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ABSTRACT
The interglitch timing of the Vela pulsar is characterized by a constant second derivative of
the rotation rate. This takes over after the post-glitch exponential relaxation and is completed
at about the time of the next glitch. The vortex creep model explains the second derivatives
in terms of nonlinear response to the glitch. We present interglitch timing fits to the present
sample covering 16 large glitches, taking into account the possibility that in some glitches part
of the step in the spin-down rate may involve a ‘persistent shift’, as observed in the Crab pulsar.
Modifying the expression for the time between glitches with this hypothesis leads to better
agreement with the observed interglitch time intervals. We extrapolate the interglitch model
fits to obtain spin-down rates just prior to each glitch and use these to calculate the braking
index n = 2.81 ± 0.12. The next glitch should occur around 2017 December 22, ±197 d if no
persistent shift is involved, but could occur as early as 2016 July 27, ±152 d if the 2013 glitch
gave rise to a typical Vela persistent shift. Note added: Literally while we were submitting
the first version of this paper on 2016 December 12, we saw ATel # 9847 announcing a Vela
pulsar glitch which has arrived 138 d after our prediction with a persistent shift, within the 1σ

uncertainty of 152 d.

Key words: dense matter – stars: interiors – stars: neutron – pulsars: general – pulsars:
individuals: Vela – stars: rotation.

1 IN T RO D U C T I O N

The Vela pulsar, PSR 0833-45, was the first pulsar for which a glitch,
a sudden speed-up, in spin-down behaviour was observed (Radhakr-
ishnan & Manchester 1969; Reichley & Downs 1969), and it con-
tinues to be one of the most active glitching pulsars, as 15 additional
large glitch events have been observed in the succeeding 47 yr.1 Be-
cause it has been monitored almost daily since 1985, it has proved
possible to determine the onset of glitches with an uncertainty of less
than a day and to follow in detail its post-glitch behaviour for the 10
glitches that have occurred since that time (McCulloch et al. 1987;
Flanagan 1991; Flanagan & McCulloch 1994; Wang et al. 2000;
Dodson, McCulloch & Lewis 2002; Dodson et al. 2004; Flanagan
& Buchner 2006; Buchner 2010, 2013; Yu et al. 2013). The 2000
glitch, in particular, happened during an observation session, so
that an upper limit of 40 s could be placed on the glitch rise time

� E-mail: akbalonur85@gmail.com
1 http://www.jb.man.ac.uk/pulsar/glitches/gTable.html

(Dodson et al. 2002). In 1994, the Vela pulsar exhibited two large
glitches with ��/� = 8.61 × 10−7 and ��/� = 1.99 × 10−7

that were separated by just 32 d (Buchner & Flanagan 2011). The
glitch rates, signatures and interglitch behaviour of many pulsars,
and the statistics of pulsar glitches indicate similarities to the Vela
pulsar (Alpar & Baykal 1994, 2006), once one scales with pulsar
rotation frequency and spin-down rate. We believe the Vela pulsar
is a Rosetta stone for understanding pulsar glitches and the results
presented here have general applicability to pulsar dynamics.

It was recognized early on (Baym, Pethick & Pines 1969) that the
fact that one is able to see a well-defined glitch relaxation meant the
neutrons present in the crust and core of a pulsar must be superfluid.
The most successful phenomenological explanation of the origin of
pulsar glitches and post-glitch behaviour has been based on the pro-
posals by Packard (1972) and Anderson & Itoh (1975) that glitches
are an intrinsic property of the rotating superfluid and originate in
the unpinning of vortices that are pinned to crustal nuclei. In this
picture, the pinned superfluid will lag the spin-down of the pulsar
until a critical angular velocity is reached, at which point the pinned
vortices unpin and move rapidly, transferring angular momentum
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to the crust, which is observed as the glitch. Apart from the sudden
unpinning events, vortices also creep, by thermal activation against
the pinning barriers, allowing the superfluid to spin-down (Alpar
et al. 1984a,b).

The vortex creep model posits two different kinds of response to a
glitch; a linear response characterized by exponential relaxation, and
a nonlinear response characterized by a step in the spin-down rate
and subsequent interglitch recovery with an approximately constant
second derivative of the rotation frequency (Alpar et al. 1984b;
Alpar, Cheng & Pines 1989). The model has proven successful
in that it provides a natural explanation for the observed transient
exponential decays and for the long-term recovery extending until
the next glitch, which can only be explained by nonlinear dynamics.
The model also provides a rough estimate of the interglitch intervals.

This understanding of the systematic interglitch timing behaviour
due to internal torques between the crust and superfluid components
of the neutron star makes it possible to take account of these internal
torques to obtain the braking index n that characterizes the external
pulsar torque, and, as we shall see, leads to results that are quite
different from an analysis that does not take the internal torques
fully into account.

Our aim in the present paper is threefold. First, we study the re-
covery of the glitch ��̇ in the spin-down rate. We confirm that after
the initial exponential relaxation components, the negative step ��̇

recovers with an approximately constant second derivative �̈ of the
rotation rate. As observed in the interglitch intervals up to the ninth
observed glitch (Alpar et al. 1993) this recovery is completed at
about the time of arrival of the next glitch. Indeed, in a multicompo-
nent dynamical system, the response of internal torques to offsets
from steady state always leads to eventual recovery of the steady
state. The question is whether the next glitch arrives before or after
the completion of the recovery after the previous glitch. Motivated
by the earlier observation that the recovery was completed at about
the time of arrival of the next glitch in the earlier work on nine
glitches, we now investigate if the coincidence between the time of
completion of the recovery from one glitch and the time of arrival
of the next glitch is still observed in the present sample of glitches.
This behaviour of complete recovery with constant �̈ is confirmed
in all interglitch intervals in the present sample. We confirm, model
independently, that the recovery is completed at about the time of
arrival of the next glitch. As any power-law behaviour, this recov-
ery reflects some underlying nonlinear dynamics. We next confirm,
with the current data set, that the nonlinear creep model continues
to fit the data for post-glitch behaviour and enables one to estimate
the time intervals between glitches; we find that the accuracy of the
estimated times to the next glitch has improved with the doubling
of the glitch sample. Secondly, we explore the possibility that some
Vela glitches are accompanied by ‘persistent shifts’ in the spin-
down rate of the kind observed in the Crab pulsar, where a sudden
decrease in the spin-down rate at the time of a glitch is observed
to remain constant, with no healing, until the arrival of the next
glitch, at which it is superseded with an additional similar shift.
This hypothesis leads to somewhat shorter estimates of the time
to the next glitch, which agree better with the observed time inter-
vals. Thus, the persistent shift hypothesis improves the accuracy of
the estimates. Thirdly, based on our understanding of the internal
torques, and in particular the correlation between the time when
the nonlinear creep response is completed and the time of the next
glitch, supported by our estimates, we note that the best fiducial
epoch for determining the braking index n due to the external (pul-
sar) torque is the epoch when the response of internal torques to the
previous glitch have been completed, i.e. just before the next glitch.

