Multi-exponentiations on Multi-cores

Cem Topguoglu
Computer Science and Engineering,

Sabanct University, Istanbul, Turkey
cemtopcuoglul@sabanciuniv.edu

Abstract—Modular exponentiation lies at the core of many
cryptographic schemes and its efficient implementation is a must
for a reasonable practical performance. For various applications,
multiple exponentiations with different bases and exponents
need to be performed and multiplied. Although this multi-
exponentiation operation can be implemented by individually
exponentiating the bases to their corresponding exponents,
as discussed in the literature, a significant performance
boost can be obtained when the operation is considered as
a whole. However, performing separate exponentiations is
pleasingly parallelizable but the latter approach requires a
careful implementation on a multi-core processor. In this
work, we propose a parallel algorithm and implementation
based on an existing multi-exponentiation algorithm with pre-
computation. The experimental results show that the proposed
implementation is significantly faster than the existing parallel
multi-exponentiation schemes in the literature.

Index Terms—Multi-exponentiation, parallel
multi-core processors.

algorithms,

I. INTRODUCTION

A modular multi-exponentiation takes n bases X[.], n non-
negative exponents Y[.], and a modulus m and computes

n—1
r= H X[i]Y mod m.
i=0

Multi-exponentiations frequently arise especially in the cryp-
tography domain; for instance, discrete log-based signature
verification schemes requiring a multi-exponentiation with
n = 2 are very common, e.g. [1]. The batch verification
of multiple signatures also requires multi-exponentiation for
arbitrary n values [2].

The application we are interested in is computationally
private information retrieval for which the data is encrypted
and outsourced to a server that is responsible to process
encrypted queries. The main motivation is keeping the data and
access patterns secret to achieve data, query, and response con-
fidentiality. Lipmaa proposed BddCPIR [3] which is a combi-
nation of a rooted binary tree and the homomorphic Damgard-
Jurik [4] cryptosystem. The key property of Damgard-Jurik
is that it provides block-length adjustment capability for the
encryptions in different tree levels. In BAdCPIR, the leaf nodes
hold the data items and the outgoing edges of the internal
nodes are labeled as O or 1. Thanks to the homomorphic
property of Damgérd-Jurik, these labels can be used to query
an item in an encrypted form.

Recently, instead of the binary trees, we proposed to use
octal and hexadecimal trees to reduce the depth of the tree

Kamer Kaya
Computer Science and Engineering,

Sabanci University, Istanbul, Turkey
kaya@sabanciuniv.edu

Erkay Savas
Computer Science and Engineering,

Sabanci University, Istanbul, Turkey
erkays@sabanciuniv.edu

and show that these trees yield a significant improvement
on the performasnce [5], [6]. Given the encrypted query
bits (encrypted edge labels for each level), starting from the
leafs, the server performs a multi-exponentiation for each
internal node in a bottom-up fashion where n is equal to
the number of children which is 8 or 16 for our case. A
multi-core server can concurrently perform independent multi-
exponentiations for different internal nodes; for instance, if
we have 65,536 data items (leaves), with octal trees there
will be @ = 8,192 multi-exponentiations for the second
level from the bottom and each can be executed with a
single thread. However for the root node there is only one
multi-exponentiation. Unfortunately, due to the nature of
Damgérd-Jurik scheme, the complexity significantly increases
as the computations proceed from the leaf level to the root
level. Thus, this last multi-exponentiation, which is the
most expensive one, constitutes a significant response time
bottleneck if performed sequentially. Furthermore, for the
second level from the top, there will be only eight multi-
exponentiations, which are also much more expensive than the
ones on the lower levels. Having around 100 cores on a server
today, we need to perform each single multi-exponentiation
on this level in parallel for faster query processing.

In this work, we propose a parallel multi-exponentiation
algorithm with pre-computation and load-balancing mecha-
nism. Although, our application uses n = 8, 16, the proposed
techniques can be employed for arbitrary large n and for
different applications.

