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ABSTRACT 

 
 

CHANGES IN GROWTH AND MAGNESIUM CONCENTRATION OF WHEAT 

AND COFFEE PLANTS GROWN UNDER VARIOUS MAGNESIUM AND WATER 

STRESS TREATMENTS 

 
YASEMĐN CEYLAN 

 

Biological Sciences and Bioengineering, PhD Dissertation, December 2015 

Supervised by: Prof. Dr. Đsmail Çakmak 

Keywords: Magnesium, drought, grain yield, starch, 26Mg stable isotope 

 
 Magnesium (Mg) deficiency has become a widespread problem in acidic and 

sandy agricultural soils, and it is often associated with marginal soil conditions such as 

drought stress. Impairment in growth and development of sink organs is a common 

consequence of Mg deficiency. However, mode of action of these impairments is not 

well understood. This study was conducted to investigate the changes in growth and Mg 

concentrations of wheat (Triticum aestivum cv. Adana99) and coffee (Coffea arabica 

cv. Murta) plants that were grown under controlled greenhouse conditions with different 

Mg supplies and water stress treatments. Growing wheat plants under varied Mg supply 

showed that foliar application of Mg to low Mg plants improved grain yield by 

increasing seed weight without affecting seed number per spike. Starch content and Mg 

concentration of the seeds were increased under foliar application of Mg to Mg-

deficient plants. Growth and grain yield of low Mg plants were further reduced when 

grown under drought stress. An adequate Mg supply was needed to maintain better 

yield and higher grain Mg concentrations under drought. In experiment with coffee 

plants, Mg transport within plants was studied after the immersion of the fully expanded 

young leaves in a solution containing stable Mg isotope (26Mg). Transport of 26Mg from 

treated leaves was greater in plants with adequate Mg supply than the plants with low 

Mg. In addition, under low Mg supply 26Mg concentration of roots was found higher 

when compared to Mg-adequate roots. The results obtained highlighted the importance 

of Mg in growth and seed formation and accumulation of Mg in sink organs such as 

seed and young leaves after foliar treatment of Mg.  
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ÖZET 

 
 

ÇEŞĐTLĐ MAGNEZYUM VE SU STRESĐ UYGULAMALARI ALTINDA 

YETĐŞTĐRĐLEN BUĞDAY VE KAHVE BĐTKĐLERĐNĐN BÜYÜME VE 

MAGNEZYUM KONSANTRASYONLARININ DEĞĐŞĐMĐ 

 
YASEMĐN CEYLAN 

 
Biyoloji Bilimleri ve Biyomühendislik, Doktora Tezi, Aralık 2015 

Tez Danışmanı: Prof. Dr. Đsmail Çakmak 

Anahtar Sözcükler: Magnezyum, kuraklık, tane verimi, buğday, 26Mg stabil izotop 

 

 Magnesium (Mg) eksikliği asidik ve kumlu bünyeye sahip topraklarda yaygın 

bir problem olarak ortaya çıkmaktadır ve özellikle kuraklık stresi gibi marjinal toprak 

koşullarında daha sık görülmektedir. Gelişmekte olan organların büyümesinin ve 

gelişiminin bozulması Mg eksikliğinde sıklıkla görülen bir problemdir. Anılan 

problemlerin ortaya çıkış mekanizması iyi anlaşılamamıştır. Bu tez çalışması kontrollü 

sera koşulları altında değişik Mg uygulamaları ve su stresi koşullarında yetiştirilen 

buğday (Triticum aestivum cv. Adana99) ve kahve (Coffea arabica cv. Murta) 

bitkilerinin büyüme ve Mg konsantrasyonlarını araştırmak amacıyla yürütülmüştür. 

Düşük Mg ile beslenen bitkilere püskürtme yoluyla yapraktan uygulanan Mg, buğday 

başağındaki dane sayısını etkilememiş ancak bireysel dane ağırlığını arttırmıştır. 

Magnezyum eksikliği altındaki bitkilere püskürtülerek uygulanan Mg, tohumların 

nişasta içeriğini ve Mg konsantrasyonunu yükseltmiştir. Kuraklık koşulları altında 

yetersiz Mg ile yetiştirilen bitkilerin büyümesi ve tane verimi azalmıştır. Sonuçlar, 

yeterli düzeyde Mg beslenmesinin kuraklık koşulları altında daha iyi verim ve yüksek 

Mg konsantrasyonu elde etmek için gerekli olduğunu göstermektedir. Kahve 

bitkilerinde Mg taşınımı, gelişimini tamamlamış genç yapraklara daldırma yöntemi ile 

stabil Mg izotop (26Mg) çözeltisi uygulanarak araştırılmıştır. 26Mg taşınımı, yeterli Mg 

içeren bitkilerde düşük Mg içeren bitkilere kıyasla daha yüksek bulunmuştur. Ancak, 

köklerde Mg noksanlığı durumunda daha fazla 26Mg bulunmuştur. Elde edilen sonuçlar 

yapraktan veya topraktan yapılan Mg beslenmesinin bitkilerin büyümesi ve tohum 

oluşumunda ve generative organlarda (örneğin tohumda) Mg birikimi üzerinde öenmli 

olduğunu göstermektedir.  



vi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bu çalışmayı sevgili annem ve babam, Hülya ve Đbrahim Ceylan’a ithaf ediyorum… 
Her şey onların sonsuz sevgisi ve desteği sayesindedir.  

 
 

…ve hayat arkadaşım, eşim, Emre’ye  
Aşkına ve sabrına hayranım. Đyi ki varsın. 

 
 
 
 
 
 

 



vii 

 

 
ACKNOWLEDGEMENTS 

 

First of all I would like to thank my thesis supervisor Prof. Dr. Ismail Çakmak 

for his guidance and support for my Ph.D. thesis and enlightening my academic road for 

the last 10 years in my undergraduate and graduate studies. 

 I would like to thank all the members of my thesis committee: Prof. Dr. Ismail 

Çakmak, Assoc. Dr. Levent Öztürk, Assist. Dr. Alpay Taralp, Prof. Dr. Ismail Türkan 

and Assist. Dr. Ümit Barış Kutman for their advices and invaluable time. 

 I owe a big thanks to the Sabanci University, Plant Physiology Laboratory 

members: Dr.Atilla Yazıcı, Yusuf Tutuş and Özge Cevizcioğlu Berber for their endless 

technical support and friendship throughout these years. I also wish to thank again to 

our former lab member Dr. Ümit Barış Kutman for his invaluable teaching, guidance 

and friendship; after all he was the one who introduced plant sciences to me.  

 I would like to thank all the members of the Institute of Applied Plant Nutrition 

(IAPN), Göttingen, Germany for their kindness and generous help. I am thankful to 

Prof. Dr. Klaus Dittert for his hospitality and contributions to my work. I owe big 

thanks to my friends Ershad Tavakol and Balint Jakli for their friendship and help 

throughout my stay in Germany. 

 I want to thank a former lab member and my lovely friend Melis Mengütay, who 

helped me with this work and supported me in an academic and personal way. 

 I want to express my big thanks to my precious friend, (soon-to-be) Dr. Didem 

Ağaç, who never stopped believing in me and be there for me both academically and 

personally in these last 10 years. Even though she was in Dallas, TX in these last 5 

years, we were roommates in our minds.  

 A lovely thank goes to my fiancé, Emre Şen, for his precious love, care and 

support. He never let me down and was always there to help me whenever I needed. 

I want to express my gratitude to my parents Hülya and Ibrahim Ceylan, and 

grandmother Neriman Bandak for their endless love and care; without their support, I 

could not come this far.  

Finally, I would like to acknowledge the Department of Science Fellowships and 

Grant Programmes of the Scientific and Technological Research Council of Turkey – 

TUBITAK BIDEB (www.tubitak.gov.tr/bideb) for supporting me by a scholarship 

throughout my Ph.D. study.  



viii 

 

TABLE OF CONTENTS 
 
 
 

A. INTRODUCTION ....................................................................................................... 1 

A.1. Roles of Magnesium in Plants ......................................................................... 1 

A.2. Magnesium deficiency-related problems in plants .......................................... 2 

A.3. Drought Stress .................................................................................................. 3 

A.4. Magnesium deficiency and drought stress in world soils ................................ 5 

A.5. Roles of Magnesium in Human and Animal Health ........................................ 7 

 
B. MATERIALS AND METHODS ................................................................................. 9 

B.1. Plant Growth Facilities ..................................................................................... 9 

B.2. Soil Culture ...................................................................................................... 9 

B.3. Nutrient Solution Culture ............................................................................... 10 

B.4. Harvest ........................................................................................................... 11 

B.5. Mineral Element Analysis .............................................................................. 11 

B.6. Starch Measurement ....................................................................................... 12 

B.6. Calculations .................................................................................................... 12 

B.6. Statistical Analysis ......................................................................................... 13 

 
CHAPTER 1: ADEQUATE MAGNESIUM NUTRITION IS REQUIRED FOR 

BETTER SEED YIELD THROUGH ITS POSITIVE EFFECT ON STARCH 

ACCUMULATION ........................................................................................................ 14 

1.1. Introduction ..................................................................................................... 14 

1.2. Material and Methods ..................................................................................... 16 

1.2. Results ............................................................................................................. 18 

1.2. Discussion ....................................................................................................... 24 

 
CHAPTER 2: ADEQUATE MAGNESIUM SUPPLY THROUGH SOIL 

CONTRIBUTES TO ALLEVIATION OF DROUGHT STRESS AND IMPROVING 

GRAIN YIELD ............................................................................................................... 28 

1.1. Introduction ..................................................................................................... 28 

1.2. Material and Methods ..................................................................................... 32 

1.2. Results ............................................................................................................. 33 

1.2. Discussion ....................................................................................................... 45 



ix 

 

CHAPTER 3: FOLIAR APPLICATION OF 26Mg ISOTOPE TO COFFEE PLANTS: A 

TRANSLOCATION EXPERIMENT  ............................................................................ 49 

1.1. Introduction ..................................................................................................... 49 

1.2. Material and Methods ..................................................................................... 51 

1.2. Results ............................................................................................................. 54 

1.2. Discussion ....................................................................................................... 60 

 

C. GENERAL DISCUSSION AND CONCLUSIONS .................................................. 64 

 

D. REFERENCES .......................................................................................................... 69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



x 

 

LIST OF TABLES 
 
 

Table 1.1: Dry weights of vegetative tissues of mature (148-day-old) bread wheat 
(Triticum aestivum cv. Adana99) plants grown hydroponically with low (50 µM), 
low+foliar (50 µM + 4% MgSO4) and adequate (500 µM) Mg under greenhouse 
conditions. ....................................................................................................................... 19 

Table 1.2: Grain yield, shoot dry weight (DW), thousand-grain weight (TGW) and 
number (#) of grains per spike of mature (148-day-old) bread wheat (Triticum aestivum 

cv. Adana99) plants grown hydroponically with low (50 µM), low + foliar (50 µM + 4% 
MgSO4) and adequate (500 µM) Mg under greenhouse conditions. .............................. 20 

Table 1.3: (A) Mg concentrations and (B) Mg contents of vegetative tissues of mature 
(148-day-old) bread wheat (Triticum aestivum cv. Adana99) plants grown 
hydroponically with low (50 µM) and adequate (500 µM) Mg under greenhouse 
conditions. ......................................................................................................................  21 

Table 1.4: (A) Grain mineral concentrations and (B) grain mineral yields of mature 
(148-day-old) bread wheat (Triticum aestivum cv. Adana99) plants grown 
hydroponically with low (50 µM), low + foliar (50 µM + 4% MgSO4) and adequate 
(500 µM) Mg under greenhouse conditions.................................................................... 22 

Table 1.5: (A) Starch concentrations and (B) starch contents of vegetative tissues of 
mature (148-day-old) bread wheat (Triticum aestivum cv. Adana99) plants grown 
hydroponically with low (50 µM), low + foliar (50 µM + 4% MgSO4) and adequate 
(500 µM) Mg under greenhouse conditions.................................................................... 23 

Table 1.6: Grain starch concentration, starch content and starch yield of mature (148-
day-old) bread wheat (Triticum aestivum cv. Adana99) plants grown hydroponically 
with low (50 µM), low + foliar (50 µM + 4% MgSO4) and adequate (500 µM) Mg under 
greenhouse conditions. .................................................................................................... 24 

Table 2.1: Dry weights (mg.plant-1) of 81 days-old bread wheat (Triticum aestivum cv. 
Adana99) plants grown with low (0 ppm) and adequate (50 ppm) Mg applications and 
with 3 different water supplies (30%, 40% and 70% of FC) under greenhouse 
conditions. ....................................................................................................................... 34 

Table 2.2: Magnesium concentrations (mg.kg-1) of 81 days-old bread wheat (Triticum 

aestivum cv. Adana99) plants grown with low (0 ppm) and adequate (50 ppm) Mg 
applications and 3 different water supplies supplies (30%, 40% and 70% of FC) under 
greenhouse conditions. .................................................................................................... 35 

Table 2.3: Magnesium contents (µg.kg-1) of 81 days-old bread wheat (Triticum 

aestivum cv. Adana99) plants grown under low (0 ppm) and adequate (50 ppm) Mg 
applications with 3 different water supplies (30%, 40% and 70% of FC) under 
greenhouse conditions. .................................................................................................... 36 

 



xi 

 

Table 2.4: Changes in starch concentration (mg.g-1) and content (mg.plant-1) of 81 
days-old bread wheat (Triticum aestivum cv. Adana99) grains grown with low (0 ppm), 
and adequate (50 ppm) Mg applications and 3 different water supplies (30%, 40% and 
70% of the F.C.) under greenhouse conditions. .............................................................. 37 

Table 2.5: Effects of low (0 ppm), adequate (50 ppm) Mg applications and two 
different water supplies (30% and 70% of the field capacity) on dry matter production 
of 122 days-old bread wheat (Triticum aestivum cv. Adana99) plants under greenhouse 
conditions. ....................................................................................................................... 39 

Table 2.6: Magnesium concentrations (mg.kg-1) of 122 days-old bread wheat (Triticum 

aestivum cv. Adana99) plants grown with low (0 ppm), adequate (50 ppm) Mg 
applications and two different water rates (30% and 70% of the field capacity) under 
greenhouse conditions. .................................................................................................... 42 

Table 2.7: Effects of low (0 ppm) and adequate (50 ppm) Mg applications with 
different water supplies (30% and 70% of the field capacity) on Mg content (µg.plant-1) 
of 122 days-old bread wheat (Triticum aestivum cv. Adana99) plants under greenhouse 
conditions. ....................................................................................................................... 43 

Table 2.8: Changes in the grain starch concentration (mg.g-1) and content (mg.plant-1) 
of 122 days-old bread wheat (Triticum aestivum cv. Adana99) plants grown with low (0 
ppm), adequate (50 ppm) Mg applications and two different water regimes (30% and 
70% of the field capacity) under greenhouse conditions. ............................................... 44 

Table 2.9: Changes in the flag leaf starch concentration (mg.g-1) and starch content 
(mg.plant-1) of 122 days-old bread wheat (Triticum aestivum cv. Adana99) plants grown 
with low (0 ppm), adequate (50 ppm) Mg applications and two different water supplies 
(30% and 70% of the field capacity) under greenhouse conditions. .............................. 44 

Table 3.1: Dry matter production of different parts of coffee plants (Coffea Arabica cv. 
Murta) used in the experiments with or withour 26Mg treatment and grown 
hydroponically with low (0.01 mM) and adequate (0.4 mM) Mg under greenhouse 
conditions. ....................................................................................................................... 57 

Table 3.2: Changes in the enriched concentrations (A) and contents (B) of 26Mg 
(mg.kg-1) measured by ICP-MS in coffee plants (Coffea arabica cv. Murta) grown with 
low (0.01 mM) and adequate (0.4 mM) Mg and treated with 26Mg by immersing 
selected leaves into 26Mg-contatining solution under greenhouse conditions. ............... 58 

