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Abstract

Study of quadratic forms goes back to the 18th century. They attracted particular
interest in the last decades also because of their applications. Indeed, there is an
interaction between quadratic functions, cryptography and coding theory via their
relation with Boolean bent/semi-bent functions, sequences, and various types of codes.

The Walsh transform f of a quadratic function f F,» — F, satisfies |f(y)] €

O,pnT“} for all y € Fp» and for an integer 0 < s < n. In other words quadratic
functions form a subclass of the so-called plateaued functions. The value of s is 0
for example, in the case of the well-known bent functions, hence bent functions are
0-plateued.

In this thesis we study quadratic functions F,,, = Zf:o Tr(a;z”" ) given in trace
form with the restriction that a; € F,, 0 < ¢ < k. Extensive work on quadratic
functions with such restrictions on coefficients shows that they have many interesting
features.

In this work we determine the expected value for the parameter s for such quadratic
functions, for many classes of integers n. Our exact formulas confirm that on average
the value of s is small, and hence the average nonlinearity of this class of quadratic

functions is high when p = 2.



KUADRATIK FONKSIYONLARIN SPEKTRUMU UZERINE

Canan Kasgikel
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Anahtar Kelimeler: Kuadratik fonksiyonlar, Walsh doniigiimii, beklenen deger,

varyans, dogrusalsizlik, kesikli Fourier dontigiimii

(")zet

Kuadratik fonksiyonlara ait galigmalar 18. yiizyila kadar gitmektedir. Son yillarda
uygulamalari sebebiyle bu fonksiyonlara ilgi daha da artmigtir. Gergekten de kuadratik
fonksiyonlar, sifreleme ve kodlama teorisi, ikili biikiik /yar1 biikiik fonksiyonlar, diziler
ve baz1 kodlarla yakindan baglantilidir.

Kuadratik bir fonksiyonun Walsh déniigiimlerinin mutlak degeri 0 < s < n araligin-
daki bir tam say1 s i¢in 0 veya pnTJrs degerini alir. Bagka bir deyigle kuadratik fonksi-
yonlar basamakli fonksiyonlarin bir alt sinifin1 olugturmaktadir. Biikiik fonksiyonlar
orneginde s'nin aldig1 deger sifirdir, yani biikiik fonksiyonlar 0-basamakli fonksiyon-
lardir.

Bu tezde trace formunda F,, = Zf:o Trn(a;z”" 1) verilmig olan kuadratik fonksi-
yonlardan katsayilar1 a; € Fp,, 0 < 7 < k sartin1 saglayanlar ¢alisilmistir. Katsayilar
tizerinde benzer kosullar1 saglayan kuadratik fonksiyonlara dair yapilmig olan genig
aragtirmalar bu fonksiyonlarin dikkat geken 6zelliklerini gostermistir.

Bu tezde bir¢ok n tamsay sinifi i¢in bahsi gegen kuadratik fonksiyonlarin s parame-
tresinin beklenen degeri belirlenmigtir. Bulunan formiiller ortalama olarak s degerinin
kii¢iikk oldugunu ve boylece p = 2 i¢in bu kuadratik fonksiyon simifinin ortalama

dogrusalsizliginin yiiksek oldugunu dogrulamistir.
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CHAPTER 1

INTRODUCTION

In this chapter, we present basic concepts concerning quadratic functions, Walsh tran-
sorm and plateaued functions. For further details we refer to [33], [2]. We assume basic
knowledge on finite fields. Therefore, other than recalling the definition and basic prop-
erties of the trace function, we do not give further information on finite fields. We close

this chapter with some remarks on applications of quadratic/plateaued functions.

1.1 Quadratic Functions

We start by recalling the absolute trace map between finite fields. Let p be a prime,

n > 1 be an integer. The trace map from F,» to I, is defined by
Tr(z) =z +a” + 2" + ...+ 2"

Note that the trace map is Fp-linear and surjective. It is balanced in the sense that for
every ¢ € F,, there exist p"~! preimages in Fyn.

Let n be a positive integer. A Boolean function f(x) of n-variables is a function
from the set F4 of all binary vectors x = (1, ...,x,) of length n to the field Fy. The
Hamming weight wt(f) of an n-variable Boolean function is the size of its support, i.e.
wt(f) = supp(f) = {x € Fy|f(x) = 1}. The function f is balanced if it has Hamming
weight 2!, The Hamming distance between two n-variable Boolean functions f and
g is the size of the set {x € Fy|f(z) # g(x)}, that is, it is wt(f+¢). The domain F} can
be endowed with the structure of the field Fo». Boolean functions can be represented in
different ways. We introduce the ones mostly used in coding theory, cryptography and

communications with advantage, since they provide uniquely determined parameters.

Proposition 1.1.1 Every n-variable Boolean function f can be represented uniquely



by a multivariate polynomial, i.e, f is a polynomial mapping over Fy of the form

el

fla)y= > a (HxZ)EFg[xl,...,xn]/(ﬂvlz+x1,...,xn2+xn). (1.1)
n}

77777

Definition 1.1.1 This representation (1.1]) of a Boolean function f is called algebraic
normal form(ANF) of f. The terms [],.; ; are monomials while the coefficients a; €

Fs.

Definition 1.1.2 The algebraic degree d°f of f given in the form is defined to be

the highest degree of the monomial with non-zero coefficients, i.e.,

d°f = {max|I|:a; # 0}

Proposition 1.1.2 Let F} be identified with the field Fon and let f be an n-variable
Boolean function with even weight (i.e., of algebraic degree at most n — 1). There
exists a unique representation of f as a univariate polynomial mapping of the form
flz) = Z Try ;) /P2 (ijj) , - € Fan, (1.2)
J€ln
where I',, is the set of integers obtained by choosing one element in each cyclotomic
coset of 2 (mod 2™ — 1) and o(j) is the size of each cyclotomic coset containing j,

A; € Fooy and TTFQOm/Fz is the trace function from Fayo(;) to Fs.

Definition 1.1.3 The representation (1.2)) is called the trace representation (or uni-

variate representation) of f.

Definition 1.1.4 A function is affine, respectively quadratic if it has algebraic degree

at most 1, respectively 2.

Proposition 1.1.3 Let f be given by its trace representation ((1.2). Then f has

algebraic degree gn&x# wsy(7), where wy(j) is the Hamming weight of the binary
JER|A;#0

expansion of j.

Proposition 1.1.4 The algebraic degree of an n-variable Boolean function f is the

maximum dimension of the subspaces {x € F}|supp(xz) C I}, where I is any subset of

{1,...,n}, on which f takes the value 1 an odd number of times.
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Now we present similar results for p-ary functions, for p > 3. Let f : F} — F, be a
p-ary function. If F} is identified with the field Fn», all p-ary functions can be described
by T'r,,(F(z)) for some function F' : Fyn — Fn of degree at most p™ — 1. This is called
the univariate representation of f. On the other hand, a p-ary function can naturally
be represented as a multinomial in zq, ..., z, also, where the variables x; occur with
the exponent at most p — 1. This is called the multivariate representation or algebraic
normal form(ANF). This representation is unique. The algebraic degree of a p-ary
function is the degree of the polynomial giving its multivariate representation.

The univariate representation mentioned above is not unique. However a unique
univariate form of a p-ary function, called the trace representation can be given as

follows:
f(.]:) = Z T/ro(j) (AJZL']> + Apn_lajpn_l, (13)
JEn
where I, is the set of integers obtained by choosing the smallest element in each

cyclotomic coset modulo p™ — 1 and o(j) is the size of the cyclotomic coset containing

J» Aj € Fpoy and Apn_y € . The algebraic degree of f is equal to gn&xio wy(7),
Jeln|Aj

where w,(7) is the weight of the p-ary expansion of j. Now omitting linear and constant
terms, a p-ary quadratic function, i.e., a function of algebraic degree 2 has an algebraic

normal form
f(.ﬁlfl,l'g, ...,$n> = Z Qi TiT 5, Qij € Fp. (14)
1<i,j<n

The corresponding trace representation

f(x) = Z Tr (aijxpi“j) ,ij € Fpn (1.5)

1<i,j<n—1

can be written as
[n/2]

fl@)=Tr(Y_ aa?*), a; € Fp. (1.6)

i=0
If n is odd, this representation is unique. For even n the coefficient a,/; needs to be
taken modulo K = {a € Fyn | Try/m/2)(a) = 0}, where Tr, x denotes the trace function

n/k—1

from Fpn to Fpu; Trpjp(x) = x + 2P + .. + aP



1.2 Walsh Transform

The Walsh transform (or Fourier transform ) of a Boolean/p-ary function f from Fn

to I, is defined as

E 8 —Tr(yx) &p = eQm/p‘

z€F,n

The set {f(y) Ty € IFpn} is called the Walsh spectrum of f, or just spectrum of f.

Proposition 1.2.1 Every Boolean/p-ary function satisfies
S Il =
yGFPn

which is the well known Parseval’s relation.

Remark:In case p = 2, if ‘f(y) is "large” the values of f(x) agree with T'r(yz) (if
Fly) > 0) or Tr(yz) + 1 (if f(y) < 0) for many € Fy.. In other words, f is well

approximated by a linear function. This remark motivates the following notion:
£(f) = max{|J(v)] : y € Fan}

Note that if £(f) is "small”, the Boolean function f is far from being linear, i.e. it is
nonlinear.
The nonlinearity Ny of a function f : Fpn — I, is defined to be the smallest Hamming

distance of f to any affine function, i.e.

Ny= min [{z €Fpn @ f(z) # Tr(ux)+ v}

UGFPWL,UEFp
For p = 2, the nonlinearity of f can be expressed in terms of the Walsh transform as

n— 1 T
Ny =2"" = 5 max|f(y)l. (1.7)

1.3 Plateaued Functions

Definition 1.3.1 Let p > 3. A function f : F} — F, is a (p-ary) bent function or
(generalized bent function) if all its Walsh coefficients satisfy |]/‘:(y)|2 = p". A bent
function f is regular if for every y € F}, the normalized Walsh coefficient p~ 2fA(y)
is equal to a complex p-th root of unity, i.e., p~" 2J?(y) = ¢’ "®) for some function

f*:Fy — F,. A bent function f is weakly regular if there exits a complex number u

having unit magnitude such that up="/ 2J/C\(y) =€,/ W for all y € Fy.

