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Abstract

In this study, we consider a failed series system in which any of the components

in the system can be the cause of the failure with different independent probabili-

ties. We are allowed to sequentially test the components in the system to localize

the faulty one. Prior probability that a component is the cause of the failure as

well as the cost of testing a component are known. We consider unreliable tests

in which a test can identify a component as working when in reality it is down,

and vice versa. Therefore, there are costs corresponding to misclassification of the

components in the system and the total expected cost of diagnosing becomes sum

of inspection costs and misclassification costs. In this study we propose a model

in which the repetition of tests are allowed at most once to minimize the total ex-

pected cost. Therefore, the aim here is to not only determine the best test sequence,

but also the best repetition strategy with minimum expected cost. The complete

mathematical model which covers all repetition strategies is introduced. Different

characteristics of the model are discussed and numerical results are presented to

demonstrate the possible cost reductions through repetition of tests.
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ÖZET

Bu çalışmada her hangi bir bileşeninin çalışmaması sebebiyle çalışmayan bir seri sis-

tem ele alınmaktadır. Bileşenler tek tek sınanarak hangi bileşenin hatalı olduğunu

bulmak ana amaçtır. Ancak bileşenlerin sınanması maliyetlidir ve bileşenlerin sis-

temin çalışmamasına sebep olma ihtimalleri bilinmektedir. Sınama işlemi için kul-

lanılan testler ise yanlış sonuçlar verebilmektedir. Bu çalışmada toplam beklenen

maliyeti (sınama maliyeti ve çalışmayan bileşenin yanlış belirlenmesinin maliyeti)

enazlayan stratejiyi bulmaya çalışıyoruz. Testler yanlış sonuç verebildikleri için en

çok bir kez olmak kaydıyla testlerin tekrarına izin veriyoruz. Bu durumda bir strateji

bileşenlerin bir sıralaması ve tekrar edilip edilmeyeceği bilgisinden oluşmaktadır.

Bununla ilgili matematiksel model ortaya konmakta, modelin özellikleri çalışmakta,

toplam maliyeti hesaplayan formüller türetilmekte ve testleri tekrar ettiğimiz du-

rumda elde edilebilecek maliyet avantajı sayısal sonuçlarla gösterilmektedir.
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Chapter 1

Introduction

Although it is possible to keep complex systems running for longer time periods by

using methods like preventive maintenance, one cannot totally avoid failures. Once

a complex system has failed, it is very important to find out what is causing the

failure with minimum total cost (or in minimum time) in the long run. In order to

find out the cause of the failure, one typically needs to conduct costly tests on certain

sub-systems that make up the whole system. In practical situations, the tests are

not perfect. Unreliable nature of the tests which is mostly due to incorrect setup,

operator mistake, unsuitable environmental condition, or imprecise measurement

instruments, is considered as an important issue in the field of systems reliability

and maintenance. This feature of the tests introduces a stochasticity aspect to the

diagnosis process. For instance, a test on a certain subsystem can provide a result

of ”failure” although that subsystem is in fact working. So it is possible that one

can mistakenly conclude that a working subsystem is failed or a failed subsystem is

working. In both cases, there can be costly consequences. In the former case, one

may incur some costs due to trying to repair a working component and assuming

wrongly that the system has been repaired. Whereas, in the latter case, one can try

to run the whole system with a failed sub-system leading to costly problems. When

the tests are imperfect, another possibility is to repeat certain tests. This way, it

may be possible decrease the frequency of incorrect conclusions, hence decrease the

total cost in the long run.

In this work, we consider a series-system that has just failed where tests are imper-

fect. We tackle the problem of identifying the cause of failure with the minimum

1



Chapter 1. Introduction 2

expected cost. The total expected cost is the sum of expected inspection costs and

misclassification costs. We consider two models where we allow repetition only af-

ter a positive result and only after a negative result. For this problem, a feasible

solution is a permutation of the tests along with the information whether or not

the test is repeated. For instance, for the case of allowing repetition after a positive

result, we test the components one by one in a feasible strategy. In case, we decide

to repeat a test, we conclude that it is the reason of failure if we get two positive

results. Otherwise, we continue by executing the next test. Essentially, we allow a

certain type of repetition. Imperfect tests have been considered in the literature in

similar testing problems in [1] and [2]. Yet, these works do not allow repetition of

the tests. The problem is already complicated for a series-system. A series system

is a special case of many different types of systems including k-out-of-n systems,

threshold systems, etc. So it is quite natural to start from investigating the problem

for a series-system.

The main contributions of the thesis can be summarized as follows:

a) We introduce a model where we allow repetition of imperfect tests to decrease

the total expected cost.

b) We show how to compute the expected cost of a given solution for two different

repetition policies.

c) We propose a local search and a generic algorithm to find good solutions.

d) We conduct numerical experiments to demonstrate the possible gains by re-

peating tests and the effectiveness of the proposed algorithms.

The organization of the remainder of the thesis is as follows. We provide a formal

problem definition and a literature review in chapter 2. We show how to compute

the expected costs under two types of repetition policies in chapter 3. We provide

the details of the local search and genetic algorithm in chapter 4. The results of the

numerical experiments are presented in section 4.4 and we conclude by section 4.5

in chapter 4.



Chapter 2

Problem definition and Literature

Review

2.1 Problem Definition

In this study we consider a repairable series system with N components which is

not functional. Since failing at least one of the components in this system provides

sufficient condition for the system to fail, we assume that cause of the failure is

exactly one of the components which has recently failed. This is because the lifetime

of the components are continuous random variables. We aim to locate the failed

component in this system by applying a sequential test strategy. Executing a test on

component j costs us an inspection cost Cj and the prior probability that component

j is failed is shown with Pj. Clearly, depending on both the type of the system

and the aim of diagnosis, Cj represent capital, time, pain, or depreciation of the

component. Based on our assumption that there exist exactly one faulty component

in the system we can clearly state that for a failed series system with N components∑N
i=1 Pi = 1.

In this thesis, we attribute the terms positive and negative to discovery of down and

up states of a component, respectively. Type-I (false positive) error corresponds

to the probability of deriving a positive state for component j when in reality it

is active. For instance, a product on production line may fail to pass the quality

3
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control section because of a false positive alarm. On the other hand, we define type-

II error (false negative) as a wrong negative outcome of a test on a component. For

example, this happens when a health monitoring system fails to detect the faulty

part of a complex system when in reality there exist a non operative component.

The following expressions as well as Table 2.1 shows the difference of two error

types. Throughout this thesis we consider α and β as type-I and type-II errors

respectively.

Actual State
down up

Test Result
positive 1− β α
negative β 1− α

Table 2.1: Type-I and type-II errors

Type-I error = α = Pr{result positive | component up in reality},
Type-II error = β = Pr{result negative | component down in reality},

Imprecision of a test can cause an increase in the overall inspection cost. On the one

hand, repairing an active component is an unnecessary cost which is a result of a

false positive. On the other hand, failing to find the faulty component is equivalent

to putting the system into operation with a failed component. In this situation, the

system fails to work and it might cause some more components to stop functioning.