Fitting a long-term ‘true’ pulsar second derivative of the rotation
rate to the spin-down rates at these epochs, we find that the Vela
pulsar’s braking index n = 2.81 ± 0.12, in agreement with most
other measured pulsar braking indices, which lie between n = 1.8
and n = 3 for an isolated ideal dipole rotating in vacuum (Melatos
1997; Antonopoulou et al. 2015; Archibald et al. 2015; Lyne et al.
2015; Clark et al. 2016). In their determination of the Vela pulsar’s
braking index, Lyne et al. (1996) assumed the effects of internal
torques would be over with the exponential relaxations and took
a fiducial time of 150 d after each glitch to derive a much lower
‘anomalous’ braking index, n = 1.4 ± 0.2. Recent work (Espinoza,
Lyne & Stappers 2017) takes into account a term with recovery
at a constant �̈, but assumes that the recovery is not completed.
The braking index, n = 1.7 ± 0.2 is obtained. As we show in this
paper the recovery at constant interglitch �̈ is actually completed
just before the next glitch. We find n = 2.81 ± 0.12.

The plan of our paper is as follows. Section 2 contains a sum-
mary of the vortex creep model that is used in Section 3, to fit all
currently available interglitch timing data. Section 4 describes the
estimation of interglitch time intervals with or without the inclusion
of persistent shifts. Section 5 derives the braking index of the Vela
pulsar for several different variants of our model. Section 6 contains
our conclusions.

2 T H E VO RT E X C R E E P M O D E L

The post-glitch behaviour of the Vela pulsar exhibits both linear
response, in the form of three distinct exponential relaxations, and
a nonlinear response with constant �̈ that persists until the next
glitch. The exponential decays have relaxation times τ � 32 d. The
vortex creep model (Alpar et al. 1984a,b, 1989) explains glitches
and post-glitch behaviour in terms of superfluid dynamics that takes
into account vortex pinning, unpinning and creep. We summarize
the main concepts here, referring the reader to earlier work for
details.

The superfluid components of the neutron star rotate by sustaining
quantized vortices and their spin-down in response to the pulsar
torque is described by the motion of these vortices radially outward
from the rotation axis. Vortex motion is impeded by pinning to
inhomogeneities, such as the nuclei in the neutron star’s inner crust
where the neutron superfluid coexists with the crustal crystalline
lattice (Alpar 1977) or to toroidal flux lines in the outer core of the
neutron star (Gügercinoğlu & Alpar 2014). Vortices unpin and repin
by thermal activation, thereby providing a vortex creep current.
Because of pinning, the superfluid rotates somewhat faster than the
crust as the crust spins down under the external torque. The lag
ω ≡ �s − �c between the rotation rates of the superfluid and the
crust provides a bias to drive a vortex creep current in the radially
outward direction from the rotation axis. Vortex creep thus allows
the superfluid to spin-down. This process has a steady state when
both superfluid and normal matter are spinning down at the same
rate, driven by a steady state lag ω∞.

If the lag reaches the maximum value ωcr > ω∞ that can be
sustained by the pinning forces, vortices unpin and move outward
rapidly in an avalanche, thereby transferring angular momentum
to the crust, leading to the glitch (Packard 1972; Anderson & Itoh
1975). In addition to the parts of the pinned superfluid with con-
tinuous vortex current, analogous to resistors in an electric circuit;
there are also vortex traps prone to catastrophic unpinning, inter-
spersed with vortex-free regions, analogous to capacitors. Vortex
traps are sites of extra pinning strength, where critical conditions for
unpinning can be reached due to this enhanced vortex density (Chau
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et al. 1993; Mochizuki & Izuyama 1995). The high vortex density
in the traps leads to local superfluid velocities that are too large to
permit pinned vortices in the regions surrounding the traps, which
are therefore vortex-free regions, containing few and ineffective
pinning centres. Vortex-free regions contribute to the angular mo-
mentum transfer at glitches, but do not contribute to the spin-down
between glitches since they do not sustain vortices participating in
the creep process.

When critical conditions ω = ωcr are reached, vortices unpin
collectively from vortex traps, scatter through the vortex-free re-
gions and incite unpinning at further vortex traps, and so create an
avalanche. This sudden transfer of angular momentum to the crust,
analogous to charge transfer in capacitor discharges, is observed
as a glitch in the steady spin-down of the pulsar. Glitches by crit-
ical unpinning superposed on an underlying vortex creep process
were simulated by a ‘coherent noise’ statistical model by Melatos &
Warszawski (2009), who derive interesting information on pinning
parameters by comparison of their simulations with the statistics of
frequently glitching pulsars. Further interesting simulations were
made by Warszawski & Melatos (2011) in a model where glitches
by vortex unpinning are superposed on a continuous relaxation of
the superfluid described by the Gross–Pitaevskii Equation. The con-
straints obtained in these papers on pinning, critical conditions for
unpinning and vortex density distributions, with traps and vortex-
free regions are in agreement with the framework of vortex creep
theory.