Table 3.3: Concentrations of Mg (mg.kg-1) in different parts of the coffee plants (Coffea 

arabica cv. Murta) supplied with low (0.01 mM) and adequate (0.4 mM) Mg under 
greenhouse conditions. .................................................................................................... 58 

Table 3.4: Contents of Mg (µg.kg-1) in different parts of coffee plants (Coffea arabica 

cv. Murta) supplied with low (0.01 mM) and adequate (0.4 mM) Mg under greenhouse 
conditions. ....................................................................................................................... 59 

Table 3.5: Concentrations of K (%) in different parts of the coffee plants (Coffea 

arabica cv. Murta) supplied with low (0.01 mM) and adequate (0.4 mM) Mg under 
greenhouse conditions. .................................................................................................... 59 



xii 

 

Table 3.6: Contents of K (mg.plant-1) in different parts of the coffee plants (Coffea 

arabica cv. Murta) supplied with low (0.01 mM) and adequate (0.4 mM) Mg under 
greenhouse conditions. .................................................................................................... 60 

 

 
  



xiii 

 

LIST OF FIGURES 

 
 

Figure A.1:  Soil pH map showing the pH distribution (strongly acidic, mildly acidic, 
neutral and mildly alkaline soil pH is shown with dark red, pink, white and blue color 
respectively) of the world soils (retrieved from the Atlas of Biosphere, http://nelson. 
wisc.edu/sage/data-and-models/atlas/maps/soilph/atl_soilph.jpg, 31.10.2015). .............. 6 

Figure A.2: Forest mortality locations (white dots) due to climatic stress factors such as 
drought and high temperatures (Allen et al., 2010). Colored map shows potential 
environmental limits to vegetation net primary production (Boisvenue and Running, 
2006). ................................................................................................................................ 7 

Figure 1.1: 115-day-old bread wheat (Triticum aestivum cv. Adana99) plants grown 
hydroponically with low (50 µM), low + foliar (50 µM + 4% (w/v) MgSO4•7H2O) and 
adequate (500 µM) Mg under greenhouse conditions. Mean leaf SPAD values are 
shown at the top of the figure. ........................................................................................ 18 

Figure 1.2: Mature seeds of bread wheat (Triticum aestivum cv. Adana99) grown 
hydroponically with low (50 µM), low + foliar (50 µM + 4% MgSO4) and adequate 
(500 µM) Mg under greenhouse conditions.................................................................... 20 

Figure 2.1: 68 days old wheat plants grown under low Mg (0 ppm) and adequate Mg 
(50 ppm) with 70% of the field capacity. ....................................................................... 38 

Figure 2.2: Growth of 122 days old wheat plants (Triticum aestivum cv. Adana99) 
under 30% of FC with low (0 ppm) and adequate (50 ppm) Mg treatments. ................. 40 

Figure 2.3: Effects of low (0 ppm) and adequate Mg (50 ppm) treatments on growth of 
122 days old wheat plants (Triticum aestivum cv. Adana99) under sufficient water 
supply (70% of the field capacity). ................................................................................. 40 

Figure 2.4: Effects of low (30% of FC) and adequate (70% of FC) water supply on 
growth of 122-days-old wheat plants (Triticum aestivum cv. Adana99) at low Mg (0 
ppm) supply. ..................................................................................................................  41 

Figure 2.5: Growth of 122 days old wheat plants (Triticum aestivum cv. Adana99) with 
sufficient (50 ppm) Mg supply at 30% and 70% of FC conditions. ............................... 41 

Figure 3.1: Dipping of coffee (Coffea arabica cv. Murta) plant leaf in 26Mg solution 
under greenhouse conditions. ......................................................................................... 52 

Figure 3.2: Shoot growth of coffee (Coffea arabica cv. Murta) plants in 5L nutrient 
solution with low (0.01 mM) and adequate (0.4 mM) Mg supply under greenhouse 
conditions before starting the foliar treatment experiment with 26Mg solution. ............. 54 

Figure 3.3: Growth of 224 days old coffee (Coffea arabica cv. Murta) plants in 5L 
nutrient solutions with low (0.01 mM) and adequate (0.4 mM) Mg supply under 
greenhouse conditions. .................................................................................................... 56 

 



xiv 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

 

 

Al ....................................................................................................................... aluminium 

Adeq. ..................................................................................................................... adequate 

ADP ................................................................................................ adenosine diphosphate 

ANOVA ............................................................................................... analysis of variance 

At .................................................................................................................... atom percent 

ATP ................................................................................................. adenosine triphosphate 

B ................................................................................................................................. boron 

°C ................................................................................................................ degrees celcius 

C3. ............................................................................................. three-carbon organic acids 

C4. .............................................................................................. four-carbon organic acids 

ca ...................................................................................................... circa (approximaltely) 

Ca ............................................................................................................................ calcium 

CaCl2 ......................................................................................................... calcium chloride 

CaCO3 .................................................................................................... calcium carbonate 

CaH4O8P2.H2O ..................................... calcium tetrahydrogenbisphosphate monohydrate 

CAM .................................................................................... crassulacean acid metabolism 

CaMg(CO3)2  ..................................................... calcium magnesium carbonate (dolomite) 

Ca(NO3)2.4H2O ....................................................................... calcium nitrate tetrahydrate 

CaSO4.2H2O ............................................................................... calcium sulfate dihydrate 

Cl ............................................................................................................................ chloride 

CO2 .............................................................................................................. carbon dioxide 

Cu ............................................................................................................................. copper 

CuSO4.5H2O ........................................................................... copper sulfate pentahydrate 

cv. ............................................................................................................................ cultivar 

DAS ........................................................................................................ days after sowing 

dH2O ............................................................................................................. distilled water 

ddH2O ............................................................................................... double distilled water 

DNA ................................................................................................. deoxyribonucleic acid 

DW ..................................................................................................................... dry weight 

ECF. ......................................................................................... European coffee federation 



xv 

 

EDTA ........................................................ ethylenediamine tetraacetic acid (Titriplex III) 

e.g ...........................................................................................exempli gratia (for example) 

FAO ............................................................................... food and agriculture organization 

FC ................................................................................................................... field capacity 

Fe .................................................................................................................................. iron 

Fe-EDTA ................................................................. iron ethylenediamine tetraacetic acid 

g .................................................................................................................................. gram 

µg ....................................................................................................................... microgram 

h ................................................................................................................................... hour 

H+-ATPase .................................................................................................. proton ATPase 

H2O2 ...................................................................................................... hydrogen peroxide 

H3BO3 ................................................................................................................. boric acid 

HK ..................................................................................................................... hexokinase 

HNO3 .................................................................................................................. nitric acid 

HSD .............................................................................................. honestly significant test 

H2SO4 .............................................................................................................. sulfuric acid 

IAPN .............................................................................. institute of applied plant nutrition 

ICO. ................................................................................. international coffee organization 

ICP-MS .................................................... inductively coupled plasma mass spectrometry 

ICP-OES ................................ inductively coupled plasma optical emission spectrometry 

IPCC ........................................................................ international panel on climate change 

K .......................................................................................................................... potassium 

KCl ........................................................................................................ potassium chloride 

kg .......................................................................................................................... kilogram 

KH2PO4 ........................................................................... potassium dihydrogen phosphate 

K2SO4 ....................................................................................................................................................... potassium sulfate 

L .................................................................................................................................... liter 

µl .......................................................................................................................... microliter 

m ................................................................................................................................ meter 

mg ........................................................................................................................ milligram 

Mg ..................................................................................................................... magnesium  

Mg-ATP ........................................................................................ magnesium bound ATP 

MgO ........................................................................................................ magnesium oxide 

MgSO4.4H2O ................................................................... magnesium sulfate heptahydrate 



xvi 

 

ml .......................................................................................................................... milliliter 

µmol .................................................................................................................... micro mol 

mM ..................................................................................................................... millimolar 

µM ..................................................................................................................... micromolar 

Mn ...................................................................................................................... manganase 

MnSO4.H2O ..................................................................... manganese sulfate monohydrate 

MnSO4.4H2O ..................................................................... manganese sulfate tetrahydrate 

Mo .................................................................................................................. molybdenum 

N ............................................................................................................................. nitrogen 

n.d ............................................................................................................................ no date 

NH4Ac ................................................................................................... ammonium acetate 

(NH4)6Mo7O24.4H2O ............... ammonium heptamolybdate (paramolybdate) tetrahydrate 

(NH4)2SO4. ............................................................................................ ammonium sulfate 

n.s ................................................................................................................ non significant 
1O2 ................................................................................................................ singlet oxygen 

O2 ............................................................................................................................. oxygen 

O2
.- ...................................................................................................................... superoxide 

OH. .......................................................................................................... hydroxyl radicals 

P ........................................................................................................................ phosphorus 

PEP ............................................................................................... phosphophenol pyruvate 

ppm ........................................................................................................... parts per million 

ROS ............................................................................................... reactive oxygen species 

Rubisco ................................................ ribulose-1,5-bisphosphate carboxylase/oxygenase 

RuBP ................................................................................................. ribulose bisphosphate 

s ................................................................................................................................ second 

S ................................................................................................................................. sulfur 

WHO .......................................................................................... world health organization 

Zn .................................................................................................................................. zinc 

ZnSO4
.7H2O ................................................................................ zinc sulfate heptahydrate



1 

 

 

 

 

 

 

 

A) GENERAL INTRODUCTION 

 

 

A.1 Roles of Magnesium in plants 

 

 Magnesium (Mg) is one of the essential macronutrients which is taken up in 

large amounts by plants to sustain their growth and development (Williams and Salt, 

2009). Magnesium is a divalent cation and it is the most abundant free cation in the 

cytosol of plants (Shaul, 2002). As the central atom of the chlorophyll molecule 

(Marschner, 2012), Mg greatly contributes to the absorption of light energy and its 

utilization in the photosynthesis (Cowan, 2002). Mg is exceptional in terms of its effect 

on the enzymes; it activates a greater number of enzymes than any other mineral 

nutrient element (Epstein and Bloom, 2004). Phosphoenolpyruvate (PEP) carboxylase 

which is in charge for the initial fixation of CO2 in C4 and CAM plants, and ribulose-

1,5-bisphosphate carboxylase/oxygenase (Rubisco) which is the key enzyme in the 

carboxylation step in the Calvin cycle are examples of crucial enzymes activated by Mg 

in the photosynthetic machinery (Wedding and Black, 1988; Portis, 1992). Low 

photosynthetic activity of Mg-deficient leaves is widely ascribed to reduced activity of 

the Rubisco enzyme (Cakmak and Kirkby, 2008). 

 According to Karley and White (2009), most of the Mg in leaves of plants is 

associated with protein biosynthesis, remaining portions of it found in chlorophyll 

pigments or stored in vacuole. Sufficient activity of nucleic acid synthesizing 

polymerases and nucleases are dependent on adequate Mg supply (Sreedhara and 

Cowan, 2002). Magnesium is also needed for protein synthesis because of its bridging 

role in aggregation of subunits of ribosomes (Marschner, 2012; Fischer et al., 1998). 

 Magnesium is a necessary element in both synthesis and function of ATP, and 

therefore ATP requiring mechanisms in plants are also dependent on Mg (Ko et al., 

1999; Igamberdiev and Kleczkowski, 2001). The proton pump, H+-ATPase that is 
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located in the plasma membrane of sieve tube cells is dependent on Mg-ATP complex 

to generate the electrochemical proton gradient to drive the phloem loading of sucrose 

(Bush, 1989). In other words, Mg plays a critical role in phloem loading of sucrose.  

 In addition to its other physiological functions, Mg has a crucial role in 

mitigating stress factors such as aluminum (Al) toxicity (Tan et al., 1992; Silva et al., 

2001; Ryan et al., 1994; Yang et al., 2007). According to Bose et al (2011), an adequate 

Mg nutrition mitigates Al toxicity in plants in various ways including i) better transport 

of photoassimilates from shoots to roots, ii) increasing H+-ATPase activity that is 

needed for release of organic acids from roots to inactivate Al, and iii) improving 

antioxidative defense system against Al-toxicity-induced free radical generation. Also, 

supplying sufficient amount of Mg to plants reduces the oxidative stress, especially 

under conditions of high light or heat stress, by maintaining the phloem loading of 

sucrose and preventing the carbohydrate accumulation in leaves (Cakmak and Kirkby, 

2008; Mengütay et al., 2013).  

 

A.2 Magnesium deficiency-related problems in plants 

 

 Numerous physiological impairments occur in plants exposed to Mg deficiency. 

The most typical visual symptom of Mg deficiency is leaf chlorosis (Marschner, 2012). 

Because Mg is the central atom in chlorophyll structure, lack of it damages the 

chlorophyll molecule and leads to the creation of chlorosis and even necrosis. 

Magnesium deficient plants are also highly sensitive to high light intensity (Marschner 

and Cakmak, 1989); therefore development of leaf chlorosis and necrosis is also 

affected from the light intensity under low Mg supply. 

 Since Mg acts as the cofactor or activator of many photosynthetic enzymes, 

various studies have shown that under low Mg conditions, the rate of photosynthesis is 

dramatically reduced (Fischer and Bremer, 1993; Laing et al., 2000; Hermans et al., 

2004). Magnesium deficiency-related loss of chlorophyll also contributes to reduced 

photosynthetic activity (Peaslee and Moss, 1966). Low activity of photosynthesis could 

be also a consequence of increased mesophyll resistance to CO2 flux into chloroplasts 

from atmosphere as shown in pine seedlings (Laing et al., 2000).  

 Under Mg-deficient conditions, due to disrupted photosynthetic capacity and 

rate, plants obtain more light energy than required for photosynthesis and other related 

processes. So high-energy electrons accumulate and enhance the generation of reactive 
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oxygen species (ROS) in forms of superoxide (O2.-), singlet oxygen (
1O2), hydrogen 

peroxide (H2O2) and hydroxyl radicals (OH
-) (Asada, 1994). Small concentrations of 

ROS can be detoxified by the plant itself, but when it is produced in high concentrations 

it cannot be scavenged properly. This uncontrolled production of ROS damages 

chlorophyll, phospholipids, proteins and DNA, causes severe alterations in chloroplast 

structure, impairs the functional stability of biological membranes, and disrupts 

photosynthetic enzymes (Asada, 2006; Cakmak and Kirkby, 2008). 

 Due to its fundamental role in phloem loading of sucrose, Mg is critical for 

carbohydrate partitioning between source and sink organs (Cakmak et al., 1994a,b; 

Marschner et al., 1996; Hermans et al., 2005). When Mg is deficient, the carbohydrate 

transportation process is impaired, leading to accumulation of carbohydrates begins in 

source tissues. Consequently, newly growing parts of the plant cannot get sufficient 

amount of photoassimilates and eventually this situation leads to a reduction in growth 

and development of sink organs such as roots, tubers, shoot tips and seeds (Hermans et 

al., 2004; Hermans and Verbruggen, 2005; Mengütay et al., 2013). Under low supply of 

Mg, reduction in the root growth is often more pronounced than the reduction in shoot 

growth, resulting in higher shoot-to-root ratio (Cakmak et al., 1994a; Fischer et al., 

1998; Yang et al., 2012). 

 

A.3) Drought Stress 

 

 Crop production is greatly limited due to various abiotic and biotic stress factors 

worldwide. Drought stress, limits the agricultural production and food security more 

than any other environmental stress factors globally (Cattivelli et al., 2008). In many 

agricultural regions, drought stress in crop plants often occurs in combination with heat 

stress. The recent increases in global mean surface temperature are thought to be caused 

by increased the atmospheric CO2 concentrations due to human activities. Thus the 

temperature is expected to rise about 1.4 to 5°C by the year 2100 (Intergovernmental 

Panel on Climate Change, 2001, 2007). According to Schiermeier (2008) the annual 

precipitation rate may decrease about 20% per year and reductions in soil moisture will 

intensify impairments in productivity due to increase in global annual temperatures. 