4



Definition 1.3.2 A boolean function f : F} — Fy is bent if

Fl)l =D (-)f@rve] = o2 (1.8)

z€lFy

for all y € F5.

-~

In the Boolean case the dimension n must be even, since f(y) is an integer. A Boolean

bent function is trivially regular.

Theorem 1.3.3 The normalized Walsh coefficients of a p-ary bent function f satisfies

+e, /W if n is even or n is odd and p = 1(mod4)

2 (y) = .
+ie,"®  if nis odd and p = 3(mod4)

for p > 3, and +1 for p = 2.

Regular bent functions can exist only when n is even or when n is odd and p = 1 mod
4. For a weakly regular bent function, the constant v can only be equal to +1 and +:.
Boolean bent functions were introduced by Rothaus in [35]. These are the functions
attaining the highest possible nonlinearity. In other words, they have the maximal
possible Hamming distance from the class of all affine functions. Now we present some
fundamental classes of bent functions. The following is a complete list of Boolean bent

functions on F2™ for 1 < m < 3 up to equivalence see |35
1. 2129 for m =1,
2. X119 + 1374 fOr m = 2,
3. 114 + 2ow5 + 2376 = [,
4. F3 4 x1209703 = F},
o. Fy + xoxywe + 11709 + 2476 = F5,
6. Iy + 232475 + T129 + X35 + Tax5 = Fp.
The following monomial functions f(z) = Tr(az?) are bent on Fyn with n = 2m:
1. d = 2% + 1 with n/ged(k,n) being even and o ¢ y¢ : y € Fou ( [18]);

2. d=r(2™—1) with ged(r,2™ 4+ 1) = 1 and a € Fom being —1 of the Kloosterman
sum ( [7]);



3. d=2% —2F 4 1 with ged(k,n) =1 and o & y* : y € Faon ( [25], [11]);
4. d = (28 +1)% with n = 4k and k odd, a € wFy with w € F4Fy ( [8], [26]);
5. d=2% +2F 41 with n = 6k and k > 1, a € Fysx with Try . r,, (@) =0 ([1]).

A positive integer d (always understood modulo 2" —1 with n = 2m) is a Niho exponent
if d =27 (mod2™—1) for some j < n. The following are the examples of bent functions

consisting of one or more Niho exponents:
1. Quadratic Functions T'r,,(az®" ) with a € F,..

2. Binomials of the form f(z) = Tr, (2% +ax®), where 2d; = 2™ +1 (mod2"—1)

and ay, ay € F3, are such that (a; + a?™)? = ap?" T ([12]).

Definition 1.3.4 A function f, mapping F} to F, is called an (s-)plateaued function
if for every y € Fy, the Walsh transform fA(y) vanishes or has absolute value p(**2)/2

for some fixed integer 0 < s < n. The case s = 0 corresponds to bent functions.

~

As mentioned above, in case p = 2 since f(y) is an integer for every y € Faon, 0-
plateaued functions, i.e., Boolean bent functions are only defined for even n. If f is
an s-plateaued Boolean function, s > 0, then n and s need to be of the same parity.
Depending on n being odd or even, 1 or 2-plateaued functions are called semz-bent.
When p is odd the term semi-bent refers to 1-plateaued functions. Quadratic functions

are s-plateaued for some integer s, with 0 < s <n — 1.

Theorem 1.3.5 [3] Let f be the quadratic p-ary function

l
f(l‘) = TTn (Z aixpi-‘y-l) ’
=0

and let L(z) be the linearized polynomial

l

L(z)=7 <az‘plzpl+i + aiplfizplij '

i=0
The square of the Walsh transform of f takes the absolute values 0 and p"**, where s

is the dimension of the kernel of the linear transformation on F,» defined by L(2).



Proof: With the standard Welch-squaring technique we obtain

—~ 2
‘ f<_b>‘ = Y @AWt

xvye]Fp”
_ )~ F )+ Tra (b2)
p

y,ZGFpn

= Y @) § S0,

ZEFpn yG]Fpn

Observe that

fly+z2)—fly)—fz) = Try, Zai <(y + Z)pi.H B ypz'_H _ Zpi'H))

= Tr, a; <yzpi + y”iz>>

Consequently

_ f(2)+Trn(bz Trn(yL(z
= Y @) 3 T

2€F,n ypl €Fpn

= p" Z €£(Z)+Trn(bz)
2€F,n L(2)=0

p"ts if f(2) + Tru(bz) =0 on ker(L)

0 otherwise

since f(z) + Tr,(bz) is linear on the kernel of L. O
In this thesis we focus on the class of quadratic functions F,,, : Fyn — F), given in

trace form, i.e.,

k
Fpn(@) =Try (Z aia:p“rl) ; (1.9)
i=0
where p is any prime, and the coefficients ay, ..., a; are in the prime field F,. If p is

odd, then functions of the form (1.9 have a unique representation as

[n/2]
Fpn(z)=Tr, Z a;x? | (1.10)
i=0



If p = 2, then for even n we have 22"*t1 € Fy2 and T, (z2"*+1 = 0) for all z € F7.
Every function of the form (1.9 has then a unique representation as

((n-vj2]
Fon(x) =Tr, Z a;x® ] (1.11)

1=0

see Theorem 1.2 in [13].

1.4 Linear Complexity, Discrete Fourier Transform, Applications

Let S = s¢, 51,52, ... be a sequence with terms in the prime field F,,. S is said to be
n-periodic if s; = s;,. Since an n-periodic sequence is determined by the terms in
one period, we can completely describe S as S = (s, $1, ..., S,—1)>. For an n-periodic
sequence S = (8g, S1,.-.,8,-1)°, the generating polynomial S,(x) of S is defined as

Sp(x) =80+ 8120+ ...+ 8, 12" L.

Definition 1.4.1 Let S = (s, 51, ..., Sp,—1)>° be an n-periodic sequence over F,. The
linear complexity L(s) of S is the smallest nonnegative integer ¢ for which there exit

coefficients di, ds, ..., d. € F, such that
Sj + dlsj_l + ...+ dCS]’_C = O,
for all 7 > c.

Lemma 1.4.2 [10] Let S = (so,S1,-..,5,-1)> be an n-periodic sequence over F,,.

The linear complezity L(S) of S is given by

where S,,(z) = sg + 517 + ... + 8,_12" ! is the generating polynomial of the sequence

S.

Definition 1.4.3 Suppose that ged(n,p) = 1 and let o be a primitive nth root of
unity in an extension field of F,. The discrete Fourier transform (DFT) of an n-tuple

s = (S0, 51, - -.,5n—1) over F, is the n-tuple S = (Sy, ..., S,—1) over F,(«) defined by
S=V-s

where the n-tuples s and S are written as column vectors and V' = (v;;), 0 <4, j < n—1,

is the invertible n x n Vandermonde matrix with v;; = o,

8



The discrete Fourier trasform has been used to study the linear complexity of n-periodic

sequences. Next theorem describes this connection.

Theorem 1.4.4 (Blahut’s Theorem) [29] Suppose ged(n,p) = 1 and let « be a prim-
itive nth root of unity in some extension field of F,. Then the linear complexity of
an n-periodic sequence S = (sg, 81, ..., Sp_1)> is equal to the Hamming weight of the

discrete Fourier transform of S.

So becomes
deg(ged(Sy(x), 2" — 1)) =n — Hw(S), (1.13)

where § = (S, ...,S,-1) with S; = S(o).

Quadratic functions have been extensively studied in the last decades. They are
used for the construction of functions, sequences with favourable properties for applica-
tions in cryptography and coding theory. In |9] quadratic functions have been employed
to construct nonquadratic Boolean bent and semi-bent functions. In ( [3], [4], [5]) infi-
nite classes of not weakly regular bent functions for arbitrary dimension n and primes
p > 3 have been constructed and analysed with the help of quadratic functions. In
coding theory quadratic functions form the second order Reed-Muller codes.

The functions F,,,, and their Walsh spectra are of great interest. For instance, one

may ask the following questions (see [30]):
e Given s, determine n, such that all F,,, are s-plateaued.

e Given n, find possible s, such that there exists a function F,,, which is s-

plateaued.

e Given n and s, construct F,,, which is s-plateaued.

Given n, for any s, enumarate all F,,,, which are s-plateaued.

Given n, determine the expected value for the parameter s.

In [23] the authors showed that the only odd integers n such that all non-zero
functions F»,, are semi-bent are a certain kind of primes. In other words given s = 1,
they determined n, such that all F,,, are 1-plateaued. In [9] the authors characterized

the set of even n such that all F3,, are semi-bent, i.e., 2-plateaued. In fact, they showed



that unless n = 4, there is no n for which all F,,, semi-bent. Recently in [30] the first
two questions are answered for any p > 2, see Chapter .

Moreover in [30] for all s and odd n, relatively prime to p, theorems ,
provide constructions for F,,, which are s-plateaued.

The problem of enumerating F,, with prescribed Walsh spectrum was first ad-
dressed in [22], [23]. Similarly for the case p = 2, some enumeration results were
obtained by the use of self-reciprocal polynomials in [14]. In [30] enumeration results
were given for a class of integers n, for n = 2™ for p = 2 and n = ¢ for primes p,q¢ > 3
where p is a primitive root modulo ¢?. These enumeration results were significantly

improved in [31].

10



CHAPTER 2

CONSTRUCTION of sPLATEAUED FUNCTIONS

Recently new tools have been introduced to the study of the class of quadratic func-
tions F,,. Indeed, the use of self-reciprocal polynomials and the linear complexity of
sequences in [30], [31] opened up a new area of research. In this thesis we heavily use

these methods, which we introduce in this chapter.

2.1 Factorization of x™ — 1, Self Reciprocal Polynomials, Cyclotomic

Cosets

From now on F,,, denotes a function of the form (1.10)) and (1.11]) respectively, depend-

ing on p being odd or even. Recall that k = [(n —1)/2] when p = 2 and k = [n/2]

when p > 3.

Definition 2.1.1 A polynomial of the form

k
L(z) = Z ax?
i=0
with coefficients in an extension field F,» of I, is called a p-polynomial over Fyn.

Definition 2.1.2 The polynomials

k k
l(x) = Zaixi and L(x) = Zaixpl
i=0 i=0
over [F» are called p-associates of each other.

Theorem 2.1.3 [27] Let L () and L(x) be linearized polynomials (i.e. p-polynomials)
over I, with p-associates [;(z) and [(z), then L;(z) divides L(z) if and only if [;(z)
divides [(x).