The sudden increase in the crust rotation rate �c and the decrease
in the superfluid rotation rate �s at a glitch offset the lag ω from
its pre-glitch steady state value. If the creep process has a linear
dependence on the lag, the response to the offset is simple exponen-
tial relaxation. Several components of exponential relaxation are
observed in the Vela pulsar. After the exponential relaxation is over
the relaxation of the glitch continues, actually until the time of the
next glitch, in a characteristic non-exponential manner. The glitch
in the spin-down rate recovers approximately linearly in time, i.e. to
the lowest order, with a constant second derivative �̈ of the rotation
rate. Just as exponential relaxation is the signature of linear dynam-
ics, power-law relaxation processes indicate nonlinear dynamics. It
is an appealing feature of the vortex creep model that both types of
observed post-glitch behaviour can occur, in different parts of the
neutron star superfluid, as two regimes of the same physical pro-
cess. Being a process of thermal activation, the creep process has an
intrinsic exponential dependence on pinning energies, temperature
and the driving lag ω through Boltzmann factors. Depending on
the pinning energy Ep, the temperature and the steady state spin-
down rate �̇∞ dictated by the pulsar torque, the creep current in
some parts of the superfluid can have a linear dependence on the
lag, leading to exponential post-glitch response; while other parts
of the superfluid have the full nonlinear dependence on the glitch
induced perturbation (Alpar et al. 1989). In the nonlinear regime
the steady state lag is very close to the critical lag, ωcr − ω∞ � ωcr.
This makes it possible to reach the critical conditions for unpin-
ning by fluctuations from steady state as supported by simulations
(Melatos & Warszawski 2009).

The focus of this paper is on the nonlinear creep response by
which we model the interglitch recovery at constant �̈, after the
exponential relaxation is over. When the superfluid rotation rate is
reduced by δ� as vortices unpinned at the glitch move through a
nonlinear creep region of moment of inertia δI, the nonlinear creep
current, with its very sensitive dependence on the lag, will stop. This
region is not spinning down after the glitch. As the pulsar torque is
acting on less moment of inertia, the spin-down rate will increase

Figure 1. (a) Predicted ‘Fermi function behaviour’. Part of the glitch in the
spin-down rate, ��̇ = (δI/I )�̇, recovers at time t0 = δ�/|�̇|. This figure is
taken from Alpar et al. (1984a). (b) The observed step recovery, at t0 ∼= 400 d
after the 1988 glitch, is shown, superposed on the ‘triangle recovery’. This
figure is taken from Buchner & Flanagan (2008).

by a step ��̇, such that ��̇/�̇ = δI/I where I is the total moment
of inertia of the star. The lag will return to its pre-glitch value after
a waiting time t0 ≡ δ�/|�̇|, since the star continues to spin-down
under the pulsar torque. Around time t0 the creep will start again,
showing up as a positive step recovery |��̇| = |�̇|δI/I , which will
be observable if δI is large enough. This extreme nonlinear signature
of stop-hold-and-restart was a prediction of the vortex creep model,
dubbed ‘Fermi function behaviour’ (Alpar et al. 1984a). This has
been observed clearly in one instance in the Vela pulsar (Flanagan
1995; Buchner & Flanagan 2008). Fig. 1 shows a sketch of the
predicted behaviour and the observed step recovery for 400 d after
the 1988 glitch of the Vela pulsar providing strong direct evidence
for the presence of nonlinear creep.

More likely, the vortices unpinned at the glitch will cause the
superfluid rotation rate to decrease by amounts δ�i as they move
through many nonlinear creep regions i with moments of inertia δIi.
Note that δIi does not refer to an actual increase or decrease in the
moment of inertia; it denotes a small amount of moment of inertia
belonging to the creep region i where the superfluid rotation rate has
decreased at the glitch by the particular amount δ�i. At the time of
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the glitch creep stops in all of these regions, causing a total increase
in the spin-down rate by

��̇(0)

�̇
= 	iδIi

I
≡ IA

I
, (1)

where IA is the total moment of inertia of nonlinear creep regions
through which vortices moved suddenly at the glitch. Each compo-
nent of the inertial moment, δIi, will restart creep at its own waiting
time ti ≡ δ�i/|�̇|; these are not discernible as step recovery in the
spin-down rate, as individual δIi are too small. Instead a stacked
response of the nonlinear recovery of creep regions with moments
of inertia δIi at successive times ti will be observed. In particular,
in the lowest, mean field approximation, if a uniform average area
density of vortices unpins, moves through nonlinear creep regions
of total moment of inertia IA, and repins, the cumulative response is
a ‘triangle recovery’ of the glitch step ��̇, with a constant second
derivative of the rotation rate

�̈ = IA

I

�̇2

δ�
, (2)

where δ� is the maximum glitch induced decrease in the superfluid
rotation rate, corresponding to the total number of vortices involved
in the glitch. This ‘triangle recovery’, as a lowest order approximate
fit to the data has been observed to extend till the next glitch in
every interglitch interval of the Vela pulsar. The end of the triangle
response signals the return of the average vortex density to pre-
glitch conditions. Assuming that glitches start at critical conditions
involving vortex density, the recovery time

tg ≡ δ�

|�̇| ≡ |��̇|
�̈

(3)

is roughly when the star is ready for the next glitch. Thus tg provides
a first estimate of the time to the next glitch. The triangle recovery
can be written as

��̇(t)

�̇
= IA

I

(
1 − t

tg

)
. (4)

To the extent that the density of unpinned vortices is not uniform, the
observed post-glitch �̇(t) will deviate from a linear time dependence
(constant �̈). The t2 and higher order polynomial terms in �̇(t)
are small compared to the lowest order, constant �̈ term. In our
model this reflects the dominance of the uniform term in the spatial
distribution of the unpinned vortex density δn(r) ≡ δn0, higher
moments (spatial fluctuations) of δn(r) being weaker than the mean
δn0.