In this study, we focus on two cost parameters other than inspection costs which

corresponds to cost of adverse consequences of imprecision of the tests. We consider

Dr and Dn as the constant cost coefficients for when we observe a false positive and

negative outcome respectively. For example, if we assume that we are sequentially

testing to locate the faulty component in our system explained previously, then at

the end of the process for wrongly finding the failed component we have to pay

Dr and if we fail to find the faulty component we will be paying Dn. Depending

on the type of the system these two parameters can vary and take on different

interpretations. For instance, in case of not locating the failed component and

restarting the system, an explosion may occur or in cases in which human beings

are the subject of the diagnosis, Dr might correspond to an unnecessary expensive

operation.
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A basic sequential testing policy for our system in which no repetition is allowed,

is to start from an initial component and continue executing the tests until either

we find a positive outcome which is an alarm for detecting the faulty component

or ending the diagnosis process with a negative result for the N th component. In

the first case, the result might be correct or incorrect with certain probabilities. In

the second case, we understand that we have failed to detect the target component.

Without loss of generality if we consider the solution S = {[1], [2], [3], ..., [N ]} as the

strategy in basic sequential testing policy, then Figure 2.1 represents the decision

tree corresponding to that strategy for solution S.

Each node which has at least one successor represents a decision point in which we

test the ith component written inside the node. In these parent nodes, we either

continue with testing (i+ 1)th component by observing a negative result or enter to

a terminal node. All the terminal nodes with component number written inside a

parenthesis are the termination of testing with detecting (i)th component as faulty.

We enter these child nodes whenever we observe a positive outcome. There are N

such leaf nodes that correspond to detecting any of the components as faulty. Leaf

node (NF ) represents a termination node in which we have observed N negative

results and have failed to locate the non operative component. Numbers 0 and 1

written on the links show negative and positive results, respectively.

Figure 2.1: Decision tree for basic sequential testing policy.

In this thesis we aim to apply a new policy to detect the faulty component of an

inoperative series system with N components in which it is assumed to possess
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exactly one failed component. We apply a sequential testing policy in which repe-

tition of tests are allowed at most once immediately after performing the first test.

If we look at the testing problem in the view of expected cost, we can divide the

total cost into inspection cost and misclassification cost. Repeating the tests on

the components of the system can improve the chance of accurate localization of

the failed component and consequently it reduces the total cost of misclassification.

It happens because the precision of detecting a fault correctly will increase in the

second test. Therefore, the less mistake we make, the less misclassification cost we

will pay.

Based on the presented argument, a trade off happens between inspection cost and

misclassification cost while diagnosing a system. It provides us the opportunity to

examine different test policies for discovering of the system. Repetition of tests can

be established in different procedures. In a sequential testing strategy, the repetition

of a test on component i can occur either right after doing the test or execution

of tests on some other components can happen in between. In both of these cases,

the repetition of the test happens under different circumstances. Depending on the

system and the situation, one might decide to repeat the execution of all the tests

for a predetermined number of times, or it can be the case for some tests with

specific parameters. The repetition policy can be dynamically handled and applied.

By this we mean one might be interested in repeating the tests when some sort

of conditions is satisfied. Therefore the decision about repeating the test is made

during the diagnosis process.

In this work we propose two repetition scenarios. In both cases, we only allow

repetition right after performing the first test and it is allowed at most once. The

main difference between our polices is that, in one of them repetition is allowed after

observing a positive outcome and in the second one it is allowed when a negative

result is observed. In order to show the repetition in our models, we consider binary

row vector V with size N in which the V (i) = 1 or 0 represent whether to re-execute

a test on component i or not, respectively.

Since we are sure about existence of a failed component in our system, our first

model concentrates on improving the chance of detecting that down component.

That leads us to consider a dynamic repetition policy in which we might repeat a

test whenever we observe a positive outcome for a test. In this model, we start
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with an initial component and execute a test. If the result of the test turns out to

be negative we continue the diagnosis process by testing next component. But if

the outcome shows that component [i] is in down state, we will check the value v[i]

in V . If it has taken on the value 1 we repeat the test for the second time, and

if it is otherwise we stop the diagnosis process by introducing element i as faulty.

In the first case, where we are required to execute another test on component i,

the continuation of the process will depend on the outcome of the second test. By

this we mean, in the second test on the component if we again observe a positive

outcome, we stop by determining the corresponding component as faulty. On the

other hand if the result is negative we will move to component [i+ 1] and continue

until a component is located as failed or all the components are tested without

localizing the failed element.

We believe that such a policy can be beneficial to apply in the systems which

disposition of the components is highly expensive. Disposition mainly occurs as

a consequence of a wrong positive outcome. When a component is detected as

faulty while in reality it is in up state, we repair or replace it with a new working

component and restart the system. But since our diagnosis was terminated with a

false positive result, we conclude that the failed component is still in the system and

the system will breakdown after it is restarted. As an example consider a system in

which the repair cost of the components or the price of the components are high.

In this system, one prefers to pay more in inspection process in order to prevent an

unnecessary repair or replace.

In the second model that we propose, the repetition of tests are allowed at most

once right after observing a negative outcome. Similar to other model, we start the

diagnosis process by the first component in S. In any step, if a positive result is

observed we stop diagnosing by introducing the corresponding component as faulty.

On the other hand, if a negative result is detected for component [i], we check

the value of vi in V . If the corresponding value is 0, we continue the process by

testing component [i+1] and if it is otherwise, the test is repeated on the component.

Depending on the result of the second test, we either continue the process by testing

component [i+1], or stop the process by determining [i] as failed. While the former

case happens when a negative result is observed, the later one occur if the outcome

is positive.



Chapter 2. Problem definition and Literature Review 8

2.2 Literature Review

The most related study to our problem can be found in the work of Nachlas et al [1].

Our model is an extended version of testing model proposed in that study where

repetition of the tests is not allowed but the tests are imperfect. They develop a

basic sequential testing model and consider cost of negative consequences of test

errors. They provide an algorithm which finds the optimal solution with minimum

expected cost of diagnosis for small systems (less than 10 components).

Another very similar type of problems are called ’discrete sequential search prob-

lems’ presented for the first time by Koopman [3]. There are a set of N boxes

available and it is assumed that an item has been hidden in one of them. The prior

probability that the item is located in box i is known to be pi (
∑
pi = 1) and there

are two costs associated with the problem. One is cost of inspection which can be

interpreted as time, energy, or limitation of instruments, searchers or capital and

other one is the cost of not finding the hidden object which take on be determined

based on the application of the problem. An introduction to the literature of search

problem is provided in L.H. Nunn’s work [4] in which different aspects of the the

search problem like type of the search region, movement of the target ..etc.

Unreliable tests are applied to stationary target search problems in which the pa-

rameter αi is considered as type-II error corresponding to searching the box i [5]. αi

is the probability that the item will not be found in box i even if it is there in reality.

An optimal strategy for this problem was proposed by Bellman [6] for the first time

where the descending order of the ratio (pi(1− αi)/ci) provides minimum expected

cost of searching. Using this result, Glus [7] proposed an optimal detection strategy

for the diagnosing model of complex multi-component systems. They consider a

system with N modules containing n(1), ..., n(N) components where a breakdown

has occurred . The aim is to find the best test solution with minimum expected time

taken for test and repairmen. Although the tests are not reliable, they repeatedly

perform the tests until the fault point is isolated properly. Another study in which

the cost of repairing is considered, can be found in [8]. The difference is that the

tests are perfect. Wegener [9] has considered the case in which a search may fail to

detect the target in box i in the first look and they may recheck the box to find the

object. He showed that the problem of surly finding the object has a finite expected
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cost and then he provided a procedure to compute the optimal strategy.More fault

detection problems with imperfect tests can be found in [10][11][12].