11



Using the standard Welch-squaring technique we have shown that(see theorem [1.3.5))
the integer s is the dimension over [, of the kernel of the linear transformation defined

on F,» by
k

L(ZL’) _ Z <ail‘pi I aipnfixpn7i> ’

i=0
i.e., ged(aP" — x, L(z)) has degree p°.
Equivalently, the kernel of L has dimension s if and only if the p-associates A(x) and

2" — 1 of L(x) and 27" — x, respectively, satisfy
deg(ged(A(z),z" — 1) = s.

This follows immediately from Theorem and from the fact that a; € F, for all

i > 0. The associate A(x) corresponding to F,,, in (1.9) is

Az) = Z (az’ + az"™") = 2g(), (2.1)

where iy is the smallest integer such that a;, # 0, i.e., g(0) # 0, and g(z) € F, [z] is
the self-reciprocal polynomial

g(x) =Y a; (a0 42" (2.2)

i=1g

of degree n — 2iy. Thus the value of s is determined by
s = deg(ged(A(z), 2" — 1)) = deg(ged(g(z), 2" — 1)). (2.3)

We note that in case p = 2 one has

(n-v/2) | (n-v/2) |
ged Z a;(z' +2"7"), 2" + 1| = ged Z a;(z' +2"7") Fag(a” + 1), 2" + 1
=0 =1

(2.4)

In other words, ag does not effect the value of s.

Definition 2.1.4 A polynomial F'(z) with non-zero constant term and of degree m

over a finite field Fr is called self reciprocal if F(z) = 2™F(2).

The following lemma gives the basic properties of self-reciprocal polynomials, see [21],

27], [B0.

12



Lemma 2.1.5 Let F' € F,.[z].

(i) Let F' be irreducible and of degree > 2. F' is self-reciprocal if and only if the set

of roots of F' is closed under inversion.

(ii) If F is self-reciprocal and G € F,r[z], then F'G is self-reciprocal if and only if G

is self-reciprocal.
(iii) If F is an irreducible self-reciprocal polynomial of degree m > 2, then m is even.
(iv) If F,G € F,r[z] are self-reciprocal, then ged(F(z), G(x)) is self-reciprocal.

By Lemma [2.1.5(iv), in the case p = 2, if A(x) € Fy[z] is self-reciprocal, then ged(x™ +
1, A(x)) is self-reciprocal since z™ + 1 is self-reciprocal.

In case p > 3 we have
ged(z™ — 1, A(x)) = (z — 1)°h(x),e € {0,1},
for a self-reciprocal divisor h(x) € F,[z] of ¥,,(z) = (2" —1)/x — 1. In what follows we
use the notation of [30] and put
" +1 ifp=2

U, (r) =
ol gl g2 41 ifp>3

z—1

According to p being even or odd, we have
ged(z" + 1, A(x)) = gde(¥,(x), A(x))
or
ged(z™ — 1, A(x)) = (x — 1)ged(¥, (), A(x)), e € {0,1},

respectively. We therefore need to determine the self-reciprocal factors of ¥, (x). For
this purpose we recall cyclotomic cosets, corresponding factorization of ™ — 1 into

irreducibles and introduce prime self-reciprocal polynomials over a finite field.

Definition 2.1.6 Let gcd(n,p) = 1. The set C; = {jp’“ mod n, k € N} is called the

cyclotomic coset of 7 modulo n (relative to powers of p).

Definition 2.1.7 A self-reciprocal polynomial f € F,[z] is called prime self-reciprocal
if either f itself is irreducible over Fy, or f = ugg*, where g is irreducible over [F,, the

polynomial g* # g is the reciprocal of g and u € F} is a constant.
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We remark that for n = p’n; and ged(ny,p) = 1, one has 2" — 1 = (2™ — 1)P.
Thus for analysing the prime self-reciprocal factors of ™ — 1, one may assume that
ged(n, p) = 1. Assuming (n,p) = 1, the canonical factorization of 2™ — 1 € F,[z] into

irreducible polynomials is

" —1= Hft(x) with  fi(z) = H (z —a'),

i€Cy,
where « is a primitive nth root of unity and Cj,,...,C}, are the distinct cyclotomic
cosets modulo n. Recall also that for n > 3,
" —1=]]@m
mln
where @), denotes the m-th cyclotomic polynomial. The cyclotomic polynomial @),
factors into irreducible polynomials fi,..., fom)a € Fplz], each of degree d, where
d = ord,,p, and ¢ denotes the Euler p-function. Here ord,,p denotes the smallest

integer [, such that p' = 1 mod m. More precisely we have

Qm = fiofommya with  fi(z) = [ (x = o), (2.5)
Jj€Ct
where C1,...,Cym)/a are the cyclotomic cosets modulo n relative to powers of p,

containing the elements of the form n/mi with ged(m,i) = 1. Next lemma provides
a useful tool to determine self-reciprocal factors of a cyclotomic polynomial @,,. We

denote the 2-adic valuation of an integer [ by v(l), i.e., 2" is the largest power of 2

which divides I.

Lemma 2.1.8 [30] Let m = ¢1°'¢2®...¢x** be odd, relatively prime to p, d; = ord,,p,
1 <i <k, and d = ord,,p. Suppose the irreducible factors of @Q,, are fi,..., foum)/a-

(i) The polynomials fi, ..., fo(m)/a are self-reciprocal if and only if v(d,) = v(da) =
... = v(dy) > 0. In particular, if m is prime, then fi, ..., foum)/q are self-reciprocal

if and only if d is even.

(i) If v(d;) # v(d;) for some 1 <i,j < k, then none of the polynomials f;, 1 <t <
w(m)/d, is self-reciprocal, and for each ¢, 1 <t < ¢(m)/d, there exists a unique
t #t, 1<t <(m)/d, such that f, = f;- is the reciprocal of f, and the product

ftfy 1s prime self-reciprocal.
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By lemma we see that the polynomial f;(x) in is self-reciprocal, thus prime
self-reciprocal if and only if C},, containing the integer j;, also contains its inverse —j;
modulo m. If this is not the case, then there is another cyclotomic coset Cjt/ = Cp—j,
consisting of inverses of the elements of Cj,. Then f, = fi+ is the reciprocal of f; and

f = fify is prime self-reciprocal.

Example 2.1.1 Factorization of ™ — 1 into self-reciprocal polynomials when p = 2,
n = 3.5% = 75 The cyclotomic cosets are:

C;, =C1=1{1,2,4,8,16,32,64,53,31,62,49, 23,46, 17, 34, 68, 61,47, 19, 38}

C;, =C7 ={7,14,28,56,37,74,73,71,67,59,43,11,22, 44,13, 26, 52,29, 58,41 }

Cj, = C5 ={5,10,20,40} C;, = Cs5 = {35,70,65,55}

Cj, = C5=1{3,6,12,24,48,21,42,9,18, 36, 72,69, 63, 51, 27, 54, 33, 66, 57, 39}

Cj, = Ci5 = {15,30,60,45}

Cj, = Cys = {25,50} Cy = {0}

For a primitive 45th root of unity a we put

ieCy,
t=1,..,7. Then
2+ 1= (24 1)Qr5Q2Q1:Q5Qs,

with Q75 = fif2, Qa5 = f5, Q15 = [3f1, @5 = f6, @3 = f7. The irreducible polynomials

(x + 1), fs = r1, f¢ = 1o, fz = 13 are self-reciprocal, hence prime self-reciprocal but
f1, f2, f3, f1 are not. We have fo = f1* and fy = f3". Hence f1fy = rq and f5fy = 75
are the other prime self-reciprocal factors of ™ + 1.

Therefore 2™ +1 = (x 4 1)ryrorsryrs factors into 6 prime self-reciprocal factors which

are of degrees 1,2,4, 8,20, 40.

Corollary 2.1.9 Let n = g, ¢e,..-q¢, be odd, relatively prime to p, and d; = ord,,p,

1 <i<k. Recall that ¥, (z) = 2"+ 1if p=2and ¥, (z) = (2" — 1)/ —1if p > 2.

All the irreducible factors of W, (x) are self-reciprocal if and only if v(d;) = v(dy) =
= v(dy) > 0.

The following proposition from [30] shows that for given n and p the possible values of

s are determined by the degrees of prime self-reciprocal factors of ¥, (z).
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Proposition 2.1.1 (i) Let n = 2'ny, ged(ng,2) = 1, and let 2™ + 1 = r 2 ry?"..ry2

v

be the canonical factorization of x™ + 1 into prime self-reciprocal polynomials
over Fy. Without lost of generality we put r = x + 1. If F,, : Fon — Fyis a
function of the form |1.11], then F,,, is s-plateaued, where s is of the form

k
s=e + Zejdeg(rj),() <e; <2%5=2,...,k,

=2

with e; = 1 when n is odd and 2 < e; < p¥ is even when n is even.

For an odd prime p let n = p¥ny, ged(ny, p) = 1, and let ¥,, = rl#rgpv...rkpv be

the canonical factorization of ¥,, = (E”xnjll)) into prime self-reciprocal polynomials

over F,, where r1(2) = 22 —2z+1. The function F,,, is s-plateaued for an integer

s of the form

k
s = e—l—Zejdeg(rj),e €{0,1},0<e; < (p"—1)/2),0<e; <p",j=2,...,k

J=1

Proof:

(1)

We use the equation s = deg(ged(g(x), 2™ — 1)). The polynomial g(x) € Fo[z] is
self-reciprocal, hence by Lemma M(iv), we have

ged(g(x),x"™ + 1) = rm e

for some integers 0 < e; < 2°. If n is odd, hence v = 0, then e; = 1. Note that
e; > 0 since g(z) is always divisible by = + 1. If n is even, then e; must be an
even integer between 2 and 2V, since s and n must be of same parity and the

degrees of prime self-reciprocal polynomials 7y, ...r are even.

Again, g(z) € Fp[z] is self-reciprocal, and hence by Lemma [2.1.5(iv), we have
ged(g(x), 2" — 1) = (x — 1)°ged(g(z), V() = (2 — 1)r Dre® .y,

where € € {0,1}, and 0 < e; < (p* —1)/2),0 < e; < p", j = 2,...,k. Now

Equation [2.3] implies the result.
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2.2  Existence of splateaued functions
The following result of [30] gives a criteria for existence of s-plateaued functions.