Equations (1) and (2) are complemented by the angular momen-
tum balance at the glitch when the motion of unpinned vortices
leads to a reduction in the superfluid rotation rate with maximum
value δ�. The glitch induced decrease in the superfluid rotation rate,
δ�i, varies linearly with δIi, between 0 and the maximum value δ�,
throughout the constituent small regions with moments of inertia
δIi that collectively make up the creep regions with total moment
of inertia IA. The average is δ�/2. The total angular momentum
transfer in the glitch from the nonlinear creep regions in the super-
fluid to the crust is therefore (1/2)IAδ�. This angular momentum is
transferred back to the superfluid during the triangle recovery. The
vortices unpinned at the glitch also move through the vortex-free
(capacitor) regions, of total moment of inertia IB, interspersed with
the nonlinear creep regions, yielding an additional angular momen-
tum transfer IBδ�, which is not returned to the superfluid. This
irreversible vortex discharge at the glitch is analogous to capacitor
discharges. It accounts for the part of the glitch in frequency that

does not relax back, as is seen in the observations. The total angu-
lar momentum lost by these components of the superfluid accounts
for the observed spin-up ��c that remains after the exponential
relaxations:

Ic��c =
(

1

2
IA + IB

)
δ�. (5)

Equations (1), (2) and (5) constitute the nonlinear vortex creep
model relating the long-term interglitch behaviour to the glitch pa-
rameters. Using the observed values of the glitch in the rotation
frequency, ��c, and in the spin-down rate, ��̇, after the exponen-
tial relaxations are subtracted, together with the observed interglitch
�̈, these three equations can be solved for the model parameters IA,
IB and δ�, or, equivalently, for tg, the estimated time to the next
glitch. We shall call this our Model (1). Note that the interglitch
recovery depicted in equation (4) is by itself a model independent
phenomenological description of the observed timing behaviour. It
can be used as a basis for braking index calculations that take into
account the full interglitch behaviour extending till the next glitch.
The vortex creep model provides the physical context for under-
standing the power-law (constant �̈) interglitch timing which is a
clear signal of nonlinear dynamical behaviour. Moreover, the nat-
ural relation between the glitch parameters provided by the vortex
creep model has been found to have remarkable predictive power
for the time to the next glitch for the majority of glitch intervals,
while the estimates can be improved by extending the vortex creep
model.

Shannon et al. (2016) modelled the interglitch timing with expo-
nential recovery with a constant relaxation time τ = 1600 d, and
ascribed the residuals to a noise process with a power-law spectrum.
They find that each interglitch interval and the total spin-down rate
data set have similar power spectra and conclude that the noise
process is stationary. Their calculated spin-down rate time series
however does not contain the frequency jumps at glitches, an es-
sential ingredient in the vortex creep model for the determination
of the subsequent second derivative �̈ of the rotation rate. The fact
that �̈ correlates with the glitch parameters in accordance with
equations (1), (2) and (5) therefore favours the vortex creep model
versus a noise process that can reproduce the same behaviour. Em-
ploying the standard formula for the braking index, n ≡ ��̈/�̇2 to
the constant �̈ due to the internal torques leads to an ‘anomalous’
interglitch braking index given by equations (1), (2) and (5);

nig ≡ ��̈int

�̇2
=

(
1

2
+ IA

IB

) (
��̇

�̇

)2

−3

(
��

�

)−1

−6

. (6)

The subscripts −3 and −6 mean the corresponding dimensionless
ratios are normalized to 10−3 and 10−6, respectively.

3 O B S E RVAT I O N S A N D M O D E L FI T T I N G

Since 1985, the Vela pulsar has been observed on most days using
the Hartebeesthoek Radio Astronomy Observatory (HartRAO) tele-
scope. Observations are made at either 1668 or 2273 MHz using the
26 m telescope. The South polar bearing failed on 2008 October 3
and was repaired on 2010 July 22. During this period the telescope
could only be driven in declination. Observations were made of
Vela as it transited. The MeerKAT precursor XDM (now HartRAO
15 m) was used for Vela observations from 2009 Feb 6 until the tele-
scope was repaired. The Tempo2 glitch plugin (Edwards, Hobbs &
Manchester 2006; Hobbs, Edwards & Manchester 2006) was used
to calculate �̇ values.
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Alpar et al. (1984b) initially analysed the post-glitch behaviour
of the Vela pulsar for its first four glitches within the vortex creep
model. This work used data with major uncertainties in the actual
dates of the glitches. Alpar et al. (1993) and Chau et al. (1993)
then examined the post-glitch recovery of the first nine glitches of
the Vela pulsar. They used the vortex creep model in which the
post-glitch relaxation is described by the equation:

��̇c(t)

|�̇|∞
= −

3∑
i=1

Ii

I

��c(0)

|�̇|∞τi

e−t/τi − IA

I
+ IA

I tg
t . (7)

The first three terms express the short-term exponential relaxation
response to a glitch. The remaining two terms are relevant for the
long time-scale and describe the nonlinear response. Exponential
relaxation components with time-scales of hours, days and months
are commonly observed after Vela pulsar glitches. Theoretical in-
terpretations of the exponential relaxation terms include superfluid
mutual friction (e.g. Haskell & Antonopoulou 2014), vortex creep
in the linear regime Alpar et al. (1989), vortex-lattice interactions
Jones (1993) and Ekman pumping van Eysden & Melatos (2010).
Alpar et al. (1993) found that τ 1 = 10 h, τ 2 = 3.2 d and τ 3 = 32 d,
described all Vela glitches. The exponential relaxations were fol-
lowed by the long-term triangle recovery of the spin-down rate from
which they extracted estimates of the time tg to the next glitch.

We follow the fitting procedure of the earlier applications to
analyse the long-term relaxation of the 1994 double glitch and the
1996, 2000, 2004, 2006, 2010 and 2013 glitches. For these later
glitches we use data from the HartRAO. We use the Levendberg–
Marquardt method to find the best-fitting values with MPFITFUN
procedure (Markwardt 2009).2 A quick look at the data shows that
by 100 d after each glitch all exponential relaxation components are
fully relaxed (Yu et al. 2013). We therefore use data starting from
100 d after each glitch for our long-term interglitch fits with the last
two terms in equation (7) which describe the ‘triangle’ nonlinear
creep response, equation (4). The fits are shown in Fig. 2.