Kress et al. [13] provides an optimal greedy algorithm for the search problem when

false positive detection of the tests are considered. They also argue that for some

special case of the problem the proposed algorithm maximizes a probability objec-

tive. There are studies in discrete search problems where the imperfect assumption

for the tests are ignored. Which means if a test provides a positive result for a box

(component), the item (fault point) is localized. Song et al. [14], has considered

perfect diagnosis of the boxes.

Raghvan et al. [15] consider a system with a single fault point and a set of imper-

fect tests available each of which can be performed on a subset of components. A

threshold is specified as confidence of detecting a faulty component. The repetition

of the tests are allowed to improve the confidence of the diagnosis. Performing the

tests are costly and when a fault source is detected it will be repaired or replaced

with a specified cost. Additionally they consider a penalty for a missed repair/re-

placement occurrence. The best policy is the one which minimizes total expected

cost of diagnosis (including all the cost sections). The problem is behaved as a

partially observed Markov decision problem and continuous dynamic programming

(DP) is applied to solve it. Other works in which imperfect tests are considered are

[16][17].

Ding et al.[18] have consider repetition of imperfect tests on products of a produc-

tion line. The main aim of their work is answering the question whether to retest

conforming or non-conforming products. The purpose of retesting rejected items

is to reduce the scrapping problems while the goal of retesting the accepted items

is improving the outgoing quality. The general model in their work is a minimiza-

tion problem where the scrapping and testing costs are minimized and the outgoing

quality as well as testing machine availability are considered as constraint of the

problem. They compare two different repetition policies and conclude that under

certain circumstances the retesting rejected items will result in lower utilization of

the testing machine.

There are studies in the literature which consider sequential test problems with

perfect tests to either determine the state of a system or localize a fault point of
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a failed system. A comprehensive review of different types of sequential testing

problems can be found in Ünlüyurt [19].



Chapter 3

Models and Formulations

3.1 Models

3.1.1 Repetition After a Positive Outcome

In this section, we propose an optimization model that finds the best sequential

testing strategy that allows repetition with the minimum expected cost. The model

includes an objective function which is going to be minimized over a feasible space

U . Set U includes all possible solutions u =

[
S

V

]
in which S corresponds to the

vector of a permutation of size N and V represents the binary row vector in the set

of all binary combinations of size N . By this we mean, a solution u2,N ∈ U includes a

permutation strategy and a repetition policy which both together are considered as

a feasible solution for our objective function. Therefore, since there are N ! possible

permutations and 2N possible binary combinations for a system with size N , the

size of our feasible space U will be |U | = N !.2N . In order to formulate our model,

we first consider a case in which the tests are repeated whenever a positive outcome

is observed. This means we focus on the case that V = 1 in which 1 is the vector

with all components equal to one.

Without loss of generality, we consider the solution S = {[1], [2], [3], ..., [N ]} in which

[i] represents ith position in the sequence. Figure 3.1 represents the decision tree

for repetition policy in a system with three components. As we can see from the

11
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tree, number of nodes increase exponentially with the system size. In comparison

to the basic sequential testing policy where no repetition is allowed, here we deal

with a larger tree. In basic sequential testing strategy the decision tree contains

(N + 1) leaf nodes which corresponds to number of possible terminations of the

diagnosis. While the decision tree for repetition case can terminate in (2N+1 − 1)

possible nodes. In (2N − 1) leaf nodes, we end the testing process by detecting a

component as failed and in (2N) cases we stop by a negative outcome for the last

component.

As it is shown in Figure 3.1, we start with component [1] and depending on the

result of the test we either enter node C1 or A
′
1 if a negative or positive outcome

occurs respectively. Each node represents a testing station for a component while

the links transfer the testing process to either next component or the second test on

the same component. Binary numbers 0 and 1 written on the links show negative

and positive results, respectively. If a node is a station in which a test is performed

on a component for the second time, we use i
′

notation. While those leaf nodes

with a number written in a parenthesis indicates the termination node in which the

corresponding component is determined as failed, other termination nodes showed

by (NF ) are those in which the diagnosis process in ended without isolating any

faulty component.

Figure 3.1: Decision tree for repetition policy when V = 1.

In order to explain the formulation of our problem, we first focus on inspection cost

and then continue with misclassification costs. As we stated before, we consider

cost Ci for executing a test on component i. On the other hand, testing component
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i is an event which happens with a probability. Therefore, the inspection cost of

a predetermined solution S is the expected cost of diagnosing the entire system.

Equation (3.1) is the general form of inspection cost in which H[i] is the probability

of executing test on the component tested in ith order and it is the summation of

all the probabilities in all the nodes in which component i is tested without noting

whether it is the first or second test on the component. We show the total expected

cost of inspection of S by:

E[IC(S)] =
N∑
i=1

C[i]H[i] (3.1)

In order to make our job easier, we will have a different look at first and second test

of a component. We consider M[i] and M[i′ ] notation to show the total probability

of doing test on component i for the first and second time respectively. Therefore

we can rewrite the equation (3.1) as the following:

E[IC(S)] =
N∑
i=1

C[i](M[i] +M[i′ ]) (3.2)

As an example, in Figure 3.1, nodes D1 to D4 are those in which we execute a test

for the first time and in D
′
1 to D

′
4 we perform the second test on the component

positioned in place 3. Consequently the M[3] is the summation of all the probabilities

of entering nodes D1, D2, D3, and D4. Therefore, if we concentrate on calculating

the probabilities of occurring these events separately, we would be able to quantify

the total amount of M[3]. If we apply same calculation for all the components, we

will be done with formulating the inspection cost of the complete system.

We start the diagnosis process by testing the component staying in the first position

of the solution S. Thus, the probability of performing a test on component [1] is

equal to 1. Performing test on component [2] occurs in nodes C1 and C2 and they

depend on the results that has happened before. If we observe a negative outcome

in node A1 we will enter node C1 which correspond to probability of doing test in

that node. We calculate the probability of observing a negative result in any node

by conditioning on the actual state of the component. A component is either in the

up or down state which we can consider as two mutually exclusive events that form
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the sample space W . By applying Bayes theorem for two events A1 and A2, and

event A from same sample space, (equation (3.3)) we will obtain the probability of

entering node C1. (equation (3.4) ).

Pr(A) = Pr(A1)Pr(A|A1) + Pr(A2)Pr(A|A2) (3.3)

Pr(C1) = Pr(′′[A1] = negative′′)

= Pr([1] = down)Pr(′′[A1] = negative′′|[1] = down)

+ Pr([1] = up)Pr(′′[A1] = negative′′|[1] = up)

= β[1]P[1] + (1− α[1])(1− P[1])

(3.4)

Where Pr(C1) is the probability of entering node C1, the statement in the quotation

represents the result of the test in node A1 and ([1] = up(down)) indicates the

actual state of first component. Next node in which a test is performed on the

second component is C2. This event happens when a positive result following by a

negative one happens for first component. The probability of entering node A
′
1 is

shown in equation 3.5. It is obtained by applying Bayes theorem and conditioning

on the real state of component [1].

Pr(A
′
1) = M[1′ ] = (1− β[1])P[1] + α[1](1− P[1]) (3.5)

In order to calculate the probability of doing test in node C1, we need to obtain

the probability of observing a negative result in node A
′
1. In this situation we are

given the information about the state of the first component. We are aware that one

test has been performed on the first component and a positive outcome is observed.