Theorem 2.2.1 Let n be an arbitrary integer relatively prime to p > 3. There exists

an s-plateaued quadratic function F,,, if and only if
1. 2™ — 1 has a self-reciprocal factor h(z) of degree s, or
2. 2™ — 1 has a self-reciprocal factor h(x) of degree s — 1 where s <n — 1.

Proof: Let h(z) be a self-reciprocal divisor of ™ — 1 of degree s. If n is odd, then

x 4 1 cannot divide h, hence s must be even. We then put

h(z) = (z +1)g(x),io = (n — deg(g(x)))/2

and obtain A(x) as in If n is even, then z + 1 divides 2" — 1, and the degree s of
h(z) may be odd or even, depending on x + 1 dividing h(x) or not. If s is even we put
h(x) = g(x), otherwise we choose h(z) = (x +1)g(x). In the latter case x + 1 does not
divide (2™ —1)/h. We then set i, = (n —deg(g(x)))/2 and obtain A(z) as in [2.1] giving
rise to an s-plateaued function. If 2™ — 1 has a self-reciprocal divisor h(x) of degrees
s — 1, we put A’ (z) = h(x)(2> — 22 + 1), and then obtain A(x) as above. Note that in
this case we have ged(A(x), 2" — 1) = (x — 1)h(z). We remark that the degree of g(x)
is at most n when s <n — 1.

Conversely, if deg(ged(A(x),z™ — 1)) = s then there is a self-reciprocal factor h(x) of

2™ — 1 satisfying
deg(ged(A(z), h(z))) = s or deg(ged(A(z), h(z))) = s —1 and A(1) = 0.

Note that then 1 must be a double root of A(z), however ged(p,n) = 1 implies that
(x —1)? does not divide " — 1. O

The existence criteria for the case p = 2 is as follows.

Theorem 2.2.2 Let n be an arbitrary integer. There exists an s-plateaued quadratic
function F», if and only if 2™ 4 1 has a self-reciprocal factor h(x) of degree s < n — 2,
where s and n are of the same parity, and (x + 1)|h(z). If 2™ + 1 has such a factor

h(x), then (z + 1)?|h(z) if n is even.
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Proof: Proof of the first part is immediate. That h(z) is divisible by z + 1 or (z +1)?
depending on n being odd or even, follows from A(1) = 0, implying (z + 1)|ged (2™ +
1, A(x)). Note that when n is even, (z+1)% must be a factor of h(x) because of Lemma

R T.5](i), (i) O

This theorem immediately answers one of the questions raised on Section [1.4]

Corollary 2.2.3 Let p > 3. There isno n > 3 such that all 7, ,, are bent or semi-bent.

Proof: The polynomial 2" —1 has the self-reciprocal factor ¥,,(z) = 2" ' 4+2"2+...+1

for any n, always yielding an (n — 1)-plateaued quadratic function F,,,. a

Theorem 2.2.4 [32] Let N(2e) denote the number of self-reciprocal irreducible monic

polynomials of degree 2e over [F,,. Then

Vo i(pe—l) poddand e =2% a>0
(2¢) = + > p(d)p?? otherwise
dle,d odd

where (z) denotes the Mébius function on integers.

This result of Meyn [32] on self-reciprocal irreducible monic polynomials, together with

the above theorem yields the following result.

Corollary 2.2.5 Let n = p™ + 1. Then there is an s-plateaued F,,, if and only if

s < n is of the form

s=¢€+2 Z ace,

e|lm,m/e odd
with € = 1 when p = 2 and € € {0,1} when p > 2, and for some 0 < a, < N(2¢), where
N(2e) is the number of monic, self-reciprocal irreducible polynomials over F,, of fixed

degree 2e.

For a given n the next theorem of [30] enables to determine all possible values of s

such that an s-plateaued function F,,, exits.

Theorem 2.2.6 Let p > 2, and qy,¢2, ..., qx > 3 be distinct primes, relatively prime
to p. Suppose n = q1¢2...qk, di = ordgp, 1 < i < k and ord,p = d. There exits an

s-plateaued function F, , if and only if s < n is of the form given in one of the following
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cases (i)-(iv). For I C {1,2,...,k}, put n; = [[,c; @ and dy = lem{d; : i € I}. Let
M=A{I:1c{1,2,..,k},I+#0}. Throughout e = 1if p =2 and € € {0, 1} if p is odd.

(i) fv(dy) = v(dy) = ... = v(dy) > 0, then
S=¢€+ Z k[d[,
IeM

(ii) Suppose v(d;) > 0 for 1 < i < k and v(d;) # v(d;) for some 1 < i # j < k. Let
M, ={Ie€M:|I|l>2v(d)=wv(d;) forevery i,j € I} U{I € M : |I| =1} and
My = M \ My, then

s=e+ > kidp+2> ki,

IeM, TEM;
where 0 < k; < ¢(ny)/d; for I € My and 0 < k; < ¢(ny)/2d; for I € M.

(iii) If v(dy) = v(dg) = ... = v(dg) = 0, then

s=e+2) ki,

IeM

(iv) Suppose (after a possible change of order of ¢1,qa,...,qx) v(d;) > 0 for 1 <i <
ki < kand v(d;)) =0 for ky +1<i<k Let M ={I:1C{1,2,..k},I#0},
M, ={I€M :|I|>2v(d;) =v(d;) for every i,j € I} U{I € M : |I| =1} and
My = M \ M, then

S =¢€-+ Zk’[d[—i—QZk’[d]

IGMl IGMQ

where 0 < k; < ¢(ny)/d; for I € M, and 0 < k; < @(ng)/2d; for € Ms.

Proof: If v(dy) = v(ds) = ... = v(dg) > 0, all the irreducible factors of ¥, (x) are
self-reciprocal and hence any divisor of W, (x) is self-reciprocal. On the other hand if
If v(dy) = v(d2) = ... = v(d) = 0, then none of the irreducible factors of ¥, (z) are
self-reciprocal, therefore together with their reciprocals they give rise to self-reciprocal
divisors of W, (x), I € M. Hence one obtains y(ny)/2d; self-reciprocal factors of
U,,, (z), each of degree 2d;, for any I € M. In the other two cases one needs to consider
appropriate subsets of M; and M; of M, where irreducible factors of ¥, (z) are self-
reciprocal for each I € M; and I € M. Again for I € M, and I € M,, none of the
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irreducible factors of ¥, (x) are self-reciprocal hence the corresponding degrees must

be multiplied by two, and the ranges of k; must be restricted to 0 < k; < p(ny)/2d;.

Corollary 2.2.7 Let p =2, n be an odd prime with ord,2 = d.

1. If d is even, then there exits an s-plateaued quadratic function F3,, if and only

if s = kd+ 1 for some 0 < k < [(n—1)/d] — 1.

2. If d is odd, then there exits an s-plateaued quadratic function F3,, if and only if
s =2kd + 1 for some 0 < k < [(n—1)/(2d)] —

2.3 Construction

The following two theorems describe the construction of s-plateaued quadratic func-

tions for the cases p = 2 and p > 3 respectively.

Theorem 2.3.1 [30] Let p = 2, n arbitrary, and s < n — 2 be an integer, known
to give rise to an s-plateaued function Fs,. Suppose h; = x + 1, ho, ..., h;, € Fyz]
are self-reciprocal factors of 2™ + 1, with deg(h) + deg(hz2) + ... + deg(hy) = s. Put
h(x) = hihg..hy. If s =n—21et l(z) = 1. If s < n—4let l[(x) € Fylz] be a
self-reciprocal polynomial of even degree satisfying ged(l(z), 2™ + 1/h(z)) = 1, and
deg(h(z)l(z)) < n —2. For g(x) = h(z)l(x), and i, = (n — deg(g(x)))/2, let A(x) =
wiog(z) = U2 gipi 4 .27 € Fola]. Then

[(n—1)/2] v
Fonlx) =Try, Z az® !

=0

is s-plateaued, where ag can be chosen to be 0 or 1.

Proof: By Theorem [2.2.1] the polynomial z + 1 must divide h(z). Hence hy = z + 1.
Since s,n must be of the same parity when p = 2, and deg(l(z)) is even, we have
2|(n — deg(g(z))), and i, > 1. This implies A(0) = 0. Recall that we can choose ag to
be 0 or 1, see equation [2.4] O

Theorem 2.3.2 [30] Let p > 3, n be odd, relatively prime to p, and s < n be an
integer, known to give rise to an s-plateaued function F,,. Suppose hi,hs,...,hy €
[F,[z] are self-reciprocal factors of 2™ — 1, with deg(hy) + deg(h2) + ... + deg(hy) = s.
Put h(z) = hihy...hy, and let [(x) € F,[z] be a self-reciprocal poynomial, satisfying
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ged(l(z), ¥, (x)/h(x)) = 1, and deg(h(z)l(z)) < n and 2|(n — deg(h(z)l(x))). For

9() = h(z)l(x), and i, = (n — deg(g(x)))/2, let A(x) = a*og(x) = YL/ i 4
[

""" € Fp[z]. Then
ln-v2
Fonlx) =Tr, Z a;zP

=0

is s-plateaued.

Proof: In case p > 3, and n is odd, deg(h(x)) = s must be even. Hence [(x) needs
to be a self-reciprocal polynomial of odd degree, i.e.,  + 1 must divide I(x) in order
that the integer i, is well-defined. We note that x + 1 does not divide ™ — 1, therefore
a polynomial [(x) satisfying the conditions of the theorem exits. Then A(zx) is of the

required form giving rise to an s-plateaued function F, . a

Example 2.3.1 Let p=2and n =21. 22 +1 = (z + 1)Q2.Q-Q3
' +1 = (x+1) (2P 42" +2 2l + 2ttt 2 a4 1) (02 +at +at 2P+ 1) (P a4 1)
27 +1 = (241) (2 +2°+2'+22+1) (2P + a2’ + 2’ +a+1) (242 +at + 2t 42+ 1) (2P +a+-1)

Pick the self-reciprocal polynomials h; = (z + 1), hy = (z*> + x + 1) and get h(z) =
hi(z)ha(x) = 23 + 1 of degree 3 <n — 4(= 17).

For [(x), i.e., a self-reciprocal polynomial of even degree satisfying
ged(l(x), 2" 4+ 1/h(x)) = 1, and deg(h(z)l(z)) <n —2,
choose I(z) = 2% + 2° + 2 + 1 to obtain
gl@)=h@)(z) =2 + 2%+ 2+ 2° +2* + 2% + 2+ 1.

