
Plant Identification Using Deep Convolutional Networks

Based on Principal Component Analysis

by

Mostafa Mehdipour Ghazi

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of the requirements for the degree of

Master of Science

SABANCI UNIVERSITY

August 2015

c©Mostafa Mehdipour Ghazi 2015

All Rights Reserved

ii

To my family

iii

Acknowledgements

My sincere gratitude goes to my supervisor Prof. Berrin Yanıkoğlu for providing the op-

portunity to work alongside her on this exciting and extremely challenging project. She

trusted and supported me during my endeavor for exploring the vast field of machine

learning, and provided motivation, guidance, patience, and immense knowledge through-

out this journey. I should also seize the opportunity to thank her for teaching the highly

interesting and beneficial course of Deep Learning together with Prof. Hakan Erdoğan.

Furthermore, I would like to extend my gratitude to Prof. Hakan Erdoğan for being a

jury member of my thesis and sharing his valuable suggestions for improving the quality

of this work. Prof. Erdoğan also patiently supervised me during my first year at Sa-

banci University and has been a great source of friendship, support, and encouragement

throughout my studies. I am also grateful for his teaching of the Random Process course

and his supervision during my independent work on image noise level estimation.

I also thank to Prof. Erchan Aptoula for being on my thesis defense committee and

for his invaluable collaboration and suggestions during the LifeCLEF plant identification

competition.

Thanks to Prof. Aytul Erçil for offering extremely useful courses of Computer Vision

and Pattern Recognition which came of great use during this work. She has always been

patient and kind to me and supportive of my personal growth.

I would like to offer my heart-felt gratitude to my family for their constant and un-

conditional love and encouragement always and especially during my stay in Istanbul. I

would also like to thank all VPALAB members especially Fahad Sohrab, Ismail Yılmaz,

Amir Abbas Davari, and Rahim Dehkharghani for their friendship and sharing nice mem-

ories. Last but not least, my especial thanks go to Mastaneh Torkamani for her truly

valued help and support for this work.

This work has been generously supported by the Scientific and Technological Re-

search Council of Turkey (TÜBİTAK) under the grant number 113E499.

iv

Abstract

Plant Identification Using Deep Convolutional Networks

Based on Principal Component Analysis

Mostafa Mehdipour Ghazi

EE, M.Sc. Thesis, August, 2015

Thesis Supervisor: Prof. Berrin Yanikoglu

Keywords: object recognition, plant identification, principal component analysis,

deep convolutional networks, spatial pyramid pooling.

Plants have substantial effects in human vitality through their different uses in agricul-

ture, food industry, pharmacology, and climate control. The large number of herbs and

plant species and shortage of skilled botanists have increased the need for automated

plant identification systems in recent years. As one of the challenging problems in object

recognition, automatic plant identification aims to assign the plant in an image to a known

taxon or species using machine learning and computer vision algorithms. However, this

problem is challenging due to the inter-class similarities within a plant family and large

intra-class variations in background, occlusion, pose, color, and illumination.

In this thesis, we propose an automatic plant identification system based on deep con-

volutional networks. This system uses a simple baseline and applies principal component

analysis (PCA) to patches of images to learn the network weights in an unsupervised

learning approach. After multi-stage PCA filter banks are learned, a simple binary hash-

ing is applied to output maps and the obtained maps are subsampled through max-pooling.

Finally, the spatial pyramid pooling is applied to the downsampled data to extract features

from block histograms. A multi-class linear support vector machine is then trained to

classify the different species.

v

The system performance is evaluated on the plant identification datasets of LifeCLEF

2014 in terms of classification accuracy, inverse rank score, and robustness against pose

(translation, scaling, and rotation) and illumination variations. A comparison of our re-

sults with those of the top systems submitted to LifeCLEF 2014 campaign reveals that

our proposed system would have achieved the second place in the categories of Entire,

Branch, Fruit, Leaf, Scanned Leaf, and Stem, and the third place in the Flower category

while having a simpler architecture and lower computational complexity than the winner

system(s). We achieved the best accuracy in scanned leaves where we obtained an inverse

rank score of 0.6157 and a classification accuracy of 68.25%.

vi

Özet

Ana Bileşen Analizine Dayalı Derin Konvolüsyonel Ağ Kullanımıyla

Bitki Tanımlama

Mostafa Mehdipour Ghazi

Elektronik Mühendislik, Yüksek Lisans Tezi, Ağustos, 2015

Tez Danışmanı: Prof. Berrin Yanıkoğlu

Anahtar Kelimeler: nesne tanıma, bitki tanımlama, uzamsal piramit birleştirmesi,

ana bileşen analizi, derin konvolüsyonel ağ.

Gıda endüstrisi, tarım, farmakoloji ve iklim kontrolü gibi çeşitli alanlardaki kullanımıyla,

bitkiler insan yaşamı bakımından çok önemlidir. Ot ve bitki türlerinde muazzam bir

çeşitlilik görülmesi, üstelik yeterli niteliklere sahip botanistlerin sayıca bir hayli az olması

nedeniyle son yıllarda otomatik bitki tanımlama sistemlerine duyulan ihtiyaç artmıştır.

Nesne tanıma teknolojisindeki en zor sorunlardan birine çözüm getirmeyi amaçlayan

otomatik bitki tanımlama, otomatik öğrenme ve bilgisayarla görme algoritmalarını kul-

lanarak bir görselde yer alan bitkiyi bilinen text veya türe atamayı hedefler. Ancak

tanıma işlemi bitki ailelerindeki sınıflararası benzerlikler ve arka plan, örtme, poz, renk

ve aydınlatmadaki sınıf içi varyasyonlar nedeniyle zorlaşır.

Bu tezde, derin konvolüsyonel ağ bazlı otomatik bitki tanımlama sistemi çözümü

önerilmektedir. Gözetimsiz öğrenim yaklaşımına dayanan sistem, basit bir temel kul-

lanarak görsel parçalarına Ana Bileşenl Analizi (ABA) uygulayıp ağ ağırlıklarını öğrenir.

Çok aşamalı ABA filtre öbekleri öğrenildikten sonra, çıkış haritalarında basit ikili kıyım

gerçekleştirilir. Ardından haritalarda maksimum havuzlama ile altörneklem elde edilir.

Son olarak altörneklem ile elde edilen verilere uzamsal piramit birleştirmesi uygulanarak

blok histogramdan özellik detayları çıkarılır. Bunun ardından, çok sınıflı lineer destek

vii

vektör makinesi farklı türleri sınıflandırmak üzere eğitilir.

Sistem performansı, LifeCLEF 2014 bitki tanımlama veri kümeleri üzerinde sınıfland-

ırma doğruluğu ve ters sıralama puanına ek olarak, poz (translasyon, ölçeklendirme, ve

döndürme) ve aydınlatma varyasyonlarına karşı dayanıklılık bakımından değerlendirilmi-

ştir. Elde ettiğimiz sonuçlar, LifeCLEF 2014 kampanyasına gönderilen en iyi sistemlerde

elde edilen sonuçlar ile karşılaştırıldığında; Genel, Dal, Meyve, Yaprak, Taranmış Yaprak

ve Kök kategorilerinde ikinci, Çiçek kategorisinde ise üçüncü sırayı denk gelmektedir;

üstelik birinci sırayı alan sistem(ler)e kıyasla daha basit bir mimari kullandığımız ve

hesaplama karmaşıklığının da daha düşük olduğu görülmektedir. En yüksek doğruluk

oranını ise 0,6157 ters sıralama puanı ve 68,25% sınıflandırma doğruluğu elde ettiğimiz

taranmış yaprak kategorisinde yakaladığımız anlaşılmıştır.

viii

Contents

Acknowledgement . iv

Abstract . v

Özet . vii

List of Figures . xii

List of Tables . xiv

1 Introduction 1

1.1 Objectives . 3

1.2 Limitations . 4

1.3 Thesis Structure . 5

2 The Plant Identification Problem 7

2.1 Object Recognition . 7

2.2 Plant Identification . 8

2.2.1 Image Acquisition and Preprocessing 10

2.2.2 Common Methods for Leaf Analysis 11

2.2.2.1 Shape Analysis . 12

2.2.2.2 Texture Analysis . 15

2.2.2.3 Venation Analysis . 15

2.2.2.4 Segmentation . 15

2.2.3 Common Methods for Flower Analysis 16

2.2.4 Highlights of Plant Identification Systems in CLEF Campaigns . 17

3 Convolutional Neural Networks 20

3.1 Deep Learning . 20

3.2 Artificial Neural Networks . 22

ix

3.2.1 Historical Background . 22

3.2.2 Model of Biological Neuron . 23

3.2.3 Perceptron . 24

3.2.4 Activation Function . 25

3.2.5 Neural Networks Architecture 26

3.2.5.1 Feedforward Networks 27

3.2.5.2 Feedback Networks 27

3.2.6 Learning Process . 28

3.2.6.1 Supervised Learning 29

3.2.6.2 Unsupervised Learning 30

3.2.6.3 Backpropagation Algorithm 30

3.3 Convolutional Neural Networks . 32

3.3.1 CNN Architecture . 32

3.3.1.1 Convolutional Layer 33

3.3.1.2 Pooling Layer . 34

3.3.1.3 Normalization Layer 35

3.3.1.4 Output Layer . 35

4 Object Recognition Using Deep Convolutional Networks Based on PCA 38

4.1 Background . 38

4.2 Motivations . 39

4.3 Contributions . 40

4.4 Proposed Deep PCA Network . 40

4.4.1 Spatial Pyramid Pooling . 43

4.4.2 Classification by Linear SVM 44

5 Experiments and Results 47

5.1 Dataset Description . 47

5.2 Preprocessing . 48

5.3 Evaluation Metrics . 49

5.4 Experimental Methods . 50

5.4.1 Effects of Parameter Adjustment 50

5.4.1.1 Number of Learning Stages 51

x

5.4.1.2 Number of Filters . 51

5.4.1.3 Filtering Patch Size 52

5.4.1.4 Spatial Pyramid Levels 52

5.4.1.5 Image Size Normalization 53

5.4.2 Classification Results . 53

5.4.3 Robustness of the Proposed System 54

5.4.3.1 Scale Invariability . 55

5.4.3.2 Translation Invariability 55

5.4.3.3 Rotation Invariability 55

5.4.3.4 Illumination Invariability 56

5.5 Time Complexity . 56

5.6 Learned Filter Banks . 56

6 Summary and Conclusion 61

A HSY Color Space 63

B Acronyms 65

Bibliography 68

xi

List of Figures

2.1 The main features and botanical terms of a typical leaf 11

2.2 Shape features for a typical leaf ROI . 13

2.3 An example of elliptic Fourier analysis 14

3.1 The structure of a biological neuron . 24

3.2 Model of a perceptron . 25

3.3 A fully-connected three-layer neural network 26

3.4 A two-layer fully-connected feedforward neural network 27

3.5 An example of feedback (recurrent) neural network 28

4.1 Block diagram of a two-stage PCA network 46

5.1 Samples of LifeCLEF 2014 plant dataset 48

5.2 Effects of preprocessing on scanned leaf images 49

5.3 Learned weights from Branch in the first stage 57

5.4 Learned weights from Branch in the second stage 57

5.5 Learned weights from Entire in the first stage 57

5.6 Learned weights from Entire in the second stage 57

5.7 Learned weights from Flower in the first stage 58

5.8 Learned weights from Flower in the second stage 58

5.9 Learned weights from Fruit in the first stage 58

5.10 Learned weights from Fruit in the second stage 58

5.11 Learned weights from Leaf in the first stage 59

5.12 Learned weights from Leaf in the second stage 59

5.13 Learned weights from LeafScan in the first stage 59

5.14 Learned weights from LeafScan in the second stage 59

5.15 Learned weights from preprocessed LeafScan in the first stage 60

xii

5.16 Learned weights from preprocessed LeafScan in the second stage 60

5.17 Learned weights from Stem in the first stage 60

5.18 Learned weights from Stem in the second stage 60

xiii

List of Tables

5.1 Details of plant identification datasets within the LifeCLEF 2014 47

5.2 Classification results for different number of learning stages 51

5.3 Classification results for different number of filters in the first stage 51

5.4 Classification results for different number of filters in the second stage . . 52

5.5 Classification results for different filtering patch sizes 52

5.6 Classification results for different levels of spatial pyramid 53

5.7 Classification results for different image sizes 53

5.8 Classification results of the proposed method in LifeCLEF 2014 54

5.9 Inverse rank scores of different systems submitted to the LifeCLEF 2014 . 54

5.10 Classification results for different scales of test images 55

5.11 Classification results for different translation sizes of test images 55

5.12 Classification results for different rotation angles of test images 55

5.13 Classification results for different intensities of test images 56

xiv

Chapter 1

Introduction

Visual recognition, the process of recognizing shapes and their properties through visual

observation, is a complex yet well-developed ability of the human brain. Humans can

detect and distinguish among over 30,000 visual categories in various situations arising

from different viewpoints, illuminations, or occlusions [1]. Indeed, human brain uses a

high-level, perceptual organization for object recognition; i.e. it realizes that 3D objects

look different from various viewpoints and considers the invariance of features such as

connectivity, texture, and symmetries as a result of projection [2]. Due to its complexity

and computationally demanding nature, object recognition remains an open problem for

neuroscientists [3].

Besides being a topic of interest for cognitive neuroscience context, object recognition

through vision is a heavily investigated problem in the field of computer vision as well. It

is generally defined as the detection and identification of objects within sequences of still

or moving images, and is further divided into two tasks of identification and categoriza-

tion. In order to develop robust, efficient and fast automatic object recognition systems,

attempts have been made to utilize the color information [4], reflectance properties [5],

and model information [6] from objects. However, these methods are able to yield high

accuracy in only single-object identification including large inter-class dissimilarity and

low intra-class variability [7]. That is to say, computer-based vision techniques are better

in identification of objects than their categorization as the latter requires having access to

a large database of attributes as well as their hierarchical and interleaved relations [8].

One of the challenging tasks of object recognition that has attracted increasingly more

interest in the field of computer vision is plant identification. Identification and later

1

2

classification of plants is of course important in the fields of botany, agriculture, plant

taxonomy, and pharmacology. Nevertheless, the large number of herbs and plant species

and shortage of skilled botanists have increased the need for developing automated plant

identification systems for computers and mobile devices to identify various organs of

earth flora [9].

In recent years, research in the area of automatic plant identification from photographs

has concentrated around annual plant identification competitions that are organized within

campaigns of the Conference and Labs of the Evaluation Forum (CLEF) including Im-

ageCLEF [10–12] and LifeCLEF [13, 14]. CLEF is devoted to promoting and evaluating

multilingual and multimodal information retrieval systems and the main goal of these

competitions is to benchmark the challenging task of content-based identification and re-

trieval of plant species from structured databases of their parts including leaves, branches,

stems, flowers, and fruits.

Content-based image retrieval (CBIR) is a key idea challenged through the image-

based and observation-based tasks of CLEF campaigns which investigate image queries

in a large database by analyzing image contents such as colors, shapes, textures, or any

other information that can be derived from the image [15]. Specifically, CBIR systems

developed for plant identification applications have focused on exploiting shape, texture,

and contour information as discriminant features. Color information, on the other hand,

has been shown to be less efficient especially for leaf identification since most plant

species have green shades and their color may change throughout the year [16]. However,

the greatest challenge in plant identification has been the large variations in background,

occlusion, illumination, pose (translation, orientation, and scaling) which causes plant

identification problems suffer from intra-class variations and inter-class similarities more

than other object recognition tasks [7]. Therefore, extracting simple and low-level fea-

tures from domains such as shape, texture, and color fail to provide robust identification

results. In this respect, deep learning approaches are new and offer a suitable solution for

such complex problems.

Contrary to traditional machine learning methods where the features are chosen man-

ually and extracted through instructed algorithms, deep learning methods such as convo-

lutional neural networks (CNNs/ConvNets) and deep belief networks (DBNs) feed raw

data into the system in multiple levels and allow it to automatically discover low-level and

1.1. OBJECTIVES 3

high-level features or representations that can be used for detecting, distinguishing, and

classifying patterns [17]. Still, these systems suffer from high computational complexity

due to using optimization techniques to learn multi-stage weights.

