vertex) in a part is said to connect that part. The number of
parts connected by a net n, i.e., connectivity, is denoted as λn.
A net n is said to be uncut (internal) if it connects exactly one
part (i.e., λn = 1), and cut (external), otherwise (i.e., λn > 1).

The set of external nets of a partition Π is denoted as NE .
To accurately model the total communication volume [2], the
connectivity-1 metric has been used;

χ(Π) =
∑
n∈N

c[n](λn − 1) . (2)

In this metric, each cut net n contributes c[n](λn − 1) to the
cutsize. The hypergraph partitioning problem can be defined
as the task of finding a balanced partition Π with K parts such
that χ(Π) is minimized. As mentioned before, the problem is
NP-hard [12].

An example bipartitioning for the corresponding hypergraph
of the sparse matrix in Figure 1 is given in Figure 2. Since
vertex weights are all one, the weight distribution is perfectly
balanced. Since the net costs are all one, the connectivity-1
metric given in (2) is equal to two.

Fig. 2: A bipartitioning of the hypergraph in Figure 1. Part
weights are equal (eight). The cut-size is two.

Figure 3 shows two different bipartitionings of the sparse
matrix A in Figure 1. In the figure, the nonzeros assigned
to the same part are colored with the same color. In the first
bipartitioning, the red colored rows and columns generate cuts,
i.e., they have two different colors among their nonzeros.
Consider iterative SpMV, i.e., Ax = y; a red row implies
communication since the corresponding result, a value in
y, will be partially computed in two processors and one
of these partial results need to be transferred for the next
iteration. Similarly, a red column implies communication since
the corresponding x entry need to be transferred from one
processor to another. Hence, although they are both perfectly
balanced, the communication volume of the first bipartitioning



is eight and for the second one it is two. In fact, the second
bipartitioning corresponds to the hypergraph partition in Fig-
ure 2.

Fig. 3: Two different bipartitionings of the sparse-matrix A
given in Figure 1. Eight and two entries, respectively, need to
be transferred for each iteration of the corresponding SpMV.

MondriaanOpt: is a tool developed by Pelt and Bisseling [13];
it gets a sparse matrix and the allowed imbalance ratio ε as
inputs, and reports the optimal partitioning. The tool, which
is released in 2016, is included in the Mondriaan package
after Mondriaan v4.1 but it is independent and has a separate
version number. Currently, the version number is v1.0.

MondriaanOpt uses a branch-and-bound-based algorithm
and explores the search space in a depth-first manner over
a tree; at each level a row or a column is assigned to part
0, part 1, or identified as a cut. Although, the algorithm
prioritizes some rows/columns, e.g., the ones whose nonzeros
are decided due to previous assignments, the initial ordering of
the rows and columns matters. The tool uses multiple bounds
for each node in the tree to derive a lower bound on the best
communication volume. If this bound is more than the current
best solution the algorithm stops going deeper and prunes the
corresponding subtree rooted at the node being visited.

III. ORDERING TECHNIQUES FOR OPTIMAL HYPERGRAPH
PARTITIONING

An ordering is basically a permutation of row and column
ids which will be assigned during the branch-and-bound
process. For all the orderings in this work, this permutation is
determined at the beginning of the execution. Our main idea
is assigning as much nonzeros as possible at the earlier levels
of the search tree to make the bounds better approximate the
real solution. We experimented on 3 different orderings as
described below:

1) Primary-Static (PS) ordering simply sorts the rows and
columns with respect to their number of nonzeros. There
is no priority of the rows to columns or vice versa. In-
cluding the cost for counting the nonzeros, the complexity
is O(m + n + nnz) where nnz is the total number of
nonzeros in the sparse matrix.