The rest of the paper is organized as follows: Section II
introduces the notation that will be used in the paper and
Section III describes of our parallel algorithm in detail. An
improvement on this algorithm for a better load balancing
is given in Section IV. Section V provides an experimental
evaluation of the proposed techniques and Section VI describes
the related work in the literature. Section VII concludes the
paper and discusses possible future studies.

II. NOTATION AND BACKGROUND

In its simplest form, a modular exponentiation takes three
integers z, y, and m as inputs, where x is the base, y is the
b-bit exponent and m is the modulus, and outputs » = x¥ mod
m. One of the earliest algorithms for modular exponentiation
traverses the exponent starting from the leftmost (the most
significant) bit y[0] to the rightmost bit y[b — 1], performs
a modular squaring for each bit location and a modular

multiplication for each bit y[j] = 1, 0 < j < b — 1. The
pseudocode of this algorithm, EXP, is given in Algorithm 1.

Algorithm 1 EXP(z, y, m, B)

Output: r = z¥ mod m.
I:r+1

2:for /=0tob—1do
r < (r x r) mod m
if y[¢] =1 then

(r < r x z) mod m

nohsw

The modular multi-exponentiation problem has multiple, n,
bases and exponents, and similar to above, a modulus m. Let
X|.] be the array storing these bases and Y[.] be the array
for exponents. We will use X|[i] and Y[i] to denote the ith
base and exponent where 0 < ¢ < n. The output of a modular
multi-exponentiation function is r = [/, X[i]¥l mod m.

The multi-exponentiation problem can be solved by per-
forming EXP for each (X[i], Y'[é], m) triplet and multiplying
the results to obtain r. For simplicity, we assume that a
modular squaring is implemented via a modular multipli-
cation. Assuming the exponents’ bits are equal to 0 or 1
with 1/2 probability, 1.5bn multiplications are required for
multi-exponentiation with this approach. There exist faster
algorithms in the literature to perform a modular multi-
exponentiation with less multiplications by processing multiple
exponent bits at once. Our work on depends on Lim and Lee’s
algorithm which employs two phases; pre-computation and
multi-exponentiation [7].

Assume that the bases and exponents are partitioned into k
groups each having n/k of them. Let xo, w1, ... 2y /p—1 be
the bases in an arbitrary group. For the ¢th group, the pre-
computation step computes 2™/% values

Pli][j] = xg°x(" ... 21 “*/*~* mod m

where each ey € {0,1}, 0 < ¢ < n/k, is a binary variable
and j is the decimal value of (eges...e,/5—1)2. A multi-
exponentiation algorithm is given in Algorithm 2, MULEXP,
whose pre-computation phase stores each computed value in
the k x 2"/% array P (lines 1-6).

As shown in the pseudocode, each Pli][j] can be com-
puted via a single modular multiplication (lines 4-6). Let
j = (epe1...€¢-1100...0)2 be an n/k-bit integer such that
ey is the last 1 in j’s binary representation. The algorithm first
computes j' = (ejes...e—1000...0) with the same binary
representation as j except that e, = 0 (line 4). Then P[i][]
is computed by multiplying P[i][j’] with the appropriate base
X[d] where d = 22 + ((n — 1) — £).

After the pre-computation phase, the algorithm performs
the multi-exponentiation phase. Similar to EXP, the algorithm
MULEXP traverses the exponents from left-to-right but it does
not handle each bit individually; instead, it processes a single
bit from all group exponents at once. As in Algorithm 1,
r is the result which is squared for each bit location
0 < ¢ < b (line 9).

Algorithm 2 MULEXP(X, Y, m, b, n, k)

Output: 7 = [17" X[i]" mod m.
{Pre-computation phase}
1: fori=0to k—1do

2: P[0l «+ 1

33 forj=1to2"F —1do

4 J=G-1)&]

5 d= 9+ ((n—1)~log(j —5"))

6 Pli][j] < (P[i][5] x X[d]) mod m

{Multi-exponentiation phase}
7:r 1
8: for {=0tob—1 do
9: 7+« (rxr)modm
10: fori=0tok—1do

11: j= (YR Y [SRE —1)()s
12: if j > 0 then
13: r < (r x Pli][j]) mod m

Let Y[i][j] be the jth bit of the ith exponent. Each group

i, 0 < i < k has the exponents

in (t+1)n
v o[y

For the /th location, first j = (Y[22][¢] ... Y912 _1][7]),,
which is the decimal value of the binary string obtained by
using the /th bits of the group exponents, is computed. Then
r is multiplied by P[¢][j] where this operation accounts for all
the modular multiplications due to the ¢th bits of the group
exponents in the basic algorithm.