Then iy = 6 and A(x) = zg(z) = 2 + 2 + 22 + 2" 4+ 2% + 29 + 27 + 25, and

therefore T'ry; (x26+1 4 a2 g2y x210+1) is 3-plateaued.

We end this chapter by pointing out a connection between the integer s and the
linear complexity of an n-periodic sequence, which was observed in Section [1.4 We
recall that the linear complexity L(S) of an n-periodic sequence S = (Sg, 51, ..., Sn—1)>
over [, is given by

L(S) = n — deg(ged (S, (z), 2" — 1)),

where S,(7) = sg + $17 + ... + 5,12 is the generating polynomial of the sequence

S.
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Lemma 2.3.3 Let f(z) =Tr, (Z}Z{)ﬁ az-:cpi“), a; € F,, and let A(x) be the corre-
sponding associate A(z) = S ¢,(2% 4 277). Then f is s-plateaued with s = n— L,

where L is the linear complexity of the n-periodic sequence over I, with generating
polynomial
ln/2] ’ '
Ax) = Z a;(x" +2"7") 4 2ay. (2.6)
i=0
Proof: Since s = ged(A(z), 2" — 1) = ged(A(z)mod(z™ — 1), 2™ — 1) and
[n/2] ‘ . -
A(z) = ap(z" — 1) + Z a;(x" +2"7") + 2ap = ap(z" — 1) + A(z),
i=1

we have s = ged(A(x), 2" — 1). Since deg(A(x)) < n — 1, the polynomial A(z) can be
seen as the generating polynomial of an n-periodic sequence over [F,,, and the assertion

follows from Equation [1.12] O
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CHAPTER 3

EXPECTED VALUE

This chapter contains the main results of this thesis. Recall that for every quadratic
function F,, : F,» — F, we have 1F(y)| € {0,p"2"} for some integer 0 < s < n
depending on F,,. By using various methods we determine the expected value E(s)
for the parameter s and for several classes of integers n. In Section we present
E(s) for the case n = p™, m > 1, where the values of N, (s) are known explicitly.
In Section 3.3| we employ DFT to determine E(s) for the case ged(n,p) = 1. With a
number theoretical method, in Section we obtain F(s) for the case p = 2 where
n = 2m and m is odd. Note that this case is particularly important for applications.
Our exact formulas confirm that on average the value for s is small. For the case p = 2

this corresponds to a high average nonlinearity.

3.1 Results on N,(s)

Throughout this chapter we denote the number of s-plateaued quadratic functions F,,
by N, (s). Suppose that ged(n,p) = 1, and « is a primitive nth root of unity in an
extension field of F,,. First we recall the Blahut’s Theorem which states that the linear
complexity of an n-periodic sequence S can be obtained as the Hamming weight of the
DFT of S, see Section [[.4, Our aim is to use DFT to analyse the Walsh transform
of quadratic functions . Now we recall Lemma m that described the relation
between the value for s and DFT of an n-tuple obtained from the coefficients of .
Hence we are interested in the nature of the DFT of coefficient vectors of polynomials
A(x) € F,y[x] that are as in (2.6)), i.e. of the DFT of n-tuples over F, of the form

200, A1y -y An_1)/25 Cn—1)/2y - - - s @ : nodd
o (2a0, a1 (n—1)/2, A(n—1)/2 1) (3.1)

(2a0, a1, . .-, Gpja—1,2Gp/2,Anj2—1,...,01) @ neven.
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The following lemma in [31] completely describes the nature of the DFT of n-tuples of
the form (3.1]).

Lemma 3.1.1 Let ged(p,n) = 1 and A(z) be as in (2.6). Consider the cyclotomic
coset C; of j modulo n for 0 < j < n — 1. Suppose that 0 <k <n — 1 is an element

of C}, i.e., k = jp" mod n for some r > 0. Then

(iif) A(a’) € Fy;, where I; = |Cy]. If j ¢ {0,n/2} and —j € Cj, then A(a”) € F ;2.
(iv) A(1) =0, ifp=2.
Proof: If |C;] = I;, and hence jp'i = j mod n, for every polynomial A(z) € F,[x] and
a primitive nth root of unity o we have,

(A(a?))P" = A(a?7) = A(a?).

Consequently, A(a’) € szj. Furthermore, when k = jp” mod n, we get

A(o?) = 2a0+ Z a;(a? + aj(”_i))

= 2ag+ Z ai(a’j("’i) + ofj") = fl(a’j), (3.2)

which shows (ii). If j & {0,n/2}, where j = n/2 only occurs when n is even and hence
p # 2, then —j € C; implies that [; is even and —j = jp'/? mod n. By (3.2)) we obtain

® = A0y = A(a) = A(dd).

A(ad)?"
Therefore A(a’) € F 1,/>. Part (iv) is trivial.
In accordance with the terminology in [31], we call n-tuples over F,(«) that satisfy the
properties described in Lemma as n-tuples in sfdt-form (or a symmetric frequency
domain tuple). Lemma enables the following characterization of n-tuples in sfdt-

form:
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- Suppose 1 < j <n—1,j# n/2is an integer such that the cyclotomic coset C;
containing j also contains —j modulo n. Then A(a’) € F |c,/» determines A(a?)
p

for all d € C}; A(1) € Fpy; A(a™/?) = A(—1) € F, if n is even.

- Suppose 1 < j < n—1is an integer such that the cyclotomic coset C; containing
j does not contain —j modulo n. Then A(a’) € F je;1 determines A(a?) for all

de OjUC_j.

Example 3.1.1 p =2, n = 3.5?

The cyclotomic cosets for which C; = C_;, i.e., the ones containing the inverses are
Co = {0}, Co5 = {25,50}, C15 = {15,30,60,45} and

C3 = {3,6,12,24,48,21,42,9, 18, 36, 72,69, 63, 51, 27, 54, 33,66, 57,39} with cardinali-
ties 1,2, 4, 20.

Cy = {1,2,4,8,16,32,64,53,31,62,49, 23,46, 17,34,68,61,47,19,38} and C; = C_,4
have cardinalities 20 which give a possible contribution of 40 to the Hamming weight.
Similarly C5 = {5, 10,20,40} and C35 = C'_5 have cardinalities 4, which give a possible
contribution of 8 to the Hamming weight. These numbers coincide with degrees of the

prime-self reciprocal factors of ™ + 1, see Example [2.1.1]

The following theorem plays a key role in the enumeration of s-plateaued quadratic

functions (|1.10]) for prescribed s, by using discrete Fourier transform.

Theorem 3.1.2 |31, Theorem 3] There is a one to one correspondence between n-

tuples over F, of the form (3.1)) and n-tuples A over F,(«) in sfdt-form.

Proof: Let C;, = Cy = {0},C},,...,C;, be the distinct cyclotomic cosets modulo n
relative to powers of p satisfying Cy = C_j. Note that if n is even and hence p is odd,

Cjpirs-nC Cjpim

jh+m7

then C,» = {n/2} is among them. Furthermore let Cj, ,,,
be the remaining 2m distinct cyclotomic cosets. Denote by [; the cardinality of the
cyclotomic coset Cj,, 1 < i < h 4+ m. By Lemma an n-tuple in sfdt-form is
determined by h + m entries as follows. The entries corresponding to Cj,, ¢ =1,...,h
are the elements of the field F,/2, except for the coset Cy = {0} = €}, and also C,,»

if n is even. The entries corresponding to C},, ¢ = h 4+ 1,...,h 4+ m, are the elements

of ;. First we consider the case that p > 3 and n is odd. Then by simple counting
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arguments, the number €2 of n-tuples in sfdt-form is given by

0 = ppl2/2 .. .plh/2 .plh+1 .. .plh+m

L+ +p+2n 41 4+20h4m) (n—1)/2 (n+1)/2

= pp =pp =P

The number 2 agrees with the number of all n-tuples over F, of the form (3.1)) when
n is odd. The same holds for the case p = 2 and odd n, where Q = 2(*=1/2and the
case p > 3 and even n, where Q = p(2+1 Since the DFT is invertible, we obtain a
bijection from the set of n-tuples of the form onto the set of n-tuples in sfdt-form.
As a consequence of Theorem , we can count s-plateaued functions F, ,,, by count-
ing n-tuples over F,(«) in sfdt-form with Hamming weight n—s. Applying this method,
in Corollaries 3-6 in [31], explicit formulas for the counting function N, (s) have been
presented when the factorization of 2" —1 in F,[z] is particularly simple. The following

cases are covered :

- n = ¢, where ¢ a prime different from p,

- n = ¢¥, where ¢ # p is a prime such that p is a primitive root modulo ¢2,
and for p = 2,

- n=2"—1, where m is an odd prime,

- n = 3q, where ¢ is a prime and the order of 2 modulo ¢ is odd.

In particular the number N, (0) of bent functions has been determined for all p > 3
and n with ged(n, p) = 1. For p = 2 the number N, (1) of semi-bent functions has been
given for all odd integers n, see |31, Corollary 7).

To describe the counting function N,,(s) for ged(n, p) = 1, the univariate polynomial

Gn(2) in the variable z is considered. G,(z) is defined by

Gn(2) = ZNn(n — 1)z,

and is called the generating polynomial for N, (s). The generating polynomial has been
determined as a product of polynomials for odd n with ged(n,p) = 1 in [31], and for

even n relatively prime to p in [6]. We restate those results in the following theorem.
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Theorem 3.1.3 [6,131]

(i) Let p =2, n be odd, and 2" + 1 = (z + 1)ry - - - r, be the factorization of 2" + 1
into prime self-reciprocal polynomials over Fy. Then G, (2) is given by

k

G(2) =1 [1 7 - 1)zt

7j=1

(ii) Let p > 3, ged(n, p) = 1. Suppose the polynomial 2 — 1 is factorized as 2" — 1 =
(x—=1)ry---rpora™—1=(z—1)(x+ 1)ry -1, for odd or even n respectively,
where ry,...,r are self-reciprocal polynomials of degree > 2. Then G,(z) is

given by

deg(r

1) des(r)

Gu(2) = (1+ (p—1)z 5H{1+

Here 6 = 1 if n is odd, and § = 2 if n is even.