2) Primary-Dynamic (PD) ordering takes the impact of a
row/column assignment into account. That is, once a
row/column is selected as the current one, it is re-
moved from the matrix with all the nonzeros. Then the
row/column with the maximum nonzero count is selected
as the next one. For implementation, we generated a

bucket for each nonzero count and placed the vertices
to the buckets. Then starting with the bucket with the
maximum id (nonzero count), we assigned the rows
and columns. Throughout the process, the rows/columns
are moved from one bucket to another. This happens
for each nonzero in the matrix and the update cost is
O(1). Hence, for this ordering, the overall complexity is
O(m+ n+ nnz)

3) Secondary-Static (SS) ordering concerns about total num-
ber of secondary nonzeros for a row/column; let’s con-
sider a row and its corresponding columns. We define
the total number of nonzeros for all its columns as a
secondary value for that row. The intuition is that once
this row is assigned its columns are also touched and
assigning a row that shares a nonzero with relatively
denser columns is a logical decision to follow to enable
the pruning at the earlier levels of the tree. For our
implementation, the secondary values are computed in
O(nnz) time. Overall, the complexity is O(m+n+nnz)
with O(nnz) extra memory.

Figures 4 and 5 shows the impact of these orderings on the
matrix structures for two matrices gd50 and Harvard500. Note
that the figures only provide partial information, i.e., relative
row/column orders. They do not show the actual permutation
but clarifies our intention while choosing these orderings.

We used each ordering type in two different modes. Given
a node (i.e., row/column), MondriaanOpt explores three
options for that node; part 1, part 2, or cut. We modified
MondriaanOpt to evaluate the impact of this order of these
options. In our first mode, the cut option is explored first
and the part options, part 1 and part 2, are explored later,
respectively. The second mode explores the part options first
and lastly, the cut option is explored. To distinguish these two
modes we used the capital letters ‘F’irst and ‘L’ast. Overall
we use six orderings which are named as PSL, PSF, PDL,
PDF, SSL and SSF.

IV. CHOOSING THE BEST ORDERING BASED ON THE
MATRIX FEATURES

Although some of the orderings improve the execution time
on average, we observed that they also can deteriorate the
performance. Furthermore, their relative performance changes
with respect to the matrix. We have experimented with many
matrices and realized that it is hard to distinguish the matrix
characteristics favoring a specific ordering. For this task, we
generate a training dataset with the values obtained from the
matrix features in Table I. In this dataset, a row corresponds
to a matrix containing the 14 feature values and an additional
value, label, which is the ID of the ordering with the fastest
execution time; we also used natural ordering as a possible
ordering to generate the training dataset.

We used Spark 1.6.1’s machine learning library MLlib
(DecisionTree and DecisionTreeModel classes from
package pyspark.mllib.tree) to generate a decision
tree from the training dataset. We then used a separate test
dataset, which is similar to the training dataset but without



0 20 40 60 80 100
nz = 380

0

10

20

30

40

50

60

70

80

90

100

(a) Natural

0 20 40 60 80 100
nz = 380

0

10

20

30

40

50

60

70

80

90

100

(b) PS: primary static

0 20 40 60 80 100
nz = 380

0

10

20

30

40

50

60

70

80

90

100

(c) PD: primary dynamic

0 20 40 60 80 100
nz = 380

0

10

20

30

40

50

60

70

80

90

100

(d) SS: secondary static

Fig. 4: Four different orderings for the gd06 matrix including the natural one (left-most), primary static (mid-left), primary dynamic (mid-
right), and secondary static (right-most).

0 100 200 300 400 500
nz = 2636

0

50

100

150

200

250

300

350

400

450

500

(a) Natural

0 100 200 300 400 500
nz = 2636

0

50

100

150

200

250

300

350

400

450

500

(b) PS: primary static

0 100 200 300 400 500
nz = 2636

0

50

100

150

200

250

300

350

400

450

500

(c) PD: primary dynamic

0 100 200 300 400 500
nz = 2636

0

50

100

150

200

250

300

350

400

450

500

(d) SS: secondary static

Fig. 5: Four different orderings for the Harvard500 matrix including the natural one (left-most), primary static (mid-left), primary
dynamic (mid-right), and secondary static (right-most).

1 Number of rows; m
2 Number of columns; n
3 Number of rows and columns; m+ n
4 Number of nonzeros; nnz
5 Avg. nonzero count in a row; nnz/m
6 Avg. nonzero count in a column; nnz/n
7 Avg. nonzero count in a row/column; nnz/(m+ n)
8 Avg. bandwidth, i.e., dist. from the diagonal, w.r.t. the first diagonal
9 Avg. bandwidth, i.e., dist. from the diagonal, w.r.t. the second diagonal
10 PaToH volume / (m+ n)
11 PaToH volume / min(m,n)
12 Std. dev of nonzero counts of rows
13 Std. dev of nonzero counts of columns
14 Std. dev of nonzero counts

TABLE I: Matrix features used to generate the decision tree.

the label column, to find the performance of the model. The
details of the experiment is given in the next section.