The best-fitting constant �̈ values, inferred parameters IA/I, IB/I
and tg and observed times tobs to the next glitch are tabulated for
the current sample of 17 glitches in Table 1 which presents the
results of Alpar et al. (1993) for the first eight glitches, of Chau
et al. (1993) for the ninth glitch and our results for the last eight
glitches. Errors quoted for �̈ are formal linear regression errors,
which propagate to give the same percentage errors in nig. For the
most recent, 2013, glitch we have an estimated time to the next
glitch, tg = 1553 d, which gives the expected glitch date as 2017
December 22. The moment of inertia fractions I1/I, I2/I and I3/I
associated with exponential relaxations with τ 1 = 10 hr, τ 2 = 3.2 d
and τ 3 = 32 d are also tabulated. These are not relevant to the long-
term recovery discussed in this paper. They do, however, contribute
to lower bounds on the moment of inertia of creeping superfluid,
which in turn are relevant to possible constraints on the equation of
state of neutron star matter (Datta & Alpar 1993; Link, Epstein &
Lattimer 1999). I1/I, I2/I and I3/I are included in Table 1.

As a measure of the estimates we shall use

�ti ≡ tg,i − tobs,i . (8)

For the first nine glitches analysed earlier, the mean �t(9) = 200 d
and the standard deviation σ (9) = 321 d. Interestingly, for seven out
of the first nine glitches the estimator tg was longer than tobs. For the
current sample the mean fractional deviation between the estimated

2 http://purl.com/net/mpfit

and observed intervals between the glitches is now �t(15) = 132
d and the standard deviation σ (15) = 256 d for the 15 interglitch
intervals. For 11 out of the 15 glitches with observed times to the
next glitch, the estimated tg is longer than tobs. As the sample of
glitches with an observed time to the next glitch has increased
from 9 to 15, the mean accuracy of the estimate has decreased
from �t(9) = 200 d to �t(15) = 132 d, with the standard de-
viation decreasing from σ (9) = 321 d to σ (15) = 256 d. This
strongly supports the validity of the nonlinear vortex creep model,
in particular, to the association of the interglitch �̈ with a recov-
ery process the completion of which indicates the re-establishment
conditions prone to a glitch. It is significant that the mean offset
of our estimates tg from the observed glitch intervals tobs remains
positive, even though the sample almost doubled. Of 15 events in
the present sample, 11 have |�ti | < �t(15) = 132 d. For these 11
interglitch intervals, the mean �t(11) = 14.5 d and σ (11) = 131 d
only, so the model prediction is quite successful. The four events that
have |�ti | > �t(15) = 132 d all have, suggestively, tg significantly
longer than tobs; 344 d < �ti < 712 d, with mean �t(4) = 497 d
and σ (4) = 197 d. These four glitches will be addressed with an
extension of the model, positing that these glitches incorporated
‘persistent shifts’ in the spin-down rate as commonly observed
in the Crab pulsar’s glitches. If there is a persistent shift which
is not taken into account, the estimated tg would be systematically
longer than the observed intervals tobs, as detailed below, suggesting
that the persistent shift may provide the explanation for why all four
instances of >1σ deviations have tg > tobs. Without a systematic
reason, the random occurrence of tg > tobs in these four instances
has a probability of 1/16. The idea that this behaviour, common in
the Crab pulsar glitches, can also occur in some occasional Vela
glitches is consistent with the evolution of glitch behaviour with
age as one progresses from the Crab pulsar to the Vela pulsar and
older pulsars. In the next Section we shall describe and apply a new
extended model for predicting the time to the next glitch.

4 T H E M O D I F I E D I N T E R G L I T C H T I M E S
O F T H E V E L A P U L S A R

The fact that the four glitches whose observed arrival times tobs show
substantial discrepancies arrive earlier than the estimated times sug-
gest that recovery is complete when the spin-down rate returns to
a value somewhat less than its pre-glitch value. This suggests that
each Vela pulsar glitch may be accompanied by a ‘persistent shift’,
a part of the step in the spin-down rate which never recovers, as ob-
served in the Crab pulsar’s glitches (Lyne et al. 2015). For the Crab
pulsar, assuming that the glitches are pure unpinning events with
creep response leads to estimated tg of the order of a few months in
disagreement with the observed glitch times (Alpar et al. 1996). This
is interpreted as evidence that the glitches in the Crab pulsar are not
due to vortex unpinning alone. Alpar et al. (1996) proposed that the
comparatively small (��/� ∼ 10−8) and infrequent (∼6 yr inter-
glitch time intervals) events in Crab are starquakes (Baym & Pines
1971), in conjunction with unpinning events. In the framework of
the vortex creep model, crust cracking is associated with stresses
induced by pinned vortices. This scenario also explains the perma-
nent offsets in the spin-down rate, the ‘persistent shifts’, observed
in Crab pulsar glitches. The persistent change in spin-down rate
is due to newly created vortex traps with surrounding vortex-free
regions introduced by crust cracking. The newly created vortex-free
regions were sustaining vortex creep and contributing to spin-down
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Figure 2. Model fits to post-glitch spin-down rate after the 1994, 1996, 2000, 2004, 2006, 2010 and 2013 glitches. For the 1994 double glitch, the model fit is
applied to data after the second event. The bottom panels show the residuals.
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Table 1. The inferred and observed parameters for the Vela glitches. The entries for the first eight glitches and the ninth glitch are taken from Alpar
et al. (1993) and Chau et al. (1993), respectively. Errors are given in parentheses. The last two columns give the interglitch constant �̈ and the anomalous
braking index nig.

Yr tobs (d) tg (d) �ti (d) (IA/I)−3 (IB/I)−3 (I1/I)−3 (I2/I)−3 (I3/I)−3 (�̈)−21(rads−3) nig