The first mathematically-driven deep network architecture using prefixed weights

were scattering networks (ScatNets) [18, 19]. They were applied for texture discrimi-

nation and showed superior performance over CNNs; but due to their prefixed nature,

ScatNets could not be generalized well to problems with large intra-class variance such as

face recognition or plant identification. To tackle this issue, PCA network (PCANet) [20],

a hybrid of principal component analysis and deep convolutional networks (DCNs) was

proposed and tested successfully in such problems. This system learns weights in an un-

supervised learning manner similar to a DBN with no feedback and applies learned filter

banks in a CNN-like way. It offers noise and dimensionality reduction and confronts with

overfitting issues.

The system we propose in this study manages to combine the best of both worlds

while providing more pose invariance, reduction in overfitting, and utilization of color

information in images. This system is tested over LifeCLEF 2014 plant identification

datasets and compared with the participants in the same campaign. Ten participating

teams submitted 27 runs or systems in total to the organizers of LifeCLEF 2014 and, as

the results presented in Section 5.4.2 show, our proposed system would have achieved

almost the second place among the top six teams of this competition. It is noteworthy to

mention that our learned model has the advantage of being architecturally and computa-

tionally simpler compared to the deep convolutional neural network system proposed by

the winner of this competition.

1.1 Objectives

Several applications of plant identification in botany, pharmacology, agriculture, ecolog-

ical preservation programs, and the like have been the driving forces behind the demand

for developing automated plant identification systems. These applications require system-

atic activities for acquiring images, creating informative databases, performing prepro-

cessing, extracting low-level and high-level information, and classifying using computer

vision and machine learning techniques.

1.2. LIMITATIONS 4

Regardless of applying either manual or automatic feature extraction techniques, fea-

ture extraction techniques, plant identification faces problems within real databases in-

cluding large intra-class variations. For instance, photographing different plant organs

including leaves, flowers, fruits, stems, and branches in natural environments introduces

issues such as partial occlusions of organs of interest by other plants or objects, various

poses of organs, color fading due to seasonal changes, and illumination variations due

to daylight, shadow, etc. These problems make samples of the same species or category

look different for a computer vision and machine learning system.

The first objective of this study was to design a simple and robust object recognition

system that is able to tackle issues related to high intra-class variabilities, especially ap-

plicable to plant identification problems that have been systematically organized within

the CLEF campaigns and competitions. Image datasets provided for these competitions

are collected by different photographers and users in natural settings with various illu-

minations and pose conditions to provide a large degree of intra-class variance. They

currently include hundreds of thousands of images from around 1,000 species of trees

and herbaceous plants [14].

Since unsupervised-learning-based deep convolutional networks have already obtained

superior results in such challenging identification tasks, our key objective is to design a

system in this field that provides reduced architecture and computational complexity–two

major issues that arise when dealing with huge datasets.

1.2 Limitations

Besides facing common problems of plant identification including inter-class similarities

and intra-class variabilities, CLEF datasets contain a large dataset including hundreds of

thousands of images [13, 14]. Considering the competitive nature of this task, design-

ing and implementing deep convolutional networks that have high classification accuracy

require high computational loads for determining weights and other model parameters.

These issues impose architectural complexity in the number of layers as well as the learn-

ing time issue.

Another limitation we faced was related to image preprocessing before applying ma-

chine learning schemes. For instance, we preprocessed scanned leaves by segmentation,

1.3. THESIS STRUCTURE 5

background removal, and size and orientation normalization. As we will see in Sec-

tion 5.4.2, preprocessing dramatically increases the system performance. This suggests

that preprocessing using computer vision and image processing algorithms should be a

prerequisite for the proposed deep learning system. However, we could not perform any

preprocessing on images from other categories due to time limitations. We could have

evaluated the system performance by finding the region of interest, performing size and

orientation normalization and background removal, and omitting unnecessary elements

such as the petiole had the time allowed.

1.3 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 provides an introduction to

generic (category-level) object recognition as well as motivations for performing plant

identification. It contains a review of shape, texture, and other key feature analysis algo-

rithms for identifications of plants in general and leaves in particular. The chapter ends

with an overview of approaches from top-ranking participants of plant identification tasks

in ImageCLEF 2012 and LifeCLEF 2014.

Chapter 3 includes an overview of deep learning specifically based on convolutional

neural networks. It describes the core concepts of deep neural networks (DNNs), com-

mon architectures and properties of general artificial neural networks (ANNs) as well as

concepts and motivations behind CNN structures. The final section of this chapter offers

a thorough overview and visualization of layers and building blocks of CNNs.

Chapter 4 explains key features of CNNs, DNNs, and PCA-based deep convolutional

networks. It features an overview and motivations for the proposed method based on

PCANet in object recognition and plant identification. It then discusses our contributions

to existing state-of-the-art deep learning systems utilizing principal component analysis.

The chapter concludes with a description of spatial pyramid pooling and classification

methods employed in the final stage of this architecture.

Chapter 5 describes experiments conducted to evaluate our proposed system on the

LifeCLEF 2014 plant identification datasets. It first represents our performed experiments

to adjust optimum parameters for the proposed system, and then describes carefully de-

signed experiments for testing variations in pose (translation, scaling, and rotations) and

1.3. THESIS STRUCTURE 6

illumination. The thesis concludes in Chapter 6 with the summary and discussion of

obtained results.

Chapter 2

The Plant Identification Problem

In this chapter, we briefly review the main approaches of object recognition and learn

about the motivations for performing plant identification. Next, we review the leaf recog-

nition systems and common features used for leaf shape analysis including shape features,

texture analysis, venation extractions, contour signatures, etc. Finally, we present the key

highlights of top-ranking plant identification systems submitted to ImageCLEF 2012 and

LifeCLEF 2014.

2.1 Object Recognition

Object recognition is defined as perception of familiar items in a digital image or video.

In a more complete sense, it is defined as recognizing 3D objects from the scenes which,

in the absence of depth sensors, are mapped as 2D images with different viewing condi-

tions through optical sensors. Although humans use high-level visual perception skills to

recognize familiar objects in real and digital settings, automatic object recognition relies

on matching new items with previously learned information. In other words, automatic

object recognition is largely built on concepts and algorithms from machine learning,

pattern recognition, computer vision, and image processing.

Object recognition and detection are carried out in two different perspectives: specific

(instance-level) and generic (category-level). Specific object recognition is the problem

of matching a specific object or scene or identifying instances of a particular object. In

this context–where concepts are based on matching and geometric verification tasks, local

features are selected, detected, and extracted by, for example, automatic scale selection

7

2.2. PLANT IDENTIFICATION 8

and Harris and Hessian detectors. Scale-invariant feature transform (SIFT) [21] and scale-

invariant region detection are two other methods applied in this category [22].

The category-level approach is the problem of recognizing the category of objects or

scenes using, for instance, feature descriptors such as histograms of oriented gradients

(HOG) [23]. In other words, the generic object recognition is concerned with recogniz-

ing various instances belonging to one category and classifying them into a similar class.

It usually consists of statistical models of shapes or appearance learned from training ex-

amples. The most common approach for this categorization problem is collecting images

from all the given categories, extracting features or patterns, and learning new models–

usually a supervised one–which should make new predictions about existences or absence

of objects in the new test images. This approach uses window-based and part-based mod-

els that acquire holistic descriptions or locally connected parts, respectively.

As we see, computer-based finite classification relies on objects’ shapes, color, tex-

tures, and the like in a given illumination condition which make it very limiting and ap-

plication specific; however, humans even consider functions of visualized objects while

classifying them. The following section discusses plant identification as one of the chal-

lenging tasks in object recognition which attempts to match a specimen plant to a known

taxon. More precisely, plant identification implies comparing certain characteristics and

then assigning a particular plant to a known taxonomic group, ultimately arriving at a

species or infraspecific name.

2.2 Plant Identification

Increasing our understanding of the earth flora is essential due to the role of plants in

nutrition of humans and herbivorous animals, regulation of climate, and maintenance of

land and soil structure against natural disasters such as floods and drought. For instance,

recognizing and enlisting crops helps governmental organizations in setting agriculture

policies for increasing productivity in harvesting crops as well as farmers in identifying

diseased crop and determining the suitable herbicides and pesticides [24]. Food industry

also needs to carefully determine the raw herbs and plants for manufacturing of their prod-

ucts. Furthermore, fields such as pharmacy and pharmacology continuously use herbs in

medicines. The aforementioned applications are a few examples that show the need for

2.2. PLANT IDENTIFICATION 9

plant identification. Yet, modifications on the ecosystem which put more plant species

into the threat of extinction [25] together with the shortage of skilled botanists and tax-

onomists have been driven forces in demands for automated plant identification systems.

Machine vision techniques combined with computer vision algorithms have long been

used to locate and identify plant species [24]. These automatic plant identification sys-

tems in general use a database of digital images from known plant species and their organs

as their knowledge base–one similar to that of the Royal Botanic Gardens. They are ex-

pected to provide the correct labels (species’ names) and/or botanical information such

as taxonomic information, place and date of collection, usual living locations, climate

habits, etc. Some of these systems follow a set of questions about the plant morphology

or taxonomic keys to narrow down the divisions and identify the sampled species from

closely following criteria of taxonomy classification. These systems have a high level

of interaction with users [26]. Other ones use probabilistic machine learning and com-

puter vision techniques to provide rankings or votes for the possible categories to which

the photographed species belong. These systems can be of use in hand-held devices and

personal digital assistants (PDAs) to help farmers, engineers, and scientists in the fields.

Among various plant organs, leaves are the most commonly studied ones due to being

more accessible than other organs. Moreover, leaves can be sampled year-round from

evergreen perennials and relatively in shorter intervals from annual trees [25]. Besides

leaves, shapes of flowers, fruits, and branching structures are decisive parameters for iden-

tification of not only species but also genera and plant families. Nonetheless, as alive and

dried specimen can suffer from damages, deformations, diseases, and insects, automated

identification and classification systems must be robust to such intra-class variations that

affect the structural information.

Other problems with the plant images captured from the natural scenes include occlu-

sion with other objects and a wide range of illumination changes in addition to varying

viewpoints which increase the necessity of implementing complex plant identification

systems able to learn as many features as possible. The most common features used in

the literature and plant identification contexts are morphological features (MFs) includ-

ing shape, color, texture, illumination, and geometrical features in addition to observation

and photographer information. Among the morphological features, 2D outline shape of

leaves and petals, leaf margin characteristics, and vein network (venation) structure are

2.2. PLANT IDENTIFICATION 10

the most useful features to which probabilistic computational techniques, machine learn-

ing, and pattern recognition have been applied. These features are of course low-level,

while newer algorithms such as deep neural networks utilize high-level information, de-

tails of which will be explained in the following chapter.

It is worthwhile mentioning that although classification in computer science is defined

as assigning a sample to one of the finite number of discrete categories [27], in taxonomy

and botany it is the process of grouping individual samples based on their similarities to

detect and define taxa, species, or genera [28]. However, our use of classification in this

thesis is in line with the common definition in the field of computer science.

2.2.1 Image Acquisition and Preprocessing

Most plants have a variety of functional organs such as roots, stems, branches, leaves,

flowers, fruits, and seeds whose shapes, sizes, and colors are largely varied. A thorough

identification of plants from these organs requires full inspection of the specimen in the

3D form. However, as mentioned before, perceiving information related to 3D objects

from their 2D images is a hard task for computers. In other words, eliminating depth

from images make it difficult for artificial intelligence to correctly recognize the species

to which those captured images belong. Still, among the aforementioned plant organs,

leaf images are the easiest to identify and categorize as disregarding depth information in

them affects the identification process considerably less than other organs.

In most plant species, leaves are grouped in clusters; hence, the majority of early

efforts on automatic plant identification was concerned with acquisition, preprocessing,

feature extraction, and supervised learning from isolated leaf images. Isolated leaves refer

to single leaves that are plucked from their plants, cleaned, then either color scanned

or photographed with a digital camera. The benefit of this method is that there is no

background image or scene occluding the leaf and the 2D details of leaf structure will be

clearly visible. Figure 2.1 shows a typical isolated leaf along with its main features and

botanical terms.

In order to preprocess images of isolated leaves, one should consider the prospective

features to be extracted from the image. As an example, [9] effectively uses shape and tex-

ture information for isolated leaves. Since scanned leaf images usually have shadows and

uneven illumination conditions on uniform backgrounds, this proposed method readily

2.2. PLANT IDENTIFICATION 11

Petiole

Apex
Midrib

Vein

Insertion point

Blade

Figure 2.1: The main features and botanical terms of a typical leaf

segments leaves through edge preserving area attribute filters and adaptive thresholding.

Next, it aligns major axis of leaves with the vertical axis and normalizes all heights to

preserve the aspect ratio. After this size normalization, it uses PCA and leaf petiole’s

location to perform orientation normalization.

As mentioned before, color information is a key feature in most object recognition

tasks; however, it is not highly discriminative in detecting leaf images as plant species

usually have green shades and the variety of these shapes are affected by changes in the

atmosphere, seasons, age, water, and nutrients [25, 29]. In addition, old and dried leaves

of most annual plants become brown while completely or partially maintaining their edge

and vein shapes. Therefore, RGB images are rarely used directly and the gray component

of pixels is extracted from the RGB information. Accordingly, the region of interest (ROI)

and the image contour can be extracted from the grayscale image.

2.2.2 Common Methods for Leaf Analysis

Besides general approaches proposed in object recognition literature such as histograms

and shape matching, a number of methods frequently used for plants and especially leaf

recognition utilize shape analysis including shape features, contour and landmark analy-

sis, Fourier analysis, etc., texture analysis, and venation analysis. In this section, we will

2.2. PLANT IDENTIFICATION 12

review some prevalent methods proposed for leaf recognition.

2.2.2.1 Shape Analysis

Shape differences are more obvious in leaves than other features such as size, venation,

or margin characteristics. In fact, shapes are determined by genetics while other fea-

tures can be affected by environmental conditions. In this section, we mention prevalent

approaches for leaf shape analysis.

Shape Features

Several publications have used leaf morphology and spatial parameters for plant species

identification [24]. Morphological features are in fact statistical shape descriptors invari-

ant to pose variations and are extracted from leaf contours as geometrical and invariant

moment features [25, 29]. The following is a list of most commonly used quantitative

morphological features used in the literature.

1. Aspect ratio: It is the ratio of the maximum length to the minimum length of the

leaf’s minimum bounding rectangle (MBR).

2. Rectangularity: It is the ratio of areas of the ROI to MBR.

3. Area ratio: It is the ratio of the ROI area to the convex hull.

4. Perimeter ratio: It is the ratio of perimeters of the ROI to the convex hull.

5. Sphericity: It is the ratio of radii of ROI incircle to excircle.

6. Circularity: It is the ratio of mean distance of all bounding points from the ROI

center and the quadratic mean deviation of the mean distance.

7. Eccentricity: It is the ratio of the length of ROI’s main inertia axis to minor inertia

axis.

8. Form ratio: It is the ratio of the ROI area to its perimeter squared.

9. Elongatedness: It is the ratio of MBR length to its width.

10. Invariant moments: They are composed of seven invariant moments computed from

central through the third order moments defined by Hu [30].

2.2. PLANT IDENTIFICATION 13

Figure 2.2: Leaf shape features. From left to right: convex hull, ellipse, MBR, and
incircle and excircle. Adapted from [29]

11. Linearity: It is a parameter determined through the object’s principal axis moment

of inertia.

Figure 2.2 shows concepts of aforementioned shape features for a typical leaf ROI.

Usually, these region-based features are combined with k-nearest neighbors (k-NN)

classifiers [7] or more efficiently, with moving median centers (MMCs) hypersphere clas-

sifiers [29, 31] to produce better results. MMC considers each pattern class as a group of

hyperspheres and strives to have all points of a class covered by some hyperspheres and

removing redundant hyperspheres encompassed by larger ones. However, the problem

with the aforementioned quantitative measures is that not only they are not unique for a

specific class of species with a large intra-class variation, but also they are highly corre-

lated with each other. In other words, it is quite difficult to choose a set of sufficiently

independent features that would describe and distinguish plant classes from each other.