V. EXPERIMENTAL RESULTS

All the simulation experiments in this section are performed
on a single machine running on 64 bit CentOS 6.5 equipped
with 384GB RAM and a dual-socket Intel Xeon E7-4870 v2
clocked at 2.30 GHz, where each socket has 15 cores (30 in
total). Each core has a 32kB L1 and a 256kB L2 cache, and
each socket has a 30MB L3 cache. All the codes are compiled
with gcc 4.8.4 with the -O3 optimization flag enabled.

We used the matrices from MondriaanOpt’s webpage2.
The matrices are classified as minute, hour, and day, where

2http://www.staff.science.uu.nl/ bisse101/Mondriaan/Opt/

the class denotes the time spent by original tool to find the
optimal bipartitioning. For all the experiments, we performed
ten executions and reported the average result. Since the
process can take days, we used upper limits on the maximum
time; for hour matrices, the value is set to 7200 seconds, and
for day matrices it is set to 216000 seconds. In the tables,
when the optimal bipartitioning cannot be found within the
maximum allowed time, the result is marked with ∞.

To use a good initial upper bound on the communication
volume, before optimal bipartitioning, we bipartitioned the
matrices into two with PaToH (with the quality option). We
then feed MondriaanOpt with this initial value to prune the
subtrees earlier on the search tree. Since the matrices are small,
the initial bipartitioning time is not significant. However, the
improvement on the execution time due to using a good initial
bound is impressive; for instance, for the hour matrices, the
optimal bipartitionings are found around 8.2× faster when
PaToH is used to have an initial bipartitioning.

Tables II and III show the results of the first set of
experiments for the hour and day matrices, respectively; the
first column of each table shows the execution time in seconds
for MondriaanOpt with the natural ordering. The next six
columns show the normalized execution time (w.r.t. first col-
umn) of the optimal bipartitioning process with the orderings
PSL, PSF, SSL, SSF, PDL, and PDF respectively. The last
rows show the geometric mean of the normalized execution
times; the one for natural ordering is set to one. As the tables



TABLE II: The execution time, in seconds, of MondriaanOpt
with the natural ordering (first column) on the hour matrices, and the
relative execution time of the tool with different orderings. The last
row shows the geometric mean of all the normalized execution times
for all orderings.

Matrix Natural PSL PSF SSL SSF PDL PDF
ash219 549.9 0.09 0.09 ∞ ∞ 0.96 0.96
ash85 488.7 0.51 0.51 1.23 1.24 0.43 0.43
bcspwr03 266.3 0.73 0.08 2.02 0.11 0.44 0.07
bcsstk01 4696.9 0.24 0.24 1.31 1.26 0.02 0.02
Can 144 465.9 0.31 0.31 0.31 0.31 0.32 0.32
ch5-5-b1 720.4 0.02 0.02 ∞ ∞ 0.06 0.05
Cities 2121.4 0.43 0.74 ∞ ∞ 0.02 0.00
dolphins 546.1 0.80 0.80 11.50 11.64 0.12 0.12
Harvard500 ∞ ∞ 0.13 ∞ ∞ ∞ 0.17
impcol b 335.1 0.16 0.56 3.66 13.30 0.10 0.54
lpi klein1 213.3 2.00 1.81 9.70 14.42 0.90 0.20
lp kb2 173.4 3.03 2.41 17.12 5.53 0.02 0.02
lp recipe 628.9 1.79 1.77 0.05 0.05 ∞ ∞
lp sc105 400.6 1.22 1.23 2.30 2.32 1.38 1.39
lp scagr25 404.3 ∞ ∞ ∞ ∞ ∞ ∞
lp scsd1 504.6 0.02 0.02 ∞ ∞ 0.02 0.02
lp stocfor1 131.2 8.04 44.85 4.88 38.24 1.24 7.35
lp vtp base 1106.6 0.38 0.39 ∞ ∞ 0.25 0.36
mesh1e1 303.7 0.42 0.42 1.72 2.19 0.25 0.25
mesh1em1 303.9 0.42 0.42 1.80 1.73 0.25 0.25
mesh1em6 339.5 0.38 0.37 1.54 1.54 0.22 0.22
mhd3200b 34.7 5.43 5.43 5.36 5.36 157.47 157.45
mhd4800b 105.2 10.78 5.83 5.74 5.74 ∞ ∞
n3c5-b7 413.4 0.11 0.11 14.01 13.98 0.14 0.14
nos4 2310.8 0.46 2.44 0.64 2.23 0.41 1.70
odepa400 2.2 0.36 0.36 0.41 0.41 0.82 0.82
polbooks 401.3 0.77 0.78 2.70 2.72 0.16 0.16
rajat11 903.8 0.08 0.74 6.63 ∞ 0.00 0.01
steam3 62.2 0.01 0.01 0.01 0.01 0.01 0.01
west0067 73.8 0.14 0.14 0.47 0.47 0.48 0.51
Wheel 4 1 327.4 0.25 0.25 1.16 1.17 0.23 0.23
ww 36 pme 51.5 0.01 0.01 0.01 0.01 0.01 0.01
geomean 1.00 0.42 0.45 1.94 2.03 0.30 0.28