Thus, we can not directly apply equation (3.4) to calculate the probability of a

negative outcome in node A
′
1. Here we need to obtain a revised prior probability

for component [1]. We simply condition on the the observed result to obtain the

probability of real state of component [1] being down. (equation (3.6)).
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Prev[1]inA′1 = Pr([1] = down|′′[1] = positive′′ in A1)

=
Pr(′′[1] = positive′′ in A1|[1] = down)Pr([1] = down)

Pr(′′[1] = positive′′ in A1)

=
(1− β[1])P[1]

Pr(A′1)

=
(1− β[1])P[1]

(1− β[1])P[1] + α[1](1− P[1])

(3.6)

Therefore, the probability of executing a test on component [2] in node C2 can be

obtained as the following:

Pr(C2) = Pr(A
′
1)(β[1]Prev[1]inA′1 + (1− α[1])(1− Prev[1]inA′1))

= β[1](1− β[1])P[1] + α[1](1− α[1])(1− P[1])
(3.7)

The total probability of executing test on the component positioned in the second

place for the first time is the summation of the probabilities of entering nodes C1

and C2.

M[2] = β[1]P[1](2− β[1]) + (1− P[1])(1− α2
[1]) (3.8)

By applying the same technique, we would be able to determine a probability for

entering each node. In each step, we should be careful about calculating the revised

prior probability of component [i]. As we explained before, prior probability of each

component to be the cause of the failure is known before starting the diagnosis

process. But in each step that we perform a test and observe the result, we will be

provided with more information about the system. Thus, we should dynamically

re-evaluate a prior probability for the next upcoming component. This can be done

by conditioning on the results that have occurred on the path starting from root

node and ending at the predecessor of the corresponding node.
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In the following equations we provide probabilities of first and second test on com-

ponents [2] and [3].

M[2′ ] = α[2]M[2] + P[2](1− β[2] − α[2])(1− α2
[1])

M[3] = β[1]P[1](2− β[1])(1− α2
[2])

+ β[2]P[2](2− β[2])(1− α2
[1])

+ (1− P[1] − P[2])(1− α2
[1])(1− α2

[2])

M[3′ ] = α[3]M[3] + P[3](1− β[3] − α[3])(1− α2
[1])(1− α2

[2])

(3.9)

The total probability of executing test on component [i] including both first and sec-

ond tests (H[i]) can be quantified by summing all the probabilities of entering those

nodes in which a test is performed on that component. The inspection probabilities

of components [1], [2] and [3] are provided in equation (3.10).

H[1] = M[1] +M[1′ ] = (1 + α[1]) + P[1](1− α[1] − β[1])

H[2] = (1 + α[2])M[2] + P[2](1− β[2] − α[2])(1− α2
[1])

H[3] = (1 + α[3])M[3] + P[3](1− β[3] − α[3])(1− α2
[1])(1− α2

[2])

(3.10)

As we see in equations (3.9), M[i′ ] is a function of M[i]. On the other hand, we can

formulate M[i] as a recursive function. Equation (3.11) provides both the general

and recursive form of M[i] and also a general formulation of M[i′ ] as a function of

M[i] for a system of size N .
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M[i] =
i−1∑
j=1

β[j]P[j](2− β[j]).
i−1∏

k=1,k 6=j

(1− α2
[k])

+ (1−
i−1∑
j=1

P[j]).
i−1∏
k=1

(1− α2
[k])

M[i+1] = (1− α2
[i])M[i] − P[i].

i∏
k=1

(1− α2
[k])

+ β[i]P[i](2− β[i]).
i−1∏
k=1

(1− α2
[k])

M[i′ ] = α[i]M[i] + P[i](1− α[i] − β[i]).
i−1∏
k=1

(1− α2
[k])

(3.11)

In order to quantify the total cost of misclassification, we need to find the probability

of false outcomes in all termination nodes separately. We first concentrate on false

positive outcome which might happen for component [i] in a leaf node. If we

consider the decision tree provided for N = 3 and V = (1, 1, 1), in leaf nodes

indicated as (i), the component [i] is detected as failed which can be a true or

false outcome. As we explained before, αi is the proportion of times that the test

results in positive if the component is in its up state. Thus, probability of a false

positive result to be observed in a leaf node, is the product of αi times probability

that component [i] is in up state. But this is the case for the situation that a test

execution occurs for sure (in the root node of the decision tree). If we desire to

quantify the probability of a false positive for a component which is tested in lower

levels of the decision tree, we should also consider the probability of performing the

test on component [i]. For example, if we consider leaf node (2) (C
′
1’s successor), we

should multiply the probability of executing a test on component [2] in node C
′
1 by

the probability of false positive outcome. Equation (3.12) provides the probability

of false positive outcome for the entire system which is the summation over all the

leaf nodes in which a false positive outcome can happen.

Prfp =
N∑
j=1

α[j](M[j′ ] − P[j](1− β[j]).

j−1∏
k=1

(1− α2
[k])) (3.12)

By considering sample decision tree provided in Figure 3.1, the chance of not finding
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the failed component in the system corresponds to ending at the leaf nodes speci-

fied with (NF ) notation. On the other hand, leaf nodes (NF ) are the successors

of those nodes in which N th component is tested either for the first or second time.

More importantly, they are the successors which happen after a negative result is

discovered from testing N th component. This means that if we know the probabil-

ities of executing tests in the parent nodes of (NF ) leaves, by calculating a revised

probability for component [N ] in each node we can obtain the chance of entering

those leaves. Equation (3.13) shows the total probability of ending the diagnosis

process without providing any information about the faulty component for a system

of size N .

Prfn =
N∑
j=1

β[j]P[j](2− β[j])
N∏

k=1,k 6=j

(1− α2
[k]) (3.13)

As we see in equation (3.13), Prfn is independent of the strategy. By this we mean

that for any permutation solution in our problem, the chance of not localizing the

failed component is a constant value.

Now we have formulated all the cost components of the objective function of com-

plete (V = 1) repetition policy. For misclassification cost, we consider Dr and Dn

which are two constant coefficients that respectively represent the cost of adverse

consequences of false positive and false negative outcomes. Therefore, the total

objective function for solution u =

[
S

V

]
in which V = 1 is the summation of total

expected cost of inspection and misclassification shown in equation (3.14) which is

going to be minimized over the set of all possible permutations of N .

As we stated at the beginning of the thesis, our main aim was to propose a general

model which covers all the repetition policies. By this we mean, we derive a model

from the one presented in equation (3.14) using which we will be able to determine

not only the best permutation strategy but also the best repetition policy with

minimum expected cost.
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Z = Min E[C(S)] = Min

N∑
i=1

C[i]H[i] +DrPrfp +DnPrfn

Z = Min

N∑
i=1

C[i]

(
(1 + α[i])

( i−1∑
j=1

β[j]P[j](2− β[j]).
i−1∏

k=1,k 6=j

(1− α2
[k])

+ (1−
i−1∑
j=1

P[j]).
i−1∏
k=1

(1− α2
[k])

)
+ α[i]P[i](1− α[i] − β[i]).

i−1∏
k=1

(1− α2
[k])

)

+Dr

( N∑
j=1

α[j](M[j′ ] − P[j](1− β[j]).

j−1∏
k=1

(1− α2
[k]))

)

+Dn

( N∑
j=1

β[j]P[j](2− β[j])
N∏

k=1,k 6=j

(1− α2
[k])

)
Where S ∈ Set of all possible permutations of N

(3.14)