Contour Signatures

A shape contour signature is a vector sequence of values calculated at the leaf’s out-

line points in clockwise or counterclockwise directions. Signatures such as the centroid-

contour distance, centroid-angle, and tangents to the outline can represent shapes inde-

pendent of the leaf’s location and orientation. To make the values independent of leaf

size, one can perform normalization to the signatures. Methods of time-series analysis

can then be applied to the calculated values to increase the system performance [32].

However, these boundary-based methods bring limitations in sections where two parts

of the leaf intersect with each other. A proposed method was to remove darker areas

from overlapping regions but it only worked where the acquired images were from thin

or backlit leaves [33].

2.2. PLANT IDENTIFICATION 14

Original image 2 harmonics 5 harmonics

12 harmonics 50 harmonics 200 harmonics
Figure 2.3: An example of EFA. Increasings the number of harmonics improves the pre-
cision and preserves more details. Adapted from [25]

Landmarks Analysis

Landmarks are points biologically definable and specific to certain species. They can be

used to determine shapes of plant organisms by performing angular and linear measure-

ments between the points. Landmark studies are mostly focused on certain species which

clearly have the required features; this in turn requires strong knowledge about certain

domains and families of plants. One can refer to leaflet features, spatial characteristics of

lobes, and measurements of petioles as morphometrics used in the literature [25].

Elliptic Fourier Descriptors

Elliptic Fourier analysis (EFA) is a frequency domain analysis which calculates a set of

Fourier harmonics or elliptic Fourier descriptors (EFDs) with only four coefficients from

the outline [25]. Increasing the number of harmonics improves the precision of descrip-

tors as displayed in Figure 2.3. Following this step, PCA is used to reduce the dimension-

ality. Also, normalizing EFDs enable them to represent leaf shapes independent of their

sizes, locations, and orientations. In general, EFDs are useful for invariant moments and

landmark measures [34]. A large variety of supervised learning schemes including arti-

ficial neural networks and support vector machines (SVMs) have been applied on these

processed features for classification purposes [16, 35–37].

2.2. PLANT IDENTIFICATION 15

Fractal Dimensions

Fractal dimension is a measure of complexity of an object and is a real number that

explains how completely a shape can fill its dimensional space. Several studies have

used fractal dimensions for leaf identification [25]. Some of them utilized the multi-scale

Minkowski fractal dimension or combined them with curve Fourier descriptors. [38] used

the linear discriminant analysis (LDA) classifier on fractal information while [39] applied

clustering techniques and obtained a 100% classification accuracy on a database with a

few number of species. However, these features are not enough for a full description of

complexity parameters and should be combined with other morphological features.

2.2.2.2 Texture Analysis

Besides analyzing leaves’ shape, there are several algorithms applied on texture windows

from digital leaf images to extract texture features. Among these schemes, one can men-

tion multi-scale fractal dimensions, Gabor filters, wavelet transforms, Fourier descriptors,

and grayscale co-occurrence matrices [25]. Still, these features are more informative

when used together with outline-based shape analysis.

2.2.2.3 Venation Analysis

The pattern of veins or venation in leaves is quite conserved and unique within many

species, and veins coarse structure can be used for leaf identification. Besides running

smoothing and edge detection algorithms [40] and independent component analysis (ICA)

on leaf images [41], researchers have developed classifiers for vein pixels from genetic

algorithms [42]. Even though veins are largely studied after shape features, the results

have not been very successful so far.

2.2.2.4 Segmentation

Besides morphometrics and general object recognition schemes, segmentation is also a

very common approach used alongside other features for identification of plant images.

There are many different methods applying interactive segmentation using shape context

features, histogram-based features, morphological and geometric features, Markov ran-

dom fields (MRFs), Gabor filtering and fractal dimensions [25]. On the other hand, vision

2.2. PLANT IDENTIFICATION 16

systems can be tested in detecting differences in radiation reflecting from leaves and soil

surfaces and consequently segmenting leaves in images [24]. These algorithms were

based on the knowledge that wavelengths in the range of 0.4 to 0.7 µm in the visible por-

tion of spectrum have higher reflectance from soil than vegetation while the near-infrared

region has more reflectance in green vegetation. Therefore, by changing the radiation

illumination from near-infrared to visible spectrum and capturing images with charge-

injection-device (CID) cameras, pixels focused on vegetation and soil surfaces will show

variations in the spectral responsivity (amps/watt). To use this fact, the RGB layers are

extracted from digital images and intensity gradients for each grayscale image are ob-

tained. The leaf border will then exhibit the largest values of intensity gradients and be

consequently used for segmentation and determination of leaf shapes.

2.2.3 Common Methods for Flower Analysis

Shifting our focus away from leaves, we can find studies that used morphometrics for

flowers. Color is indeed a more discriminative feature in flowers and there have been

methods using color-based segmentation with good results [43]. More successful results

were obtained by combining angle code histograms and centroid contour distance to form

a classifier and these methods showed that shape and outline information cannot be ne-

glected for identification purposes [44].

As it can be seen, although the majority of studies on plant identification mentioned in

the literature have dealt with leaves, a fully applicable and robust automatic plant identi-

fication system needs to have a database of all plant organs and be able to classify new

samples and observations from a variety of illumination conditions, view points towards

plant organs, image qualities, and the like. In recent years, CLEF campaigns such as

ImageCLEF [10–12] and LifeCLEF [13, 14] have provided huge datasets with various

categories to represent images from all the different organs of plant species including

leaves, branches, stems, flowers, and fruits living in a particular geographic location–

mostly France. CLEF is devoted to promoting and evaluating multilingual and multi-

modal information retrieval systems and the main goal of these competitions is to bench-

mark the challenging task of content-based identification and retrieval of plant species.

Therefore, teams participating in their annual plant identification challenges strive to pro-

2.2. PLANT IDENTIFICATION 17

vide accurate and robust systems from all of the provided categories. In the following

section, we review the most prominent, fully automatic systems participating in plant

identification tasks of the ImageCLEF 2012 and LifeCLEF 2014.

2.2.4 Highlights of Plant Identification Systems in CLEF Campaigns

Most of the early plant identification systems proposed for CLEF campaigns build on

the rich literature for leaf identification, and use either one type of shape, color, and fea-

ture textures or a combination of them as reviewed in Section 2.2.2 [31, 45, 46]. The

following includes a brief review of the highest scored teams in ImageCLEF 2012 and

LifeCLEF 2014 which were concerned with leaf recognition and plant identification from

scanned images, scan-like photographs, and unconstrained photographs of different or-

gans of plants.

The ImageCLEF campaign started in 2011 with an image-based task covering over 73

plant species and went on to include 126 plant species in 2012. As one of the participants

in ImageCLEF 2012, INRIA Imedia PlantNet [47] combined boundary shape informa-

tion and local features as a complex shape context descriptors. They used automatic

segmentation to extract shape features and decrease the effect of photograph background

by extracting local features around Harris points.

The LSIS/DYNI group did not use any segmentation for their submission to the photo

category, but performed feature extraction with spatial pyramid pooling (SPP) [48]. For

the large-scale classification, they used linear SVM to select the estimated assignments

based on the one-vs-all multi-class strategy. They also submitted a run with sparse cord-

ing of patches, dense SIFT features, as well as dense multi-scale color improved local

binary patterns (LBPs).

The Sabanci-Okan system for ImageCLEF 2012 [16] used shape, color, and texture

features as well as quasi-flat zone-based color image simplification combined with pow-

erful classifiers. For photographs from natural backgrounds, they assumed that the leaves

of interest occupy the center of the photograph and that they have a single dominant

color [9]. Of course, this feature extraction makes it a challenge to add information about

the natural setting of plants unless the background and foreground are separated. Next,

they performed a morphology-based image partitioning method to create flat zones based

on local and global spectral variations. This aggressive segmentation left only one leaf

2.2. PLANT IDENTIFICATION 18

in the image center and reduced the problem to an isolated leaf recognition system. Al-

though, it would be used alongside the local invariants approach, it eliminated a lot of

useful resources about the image background and other visual information [37].

When it came to photographs in the natural background category in ImageCLEF 2013

including 250 species, Sabanci-Okan system [37] used texture features for classification

of stems, texture and shape for leaves, and texture and color information for fruits, flow-

ers, and entire plant groups. In the stem category, it calculated the maxima and horizontal

and vertical derivatives to determine the orientation of stems, next cropped two thirds of

the image surface to centralize the image and remove the background information. The

IBM Australia performed the same cropping in LifeCLEF 2014 [49].

Later in the LifeCLEF 2014 campaign, the database size had increased to over 500

species and besides the image-based plant identification task, an observation-based task

was added based on several detailed pictures from different views of various organs of

similar plants. These viewpoints or categories contained leaves, flowers, fruits, stems,

branches, entire view, and scanned leaves. The Pl@ntNet team [50] treated each or-

gan/view independently, extracted the visual content from the lowest local levels in pic-

tures and applied a hierarchical fusion framework to combine these visual contents with

those in the highest levels. For preprocessing, they applied a rhomboid-shaped mask

to each image and a Gaussian-like distribution to bring more points to the picture cen-

ter. Depending on the picture visual content, between 150 to 200 local features were

extracted in patches around those approximately 100 points. For the scanned leaves cate-

gory, they used speeded-up robust features (SURF), edge orientation histogram (EOH), a

20-dimension Fourier histogram, and a 16-dimension Hough transform-based histogram.

A series of hashing and local similarity search were used, and the number of matches

between any training image and query image were calculated through lists of 30-NNs

of each local feature. To improve the global performance for scanned leaves and scan-

like photographs, automatic leaf boundary detectors were run to describe the leaf margin.

Moreover, six morphological features including circularity, sphericity, convexity, rectan-

gularity, solidity, and ellipse variance were extracted. Finally, in each of the four submit-

ted runs, they used different fusion methods to combine several responses (from local and

global features) for each training image.

The Sabanci-Okan team concentrated on the scanned leaves category in LifeCLEF

2.2. PLANT IDENTIFICATION 19

2014 and applied automatic segmentation through edge preserving algorithms using area

attribute filters and adaptive thresholding. Through these algorithms, they extracted vari-

ous morphological and texture features similar to [9]. These features were used for stem

category classification as well. Their submissions also contained identification of flowers,

fruits, and entire categories for which they used a bag-of-words (BoW) model and dense-

SIFT feature extraction followed by k-means clustering. To compute scores for prediction

of species belonging to each class, a SVM classifier was used. They also implemented an

8-layer CNN for score prediction in the branch and leaf categories.

In the same campaign, the BME TMIT team used dense SIFT for feature detection

and description followed by the PCA [51]. They next applied a BoW model to com-

plete the high-level image descriptors by calculating a Gaussian mixture model (GMM)-

based Fisher vector to determine high-level image descriptors. Finally, they utilized a

C-support vector classifier with the radial basis function (RBF) as the kernel. However,

they obtained their best results through a combined classifier with the weighted average

of classification reliability values at each viewpoint or category.

IBM Australia team [49] achieved the highest inverse rank scores in LifeCLEF 2014

plant identification task. They implemented an efficient GPU-based deep CNN with five

convolutional layers, some of them followed by max-pooling layers, and three fully-

connected layers as well as a final softmax layer. After automatically specifying the

region of interest in each image, their first submitted run included multiple low-level ex-

tracted features. These complementary features were encoded with a Fisher vector to

perform accurate linear classification. Besides having a complicated and efficient deep

CNN, their system utilized the image data with the annotation–provided metadata, and

used classifier fusion. In their second run, they used Fisher kernel encoding, and extracted

SIFT and color moments as dense features from raw images. Each feature was modeled

with a GMM, turned into the Fisher vector representation, and used for training an indi-

vidual linear SVM classifier. For the segmentation in the fourth run, their approach for

the flower and fruit categories was to compare the pixel values of red and green chan-

nels and extract the more red zone as the region of interest. Finally, for the scanned leaf

category, they normalized the background with a white color.

Chapter 3

Convolutional Neural Networks

This chapter covers the main architecture, properties, and advantages of a variety of deep

learning methods built upon on the artificial neural networks. The structure of fully-

connected feedforward neural networks, the neuronal units, weights and parameters, acti-

vation functions, learning process, and backpropagation algorithm are presented in detail.

The discussion then continues with a thorough description of convolutional neural net-

works. The concepts and motivations for these structures are presented and the building

blocks of these networks such as the convolutional, pooling, and normalization layers are

then described and visualized.

3.1 Deep Learning

Visual content usually experiences large intra-class variability due to diverse lightings,

non-rigid deformations, occlusion, and misalignment conditions. This variability makes

image classification from visual content very difficult. The earlier efforts to tackle the

intra-class variability used to fuse expert domain knowledge into pattern recognition or

machine learning systems. More precisely, they would transform image pixel values or

other raw data through a carefully designed low-level feature extractor into an appropriate

internal representation. The obtained feature vector or representation would then be fed

into a classifier or learner that would analyze the input patterns.

A number of these feature extractors have been introduced in the previous chapter;

SIFT and HOG are among the famous ones for object recognition. Moreover, local binary

patterns and Gabor filters are mostly used for face and texture classification. These low-

20

3.1. DEEP LEARNING 21

level feature extractors have been successful because they were especially designed and

tailored for their specific fields, data structures, and required tasks. It follows that, any

new feature extractor requires having updated expert domain knowledge before it can be

adapted to new problems.

However, in contrast to traditional machine learning methods where the features are

chosen manually and extracted through instructed algorithms, representation learning is

composed of methods that first feed pixel values or raw data into the system and allow it

to automatically discover features or representations that can be used for detecting, dis-

tinguishing, and classifying patterns [17]. Deep learning methods utilize representation

learning in multiple levels; the raw data is fed as the first representation and, at every

level, nonlinear modules transform the representation to more abstract level. Therefore,

a deep neural network learns abstract representations so that they bring more invariance

to the problem of intra-class variability.

In a deep convolutional network, simple modules are stacked in a multi-layer struc-

ture. All or most of these modules can learn the representations and a lot of them indeed

compute nonlinear mappings between the input and output. The transformation of in-

puts within each module increases the representations’ selectivity and invariance. As the

number of nonlinear (transformation) layers or representations increases from, for exam-

ple, 5 to 20, the deep network becomes capable of implementing very complex functions.

These functions are generally sensitive to fine details in the inputs but insensitive to large

variations such as lighting, pose, background, and surrounding objects.

In consequence, higher-level features of natural signals in DNNs are composed of

modifications of lower levels. Suppose the input data to the network is the array of pixel

values from an image. There might be edges in the image at specific locations or orienta-

tions, and the first layer learns a representation which shows presence or absence of these

edges. These edges might have particular arrangements or local combinations, and the

second layer typically discovers these motifs in the image. These motifs could have been

assembled as larger, more familiar compositions, and the third layer then detects these

objects. Likewise, higher layers detect more complex assemblies important for pattern

discriminations and ignore or suppress variations irrelevant to classification.

As can be seen, the main difference between deep learning and traditional machine

learning is that feature layers are not designed or imposed by humans; instead, the net-

3.2. ARTIFICIAL NEURAL NETWORKS 22

work learns those features from data through a general-purpose learning procedure. The

learning procedure itself can be done through either supervised or unsupervised learning.

However, in unsupervised learning, the system can benefit from the automatic process

in which no information about labels of the output is used alongside the learning sys-

tem. Therefore, deep learning is very useful in learning and discovering fine and complex

structures in high-dimensional data–a problem which artificial intelligence and pattern

recognition have failed to solve thus far.

3.2 Artificial Neural Networks

Artificial neural networks belong to the statistical learning models and are used to pro-

cess information in machine learning problems. Inspired by the central nervous system

(CNS) in humans and animals, they are composed of processing units or neurons (artifi-

cial nodes) which have weighted interconnections with each other throughout the system

and approximate nonlinear functions of their input signals.

Conventional computers use cognitive or algorithmic methods to solve problems that

we understand and for which we already have an algorithm and solution; but neural net-

works learn by examples and process information similar to the human brain. These

examples should be selected carefully so that the learned algorithm is not specific to a

problem and does not cause overfitting for test instances.