Drought stress together with heat stress can alter too many processes including growth, 

development, physiology, yield and quality crops (Prasad et al., 2008). For example 

combination of heat and drought stress altered the quality, leaf relative water content 
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and chlorophyll content in turfgrass (Jiang and Huang, 2001). Under simultaneous 

drought and heat stress, enhanced respiration, suppressed photosynthesis and 

accumulation of high levels of sucrose were observed in Arabidopsis plants while the 

average leaf temperature increased in tobacco plants due to closed stomata (Rizhsky et 

al., 2004; Rizhsky et al., 2002). In addition, nitrogen anabolism was weakened, protein 

catabolism was strengthened and lipid peroxidation was incited under combination of 

drought and heat conditions in perennial grass Leymus chinensis (Xu and Zhou, 2006). 

Also the duration of grain filling period in wheat plants was shortened under both 

drought and heat stressed conditions more than either treatment alone (Nicolas et al., 

1985a; Altenbach et al. 2003; Shah and Paulsen 2003). 

 Drought conditions can affect the photosynthesis through affecting stomatal 

closure and reduced flow of CO2 into mesophyll tissue (Chaves et al., 2003; Flexas et 

al., 2004). Drought can also affect photosynthesis adversely by direct impairments in 

metabolic activities such as by causing alterations in photosynthetic enzyme activities 

(Farquhar et al., 1989). The initial cause for the reduced photosynthesis under limited 

water supply is the decreased stomatal conductance (Cornic, 2000). Decreased levels in 

ribulose bisphosphate (RuBP) and Rubisco protein content (Bota et al., 2004), decline 

in the Rubisco activity (Parry et al., 2002) and impaired ATP synthesis can be listed as 

the main metabolic changes under drought stress. In addition to these impairments, 

according to Alves and Setter (2004), the most sensitive growth process to drought 

stress is the leaf expansion. Cell division and cell growth are also susceptible to drought 

stress. 

 Among the impairments in metabolic and developmental processes, 

reproductive organs of the plants are also highly affected under drought stress. For 

example, seed size and seed number per plant can be adversely affected by water 

shortage. If drought stress condition starts before the pollination, seed number can be 

dramatically reduced due to abortion of seeds or lack of pollination. However, seed size 

is mainly dependent on the currently available photosynthates or those that can be 

transported from source organs to grains (Prasad et al., 2008). According to Zhang et al. 

(1998) completing grain filling period as fast as possible and enhancement of 

mobilization of stored carbohydrates can reduce the effects of drought stress on yield. 

There is increasing evidence indicating that under drought stress conditions, pools and 

remobilization of soluble carbohydrates from stem tissues play a critical role and affect 

yield capacity of the plants up to 60 to 70% (Reynolds et al., 2007; Xue et al., 2008). As 
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discussed before, Mg is important both for production and transportation of 

carbohydrates from source organs (such as from stem tissue during the reproductive 

growth stage) into seeds. Therefore, an adequate Mg nutrition could be particularly 

important for better productivity under low water supply. 

 Considering that Mg is mainly transported in soil by mass flow, under drought 

stress conditions, delivery of Mg to plants might be reduced (Gransee and Führs, 2012). 

Similarly, especially during generative growth stages, top soil is often dry (see below 

for further discussion). Under such conditions plant uptake of Mg could be seriously 

affected leading to inadequate nutrition with Mg. Since Mg is a crucial element for 

phloem loading of sucrose and it affects the transportation of carbohydrates from source 

organs to sink organs, grain filling period can be dramatically affected, leading to severe 

losses in crop yield under both drought and Mg-deficient conditions. This topic is one 

of the main tasks of the PhD project.  

 

 

A.4) Magnesium deficiency and drought stress in world soils 

 

Increasing world population is correlated with the increase in food demand. 

According to Bruinsma (2009) 70% more food will needed to be produced to feed the 

increasing world population by the year of 2050. Since the arable land area in world is 

limited, and environmental stress factors such as drought, extreme temperatures, salinity 

and mineral nutrient deficiencies are frequently observed, the production of qualified 

food is become a critical issue. 

 Agricultural areas and forested ecosystems are being destroyed by increasing 

human activities and the expanding human population (Allen et al., 2010). In addition, 

with increased emissions of greenhouse gasses, global mean temperature is also rising 

(IPCC, 2007). Even though humans develop plans and programs to conserve the nature 

and minimize the detrimental facts, estimates are showing that in near future global 

mean temperature will rise about 2-4°C. This increase in temperature will eventually 

lead to a serious drying in specific regions (IPCC, 2007; Seager et al., 2007), increased 

frequency and severity of drought stress and heat waves (IPCC, 2007; Sterl et al., 2008). 

Together with these factors, in many regions of the world, mineral nutrient element 

deficiency problems are rising. In acidic and sandy soils deficiency of Mg is a 

commonly observed problem, especially in tropical regions of the world. Up to 30 to 
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40% of world soils that have low pH and Al toxicity problem (see Figure A.1) in which 

Mg deficiency is very common (Gransee and Führs, 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1:  Soil pH map showing the pH distribution (strongly acidic, mildly acidic, 

neutral and mildly alkaline soil pH is shown with dark red, pink, white and blue color 

respectively) of the world soils (retrieved from the Atlas of Biosphere, http://nelson. 

wisc.edu/sage/data-and-models/atlas/maps/soilph/atl_soilph.jpg, 31.10.2015). 

 

 It is known that high soluble Al in acidic soils interact with root Mg uptake due 

to antagonistic (competitive) reactions during root uptake (Bose et al., 2011; Gransee 

and Führs, 2012). In such soils, Mg is also always under leaching risk with high 

amounts contributing to poor Mg nutrition of plants (Gransee and Führs, 2012). Thus, 

soil deficiency of Mg is very characteristic in such acidic soils in combination with 

tropical climates where heat and drought stress can be observed simultaneously. Figure 

A.2 shows the forest mortality areas (in white dots) due to climatic stress from drought 

and high temperature. According to these facts, in near future probably too many 

agricultural soils will encounter with Mg deficiency problem together in combination 

with drought stress. 
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Figure A.2: Forest mortality locations (white dots) due to climatic stress factors such as 

drought and high temperatures (Allen et al., 2010). Colored map shows potential 

environmental limits to vegetation net primary production (Boisvenue and Running, 

2006).  

 

A.5) Roles of Magnesium in human and animal health 

 

 Magnesium is a crucial element for maintaining a healthy life. It is required for 

sufficient physiological functioning of heart, brain and skeletal muscles (de Baaij et al., 

2015). Magnesium content in fruit and vegetables was decreased about 20-30% over the 

60 years (Worthington, 2001). In addition, de Baaij et al. (2015) stated that western diet 

contains more refined grains and processed food and according to estimations 80-90% 

of the Mg is lost during the food processing. Correspondingly, human population started 

to show Mg deficiency.  For example, survey studies in USA and England show that 

about 50% of the adult population has limited Mg intake (Rosanoff, 2013). Similar 

reduced Mg intake has been also reported for the developing countries (Joy et al., 

2014). In western countries, high daily intake of Ca represents an important problem in 

terms of Mg nutrition of human populations. According to Rosanoff (2013), high Ca 

intake results in increased Ca/Mg ratio in body which then impairs Mg nutritional status 

of human body.  

 Patients with a magnesium deficiency often have cardiovascular diseases 

especially hypertension disorders (Dyckner and Wester, 1983; Gremmler et al., 2008; 

Gröber, 2009; Hunger, 2008). Magnesium deficiency (hypomagnesaemia) plays a role 

in the development of diabetes mellitus (Guerrero-Romero et al., 2004, 2011) and 13.5-

47.7% of patients diagnosed with type II diabetes have hypomagnesaemia 

(Swaminathan, 2003; Kisters and Gröber, 2013).  
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 A sufficient supply of Mg in the diets is also important for animals, especially 

for their productivity and better physiological status (Shaul, 2002). When ruminants 

graze on grass fields which have low Mg concentration or bioavailability, a serious 

disorder “grass tetany” can occur, that induces diverse of physiological disorders in 

body (e.g., overactive neurological reflexes) and even cause loss of animals 

(Swaminathan, 2003). Therefore this situation can be an important source of economic 

loss (Harris et al., 1983).  

 Concentration of Mg in human diet is became a critical issue that affecting 

adversely the nutrition and health of human population world-wide (Broadley and 

White, 2010). To overcome the negative course of events which can caused by Mg-

deficient food products, plant biotechnologists, breeders and nutritionists have to work 

together and try to increase the content and bioavailability of Mg in food and feed. 

 This PhD thesis has been conducted to generate new information and deepen the 

knowledge known on the role of Mg in plant growth. Special attention has been given to 

how Mg nutrition influences sees formation by affecting production and deposition of 

starch. Additionally, it was important to know how plant growth is affected from Mg 

nutiriton when they suffer from drought stress, because both Mg deficiency and drought 

stress affect photosynthetic performance of plants and generation of reactive oxygen 

species in chloroplasts in a similar way. Finally, leaf absorbtion and translocation within 

plants of the foliarly-sprayed Mg has been studied. This is an area where very limited 

published evidence is available in literature.  
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B) GENERAL MATERIALS AND METHODS 

 

 

B.1 Plant Growth Facilities 

 

Experiments explained in Chapter 1 and Chapter 2 were conducted in a 

computer-controlled, Venlo-type greenhouse with supplemental lighting at Sabanci 

University, Istanbul, Turkey (40°53′25″ N, 29°22′47″ E). During the experiment, the 

heating and evaporative cooling systems of the greenhouse kept the temperature at 

24±3°C in the daytime and at 18±3°C at night.  

 The experiment performed in Chapter 3 was established in the greenhouse 

located in Institute of Applied Plant Nutrition (IAPN), Göttingen, Germany 

(51°32'49.9"N, 9°56'40.5"E). This greenhouse had its own controlled heating system. 

 

 

B.2. Soil Culture 

 

 All of the soil culture experiments that were conducted for this thesis established 

under greenhouse conditions located in Sabanci University.  

The soil used in first experiment of Chapter 2 was transported from Tuzlukçu, 

Konya, Turkey location. This experimental soil was calcareous (23.5% CaCO3), 

alkaline (pH 8.2), low in organic matter (0.23%) with sandy-loam texture. The 

ammonium acetate (NH4Ac)-extractable Mg concentration was found for this soil as 46 

mg kg-1 soil. To deplete the Mg in this soil, 4 maize plants (Zea mays cv.Shemal) per 

pot for 2.5 kg of soil were planted and grown for 3 months. After maize plants were 

harvested, roots of the maize plants were separated from the soil, and after all of the soil 

was mixed homogenously, the NH4Ac-extractable Mg was found as 33 mg.kg-1. 
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The experimental soil that used for the second experiment of Chapter 2 was 

transported from Ordu, Turkey location. This soil’s CaCO3 concentration was 0.52%, 

pH was measured as 4.9, organic matter content was 6.2% and texture class was sandy-

loam. No additional depletion methods were used for this soil. The (NH4Ac)-extractable 

Mg concentration was found for this soil as 39 mg kg-1 soil. 

 Before sowing the seeds, required mineral nutrients (explained in specific 

chapter’s material and methods part) were homogenously mixed with the experimental 

soil. Watering of the plants was made daily with deionized water, once or twice a day 

depending on the season, plant stage and demand. To avoid the uncontrolled loss of 

nutrients dissolved in water, an independent source plate for each pot was used. 

  

 

B.3 Nutrient Solution Culture 

 

 The experiment explained in Chapter 1, which was conducted for the solution 

culture, seeds first soaked in CaSO4 containing dH2O for half an hour. After the soaking 

step was completed, wheat seeds were sown in wetted perlite and placed in the 

greenhouse under dark conditions. Water status of the perlite was checked daily and if 

necessary deionized water was added to wet the perlite. When the coleoptile emerged 

on the perlite, seedlings were taken up under the light to complete the successful 

germination step (completed development of coleoptiles and radicula). Germination 

process of the seeds was usually last around 5-7 days. 

 When the seedlings reached the appropriate length (about 3-5 cm shoot length), 

they were transferred to 3L or 5L plastic pots that equipped with an aeration system. 

Nutrient solution of the plants usually contained: Ca(NO3)2.4H2O, KH2PO4, 

MgSO4.7H2O, K2SO4, KCl, Fe-EDTA, ZnSO4.7H2O, MnSO4.4H2O, CuSO2.5H2O, 

H3BO3, and (NH4)6Mo7O24.4H2O at different rates depending on the experiment 

mentioned in the corresponding chapters. Nutrient solution of the plants was changed 2-

3 times a week depending of the age of plant and it was continuously aerated. 
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B.4 Harvest 

 

 Harvesting stage of the plants differed according to the age of the plant tissues. 

Matured plant samples were cut directly and placed in paper boxes to dry for 3-4 days at 

70°C in the oven. Fresh plant samples were washed with dH2O first, and then placed in 

the oven for the drying stage. Root samples were washed with dH2O first, then washed 

in 1mM CaCl2 and 1 mM EDTA solution for 3 minutes separately and thereafter 

washed in dH2O again and dried in the oven at 70°C.  

 All the grains obtained in the experiments were separated from their husk with 

the help of a trashing machine. For seed yield and biomass determination, all the plant 

samples were weighed at room temperature. 

 

 

B.5. Mineral Element Analysis 

 

 For the analysis of mineral nutrients and the starch determination, dried plant 

samples were ground into fine powders by using an agate vibrating cup mill 

(Pulverisette 9; Fritsch GmbH; Germany). To measure the mineral element 

concentrations in the plant samples, fine ground powder of the samples were undergone 

in acid digestion step. For the digestion process, dried and milled sample powder was 

weighed (ca. 0.2 g) and put in a closed vessel microwave system (MarsExpress; CEM 

Corp., Matthews, NC, USA) with 2 ml of 30% H2O2 and 5 ml of 65% HNO3. When the 

acid digestion step was completed, sample volume was adjusted to 20 ml by adding 

ddH2O and the digests were filtered through ashless quantitative filter papers. To each 

set of 40 samples, 1 blank sample was added to check for contamination and 1 certified 

standard reference material obtained from the National Institute of Standards and 

Technology (Gaithersburg, MD, USA) was added to check for accuracy. 

 Mineral nutrient concentrations, except nitrogen (N), were determined by 

inductively coupled plasma optical emission spectroscopy (ICP-OES) (Vista-Pro Axial, 

Varian Pty Ltd, Mulgrave, Australia). Grain N concentrations were measured with a 

LECO TruSpec C/N analyzer (LECO Corp., St. Joseph, MI, USA). Certified standard 

reference materials that were obtained from the National Institute of Standards and 

Technology (Gaithersburg, MD, USA) were used to check the accuracy of the 

measurements. 
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B.6 Starch measurements 

 

 Starch concentrations in plant samples were determined by using Megazyme 

Total Starch HK Assay kit (Megazyme International, Total Starch HK kit, K-TSHK, 

Ireland). All the measurements were done according to the instruction manual following 

these principles: i) Thermostable α-amylase was used to hydrolyze the starch in the 

sample into soluble maltodextrins, ii) Maltodextrins were hydrolyzed quantitatively by 

amyloglucosidase to D-glucose, iii) D-glucose was phosphorylated by the enzyme 

hexokinase (HK) and adenosine-5’-triphosphate (ATP) to glucose-6-phosphate (G-6-P) 

with the simultaneous formation of adenosine-5’-diphosphate (ADP), iv) Then the 

presence of the enzyme glucose-6-phosphate dehydrogenase (G6P-DH), G-6-P was 

oxidized by nicotinamide-adenine dinucleotide phosphate (NADP+) to gluconate-6-

phosphate with the formation of reduced nicotinamide-adenine dinuclotide phosphate 

(NADPH), v) At last, the amount of NADPH formed in this reaction was stoichiometric 

with the amount of D-glucose, consequently the increased absorbance at 340 nm 

measured the NADPH amount to calculate the starch concentration in the samples. 