Proof: We show that the coefficient of 2 in G, (z) is N, (n — t). Note that N, (n —t)
is the number of n-tuples (S, ...,S,_1) in sfdt-form with Hamming weight ¢.

If p = 2, then the Hamming weight of an n-tuple in sfdt-form is given as )., deg(r;)
for a subset I of {1,...,k}. Let Q(t) be the set of subsets I of {1,...,k} for which
>_jerdeg(r;) = t. Since the entry in an n-tuple in sfdt-form which corresponds to a
self-reciprocal factor of 2™ + 1 of degree deg(r;) > 1 is an element of Fjacs(;)/2, for
an (even) integer ¢, the number of n-tuples in sfdt-form with Hamming weight ¢ is

determined by

5 ot

IeQ(t) jel

This coincides with the coefficient of 2! in the polynomial

H |:1 + deg(r 1) deg(rj):| )

Jj=1

If p is odd, then the Hamming weight of an n-tuple in sfdt-form is do + > _._; deg(r;) if

n is odd, and 0 + 0,2 + D,y deg(r;) if n is even, for a subset I of {1,...,k}. Here

i€l

8o = 0 (6n/2 = 0) if and only if Sy (S,/2), belonging to Fp, is 0. Therefore we have to
multiply the polynomial

H {1 +(p =) —1)z deg(r;)

J=1
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with (1 + (p — 1)z) when n is odd and with (1 + (p — 1)z)? when n is even. O

We should point out that in these calculations we take ag = 0 in (|1.10)) when p = 2,
unlike in [31], where aq is not necessarily zero. As a consequence, the formulas in [31]
contain an additional factor 2 for p = 2.

The method of the DFT is not applicable if ged(n,p) # 1. For this purpose,
in [31}, Section V], a number theoretical method has been introduced and the generating
polynomial G, (z) for the important case p = 2 has been presented for n = 2m and odd
m. We state this result below. The tools used to obtain it will be described in Section

[3.4] where we determine the expected value for the parameter s.

Theorem 3.1.4 [31, Theorem 5] Let p = 2, n = 2m, m be odd, and z" + 1 =
(x+1)?r?---r? be the canonical factorization of 2" + 1 into prime self-reciprocal poly-

nomials. Then the generating polynomial G,(z) = > 7 N, (n — t)z" is given by

k
de€("'j) deg(rj)

gn(2> _ H 1+ (2 = 1>Zdeg(7’j) + (Qdeg("“j) 93 )ZQdeg(Tj) )

J=1

3.2 The case n= p™

In [30], NV,(s) has been determined for p = 2 and n = 2™, m > 1, by using the
Games-Chan algorithm [17], which was designed to determine the linear complexity of
binary 2™-periodic sequences. With a direct calculation, the analog result for odd p
and n = p™, m > 1, has been obtained in [31]. We recall these results in the following

propositions.

Proposition 3.2.1 [30, Theorem 2] Let p = 2 and n = 2™. Then
92 lk e = ok k=1,...,2m 1,
Na(s) = 1 s=2m

0 : otherwise.

Proposition 3.2.2 [31] Theorem 1] Let p > 3 and n = p™. Then

pM—s—1

(p—1p = : seven, 0<s<pm™—1,
Nn<8) = 1 : s=pm,
0 : otherwise.

We can use Proposition and Proposition to evaluate E(s) for n = p™.
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Theorem 3.2.1 Let p =2. If n = 2™, then the expected value F(s) of the parameter
s for a quadratic function as in (|1.11]) is

1
Sz g

E(s)=4-

Proof: By Proposition and the observation that the total number of Boolean
quadratic functions (1.10) is 22~ we obtain that

1 om—1_1 1 om—=1_1 l{}
m—1 m—1
E(s) = 535 ( > 2 1k2k+2m> = g1 <22 > +2m> :

k=1

Look at the sum ) y_; 2 up to a:

‘L k 1
2m = 5t
1
5

k=1

1+1 n 1+1+1 . 1+1+1+1
4 4 8§ 8 8 16 16 16 16

rl 1«
+ +(2—a+§+ +§)
B 1 1 1 1 1 1 1 1 1 1
= <§+Z+§+ +2—a)+(1+§+ +§)+<§+1—6—|—. +§)
1
+ ..+§

1 /1 1\ /1 1 1 1 1 1 1
5*(?W0+(§+§+§)+Qﬁ+ﬂﬁﬁﬁ+ﬁ>

1 1 1 1 1
(@*@*@*@*@)

1 1 1 1 1 1 1 1 1 1 1 1
(5+1+§+Ia+§)*(1+§+Ia+§)+<§+ﬂrﬂﬁ)

1 1Y 1

*Gﬁ*@)*@
31 15 7 3 1

TR TR TR TR TR

20 —1 24—1 25—-1 22—-1 2'—-1
+

= T3 T3 t: T 32
(2°+20+22+224+2) -5
2(2°—1)—5

— T

P25

_ N
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By induction on a we get

- 20t —2—qa

k
2k 2a
k=1

So we obtain

92m-1-1 92m-1-1
1

Bs) = L (22m_122m1 —2-(@" -1 2m>

1

= e (2 —2) =

92m=1-1
O

By Equation the nonlinearity of a Boolean function can be determined from its

Walsh spectrum. Hence Theorem also points towards a high average nonlinearity.

Theorem 3.2.2 Let p be an odd prime and n = p™. Then the expected value E(s)

of the parameter s for a quadratic function ({1.10)) is given by

2 1 p+1
E<S): _1_ nil _1
p D2

1 2 pM—2k—1 m
E(s) = —x | D (—1p" 7 2k+p
D> k=0
2p—1) o~ k"

Set it up to a:

ik = 1+ + 4+ — 4.+
k:1pk p p2 p3 4 a
a times
1 1 1 1 1 1 1 1 1\
= -+ —2+—2 -+ —3+—3+— + ...+ ——l——a ...+—a
P p* P p> o p> 3 p* p D
1 1 1 1 1 1
= —+—2+—3—|— .+—a + —2+ ...+—a
p p* P P P P
11 1 1
-+ —3+—4+ +—a +...+—a
P> P P P



Take a = 5, check the sum,
5

Zk:_l (1+1)+(1+1+1)+(1+1+ 1>
— p* p o \p P pop P ptpt pt o p
1 1 1 1 1
HFtrtrmtrts
_(1+1+1+1+1)+(1+1 1 1)+(1 1
p p* p ptp pr p pt P P p
1 1 1
otE) e
pPr+p¥+pi+p+1 P+pP+p+1 pPP4+p+1 p+1 1
- 5 + 5 5 -
p p p p p
5_1 4_1 3_1 21 —1
(52) + (53) + (53) + (55) + (5)
_ PP 4p) -5
(p—1)p°
_ p-1 5
(p—1)?%p° (p—1)p°
By induction on a we get
‘L k p—l) a
k=1 pk 1)2pa ( _1)p
Thus Witha:pm;1 :”Tl we get
i = BN (20D ey
P (p o 1)2pa (p _ 1)pa pa+1
2p(p* — 1) 20 2a+1
(p — 1)pa+! a potl potl
22 1 2 1 p+l
p— 1 (p _ 1)pa+1 pa—H p— 1 pa-i—lp -1’

which completes the proof.

3.3 The case gcd(n,p) =1

As pointed out in Section when ged(n,p) = 1, then the number N, (s) of s-

plateaued quadratic functions ([1.10)) is t

with Hamming weight n — s. Hence the
expected Hamming weight of an n-tuple

in sfdt-form depends on the properties

express the expected value E(s) in terms of the cardinalities of the cyclotomic cosets

modulo n relative to the powers of p.

he number of n-tuples over F,(«) in sfdt-form
expected value for s can be obtained from the
in sfdt-form. Since the nature of the n-tuples

of the cyclotomic cosets modulo n, we may
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Theorem 3.3.1 For an integer n with ged(n,p) = 1 let C;, = {0}, C},,...,C},,
Ciniir Cjpirs -+ Cj

i1t inems C—jnem be the distinet cyclotomic cosets modulo n relative to

powers of p with the properties that C;, = C_;, for 1 < ¢ < h, and C}, # C_;, for
h+1<i<h+m. Letl;,; 1 <i < h+m, be the cardinality of the cyclotomic coset

C},. Then the expected value E(s) is given by

_+Zz 2 Z?+ﬁlif . if p > 3 and n is odd,
1+ ZZ’ZQ Zl E}Z1 % if p = 2 hence n is odd,
B(s) = 3
% + Z?:g l% + ZF,ZL 12) . if p > 3 and n is even, where

Cj, = {n/2}.

Proof: We recall from Section that an n-tuple in sfdt-form is completely described

\

by h + m elements ki, ..., kn, kni1, .., kppm, where the element £; is from F /> for
1 <i<handl; > 1, and the element k; is from Fu for h+1 <4< h+m. For the
cyclotomic cosets Cj,, 1 <4 < h, which contain only one element, we can distinguish
3 cases: If n is odd then only C;, = {0} contains a single element; if p = 2 then the
corresponding entry k; in the n-tuple in sfdt-form is 0, if p is odd then k; € FF; if
n is even and (hence p is odd) then there are two such cyclotomic cosets, C;, = {0}
and C;, = {n/2}. In both cases the corresponding entry in the n-tuple in sfdt-form
is in F,. We determine n — E(s) = E(L), which by Lemma is the expected
linear complexity of an n-periodic sequence over I, with period of the form . By
Theorem , E(L) equals the expected Hamming weight of an n-tuple in sfdt-form.
Denoting the set of all n-tuples in sfdt-form by T and putting Q = |T| we have

:é<sz(A)>:_ 3 Zz+}§ . (3.3)

AeY AeY =1 i=h+1
kﬁ’éo kﬁéo

We first consider the case p > 3 and n is odd. For this case by Equation we get

h+m

3

E(L) = L Zl1+221+222l
P2\ dex AEY i=2 AEY i=h+1
k1220 ki7£0 k0
1 h m—+1
p 2 AeY =2  AeY i=h+1  AEY
h
N s e v 1>p"*2‘“’)
=2
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1 m+1
ntl
+ nt1 (Z 2lz(plz ]_)p 2 lz)
D2 Niz=ht1
1 h 11
n+1l n+1 n
= —o |(p—Dp> 1+Zli<p2 —p 2 ))
p = i=2
1 m+1
n+1 n+1
+ ( > % (p% —pg‘“))
P2 \izht1
h m+1
1 1 1
- s (oo ) S (1o )
p =2 p? i=h-+1 p
h h l m+1 m+1 2l
= 1——+D L=) —+ ) - ) —
P 5 i=2 P2 i=hy1 ichi1 P

h - m+1 1 h l m+1 QZ
<1+Zli+22li>—<§+z =+ ?)

li
i=2 P2 i=h+1 p

Il

3

|
VRS
= | =

+
Ika
3
s
’@N Q‘
~_—

which yields the claimed formula for E(s).
If p =2, and hence n is odd, then ) = 2" and k1 = 0. From Equation we get

h+m
PUREEL b ol b SIi o
277\ dex i zkvl;jol
1 h+m
S SRS S o
277\ dex 7,.752 AEX izhiil

1 h m+1
= = DL 1+ Y 2@21)

=2 AeY i=h+1 AeY

1 h 1 n—1-1; i n 1
= S Do 1277 4 ) 2 i
=2

i=h+1
1 h . L m—+1
— (2"% . _ 9"t
- = Zzz<2 _9 )+Z2z< 2 ))
i=2 i=h+1
h m—+1
1 1
-t )+ a1 )
i=2 22 i=h+1
h h m-+1 m-+1 2l
S L S
i=2 i— 22 Thh i= h+1
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(BB Ex

i=h+1 2 22 i= h+1

S (e 53)
:n—<1+2 ni‘l )

i= h+1

Finally we consider the case p > 3 and even n. In this case Q = p2+! and ky, ky € F,.