show, for the hour matrices, the PDF ordering reports 0.28 nor-
malized execution time hence 3.6× improvement. For the day
matrices, it is also the best one with 2.1× improvement over
the natural ordering. For both matrix classes, the secondary
value based orderings do not work.

A negative observation from the results is the orderings do
not work for some matrices. Furthermore, for some classes
such as lp the proposed orderings make the bipartitioning
problem unsolvable within the maximum allowed time. In ad-
dition, the relative performance of different orderings change
with the matrices. We used the method described in Section IV
to distinguish the matrix characteristics that favor a specific or-
dering. For training, we used three orderings; natural, PSL and
PDF. For this experiment, we separated the dataset into two;
the training set contains 79 matrices (minute, hour, and day)
and similarly, the test data contains 19 matrices. The results
of this experiment is given in Table IV. The last column in
the table shows the normalized execution time of the predicted
model. That is, given the matrix we ask the best ordering to
the trained model and use that ordering for the execution. For
this experiment, the best proposed ordering is PSF with 0.46
execution time. Column seven shows a hypothetical tool/model
that always uses/chooses the best available ordering. The last

TABLE III: The execution time, in seconds, of MondriaanOpt
with the natural ordering (first column) on the day matrices, and the
relative execution time of the tool with different orderings. The last
row shows the geometric mean of all the normalized execution times
for all orderings.

Matrix Natural PSL PSF SSL SSF PDL PDF
add32 229.3 0.84 1.02 1.22 1.27 0.95 0.95
ash331 33483.4 0.23 0.24 ∞ ∞ 0.23 0.23
bcsstk22 77794.5 0.52 0.86 ∞ ∞ 0.16 0.16
Bibd 9 5 5913.3 0.00 0.00 0.00 0.00 0.00 0.00
bwm2000 27342.2 0.15 0.19 0.13 0.13 0.24 0.19
epb0 39974.5 3.70 3.48 3.49 3.03 3.33 3.32
impcol a 187928.1 0.90 ∞ 0.28 0.28 ∞ ∞
impcol c 71070.5 1.31 1.19 0.46 0.44 0.38 0.50
laser 35908.9 1.63 1.32 ∞ ∞ 1.21 1.21
Lns 131 88023.1 0.80 0.65 1.53 0.99 0.03 0.03
lp bore3d 10074.1 2.79 1.99 ∞ ∞ 0.12 0.12
lp share2b 39460.9 0.94 0.76 ∞ ∞ 0.30 0.30
lp ship08l 4586.8 ∞ ∞ ∞ ∞ ∞ ∞
lp ship08s 7401.7 ∞ ∞ 7.17 ∞ ∞ ∞
lp ship12s 85226.5 ∞ ∞ ∞ ∞ ∞ ∞
lung1 56207.5 0.20 0.16 0.59 0.59 ∞ ∞
nos2 8267.6 0.14 0.28 0.22 0.26 0.25 0.28
p0548 12201.4 1.07 1.15 ∞ ∞ 0.97 0.89
primagaz 489.5 0.32 0.32 2.27 1.91 0.19 0.18
tub1000 13840.9 0.30 0.22 0.21 0.35 0.24 0.20
geomean 1.00 0.69 0.69 1.33 1.42 0.48 0.47

TABLE IV: The results for the test dataset where the last
two columns are for the best possible tool (with the proposed
orderings) and the tool that uses the trained model.