For the pre-computation phase, k2"/% multiplications are
required. For the multi-exponentiation phase, assuming the bits
are random, (1 — ﬁ)bk multiplications and b squarings are
required'. Since a squaring is assumed to be implemented via
a multiplication, there are

n/k 1
2k 4 (12n/k>bk+b
multiplications in total.

To understand the benefits of MULEXP over EXP and the
pre-computation, let us consider the case for n = 16 and
b = 4096. With this parameters, the basic algorithm using
EXP performs 98304 multiplications. Using MULEXP without
a pre-computation phase, i.e., by considering k = 16, n/2 = 8
multiplications and a single squaring are required per bit which
yields 38864 multiplications. With pre-computation, we can
process the bits of the exponents at once; with k = 2 the
proposed scheme performs only 12768 multiplications. The
number of groups also affects the performance; for k = 4,
the number of multiplications is 19520 and for £ = 1, the
pre-computation phase alone requires 65536 multiplications.

III. PARALLELIZATION OF MULTI-EXPONENTIATION ON A
MULTICORE SYSTEM
A straightforward parallel solution to the multi-

exponentiation problem can be devised via multiple EXP

! Assuming the bits are uniformly random are independent, Pr(j # 0) is
(1- 5%%)-
on/k

executions by assigning each exponentiation to a single
thread. The results can then be reduced via 7 — 1 modular
multiplications where 7 is the number of threads. On the
other hand, although it is sequentially much more efficient,
the parallelization of MULEXP is not that straightforward.
To enable parallelism, we divide the exponent bit locations
into 7 chunks of equal size as Fig. 1 shows for the first group
of bases/exponents. In this scheme, the ith thread processes
only its own chunk, compute an incomplete intermediate result
r; and make it complete via extra squarings as shown in the
bottom part of the figure. Thanks to these squarings, the partial
results can then be combined via modular multiplication. In
the example, the bits are divided into four chunks, shown with
different colors, where the red-colored bits are highlighted as
an example for computing the pre-computed array indices.

M-\

f-*-\ M-\

[0])

0] &

€2

N -

en/k—l
P[0][(001...1),]

ry=r3Xx P[O][(110.. 1)]

rp=rpx

a) Dividing the work to multiple threads

[1010010]0010000]1001010]1010010]

squaring -

"2 squaring i < X
squa\rmgI

3 —»
.
4

51

r
b) Extra squaring to get prepared for final reduction

Fig. 1: Parallelization of MULEXP with four threads.

The main problem with the parallelization described above
is load balancing; when the chunk sizes are equal, by pro-
cessing the chunk bits, the incomplete partial results can be
obtained with the same number of modular multiplications.
However, the later squarings performed to make these results
complete make the first thread heavily loaded on the contrary
to the last one which does not perform any extra squaring. For
instance, with b = 1024, two threads, and a single group (k =
1), the second thread performs 512 multiplications and 512
squarings, whereas the first one computes 512 multiplications
and 1024 squarings. We will solve this problem in the next
section by using a scheme that assigns the chunks to the
threads in the order of increasing number of bits as shown
in Figure 2. With this approach, the threads that require more
number of extra squarings will have less exponentiation work
hence will start their extra squaring phase earlier. In the next
section, we will calculate the exact chunk size for each thread
to achieve perfect load balance. But before, let us discuss the
parallelization of the pre-computation phase.