In order to have better explanation about the model let us consider the Figure

3.2. As we explained before, our model provides us with a predetermined solution

u =

[
S

V

]
in a way that both repetition policy (V ) and the permutation strategy

(S) will be known before the diagnosis process starts. In Figure 3.2 we provide the

decision tree for different cases of V . Each time that an element of vector V takes on

a 0 value, an specific part of the complete tree (when V = 1) is removed. Therefore,

in total we will be provided with 2N different trees for a fixed permutation strategy

S. In order to quantify the model for each of these trees we are required to follow

those steps which we applied for the model of a complete tree. Referring to the

structure of the model presented in (3.14), and following the formulation steps we

applied before, we can build a general binary model which covers all the repetition

policies. Let us consider V = (v[1], v[2], ..., v[N ]) as the vector of N binary variables in

which v[i] represent whether or not the ith component in the permutation is repeated

by taking on the values 1 and 0 respectively. Therefore, the formulation presented

in (3.16) is the general optimization model for the repetition case after observing a

positive outcome. As we can see, the presented model includes both models of no

repetition policy presented in Nachlas’s work as well as the every time repetition

model shown in equation (3.14). These two cases can be obtained when the binary
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(a) (b)

(c) (d)

Figure 3.2: Examples of partial repetition for a system with N = 3 components:
(A).V = (0, 1, 1), (B).V = (1, 0, 1), (C).V = (1, 1, 0), (D).V = (0, 1, 0).

vector V = 0 and 1 respectively.

Z = Min E[C(S, V )] = Min
N∑
i=1

C[i](M[i] +M[i′ ]) +DrPrfp +DnPrfn

Where u =

[
S

V

]
∈ U

(3.15)

Where M[i] and M[i′ ] are the probabilities of first and second test execution on ith

component in the permutation strategy and:
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M[i] =
i−1∑
j=1

β[j]P[j](2− β[j])v[j] .
i−1∏

k=1,k 6=j

(1− α[k])(1 + α[k])
v[k]

+ (1−
i−1∑
k=1

P[k]).
i−1∏
j=1

(1− α[j])(1 + α[j])
v[j]

M[i′ ] =


αiM[i] + αi(1−

∑i
j=1 Pj).

∏i−1
k=1(1− α[k])(1 + α[k])

v[k]

+Pi(1− βi).
∏i−1

k=1(1− α[k])(1 + α[k])
v[k] , if v[i] = 1.

0, otherwise.

Prfp =
N∑
j=1

αjα
vj
j

(
M[i] − P[j].

j−1∏
k=1

(1− α[k])(1 + α[k])
v[k]

Prfn =
N∑
k=1

Pkβk(2− βk)vk .
N∏

j=1,j 6=k

(1− αj)(1 + αj)
vj

(3.16)
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3.1.2 Repetition After a Negative Outcome

In this section we provide the details on how we formulated our second repetition

model. In contrast to our first repetition policy in which a repetition of a test is

performed at most once only if a positive result is detected, here we reiterate a test

when a negative or zero outcome happens. The complete decision tree, in which a

repetition of the test happens in all the cases, is presented in Figure 3.3. We use

the term ”negative repetition” for this policy to differentiate it from repetition after

a positive outcome.

Figure 3.3: Decision tree for negative repetition policy.

Provided a permutation solution S and a repetition policy V for the the negative

repetition policy, we start from first component and based on the result of the

test we either terminate the diagnosis by attributing component [i] as failed if a

positive outcome occurs or continue the process by performing next test on the

same component if both a negative outcome is observed and the corresponding

binary value v[i] has taken on the value 1. Otherwise if v[i] = 0, then we keep testing

process by executing a test on component [i+1] and continue until either we observe

a positive result or terminate the process without isolating the failed element in the

system. The i′ notation in Figure 3.3 is applied to show the second (repetition of)

test on component i and the termination nodes labeled with (i) notation indicate

the end of process by reporting [i] as faulty. In order to formulate the negative

repetition policy as an optimization model we apply same technique that we used for
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the main repetition case. Similar to our main model, we consider three sections for

the objective function. The inspection cost is the total expected cost of performing

tests. In nodes labeled as (i), there exist the probability of ending with a false

positive outcome which yields to a cost addition to the objective function. On

the other hand, in node (NF ) we terminate the process without isolating the faulty

component which is definitely a wrong outcome as far as we have assumed that there

exists exactly one failed component in the system. Therefor, we will be required to

pay the cost of adverse consequences that can happen as a result of this detection.

Equation (3.17) is the general form of the objective function for the negative repe-

tition policy. It looks for a solution u∗ which minimizes the total expected cost of

inspection and error costs. The feasible space for the problem is the set U including

all the permutation of N , each corresponding to a strategy, as well as all possible

binary combinations of N for each permutation solution S. Therefore, similar to

our main model, |U | = N !.2N .

Z = Min E[C(S, V )] = Min
N∑
i=1

C[i](M[i] +M[i′ ]) +DrPrfp +DnPrfn

Where u =

[
S

V

]
∈ U

(3.17)

Where similarly M[i] and M[i′ ] represent the probabilities of performing test on ith

component for the first and second time respectively. Equation (3.18) shows the
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formulation of these parameters for a permutation solution S and binary vector V .

M[i] = (1−
i−1∑
j=1

P[j]).
i−1∏
k=1

(1− α[k])(1− α[k])
v[k] +

i−1∑
j=1

P[j]β[j]β
v[j]
[j]

M[i′ ] =

(1− α[i])M[i] − P[i](1− α[i] − β[i]).
∏i−1

k=1(1− α[k])(1− α[k])
v[k] , if v[i] = 1.

0, otherwise.

Prfn =
N∑
j=1

Pjβjβ
vj
j

Prfp =
N∑
j=1

α[j](2− α[j])
v[j]

(
M[j] − P[j].

j−1∏
k=1

(1− α[k])(1− α[k])
v[k]

)
(3.18)



Chapter 4

Discussion

4.1 Complexity

In this thesis we provided two models for two different repetition policies for the

problem of diagnosing a failed series system when tests are imperfect. One of the

common aspect of these two optimization models is the fact that they both search a

same feasible space. In this work, although we did not provide the complexity proof

for the our problem, we provide an argument on the size of the feasible region.

As we declared before, the feasible search space for our problem includes all the

permutations of N and for each specific permutation solution S there exists 2N

possible binary vectors corresponding to all possible repetitions. Therefore, size of

the feasible search space is |U | = N !2N . In Table 4.1 we provide values for the

feasible space size which shows how |U | grows when N increases. In addition to

the large search space of our problem, the objective functions of both our models

are highly nonlinear which makes the evaluation process difficult for any solution

method that directly calculates the value of the expected cost for each input solution

u. These two aspects of the problem has limited us in a way that we are only able

to calculate the optimal value for systems of size N = 8 within a reasonable time

by enumerating all the possible solutions.

25
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N N ! 2N |U |
2 2 4 8
3 6 8 48
4 24 16 384
5 120 32 3840
6 720 64 46080
7 5040 128 645120
8 40320 256 10321920
9 362880 512 185794560

Table 4.1: Growth of the feasible space size by increasing N

4.2 Algorithms

In this section we propose a Local Search (LS) and Genetic Algorithm (GA) to

solve our problems. Additionally, we have applied an enumeration algorithm to

find the optimal solution for small cases (N = 8) in order to be able to compare the

performance of other algorithms by comparing their optimality gaps. Algorithm 1

is the pseudocode for our enumeration procedure.