Hence by Equation [3.3] we obtain

h+m
1
s - [ S
p aex \ =1 i=h+1
ki#0 k;i#0
1 h+m
SR VTS 3 STS 30 oF
pz AeY AcY AEY i=3 AEY imhtl
71220 Tea£0 k120 ki £0
1 h m+1
S =1 (O NETS TSP TS SED o)
pz AeY AcY =8 AEY  ishil  Aex
h
1 n n L n,q_b
= pr | A= Dp? 4 b - 1 +3 li(p? —1)pEt 2)
i—3
1 m+1
o ( S o 1)p2m>
p i=h+1
1 h l
= pg+1 ((p — 1)p2 —+ (p — 1)p2 + le (p§+1 _p2+12)>
=3
1 m+1
G
i=h+1
h m+1
20p — 1) 1 1
— . +le<1_ u>+z2l2<1_pz,)
i=3 pz i=h+1
9 h h I m+1 m+1 9.
SRR IS S SN SETD 5k
i=3 i=3 P? i=h+1 i=h+1
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For several families of integers n we are able to specify the cardinalities of the cyclo-
tomic cosets modulo n. In the following corollaries we present simple formulas for E(s)

for such integers n, determined by means of Theorem [3.3.1}

Corollary 3.3.2 Let p =2 and n = 2™ — 1 for an odd prime m. Then

1
om—1 :

E(s)=2-—

Proof: If p = 2 and n = 2™ — 1 then the cardinality of each cyclotomic coset has to
divide m, which is the order of 2 modulo n. Hence there are only cyclotomic cosets
of cardinality m and 1. As it is easy to see, Cy = {0} is the only cyclotomic coset

cyclotomic cosets of odd cardinality m, all of

of cardinality 1. Hence there are 2”;;2

which satisfy C; # C_;. By Theorem we get

m+1

h
l; 2l;
s = o (143 4+ 50 %)
i—2 272 i=h+1

o 2m
= — 11 —

O

Corollary 3.3.3 Let n = ¢ be an odd prime different from p, and let d be the order
of p modulo ¢q. Then

§+Zd_/§ if p > 3 and d is even,
1+ gd_/é if p=2 and d is even,
E(s) =
%4—‘1;—; : if p>3anddis odd,
L1+‘72;dl if p =2 and d is odd.

Proof: Let n = ¢ be a prime different from p, d = ord,p. Now all % irreducible

z9—1
r—1

divisors of are self-reciprocal if and only if d is even. Equivalently, if d is even,

then the cyclotomic cosets C}, j # 0, which are all of size d, satisfy C; = C_;. If d
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is odd, f:_‘ll factors into q2;d1 prime self-reciprocal polynomials all of degree 2d where

—j ¢ C;, j #0. We consider the following four cases:

Case 1: p > 3 and d is even:

1 & od
E(L) = n— —+Zm

Case 2: p =2 and d is even:

q—1
T4

d
i=1

Case 3: p > 3 and d is odd:

E(L) = n—

Case 4: p =2 and d is odd:

O

Corollary 3.3.4 Let n = ¢*, where ¢ # p is an odd prime such that p is a primitive

root modulo ¢?. Then

k=1 g e
é +(q— 1> L ¢ ifpisodd,
p 2

E(s) =

i

(q_l)Z;:olﬁ cifp=2.
2 2
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Proof: If p is a primitive root modulo ¢?, then all cyclotomic polynomials Q,: are
irreducible and 29" — 1 = Hf:o Qi is the canonical factorization of 24" — 1. Clearly
all Qi, i > 0, are self-reciprocal. Equivalently, other than {0}, we have k£ cyclotomic
cosets with the cardinalities (¢ — 1)¢*~', 1 < ¢ < k. Each cyclotomic coset contains

with 7 also its inverse —7 modulo n. By Theorem we then get

1 (¢—1)¢
E(S) - }_9 (g=1)¢*
=0 P 2
when p is odd, and
«— (g-1d
E(S) - (g—1)q"
i=0 2 2
when p = 2. |

We remark that the results in this section confirm that the average value for s is small,

which for the case that p = 2 also points to a large average nonlinearity.

3.4 A number theoretical method

In this section we employ a number theoretical method which was introduced in [31]
to determine the generating polynomial G, for case p = 2, and n = 2m, for odd
m. The method is based on a method of Fu et al. [15,/16] for analysing the linear
complexity of sequences. Amongst others, in [15,/16] a generating polynomial for the
distribution of the linear complexity of sequences has been presented and formulas for
the expected value of the linear complexity have been established. We will further
develop this method to determine the expected value E(s) for p = 2, recover E(s) for
odd n, and evaluate E(s) for n = 2m, m odd. Moreover we determine the variance for
the parameter s.

We again follow the notation used in [31]. For a prime p let
R,={f €F,[z] : fis self-reciprocal}.
Then for a polynomial f € F,[z] we define

C(f) = {g€ R, : deg(g) is even and deg(g) < deg(f)},
K(f) = {g€C(f) : ged(g(z), f(z)) =1}, and
op(f) = [K(f)I-

We next recall some properties of ¢,(f).
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Lemma 3.4.1 [31, Lemma 8] Let f € R, be a monic polynomial of positive degree.
If f is not divisible by = + 1, then

Z ¢p(d) =

df

where the summation is over all monic divisors d € R, of f. For f = 1 we have

2 ay Pp(d) =0

Lemma 3.4.2 [31, Lemma 9] Let f, f1, fo € R, be monic polynomials of positive
degree, not divisible by = + 1.

(i) If f = fif2 and ged(fi, f2) = 1, then

pr(f) = ¢p<f1)¢p(f2)'

i) If f = r{'r5?-.-r* is the canonical factorization of f into monic prime self-
172 k

reciprocal polynomials, then
deg(f k deg

For a self-reciprocal polynomial f that is not divisible by = + 1 we define

Si(f) = Zgbp ) deg(d and
dlf

Sa(f) = ZCbp (deg(d

dlf
where the summation is over all monic self-reciprocal divisors d of f.
From now on we assume p = 2. Our objective is to determine the expected value
E(s) for quadratic functions . In the next proposition we express the expected

value and the variance for the parameter s in terms of S;(f) and Sa(f).

Proposition 3.4.1 (I) Let n be odd. Then the expected value E(s) for the parameter
s of a quadratic function (1.10]) satisfies

1 " +1

E(s)=n— Q(nil)/Qsl( o

).

The variance for the parameter s is given by

Var(s) = — S‘ﬂ+1y—( ! Siﬂ+102

e T SR
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(IT) Let n = 2m for some odd integer m. Then the expected value E(s) for the
parameter s of a quadratic function ([1.10)) satisfies

1 "+ 1

Bls) =n— =5y

).

The variance for the parameter s is given by

1 " 12 1 1 \2
Var(s) = 2n/2—152((:c 1) )~ (2"/2—151((:13 n 1)2)) '

Proof: Let A(x) be the associate of the linearized polynomial corresponding to Fa,,.
Then s = deg(ged(z"™ — 1, A(x))). We recall that we take the coefficient ay in Fs,, to
be 0 when p = 2, and hence we have deg(A) < n.

(I) If n is odd, then A is of the form

A(z) = 'z + 1) fi(w)g() (3.4)

for a self-reciprocal divisor f; of ™ + 1 of (even) degree s — 1 and a polynomial g with
the following properties: g(z) is a self-reciprocal polynomial of even degree smaller
that n — s, and gcd((xff)—*}ll@,g(x)) = 1. Hence g € K(d) for d(x) = (xf;)—till(x), which
is a divisor of (z" 4+ 1)/(x 4+ 1) of degree n — s. As a consequence, denoting by A(L)
the number of polynomials A of the form (with deg(ged(A(z),2" + 1)) = s), we
have for L =n — s,

1 n
WZA(I’)L— (n— 1/2 Z ¢(d) deg(d
s=0

zn+l
x+1

The formula for the expected value follows from the definition of Sy (f).
For a quadratic function f as in (1.10]) let A be the associate of the linearized polyno-
mial corresponding to f, and let L(f) be the linear complexity of the sequence with

generating polynomial A. Then with s =n — L we get

Var(s) = Var(L) = 5ot 3 L() — (B(D)?
fer

1 "+ 1

2
= 2(7L 1)/2 Z ¢2 deg ) <2(n_1)/251( x_i_l )) Y

41
dl x+1

which completes the proof for (I).

(IT) If n = 2m, and m is odd, then A(z) must satisfy ged(A(z), 2" —1) = (x+1)%f1(x),

since n and s must be of the same parity. Hence A is of the form
A(z) = 2'(z +1)* fil2)g(x)
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for a self-reciprocal divisor f; of 2™ 4 1 of (even) degree s — 2 and a polynomial g with
the following properties: g(z) is a self-reciprocal polynomial of even degree smaller
that n — s, and gcd(@ﬁ;%,g(x)) = 1. Hence g € K(d) for d(z) = (er;;—+1‘11(a:)’ which
is a divisor of (2™ 4+ 1)/(z + 1)? of degree n — s. By the same reasoning as in (I) we
get the formulas for (II). O

In the following lemmas we present a useful property of the functions S;(f) and Sy (f).