A. Parallelization of the pre-computation phase

The pre-computation phase given in Algorithm 2 is optimal
in terms of the number of multiplications since this is equal

t t t t
2
o
&
€2
Cn/k-1

Fig. 2: An imbalanced chunk-to-thread assignment for a load bal-
anced parallel multi-exponentiation scheme.

to the number of values computed. For large k, this phase is
easy to parallelize since the pre-computed values for different
groups are independent from each other. However, when k =
1, which is the case for many applications including ours, an
efficient parallel implementation is not straightforward.

For a correct, parallel implementation, the necessary and
sufficient requirement is that when a value is being pre-
computed for j = (eger...ep—1100...0)s, the value for
j' = (e1ea...€4-1000...0)2 should have been already pre-
computed. However, an arbitrary parallelization of the loop at
line 1 of Algorithm 2 does not satisfy the requirement since
Pli][j] and P[i][j'] can be assigned to different threads and
their relative computation order cannot be known.

A parallel implementation is straightforward with multiple
synchronization points; for instance, if the j values are par-
titioned with respect to the number of set-bits/ones in their
binary representation. With this, starting from the part with
the lowest number of set-bits, the parts can then be processed
in parallel. However, a synchronization point after each part
is necessary. This may create a load imbalance among the
threads; for instance, there is only one j with all ones hence,
only one task for the corresponding part.

We followed the approach given in Algorithm 3 with
no synchronization points. For each group 4, a thread first
computes P[é][j] from scratch where j has a prefix of
t = [log(7)] bits and all zeros after in its base-2 representa-
tion. The same thread then computes all the values with the
same prefix. In short, the values that will be pre-computed are
chunked with respect to their ¢-bit prefixes and each chunk
is assigned to a single thread. This approach presented here
is lock-free, it does not require a synchronization mechanism
even for a single group of bases/exponents, and it distributes
the load to the threads almost evenly (assuming 7, the number
of threads is a power of two).

IV. LOAD BALANCED MULTI-EXPONENTIATION WITH
PRE-COMPUTATION
Assume that the chunks are distributed as shown in Figure 2.
Let ¢; be the ith thread for 0 < i < 7. Let the end bit of the
exponent block that will be processed by ¢; is equal to 0 <
¢; < b. For completeness, let /_; = —1. For the ith thread,
the total work in terms of the number of multiplications is

w; = (k?-i—l)(gi—fi,1)+((b—1)—fi) @))
= k- (kDb +b—1

where in (1), the first part of the sum is for multiplying &
pre-computed results with r; and squaring it. The second part

Algorithm 3 MULEXP(X, Y, m, b, n, k)

Output: 7 = []7"' X[i]" mod m.
{Pre-computation phase}
1: t = [log(7)]
2: fori=0tok—1do
for p = 0 to 2° — 1 in parallel do
Let (eper - - - e;)2 be the binary rep. of the prefix p
Plills) = TT._, X[4"
for j =1to 2"/t —1do
jl :J+]2n/k7t
=0 -1) &'
d= %+ ((n—1) —log(j’ —j"))
Pli][s"] « (P[i][j"] x X[d]) mod m
{Multi-exponentiation phase}
: --- {same with Algorithm 2}

@OV NREW

—

—
o

is for shifting the exponent via modular squarings and make
r; ready for the reduction step. For a balanced execution, we
need to have w; = w;_1 and hence

kl; — (k+ 1)l =kl — (k+ 1)l;—2
which implies

E+1
Tfifl 2

2% +1

; 2

b —

From (2), we have the following theorem:

Theorem 1. For any number of threads, a balanced execution
of modular multi-exponentiation with k groups requires

(k + 1)i+1 _ ki+1

Li+1= -
+ i

(bo+1)

forall 0 <1 <.