Algorithm 1 Enumeration

1: BestCost← Inf
2: for all S ∈ PermutationSet do
3: for all V ∈ BinaryCombinationSet do
4: u← [S, V ]′

5: if ExpectedCost(u) < BestCost then
6: BestCost← ExpectedCost(u)
7: end if
8: end for
9: end for

10: return BestCost

In order to have a better understanding of the performance of our algorithms for

the instances with large values of N , we provide a simple greedy algorithm. As

we previously explained the parameters of our problem, Ci and Pi are the cost of

executing a test on component i and the prior probability that component i is failed

respectively. For a relatively good permutation solution we normally expect to see

components with less ratio C/P at the first positions. By this we mean, components

with low inspection cost and high probability of being failed are preferred to be
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tested earlier and a permutation solution obtained by an increasing order of C/P

can be interesting. Another reason why we consider this ratio is that they provide

the optimal search sequence for series systems when the tests are assumed to be

perfect and the only cost in the model is the inspection cost. On the other hand, αi

and βi which are the probabilities of observing a false positive and negative results

for ith component respectively, are preferred to have small values. Therefore, one

might be interested in the permutation solution provided by increasing order of α

and β. In our greedy algorithm we arrange the components based on each of these

ratios to form three permutation solutions.

In order to provide a binary vector for these permutation solution we consider the

parameters associated with misclassification costs Dr and Dn. We believe that for

a fixed permutation solution, the binary solution (repetition policy) which provides

the minimum expected cost is highly dependent on the values of Dr and Dn. By this

we mean that we expect to observe binary solutions with high density of 1 values if

the value of misclassification costs are relatively high and vice versa. Therefore, we

decided to determine probability values for each set of misclassification costs. This

means that, any element vi in V , takes on the value 1 with specified probability.

Since we have generated three sets of values (low, medium, and high) for Dr and

Dn, we also consider three probability values. For low, medium, and high misclas-

sification costs we determined probability values 0.25, 0.5, and 0.75, respectively.

To solve our problem we first applied a local search algorithm under time limitation.

In our LS we used swap moves to search the neighborhood. By this we mean that

u1 is a neighbor of u0 if and only if they differ only in the positions of exactly

two components in the solutions. As an example let us consider the case where

u0(i) =

[
m

1

]
and u0(j) =

[
n

0

]
. If a swap move is applied on u0 then the new

neighbor solution u1 is equal to u0 in all elements except that, u1(i) =

[
n

1

]
and

u1(j) =

[
m

0

]
. We see that a swap move not only changes the position of the

components in the permutation solution, but it also changes the binary value to 0

if it is 1 and vice versa. LS starts with a random solution and by creating random

swap moves continues until the provided time limit is finished.
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In addition to a local search algorithm we applied a GA to solve our problem. GA

is a well designed algorithm for solving different optimization problems. It is a

simulation of evolutionary process of biological organisms in nature which begins

with an initial population of the genes (gene pool) and aims to remove less fit

genes from population and change with more qualified ones. The new generated

genes which are result of crossover and mutation operators on highly fit members

of population will supersede the less qualified members of population. Therefore

after some iteration the population converges to optimal (best fit) solution. In this

work we represent the solution (gene) as u =

[
S

V

]
where S and V are permutation

and binary vectors with size N and ith column is equal to

[
k

1

]
if component k is

tested in ith position and in case that repetition conditions are satisfied, the test

will be repeated. Fitness value equals to the objective function value and since we

are dealing with a minimization problem, solutions with less fitness value are more

qualified.

We apply crossover and mutation operators to our problem as follows. We deter-

mined two values as crossover and mutation rates using which the number of gen-

erated solutions (children) in each iteration of the algorithm is calculated for each

operator. According to our experiments we set 0.2 and 0.8 to be the rate of crossover

and mutation operators, respectively. That means, for instance, the crossover op-

erator will generate 0.2 ∗ PS solutions in each iteration where PS is the size of

the population. In all of our experiments we start with 100 solutions (PS = 100)

as our initial gene pool. In order to explain how crossover operator produces new

children from two parents we take advantage of the example with 5 components

provided as follows. Let us consider u1 =

[
1 2 3 4 5

0 0 1 0 1

]
and u2 =

[
4 2 1 5 3

1 1 0 1 0

]
. We

randomly select a point for the crossover operator after which all the elements of the

solutions u1 and u2 will change their places. New child solutions u
′
1 =

[
1 2 1 5 3

0 0 0 1 0

]

and u
′
2 =

[
4 2 3 4 5

1 1 1 0 1

]
show the results of the crossover operator when the crossover

point was located on the second column. As we see in the permutation solution

there are missing values and instead some values are observed more twice. In order



Chapter 4. Results and Discussion 29

to tackle this problem we generated a random permutation solution for each child

solution and by starting from the first element of the solution we substitute the

repeated values by first missing value from the random permutation vector. If we

consider r1 = (3 4 1 2 5) and r2 = (5 4 1 3 2) as generated random vectors for

u
′
1 and u

′
2, respectively, then the resulting child solutions are, u

′
1 =

[
1 2 4 5 3

0 0 0 1 0

]
and

u
′
2 =

[
4 2 3 1 5

1 1 1 0 1

]
.

The mutation operator in our GA generated new solutions in an almost similar way

as LS. The swap moves change the place of two elements in the permutation vector

and the binary values corresponding to them take on values 1 and 0 with probability

0.5. In order to have a better comparison with LS, we considered a same time limit

for GA. Algorithm 2 provides the pseudocode for our GA.

Algorithm 2 Genetic Algorithm

1: TimeLimit← t
2: initialize the population P := {u1, ..., uN}
3: while time <= TimeLimit do
4: PopFit← fitness(P )
5: {u′

1, u
′
2} ← BestTwoSolutions(P )

6: G1 ← crossover(u
′
1, u

′
2)

7: G2 ← mutation(u
′
1, u

′
2)

8: H ← {P,G1, G2}
9: Hfit← sort(fitness(H))

10: P ← first N members of H
11: end while
12: return Best u ∈ P

4.3 Instance Generation

We compare the performance of our algorithms on randomly generated instances.

Firstly, we generate instances with N = 8 components for which we can find the

optimal expected cost in a reasonable time (within 10 minutes) so that we have

some idea on the observed optimality gap of the proposed algorithms. We conducted

some initial experiments to determine appropriate values for the parameters of the

random instances. There are in total six parameters which we should consider to
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generate our instances. The maximum size of a system that we consider is N = 100.

The individual cost of performing tests (Ci) were generated uniformly between 0

and 20. For the parameters α and β, we generated three different values to see

the effect of these parameters on the diagnosis process especially on percentage of

repetition when they take on different values. On the other hand, the same rule was

applied to generate misclassification costs and we determined three sets of values for

them. Lastly, the prior probability that a component is failed (Pi) was generated

uniformly between 0 and 1 but since the summation of them should be equal to

1, we normalized the results. By conducting some initial runs, the valued of the

parameters were determined as shown in Table 4.2.

Factors Values

N 8, 10, 25, 50, 75, 100
C Uniform(0,20)
P Normalize(Uniform(0,1))
α,β Uniform(0,0.05), Uniform(0,0.15), Uniform(0,0.4)
(Dr, Dn) (100,50), (2000,1500), (10000,8000)

Table 4.2: Parameters of Experimental Design

4.4 Computational Results

In this section, we present the results that we obtained from our experiments. All

the algorithms are coded by using MATLAB. We provide the results for both of

presented models and discuss them in details. First we compare solutions obtained

by our algorithms for small instances (N = 8) for which we have the optimal value.