1969 912 1624 712 7.1 8.4 0.59 1.5 5.8 5.0 36.4
1971 1491 1375 −116 7.2 8.8 0.59 1.5 6.4 5.9 43.6
1975 1009 1036 27 7.2 12.4 0.59 1.5 5.1 7.9 57.8
1978 1227 1371 144 6.6 15.2 0.59 1.5 10.0 5.5 40.0
1981 272 616 344 6.3 12.2 0.59 1.5 3.2 1.16 85.0
1982 1067 1485 418 6.0 8.4 0.59 1.5 12.1 4.6 33.6
1985 1261 972 −289 6.5 7.9 0.59 1.5 9.0 7.6 55.6
1988 907 1422 515 4.7 8.2 0.59 1.5 9.5 3.7 27.5
1991 1102 1151 49 7.4 16.2 0.59 1.5 10.7 7.3 53.5
1994 778 765 −13 5.9(0.03) 18.8 (0.07) 0.59 1.5 8.3 8.7 (0.22) 64.1
1996 1190 1072 −118 6.6 (0.02) 13.1 (0.14) 0.59 1.5 12.4 7.0 (0.33) 51.2
2000 1634 1644 10 6.4 (0.02) 12.4 (0.03) 0.59 1.5 4.8 4.4 (0.21) 32.4
2004 767 913 146 6.7 (0.02) 15.8 (0.08) 0.59 1.5 7.6 8.3 (0.19) 61.0
2006 1449 1464 15 5.0 (0.01) 12.4 (0.11) 0.59 1.5 11.8 3.9 (0.23) 23.4
2010 1147 1281 134 6.1 (0.02) 25.2 (0.10) 0.59 1.5 9.2 5.4 (0.17) 39.6
2013 – 1553 – 6.4 (0.01) 13.4 (0.07) 0.59 1.5 6.9 4.7 (0.09) 34.2

Figure 3. The schematic view of the long-term behaviour of ��̇.

before the glitch, while they no longer contribute to �̇ after it. The
resulting permanent shift in the spin-down rate is given by

��̇p

�̇
= Ib

I
, (9)

where ��̇p is the observed permanent change in �̇ and Ib is the
moment of inertia of the newly created capacitor region. Crust
cracking irreversibly restructures the vortex pinning distribution by
introducing new capacitor elements. The steady state �̇ value for
subsequent glitches is permanently reset to a new value that is less
by ��̇p. The next glitch would then occur roughly when �̇ has
returned to ��̇p less than its steady state value �̇n,− before the
previous glitch:

�̇n+1,− = �̇n,− − ��̇p. (10)

If such persistent shifts also occur in the Vela pulsar, they would
be unresolved in the observed total ��̇ in a glitch. However, the
post-glitch nonlinear recovery at constant �̈ would be completed
earlier, as shown in Fig. 3. We now introduce a modified interglitch
time estimator t ′

g, with the hypothesis that some Vela glitches have
a small ‘persistent shift’ as observed in the Crab pulsar.

In the standard vortex creep model (Alpar et al. 1996) in young
pulsars like Crab, there is a building phase in which the vortex trap
and the vortex-free regions surrounding them are being formed in
each glitch, while this building phase is mostly over in the Vela
pulsar. In the Crab and Vela pulsars glitches approximately the
same number of vortices participate in the glitches. This number, the

Figure 4. Spin-down rates at the fiducial epochs tobs (black points,
Model 1), t ′g (red points, Model 2) and t ′g (green points, Model 3) prior
to the next glitch (1971–2013). The best straight line fits used to extract the
braking index n are also shown.

typical number of vortices unpinning collectively, then acts rather in
the manner of a relay race. In the azimuthal direction, the unpinned
vortices move rapidly relative to the crust lattice through vortex-
free regions that surround the distribution of vortex traps, while
scattering some small distance in the radially outward direction. By
the time one batch of unpinned vortices have equilibrated with the
superfluid flow they will have ‘passed the baton’ by causing the
unpinning of a similar number of vortices in vortex traps that were
close to critical conditions for unpinning. In the Crab (and other
young pulsars) the vortex traps are yet sparse. A batch of unpinned
vortices will affect a few other traps on their path and trigger these
traps to unpin, but the avalanche will not travel far, as it fails to
find more traps to unpin. So the total radial distance (or moment of
inertia) that the relays of unpinned vortices travel through is only a
small fraction of the moment of inertia in the crust superfluid. The
size of the glitch depends on the total angular momentum transfer
from the superfluid to the normal matter crust. Hence, the Crab
glitches are much smaller than those in the Vela pulsar. The fact
that older pulsars all exhibit glitches that are comparable in size
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Table 2. Estimations of the model parameters for the four glitches for
which tg is considerably longer than tobs if the persistent shift is the same
magnitude as the average value for Crab, ��̇per/�̇ = 2.5 × 10−4.

Yr tobs (d) t ′g (d) �ti (d) (IA/I)−3 (IB/I)−3

1969 912 1567 655 6.9 9.0
1981 272 592 320 6.1 12.9
1982 1067 1423 356 5.8 9.1
1988 907 1346 439 4.5 8.9

to those of the Vela pulsar suggests that these glitches involve the
entire crust superfluid, which represents a connected network for the
unpinned vortices to percolate through in relays. The Crab pulsar
glitches only involve a small segment of the crust lattice connected
to the current site of vortex unpinning, so that the Crab pulsar
glitches are not much larger than the minimum glitch size recently
resolved (Espinoza et al. 2014). Thus we arrive at an evolutionary
picture, with vortex traps formed in each successive glitch building
up from disjoint segment networks of neighbouring vortex traps
where unpinning events can travel, as in the Crab pulsar, into a
connected network allowing unpinning events to percolate through
the entire crust superfluid, defining the maximum glitch size, as
observed in Vela and older pulsars. This is supported by the fact
that Vela and older pulsars have occasional small Crab-sized glitches
while all of the Crab pulsar glitches observed so far have magnitudes
��/� ≤ 10−8. Having exhibited two distinct small, Crab-sized
glitches, the Vela pulsar might also have Crab-like persistent shifts
in the spin-down rate accompanying some of its glitches. Thus, we
are now allowing for the possibility that the Vela pulsar may still
be rearranging its network of vortex traps by forming a new vortex
trap and surrounding vortex-free region during some glitches.

The part of the ��̇ associated with the permanent shift cannot
be discerned at the time of the glitch. Being a persistent shift, it
will not relax back. The part of the step down in �̇ that restores
with a constant �̈ will continue the recovery until new steady state
conditions that include the persistent shift are reached. A schematic
view of the long-term behaviour of �̇(t) is depicted in Fig. 3. In
models with persistent shifts, the triangle has less depth, and the
estimated time of the next glitch is a bit shorter. This will make
the predicted glitch times closer to the observed values. The new
estimated glitch time intervals become

t ′
g = tg − |��̇p|

�̈
= |��̇|

�̈
− |��̇p|

�̈
, (11)

where ��̇ and ��̇p are the total and the permanent step in the
spin-down rate, respectively.