Proof. We will use induction. To show that the statement is
correct for 1 = 1, we will use (2):

2k+1 E+1

= 1

1 o + A

since ¢_; = —1. This implies
2k +1
51 + 1 = (g() +].)
k+1)% — k2
NCES TSI

and the base case is shown. As the inductive assumption, let
the statement be correct for ¢ = j. We will prove that it is
also correct for 7 = j + 1. From w; = wy, i.e., perfect load
balance, we have

k£j+1 — (l{i + 1>€j = kly + (k + 1)

and hence

k+1
iy +1= %(ej S 1)+ (b + 1),

Using the inductive assumption, we have

E+1(k+1)7+ — gitt

lipi+1 = (bo+1)+ (6 +1)

k ki
k4 1)7+2 — fit2
- <()kj+1 _ 1) (o +1) + (o + 1)
k4 1)7+2 — git2
_)ij (bo+1).

O

Setting £, 1 = b—1 as the last bit location in the exponent,
we can derive the value of ¢, as

(k‘ + 1)7—+1 _ k,7—+1

b:
k'r

(€o+1)

and
kT

by=1b —-1].
o= | |
Similarly, we can compute ¢; for 0 <¢ <7 —1 as

ka—i (k + 1)i+1 - ki+1 1
(k +]_)'r+1 _ k‘r+1

An additional derivation step reveals that ¢; values are non-
decreasing as ¢ is increasing since
_ 1} ,

[kT (k4 1) -
(k+1)7+L — fr+1

and the only term dependent to ¢, i.e., the one on the left of the

nominator, increases by (k+1)/k fold when i is incremented.

0 =

b=

V. EXPERIMENTAL RESULTS

All the simulation experiments in this section are performed
on a single machine running on 64 bit CentOS 6.5 equipped
with 384GB RAM and a dual-socket Intel Xeon E7-4870
v2 clocked at 2.30 GHz, where each socket has 15 cores
(30 in total). Each core has a 32kB L1 and a 256kB L2
cache, and each socket has a 30MB L3 cache. All the codes
are compiled with gcc 4.8.4 with the —0O3 optimization
flag enabled. For large number arithmetic, GNU Multiple
Precision Arithmetic Library (GMP 6.0), is utilized while
OpenMP API is employed for parallel algorithms.

For all the experiments, we performed ten executions and
reported the average result. We did not tweak our implementa-
tion and set k& = % to make the size of each group, n/k, always
equal to four. With different group sizes, a better performance
is possible depending on other parameters.

We start by analyzing the parallel performance of EXP; as
expected, when each exponentiation is assigned to a different
thread, a linear speedup is obtained as long as the number of
exponentiations n is a multiple of the number of threads T,
but this approach can use at most n threads. Table I shows
EXP’s execution time and perfect scalability with different
number of threads. However, as Table II shows, it is promising
to consider the multi-exponentiation operation as a whole.
The table reports the single-thread execution times for EXP
and MULEXP. Although it is sequentially much faster, we
know that MULEXP is less scalable than EXP since, with

each additional thread, some amount of extra work is incurred.
However, with better load balancing one can keep the approach
superior especially when b is large and/or 7 is small.

n T=1 7=2 71t=4 71=8 71=16
8 0.31 0.16 0.08 0.04 0.04
4096 16 0.62 0.31 0.16 0.08 0.04
bits 32 1.25 0.63 0.31 0.16 0.08
64 2.50 1.25 0.62 0.31 0.16
8 2.29 1.15 0.57 0.29 0.29
8192 16 4.63 2.31 1.16 0.58 0.29
bits 32 9.16 4.58 2.29 1.15 0.57
64 18.32 9.17 4.58 2.29 1.15

TABLE I. Execution times (in seconds) for EXP with n €&
{8,16,32,64} bases/exponents and 7 € {1,2,4,8,16} threads.

n=8 mn=16 n=32 n=64
4096 EXp 0.31 0.62 1.25 2.50
bits MULEXP 0.12 0.29 0.38 0.71
8192 Exp 2.29 4.63 9.16 18.32
bits MULExP 0.75 1.26 2.27 4.28

TABLE 1I: Single thread execution times (in seconds) for EXP and
MULEXP for n € {8,16, 32,64} bases/exponents.