3.2.1 Historical Background

In 1943, McCulloch and Pitts [52] developed models for neural networks based on mathe-

matics and algorithms known as threshold logic. Those models used several assumptions

about simple functional approximations of neurons and were the basic simulating biolog-

ical processes for artificial intelligence. Later, based on the mechanism of neural plas-

ticity, Hebb proposed a hypothesis known as Hebbian learning for unsupervised learning

rules [53]. In the mid 1950’s Farley and Clark [54] and Rochester et al. [55] used pioneer

computational machines to simulate Hebbian networks.

Perceptron was created later by Rosenblatt [56] as a pattern recognition algorithm

formed by a two-layer learning network that used only addition and subtraction. At

the end of 1960s, however, Minsky and Papert showed that single-layer neural networks

3.2. ARTIFICIAL NEURAL NETWORKS 23

could not process and simulate XOR circuits [57]. Since larger networks required longer

processing time and available computers of that era did not have such processing powers,

the neural networks research declined for a while. It was in 1972 when Klopf [58] pro-

posed a learning method for artificial neurons based on heterostasis, a biological principle

for learning of neurons. Three years later, Werbos [59] developed the backpropagation

learning method for networks of perceptrons which have multiple layers, use different

threshold functions in the neurons, and utilize more robust learning rules. Using these

new learning methods, artificial neurons now could solve the XOR problem with one hid-

den layer. The one-hidden layer perceptrons can use hard-limiting functions to build any

unbounded convex region.

The growth of neural networks declined gradually as support vector machines and

linear classifiers became more popular in machine learning techniques; however, deep

learning concept and architecture renewed a global interest in neural networks since the

end of 2000s.

3.2.2 Model of Biological Neuron

The human brain is similar to a highly complex and nonlinear computer and is composed

of about 1011 neurons with around 10,000 connections per neuron. A typical neuron has

a series of fine structures or receptors called dendrites which receive signals from other

neurons through a connection called synapse. The electrical activity transfers throughout

axon, the longest part of neuron usually covered with a thin insulating layer called myelin.

The transfer of electrical activity is done through movement of ions that trigger spikes

along the axon. The final part of each axon is split into thousands of branches which once

again are close to the dendrites of the next neuron, and the electrical activity from the first

axon excites chemical substances whose motion to the next dendrites is equal to inhibition

or excitation of electrical activity throughout the synapses of connected neurons. When

a neuron receives an excitatory input sufficiently larger than its inhibitory one, it sends a

spike along its axon. Figure 3.1 shows the structure of a biological neuron.

In the human brain, learning is done through adjustments of synaptic connections, i.e.

changes to the effectiveness of synapses such as forming new synaptic connections or

detaching of some other ones. The brain has another property called neuroplasticity; i.e.,

although the brain at birth has a series of shaped networks from interconnected neurons,

3.2. ARTIFICIAL NEURAL NETWORKS 24

Figure 3.1: The structure of a biological neuron showing its synapse with a neighboring
neuron. Adapted from [60]

new connections are built in response to new inputs and adaptation to the environment.

3.2.3 Perceptron

A perceptron is a common type of single artificial neuron that computes the weighted

input of one or more binary inputs and uses a threshold activation function to produce a

single binary output. Figure 3.2 represents the model of a perceptron (artificial neuron)

which receives electrical activity from other neurons and applies a hard-limiting activa-

tion function on the weighted summation of the activities.

Rosenblatt introduced real-valued weights, w, to emphasize the importance of their

respective inputs, x, in the calculated output. The weighted sum wT · x = ∑ j w jx j plus

the value of bias, bi for the i-th neuron, is then compared with the threshold values of the

activation function and its output becomes 0 or 1, depending on the result of compari-

son. In principle, the perceptron separates the input space to two regions divided by the

hyperplane wT ·x+bi = 0. However, a single-layer perceptron has a limitation in that it

can only learn linearly separable problems. For linearly not-separable problems, a usual

solution is to use multi-layer networks and the backpropagation algorithm both discussed

in the following sections.

3.2. ARTIFICIAL NEURAL NETWORKS 25

� ���� + �

�

 �

�� ��

����

Axon from Neuron 1

Synapse

Cell body

Activation

Output Axon

�� ��

Axon from Neuron j

�� ��

Axon from Neuron N

Figure 3.2: Model of a perceptron

Obviously, the weights, types of activation function, and the threshold values are pa-

rameters of the perceptron. Modifying these parameters changes the decision-making

criteria and enables us to implement different binary functions and solutions. In addi-

tion, similar to the mechanisms in biological neurons, connections could be excitatory

or inhibitory. Here, positive weights show excitatory connections while negative weights

represent inhibitory connections.

3.2.4 Activation Function

The weights and mappings between the input and output of an ANN unit determine its

behavior. To be specific, if the function represents the activation function of the i-th

neuron, the output is found from the following equation

ai = f (ni) = f
(
∑

j
w jx j +bi

)
(3.1)

where ni is the net input plus the bias term.

The activation function can take various shapes but usually it is in the form of hard-

limiting, log-sigmoid, linear, ramp, etc. For the hard-limiting function,

ai =

0, if ni < 0

1, if ni ≥ 0
(3.2)

For the log-sigmoid function, ai =
1

1+e−ni and in the linear units, ai = ni. The former

gives the most precise approximation to the behavior of real neurons. The type of acti-

3.2. ARTIFICIAL NEURAL NETWORKS 26

Input Layer Hidden Layer Hidden Layer Output Layer

Inputs Hidden Layer Outputs

Input Layer Output Layer

i j

k
Wji

Wkj

Figure 3.3: A fully-connected three-layer neural network

vation functions used within each layer is usually consistent. Generally, the log-sigmoid

activation function is used in the hidden units. In the classification problems, the sigmoid

or linear activation functions could be used while the approximation/regression problems

usually use linear functions at the output neurons.

Currently, the most popular nonlinear function in the CNNs is the rectified linear unit

(ReLU) or the half-wave rectifier. The output of this activation function is

ai = max(0,ni) (3.3)

A smoother approximation to the ReLU is ln(1+ eni). Until the introduction of this

function, neural nets used smoother nonlinearities such as tanh(ni) or log-sigmoid. But

ReLU typically has a much faster learning rate in networks with a lot of layers.

3.2.5 Neural Networks Architecture

The prerequisites for building a neural network for any specific task are designing the con-

nections between the units and imposing right weights on them to determine the strength

of influence between two units. These connections simulate the synaptic connections

between neurological neurons used for storing the acquired knowledge.

The most common type of artificial neural networks has one layer of input, two hidden

layers and one layer of the output unit. Figure 3.3 shows a fully-connected three-layer

neural network.

Besides the input unit which receives the raw information into the network, activities

of hidden units are functions of the input unit activities and the input-hidden unit con-

nection weights. Likewise, the output’s behavior is determined by activities of hidden

3.2. ARTIFICIAL NEURAL NETWORKS 27

Input Layer Hidden Layer Hidden Layer Output Layer

Inputs Hidden Layer Outputs

Input Layer Output Layer Figure 3.4: A two-layer fully-connected feedforward neural network

units and weights of connections between the hidden and output units. The hidden units

essentially modify the input data in a nonlinear way enabling the last layer to make the

categories linearly separable.

The active condition of each hidden unit is determined by weights of connections

between the input and that particular hidden unit; therefore, changing these weights en-

ables the hidden units to choose their own representations. As a result, multi-layer neural

networks are interesting as the hidden units are almost free in constructing their own

representations from the input data.

3.2.5.1 Feedforward Networks

The feedforward ANNs are straightforward networks that associate inputs to the outputs

in one direction. As there is no loop among the connections, no output in any layer affects

the same layer. The feedforward networks are also known as bottom-up or top-down

architectures and an example of them is shown in Figure 3.4.

The feedforward neural network architectures are used in many applications of deep

learning. For example, in solving category-level object recognition problems, they re-

ceive input images as fixed-size inputs, and map them to fixed-size outputs such as the

probability of belonging to each of the many categories.

3.2.5.2 Feedback Networks

In feedback (recurrent) networks, some of the inputs are connected to some of the out-

puts. In other words, some of the signals can travel in both directions due to the existence

of loops in the network. Feedback networks are dynamic and their state changes con-

tinuously until an equilibrium point is reached. They remain at this point until the input

3.2. ARTIFICIAL NEURAL NETWORKS 28

Input Layer Hidden Layer Hidden Layer Output Layer

Inputs Hidden Layer Outputs

Input Layer Output Layer

Figure 3.5: An example of feedback (recurrent) neural network

changes which requires finding a new equilibrium point. When located in single-layer

neural networks, feedback architectures are called recurrent structures. In larger networks

with at least one hidden layer, however, they are referred to as interactive networks. Fig-

ure 3.5 shows an example of feedback neural network.

3.2.6 Learning Process

For a neural network to learn a particular task, a number of steps need to be performed.

First, a set of training examples will be presented to the network showing the pattern

of input activities and the desired activities (or labels for the output units). Suppose the

i-th perceptron of a single-layer neural network has an activation function calculating a

numerical output label ai = hardlim(wi · x j), where wi is the row vector of connection

weights for the i-th unit and x j is the column vector of the j-th input instance. By com-

paring this calculated label and the actual label yi, we determine how closely these two

output labels match each other and change the connection weights so that the network

can produce a better approximation for the desired labels.

The weights are updated using the following formula known as the tentative learning

rule

wnew
i = wold

i +(yi−ai)x j (3.4)

where (yi−ai) equals the i-th error term ei. If the perceptron has a bias term such as bi,

it will also be updated using the following formula

bnew
i = bold

i +(yi−ai) (3.5)

3.2. ARTIFICIAL NEURAL NETWORKS 29

This learning rule can be easily generalized to larger, multi-layer neural networks.

Also, this learning rule represents modification of the information stored in the network

as a function of the experience. Nevertheless, not all networks are flexible and able to

update their weights. In such fixed networks, dW/dt = 0 and weights are fixed a priori

according to the problem to be solved. On the other hand, the networks that we just

reviewed are adaptive and able to change their weights, i.e. dW/dt 6= 0.

3.2.6.1 Supervised Learning

One of the most common paradigms in machine learning is supervised learning. In this

case, through the help of an external teacher, a training set composed of input-output

pairs (X ,Y) is given to the system. In other words, each output units knows what desired

output value or label it should produce in response to input signals. Supervised learning

is then defined as learning an unknown function f such that f (X) =Y where X is an input

example and Y is the desired output.

The main tasks in supervised learning are classification, concept learning, and re-

gression. Classification is the main theme of this thesis and is defined as assigning an

object/event to one of a given finite set of classes or categories. In supervised learning

from a database of images, each image is labeled with its category. During training, each

image is shown to the machine which produces a vector of scores, one element for the

probability of belonging to each category. The desired or correct category should be the

one with the highest score among all categories, so during training, an objective function

is computed for measuring the distance between the output scores and desired pattern of

scores. The machine will then adjust its internal, adjustable real-valued parameters, often

weights, to minimize this distance or error. Major paradigms of interest within the field

of supervised learning are error-correction learning, stochastic learning, and reinforce-

ment learning where a feedback in the form of positive or negative reward is given to the

machine at the end of a sequence of steps.

To adjust the weight vector, the learning algorithm computes a gradient vector. This

vector shows that how much the error would change and in which direction if the weights

are increased by small amounts. The weight vector would then be adjusted to move in

the opposite direction of the maximum gradient, also known as the steepest descent. As

the number of features increases, so do the number of input units and the number of

3.2. ARTIFICIAL NEURAL NETWORKS 30

parameters in the feature space. The goal is to minimize the objective function, averaged

over all training instances, in the high-dimensional weight space.

A key issue in supervised learning is error convergence, i.e. minimization of the error

term between the actual and computed outputs (labels). In this case, the problem becomes

choosing the set of weights so as to minimize the error term, usually through mean square

convergence. Another highly practical method is the stochastic gradient descent (SGD).

In this method, every time a small set of input pairs is given to the system, outputs,

errors, and the average gradient are computed and weights are adjusted accordingly. This

process repeats for several small sets of input pairs from the training set until the average

of the objective function stops decreasing. As each small set of input pairs creates a noisy

estimate of the average gradients, this process is named stochastic gradient descent.

3.2.6.2 Unsupervised Learning

Unsupervised learning is another paradigm of machine learning in which no desired out-

put or external teacher is used alongside the training system. This paradigm self-organizes

the data fed to the machine and detects the collectively emergent properties. Hebbian the-

ory and competitive learning are two paradigms within the unsupervised learning, and

Fuzzy clustering and k-means are two common clustering methods used in this field.

3.2.6.3 Backpropagation Algorithm

One of the main motivations behind developing various pattern recognition techniques

has been replacing manually extracted features with trainable multi-layer networks. It

was around mid-1980s when researchers realized that they could train multi-layer archi-

tectures using simple SGD. Several different groups in 1970s and 1980s [59] indepen-

dently discovered the idea that gradients could be computed using the backpropagation

procedure assuming the output modules were quite smooth functions of their internal

weights and input signals.

The backpropagation procedure computes the gradient of an objective function with

respect to weights of its multi-layer stack using the chain rule for derivatives. Assume

that the value of the j-th output unit O j is a function (f) of the weights from units in the

3.2. ARTIFICIAL NEURAL NETWORKS 31

previous layer (Oi’s) and the respective connection weights:

O j = f (net j) = f (∑
i

Wi jOi) (3.6)

The error derivative of the weights, defined as the partial derivative of error on the

input pattern p with respect to each of its preceding connection weights in the previ-

ous layer, is calculated using the chain rule and the known partial derivative function as

follows

dEp

dWi j
=

dEp

dO j
×

dO j

dnet j
×

dnet j

dWi j
(3.7)

Therefore, using 3.6 we will obtain

dEp

dWi j
=

dEp

dO j
× f ′(net j)×Oi (3.8)

where dEp
dO j

is the rate at which the error changes with respect to the activity level of the

output unit. This is the general formula for the error derivative of weights for both linear

and nonlinear units and any output or hidden-layer node.

However, if node O j is an output layer node and Yp is the true label of the input pattern

p, using the definitions for the squared-error term we can simplify the partial derivative

of error term as follows

Ep = (Yp−Op)
2 (3.9)

dEp

dWi j
=−(Yp−Op)× f ′(net j)×Oi (3.10)

The preceding backpropagation equations may be applied repeatedly to propagate

gradients backwards through all modules, i.e. start from the output layer producing the

predicted values and go back to the external input layer. After computing these gradients,

one can easily calculate the gradients with respect to other modules’ weights.

3.3. CONVOLUTIONAL NEURAL NETWORKS 32

3.3 Convolutional Neural Networks

Convolutional neural networks (CNNs/ConvNets) are highly similar to ordinary neural

networks in that they are composed of neurons that have learnable weights and bias

terms. Each neuron receives a number of inputs, performs a dot product of the weight

vector and input vector, and optionally performs a nonlinear function on the resulted net

input. CNNs have a loss function that could be implemented by SVM or Softmax on

the last fully-connected layer. Moreover, all the concepts and methods developed and

explained for learning in regular neural networks are still applicable to CNNs. However,

CNNs take advantage of the fact that the inputs are images and not long vectors. In this

way, CNNs can apply certain related properties into their architecture. Utilizing these

properties helps with a more efficient implementation of forward functions and highly

decreases the number of network parameters.

CNNs have been successfully used for detection, segmentation, and object and re-

gion recognition in images since early 2000s. Most of these tasks had labels and were

used in fields such as brain and nervous system connectomics [61], segmentation of bio-

logical images [62], traffic sign recognition [63], as well as face, text, human body, and

pose detection in natural images [17]. Until the launch of ImageNet competition in 2012,

CNNs had been ignored by researchers in machine learning and computer vision fields. It

was then that, after applying CNNs to a dataset with 1,000,000 images and 1,000 differ-

ent classes, these communities noticed the magnificently low-error rates of CNN-based

approaches. The success of CNNs lies in techniques for generating more training in-

stances by deforming the available ones as well as the efficient use of ReLUs, GPUs, and

dropout–a new regularization technique [64].