 

 

B.7 Calculations  

 

 Mineral element concentration data were taken from the ICP-OES software as 

values of ppm. To find the actual concentration value for the sample, this data was 

multiplied with the dilution factor. Dilution factor was obtained by dividing the total 

sample volume (ml) to digested sample weight (g). 

 For the mineral element and starch content calculations, which were measured 

as the mg or µg of specific element or starch matter found in the plant tissue, calculated 

as the multiplication of concentration data with the dry weight data of interested plant 

part.  
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B.8 Statistical Analysis 

 

 Statistical analysis of the data was conducted by using JMP (12.0.1) (SAS 

Institute Inc., Cary, NC, USA). The significance of treatment effects was evaluated by 

analysis of variance (ANOVA). Then, Tukey’s honestly significant difference (HSD) 

test (p < 0.05) was used as a post-hoc test to determine significant differences between 

means.  
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CHAPTER 1 

 

ADEQUATE MAGNESIUM NUTRITION IS REQUIRED FOR BETTER SEED 

YIELD THROUGH ITS POSITIVE EFFECT ON STARCH ACCUMULATION 

 
 
 

1.1 Introduction 

 
 
 

For plants, magnesium (Mg) is an essential cationic macronutrient with 

structural and regulatory functions related to its interaction with nucleophilic ligands 

(Shaul, 2002; Cakmak and Kirkby, 2008). It is the most abundant free cation in the 

cytosol of plants (Shaul, 2002) and activates more enzymes than any other mineral 

nutrient (Epstein and Bloom, 2004). As the central atom in the chlorophyll molecule 

and the activator of critical photosynthetic enzymes including ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate (PEP) carboxylase, Mg is a 

key element in photosynthesis (Wedding and Black, 1988; Portis, 1992; Marschner, 

2012). Protein synthesis ultimately depends on Mg because Mg is essential for the 

aggregation of ribosome subunits. Magnesium is also required for the synthesis and 

function of nucleic acids and adenosine triphosphate (ATP) (Sreedhara and Cowan, 

2002; Igamberdiev and Kleczkowski, 2015). Up to 90% of cytoplasmic ATP is 

complexed to Mg2+ in Mg-sufficient plant cells (Yazaki et al., 1988). 

Magnesium is critically involved in the phloem loading of sucrose and thus 

carbohydrate partitioning between source and sink tissues (Cakmak et al., 1994a, b; 

Hermans et al., 2005). The proton-motive force generated by an H+-pumping ATPase 

energizes H+-sucrose symporters loading sucrose into sieve tube cells (Bush, 1989; 

Hermans et al., 2005). About 2 mM Mg2+ is needed for maximizing the activity of the 
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H+-pumping ATPase (Williams and Hall, 1987). The cytoplasmic Mg2+ concentration 

falls below this level in Mg-deficient plants (Marschner, 2012), and carbohydrates start 

accumulating in source leaves before other physiological processes such as 

photosynthesis are affected by Mg deficiency (Laing et al., 2000; Hermans et al., 2004; 

Hermans and Verbruggen, 2005). While excess carbohydrates enhance the production 

of reactive oxygen species (ROS) in source tissues and limit photosynthesis by negative 

feedback effect, sink organs such as roots, seeds and tubers are deprived of 

carbohydrates (Cakmak and Kirkby, 2008). Depending on the species and experimental 

conditions, alterations in carbohydrate partitioning result in altered root-to-shoot ratios 

under Mg deficiency (Cakmak et al., 1994a, b; Hermans et al., 2005; Ding and Xu, 

2011; Mengutay et al., 2013). Impaired sugar transport into seeds may affect grain size 

and thus quality in cereals (Cakmak, 2013; Gerendas and Fuhrs, 2013).  

When compared to other major cations such as calcium (Ca2+) and potassium 

(K+), Mg2+ ion has a distinctly larger hydrated radius (Bose et al. 2011; Marschner 

2012). Therefore, Mg2+ binds only weakly to negatively-charged soil particles, which 

makes it highly prone to leaching (Hermans, et al. 2004; Cakmak and Kirkby, 2008). 

Magnesium deficiency typically occurs in acidic and light-textured soils with low cation 

exchange capacities when Mg in the root zone is removed to deeper layers by leaching 

(Bose et al., 2011; Gransee and Fuhrs, 2013). Another common cause of Mg deficiency 

in the field is ionic antagonism. Competing cations do not only displace Mg2+ from the 

cation exchange sites and thus contribute to its leaching but also strongly inhibit its root 

uptake (Mengel and Kirkby, 2001). These cations include protons (H+) and aluminum 

(Al3+) in acidic soils, Ca2+ in calcareous soils, K+ in over-fertilized soils and sodium 

(Na+) in saline/sodic soils (Mengel and Kirkby, 2001; Gransee and Fuhrs, 2013). Also, 

the risk of Mg deficiency is increasing in intensive cropping systems where the Mg 

reserves in the root zone are being depleted as high-yielding varieties are grown 

continuously with heavy applications of nitrogen (N), phosphorus (P) and K fertilizers 

(Hermans et al., 2005; Cakmak and Yazici, 2010). Since Mg is predominantly supplied 

to plant roots by mass flow in soil (Lambers et al., 2008), dry soils and low transpiration 

rates may aggravate Mg deficiency (Jezek et al., 2015). 

Magnesium is also an essential mineral for human health (de Baaij et al., 2015). 

In the human body, Mg2+ serves as cofactor for over 600 enzymes and as activator for 

an additional 200 enzymes (Bairoch, 2000; Caspi et al., 2012). Magnesium appears to 

be particularly important for heart, brain and skeletal muscle physiology (de Baaij et al., 
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2015). Its deficiency has been associated with several chronic diseases including 

hypertension, type II diabetes, Alzheimer’s disease, stroke and migraine (Gröber et al., 

2015). In the second half of the 20th century, the Mg concentrations of conventionally 

grown fruits and vegetables decreased by 20-30% on average (Worthington 2001). The 

Mg concentrations of cereal grains also declined significantly over the past decades 

while the grain yields increased (Cakmak, 2013). Substantial Mg losses during food 

processing and excessive Ca intake further reduce the average daily Mg intake (de Baaij 

et al., 2015). According to recent surveys, Mg deficiency is widespread in the general 

population (King et al., 2005; Broadley and White, 2010). 

There is limited information on the impact of Mg deficiency on carbohydrate 

partitioning, yield components and grain quality in wheat. The hypothesis of this study 

was that Mg deficiency would affect the yield formation of wheat more than its 

vegetative growth and reduce the grain quality due to its effects on carbohydrate 

partitioning and that foliar Mg application during generative development would 

alleviate these problems. The effects of Mg supply on various growth and yield 

parameters and starch partitioning were studied in bread wheat. In addition, the 

concentrations of Mg and other mineral nutrients were measured and discussed from 

both a plant and a human nutrition perspective. 

 

 

1.2 Materials and Methods 

 
 
 

This solution culture experiment was done with Triticum aestivum cv. Adana99 

seeds and designed as 5 replicates from each treatment and 4 plants per pot in 5L pots. 

This experiment conducted under greenhouse conditions (See Section B.1) and seeds 

were germinated according to the instructions explained in Section B.3.  

The nutrient solution was composed of the following components: 2 mM 

Ca(NO3)2·4H2O,  0.2 mM KH2PO4, 0.85 mM K2SO4, 0.1 mM KCl, 100 µM Fe-EDTA, 

1 µM  ZnSO4·7H2O,  1 µM MnSO4·H2O, 1 µM H3BO3, 0.2 µM CuSO4·5H2O and 0.1 

µM (NH4)6Mo7O24·4H2O. As Mg source, MgSO4·7H2O was added to the nutrient 

solution at two different levels: 50 µM for the low Mg treatment and 500 µM for the 

adequate Mg treatment. In addition to the low Mg and adequate Mg treatments, there 

was a low + foliar Mg treatment. For this treatment, plants were supplied with low Mg 
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(50 µM) from the solution throughout the experiment, and starting just after anthesis (82 

days after sowing), they were sprayed with 4% (w/v) MgSO4.7H2O mixed with 0.01% 

Tween20 as surfactant once a week for 3 times. For each treatment, there were 5 

replicate pots. 

When all plants fully senesced 148 days after sowing, they were harvested in 5 

fractions: roots, spikes, flag leaves, other leaves (all leaves except flag leaves) and 

stems. Roots were washed first in dH2O, then in 1 mM CaCl2, then 1 mM EDTA and 

finally again in dH2O. All plant samples were put in paper bags, dried at 60°C for 3 

days, and then weighed at room temperature. The harvested spikes were threshed, and 

grains and husks were bagged separately. Mineral element concentrations and starch 

measurements were done according to the steps explained in Sections B.5 and B.6. 

The term “husk” refers to all vegetative tissues of the spike, the term “shoot” 

refers to all above-ground parts of the plant including the grains, and the term “straw” 

refers to all vegetative tissues (stems, leaves and husk) of the shoot. Starch content per 

grain equals grain starch concentration times thousand grain weight (TGW) divided by 

1000 (for further calculation steps see Section B.7). 
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1.3 Results 

 
 
 

Low Mg application resulted in severely chlorotic wheat plants (Figure 1.1). 

When compared to wheat plants grown with adequate Mg, these Mg-deficient plants 

senesced earlier. Post-anthesis foliar Mg application mitigated these deficiency 

symptoms and resulted in a 50% increase in the flag leaf SPAD values of low-Mg 

plants but it could not fully substitute for adequate Mg supply from the nutrient 

solution. The flag leaf SPAD values of 115-day-old adequate-Mg plants were about 

twice as high as those of low-Mg plants. Notably, Mg status did not have any visual 

effects on the vegetative vigor and final size of wheat plants. 

 

Figure 1.1: 115-day-old bread wheat (Triticum aestivum cv. Adana99) plants grown 

hydroponically with low (50 µM), low + foliar (50 µM + 4% (w/v) MgSO4•7H2O) and 

adequate (500 µM) Mg under greenhouse conditions. Mean leaf SPAD values are 

shown at the top of the figure. 
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In parallel with visual observations, Mg applications had mostly negligible 

effects of the dry weights of vegetative tissues at maturity (Table 1.1). While Mg 

applications did not affect the husk, stem and total straw dry weights of mature plants, 

increasing Mg supply slightly but significantly reduced the leaf (flag and other) dry 

weights. Roots exhibited a statistically non-significant decrease in biomass upon 

increasing Mg supply. 

 

Table 1.1: Dry weights of vegetative tissues of mature (148-day-old) bread wheat 

(Triticum aestivum cv. Adana99) plants grown hydroponically with low (50 µM), low + 

foliar (50 µM + 4% MgSO4) and adequate (500 µM) Mg under greenhouse conditions 

  
Dry Weight (g.plant-1) 

Mg Supply  Husk  
Flag 
Leaves  

Remaining 
Leaves  Stem  Root  Straw 

             
Low  11.4 a  2.4 a  5.7 a  16 a  3.0 a  36 a 
Low + Foliar    9.1 a    2.1 ab    5.1 ab  15 a  2.7 a  31 a 
Adequate  11.8 a  2.1 b  4.3 b  17 a  2.5 a  34 a 

  
  Values are means of five independent replicates. Different letters indicate significant differences between 

means according to one-way ANOVA and Tukey’s HSD test (p≤0.05). 

 

 

In contrast to vegetative biomass, the grain yield was significantly enhanced by 

Mg applications (Table 1.2). When compared to low Mg, foliar Mg increased the grain 

yield by 50% and adequate Mg by nearly 100%. Foliar Mg application did not result in 

a significant increase in the total shoot (straw + grain) dry weight of the low-Mg plants 

while adequate Mg supply significantly improved the shoot dry weight. The number of 

spikes per plant and the number of grains per spike were not significantly affected by 

Mg supply. The low Mg treatment was associated with a sharp decline in the thousand 

grain weight (TGW). With foliar Mg application, the TGW of low-Mg plants almost 

reached the TGW of adequate-Mg plants. 

 

  

 



20 

 

Table 1.2: Grain yield, shoot dry weight (DW), thousand-grain weight (TGW), number 

(#) of spikes per plant and number (#) of grains per spike of mature (148-day-old) bread 

wheat (Triticum aestivum cv. Adana99) plants grown hydroponically with low (50 µM), 

low + foliar (50 µM + 4% MgSO4) and adequate (500 µM) Mg under greenhouse 

conditions 

   

Mg Supply   

Grain Yield  

  

Shoot DW 

  

# of 
Spikes 

  

# of 
Grains 

  

TGW 

(g.plant-1) (g.plant-1) (plant-1) (spike-1) (g) 
           
Low  19 a  55 a  25 a  31 a  24 a 
Low + Foliar  28 b  60 a  21 a  35 a  39 b 

Adequate  36 c  71 b  23 a  38 a  41 b 
   Values are means of five independent replicates. Different letters indicate significant differences between 

means according to one-way ANOVA and Tukey’s HSD test (p≤0.05). 

 

In agreement with the TGW data, grains obtained from the low-Mg plants 

appeared distinctly smaller, thin and deformed (Figure 1.2). Foliar Mg application 

clearly improved the grain size and minimized shriveling. The largest grains with the 

best shapes were produced by plants supplied with adequate Mg from the nutrient 

solution. 

 

 

Figure 1.2: Mature seeds of bread wheat (Triticum aestivum cv. Adana99) grown 

hydroponically with low (50 µM), low + foliar (50 µM + 4% MgSO4) and adequate 

(500 µM) Mg under greenhouse conditions 
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Mature wheat plants grown with low Mg had explicitly lower Mg concentrations 

and contents in all their vegetative tissues when compared to those grown with adequate 

Mg (Table 1.3). At adequate Mg supply, leaves had by far the highest Mg 

concentrations among all the vegetative tissues. Leaf Mg concentrations of wheat plants 

at maturity declined by nearly 90% when plants were cultivated with low Mg. 

 

 

Table 1.3: (A) Mg concentrations and (B) Mg contents of vegetative tissues of mature 

(148-day-old) bread wheat (Triticum aestivum cv. Adana99) plants grown 

hydroponically with low (50 µM) and adequate (500 µM) Mg under greenhouse 

conditions  

  
(A)  Mg Concentration (mg.kg-1) 

Mg 
Supply   

Husk 
  

Flag 
Leaves   

Remaining 
Leaves   

Stem 
  

Root 

Low   226 a    299 a    336 a    94 a  231 a 
Adequate   647 b  2308 b  3212 b  356 b  391 b 

    
(B)   Mg Content (mg.plant-1) 

Mg 
Supply   

Husk 
  

Flag 
Leaves   

Remaining 
Leaves   

Stem 
  

Root 

Low  2.59 a  0.71 a    1.9 a  1.53 a  0.69 a 
Adequate  7.63 b  4.80 b  13.8 b  6.12 b  0.98 a 

  
  Values are means of five independent replicates. Different letters indicate significant differences between 

means according to one-way ANOVA and Tukey’s HSD test (p≤0.05). 

Vegetative tissues of plants supplied with low + foliar Mg were not analyzed for Mg because of surface 

contamination. 
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Under low-Mg conditions, the grain Mg concentration fell below 50% of the 

concentration obtained under adequate-Mg conditions (Table 1.4A). A relatively small 

but significant improvement in the grain Mg concentration was achieved by foliar Mg 

application. The N and P concentrations of grains did not show a clear response to Mg 

applications (Table 1.4A). Low Mg supply without foliar Mg supplementation was 

associated with enhanced grain K concentrations. Among micronutrients, Fe and Zn 

responded oppositely to increasing Mg supply. The grain Fe concentration increased 

significantly with higher Mg supply whereas the grain Zn concentration decreased. For 

all mineral nutrients except Zn in Table 1.4B, yields were improved significantly by 

higher Mg supply. In particular, the grain Mg yield increased steeply (Table 1.4B). 