In this case, we focus on the optimality gaps of different algorithms.

Table 4.3 and 4.4 provide the optimal values as well as the performance of our

algorithms for the positive and negative repetition policies. The values in each

line are the averages of 5 instances generated with same parameter values. At

the top of each parameter set the average of all instances with the corresponding

parameter values are shown. For example, row (50, 100) shows the average of 15

instances and each 5 instances are drawn from one specific misclassification cost

value. Columns GA.Gap, LS.Gap, and Gr.Gap represents the optimality gaps GA,
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LS, and the Greedy algorithm, respectively. The optimality gaps, for example for

GA, are calculated as the difference of GA and optimal cost over optimal cost. The

column N.R.Gap provides the gap between the optimal cost and the cost value of

the optimal permutation solution when there is no repetition (V = 0).

(Dn,Dr) α, β Opt.Cost GA.Gap N.R.Gap LS.Gap Gr.Gap
(50,100) 48.57 0.00% 3.23% 4.76% 10.23%

U(0,0.05) 34.31 0.00% 4.24% 6.09% 9.93%
U(0,0.15) 41.79 0.00% 4.19% 3.54% 13.18%
U(0,0.4) 69.61 0.00% 1.26% 4.65% 7.58%

(1500,2000) 342.33 0.00% 59.51% 5.92% 34.08%
U(0,0.05) 120.20 0.00% 95.83% 2.39% 44.31%
U(0,0.15) 250.22 0.00% 49.02% 7.33% 33.51%
U(0,0.4) 656.59 0.00% 33.69% 8.03% 24.41%

(10000,8000) 1562.67 0.00% 81.81% 6.28% 22.99%
U(0,0.05) 469.34 0.00% 145.94% 2.97% 17.28%
U(0,0.15) 1119.48 0.00% 62.27% 8.41% 31.04%
U(0,0.4) 3099.18 0.00% 37.20% 7.48% 20.66%

Total 651.19 0.00% 48.18% 5.65% 22.43%

Table 4.3: Optimal results for the model of repeating after a positive
outcome,(N = 8)

(Dn,Dr) α, β Opt.Cost GA.Gap N.R.Gap LS.Gap Gr.Gap
(50,100) 54.71 0.00% 3.81% 7.51% 9.59%

U(0,0.05) 35.89 0.00% 0.00% 9.82% 4.27%
U(0,0.15) 45.37 0.00% 0.67% 9.60% 10.37%
U(0,0.4) 82.87 0.00% 10.77% 3.13% 14.13%

(1500,2000) 512.40 0.00% 13.19% 7.18% 29.04%
U(0,0.05) 204.92 0.00% 1.64% 6.11% 27.83%
U(0,0.15) 348.59 0.00% 13.11% 6.05% 33.30%
U(0,0.4) 983.69 0.00% 24.82% 9.36% 26.00%

(8000,10000) 2399.37 0.00% 18.52% 10.20% 35.08%
U(0,0.05) 901.78 0.00% 2.98% 6.31% 42.94%
U(0,0.15) 1589.54 0.00% 23.73% 10.43% 44.84%
U(0,0.4) 4706.79 0.00% 28.84% 13.85% 17.46%

Total 988.83 0.00% 11.84% 8.30% 24.57%

Table 4.4: Optimal results for the model of repeating after a negative
outcome,(N = 8)
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As we see, independent of the type of the repetition and also the parameters of

the problem, GA has the best performance among all three algorithms. In all 90

instances (including both models) for which optimal value is available, the GA can

obtain the optimal solution. On the other hand, by considering average values, the

greedy ratio algorithm outperforms LS only in one case in the second model.

For the rest of our instances, we provide the results of each model in two tables.

But since the optimal values for these cases are not available, in order to compare

the performance of the algorithms we obtain the gaps of GA and LS with respect

to the result of the greedy algorithm. For each model we provide two tables. Tables

4.5 and 4.7 show the results of both models for small values of N . In these tables,

the values are the average of N = 10, 25, 50. Similarly, Tables 4.6 and 4.8 provide

the average results of the instances with N = 75, 100 which are considered as large

instances. The columns in all of these tables are defined similar to the optimal

tables, except that, firstly, the gaps of GA and LS are obtained with respect to best

cost obtained by the greedy algorithm and secondly, the column ’GA.N.R.Gap’ is

the percentage of gap between the cost of best solution obtained by GA and the

cost of same solution when no repetition is allowed.

(Dn,Dr) α, β Gr.Cost GA.Gap GA.N.R.Gap LS.Gap
(50,100) 90.08 -6.21% -1.00% -3.65%

U(0,0.05) 87.09 -4.65% -0.60% -2.23%
U(0,0.15) 91.04 -7.62% -1.61% -4.54%
U(0,0.4) 92.10 -6.37% -0.78% -4.17%

(1500,2000) 824.95 -35.81% -44.03% -32.64%
U(0,0.05) 372.41 -43.12% -59.33% -40.09%
U(0,0.15) 788.58 -42.61% -50.75% -39.02%
U(0,0.4) 1313.86 -21.70% -22.01% -18.80%

(8000,10000) 3301.30 -38.87% -55.66% -30.13%
U(0,0.05) 1054.14 -43.65% -71.39% -37.15%
U(0,0.15) 2946.49 -43.44% -60.86% -35.25%
U(0,0.4) 5903.26 -29.54% -34.74% -18.00%

Total 1405.44 -26.97% -33.56% -22.14%

Table 4.5: Results of large instances for the model of repeating after a positive
outcome, average of N = 10, 25, 50
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(Dn,Dr) α, β Gr.Cost GA.Gap GA.N.R.Gap LS.Gap
(50,100) 137.68 -9.53% 0.00% -7.97%

U(0,0.05) 177.25 -10.88% 0.01% -8.58%
U(0,0.15) 129.59 -12.41% 0.00% -10.83%
U(0,0.4) 106.20 -5.29% 0.00% -4.50%

(1500,2000) 1353.91 -36.39% -39.44% -34.58%
U(0,0.05) 865.28 -53.48% -62.70% -51.07%
U(0,0.15) 1400.65 -41.48% -44.64% -39.17%
U(0,0.4) 1795.81 -14.21% -10.98% -13.49%

(8000,10000) 5107.23 -41.72% -53.31% -39.39%
U(0,0.05) 2371.15 -62.06% -79.99% -59.73%
U(0,0.15) 5115.39 -46.41% -59.18% -43.25%
U(0,0.4) 7835.14 -16.71% -20.78% -15.19%

Total 2199.61 -29.21% -30.92% -27.31%

Table 4.6: Results of large instances for the model of repeating after a positive
outcome, average of N = 75, 100

(Dn,Dr) α, β Gr.Cost GA.Gap GA.N.R.Gap LS.Gap
(50,100) 128.15 -19.15% -10.61% -15.14%

U(0,0.05) 98.16 -12.39% -0.56% -7.12%
U(0,0.15) 110.71 -12.97% -8.04% -9.80%
U(0,0.4) 175.59 -32.09% -23.22% -28.50%

(1500,2000) 1486.47 -26.26% -9.90% -23.19%
U(0,0.05) 665.05 -30.35% -0.83% -27.21%
U(0,0.15) 1316.29 -20.99% -5.32% -18.83%
U(0,0.4) 2478.06 -27.45% -23.55% -23.51%