The values of ��̇p/�̇ are between (0.2 − 6.6) × 10−4 for Crab
pulsar glitches (Lyne et al. 2015). It may be different in Vela due to
evolutionary reasons. We focus on the four glitches, for which the
estimated time tg to the next glitch was considerably longer than the
observed interval tobs. As Model (2), we assume that each of these

four glitches had a persistent shift of the same fractional magnitude
as the average persistent shift for the Crab pulsar glitches.

��̇p

�̇
=

〈
��̇p

�̇

〉
Crab

= 2.5 × 10−4

The new estimates t ′
g and �ti are given in Table 2. The mean and

standard deviation for the four glitches are now �t(4) = 443 d and
σ (4) = 150 d, while for the full sample of 15 glitches �t(15) = 117
d and the standard deviation σ (15) = 241 d. Introducing persistent
shifts of the same magnitude as observed in the Crab pulsar is
clearly not enough to make better estimates of the arrival times of
the next glitch. We next consider the possibility that these five Vela
glitches involved a major restructuring of the vortex trap network
so that tg was reduced by a third. The estimates t ′

g = (1 − 0.33)tg,

Model (3), given in Table 3, lead to �t(4) = 73 d and σ (4) = 152 d,
while for the full sample of 15 glitches �t(15) = 18 d and the
standard deviation σ (15) = 127 d. Tables 2 and 3 also give the model
parameters IA/I and IB/I. We have applied Kolmogorov–Smirnov
(KS) tests to Model(1), without persistent shifts, and Model(3), with
persistent shifts corresponding to a substantial rearrangement of the
vortex creep regions. We first construct a cumulative distribution for
the observed interglitch intervals tobs, without binning. Comparing
the cumulative distribution of our Model(1) estimates tg with the tobs

cumulative distribution, we find that the null hypothesis is rejected
at a confidence level of only 39 per cent. Comparing the cumulative
distribution of the estimates t ′

g of Model (3) with the cumulative
tobs distribution, a confidence level of 98 per cent is obtained. We
conclude that our Model(3) with large persistent shifts produces
substantial agreement with the observed glitch time intervals. The
simulations of Melatos & Warszawski (2009) and Warszawski &
Melatos (2011) also suggest that a substantial fraction of vortex
traps and vortex-free regions are involved and rebuilt in each glitch.

5 TH E B R A K I N G IN D E X O F TH E V E L A
PULSAR

We now use the above results to calculate the braking index for
the Vela pulsar. Estimating the braking index requires modelling
and subtracting all contributions of glitches and post-glitch and
interglitch recovery. Lyne et al. (1996) did this by assuming that
�̇ values 150 d after each glitch are already clean of post-glitch
response and estimated a braking index n ∼= 1.4. They used a post-
glitch epoch when all short-term exponential relaxation components
with τ 1 = 10 h, τ 2 = 3.2 d and τ 3 = 32 d are over, but the
interglitch recovery is far from finished. However, one also needs
to take account of the constant �̈ response, which extends to the
next glitch. The appropriate epochs when interglitch response is
completed should be those that are just prior to the subsequent
glitch. Espinoza et al. (2017) take into account the constant �̈ term,
but assume that this recovery is not completed before the next glitch.
The data fits in this work do not extend to the end of the interglitch
interval. Instead fiducial epochs are chosen by extrapolating the ν̇(t)

Table 3. Estimations of the model parameters for the four glitches for which tg is considerably longer than tobs

if t ′g = (1 − 0.33)tg (Model 3).

Yr tobs (d) t ′g (d) �ti (d) (��̇per/�̇)−3 (IA/I)−3 (IB/I)−3

1969 912 1088 176 2.3 4.8 15.5
1981 272 413 141 2.4 3.9 21.1
1982 1067 995 −72 2.3 3.7 15.3
1988 907 953 46 2.3 2.4 14.5
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(�̇) fits back to immediately after the previous glitch. They obtain
n ∼= 1.7 ± 0.2, and suggest that this low-braking index is due to
incomplete recovery of the glitch in the spin-down rate. But the
recovery continues up to, and is actually completed at, a time just
before the next glitch.

In those glitches for which timing observations immediately be-
fore the next glitch are not available, we obtain the �̇(tobs,i) values
at the epochs immediately prior to the next glitch by extrapolating
from our fits with constant �̈. We then produce the very long-term
(between the years 1969 and 2013) �̈PSR values for the Vela pul-
sar by the best linear fit to the �̇(tobs,i). This gives the estimate of
�̈

tobs
PSR = (3.83 ± 0.15) × 10−22 rad s−3 leading to the braking PSR

index ntobs = 2.81 ± 0.12 for the Vela pulsar, with

n = ��̈PSR(
�̇

)2 , (12)

where � = 70.4 rad s−1 and �̇ = 9.8 × 10−11 rad s−2 are the aver-
age values over the 47 yr data span. The quoted errors in the braking
index are propagated from the errors in our long-term fit for �̈PSR.
The braking index ntobs = 2.81 ± 0.12, using spin-down rates just
prior to the observed time of the next glitch, is independent of any
estimations of the glitch time. It is based only on the premises that
the approximately constant second derivative of the rotation rate
observed at interglitch epochs (i) is due to internal torques and (ii)
determines the value of the spin-down rate just prior to the next
glitch. This is supported by all the instances where timing data ex-
tend up to the next glitch. These data sets are well described by
a constant �̈ all the way to the next glitch, without any precursor
signatures prior to the glitch. This justifies using extrapolations with
the constant �̈ in those interglitch data sets that do not extend to the
next glitch.

Our other estimates of the braking index pick an estimated time of
the next glitch (16 estimates including the next glitch after 2013) and
are thus model dependent. Model (3) which gives better estimations
of glitch times leads to nt ′g = 2.87 ± 0.17. Within error bars, this is
consistent with ntobs = 2.81 ± 0.12.