 

Table 1.4: (A) Grain mineral concentrations and (B) grain mineral yields of mature 

(148-day-old) bread wheat (Triticum aestivum cv. Adana99) plants grown 

hydroponically with low (50 µM), low + foliar (50 µM + 4% MgSO4) and adequate 

(500 µM) Mg under greenhouse conditions 

  
  

(A)   Grain Mineral Concentrations 

Mg Supply 

 Mg   N  P   K   Fe   Zn  

  (%)   (%)  (%)  (%)  (mg.kg-1)  (mg.kg-1) 
             

Low  0.06 a  2.98 a    0.48 ab  0.69 a  51 a  65 a 

Low + Foliar  0.08 b  2.77 b  0.46 a  0.53 b    63 ab  52 b 

Adequate  0.14 c    2.93 ab  0.51 b  0.54 b  69 b  43 b 
  
  

(B)   Grain Mineral Yields (mg.plant-1) 

Mg Supply  Mg   N  P   K   Fe  Zn 
             

Low  11 a    560 a    90 a  129 a  0.95 a  1.21 a 

Low + Foliar  22 b    783 b  131 b  149 a  1.77 b  1.45 a 

Adequate  51 c  1038 c  182 c  191 b  2.47 c  1.51 a 
  
  Values are means of five independent replicates. Different letters indicate significant differences between 

means according to one-way ANOVA and Tukey’s HSD test (p≤0.05). 
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The starch concentrations measured in the flag and other leaves were highest for 

low Mg, lower for low + foliar Mg and lowest for adequate Mg (Table 1.5A). Also, the 

leaf starch contents decreased significantly when Mg supply increased (Table 1.5B). In 

contrast, the root starch concentrations and contents were lowest for low-Mg plants not 

treated with foliar Mg. (Table 1.5). The starch concentration and content of stem tissue 

was unaffected by Mg treatments. 

 

Table 1.5: (A) Starch concentrations and (B) starch contents of vegetative tissues of 

mature (148-day-old) bread wheat (Triticum aestivum cv. Adana99) plants grown 

hydroponically with low (50 µM), low + foliar (50 µM + 4% MgSO4) and adequate 

(500 µM) Mg under greenhouse conditions 

  
(A)   Starch Concentration (mg.g-1) 

Mg Supply  
Flag 
Leaves  

Remaining 
Leaves  Stem  Root 

         
Low   3.3 a  3.6 a  1.2 a  1.0 a 
Low + Foliar    2.8 ab  2.5 b  1.1 a  1.7 b 
Adequate  2.1 b  2.1 b  1.2 a  1.7 b 

   
(B)   Starch Content (mg.plant-1) 

Mg Supply  
Flag 
Leaves  

Remaining 
Leaves  Stem  Root 

         
Low  8.0 a  20.6 a  19 a  2.9 a 
Low + Foliar  5.8 b  12.8 b  16 a  4.5 a 
Adequate  4.3 b    9.3 b  21 a  4.1 a 

  
 Values are means of five independent replicates. Different letters indicate significant  

differences between means according to one-way ANOVA and Tukey’s HSD test (p≤0.05). 

 

When compared to low Mg, adequate Mg enhanced the grain starch 

concentration by 10%, the average starch content per grain by 85% and the grain starch 

yield per plant by over 100% (Table 1.6). Foliar Mg application to low-Mg plants 

provided the same significant improvements of grain starch concentration and content 

but was significantly less effective than adequate Mg in enhancing the grain starch yield 

per plant. 

 



24 

 

Table 1.6: Grain starch concentration, starch content and starch yield of mature (148-

day-old) bread wheat (Triticum aestivum cv. Adana99) plants grown hydroponically 

with low (50 µM), low + foliar (50 µM + 4% MgSO4) and adequate (500 µM) Mg under 

greenhouse conditions 

  
Grain Starch 

Mg Supply  
Concentration 
(mg.g-1)  

Content 
(mg.grain-1)  

Yield         
(g.plant-1) 

       
Low   520 a  12.6 a   9.8 a 

Low + Foliar  575 b  22.4 b  16.3 b 
Adequate  575 b  23.6 b  20.4 c 

  
 Values are means of five independent replicates. Different letters indicate significant  

differences between means according to one-way ANOVA and Tukey’s HSD test (p≤0.05). 

 

 

1.4 Discussion 

 
 
 

In wheat, Mg deficiency typically results in light green beading along the veins 

of fully extended leaves, which progresses into interveinal chlorosis as deficiency 

becomes more severe (Scott and Robson, 1991; Craighead and Martin, 2001; Mengutay 

et al., 2013). Remobilization of Mg from mature leaves causes early senescence 

(Marschner, 2012). In this study, low-Mg plants appeared senescent while adequate-Mg 

plants were still dark green (Figure 1.1). The increase in the leaf chlorophyll 

concentration upon foliar Mg application to low-Mg plants indicates that foliar Mg was 

effective in increasing the longevity of leaves.  

The apparent size of the plants at grain-filling (Figure 1) and the straw dry 

weight at maturity (Table 1.1) were unaffected by Mg supply, implying that even the 

low-Mg treatment in this study provided sufficient Mg to the plants to maintain 

vegetative growth. In previous hydroponic pot studies on Mg deficiency in wheat, 

significant declines in vegetative biomass production were reported but in those studies, 

the Mg supply per plant was below the low-Mg level in this study (Scott and Robson, 

1991; Mengutay et al., 2013). Here, the purpose was to mimic a latent Mg deficiency 

which becomes more severe at later stages of the development as the Mg demand 

increases with increasing sink activity. It is important to note that the results presented 
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in Table 1.1 are the dry weights of vegetative tissues after senescence. The significant 

decreases in leaf dry weights of senesced plants upon improved Mg supply suggest 

enhanced carbon remobilization from source to sink tissues (Table 1.1).    

The yield responses to Mg supply were impressive (Table 1.2). Taken together, 

the dry weight and yield data in Tables 1.1 and 1.2 indicate that a Mg supply which 

does not impair the vegetative growth of wheat at all may reduce its grain yield by 50%. 

Moreover, here, the Mg supply from the solution was constant and not discontinued 

during grain-filling. In practice, wheat is widely grown as a rain-fed crop in 

Mediterranean-type or semi-arid climates, and the top soil dries out toward the end of 

the growing season (Elias and Manthey, 2005; Distelfeld et al., 2007), which limits 

mass flow-driven uptake of minerals including Mg (Jezek et al., 2015). Under such 

conditions, the yield depression caused by a previously latent Mg deficiency may be 

even more dramatic. That post-anthesis foliar Mg application could significantly reduce 

yield losses due to Mg deficiency (Table 1.2) is a very important finding of this study 

because minerals applied to soil at grain-filling stage may not be efficiently taken up 

when soil and environmental conditions are not favorable (Gooding and Davies, 1992; 

Fageria et al., 2009; Jezek et al., 2015). Foliar Mg application was also shown to be 

effective in correcting Mg deficiency in other crops (Barlog and Grzebisz, 2001; 

Vrataric et al., 2006; Neuhaus et al., 2014; Jezek et al., 2015). 

Grain yield per plant can be expressed as the product of 3 factors: number of 

spikes per plant, number of grains per spike and single grain weight (TGW / 1000) 

(Grzebisz, 2013). Hydroponically-grown wheat plants typically produce a very high 

number of tillers under hydroponic conditions and have a very high yield potential 

(Kutman et al., 2012). It is noteworthy that each plant produced more than 20 spikes in 

this study, irrespective of Mg supply (Table 1.2). While the number of grains per spike 

tended to increase in response to higher Mg supply, suggesting a slight impairment of 

grain setting by Mg deficiency, it is evident that the impact of Mg supply on grain yield 

was mainly a result of its impact on TGW (Table 1.2; Figure 1.2). In the literature, 

increases in TGW upon Mg fertilization were reported for barley (Beringer and Forster, 

1981) and wheat (Al’Shevskii and Derebon, 1982). The TGW is a yield component that 

heavily depends on carbohydrate supply during grain filling (Grzebisz, 2013). So, the 

effect of Mg supply on the TGW can be explained by the disruption of phloem loading 

and thus carbohydrate translocation from source tissues to developing grains by Mg 

deficiency (Hermans et al., 2005; Cakmak and Kirkby, 2008). The TGW is also 
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considered an important technological quality parameter because the milling efficiency 

depends on the grain size (Greffeuille et al., 2006; Gerendas and Fuhrs, 2013).    

The critical leaf concentration for Mg deficiency is about 1000-1100 mg/kg in 

wheat (Jones et al., 1991; Scott and Robson, 1991; Reuter and Robinson, 1997).  In this 

study, the leaf Mg concentrations of the adequate-Mg plants were 2-3 times higher than 

this critical level whereas those of the low-Mg plants were only about 1/3 of it at 

maturity (Table 1.3). As Mg is remobilized from source tissues during senescence 

(White and Broadley, 2008), it is safe to assume that the Mg concentrations of 

vegetative tissues were higher than those reported in Table 1.3 before senescence. 

Under both low- and adequate-Mg conditions, 60% of the total shoot Mg was allocated 

to grains at maturity (Tables 1.2 and 1.3). Foliar Mg application to the low-Mg plants 

was not as effective as adequate Mg supply in enhancing the grain Mg concentration 

(Table 1.3), which is important for the nutritional quality of wheat grain. In contrast, 

foliar applications of Zn are more effective than soil applications in increasing the grain 

Zn concentration of wheat (Yilmaz et al., 1997; Kutman et al., 2011; Zhao et al., 2014). 

Both the uptake and the assimilation of N are impaired under Mg-deficient 

conditions (Ding et al., 2006; Grzebisz, 2013). Magnesium deficiency was also reported 

to depress the phloem export of amino acids (Cakmak et al., 1994b; Ruan et al., 2012). 

In this study, the lack of a clear response of the grain N concentration to Mg supply 

(Table 1.4A) may be attributed to dilution due to significant yield improvement by Mg. 

The grain N yield, on the other hand, shows clearly that higher Mg supply enhanced the 

N use (Table 1.4B). The well-documented antagonistic interaction between K and Mg 

(Zengin et al., 2008; Cai et al., 2012) was also observed in this experiment. The grain K 

concentration increased significantly at low Mg supply (Table 1.4A). Intriguingly, 

while the grain Zn concentration decreased in response to higher Mg supply (Table 

1.4A), which can be explained by yield dilution considering the opposite trend in the 

grain Zn content (Table 1.4B), the grain Fe concentration increased significantly when 

the plant Mg status was improved. There is apparently a specific positive effect of Mg 

on grain Fe. This finding suggests that Mg-deficient wheat grain may be at the same 

time Fe-poor, which is important from a human nutritional point of view as Fe is 

another mineral often lacking in human diet and a major target mineral in 

biofortification efforts (White and Broadley, 2008; Cakmak et al., 2010). 

The typical starch concentration of whole grains of American and Canadian 

bread wheat varieties grown under field conditions ranges from 63 to 72% (Lineback 
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and Rasper, 1988; Hucl et al., 1996). In this solution culture study, the grain starch 

concentrations of the adequate-Mg plants were slightly lower than this range, which 

might be a varietal effect or caused by the experimental conditions (Table 1.6). Here, 

the important finding is that the grain starch concentration was depressed significantly 

by Mg deficiency and enhanced by post-anthesis foliar Mg treatment to the level 

measured at adequate Mg supply. The average starch content per grain and the starch 

yield per plant show the impact of Mg on grain starch accumulation even clearer. In 

agreement with impaired source-to-sink translocation of carbohydrates under Mg 

deficiency (Hermans and Verbruggen, 2005; Cakmak and Kirkby, 2008), the starch 

concentrations and contents of leaves increased whereas those of roots decreased 

significantly at low Mg supply (Table 1.5). Accumulation of carboydrates in source 

leaves under Mg deficiency was reported for various crop species (Cakmak et al., 

1994b; Hermans et al., 2004; Hermans and Verbruggen, 2005; Mengutay et al., 2013). 

However, it should be noted that irrespective of the Mg treatment, less than 1% of the 

total starch in the shoot of mature wheat plants was in vegetative tissues (Tables 1.5 and 

1.6). So, the huge impact of Mg supply on grain accumulation cannot be explained 

solely by impaired phloem loading of carbohydrates. It is well-documented that the 

photosynthetic output of Mg-deficient plants is depressed (Fischer and Bremer, 1993; 

Laing et al., 2000; Hermans et al., 2004). This is most likely a combined effect of 

several factors including the negative feedback effect of accumulating carbohydrates on 

photosynthesis, secondary oxidative stress, loss of chlorophyll, reduced activity of key 

photosynthetic enzymes and regulatory problems (Portis, 1992; Jezek et al., 2005; 

Cakmak and Kirkby, 2008). 

From the results of this study, it can be concluded that Mg deficiency affects 

wheat yield mainly by limiting the carbohydrate supply to developing grain and 

reducing the thousand grain weight, which is at the same time an important 

technological quality parameter. The mineral nutritional quality of wheat grain is also 

adversely affected by Mg deficiency as the grain Mg and Fe concentrations are reduced. 

Since vegetative biomass production of wheat is far less affected than yield formation, 

Mg deficiency may remain latent until grain-filling. Foliar Mg application is a 

promising tool to alleviate Mg deficiency during grain-filling and minimize its impact 

on grain yield and quality parameters. 
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CHAPTER 2 

 

ADEQUATE MAGNESIUM SUPPLY THROUGH SOIL CONTRIBUTES TO 

ALLEVIATION OF DROUGHT STRESS AND IMPROVING GRAIN YIELD 

 
 
 

2.1 Introduction 

 
 
 

A better plant growth and development is under direct influence of 

environmental factors such as temperature, light and soil moisture. Any unfavorable 

changes in environmental factors can adversely affect the physiological and 

biochemical balance of plants, leading to impaired growth (Garg, 2010). It has been 

predicted that by the end of this century average global surface temperature will 

increase about 1.1-6.4°C (IPCC, 2007). Estimations based on the model studies indicate 

that there will be an increase from 1% to 30% in extreme drought land area with global 

warming which leading to an increase in evaporation and lower water availability 

(IPCC, 2007). Therefore scarcity of water in growth medium, i.e. drought, represents 

the main and large-scale limitation to agricultural production (Boyer, 1982; Delmer, 

2005). Drought stress leads to a decline in grain yield for most of the crop plants by 

50% and it is one of the major source of crop loss worldwide (Wang et al. 2003).  

During most of the grain filling period in wheat plants encounter with increasing 

temperatures and decreasing moisture stress (Blum, 1998), and this period will be 

exposed to more adverse conditions with temperature and drought stress as a result of 

the  expected changes in global warming in the world. Wheat plants are highly sensitive 

to drought stress especially during the grain filling period, because during the 

reproductive stage wheat plants suffer more severely from drought in combination with 

heat (Zinselmeier et al. 1995, 1999). According to Stratonovitch and Semenov (2015), 



29 

 

breeding new wheat cultivars with high tolerance to heat stress during the reproductive 

stage is an important breeding strategy that can greatly contribute to higher and stable 

grain yields in wheat. It is widely belived that in future drought stress will co-occur 

more severely and frequently together with heat stress and therefore breeding programs 

should focus on these 2 traits (Lobell et al., 2015). 

In early grain filling period, limited water availability in growth medium causes 

remarkable effect on grain yield capacity of crop plants via decreasing endosperm cell 

number and strength of sink organs (Ho, 1998). Ciais et al (2005) stated that the number 

and period of extreme climatic phenomena are increasing in wheat growing areas. 