3.3.1 CNN Architecture

As discussed earlier, fully-connected ANNs receive an input as a single vector and trans-

fer it to the consequent hidden layers composed of neurons. Neurons inside a single layer

do not share any connections with each other but each neuron is fully connected to all

neurons in the previous layer. Finally, the output layer sends out outputs representing the

class scores in classification problems.

However, in CNN the neuronal units are not necessarily fully connected. Moreover,

3.3. CONVOLUTIONAL NEURAL NETWORKS 33

each layer has a number of feature maps. Stacking convolutional layers followed by

pooling layers constitute the first few stages of CNNs. Input layer includes the raw pixel

values of images and units in each layer are connected to a local patch in the previous

layer. Since the input image could be in the grayscale or color format (volume), the

arrangement of values from the output neurons can be in the 2D or 3D space. The con-

nection weights between these units and the preceding patches are called filter banks. The

local weighted sums are then mapped to the next layer by passing through a nonlinearity

mapping such as ReLU.

The role of convolutional layers is to detect local conjunctions of features from the

previous layer while the pooling layers semantically merge similar features into one fea-

ture. Each pooling map takes the maximum of a local patch of neuronal units. In general,

a full CNN architecture is composed of stacked input layer, convolutional layers, pooling

layers, and the fully-connected output layer.

The inspirations for the convolutional and pooling layers of the CNNs have come

from classic concepts of simple and complex cells in visual neuroscience [65]. The basis

of CNN was partly based on Neocognitron [66]; nevertheless, Neocognitron did not use

backpropagation or any similar end-to-end algorithm for supervised learning.

3.3.1.1 Convolutional Layer

The core building block of a CNN is the convolutional layer. In the convolutional layer,

neurons are connected to local regions in the input and their outputs are dot products of

the connection weights and the regional inputs. The convolutional layer, in summary, will

compute the output of those outer neurons.

A set of filters with learning capability constitute parameters of the convolutional

layers. In the forward pass, each filter is slid or convolved across the input image height

and width and produces a 2D activation map of that filter. This is similar to calculating

the dot product between the input and filter entries. In this way, the network will learn

which filters activate seeing a specific pattern of features at some locations in the input.

A full output map or volume is built by stacking all of these activation maps for all filters

along image color maps. In contrast to the different feature maps in a layer that uses

different filter banks, all units in a feature map share the same filter banks.

In CNNs with high-dimensional inputs such as images, it is not practical to make

3.3. CONVOLUTIONAL NEURAL NETWORKS 34

the network fully-connected; therefore, the connections along the width and height are

local as each neuron will be connected to just a local region (receptive field) of the input

volume. In other words, every entry in the output volume is an output of a neuron looking

at just a small region in the input and sharing parameters with neurons from the same

activation map. However, connections will be full along the color maps.

Besides the number of color components which control the number of neurons, over-

lapping stride of receptive fields and zero-padding of input maps during convolution spec-

ify the spatial size of the output volume. Assume W , F , S, and P are the input map size,

receptive field size of convolutional layer neurons, filtering stride, and the amount of zero-

padding used on the input map borders, respectively. Therefore, the number of neurons

fitting in the output map under the zero-padding condition is given by

n =
W −F−2P

S+1
(3.11)

If the computed n is not an integer, then the strides are set incorrectly. Also, for

P = (F−1)/2 and S = 1, the input and output volume will have the same spatial size.

3.3.1.2 Pooling Layer

CNNs usually insert pooling layers after a number of successive convolutional layers.

These layers perform downsampling operations along the width and height dimensions

and gradually reduce the number of parameters and the required computations in the

network. This in turn controls and reduces overfitting during training.

Subsampling by Max-Pooling

Max-pooling is a type of nonlinear downsampling that finds the most responsive node or

unit with higher activation from a given region of interest. It partitions the input image

into a set of non-overlapping rectangles; next, it outputs the maximum value for each of

the sub-regions. Although there exist other different approaches for pooling such as av-

erage pooling, L2-norm pooling, stochastic and weighted pooling [67], biological studies

have shown that human brain likely utilizes a max-pooling neural activation structure.

Max-pooling is a useful technique in vision. It reduces the required computation for

further processing by eliminating non-maximal values. On the other hand, it provides a

3.3. CONVOLUTIONAL NEURAL NETWORKS 35

form of translation invariance or robustness to position. Hence, max-pooling is a good

approach for reducing the dimensionality of intermediate representations [68].

3.3.1.3 Normalization Layer

A CNN may also contain an extra layer for normalization purposes. As a local normaliza-

tion scheme, response normalization was first introduced in [69] to implement inhibition

schemes observed in the brain. When a neuron fires at a very high activation level, a local

response normalization layer suppresses the activation in the surrounding neurons. This

layer is defined based on three parameters α , β , and k and a convolutional structure or

neighborhood shape. Activation level of a neuron in the destination (normalization layer)

corresponding to the neuron x in the source layer is given by

f (x)(
k+ α

|Nx|∑z∈Nx(f (z))2
)β

(3.12)

where f (x) is the activation level of neuron x and Nx is the kernel or the set that contains

the neurons in the neighborhood of x.

3.3.1.4 Output Layer

The output or final layer is generally designed to assign the obtained representations for

an image to a specific class. The fully-connected and Softmax layers are two types of

output layers used in CNNs.

Fully-Connected Layer

The highest level of representation in neural networks is implemented via fully-connected

layers that proceed several convolutional and max-pooling layers. A fully-connected

layer receives activations of all neurons in the previous layer and connects them to ev-

ery single neuron in itself. Thus, the final activation can be implemented using a matrix

multiplication summed with a bias offset, if needed. These layers are considered one-

dimensional. They compute the class scores in these classification problems; thus no

convolutional layers come after them.

3.3. CONVOLUTIONAL NEURAL NETWORKS 36

Softmax Regression

Softmax regression or normalized exponential is a generalization of logistic regression

to multi-class classification. It is an appropriate model for classification especially where

there are no overlaps between different categories–the so-called mutually exclusive classes.

On the other hand, if categories are not mutually exclusive, one can build and train binary

logistic regression classifiers as the same one-vs-all technique [27].

Consider a set of sample-labeled pairs (xi,yi), i = 1,2, . . . ,m, with feature vectors

xi ∈ Rn. In the case of binary classification where yi ∈ {−1,+1}, the logistic regression

makes a decision based on the following hypothesis function

hθ (xi) =
1

1+ exp(−θ T xi)
(3.13)

where θ represents the model parameters including weights augmented with the bias

learned from the training data by minimizing the following cost function

J(θ) =− 1
m

m

∑
i=1

log(hθ (xi))+(1− yi) log(1−hθ (xi)) (3.14)

However, in multi-class classification problems, the goal is to estimate the conditional

probability for each class label using the following formula

p(yi = j|xi;θ j) =
exp(θ T

j xi)

∑
k
j=1 exp(θ T

j xi)
(3.15)

where p(yi = j|xi) is the conditional probability of the j-th class label given instance vec-

tor xi, j = 1,2, . . . ,k. The denominator normalizes the output within [0,1]. Consequently,

the output vector of the Softmax regression hypothesis for a given test instance is

hθ (xi) =
[
p(yi = 1|xi;θ1), p(yi = 2|xi;θ2), ..., p(yi = k|xi;θk)

]
(3.16)

where the model parameters can be obtained by minimizing the following cost function

J(θ) =− 1
m

m

∑
i=1

k

∑
j=1

δ (yi = j) log
(

p(yi = j|xi;θ j)
)
+

λ

2

k

∑
i=1

n

∑
j=1

θ
2
i j (3.17)

where δ (·) is the Dirac delta function and is equal to 1 only if its argument holds. Also,

3.3. CONVOLUTIONAL NEURAL NETWORKS 37

the second term of this cost function with the regularization parameter λ > 0 is called

the weight decay term and ensures the optimization problem is strictly convex with a

unique solution. Moreover, since the minimization approaches apply the gradient de-

scent or other iterative methods, the Hessian matrix will become invertible; hence, it will

guarantee that the minimization algorithm for solving unconstrained, nonlinear problems

converges to a global minimum.

Chapter 4

Object Recognition Using Deep

Convolutional Networks Based on PCA

This chapter discusses the main motivations for using PCA-based deep convolutional

networks–architectures that utilize several advantages of PCA and CNNs and add sim-

plicities that make them interesting for use in visual object recognition and plant classifi-

cation tasks. The architecture of the proposed network is explained in detail and required

formulas are derived. This chapter also introduces the technique of spatial pyramid pool-

ing and is finalized by an overview of the SVM classifier implemented in the final stage

of our proposed architecture.

4.1 Background

Several groups within the computer vision and machine learning communities have pro-

posed various modifications to the deep convolutional networks and have been able to

empirically prove the superior performance of these networks [17]. However, Scat-

Nets [18, 19] have been the first proposed systems among deep networks for which a

mathematical proof has been presented. But ScatNet is a prefixed network; it does not

have a learning capability as its convolutional filters are just wavelet operators. Although

it has shown superior performance over CNNs in challenging texture recognition and

handwritten digit tasks, its prefixed architecture has not generalized well to other object

recognition problems suffering from large intra-class variations.

As the system proposed in [20], PCA network (PCANet) is a fusion of principal com-

38

4.2. MOTIVATIONS 39

ponent analysis and deep convolutional networks which applies PCA as an unsupervised

learning method to the image patches to learn multi-stage filter banks. After learning

the network weights, indexing and pooling are performed through simple binary hashing

and normalized block histograms. Although PCANet uses the key concepts of DCNs, it

seems to be a suboptimal solution which needs shorter learning time and fewer amounts

of data for training.

An ancestor network closely related to PCANet was the two-stage oriented PCA

(OPCA) first proposed for audio processing [70]. Although OPCA does not couple with

hashing and local histogram extraction in the output layer, considering similar noise co-

variance, it obtains more robustness to noise and distortions compared to PCANet. How-

ever, PCANet has the same benefit of OPCA in providing more invariance for the intra-

class variability.

4.2 Motivations

As already mentioned in Section 2.2, large intra-class variability is an inherent issue in

plant identification problems; hence, ScatNet or similar prefixed deep networks cannot

perform well in these tasks either, opening the way for exploring a deep learning approach

for our problem of interest.

The literature has proven evidence that DCNs have had superior performance on large

image databases such as ImageNet [71] and CIFAR [72]. However, they require a large

number of layers to achieve good results that make their implementation computationally

expensive. As a result, we believe an alternative must exist with a simpler baseline for

learning network weights while having a reduced learning time that is able to achieve

comparable results with those of the common CNNs.

PCA is an unsupervised learning method known for being advantageous in noise re-

duction, dimensionality reduction, and orientation normalization. Considering principal

components (eigenvectors) as weights, we have been able to ignore the noise and find

suboptimal filters with invariance properties. In addition, filters built using the principal

components are essentially computed from data by minimizing reconstruction error and

thus represent the learning capability while wavelet and Gabor filters have prefixed val-

ues. Therefore, it would be desirable to combine PCA features into a deep convolutional

4.3. CONTRIBUTIONS 40

network and to use all those benefits for plant identification or similar challenging tasks.

These ideas allow us to modify PCANet and use it for our specific object recognition

problem.

4.3 Contributions

We have improved the simple proposed baseline for convolutional networks using PCA

filters and modified PCANet for our purpose of plant identification. The main improve-

ments are achieved at the output layer where we apply max-pooling and spatial pyramid

pooling. Moreover, we have extracted pyramid of features from unnormalized local his-

tograms. These approaches provide pose invariance in addition to a reduction in overfit-

ting. In addition, we utilize color information by learning filter banks from HSY color

space which seems to be a simple color transform and more suitable for plant identifica-

tion problem (see Appendix A).

4.4 Proposed Deep PCA Network

PCA network initializes by taking overlapping patches of all images and applying PCA to

them to find filter banks by selecting principal components of the calculated eigenvectors.

The obtained filters are then convolved with input images within the first layer of the

convolutional network. Projections of patches on to the principal components form the

responses of units in the first layer.

We can repeat this methodology for the obtained filtered images to compose the deep

convolutional network architecture. That is to say, the next stage uses the same procedure

to calculate and apply filters on the outputs of the first layer, forming a cascaded linear

map. Next, the method uses binary quantization and hashing for multi-stage filtered im-

age sets to concatenate them in the decimal form. Finally, local histograms are extracted

as features from the blocks of the quantized images using the technique of spatial pyramid

pooling.

The detailed explanation of this algorithm is as follows. The training data contains

i = 1,2, ...,N images Ii of size m×n. In the first stage, patches of size k1× k2 pixels are

extracted around each pixel in the image Ii. Afterwards, all such overlapping patches are

4.4. PROPOSED DEEP PCA NETWORK 41

collected, vectorized, and mean subtracted to obtain Xi. Repeating this operation for all

images, we obtain a patch collection X such that

X = [X1,X2, ...,XN] ∈ Rk1k2×Nmn (4.1)

Next, in order to calculate the desired filter banks of orthonormal filters, V , PCA mini-

mizes the reconstruction error to compute their L1 principal components. The constrained

optimization is formulated as

min
V∈Rk1k2×L1

‖X−VV T X‖2
F subject to V TV = IL1 (4.2)

where ‖ · ‖F is the Frobenius norm, IL1 is the identity matrix of size L1× L1 and the

solution simply consists of finding L1 principal eigenvectors of XXT . Therefore, PCA

filters for the first layer form weights W 1
l1 for l1 = 1,2, ...,L1 by converting eigenvectors

to matrices of size k1×k2. Hence, the l1-th filtered image is calculated by convolving the

l1-th filter with the i-th patch-mean removed image, Īi, as

Il1
i = Īi ∗W 1

l1 (4.3)

We can repeat the same approach to learn L2 PCA filters for the second layer to create

double-filtered images. For this purpose, all the overlapping patches of each filtered

image Il1
i are collected, vectorized, and mean subtracted to obtain Y l1

i . Repeating this

algorithm for all filtered images, we obtain,

Y = [Y 1
1 , ...,Y

1
N ,Y

2
1 , ...,Y

2
N , ...,Y

L1
1 , ...,Y L1

N] ∈ Rk1k2×L1Nmn (4.4)

Similarly, PCA filters for the second layer, W 2
l2 for l2 = 1,2, ...,L2, are obtained by find-

ing L2 principal eigenvectors of YY T and rearranging them as matrices of size k1× k2.

Therefore, the double-filtered image maps, computed sequentially using the l1-th and l2-

th filters, are obtained by convolving the l2-th filter with the i-th patch-mean removed

filtered image, Īl1
i , as

Ol1,l2
i = Īl1

i ∗W 2
l2 (4.5)

4.4. PROPOSED DEEP PCA NETWORK 42

As can be seen, in the output O for each image, we have L1× L2 double-filtered

images with real values. To decrease the number of maps, we first binarize them using

the Heaviside step function, H(·). Next, for each pixel, we map L2 quantized binary bits

to a decimal number as

T l1
i =

L2

∑
l2=1

2l2−1H(Ol1,l2
i) (4.6)

This weighted sum acts similarly to a cell with prefixed weights in the descending order

based on principality of the components. In fact, this conversion maps each L2 binary

bits acquired from corresponding pixels of the double-filtered binary images into a single

graylevel image pixel in the range of [0,2L2−1].

Later on, we apply max-pooling to discover the most responsive units from the ob-

tained maps. This approach will provide a form of translation invariance and reduce the

output map dimension to bm
s c×b

n
s c, where s≥ 1 is an integer that represents the subsam-

pling step.

Finally, to build a more abstract representation of output maps, we use spatial pyramid

pooling. We partition each of the subsampled decimal images, Sl1
i , into p2 blocks, where

p ≥ 1 is an integer indicating the pyramid level. Next, we compute block histograms

(with 2L2 bins) for all L1 images as features of the i-th image, i.e.

f p
i =

[
hist
(
B1,1

i
)
, ...,hist

(
B1,2p

i
)
, ...,hist

(
BL1,1

i
)
, ...,hist

(
BL1,2p

i
)]
∈ R1×2L22pL1 (4.7)

where hist
(
Bl1, j

i
)

computes the histogram of the j-th block from the l1-th partitioned

map of the i-th image. We can concatenate histograms from different levels of pyramids

together to form the output feature vector for the i-th image. As previously discussed,

using pyramids of local histograms provides invariance properties of large object poses

and complex backgrounds. Figure 4.1 shows the block diagram of a two-stage PCA

network.