In the rest of this section, we use vl to denote the first
variant of MULEXP that uses equally-sized chunks for paral-
lelization. The load-balanced variant described in Section IV is
denoted as v2. Figure 3 shows the normalized execution times
of MULEXP variants vl and v2 with respect to EXP, i.e., the
runtime of EXP is considered as one second for each case.
As the figure shows, thanks to load balancing, the proposed
parallel implementation is much better than parallel EXP for all
the cases with b = 8192. For b = 4096, it can be slower when
7 = 16. Although larger groups, i.e., smaller k, can work better
for some of these cases, we skip this analysis due to the space
limitations. The experiments clearly show that load balancing
has a significant impact on the performance for all the cases.

To understand the impact of load-balancing better, we mea-
sured the number of multiplications, including the squarings,
performed by each thread in the multi-exponentiation phase of
MULEXP. We report the maximum number of multiplications
by a single thread in Figure 4. As the figure shows, the load-
balancing mechanism described in Section IV reduces the
maximum load, i.e., the number of multiplications, per thread
and this is why v2 takes less time.

To see the relation between the number of multiplications
and the performance more clear, we computed time spent
per multiplication/squaring by dividing the execution time
to the maximum number of multiplications performed by a
single thread. Figure 5 shows these times for each experiment
setting. This value is computed around 0.011 milliseconds for
b = 4096 and 0.031 milliseconds for b = 8192 and consistent
for different n and 7 values. Hence, the extra overhead due
to extra bitwise operations in our implementation is not
significant and the execution time is indeed proportional to
the maximum threads load.

To compare the proposed approach with the literature (see
next section), we measured the impact of pre-computation by
removing it from the implementation of the variant v2. Fig-
ure 6 shows the execution time of this variant normalized with

respect to that of original v2 with pre-computation. The pre-
computation can halve the execution time especially for large
b. Again, larger group sizes can yield better execution times.

VI. RELATED WORK

There exist several studies on various variants of the ex-
ponentiation problem; a survey on the techniques for fast
exponentiation and multi-exponentiation can be found in [8].
These techniques are analyzed and improved on other stud-
ies, e.g., [9]. Our work is based on Lim and Lee’s multi-
exponentiation method which uses pre-computation [7], which
we have employed for faster privacy preserving query process-
ing [5], [6] without any parallelization.

Parallelization of the single exponentiation kernel with a
smart load balancing mechanism has been studied by Lara
et al [10]; we have inspired by this work while developing
our algorithms and implementations. Recently, the authors
extended their work for the multi-exponentiation kernel [11]
which we were aware of at the time of writing. Their im-
plementation does not use pre-computation hence, their load-
balancing analyses cannot be applied to our method. Instead,
we used a simplified model that exactly computes the amount
of work per thread. Furthermore, we also provide a novel
parallel pre-computation phase. As the experiments show, the
proposed parallel implementation is two times faster than
when pre-computation is disabled.

VII. CONCLUSION AND FUTURE WORK

In this work, we studied the parallel multi-exponentiation
operation on multicore processors. We showed that with pre-
computation and a smart load-balancing mechanism, consid-
ering the operation as a whole and dividing this task to the
cores can be better than the straightforward parallelization
with almost linear speedup. One interesting extension is a
hybrid form which considers the multi-exponentiation with n
bases/exponents as 1 < n’ < n tasks for better efficiency; the
straightforward approach uses n’ = n where the proposed
approach uses n’ = 1. Although the latter form is much
faster than the former one on a single core, its efficiency and
scalability is much worse. Hence, finding the optimal n’ and
k values analytically for any n, 7, b combination will be very
useful to further reduce the overall execution time. Another
extension can be exploiting the techniques such as windowing
and deriving the equations for perfect load balancing once
these techniques are integrated to the implementation.

REFERENCES

[1]1 D. Naccache, D. M’Ralhi, S. Vaudenay, and D. Raphaeli, Can D.S.A. be
improved? — Complexity trade-offs with the digital signature standard
—. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 77-85.

[2] M. Bellare, J. A. Garay, and T. Rabin, Fast batch verification for modular
exponentiation and digital signatures. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998, pp. 236-250.

[3] H. Lipmaa, First CPIR Protocol with Data-Dependent Computation.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 193-210.