According to Barnabas et al (2008) and Farooq et al (2009), drought conditions reduce 

not only the grain yield but also nutritional quality, especially when occurred during 

reproductive growth stage.  

Developing of caryopses from fertilized ovaries is the last stage of growth in 

cereals and referred as the grain filling period; the final grain weight is determined by 

its duration and rate (Yang and Zhang, 2006). In the grain filling stage, assimilates are 

transferred to grains by two carbon resources: direct translocation of current assimilates 

and redistribution of the reserve pool of assimilates (Pheloung and Siddique, 1991; 

Kobata et al., 1992; Schnyder, 1993). Various studies in wheat plants showed that pre-

anthesis reserve pool of assimilates contributes 10-40% of the final grain weight under 

sufficient water supply (Rawson and Evans, 1971; Gallagher et al., 1976; Bidinger et 

al., 1977; Schnyder, 1993; van Herwaaden et al., 1998; Gebbing and Schnyder, 1999) 

and 75-100% under dry field conditions (van Herwaaden et al., 1998). Accordingly, 

remobilization of the stored carbohydrates gains extreme importance under water stress 

conditions (Nicolas et al., 1985a, b; Palta et al., 1994; Asseng and van Herwaarden, 

2003; Plaut et al., 2004). 

Starch obtained from grains is considered as the essential end-product of cereals 

(Thitisaksakul et al., 2012). According to Koehler and Wieser (2013), approximately 

66-76% of the cereal grains consist of carbohydrates and the around 55-70% of the 

carbohydrate is starch. Due to efficient textural properties of starch in making bread, it 

gains more importance for human nutrition (Koehler and Wieser, 2013). Although diet 

preferences are not stable in different parts of the world, it is shown that 50% of the 

calories of the human diet is derived from starch (Galliard, 1987; WHO, 2003), and in 

impoverished countries this value goes up to 80% (Burrell, 2003). The significance of 

starch that derived from cereals point towards itself globally; 51% of the harvested area 
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in the world is occupied by cereals (Bruinsma, 2009). However, with decline in the 

arable agricultural land and continuously increasing world population, increase in the 

production of cereals is indispensable. 

Decrease in the accumulation of starch in cereal grains often observed under 

various abiotic stresses during the grain filling period, for example such a trend 

inspected in barley under drought and heat stress (Savin and Nicolas, 1996), in rice 

under salinity stress (Siscar-lee et al., 1990) and in wheat under heat stress 

(Labuschagne et al., 2009). The activity of the enzyme called starch synthase which 

converts sugars to starch in the maturing grain observed to be decreased under such 

environmental stress factors leading to a reduced starch amount in cereal grains (Wang 

and Frei, 2011). The altered activity of this enzyme reported in different crops such as 

in wheat under drought stress and heat stress (Rijven, 1986; Keeling et al., 1993), in 

maize under heat stress (Singletary et al., 1993), or in rice under salinity stress (Khan 

and Abdullah, 2003).  

Xu et al (2010) listed the six aspects of plants response to water stress as 

following: 

(1) drought escape mechanism by completing the life cycle earlier than expected 

to encounter minimal level of water shortage during the reproductive growth stage 

(Geber and Dawson, 1990); 

(2) avoidance of drought by enhancing better  root systems or reducing the 

stomata to use water more effectively (Schulze. 1986; Jackson et al. 2000); 

(3) improving tolerance to drought by increasing the ability of osmotic 

adjustment and improving the elasticity of cell wall to preserve and maintain the tissue 

turgidity (Morgan, 1984); 

(4) resistance to drought by improving the antioxidative defense mechanisms 

and related metabolism (Bartoli et al. 1999; Penuelas et al. 2004); 

 (5) abandoning drought via exfoliating older leaves under water deficit (Chavez 

et al. 2003) and  

(6) genetic mutation or modification under long-term drought stress conditions 

(Hoffmann and Merila, 1999; Sherrard et al. 2009; Maherali et al. 2010). 

Mobilization of minerals in soil depends on water availability; thus under water 

deficient conditions the uptake of minerals by roots can be altered. Oktem (2008) stated 

that under low water availability, the uptake of Fe, Zn and Cu minerals from soil was 

reduced leading to decreased concentration of these elements in corn grains. Such a 
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situation can be observed for Mg. Under deficiency of water, uptake of Mg via roots 

can be limited and led to Mg deficiency in plants. Under such condition, when drought 

stress could be observed with Mg deficiency, stress might be doubled for plant and 

coping mechanisms start to encounter with too many physiological problems. If plants 

supplied with sufficient amount of Mg, their reaction to drought stress will be narrowed 

down and became easier to cope with.  

Severity of drought stress can be greatly influenced from the mineral nutritional 

status of plants (Cakmak, 2005; Waraich et al 2011; Marschner, 2012) by affecting 

stomatal conductance for CO2 and H2O (Laing et al, 2000; Cakmak and Kirkby, 2008; 

Putra et al., 2012), activity of photosynthetic enzymes and pools of stress tolerance 

proteins (Mengutay et al, 2013; Verbruggen and Hermmans, 2013; Peng et al., 2015) 

and root formation (Cakmak et al., 1994a; Cakmak and Kirkby, 2008). High 

accumulation of abscisic acid (ABA) in Mg deficient plants (Chao et al., 2012) could be 

also associated with limited stomatal conductance to water, and accumulation of ABA 

is an early change in drought stressed plants (Harb et al., 2010).  

One of the well documented mechanisms by which drought stress causes cellular 

damages to plants is related to generation of reactive oxygen species (ROS) and their 

oxidative attack to chloroplasts (Selote and Khanna-Chopra, 2006; Suzuki et al., 2012). 

Since very similar physiological impairments also occur in Mg deficient leaves 

(Cakmak and Marschner, 1992; Mengutay et al., 2013), it is plausible to suggest that 

that combination of a drought stress with Mg deficiency stress in plants may accelerate 

oxidative damage in chloroplasts and decline in yield capacity of plants. These 

observations and findings indicate importance of an adequate Mg nutrition of plants 

under drought stress.  In a previous study, Mengutay et al (2013) showed that plants 

with low Mg supply had higher susceptibility to heat stress and showed rapid 

development of leaf chlorosis and necrosis when they grow under heat stress. 

To our knowledge, there is very limited published evidence in relation to the 

effect of varied Mg nutrition on plant growth and yield under drought stress conditions. 

The aim of this study was, therefore, to show that an adequate Mg nutrition is required 

to mitigate cellular damage and contribute to better productivity under water-deficiency 

conditions. This study was conducted to investigate changes in grain yield under low 

and adequate Mg supplies at different water regimes. Additionally, changes in starch 

and Mg content of seeds were studied to understand better the interrelationship between 

low Mg supply and drought stress. 
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2.2 Materials and Methods 

 
 
 

Two separate experiments were conducted in this part of the thesis. Both 

experiments designed as factorial experiment were established by using Triticum 

aestivum cv. Adana 99 bread wheat seeds under greenhouse conditions.  

In first drought experiment, 5 independent replicates from each treatment were 

used. 12 seeds per pot were sown in plastic pots with 2.5 kg of experimental soil # 1 

(See Section B.2 for soil features). This soil was supplied with 400 ppm N in the form 

of Ca(NO3)2.4H2O, 100 ppm of P in the form of KH2PO4, 25 ppm of S in the form of 

Ca(SO4).2H2O. Two different levels of Mg supply were added additionally in soil: 0 

ppm and 50 ppm of Mg in the form of MgSO4.7H2O.  

Calculation of the field capacity was done by weighing the pot containing the 

dry soil inside first (non-saturated weight). Then the soil in the pot was saturated with 

deionized water until the water starts to come from the holes which were located under 

the pot. To avoid any loss of soil with the water coming from the pot, source plates 

were used. When the water efflux from the saturated soil stopped completely, the 

weight of the pot was measured again (saturated weight). Non-saturated weight was 

subtracted from the saturated weight and result was the net water holding capacity of 

the soil, i.e. 100% field capacity (FC). To calculate interested field capacity (e.g., 

severity of drought stress as 30% or 40% FC), 100% FC was multiplied with the desired 

water supply percentage. Since the drought treatment started after the heading stage of 

wheat plants, the weight of the plants were not negligible. At the beginning of the 

drought treatment 3 extra pots from each treatment were taken to calculate average 

weight of the whole plant per pot and obtained value included in the daily water supply. 

Until the heading stage, 12 plants per pot were thinned down, and the 

experiment continued with 4 plants per pot till the end of the harvest. In this 

experiment, first, plants were grown at 70% of the FC until 58 days old with low and 

adequate Mg supply using the experimental soil described in General Material and 

Method section (see: section B.2.). On day 58, plants completed almost their heading 

stage. Thereafter, the experimental plants are exposed to 3 levels of water regimes in 

soil as following: i) 70 % of the FC (control), ii) 40 % of the FC and iii) 30 % of the FC. 

The Mg treatments were 50 mg Mg per kg soil in form of MgSO4 (Mg-adequate plants) 

and no Mg application (Mg deficient plants). On day 81, plants were harvested.  
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At harvest, plants were harvested in 5 fractions: i) husk (separated from grains), 

ii) flag leaves, iii) remaining leaves, iv) stem and v) grains. 

In the second drought experiment, growth conditions in greenhouse were similar 

to the first experiment described above. This 2nd experiment was conducted due to 

absence of Mg effect on grain yield at the 70 % of FC. In this experiment, for each 

treatment 6 independent replicates were used. 15 seeds per pot were sown in plastic pots 

filled with 1.8 kg of experimental soil # 2 (See Section B.2 for soil features) supplied 

with 450 ppm N in the form of Ca(NO3)2.4H2O, 250 ppm of P in the form of KH2PO4, 

25 ppm of S in the form of K2SO4, 50 ppm P in the form of CaH4O8P.2H2O. The rates 

of Mg treatments were same of the first experiment.  

In the 2nd experiment, experimental plants reached to heading stage when they 

were 68 days old. Then, plants are exposed 2 different water regimes in growth 

medium: i) 70 % of the FC and ii) 30 % of the FC. On day 122, the plants were 

harvested in 5 fractions as in the first experiment: i) husk (separated from grains), ii) 

flag leaves, iii) remaining leaves, iv) stem and v) grains. Straw dry weights mentioned 

in this chapter is consisted of the sum of dry weights of whole vegetative parts of the 

plants (husk, flag leaves, remaining leaves and stem) 

As described in the General Material and Method section (see: section B),  

harvested plant materials were subjected to analysis of dry matter production, mineral 

nutrients by ICP-OES and starch by using Megazyme Total Starch HK Assay kit. 

 
  

2.3 Results 

 
 

In the first experiment, experimental plants were grown until flowering stage (58 

days old) with adequate water supply (70% of the FC) and two different Mg treatments 

(0 and 50 ppm). Then, part of the plants has been exposed to 2 different drought stress 

treatments including 30% and 40% of FC. The remaining plants continued to grow at 

70% of FC. At the harvest, following plants parts were separately harvested: i) husk 

(separated from grain), ii) flag leaves, iii) remaining leaves, iv) stem and v) grains.  

The dry weight results are presented in Table 2.1. Increasing water status of the 

plants greatly improved dry matter production and grain yield. Under given 

experimental conditions, varied Mg supply did not consistently affect dry matter 

production of the plant parts. There were clear reductions in shoot dry matter under 50 
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ppm Mg supply when compared to the low Mg plants, probably due to reduced dry 

matter allocation from shoot into grain under low Mg. However, grain yield values were 

not affected from different Mg treatments (Table 2.1). The decrease in grain yield by 

reducing water supply was higher under low Mg than under adequate Mg supply (e.g., 

1.9-fold decrease with low Mg and 1.60-fold with adequate Mg).  

Grain yield was enhanced with 50 ppm supply of Mg around 18% and 28% 

under 30% and 40% of FC respectively. With 70% of the FC (control), there was no 

increase or decrease in grain yield with respect to Mg supply. Under low Mg supply 

grain yield increased by 5.8% when water supply increased from 30% to 40% of FC. 

80% more grain yield was produced when the water supply was increased from 40% to 

70% FC under low Mg supply. Under adequate Mg supply recorded increase in grain 

yield was 15% and 40% when the water supply increased from 30% to 40% of the FC 

and 40% to 70% FC respectively. 

 

Table 2.1: Dry weights (mg.plant-1) of 81 days-old bread wheat (Triticum aestivum cv. 

Adana99) plants grown with low (0 ppm) and adequate (50 ppm) Mg applications and 

with 3 different water supplies (30%, 40% and 70% of FC) under greenhouse 

conditions. 

Dry Weights (g.plant-1) 

Mg 
Supply  

Water 
Supply  

Husk 
 
Flag Leaf 

 
Remaining 
Leaves  

Stem 
 
Grain 

 
Straw 

                           

  
30% FC 

 
0.57 ±0.04 

 
0.05 ±0.01 

 
0.63 ±0.07 

 
0.69 ±0.09 

 
0.85 ±0.27 

 
1.94 ±0.16 

0 ppm 
 
40% FC 

 
0.62 ±0.16 

 
0.05 ±0.01 

 
0.52 ±0.12 

 
0.70 ±0.12 

 
0.90 ±0.36 

 
1.89 ±0.40 

  
70% FC 

 
1.08 ±0.17 

 
0.10 ±0.02 

 
0.88 ±0.19 

 
1.18 ±0.26 

 
1.62 ±0.22 

 
3.24 ±0.60 

                           

  
30% FC 

 
0.55 ±0.05 

 
0.05 ±0.01 

 
0.53 ±0.05 

 
0.63 ±0.03 

 
1.01 ±0.21 

 
1.76 ±0.08 

50 ppm 
 
40% FC 

 
0.54 ±0.02 

 
0.05 ±0.01 

 
0.53 ±0.09 

 
0.65 ±0.05 

 
1.16 ±0.27 

 
1.77 ±0.13 

  
70% FC 

 
0.81 ±0.09 

 
0.09 ±0.01 

 
0.58 ±0.11 

 
0.93 ±0.11 

 
1.62 ±0.32 

 
2.41 ±0.26 

                           

                           
Husk: HSD0.05 (Mg; Water; MgxWater) = (0.25; 0.11; 0.20) 

              
Flag Leaf: HSD0.05 (Mg; Water; MgxWater) = (n.s; 0.01; n.s) 

              
Rem. Leaves: HSD0.05 (Mg; Water; MgxWater) = (0.08; 0.12; 0.22) 

Stem: HSD0.05 (Mg; Water; MgxWater) = (0.09; 0.14; n.s) 
             

Grain: HSD0.05 (Mg; Water; MgxWater) = (n.s; 0.30; n.s) 
              

Straw: HSD0.05 (Mg; Water; MgxWater) = (0.25; 0.36; 0.64) 
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Magnesium concentrations of harvested plant parts are presented in Table 2.2. 

Increasing Mg application from 0 ppm to 50 ppm resulted in increased Mg 

concentrations under all water treatments in every plant part. Lowest Mg concentration 

was found under low Mg treatment, especially at 30% FC water supply. Strongest 

reaction to increasing Mg supply was observed in remaining leaves under all water 

regimes. In case of grains, increases in Mg concentration by increasing Mg supply were 

much less and no clear change was found under low Mg supply (Table 2.2).  

 

 

Table 2.2: Magnesium concentrations (mg.kg-1) of 81 days-old bread wheat (Triticum 

aestivum cv. Adana99) plants grown with low (0 ppm) and adequate (50 ppm) Mg 

applications and 3 different water supplies supplies (30%, 40% and 70% of FC) under 

greenhouse conditions. 