We can extend the PCA filter learning to use it for color images in object databases.

Weights are learned from each color channel in the same manner. Finally, we stack the

weights together to obtain color filter banks and concatenate the extracted features from

each color map to form a unit feature vector.

The patch-mean removal centers all the patches in the origin of the vector space.

4.4. PROPOSED DEEP PCA NETWORK 43

This method is highly similar to the local contrast normalization in CNN [73]. We use

binarization to obtain abstract representations of maps and utilize hashing to combine

these quantized maps. Still, decimation is a simple way to unite output maps and one

may find better weighing scales to combine maps. Moreover, the histogram offers some

degrees of translation invariance to the extracted features; this is similar to the translation

invariance obtained as a result of hand-crafted feature extraction methods such as SIFT

[21], HOG [23], learned features such as the BoW model [74], and pooling processes in

CNN [68, 69, 73, 75–77].

All the processes performed before the pooling layers of deep PCA network are com-

pletely linear. The nonlinearity process is only applied in the last layer and not between

the stages. This is in contrast to the common approach of building deep neural net-

works such as the absolute rectification layer in CNN [73] and the modulus layer in Scat-

Net [18, 19]. Our experiments show that using absolute rectification between all stages

does not improve the final classification results. We believe the reason is that the use

of quantization, max-pooling, and SPP in the output layer already introduces sufficient

invariance and robustness in the final feature.

4.4.1 Spatial Pyramid Pooling

Spatial pyramid pooling (SPP) or spatial pyramid matching (SPM) is a feature pooling

method that builds a more abstract representation of images. It preserves some of the

spatial information by partitioning images into divisions from finer to coarser levels and

aggregates local features in them [78,79]. This higher-order representation is an extension

of the Bag-of-Visual-Words (BoVW) model [80] which obtains a fixed-length output and

can introduce invariance properties of objects poses including position, orientation, and

scale.

SPP has a number of remarkable properties for deep convolutional networks. In con-

trast to the sliding window pooling which uses a single window size [81], SPP uses multi-

level spatial bins and generates a fixed-length output regardless of the input size. Multi-

level pooling has been shown to be robust to object deformations [79]. In addition, using

a fixed number of bins instead of a fixed window size not only makes it possible to gen-

erate representations from arbitrarily sized images/windows for testing, but also allows

us to feed images with varying sizes or scales during training. This flexibility, in turn,

4.4. PROPOSED DEEP PCA NETWORK 44

increases the scale invariance and decreases overfitting. The aforementioned fixed-length

vectors can then be used by the fully-connected neural network layers or classifiers such

as SVM and Softmax.

4.4.2 Classification by Linear SVM

In the final stage, the multi-class linear support vector machine was chosen as the classi-

fier to handle the complexity and accuracy issues due to the massive size of data obtained

after feature pooling. For implementation, we use LIBLINEAR [82], an open source li-

brary for large-scale linear classification of binary and multi-class problems. It supports

two popular supervised learning models of support vector machines (SVMs) and logis-

tic regression (LR). Given a set of instance vectors with n-dimensional features xi ∈ Rn,

i = 1,2, . . . ,m, and their respective label vector y ∈ Rm where yi ∈ {−1,+1}, a linear

classifier solves the following unconstrained optimization problem in its primal form to

generate a weight vector w for its model [83]

min
w

f (w)+C
m

∑
i=1

ξ (w,xi,yi) (4.8)

where C > 0 is the penalty parameter. The first term of the objective function, f (w), is

normally replaced by 1
2wT w, i.e. the L2-norm or regularization. In case a sparse solution

for w is required, the aforementioned term can be substituted with the L1-norm, indicated

as ‖w‖1. Also, the loss function term ξ (w,xi,yi) can be defined as one of the following

expressions

ξ (w,xi,yi) =

max
(
0,(1− yiwT xi)

)
, L1-loss SVC[

max
(
0,(1− yiwT xi)

)]2
, L2-loss SVC

max
(
0,(|yi−wT xi|− ε)

)
, L1-loss SVR[

max
(
0,(|yi−wT xi|− ε)

)]2
, L2-loss SVR

log
(
1+ exp(−yiwT xi)

)
, Logistic Regression

(4.9)

where ε ≥ 0 specifies the loss sensitivity, and SVC and SVR indicate support vector

classification and support vector regression options of SVM, respectively. Finally, the

decision for each instance, di, is made based on the obtained weights using the sign

4.4. PROPOSED DEEP PCA NETWORK 45

function

di = sgn(wT xi) (4.10)

Therefore, the class of sample vector xi is predicted as positive if di > 0 and nega-

tive otherwise. Moreover, for multi-class problems, LIBLINEAR uses a one-vs-the-rest

(OvR) or one-vs-all (OvA) strategy and a method by Crammer and Singer [84]. In other

words, for a k-class classification purpose, the decision is made based on argmax j(wT
j xi),

j = 1,2, . . . ,k. LIBLINEAR also allows the classifier to include a bias term. In this case,

a constant is added as an extra variable to the sample vector xi and an extra column is

concatenated to the output weights to represent the optimized bias vector.

As it can be seen, SVM is essentially a quadratic programming (QP) problem. This

optimization problem can be solved either in the primal or in the dual forms. When

using a nonlinear kernel to transform the original dataspace, the best option is to solve

the dual problem in which the number of variables is equal to the number of training data

instances. However, in the strictly linear case, we can solve the primal form–which is

also a quadratic problem, but with an equal number of variables and data features as well

as equal number of constraints and data samples. LIBLINEAR gives the option to solve

either the primal or the dual forms with several variations such as L1/L2 regularization

and L1/L2 loss without any kernel transform. Clearly, utilizing these options depends on

the conditions of data at hand. For example, when the data is highly sparse or the number

of features is much higher than the number of samples, it is more suitable to use the dual-

based solvers with coordinate descent methods. In other cases, applying the primal-based

solvers using Newton-type methods is preferable. As a result, LIBLIENAR is faster than

LIBSVM [85] with a linear kernel.

4.4. PROPOSED DEEP PCA NETWORK 46

ܫ
ܫ ̅

ܫ భ
ܫ ̅ భ

ܶ భ

݂

ܱ భ, మ

ܺ

ܻ భ

In
pu

t L
ay

er

Fi
rs

t S
ta

ge

(P
at

ch
 m

ea
n

re
m

ov
al

 &
 M

ap
pi

ng
 b

y
le

ar
ne

d
PC

A
 fi

lte
rs

)
Se

co
nd

 S
ta

ge

(P
at

ch
 m

ea
n

re
m

ov
al

 &
 M

ap
pi

ng
 b

y
le

ar
ne

d
PC

A
 fi

lte
rs

)
O

ut
pu

t L
ay

er

(H
as

hi
ng

 &
 M

ax
-p

oo
lin

g
&

 S
pa

tia
l p

yr
am

id
 p

oo
lin

g)

ܵ భ
ܹ భଵ

ܹ మଶ

Fi
gu

re
4.

1:
B

lo
ck

di
ag

ra
m

of
a

tw
o-

st
ag

e
PC

A
ne

tw
or

k

Chapter 5

Experiments and Results

In this chapter, we will evaluate performance of the proposed method and explain the

utilized datasets and metrics. We will review several different results of our experiments

to adjust optimal parameters of the proposed system. We will also see the effects of

preprocessing on the performance. Next, we will show the results of evaluating robustness

of our system against various variations on the test images. Finally, we will compare our

system with those submitted to the LifeCLEF 2014 competition and discuss the time

complexity issue.

5.1 Dataset Description

The core dataset we used to evaluate our proposed system is the one provided for plant

identification task in LifeCLEF 2014 [13]. This dataset involves 500 species of trees,

herbs, and ferns from photographs of their different organs mostly taken inside France by

different users. The collected dataset contains 60,961 pictures in total, 47,815 images for

training and 13,146 images for testing. Table 5.1 shows details of the provided datasets

and their sample images.

Table 5.1: Details of plant identification datasets within the LifeCLEF 2014 [13]

Branch Entire Flower Fruit Leaf LeafScan Stem

No. of Training Samples 1,987 6,356 13,164 3,753 7,754 11,335 3,466

No. of Test Samples 731 2,983 4,559 1,184 2,058 696 935

No. of Classes (Species) 356 490 483 374 470 212 388

47

5.2. PREPROCESSING 48

Figure 5.1: Samples of LifeCLEF 2014 plant dataset [13]. Columns from left to right
include Branch, Entire, Flower, Fruit, Leaf, LeafScan, and Stem, respectively.

The dataset contains meta-data for photos with the class label, species, genus, date,

quality index (vote), location, photographer (user), etc. It is collected by different users

in an observations-based manner to promote plant identification based on multi-image

query. In other words, each photographer or author has used the same camera to take

snapshots from different views of various organs of a plant species under similar lighting

conditions on the same day. Finally, the test set is generated by randomly choosing a half

of observations for each species. Users of selected photos for the test set are not necessar-

ily the same as those for the training set–making the identification a real-world problem.

Figure 5.1 shows samples of each category used for plant identification in LifeCLEF

2014.

5.2 Preprocessing

Before applying the proposed system, we modify original color images by transforming

them from the RGB color space to HSY to acquire more intuitive and perceptual color in-

5.3. EVALUATION METRICS 49

Figure 5.2: Samples of scanned leaves in the LifeCLEF 2014 plant dataset before and
after preprocessing

formation. Moreover, for scanned leaves we apply a number of preprocessing techniques

to improve the system performance. We utilize segmentation methods to discriminate at

most one leaf (single connected component) from the background and next perform size

and rotation normalization as in [9]. Generally, segmentation is achieved by applying a

combination of morphological techniques followed by an adaptive thresholding for back-

ground removal. Next, we align major axis of leaves with the vertical axis and normalize

all heights to 600 pixels to preserve the aspect ratio. After this size normalization, we use

PCA and leaf petiole’s location to perform orientation normalization. Figure 5.2 shows

samples of scanned leaf images before and after preprocessing.

5.3 Evaluation Metrics

The first utilized metric for evaluating our results is the total classification accuracy. This

metric calculates the accuracy (in percentage) as follows

Acc =
NC

NT
×100 (5.1)

where NT and NC are the number of test samples and the number of correctly predicted

class labels using the classifier, respectively. In addition, LifeCLEF itself employs a user-

5.4. EXPERIMENTAL METHODS 50

based metric called the average inverse rank score [86] instead of the total classification

accuracy. The average inverse rank score S is defined as

S =
1
U

U

∑
u=1

1
Pu

Pu

∑
p=1

1
Nu,p

Nu,p

∑
n=1

su,p,n (5.2)

where U is the number of users who have taken the query pictures; Pu is the number of

individual plants observed by the u-th user; Nu,p is the number of pictures taken from the

p-th plant observed by the u-th user; and su,p,n is the inverse of the rank of the correct

species for the given image, ranging from 0 to 1.

5.4 Experimental Methods

Before evaluating our system, we need to adjust available parameters of the proposed

method. The main on-hand parameters of our deep PCA-based network are the number

of learning stages, number of filters (nodes) in each stage, spatial pyramid levels, and the

filtering patch size (receptive field size). Due to the combinatorial increase, each time we

tune only one of the parameters until we find the optimal point.

After obtaining optimal points of all parameters, we evaluate our system performance

by applying the system on the given dataset for plant identification. Finally, we con-

duct a number of experiments to measure the robustness of our system against pose and

illumination variations.

5.4.1 Effects of Parameter Adjustment

To tune our system, we use the training set of preprocessed scanned leaf images. As

Table 5.1 shows, the aforementioned dataset contains 11,335 images from isolated color

leaves with 212 individual tree species. For parameter adjustment, we simply split the

training dataset into two subsets: development set involving 9,532 images of all 212

unique classes, and validation set involving 1,803 images of 133 unique classes. We ini-

tialize our system by the following parameters and adjust them one by one until reaching

optimal values. We normalize the size of input images to 64× 32 pixels–quite small

because of the computational complexity issue, and transform color images to the HSY

color model. We choose 7× 7 pixels for filtering patch size and use max-pooling with

5.4. EXPERIMENTAL METHODS 51

subsampling step size of 2×2 pixels and a spatial pyramid in its fourth level.

5.4.1.1 Number of Learning Stages

We start with only one learning stage and increase the number of stages to see the effects

of this variation on the performance. Table 5.2 shows the classification results for differ-

ent number of learning stages. The number of filters in each stage is also indicated in the

first row of the table.

Table 5.2: Classification results for different number of learning stages

No. of Stages / No. of Filters 1 / [8] 2 / [4,8] 3 / [4,4,8] 4 / [4,4,4,8]

Classification Accuracy 58.29% 67.61% 67.50% 67.39%

Inverse Rank Score 0.5237 0.6003 0.5916 0.5921

As the table shows, the best results are achieved by applying a two-stage convolutional

PCA network.

5.4.1.2 Number of Filters

We use a two-stage network, initially fix the number of filters in the second stage at 8,

and vary the number of filters in the first stage from 1 up to 48. Clearly, we have at most

7×7= 49 filters in each stage and expect that the smallest principal components represent

the noise information. Table 5.3 shows the classification results for various numbers of

filters in the first stage.

Table 5.3: Classification results for different number of filters in the first stage

No. of Filters [1,8] [4,8] [8,8] [16,8] [24,8] [32,8] [48,8]

Classification Accuracy 55.96% 67.61% 69.72% 71.99% 72.55% 72.49% 72.38%

Inverse Rank Score 0.4952 0.6003 0.6203 0.6369 0.6464 0.6416 0.6409

As can be seen, the best results are achieved by using 24 filters in the first stage of

the two-stage network. We next fix the number of filters in the first stage at 24 and vary

the number of filters in the second stage from 1 to 12. Table 5.4 shows the results for this

experiment.

5.4. EXPERIMENTAL METHODS 52

Table 5.4: Classification results for different number of filters in the second stage

No. of Filters [24,1] [24,4] [24,8] [24,10] [24,12]

Classification Accuracy 54.52% 68.66% 72.55% 71.55% 69.27%

Inverse Rank Score 0.5145 0.6070 0.6464 0.6316 0.6093

As the results show, the best results are achieved by using 8 filters in the second stage

of the two-stage network.

5.4.1.3 Filtering Patch Size

We now apply a two-stage network using 24 and 8 filters in the first and second stages,

respectively. We perform an experiment by increasing the patch size from 5× 5 up to

15×15. Table 5.5 shows the results of this experiment.

Table 5.5: Classification results for different filtering patch sizes

Patch Size [5,5] [7,7] [9,9] [15,15]

Classification Accuracy 72.49% 72.55% 70.83% 68.50%

Inverse Rank Score 0.6408 0.6464 0.6252 0.5934

As we see, the best results are achieved by applying filters on the 7× 7 patches of

images.

5.4.1.4 Spatial Pyramid Levels

In this experiment, we use a two-stage PCA-based network with adjusted parameters

obtained in the previous experiments. We initialize the experiment by taking the first

level of spatial pyramid and pooling histogram from the total image block. Next, we

increase the pyramid level up to the fifth level and pool histograms from 25 image blocks.

Finally, we combine extracted features from different levels to construct the pyramid.

Table 5.6 shows the results for this experiment.

As can be seen, the best results are achieved by pooling histograms from a spatial

pyramid including the first four levels.

5.4. EXPERIMENTAL METHODS 53

Table 5.6: Classification results for different levels of spatial pyramid

Pyramid Levels [1] [2] [3] [4] [5] [1,2,3,4]

Classification Accuracy 69.11% 71.99% 72.43% 72.55% 71.66% 72.66%

Inverse Rank Score 0.6031 0.6337 0.6363 0.6464 0.6267 0.6473

5.4.1.5 Image Size Normalization

Our last experiment tends to explore how varying the image size affects the system per-

formance. Until now, we actually used a normalized image size to speed up the tuning

procedure. In fact, this small image size conveys less information, hence calculated his-

tograms would be sparse. This in turn will increase the speed of classification. Table 5.7

shows the classification results for various image sizes. In this experiment, we utilize

only the fourth level of the spatial pyramid.