(8000,10000) 6731.00 -24.23% -10.80% -21.13%
U(0,0.05) 2883.38 -30.31% -1.36% -27.33%
U(0,0.15) 6063.26 -20.15% -6.50% -17.66%
U(0,0.4) 11246.37 -22.24% -24.53% -18.41%

Total 2781.87 -23.22% -10.44% -19.82%

Table 4.7: Results of large instances for the model of repeating after a negative
outcome, average of N = 10, 25, 50

As we observe, no matter what type of repetition policy is considered, the GA

performs better that LS in all the cases. On the other hand, another important
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(Dn,Dr) α, β Gr.Cost GA.Gap GA.N.R.Gap LS.Gap
(50 100) 237.24 -36.33% -25.32% -34.34%

U(0,0.05) 188.08 -14.43% -7.38% -12.22%
U(0,0.15) 201.12 -41.14% -28.35% -39.14%
U(0,0.4) 322.52 -53.42% -40.23% -51.66%

(1500 2000) 2566.90 -28.63% -16.79% -26.45%
U(0,0.05) 1388.11 -25.33% -0.12% -22.72%
U(0,0.15) 2215.49 -22.84% -16.40% -21.06%
U(0,0.4) 4097.11 -37.70% -33.85% -35.58%

(8000 10000) 11491.54 -27.70% -18.31% -25.33%
U(0,0.05) 5956.47 -28.62% -0.25% -26.60%
U(0,0.15) 9786.13 -20.64% -19.60% -17.95%
U(0,0.4) 18732.03 -33.86% -35.07% -31.43%

Total 4765.23 -30.89% -20.14% -28.71%

Table 4.8: Results of large instances for the model of repeating after a negative
outcome, average of N = 75, 100

thing in these tables is that greedy algorithm never performs better that other two

algorithms. This shows how the stochastic aspect of the models has affected the

results when we compare with the case that tests are perfect. The trade of between

misclassification cost and inspection cost makes the total expected cost to be highly

dependent on the parameters which in result prevents the ratio solutions to provide

interesting solutions. The worst performance of GA and LS in the model of positive

repetition happens mostly when misclassification costs take on their lowest value

(when (Dn, Dr) = (50, 100) and α, β ≡ U(0, 0.05)). The reason for that can be

explained as follows.

Since the value of misclassification costs are close to individual inspection costs (Ci),

the trade of between inspection cost and misclassification cost is more balanced

than other cases. By this we mean, the different solutions in the feasible space

mostly provide the value of objective function in a tight interval and therefore, any

search algorithms can hardly obtain better results. On the other hand, in these

instances, the inspection cost plays a more important role in the total objective

function in compare to other cases where misclassification costs take on larger values.

Therefore, if we apply a suitable enough ratio which both considers C and P , we

would probably find an interesting solution. As we see in Table 4.9, in the instances

where misclassification costs are small, the ratio algorithm almost in all the cases

returns C/P as the best solution which confirms our presented argument. As it is
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shown the Table 4.9, the more we increase the value of misclassification costs, the

less we observe C/P solution as the best solution and the more error ratios result in

better solutions. The values in Table 4.9 represent the number of times that a ratio

shown in the column has been the best solution among others in specified instances

in the corresponding rows.

As we stated before, both our LS and GA algorithms work under time limitation

60 seconds. But in order to compare their performances we saved the time of best

solution that they find within the provided time limit. Considering all the instances,

LS performs relatively faster that GA. In both models, GA spends on average 28

seconds to find the best solution while this number for LS is 9.7 seconds. For

instances with N ≥ 75, GA spends the whole time limit but the maximum time

value for LS is 45 seconds which happens in same instances.

positive negative
(Dn,Dr) α, β C/P α β C/P α β
(50,100) 88 1 1 70 1 19

U(0,0.05) 29 0 1 29 1 0
U(0,0.15) 30 0 0 30 0 0
U(0,0.4) 29 1 0 11 0 19

(1500,2000) 43 20 7 31 29 30
U(0,0.05) 18 8 4 20 10 0
U(0,0.15) 16 12 2 11 13 6
U(0,0.4) 9 20 1 0 6 24

(8000,10000) 31 46 13 8 60 22
U(0,0.05) 10 12 8 1 29 0
U(0,0.15) 12 15 3 5 21 4
U(0,0.4) 9 19 2 2 10 18

Table 4.9: Ratio algorithm performance in different instances

The main contribution of this thesis was to propose the idea of repetition of tests in

the diagnosing process of a failed series system with unreliable tests. By considering

the results of our experiments we provide an argument that how repetition provides

better results in such problems.

In order to explain this, we first consider the column ’N.R.Gap’ provided in Tables

4.3 and 4.4. As we explained, the values in these column are the cost values of the

solutions of the form u =

[
S∗

0

]
, where S∗ is the best permutation solution found
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by enumeration. As we see, even for small values of misclassification cost and error

rates, no-repetition solution does not provide better results. On the other hand,

we see that for the rest of our instances the more we increase misclassification cost,

the more optimality gap is observed for no-repetition solution. The same behavior

is observed for the other model in Table 4.4 where again the performance of no-

repetition solution gets worse by increasing misclassification costs and error rates.

In the Tables 4.5 to 4.8, the column ’GA.N.R.Gap’ is the gap of the no-repetition

solution with respect to the cost obtained by GA. As we see again, almost in all of

the instances, repeating the tests in both models results in lower expected cost on

average.

In addition to the argument presented above, we provide the graph in Figure 4.1

in which the rate of repetition is shown for solutions that GA has found for both

models. In Figure 4.1, labels as the form (x, y)P and (x, y)N show the error rates

for the positive and negative repetition model, respectively. The x axis shows

three values of misclassification cost and the values on the y axis represent the

percentage of ones in the solutions found by GA. This value is obtained by counting

the number of times that tests are repeated in a solution over the size of the system

(
∑N

i=1 v(i)/N).

As we observe in Figure 4.1, among all the cases where neither misclassification cost

nor error rates are in their minimum level, the minimum repetition that happens

is 50%. Even among the instances with minimum misclassification cost and error

rates, on average 10% repetition is observed.

4.5 Conclusion and Future Research

In this thesis, we developed two new models for the problem of fault localization

of series system when tests are unreliable. In our models, we allow repetition of

the tests under some specific conditions. As we observed, repetition of the tests

can provide considerable decrease in the overall expected cost of diagnosis when we

compare with the case that no repetition is allowed. Depending on the parameters

of the problem (system), one may take advantage of any of these models in order

to diagnose a system.
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Figure 4.1: Percentage of repetitions for different parameters in both models

An important extension to this problem that can be stated as future work is con-

sidering the case where other types of repetition are allowed. This means that,

one can either allow the repetition of the tests more than once, or a repetition

of a test may not be performed right after the first test. In these cases, the size

of tree will becomes very large and it results in more complicated computations.

Another worthwhile extension can be the case where repetitions are allowed after

both positive and negative outcomes. In this case, the stopping condition should

be defined properly. Again in this model the size of the decision tree grows fast and

even for small instances we face large trees.

Applying a repetition policy in diagnosing more general systems like k out-of-n and

threshold can be considered as a future work. Some assumptions of the problem,

like the single fault assumption, as well as the size of the decision tree may change

depending on the type of the system. Furthermore, in these systems, it may not

be possible to describe the solutions as permutations and therefore it makes the

computation more difficult.
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