 

Mg Concentration (mg.kg-1) 
Mg 
Supply  

Water 
Supply  

Husk 
 
Remaining 
Leaves  

Stem 
 
Grain 

                   
  

30% FC 
 
455 ± 158 

 
781 ± 36 

 
122 ± 26 

 
1039 ± 184 

0 ppm 
 
40% FC 

 
582 ± 416 

 
824 ± 97 

 
170 ± 22 

 
1138 ± 276 

  
70% FC 

 
496 ± 96 

 
912 ± 161 

 
188 ± 42 

 
1088 ± 88 

                   
  

30% FC 
 
488 ± 121 

 
2359 ± 269 

 
184 ± 15 

 
1196 ± 103 

50 ppm 
 
40% FC 

 
598 ± 254 

 
2195 ± 143 

 
224 ± 48 

 
1282 ± 179 

  
70% FC 

 
729 ± 288 

 
2387 ± 333 

 
242 ± 32 

 
1476 ± 108 

                   
                   

Husk: HSD0.05 (Mg; Water; MgxWater) = (n.s; n.s; n.s) 
Rem. Leaves: HSD0.05 (Mg; Water; MgxWater) = (150; n.s; n.s) 

        
Stem: HSD0.05 (Mg; Water; MgxWater) = (24; 36; n.s) 
Grain: HSD0.05 (Mg; Water; MgxWater) = (127; n.s; n.s) 
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As expected, the plants with 50 ppm Mg supply had higher Mg content in most 

of the plant parts analyzed (Table 2.3). Increased Mg supply from the soil significantly 

increased the Mg content of remaining leaves. Higher supply of water at adequateMg 

significantly increased the grain Mg content. Under the 30% and 40% of the field 

capacity treatments, when Mg application increased from 0 to 50 ppm, grain Mg 

content was increased by 41% and 53%, respectively. Adequate Mg treatment from the 

soil under sufficient water supply (70% of the FC) did not affect Mg content of grains 

as much as the drought stressed plants.  

 

Table 2.3: Magnesium contents (µg.kg-1) of 81 days-old bread wheat (Triticum 

aestivum cv. Adana99) plants grown under low (0 ppm) and adequate (50 ppm) Mg 

applications with 3 different water supplies (30%, 40% and 70% of FC) under 

greenhouse conditions. 

 

Mg Content (µg.plant-1) 
Mg 
Supply  

Water 
Supply  

Husk 
 
Remaining 
Leaves  

Stem 
 
Grain 

                   
  

30% FC 
 
264 ± 106 495 ± 59 85 ± 25 844 ± 113 

0 ppm 
 
40% FC 

 
340 ± 217 430 ± 113 118 ± 21 945 ± 226 

  
70% FC 

 
542 ± 168 774 ± 56 219 ± 56 1754 ± 184 

    
  

30% FC 
 
270 ± 89 1259 ± 191 117 ± 15 1193 ± 217 

50 ppm 
 
40% FC 

 
320 ± 135 1176 ± 271 144 ± 25 1450 ± 171 

  
70% FC 

 
605 ± 290   1527 ± 334   239 ± 61   2212 ± 464 

    
                   Husk: HSD0.05 (Mg; Water; MgxWater) = (n.s; 202; n.s) 

Rem. Leaves: HSD0.05 (Mg; Water; MgxWater) = (150; 223; n.s) 
        

Stem: HSD0.05 (Mg; Water; MgxWater) = (n.s; 42; n.s) 
Grain: HSD0.05 (Mg; Water; MgxWater) = (191; 284; n.s) 
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The grain samples of the experimental plants were analyzed for the starch 

concentration. As shown in Table 2.4, under both Mg levels, there were little changes in 

grain starch concentration. Increasing drought stress tended to enhance the grain starch 

concentration, probably due to lower grain yield (Table 2.4). Therefore, the starch 

content of grains showed clear increase (Table 2.4) with the increase in grain yield 

(Table 2.1). Highest starch content values were obtained under 50 ppm Mg and 70% FC 

water supply. 

 

 

Table 2.4: Changes in starch concentration (mg.g-1) and content (mg.plant-1) of 81 

days-old bread wheat (Triticum aestivum cv. Adana99) grains grown with low (0 ppm), 

and adequate (50 ppm) Mg applications and 3 different water supplies (30%, 40% and 

70% of the F.C.) under greenhouse conditions. 

 

Grain Starch 

Mg Supply 
 
Water Supply 

 Concentration 
(mg.g-1) 

 Content 
(mg.plant-1) 

   
 

   
 

   

0 ppm  
 
30% FC  524 ± 35  441 ± 120 

 
40% FC  521 ± 34  466 ± 183 

 
70% FC  446 ± 39  721 ± 93 

   
 

   
 

   

50 ppm  
 
30% FC  518 ± 16  519 ± 97 

 
40% FC  508 ± 20  585 ± 123 

 
70% FC  457 ± 29  734 ± 115 

   
 

   
 

   
   

 
   

 
   

Concentration: HSD0.05 (Mg; Water; MgxWater) = (n.s; 32; n.s) 
   

Content: HSD0.05 (Mg; Water; MgxWater) = (n.s; 146; n.s) 
   

 

 

 

 

 

 

 

 

 



 

Due to absence of the effect of varied Mg nutrition in the experiment described 

above, an additional experiment has been conducted. In this second experiment, plants 

with low Mg (0 ppm) and adequate Mg (50 ppm) were first grown at 

68 DAS. At this time, plants were around anthesis stage. Then, part of the plants was 

exposed to low water supply (e.g., to 30% of the field capacity). The remaining plants 

continued to receive adequate water supply

treatments (e.g., 0 ppm: low Mg plants and 50 ppm:

the first experiment, there was a clear effect of low Mg supply on growth of plants (Fig. 

2.1). The negative effect of Mg deficiency on growth of wheat plants was evident 

before the start of the drought stress treatment (Figure 2.1).

 

 

Figure 2.1: 68 days old wheat plants grown under low Mg (0 ppm) and adequate Mg 

(50 ppm) with 70% of the 
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Due to absence of the effect of varied Mg nutrition in the experiment described 

above, an additional experiment has been conducted. In this second experiment, plants 

with low Mg (0 ppm) and adequate Mg (50 ppm) were first grown at 

t this time, plants were around anthesis stage. Then, part of the plants was 

exposed to low water supply (e.g., to 30% of the field capacity). The remaining plants 

continued to receive adequate water supply (70% of FC) under two levels of soil Mg 

0 ppm: low Mg plants and 50 ppm: Mg adequate plants). In contrast to 

the first experiment, there was a clear effect of low Mg supply on growth of plants (Fig. 

2.1). The negative effect of Mg deficiency on growth of wheat plants was evident 

the start of the drought stress treatment (Figure 2.1). 

: 68 days old wheat plants grown under low Mg (0 ppm) and adequate Mg 

(50 ppm) with 70% of the field capacity. 

0 ppm Mg                 50 ppm Mg 

Due to absence of the effect of varied Mg nutrition in the experiment described 

above, an additional experiment has been conducted. In this second experiment, plants 

with low Mg (0 ppm) and adequate Mg (50 ppm) were first grown at 70% of FC until 

t this time, plants were around anthesis stage. Then, part of the plants was 

exposed to low water supply (e.g., to 30% of the field capacity). The remaining plants 

under two levels of soil Mg 

Mg adequate plants). In contrast to 

the first experiment, there was a clear effect of low Mg supply on growth of plants (Fig. 

2.1). The negative effect of Mg deficiency on growth of wheat plants was evident 

 

: 68 days old wheat plants grown under low Mg (0 ppm) and adequate Mg 
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These visual observations were also reflected in the dry weight results of stem, 

grain and straw dry weights at the harvest (Table 2.5). With exception of flag leaves, at 

each water treatment higher Mg treatment improved dry matter production and grain 

yield. However, in case of husk and remaining leaves, the Mg effects on dry matter 

were not significant. In contrast, adequate water supply increased the dry weights of 

these specific plant parts regardless of Mg supply (Table 2.5). Dry weight of stem and 

grain yield were affected positively from both increasing Mg and water supply. 

Additionally, grain yield of low Mg (0 ppm Mg) plants decreased dramatically with 

drought stress treatment regardless of the Mg supply. When the water supply was 

sufficient, increasing Mg supply increased the grain yield about 20%.  

 

 

Table 2.5: Effects of low (0 ppm), adequate (50 ppm) Mg applications and two 

different water supplies (30% and 70% of the field capacity) on dry matter production 

of 122 days-old bread wheat (Triticum aestivum cv. Adana99) plants under greenhouse 

conditions. 

 

Dry Weights (g.plant-1) 
Mg 
Supply 

  
Water 
Supply 

  Husk   Flag leaf   
Remaining 
leaves 

  Stem   Grain   Straw 

                           
0 ppm 

30% FC 0.34 ± 0.01 0.05 ± 0.01 0.36 ± 0.12 0.49 ± 0.04 0.99 ± 0.11 1.24 ± 0.11 
70% FC 0.45 ± 0.03 0.05 ± 0.01 0.35 ± 0.04 0.59 ± 0.03 1.18 ± 0.12 1.44 ± 0.06 

 
50 ppm 

30% FC 0.37 ± 0.05 0.05 ± 0.01 0.42 ± 0.09 0.56 ± 0.05 1.06 ± 0.13 1.39 ± 0.05 
70% FC 0.46 ± 0.03 0.05 ± 0.00 0.38 ± 0.01 0.67 ± 0.03 1.42 ± 0.12 1.56 ± 0.06 

                                                      

Husk: HSD0.05 (Mg; Drought; MgxDrought) = (n.s; 0.02; n.s) 

Flag Leaf: HSD0.05 (Mg; Drought; MgxDrought) = (n.s; 0.005; n.s) 

Rem. Leaves: HSD0.05 (Mg; Drought; MgxDrought) = (n.s; n.s; n.s) 

Stem: HSD0.05 (Mg; Drought; MgxDrought) = (0.03; 0.03; n.s) 

Grain: HSD0.05 (Mg; Drought; MgxDrought) = (0.10; 0.10; n.s) 

Straw: HSD0.05 (Mg; Drought; MgxDrought) = (0.06; 0.06; n.s) 

 

 

At harvest, appearance of the plants with low (0 ppm Mg) and adequate Mg (50 

ppm Mg) treatments at two water regimes was presented in Figs. 2.2, 2.3, 2.4 and 2.5.  
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Figure 2.2: Growth of 122 days old wheat plants (Triticum aestivum cv. Adana99) 

under 30% of FC with low (0 ppm) and adequate (50 ppm) Mg treatments. 

 

 

 

Figure 2.3: Effects of low (0 ppm) and adequate Mg (50 ppm) treatments on growth of 

122 days old wheat plants (Triticum aestivum cv. Adana99) under sufficient water 

supply (70% of the field capacity). 

 

 

30% Field Capacity 
 

0 ppm Mg                             50 ppm Mg 

0 ppm Mg  
 

30% Field Capacity               70% Field Capacity 

70% Field Capacity 
 

0 ppm Mg                               50 ppm Mg 
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Figure 2.4: Effects of low (30% of FC) and adequate (70% of FC) water supply on 

growth of 122-days-old wheat plants (Triticum aestivum cv. Adana99) at low Mg (0 

ppm) supply.  

 

 

 

Figure 2.5: Growth of 122 days old wheat plants (Triticum aestivum cv. Adana99) with 

sufficient (50 ppm) Mg supply at 30% and 70% of FC conditions. 

 

  

50 ppm Mg  
 

30% Field Capacity              70% Field Capacity 

0 ppm Mg  
 

30% Field Capacity              70% Field Capacity 
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Plants which were under drought stress conditions and supplied with 0 ppm Mg 

remained smaller when compared to plants those were supplied with 50 ppm Mg 

(Figure 2.2). Under sufficient water supply, height of Mg deficient plants was close to 

adequate Mg plants (Figure 2.3). Magnesium deficient plants that are under drought 

stress or sufficient water supplied conditions did not show distinct differences in terms 

of plant height between them (Figure 2.4).When plants under drought stress and 

supplied with 50 ppm Mg, there was no distinct differences between the well-watered 

plants in terms of height (Figure 2.5).  

The plants with adequate Mg supply had more Mg than the plants with low Mg 

at both water regimes (Table 2.6). Low water supply generally reduced Mg 

concentrations of plants. Even though plants were suffering from low water availability, 

all the plant fractions were able to show a consistent increase of Mg concentration with 

supply of 50 ppm Mg (Table 2.6). Plant parts contained Mg under drought condition as 

much as under adequate water supply conditions.  

 

 

Table 2.6: Magnesium concentrations (mg.kg-1) of 122 days-old bread wheat (Triticum 

aestivum cv. Adana99) plants grown with low (0 ppm), adequate (50 ppm) Mg 

applications and two different water rates (30% and 70% of the field capacity) under 

greenhouse conditions. 

Mg Concentration (mg.kg-1) 
Mg 
Supply 

  
Water 
Supply 

  Husk   Flag leaf   
Remaining 
leaves 

  Stem   Grain 

                       
0 ppm  

30% FC 253 ± 53 587 ± 106 931 ± 96 132 ± 22 1015 ± 71 

 70% FC 
317 ± 65 602 ± 281 1057 ± 273 189 ± 8 1300 ± 158 

  
50 ppm  

30% FC 495 ± 125 1951 ± 430 2418 ± 212 233 ± 58 1250 ± 53 

 70% FC 511 ± 113 1646 ± 631 2649 ± 111 231 ± 34 1537 ± 149 
                                              

Husk: HSD0.05 (Mg; Water; MgxWater) = (80; n.s; n.s) 

Flag Leaf: HSD0.05 (Mg; Water; MgxWater) = (349; n.s; n.s) 

Rem. Leaves: HSD0.05 (Mg; Water; MgxWater) = (159; 159; n.s) 

Stem: HSD0.05 (Mg; Water; MgxWater) = (30; n.s; n.s) 

Grain: HSD0.05 (Mg; Water; MgxWater) = (100; 100; n.s) 
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Similar to Mg concentration, also Mg content of the plants (e.g., total Mg 

uptake) was also increased with the supply of Mg (Table 2.7). The increases in Mg 

content were particularly high in case of grain.   

 

 

Table 2.7: Effects of low (0 ppm) and adequate (50 ppm) Mg applications with 

different water supplies (30% and 70% of the field capacity) on Mg content (µg.plant-1) 

of 122 days-old bread wheat (Triticum aestivum cv. Adana99) plants under greenhouse 

conditions. 

 

Mg Content (µg.plant-1) 
Mg 
Supply 

  
Water 
Supply 

  Husk   Flag leaf   
Remaining 
leaves 

  Stem   Grain 

                       
0 ppm  

30% FC 86 ± 16 27 ± 4 339 ± 115 65 ± 12 1011 ± 138 

 
70% FC 143 ± 30 32 ± 10 371 ± 131 111 ± 6 1520 ± 104 

  
50 ppm  

30% FC 183 ± 53 93 ± 11 1011 ± 246 131 ± 39 1326 ± 168 

 70% FC 
233 ± 53 85 ± 31 1001 ± 37 155 ± 23 2172 ± 75 

                                              

Husk: HSD0.05 (Mg; Mg; Water; MgxWater) = (35; 35; n.s) 

Flag Leaf: HSD0.05 (Mg; Water; MgxWater) = (n.s; 45; n.s) 

Rem. Leaves: HSD0.05 (Mg; Water; MgxWater) = (129; n.s; n.s) 

Stem: HSD0.05 (Mg; Water; MgxWater) = (19; 19; n.s) 

Grain: HSD0.05 (Mg; Water; MgxWater) = (107; 107; n.s) 

 

 

Grains and flag leaves of the experimental plants were used for the starch 

analysis, and the grain results are shown in Table 2.8 and 2.9. Grain starch 

concentrations were not affected from the Mg and water treatments. All starch 

concentrations of the treatments looked very similar.  Most probably, due to increases in 

grain yield by increasing water supply, starch content in grains showed increases, 

especially in case of adequate Mg supply (Table 2.8). 
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Table 2.8: Changes in the grain starch concentration (mg.g-1) and content (mg.plant-1) 

of 122 days-old bread wheat (Triticum aestivum cv. Adana99) plants grown with low (0 

ppm), adequate (50 ppm) Mg applications and two different water regimes (30% and 

70% of the field capacity) under greenhouse conditions. 