[4] 1. Damgérd and M. Jurik, “A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system,” in Proc. of the
4th Int. Workshop on Practice and Theory in Public Key Cryptography,
ser. PKC ’01. London, UK, UK: Springer-Verlag, 2001, pp. 119-136.

Fig

=ava

=3v2

Normalized runtime w.r.t. naive

4096 bits ‘ 8192 bits

(an=3~§

v =32

Normalized runtime w.r.t. naive

4096 bits ‘

8192 bits
(c) n =32

. 3: Execution

different values of n; (a) 8, (b) 16, (c) 32 and (d) 64.

Multiplication/squaring time (msec)

Fig

are

2 65536 01 thread 02 threads 04 threads
2 08 threads 016 threads
§ 32768
=
£ 16334
%)
5 5 8192 ‘
st
ﬂ)
E 2 4096 |II
: |
:E: 2048
E vl‘vz‘vl‘VZ‘vl‘vZ vl‘vz‘
©
= n=g ‘ n=16 ‘ n=32 ‘ n=64 ‘
(a) b = 4096

Fig. 4: Maximum number of multiplications per thread with 7 € {1,2,4,

Oi1thread B2threads D4 threads

08 threads

016 threads

n=8 ‘ n=16 ‘ n=32 ‘ n=64 ‘ n=8 ‘ n=16 ‘ n=32 ‘ n=64 ‘

4096 bits 8192 bits ‘

. 5: Time per multiplication for all the experiments: the values
computed by dividing the total execution time to the maximum

number of multiplications/squarings perfromed by a single thread.

[51

[6]
[71

[8]

G. Tillem, O. M. Candan, E. Savas, and K. Kaya, Hiding Access Patterns
in Range Queries Using Private Information Retrieval and ORAM.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 253-270.

G. Tillem, E. Savag, and K. Kaya, “A new method for computational
private information retrieval,” The Computer Journal, no. 13, 2017.

C. H. Lim and P. J. Lee, “More flexible exponentiation with precomputa-
tion.” in CRYPTO, ser. Lecture Notes in Computer Science, Y. Desmedt,
Ed., vol. 839. Springer, 1994, pp. 95-107.

D. M. Gordon, “A survey of fast exponentiation methods,” J. Algorithms,
vol. 27, no. 1, pp. 129-146, Apr. 1998.

Normalized runtime w.r.t. naive

Normalized runtime w.r.t. naive

v EBEv2

4096 bits ‘ 8192 bits

(b) n =16

s Y Ry e V)

4096 bits ‘ 8192 bits

(d) n = 64

times of MULEXP variants vl and v2 normalized with respect to that of parallel EXP for b = 4096 and 8192 and for

2 131072 T7g1 thread 02 threads 04 threads
o
2 65536 D08 threads 016 threads
8
2 32768
3
E T 16334
5 L
§% s
@
E2 oo
c
5 2048
£
x
©
= n=g ‘ n=16 n=32 n=64 ‘
(b) b= 8192

Fig.

8,16} threads and n € {8, 16, 32,64} bases/exponents.

B1 thread B2 threads O4 threads B8 threads D16 threads

W.r.t. no pr

n=8 ‘ n=16 ‘ n=32 ‘ n=64 ‘ n=8 ‘ n=16 ‘ n=32 ‘ n=64

8192

k 4096 ‘

6: The execution time of MULEXP-like algorithm without pre-

computation normalized with respect to that of MULEXP variant v2.

Both

[9]

[10]

(11]

schemes use the balancing approach described in Section IV.

B. Moller, Improved Techniques for Fast Exponentiation. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 298-312.

P. Lara, F. Borges, R. Portugal, and N. Nedjah, “Parallel modular ex-
ponentiation using load balancing without precomputation,” J. Comput.
Syst. Sci., vol. 78, no. 2, pp. 575-582, Mar. 2012.

F. Borges, P. Lara, and R. Portugal, “Parallel algorithms
for modular multi-exponentiation,” Applied Mathematics and
Computation, vol. 292, pp. 406 — 416, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S009630031630474X