Table 5.7: Classification results for different image sizes

Image Size [32,16] [64,32] [128,64] Full Size

Classification Accuracy 65.50% 72.55% 77.20% 77.98%

Inverse Rank Score 0.5931 0.6464 0.6795 0.6832

As it can be seen, the best results are achieved by taking the original image size.

However, there is a trade-off between the complexity and performance as we will discuss

it later in this chapter.

5.4.2 Classification Results

After obtaining optimal values of the network parameters, we adjust our system to apply

it to the different categories of LifeCLEF 2014 plant identification dataset. We utilize pro-

vided training and test sets of different categories for this experiment. Table 5.8 displays

our obtained classification results for different categories of the aforementioned dataset.

As it can be seen, the scanned leaf, flower, and fruit photographs are relatively easier

to classify compared to the stem, leaf, branch, and entire categories. All these categories

except for the LeafScan show relatively fair results as their photographs include complex

backgrounds with high amounts of intra-class variability in contrast to the isolated leaves.

5.4. EXPERIMENTAL METHODS 54

Table 5.8: Classification results of the proposed method for different categories of plant
identification task in LifeCLEF 2014

Category Branch Entire Flower Fruit Leaf LeafScan Stem

Classification Accuracy 16.42% 20.05% 26.76% 22.55% 21.33% 68.25% 24.92%

Inverse Rank Score 0.1561 0.1834 0.2677 0.2170 0.1928 0.6157 0.1679

Also, when we evaluate our system on the unprocessed LeafScan dataset, the classifica-

tion accuracy decreases to 50.14% and its inverse rank score decreases to 0.4478. Hence,

we can conclude that preprocessing is a major requirement prior to applying machine

learning tasks.

Table 5.9 compares inverse rank scores of different systems submitted to the Life-

CLEF 2014. As can be seen, our scheme scores the second place between all submissions.

However, we remember that the winner of this competition has used several preprocessing

techniques in addition to applying a CNN with 5 convolutional layers [49].

Table 5.9: Inverse rank scores of different systems submitted to the LifeCLEF 2014

Branch Entire Flower Fruit Leaf LeafScan Stem

IBM Australia [49] 0.292 0.333 0.585 0.339 0.318 0.64 0.269

Proposed System 0.156 0.183 0.268 0.217 0.193 0.616 0.168

PlantNet [50] 0.112 0.167 0.366 0.197 0.165 0.541 0.152

Sabanci-Okan [87] 0.007 0.077 0.149 0.118 0.066 0.449 0.089

FINKI [88] 0.088 0.117 0.255 0.177 0.160 0.400 0.157

BME TMIT [51] 0.052 0.060 0.115 0.070 0.019 0.119 0.072

I3S [89] 0.041 0.023 0.040 0.040 0.035 0.089 0.086

5.4.3 Robustness of the Proposed System

To finalize our evaluations on the system performance, we conduct some experiments

for robustness against pose and illumination variations. For this purpose, we use our

learned system on the preprocessed scanned leaves as mentioned above, and apply it to

the manipulated test images as in the following steps.

5.4. EXPERIMENTAL METHODS 55

5.4.3.1 Scale Invariability

In this experiment, we scale the size of test images by different values ranging from 2/3

to 2. Table 5.10 shows the classification results for this experiment.

Table 5.10: Classification results for different scales of test images

Test Image Scale 2/3 4/5 1 4/3 2

Classification Accuracy 50.86% 60.92% 68.25% 61.93% 40.37%

Inverse Rank Score 0.4819 0.5713 0.6157 0.5531 0.3495

5.4.3.2 Translation Invariability

In this experiment, we shift pixels of test images to either right or down by different

values ranging from 0× 0 to 16× 16 pixels. Table 5.11 shows the classification results

for this experiment.

Table 5.11: Classification results for different translation sizes of test images

Test Image Translation Size [0,0] [4,4] [8,8] [16,16]

Classification Accuracy 68.25% 64.22% 61.93% 56.61%

Inverse Rank Score 0.6157 0.5909 0.5763 0.5554

5.4.3.3 Rotation Invariability

In this experiment, we rotate test images by different values ranging from 0 to 180 de-

grees. Table 5.12 shows the classification results for this experiment.

Table 5.12: Classification results for different rotation angles of test images

Test Image Rotation Angle 0◦ 10◦ 30◦ 90◦ 180◦

Classification Accuracy 68.25% 38.65% 20.98% 23.56% 28.16%

Inverse Rank Score 0.6157 0.4057 0.2105 0.2514 0.2710

Considering these results, one may conclude that there is no good orientation invari-

ance in the system. However, we note that the LeafScan dataset almost includes upright

5.5. TIME COMPLEXITY 56

objects (leaves) and the weights are learned only based on this orientation. Besides, we

only apply PCA on the local patches of image and not the whole block. Therefore, we

may improve the system robustness against rotation by augmenting training data using

rotated images to reduce overfitting.

5.4.3.4 Illumination Invariability

In this experiment, we darken or brighten the test images by adding different values rang-

ing from -50 to +50 to all pixel values of color channels. We next quantize the obtained

values in the original dynamic range. Table 5.13 shows the classification results for this

experiment.

Table 5.13: Classification results for different intensities of test images

Test Image Added Pixel Value -50 -25 0 +25 +50

Classification Accuracy 45.69% 59.05% 68.25% 66.81% 61.21%

Inverse Rank Score 0.4734 0.5591 0.6157 0.5876 0.5468

5.5 Time Complexity

We finally measured the complexity of our system in terms of the running time for fea-

ture extraction and classifier training. On average over all categories, the proposed deep

PCA network took 1.63 seconds/image and 6.54 seconds/image for feature extraction and

training, respectively. All codes were implemented in MATLAB (run in a 80 GB RAM

and 2.50 GHz CPU with two processors).

5.6 Learned Filter Banks

As the final remark, we will present all weights learned by our proposed method during

the process that led to obtaining results of Section 5.4.2. Figures 5.3 to 5.18 show learned

weights using principal component analysis for different categories.

As we note, each learned filter or node in the network is composed of a 7× 7 HSY

color patch. In practice, each filter patch in the first stage is convolved with the image.

5.6. LEARNED FILTER BANKS 57

branch

Figure 5.3: Learned weights from the Branch category in the 1st stage of PCA network

branch

Figure 5.4: Learned weights from the Branch category in the 2nd stage of PCA network
entire

Figure 5.5: Learned weights from the Entire category in the 1st stage of PCA network

entire

Figure 5.6: Learned weights from the Entire category in the 2nd stage of PCA network

The obtained maps are then convolved with the filters in the second stage and their combi-

nation determines the output activations. In general, we can say that those image patches

that are similar to the first stage filter banks are more likely to be activated. Subsequently,

those patches of the obtained maps or filtered images that are close to the second stage

filter banks in pattern and color (brightness, hue, and saturation) will actually become

activated.

5.6. LEARNED FILTER BANKS 58

flower

Figure 5.7: Learned weights from the Flower category in the 1st stage of PCA network

flower

Figure 5.8: Learned weights from the Flower category in the 2nd stage of PCA network

fruit

Figure 5.9: Learned weights from the Fruit category in the 1st stage of PCA network

fruit

Figure 5.10: Learned weights from the Fruit category in the 2nd stage of PCA network

5.6. LEARNED FILTER BANKS 59

leaf

Figure 5.11: Learned weights from the Leaf category in the 1st stage of PCA network

leaf

Figure 5.12: Learned weights from the Leaf category in the 2nd stage of PCA network

leafscan

Figure 5.13: Learned weights from the LeafScan category in the 1st stage of PCA network

leafscan

Figure 5.14: Learned weights from the LeafScan category in the 2nd stage of PCA net-
work

5.6. LEARNED FILTER BANKS 60

leafscan preprocessed

Figure 5.15: Learned weights from the preprocessed LeafScan category in the 1st stage
of PCA network

leafscan preprocessed

Figure 5.16: Learned weights from the preprocessed LeafScan category in the 2nd stage
of PCA network

stem

Figure 5.17: Learned weights from the Stem category in the 1st stage of PCA network

stem

 Figure 5.18: Learned weights from the Stem category in the 2nd stage of PCA network

Chapter 6

Summary and Conclusion

In this work, we proposed a deep convolutional architecture based on PCA network in

order to identify plant species. We used the LifeCLEF 2014 dataset of the plant iden-

tification competition and evaluated our proposed approach by comparing the system

performance for different plant categories with the best submitted systems in the same

competition. This comparison indicated that our proposed system would have achieved

the second place in almost all plant categories. Our best achieved performance was from

the scanned leaves category with a classification accuracy of 68.25% and an inverse rank

score of 0.6157.

The main strength of our work relies on the simplicity of the proposed network. In

comparison with the winner of the competition which had applied a five-layer convolu-

tional network along with a number of preprocessing techniques, we only used a two-

stage convolutional network in an unsupervised learning way. Also, we only applied pre-

processing for scanned leaf images. However, the system performance decreased when

we removed the preprocessing step, resulting in a classification accuracy of 50.14% and

an inverse rank score of 0.4478 for original scanned leaves.

Moreover, our results showed that the proposed system has the strength of being ro-

bust against small changes in translation, scaling, and illumination due to utilizing pooling

schemes. However, the system is weak against rotation variations. One possible expla-

nation for this weakness is that the almost upright orientations of leaves in the LeafScan

dataset could be causing overfitting during the learning process. Since we apply PCA to

the patches of such images, the system is able to correctly classify almost upright ori-

ented leaves but it is less likely to classify leaves with rotated midribs. We may improve

61

62

the system’s robustness against rotation by data augmentation using rotated leaves during

training.

To sum up, this system is a simple baseline for deep learning that uses principal com-

ponent analysis. Our system is highly robust and reliable for producing acceptable results

in a time limited paradigm for object recognition tasks such as plant identification. Pos-

sible improvements could include combining our system with novel CNN methods or

applying Gabor filters in a way similar to PCA to extract more low-level features from

the data. Another improvement could be obtained by performing smart preprocessing

techniques for removing the background and ineffectual plant elements.

Appendix A

HSY Color Space

The HSY color model [90] is a hue–saturation–brightness color system inspired by its

family color models such as HSV (hue–saturation–value), HSI (hue–saturation–intensity),

and HSL (hue–saturation–luminance). However, unlike the HSY and HSL models, HSY

uses RGB components to compute a true luminance which considers human perception

of colors in inferring different levels of brightness. In contrast to the RGB model, HSY

encodes perceptually similar colors such as red and pink close to each other as they sim-

ilar hue values. This makes HSY color model more suitable for color segmentation.

Moreover, although there are many other color representations such as CIELAB, HSY

gives an easy definition of saturation–independent from the brightness–which speeds up

computations.

In the RGB space, colors are represented as vectors such as [R,G,B] where the values

of R, G, and B are within [0,1]. But the transformation of the RGB color space to the

HSY space is really converting from the rectangular coordinate system to the cylindrical

one. Basically, a new axis is placed between the two points [0,0,0] and [1,1,1] and the

color values are written in terms of cylindrical coordinates from this axis. Since all the

gray or achromatic points with the property that R = G = B belong to this axis, it is

known as the achromatic axis. On this cylindrical-coordinate axis, brightness, hue, and

saturation correspond to the color, angular coordinate, and distance from the achromatic

axis, respectively.

Considering these explanations, the luminance and saturation coordinates are calcu-

63

64

lated as follows

Y = 0.299R+0.587G+0.114B (A.1)

S = max(R,G,B)−min(R,G,B) (A.2)

where Y and S ∈ [0,1]. Assuming that C1 and C2 are components of the chroma, C, the

value of hue is found using the following formulas

C1 = R− 1
2
(G+B) (A.3)

C2 =−
√

3
2

(G−B) (A.4)

C =
√

C2
1 +C2

2 (A.5)

and hence

H =

360◦− cos−1 (C1
C

)
, ifB > G

cos−1 (C1
C

)
, otherwise

(A.6)

where C ∈ [0,1] and H ∈ [0◦,360◦]. Having the values of HSY coordinates, one can easily

reverse these transforms to obtain the RGB values.

Appendix B

Acronyms

ANN Artificial Neural Network

BoVW Bag of Visual Words

BoW Bag of Words

CBIR Content-Based Image Retrieval

CID Charge Injection Device

CLEF Conference and Labs of the Evaluation Forum

CNN Convolutional Neural Network

CNS Central Nervous System

ConvNet Convolutional Neural Network

DBN Deep Belief Network

DCN Deep Convolutional Network

DNN Deep Neural Network

EFA Elliptic Fourier Analysis

EFD Elliptic Fourier Descriptor

EOH Edge Orientation Histogram

GMM Gaussian Mixture Model

65

66

HOG Histograms of Oriented Gradients

ICA Independent Component Analysis

LBP Local Binary Pattern

LDA Linear Discriminant Analysis

LR Logistic Regression

MBR Minimum Bounding Rectangle

MF Morphological Feature

MMC Moving Median Center

MRF Markov Random Field

NN Nearest Neighbors

OvA One vs. All

OvR One vs. the Rest

PCA Principal Component Analysis

PCANet PCA Network

PDA Personal Digital Assistant

QP Quadratic Programming

RBF Radial Basis Function

ReLU Rectified Linear Unit

ROI Region of Interest

ScatNet Scattering Network

SGD Stochastic Gradient Descent

SIFT Scale-Invariant Feature Transform

SPM Spatial Pyramid Matching

67

SPP Spatial Pyramid Pooling

SURF Speeded-Up Robust Features

SVC Support Vector Classification

SVM Support Vector Machine

SVR Support Vector Regression

Bibliography

[1] N. K. Logothetis and D. L. Sheinberg, “Visual object recognition,” Annual review

of neuroscience, vol. 19, no. 1, pp. 577–621, 1996.

[2] D. G. Lowe, “Three-dimensional object recognition from single two-dimensional

images,” Artificial Intelligence, pp. 355–395, 1987.

[3] M. Riesenhuber and T. Poggio, “Models of object recognition,” Nature neuro-

science, vol. 3, pp. 1199–1204, 2000.

[4] T. Gevers and A. W. M. Smeulders, “Color based object recognition,” in Interna-

tional Conference on Image Analysis and Processing, 1997, pp. 319–326.

[5] S. K. Nayar and R. M. Bolle, “Reflectance based object recognition,” International

Journal of Computer Vision, pp. 219–240, 1996.

[6] A. R. Pope, “Model-based object recognition a survey of recent research,” Technical

Report, 1994.

[7] C.-L. Lee and S.-Y. Chen, “Classification of leaf images,” International Journal of

Imaging Systems and Technology, pp. 15–23, 2006.

[8] C. Tirkaz, D. Bruckner, G. Yin, and J. Haase, “Activity recognition using a hierar-

chical model,” in 38th Annual Conference on IEEE Industrial Electronics Society,

2012, pp. 2814–2820.

[9] B. Yanikoglu, E. Aptoula, and C. Tirkaz, “Automatic plant identification from pho-

tographs,” Machine Vision and Applications, vol. 25, no. 6, pp. 1369–1383, 2014.

[10] H. Goëau, P. Bonnet, A. Joly, N. Boujemaa, D. Barthelemy, J.-F. Molino, P. Birn-

baum, E. Mouysset, and M. Picard, “The CLEF 2011 plant images classification

task,” in CLEF (Notebook Papers/Labs/Workshop), Amsterdam, 2011.

68

BIBLIOGRAPHY 69

[11] H. Goëau, P. Bonnet, A. Joly, I. Yahiaoui, D. Barthelemy, N. Boujemaa, and J.-F.

Molino, “The ImageCLEF 2012 plant identification task,” in CLEF (Online Working

Notes/Labs/Workshop), Rome, 2012.