Matrix Natural PSL PSF PDL PDF Best Predicted
add32 229.4 0.84 1.02 0.95 0.95 0.84 1.00
bcspwr03 266.4 0.73 0.09 0.44 0.07 0.07 0.07
bwm2000 27342.3 0.15 0.19 0.24 0.19 0.15 1.00
ch5-5-b1 720.5 0.02 0.02 0.06 0.05 0.02 0.02
cis-n4c6-b1 29.3 0.06 0.05 0.04 0.06 0.04 0.06
epb0 39974.5 3.70 3.48 3.33 3.32 1.00 1.00
gent113 ∞ 0.00 0.01 0.00 0.01 0.00 0.01
Harvard500 ∞ ∞ 0.13 ∞ 0.17 0.13 ∞
impcol b 335.0 0.16 0.57 0.10 0.54 0.10 0.54
lp recipe 629.0 1.79 1.77 ∞ ∞ 1.00 1.00
lp share1b 33.8 ∞ ∞ ∞ ∞ 1.00 1.00
lp ship08s 0.2 60.71 81.81 259.69 276.53 1.00 1.00
mhd3200b 34.8 5.41 5.42 157.03 157.01 1.00 1.00
n3c5-b7 413.4 0.11 0.11 0.14 0.14 0.11 0.14
n4c6-b1 36.5 0.03 0.05 0.05 0.05 0.03 0.03
primagaz 489.6 0.32 0.32 0.19 0.18 0.18 1.00
rajat11 903.9 0.08 0.74 0.00 0.01 0.00 0.01
robot 2.8 1.39 11.59 1.42 13.92 1.00 13.92
tub1000 1.5 0.17 0.16 0.16 0.16 0.16 0.17
geomean 1.00 0.46 0.54 0.55 0.61 0.14 0.28

column shows the normalized execution times for the tool
with the training. As the table shows, the training provided
1.6× improvement over PSF, 3.6× improvement over the
natural ordering and only 2× worse than the best hypothetical
tool. The decision tree for this generated by MLlib for this
experiment is given in Algorithm 1.

VI. CONCLUSION AND FUTURE WORK

In this work, we use two ideas to make an optimal bi-
partitioning tool faster: 1) ordering the matrices to use more
information in the earlier levels of the tree, and 2) designing a
machine learning approach to choose the best ordering based



Algorithm 1 The decision tree used in the experiments
if n ≤ 150.0 then

if nnz/n ≤ 8.992684 then
if nnz ≤ 160.0 then

return natural
else

return PDF
else

if m ≤ 55.0 then
return PDF

else
return PSL

else
if Avg. bandwidth w.r.t. 1st diag ≤ 17.22028 then

if m ≤ 1032.0 then
return PSL

else
return natural

else
if nnz/m ≤ 24.4 then

return natural
else

return PSL

on the matrix features. As our experiments on various matrices
will show, these enhancements provides significant speedups
over the original implementation.

In addition to the total data transfer, there are other com-
munication metrics investigated before, e.g., total number of
messages sent [16], or maximum volume of messages sent
and/or received by a processor [16], [17]. The interplay of
these metrics and their impact on performance of the sparse-
matrix vector multiplication have been analyzed [11] and tools
to simultaneously optimize more than one metric have been
developed [18], [19]. These metrics are also interesting from
the theoretical and practical point of view. As far as we know,
we do not have the combinatorial methods to find optimal
(bi)partitionings for these metrics.

REFERENCES

[1] Ü. V. Çatalyürek and C. Aykanat, “A hypergraph model for mapping re-
peated sparse matrix-vector product computations onto multicomputers,”
in Proc. International Conference on High Performance Computing,
Dec. 1995.

[2] ——, “Hypergraph-partitioning based decomposition for parallel sparse-
matrix vector multiplication,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 10, no. 7, pp. 673–693, 1999.