Lemma 3.4.3 Let fi, fo be self-reciprocal polynomials not divisible by z + 1 with

ged(fi, fo) = 1. Then

1 1 1
9deg(f1/2)/2 Sifif2) = 9deg(f >/251(f1) 9deg(f2)/2 S1(f2)-

Proof:

Si(fifa) = ) da(d)deg(d

d|f1f2
— Z Z P2 (drdy)[deg(dy) + deg(dy)]
di|f1 da|fa
+ Z P2 (dy) deg(dy) + Z P2(dy) deg(dy)
dalfz dilf1
= S ()i des(d)
di|f1 dz|f2
+ )N da(dr)pa(da) deg(da) + S1(f2) + Si(f1)
di|f1 d2|f2
= Z (b2 d2 +1 Sl f1 Z¢2 dl Sl(fQ)
da| f2 dilfy

where the summation is over all monic, self-reciprocal divisors of fi, fo and fi fo, re-

spectively. By Lemma we obtain

1 1 . .
odeg(f1/2)/2 Silfife) = odeg(f1/2)/2 (228, (fo) + 20528 (£,)]

1 1
- Qdeg(f1)/2 Si(f) + Qdeg(f2)/2 S1(f2)-

O

Lemma 3.4.4 Let fi, fo be self-reciprocal polynomials not divisible by = + 1 with
ged(f1, f2) = 1. Then

g(fg)

Sa(fifa) = Sa(f1)2 Sa(f2)2"

+ 251(f1)51(f2)-
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Proof: Again, with the summation over all monic, self-reciprocal divisors of fi, fo and

f1f2, respectively, we have

Sa(fifa) = D ¢a(d) (deg(d))’

dlf1f2
= > ) do(didy)[deg(dy) + deg(da)]”
dilf1 d2|f2
+ > da(dp) deg(da)” + ) do(dh) deg(ch)”
da| f2 dilfi
= > D da(d)du(dy) deg(ch)?
dil|f1 dz|f2
+2 Z Z ¢2(d1)¢2(d2) deg(dy) deg(ds)
di|f1 dz2|f2
+) Y ¢a2(di)ga(da) deg(da)® + Sa(fa) + Sa(f1)
dif1 d2|f2
= D Sa(fi)éa(da) + 251(f1)Si(f2)
dalf2
+ ) Sa(fa)ealdr) + Salf) + Sa(f1)
dilf1
= S+ dalda)) + Salf2) (14 Y da(dh)) + 251 (f1)S1(f2)
da| f2 dilf1
g(fz)

= Sa(f1)2 + Sz(fz)

REGEN) Sa(f1)
9deg(f1)/2

' 251(f1)S1(f2)

52(f2 5 Si(f1)  Si(fe)
9deg(f2)/2 9deg(f1)/2 Qdeg(f2)/2 |’

+

where in the last step we used Lemma |3.4.1 O
Now we are ready to determine the expected value and the variance for the parameter
s in terms of the factorization of ™ + 1 into prime self-reciprocal polynomials in Fy[x].
Firstly, in Theoremwe calculate F(s) again for p = 2 that we obtained in Theorem
3.3.1] While we represent E(s) in terms of the cardinalities of cyclotomic cosets modulo
n in Theorem [3.3.1] we now express E(s) in terms of the degrees of the prime self-

reciprocal divisors of " + 1.

Theorem 3.4.5 For an odd integer n, let 2" +1 = (z+1)ry - - - 7 be the factorization
of 2" + 1 into prime self-reciprocal polynomials in Fy[z]. The expected value E(s) is

given by

deg(r;)
- 1+22degn )/2°
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n

Proof: By Proposition (I), for E(L) = n—E(s) we have E(L) = WS’I(Z—E)

Applying Lemma recursively, we get

k
1
L)= Z Wsl(ﬁ)- (3.5)
i=1

By Lemma [3.4.2] (ii), for a prime self-reciprocal polynomial 7 we have

deg(r) 1 deg(r)
2

S1(r) = ¢o(r) deg(r) = (1 - Qdegm)deg( r)=(2"%" —1)deg(r).

Hence gzt Si(ri) = deg(ry) — des(r) 1 < i < k, and by Equation [3.5 we obtain

odeg(r;)/2

the desired formula. O

Theorem 3.4.6 For an odd integer n, let ™ +1 = (z+1)ry - - - 14 be the factorization
of " + 1 into prime self-reciprocal polynomials in Fs[z]. The variance Var(s) for s is

given by

k
deg(ry) (2502 — 1)
Var(s) = Z Sdea(r) :
i=1

Proof: By Proposition [3.4.1] (I), we have

1 "+ 1 1 " +1
Var(s) = gamnp ) - (2<n—1>/2 ST )>

Applying Lemma recursively, for 2<n,11> 73 Sg(:”;jll) = 2(n}1) 5 Sa(ry -+ Tx) We get

1 Sl Tz 81(7"])
9(n—1)/2 So(ry---rk) = Z 2 ;2 Z 9deg(r;)/2 Qdeg(r;) /2"

i=1 1<i<j<k

Again by a recursive application of Lemma [3.4.3] we obtain

2
1 "+ 1 2 b Sl
<2(n—1)/2 Sl( r+1 )) = <Z Qdeg(r; )

=1
k
Si(ri Si(ri)  Si(ry)
o Z (Qdeg n)/Q) +2 Z Odeg(r;)/2 9deg(r;)/2"
i=1 1<i<j<k

Combining the two formulas, by Lemma [3.4.2] (ii) we get

k 2
Sa(r;) S1(r;)
VCLT’(S) = ZQdeg(ri)ﬂ_ 9deg(ri)/2
i=1
B k SQ(TZ) (2deg(m)/2—1)d€g(,ri) 2
- ZQdeg(n)/2 B 2degri/2

i=1
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S (275 — V)deg(r)® ((Qd“’g(’“i)/?—l)deg(n))z

— 2deg(ri)/2 2degr; /2

zk: deg(r;)?(2%9(r/2 1)

9deg(ri)

i=1
O
Theorem 3.4.7 For n = 2m, m odd, let 2" +1 = (2™ +1)? = (z + 1)?r}- - -7 be the
factorization of 2™ 4+ 1 into prime self-reciprocal polynomials in Fy[z]. The expected

value E(s) is given by

deg(r;) deg(n)
=2+ Z (Qdeg (rs /2 2deg(r¢) :

Proof: By Proposition|3.4.1{(II), for E(L) = n—E(s) we have E(L) = W%Sl((ii—t)lz)

Applying Lemma recursively, we get

k

1
E(L)=> gty S1(16%).

=1

By Lemma [3.4.2] (ii), for a prime self-reciprocal polynomial r we have

S1(r%) = ) ¢a(d) deg(d) = da(r) deg(r) + ¢2(r?) deg(r?)

d|r?

= S1(r) + ¢o(r®) deg(r?)

deg(r)
— (2 5 _ 1) deg(r) + ¢o(r?) deg(r?)
_ (2@7(’") - 1> deg(r) + (2deg(r> _ 9" gé(”) 2 deg(r)
= (257 1) deglr) (127571 (3.6)
Hence
LR
_ 2
E(L) = ;msl(ﬁ)
i deg(r;) , ., destrs) deg(ry)
i eg(r; eg(r;
= 3 G 2t
i deg(r;) deg(r;)
_ ¢ deg(ri)+1 _ o8
a Zl 9deg(r;) (2 ) 2 +1>
k deg(r;)
2deg(n)+1 —9—%Y _1
- Edeg(ri)( 9deg(r;) )

1 1
- ;deg(m(z ~ YAtz 2aest)
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N k
deg(r;) | deg(r;)
— Z 2deg(r;) — (D Sdea(r))/2 T Ddea(rs) )

i=1

g (3o destr) | destr),

Odeg(r;)/2 9deg(r;

1=1

O

Theorem 3.4.8 For n = 2m and odd m, let 2" +1 = (2" +1)*> = (x + 1)*r? .- -7} be
the factorization of ™+ 1 into prime self-reciprocal polynomials in Fa[z]. The variance

Var(s) for s is given by

k
deg(ri)2(23deg(m)/2 + 2deg(n‘)+1 _ 2deg(ri)/2+1 o 1)
VCLT(S) - Zl 92 deg(r;) :
Proof: We have similar arguments that is used in the proof of Theorem [3.4.6, By

Proposition [3.4.1] (II), we have

1 z" + 1 1 " +1 )\
Var(s) = 2n/27152 ((JH— 1)2) N (211/2151 ((a:+ 1)2>) '

Applying Lemma (3.4.4| recursively, for 57—S55 <(§E)12> = sk Sa(r1%r? . 12) we

get

k
1 2 2 2
SQ(T12T22...Tk2) = E 52(7“2.) +2 E Sl(n )Sl<rj )

on/2—1 Qdeg(ri) 9deg(r;)
Again by a recursive application of Lemma [3.4.3] we obtain

1 "+ 1 27 S1(r;) Si(ri?) Si(r;?)
(Qn/Q—lsl ((;c+ 1)2>) - (Z pdes(r: ) T2 D Sk gentry

i=1 1<i<i<k

Combining the two formulas, we obtain

k 2
52(7’,'2) Sl (7’1'2)
V&T(S) - Z 9deg(r;) o 9deg(r;) ) (37)

i=1

By Lemma [3.4.2] (ii) we have

So(r®) = Y da(d)deg(d)* = d(r) deg(r)” + s (r*)(deg(r?))?

d|r?

= Sy(r) + 6ul(r) (deg(r*))?
= (2% 1) deslr)? + a(r) (deg(r?))?
= (2% 1) deg(r)? + (20 257 (der(r?))?
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Combining with Equations and [3.7 we get

zk: deg(ri)z(Qdeg(n)H _3.9
Qdeg(r;)

deg(r;)
2 —1
Var(s) = 4 )

i=1

9deg(r;)

eg(r; 2
(deg(ri)@deg(m)ﬂ . 2dgT(Z) B 1))

k deg(ri)2(23deg(ri)/2 + gdeg(ri)+1 _ ogdeg(ri)/2+1 _ 1)

= Z 922 deg(r;)

i=1
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