[12] H. Goëau, P. Bonnet, A. Joly, V. Bakic, D. Barthelemy, N. Boujemaa, and J.-

F. Molino, “The ImageCLEF 2013 plant identification task,” in CLEF (Working

Notes), Valencia, 2013.

[13] H. Goëau, A. Joly, P. Bonnet, S. Selmi, J.-F. Molino, D. Barthelemy, and N. Bou-

jemaa, “LifeCLEF plant identification task 2014,” in CLEF (Working Notes),

Sheffield, 2014, pp. 598–615.

[14] A. Joly, H. Goëau, C. Spampinato, P. Bonnet, W.-P. Vellinga, R. Planqué, A. Rauber,

S. Palazzo, B. Fisher, and H. Müller, “LifeCLEF 2015: multimedia life species

identification challenges,” in CLEF 2015 Proceedings, ser. Springer LNCS, 2015.

[15] T. Kato, “Database architecture for content-based image retrieval,” in SPIE/IS&T

Symposium on Electronic Imaging: Science and Technology, 1992, pp. 112–123.

[16] B. Yanikoglu, E. Aptoula, and C. Tirkaz, “Sabanci-Okan system at ImageClef 2012:

Combining features and classifiers for plant identification,” in CLEF (Online Work-

ing Notes/Labs/Workshop), 2012.

[17] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, pp. 436–444, 2015.

[18] L. Sifre and S. Mallat, “Rotation, scaling and deformation invariant scattering

for texture discrimination,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2013, pp. 1233–1240.

[19] J. Bruna and S. Mallat, “Invariant scattering convolution networks,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, pp. 1872–1886, 2013.

[20] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “PCANet: A simple

deep learning baseline for image classification?” Computing Research Repository

(CoRR), 2014, arXiv:1404.3606v2.

[21] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-

tional Journal of Computer Vision, pp. 91–110, 2004.

BIBLIOGRAPHY 70

[22] K. Grauman and B. Leibe, “Visual object recognition,” in Visual Object Recogni-

tion, 2011.

[23] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005, pp.

886–893.

[24] D. Guyer, G. Miles, M. Schreiber, O. Mitchell, and V. Vanderbilt, “Machine vision

and image processing for plant identification,” Transactions of the ASAE, vol. 29,

no. 6, pp. 1500–1507, 1986.

[25] J. S. Cope, D. P. A. Corney, J. Y. Clark, P. Remagnino, and P. Wilkin, “Plant species

identification using digital morphometrics: A review,” 2012, pp. 7562–7573.

[26] C. Tirkaz, J. Eisenstein, T. M. Sezgin, and B. Yanikoglu, “Identifying visual at-

tributes for object recognition from text and taxonomy,” Computer Vision and Image

Understanding, pp. 12–23, 2015.

[27] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and

Statistics). Springer-Verlag New York, Inc., 2006.

[28] T. F. Stuessy, Principles and practice of plant taxonomy. Cambridge University

Press, 2006.

[29] J.-X. Du, X. Wang, and G.-J. Zhang, “Leaf shape based plant species recognition,”

Applied Mathematics and Computation, pp. 883–893, 2007.

[30] C.-C. Chen, “Improved moment invariants for shape discrimination,” Pattern

Recognition, pp. 683–686, 1993.

[31] F.-Y. Lin, C.-H. Zheng, X.-F. Wang, and Q.-K. Man, “Multiple classification of

plant leaves based on gabor transform and lbp operator,” in Advanced Intelligent

Computing Theories and Applications. With Aspects of Contemporary Intelligent

Computing Techniques. Springer, 2008, pp. 432–439.

[32] L. Ye and E. J. Keogh, “Time series shapelets: a new primitive for data mining,” in

KDD, 2009, pp. 947–956.

BIBLIOGRAPHY 71

[33] F. Mokhtarian and S. Abbasi, “Matching shapes with self-intersections: Application

to leaf classification,” IEEE Transactions on Image Processing, vol. 13, no. 5, pp.

653–661, 2004.

[34] R. J. White, H. C. Prentice, and T. Verwijst, “Automated image acquisition and

morphometric description,” Canadian Journal of Botany, vol. 66, no. 3, pp. 450–

459, 1988.

[35] J.-X. Du, D. Huang, X. Wang, and X. Gu, “Shape recognition based on radial ba-

sis probabilistic neural network and application to plant species identification,” in

International Society of Nutrigenetics/Nutrigenomics (ISNN), 2005, pp. 281–285.

[36] J. C. Neto, G. E. Meyer, D. D. Jones, and A. K. Samal, “Plant species identification

using elliptic fourier leaf shape analysis,” Computers and electronics in agriculture,

vol. 50, no. 2, pp. 121–134, 2006.

[37] B. Yanikoglu, E. Aptoula, and S. T. Yildiran, “Sabanci-Okan system at ImageClef

2013 plant identification competition,” in CLEF (Working Notes), 2013.

[38] O. M. Bruno, R. de Oliveira Plotze, M. Falvo, and M. de Castro, “Fractal dimension

applied to plant identification,” Information Sciences, pp. 2722–2733, 2008.

[39] R. de Oliveira Plotze, M. Falvo, J. G. Pádua, L. C. Bernacci, M. L. C. Vieira,

G. C. X. Oliveira, and O. M. Bruno, “Leaf shape analysis using the multiscale

minkowski fractal dimension, a new morphometric method: a study with Passiflora

(Passifloraceae),” Canadian Journal of Botany, vol. 83, no. 3, pp. 287–301, 2005.

[40] J. Clarke, S. Barman, P. Remagnino, K. Bailey, D. Kirkup, S. Mayo, and P. Wilkin,

“Venation pattern analysis of leaf images,” in International Symposium on Visual

Computing, 2006, pp. 427–436.

[41] Y. Li, Z. Chi, and D. D. Feng, “Leaf vein extraction using independent component

analysis,” in IEEE International Conference on Systems, Man, and Cybernetics,

2006, pp. 3890–3894.

[42] J. S. Cope, P. Remagnino, S. Barman, and P. Wilkin, “The extraction of venation

from leaf images by evolved vein classifiers and ant colony algorithms,” in Ad-

vanced Concepts for Intelligent Vision Systems, 2010, pp. 135–144.

BIBLIOGRAPHY 72

[43] M.-E. Nilsback and A. Zisserman, “Delving into the whorl of flower segmentation,”

in BMVC, 2007, pp. 1–10.

[44] A.-X. Hong, G. Chen, J. li Li, Z. ru Chi, and D. Zhang, “A flower image retrieval

method based on roi feature,” Journal of Zhejiang University Science, vol. 5, no. 7,

pp. 764–772, 2004.

[45] T. Beghin, J. S. Cope, P. Remagnino, and S. Barman, “Shape and texture based plant

leaf classification,” in Advanced Concepts for Intelligent Vision Systems, 2010, pp.

345–353.

[46] A. N. Hussein, S. Mashohor, and M. I. Saripan, “A texture-based approach for con-

tent based image retrieval system for plant leaves images,” in IEEE 7th International

Colloquium on Signal Processing and its Applications (CSPA), 2011, pp. 11–14.

[47] V. Bakic, I. Yahiaoui, S. Mouine, S. L. Ouertani, W. Ouertani, A. Verroust-Blondet,

H. Goëau, and A. Joly, “Inria IMEDIA2’s participation at ImageCLEF 2012 plant

identification task,” in CLEF (Online Working Notes/Labs/Workshop), 2012.

[48] S. Paris, X. Halkias, and H. Glotin, “Participation of LSIS/DYNI to Im-

ageCLEF 2012 plant images classification task,” in CLEF (Online Working

Notes/Labs/Workshop), 2012.

[49] Q. Chen, M. Abedini, R. Garnavi, and X. Liang, “IBM research Australia at Life-

CLEF 2014: Plant identification task,” in CLEF (Working Notes), 2014, pp. 693–

704.

[50] H. Goëau, A. Joly, I. Yahiaoui, V. Bakić, A. Verroust-Blondet, P. Bonnet,

D. Barthelemy, N. Boujemaa, and J.-F. Molino, “Pl@ntNet’s participation at Life-

CLEF 2014 plant identification task,” in CLEF (Working Notes), 2014, pp. 724–737.

[51] G. Szücs, D. Papp, and D. Lovas, “Viewpoints combined classification method in

image-based plant identification task,” in CLEF (Working Notes), 2014, pp. 763–

770.

[52] W. S. McCulloch and W. Pitts, “Neurocomputing: Foundations of research.” MIT

Press, 1988, ch. A Logical Calculus of the Ideas Immanent in Nervous Activity, pp.

15–27.

BIBLIOGRAPHY 73

[53] D. O. Hebb, The Organization of Behavior. John Wiley, New York, 1949.

[54] B. G. Farley and W. A. Clark, “Simulation of self-organizing systems by digi-

tal computer,” Transactions of the IRE Professional Group on Information Theory

(TIT), pp. 76–84, 1954.

[55] N. Rochester, J. H. Holland, L. H. Haibt, and W. L. Duda, “Tests on a cell assembly

theory of the action of the brain, using a large digital computer,” Transactions of the

IRE Professional Group on Information Theory (TIT), pp. 80–93, 1956.

[56] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and

organization in the brain,” Psychological review, vol. 65, no. 6, p. 386, 1958.

[57] M. Minsky and S. Papert, Perceptrons - an introduction to computational geometry.

MIT Press, 1987.

[58] A. H. Klopf, “Brain function and adaptive systems - a heterostatic theory,” in Pro-

ceedings of the International Conference on Systems, Man, and Cybernetics, 1974.

[59] P. J. Werbos, “Beyond regression: New tools for prediction and analysis in the be-

havioral sciences,” Ph.D. dissertation, Harvard University, 1974.

[60] B. Blaus. (2013) Anatomy of a multipolar neuron. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Blausen 0657 MultipolarNeuron.png

[61] S. C. Turaga, J. F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. L. Briggman,

W. Denk, and H. S. Seung, “Convolutional networks can learn to generate affinity

graphs for image segmentation,” Neural Computation, pp. 511–538, 2010.

[62] F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. E. Barbano, “Toward

automatic phenotyping of developing embryos from videos,” IEEE Transactions on

Image Processing, pp. 1360–1371, 2005.

[63] D. C. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column deep neural

network for traffic sign classification,” Neural Networks, pp. 333–338, 2012.

[64] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” Journal of

Machine Learning Research, pp. 1929–1958, 2014.

https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png

BIBLIOGRAPHY 74

[65] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional

architecture in the cat’s visual cortex,” The Journal of physiology, vol. 160, no. 1, p.

106, 1962.

[66] K. Fukushima and S. Miyake, “Neocognitron: A new algorithm for pattern recogni-

tion tolerant of deformations and shifts in position,” Pattern Recognition, pp. 455–

469, 1982.

[67] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep

convolutional neural networks,” Computing Research Repository (CoRR), 2013,

arXiv:1301.3557.

[68] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[69] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” in Neural Information Processing Systems (NIPS),

2012, pp. 1106–1114.

[70] C. J. C. Burges, J. C. Platt, and S. Jana, “Distortion discriminant analysis for audio

fingerprinting,” IEEE Transactions on Speech and Audio Processing, pp. 165–174,

2003.

[71] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. S. Bernstein, A. C. Berg, and F.-F. Li, “Imagenet large scale

visual recognition challenge,” International Journal of Computer Vision (IJCV), pp.

1–42, 2015.

[72] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny im-

ages,” Master’s thesis, Department of Computer Science, University of Toronto,

2009.

[73] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-

stage architecture for object recognition?” in IEEE International Conference on

Computer Vision (ICCV), 2009, pp. 2146–2153.

BIBLIOGRAPHY 75

[74] F.-F. Li and P. Perona, “A bayesian hierarchical model for learning natural scene cat-

egories,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2005, pp. 524–531.

[75] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, and Y. Le-

Cun, “Learning convolutional feature hierarchies for visual recognition,” in Neural

Information Processing Systems (NIPS), 2010, pp. 1090–1098.

[76] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Bengio, “Max-

out networks,” in International Conference on Machine Learning (ICML), 2013, pp.

1319–1327.

[77] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convo-

lutional networks for visual recognition,” in European Conference on Computer

Vision, 2014, pp. 346–361.

[78] K. Grauman and T. Darrell, “The pyramid match kernel: Discriminative classifica-

tion with sets of image features,” in IEEE International Conference on Computer

Vision (ICCV), 2005, pp. 1458–1465.

[79] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories,” in IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2006, pp. 2169–2178.

[80] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to object match-

ing in videos,” in IEEE International Conference on Computer Vision (ICCV), 2003,

pp. 1470–1477.

[81] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard,

and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”

Neural Computation, pp. 541–551, 1989.

[82] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LIBLINEAR:

A library for large linear classification,” Journal of Machine Learning Research,

vol. 9, pp. 1871–1874, 2008.

BIBLIOGRAPHY 76

[83] C.-J. Lin, R. C. Weng, and S. S. Keerthi, “Trust region newton methods for

large-scale logistic regression,” in International Conference on Machine Learning

(ICML), 2007, pp. 561–568.

[84] K. Crammer and Y. Singer, “On the learnability and design of output codes for

multiclass problems,” Machine Learning, pp. 201–233, 2002.

[85] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM

Transactions on Intelligent Systems and Technology, vol. 2, p. 27, 2011.

[86] H. Müller, P. Clough, T. Deselarers, and B. Caputo, ImageCLEF: Experimental

evaluation in visual information retrieval, ser. The Information Retrieval Series.

Springer, 2010, vol. 32.

[87] B. Yanikoglu, S. T. Yildiran, C. Tirkaz, and E. Aptoula, “Sabanci-Okan system at

LifeCLEF 2014 plant identification competition,” in CLEF (Working Notes), 2014,

pp. 771–777.

[88] I. Dimitrovski, G. Madjarov, P. Lameski, and D. Kocev, “Maestra at LifeCLEF 2014

plant task: Plant identification using visual data,” in CLEF (Working Notes), 2014,

pp. 705–714.

[89] M. Issolah, D. Lingrand, and F. Precioso, “Plant species recognition using Bag-

Of-Word with SVM classifier in the context of the LifeCLEF challenge,” in CLEF

(Working Notes), 2014, pp. 738–746.

[90] A. Hanbury, “A 3D-polar coordinate colour representation well adapted to image

analysis,” in Proceedings of the 13th Scandinavian conference on Image analysis,

2003, pp. 804–811.

	Approval.pdf
	thesi.pdf
	Acknowledgement
	Abstract
	Özet
	List of Figures
	List of Tables
	Introduction
	Objectives
	Limitations
	Thesis Structure

	The Plant Identification Problem
	Object Recognition
	Plant Identification
	Image Acquisition and Preprocessing
	Common Methods for Leaf Analysis
	Shape Analysis
	Texture Analysis
	Venation Analysis
	Segmentation

	Common Methods for Flower Analysis
	Highlights of Plant Identification Systems in CLEF Campaigns

	Convolutional Neural Networks
	Deep Learning
	Artificial Neural Networks
	Historical Background
	Model of Biological Neuron
	Perceptron
	Activation Function
	Neural Networks Architecture
	Feedforward Networks
	Feedback Networks

	Learning Process
	Supervised Learning
	Unsupervised Learning
	Backpropagation Algorithm

	Convolutional Neural Networks
	CNN Architecture
	Convolutional Layer
	Pooling Layer
	Normalization Layer
	Output Layer

	Object Recognition Using Deep Convolutional Networks Based on PCA
	Background
	Motivations
	Contributions
	Proposed Deep PCA Network
	Spatial Pyramid Pooling
	Classification by Linear SVM

	Experiments and Results
	Dataset Description
	Preprocessing
	Evaluation Metrics
	Experimental Methods
	Effects of Parameter Adjustment
	Number of Learning Stages
	Number of Filters
	Filtering Patch Size
	Spatial Pyramid Levels
	Image Size Normalization

	Classification Results
	Robustness of the Proposed System
	Scale Invariability
	Translation Invariability
	Rotation Invariability
	Illumination Invariability

	Time Complexity
	Learned Filter Banks

	Summary and Conclusion
	HSY Color Space
	Acronyms
	Bibliography