6 C O N C L U S I O N S

We have confirmed that the interglitch timing behaviour of the Vela
pulsar in the cumulative data from discovery to 2016, covering
16 glitches is characterized by a recovery of the spin-down rate
at a constant �̈, as was seen in the earlier data up to the ninth
glitch. Power-law behaviour, like the constant �̈, is a clear signal
of nonlinear dynamics. This behaviour results from the cumulative
manifestation of the step like (‘Fermi function’) recovery of the
spin-down rate predicted by the vortex creep model (Alpar et al.
1984a) that has been directly observed in the Vela pulsar (Flanagan
1995; Buchner & Flanagan 2008). It is expected to determine the
interglitch timing once the linear response in the form of exponen-
tial relaxations is over. The interglitch second derivative �̈ of the
rotation rate is determined by the parameters of the previous glitch.
The completion of this ubiquitous interglitch behaviour signals the
arrival of the next glitch and allows for an estimate of the time of the
next glitch. We have shown that the constant behaviour dominates
the interglitch interval for the full Vela pulsar data set comprising
16 glitches so far. Beyond the phenomenology, for 11 of the 15
intervals between glitches �̈ relates to the glitch parameters in the
way predicted by vortex creep theory, leading to predictions of in-
terglitch intervals that agree with the observed glitch dates within

12 per cent. This level of agreement between theory and observation
represents strong evidence in support of the nonlinear vortex creep
theory.

The rms residuals from the constant �̈ fits are �5 per cent of ��̇.
These deviations correspond to spatial fluctuations from a uniform
density of vortices unpinned in the glitch which gives rise to the
constant �̈ recovery.

With the daily monitoring of the Vela pulsar at HartRAO timing
data extending to the next glitch are available for interglitch intervals
since 1985, confirming the constant �̈ behaviour. In those cases
where there is a gap in the data prior to the next glitch, we have
extrapolated the interglitch data to the epoch prior to the next glitch.
Using observed or extrapolated values of the spin-down rate at the
epochs prior to the glitches, we arrived at a braking index n = 2.81 ±
0.12. This value is in agreement with the braking indices n ≤ 3
observed for most isolated pulsars (Melatos 1997; Antonopoulou
et al. 2015; Archibald et al. 2015; Lyne et al. 2015; Clark et al.
2016).

Furthermore, we find there is an explanation of the four cases
for which the interglitch intervals predicted by the standard vortex
creep theory are considerably longer than the observed intervals,
with a mean fractional offset �t(4) = 497 d and standard deviation
σ (4) = 197 d. We propose that for each of these glitches there
might be a persistent shift in spin-down rate that does not relax
back entirely. This step which is commonly observed in the Crab
pulsar glitches, would not be distinguished observationally as a part
of the glitch in the spin-down rate. We introduce the possibility that
some Vela glitches may involve the making of new vortex traps
and vortex-free regions, as postulated earlier to explain the Crab
pulsar’s persistent shifts within vortex creep theory. After each glitch
these newly restructured regions no longer contribute to spin-down
and cause a permanent shift in the spin-down rate. The triangle
interglitch behaviour in spin-down, which restores with a constant
�̈, is then completed somewhat earlier, restoring conditions for a
new glitch. Deriving the modified estimator for the time between
glitches by using this consideration, with persistent shifts of the
average magnitude observed in the Crab pulsar, our Model (2),
does not result in appreciable improvement of the estimates of the
interglitch intervals. If we assume, as in Model (3), that as much as a
third of the Vela pulsar’s vortex creep network is restructured in each
of these four glitches, the new interglitch time estimates after the
four glitches have a mean fractional offset of only �t(4) = 73 d and
standard deviation σ (4) = 152 d for the full sample of 15 glitches
with an observed interval to the next glitch. It is suggestive that for all
four glitches with tg significantly longer than tobs the idea that some
glitches involve restructuring of the vortex creep network leads to
better estimation. We do not have an understanding of why these
particular four glitches involve rather substantial rearrangements,
but this may be only natural in a complex system with nonlinear
dynamics where the glitches are instabilities of the pinned vortex
distribution, possibly triggered in interaction with lattice stresses.
We use Models (2) and (3) as estimates of the range in predicted
arrival times of the glitches, leading to a corresponding range of the
braking index, n = 2.93 ± 0.15 for Model (2) and n = 2.87 ± 0.17
for Model (3). These are consistent, within error bars, with the value
n = 2.81 ± 0.12 obtained by using extrapolations to the epochs just
prior to the next glitch.

We can now present predictions for the time of the glitch accord-
ing to the vortex creep model. The next glitch will occur around
tg = 1553 ± 132 d after the last observed glitch of 2013, around
2017 December 22, if no persistent shift was associated with the
2013 glitch. If a persistent shift of the order of those observed in
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the Crab pulsar occurred then the glitch interval is tg = 1514 ±
183 d, predicting the arrival of the next glitch around 2017 Novem-
ber 11. If the 2013 glitch induced a large persistent shift associated
with major restructuring of the vortex creep network, the next glitch
will take place as early as 2016 July 27, within an interval of tg =
1040 ± 152 d. The uncertainties for each case correspond to one
standard deviation.

An approximately constant second derivative of the rotation rate
correlated with glitch parameters is also seen in the post-glitch or
interglitch timing of most older pulsars which exhibit Vela-like giant
glitches (Yu et al. 2013). Furthermore, the ‘anomalous’ braking
indices observed from many pulsars (Johnston & Galloway 1999)
can be understood as due to nonlinear creep response, with rotation
rate second derivatives correlated with glitch parameters similar to
those of the Vela pulsar (Alpar & Baykal 2006). The long-term
interglitch timing of the Crab pulsar covering all glitches so far
(Lyne et al. 2015; Čadež et al. 2016) and the large glitch associated
change in the reported braking index of PSR J1846-0258 (Archibald
et al. 2015) are also associated with the interglitch �̈ predicted by
the nonlinear vortex creep model, as we will discuss in future work.

Literally while we were submitting the first version of this paper
we saw ATel # 9847 from Jim Palfreyman of the University of
Tasmania, announcing that the Vela pulsar had glitched on that day,
2016 December 12 (Palfreyman 2016). The glitch has arrived 138 d
late, within the 1σ uncertainty of 152 d from the prediction of our
model with a persistent shift.
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