[3] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel
computing,” Parallel Computing, vol. 26, pp. 1519–1534, November
2000.

[4] C. Walshaw, M. G. Everett, and M. Cross, “Parallel dynamic graph
partitioning for adaptive unstructured meshes,” Journal of Parallel and
Distributed Computing, vol. 47, pp. 102–108, December 1997.

[5] D. M. Pelt and R. H. Bisseling, “A medium-grain method for fast
2d bipartitioning of sparse matrices,” in 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, May 2014, pp. 529–
539.

[6] B. Hendrickson, “Graph partitioning and parallel solvers: Has the
emperor no clothes?” in Lecture Notes in Computer Science, 1998, pp.
218–225.

[7] Ü. V. Çatalyürek and C. Aykanat, “Patoh (partitioning tool for hyper-
graphs),” in Encyclopedia of Parallel Computing, 2011.

[8] B. Vastenhouw and R. H. Bisseling, “A two-dimensional data
distribution method for parallel sparse matrix-vector multiplication,”
SIAM Review, vol. 47, no. 1, pp. 67–95, 2005. [Online]. Available:
https://doi.org/10.1137/S0036144502409019

[9] Ü. V. Çatalyürek, K. Kaya, and B. Uçar, “Integrated data placement
and task assignment for scientific workflows in clouds,” in DIDC’11,
Proceedings of the Fourth International Workshop on Data-intensive
Distributed Computing, San Jose, CA, USA, June 8, 2011, 2011, pp. 45–
54. [Online]. Available: http://doi.acm.org/10.1145/1996014.1996022

[10] O. Küçüktunç, K. Kaya, E. Saule, and Ü. V. Çatalyürek, “Fast
recommendation on bibliographic networks with sparse-matrix ordering
and partitioning,” Social Netw. Analys. Mining, vol. 3, no. 4, pp.
1097–1111, 2013. [Online]. Available: https://doi.org/10.1007/s13278-
013-0106-z

[11] K. Kaya, B. Uçar, and U. V. Catalyurek, “On analysis of partitioning
models and metrics in parallel sparse matrix-vector multiplication,”
in Proc. of the 10th Int’l Conf. on Parallel Processing and Applied
Mathematics (PPAM), 2013.

[12] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout.
Chichester, U.K.: Wiley–Teubner, 1990.

[13] D. M. Pelt and R. H. Bisseling, “An exact algorithm for sparse matrix
bipartitioning,” J. Parallel Distrib. Comput., vol. 85, no. C, pp. 79–90,
Nov. 2015.

[14] ——, “A medium-grain method for fast 2d bipartitioning of sparse ma-
trices,” in 28th IEEE International Parallel and Distributed Processing
Symposium, May 2014.

[15] Ü. V. Çatalyürek and C. Aykanat, “A fine-grain hypergraph model for 2D
decomposition of sparse matrices,” in Proceedings of 15th International
Parallel and Distributed Processing Symposium (IPDPS), San Francisco,
CA, Apr 2001.

[16] B. Uçar and C. Aykanat, “Encapsulating multiple communication-cost
metrics in partitioning sparse rectangular matrices for parallel matrix-
vector multiplies,” SIAM J. Sci. Comput., vol. 25, pp. 1837–1859, June
2004.

[17] R. H. Bisseling and W. Meesen, “Communication balancing in parallel
sparse matrix-vector multiplication,” Electronic Transactions on Numer-
ical Analysis, vol. 21, pp. 47–65, 2005.

[18] Ü. V. Çatalyürek, M. Deveci, K. Kaya, and B. Uçar, “UMPa: A multi-
objective, multi-level partitioner for communication minimization,” in
10th DIMACS Implementation Challenge Workshop: Graph Partitioning
and Graph Clustering, Feb 2012, pp. 53–66, published in Contemporary
Mathematics, Vol. 588, Editors D.A. Bader, H. Meyerhenke, P. Sanders,
D. Wagner, 2013.

[19] M. Deveci, K. Kaya, B. Uçar, and Ü. V. Çatalyürek,
“Hypergraph partitioning for multiple communication cost metrics:
Model and methods,” Journal of Parallel and Distributed
Computing, vol. 77, pp. 69 – 83, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514002275