 

Grain Starch 

Mg Supply 
 

Water 
Supply  

Concentration 
(mg.g-1)  

Content 
(mg.plant-1) 

0 ppm 
30% FC 569 ± 49 566 ± 74 
70% FC 553 ± 15 652 ± 69 

 
50 ppm 

30% FC 567 ± 23 600 ± 67 
  70% FC   564 ± 33   802 ± 85 

Concentration: HSD0.05 (Mg; Water; MgxWater) = (n.s; n.s; n.s) 
Content: HSD0.05 (Mg; Water; MgxWater) = (63; 63; 119) 

 

 

It was clear to notice that low Mg plants had more starch concentration in flag 

leaves than the Mg-adequate plants (especially in case of sufficient water supply), 

although the effects were not significant (Table 2.9). There was also no significant 

change in starch contents of the flag leaves under given treatments. At adequate water 

supply, low Mg plants showed more starch than the plants with adequate Mg supply.  

 

Table 2.9: Changes in the flag leaf starch concentration (mg.g-1) and starch content 

(mg.plant-1) of 122 days-old bread wheat (Triticum aestivum cv. Adana99) plants grown 

with low (0 ppm), adequate (50 ppm) Mg applications and two different water supplies 

(30% and 70% of the field capacity) under greenhouse conditions. 

 

Flag Leaf Starch 

Mg Supply 
 

Water 
Supply  

Concentration  
(mg.g-1)  

Content 
(mg.plant-1) 

0 ppm 
30% FC 4.72 ± 1.69 0.22 ± 0.08 
70% FC 5.56 ± 2.32 0.30 ± 0.13 

 

50 ppm 
30% FC 4.46 ± 1.35 0.22 ± 0.10 

  70% FC   4.36 ± 2.21   0.23 ± 0.13 

Concentration: HSD0.05 (Mg; Water; MgxWater) = (n.s; n.s; n.s) 
Content: HSD0.05 (Mg; Water; MgxWater) = (n.s; n.s; n.s) 
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2.4 Discussion 
 
 
 

As expected, the drought stress treatments substantially reduced growth and 

yield of plants under both low and adequate Mg treatments (Table 2.1). Decrease in 

plant growth under drought stress is a common phenomenon and shown several times in 

different crop plants such as in maize (Subramanian and Charest, 1997), soybean 

(Specht et al., 2001), sunflower (Tahir and Mehid, 2001) and wheat (Zareian et al., 

2014; Abdullah et al., 2015).  The first reaction of plants to drought stress is to close the 

stomata (Cornic and Massacci, 1996) which leads to a chain reaction of negative 

impacts such as decrease of CO2 accumulation into leaves (Farooq et al., 2009) that 

reduces photosynthesis and causes high energy electrons to form ROS at cost of 

inhibited photosynthesis (Fu and Huang, 2001; Reddy et al., 2004). Consequently, 

structural and functional integrity of chloroplasts is severely affected from the oxidative 

attack of ROS, leading to impairment in the capacity of plants to yield better (Flexas et 

al., 2002; Suzuki et al., 2012).  In drought stressed plants, photo-oxidative damage 

occurs typically due to impaired use of absorbed light energy and released electrons in 

photosynthetic CO2 fixation (Miller et al., 2010; Noctor et al., 2014).  

According to Mengutay et al, (2013), combination of heat stress with Mg 

deficiency stress further induces photooxidative damage and growth depressions. 

Similarly, also in the present study it has been shown that plants with low Mg supply 

and drought stress treatment showed the lowest grain yield. As mentioned before, under 

Mg deficiency, use of absorbed light energy in photosynthesis is reduced due to 

accumulation of carbohydrates in leaves as a result of limited transportation of 

carbohydrates from source organs to sink organs (Cakmak et al. 1994a; Hermans et al. 

2005). Such conditions in chloroplasts of low Mg plants result in high risk for 

photooxidative damage. Therefore, plants under low Mg supply show exceptionally 

high sensitivity to high light and became rapidly chlorotic (Marschner and Cakmak, 

1989). It can be suggested that exposure of low Mg plants to an environmental stress  

such as drought will intensify cell damage by promoted production of ROS as 

demonstrated for low Mg plants under heat stress (Mengutay et al., 2013). 

Consequently, the decrease in growth or yield under low Mg is expected to be 

pronounced when exposed to drought stress as shown in Tables 2.1 and 2.5.  
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There were unexpected results in the first experiment with two Mg and three 

water treatments. Grain yield of the plants was not affected from low and adequate Mg 

treatments at adequate water supply (Table 2.1). However, at the 40 % and 30 % of the 

field capacity, Mg adequate plants tended to have more grain yield. In contrast to grain 

yield, dry matter production of straw was very distinctly increased under low Mg supply 

when compared to the plants with adequate Mg (Table 2.1). These results indicate that 

dry matter allocation from vegetative parts into grains is impaired under low Mg plants 

and therefore straw dry matter is higher under low supply of Mg.  Generally, a similar 

observation was also made for most of the individual vegetative parts of plants. 

Decreases in transport of photoassimilates from source organs (e.g., leaves) into sink 

organs (e.g., grains/seeds) are known well for Mg deficient plants (Cakmak and Kirkby, 

2008). Probably, because of this impairment in transport of photoassimilates, vegetative 

parts of low Mg plants had generally higher dry matter than the Mg adequate plants. 

However, in contrast to the results in Table 2.1 of the first experiment, in the second 

experiment, low Mg plants did not show greater straw dry matter than the Mg adequate 

plants. The reason of such differential result between two experiments could not be 

understood well. In case of the nutrient solution experiment in Chapter 1, where very 

clear Mg deficiency stress could be induced, most of the vegetative parts of the low Mg 

plants had more dry matter production than the Mg adequate plants supporting the 

results of the 1st experiment of this chapter.  

Reduced grain yield under Mg deficiency was a common observation in both 

experiments of this chapter, except the treatment at 70 % of the field capacity of the 1st 

experiment. The reduction in grain yield under low Mg could be a consequence of 

several processes. First, an impairment of phloem loading of sucrose from source 

organs causes accumulation of carbohydrates in the leaves (Cakmak and Kirkby, 2008), 

and this effect leads to a reduction in photosynthesis rate (Laing et al., 2000; Hariadi 

and Shabala, 2004; Neuhaus et al., 2013). Photosynthesis rate can be also reduced under 

low Mg due to reduced activity of photosynthetic enzymes such as Rubisco (Marschner, 

2012) and reduced inflow of CO2 into chloroplasts (Cakmak and Kirkby, 2008). 

Reduced production of photoassimilates and impaired translocation of photoassimilates 

into seeds/grains are most plausible explanations for the reduction in grain yield under 

low Mg. In a good agreement with this explanation, the accumulation of starch in grains 

(e.g., content) was generally increased by increasing Mg supply and also by improving 

water status of plants (Table 2.4 and Table 2.8). Accumulation of starch in Mg deficient 
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flag leaves (Table 2.9) indicates reduced transportation of carbohydrates from source 

organs into grains under low Mg supply. The clear decrease in starch content by 

increasing water stress in plants under both low and adequate Mg supply (Tables 2.4 

and 2.8) is probably a reflection of both reduced photosynthetic activity and inhibited 

transportation of photo-assimilates into grains under drought. In addition, the activity of 

the enzyme called starch synthase which converts sugars to starch in the maturing grain 

was found to be decreased under environmental stress factors such as drought, heat or 

salinity which further leading to a reduced starch amount in cereal grains (Wang and 

Frei, 2011). Reduction in activity of this enzyme was reported in different crops such as 

in wheat under droughtand heat stress (Rijven, 1986; Keeling et al., 1993).  

In mature wheat plants, the critical Mg deficiency concentration of plants is 

reported to be around 0.1% (Jones et al. 1991). Magnesium concentration of low Mg 

plantsin the both Mg concentrations measured in these two experiments were found to 

be under this critical level (Tables 2.2 and 2.6). In addition, Mg concentration of whole 

vegetative tissues in 1st experiment was measured when plants were 30 days old and the 

Mg concentrations were found as 0.07% and 0.13% for 0 ppm and 50 ppm Mg plants 

respectively. These results also support the deficiency of Mg from the beginning of the 

experiment. 

Especially under drought conditions Mg concentration levels dropped 

dramatically when compared to the plants at 70% of field capacity. Root uptake of Mg 

depends on water availability of the soil and successful root growth and activity 

(Gransee et al., 2013). In good agreement with this, Mg concentrations of almost all 

plant parts at the lowest water supply were reduced compared to the plants with 

adequate water supply (Table 2.2; Table 2.6). Usually, Mg concentration of grains 

increased under all drought treatments when Mg supply was increased from 0 to 50 

ppm. In a previous study it has been shown that under drought stress conditions Mg 

concentration of maize grains increased significantly when compared to adequate water 

supplied conditions and the mechanism behind this result is explained by the enhanced 

routes and/or transport mechanisms for Mg under decreased water availability (Ti et al., 

2010). However, such increase in grain Mg under drought stress could also be a 

consequence of “concentration effects” due to reduced grain yield under drought.  

In conclusion, the results highlighted that reductions in grain yield of plants 

under low Mg supply is pronounced when Mg deficiency is combined with drought 

stress conditions. This observation could be related both to reduced Mg uptake of plants 
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and increasing risk with photooxidative damage in plants exposed to low Mg in growth 

medium. Low Mg plants were associated with lower starch content in grains, probably 

due to reduced synthesis and transportation of carbohydrates in the grains. This finding 

is a further support for the decreases in grain yield capacity of low Mg plants, especially 

under drought stress conditions (Table 2.4). It is concluded that under water-limited 

growth conditions Mg nutritional status of plants is of great importance in respect to 

maintenance of a proper photosynthetic rate and transportation of carbohydrates into 

actively growing parts of plants such as seeds and roots. 
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CHAPTER 3 
 

FOLIAR APPLICATION OF 26Mg ISOTOPE TO COFFEE PLANTS:  

A TRANSLOCATION EXPERIMENT 

 
 
 

3.1 Introduction 

 
 
 

Coffee is a dicotyledon woody perennial and evergreen plant belonged to 

Rubiaceae family. The most commercially important coffee species are Coffea Arabica 

and Coffea canephore (ECF, 2015) but among these species Coffea Arabica is the 

mostly produced coffee plant which is reported as 75-80% of the world’s population 

(Griffin, n.d). There are around 70 countries that producing coffee all around the world. 

Brazil is the biggest producer of coffee and 40% of the world’s total supply is attributed 

to Brazil. In 2014, Brazil produced around 3 billion kilograms of coffee beans (ICO, 

2015). There are some factors that limit the production of coffee in Brazil and one of the 

important limiting factors is the soil acidity and poor calcium and magnesium content of 

the soil (Matiello, 1985).  

According to Malavolta (1993), coffee is not a tolerant crop to mineral deficieny 

conditions in soils. It is a known fact that some mineral element deficiencies can not be 

detected for days until a foliar deficiency symptom becomes visible. This situation is 

known as “hidden deficiency”. If the deficiency condition is not detected and corrected 

at the proper time, growth and development of plants can be severely altered and 

economic losses will be unavoidable (Fernandes et al., 2012).  

There are limited number of published reports about the effects of mineral status 

of coffee plants on growth and development. For example one of these studies showed 

that the caffeine content of leaves in coffee plants decreased about 17% under Mg 

deficient conditions (Mazzafera, 1999). Nine-fold yield reduction was observed in 

coffee plants that were grown under low nitrogen and potassium fertilization for two 
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years (Dean and Beaumont, 1958). A recent study showed that coffee plants grown 

under Mg-deficient conditions showed an increase in the ROS production (da Silva et 

al., 2014) just like in bean and wheat plants (Cakmak and Marschner, 1992; Mengutay 

et al., 2013). 

Acidic soils are typical soils for Mg deficiency, mainly due to high leaching risk 

from soil profile and antagonistic effects of Al and Mn ions on root uptake (Marschner, 

2012; Gransee et al., 2013). Dolomite (CaMg(CO3)2) is often applied in such acidic 

soils in order to correct low pH and contribute to Mg nutrition of plants. However, there 

is increasing number of debates in literature about agronomic effectiveness of dolomite 

in providing adequate soluble Mg to plant roots (Gransee et al., 2013; Senbayram et 

al.2015). Therefore, soluble sources of Mg fertilizers are suggested to apply into acidic 

soils to ensure a better Mg nutrition of crop plants. In acidic soils, subsoil acidity 

represents another constraint to root growth. It seems to be difficult to solve subsoil 

acidity and related nutritional problems such as Mg deficiency through liming and Mg 

fertilization. These strategies may help to mitigate the mentioned constraints in the 

topsoil; but not in the subsoil. Since root growth is extremely sensitive to low Mg 

supply, especially in acidic soils, it is important to provide Mg into subsoil. Foliar 

application of Mg would be one strategy to deliver Mg from shoot to roots grown in 

subsoil. To our knowledge, there is, however, no study focused on effect of foliarly 

applied Mg on Mg concentration of roots of plants growing widely in acidic soils such 

as coffee plants. In this part of the thesis we investigated role of foliar Mg fertilization 

on translocation of Mg into roots. In order to distinguish better the foliarly applied Mg 

from the Mg existing already in the plants we used stable isotope enriched-MgSO4 in 

foliar application. 

Studies conducted with isotopes to monitor the nutrient uptake and 

remobilization within the plant is increasing both in plant nutrition and plant physiology 

related studies. There are usually two forms for an element to existing naturally, stable 

and nonstable (radioactive) forms. Two or more stable isotopes are available for most of 

the elements and usually one of them has a greater abundance compared to others 

(Rundel et al., 1989). Stable isotopes are frequently used in plant and human 

physiological studies and gave a chance to direct measurement and monitoring of the 

mineral uptake and remobilization (Proe et al., 2000). In studies involving usage of 

isotopes and in case of unstable isotopes radiotracing and mass spectrometry can be 

used (Roscher et al., 2000). 
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There are 3 types of stable isotopes for Mg: i) 24Mg with abundance of 78.70%, 

ii) 25Mg with abundance of 10.13% and iii) 26Mg with abundance of 11.17%. There are 

increasing number of studies using stable isotopes of Mg and other elements to 

investigate potential relationships with other mineral nutrient deficiencies and 

characterize physiological and biochemical mechanisms such as uptake, translocation 

and deposition of 25Mg. The stable Mg isotope 26Mg has been used in Norway spruce to 

study root uptake and accumulation of 26Mg in plants under the influence of pH and Al 

(Kuhn et al., 1995). In a previous study, Grusak (1997) reviewed studies dealing with 

use of stable isotope labeling tool in human nutritional studies. 

As indicated above, we are not aware of a study investigating transportation of 

MgSO4 labelled with stable isotope of Mg (26Mg) within coffee plants after its 

application of coffee plants. Most of the studies in the present thesis are focused on 

wheat plants. Because of high relevance of coffee plants in terms of studying Mg 

transportation within plants (especially into roots), this part of the thesis used coffee as 

experimental material to investigate the transport and uptake of Mg in coffee plant 

treated foliarly with 26Mg-enriched MgSO4. In the studies conducted here, 

transportation of 26Mg in coffee plants has been studied by immersing part of the leaves 

in a solution containing MgSO4 enriched 
26Mg isotope, and this work has been realized 

by using both Mg deficient and sufficient coffee plants.  

  

3.2 Materials and Methods 

 
 

This experiment was established with coffee plants (Coffea Arabica cv.Murta) 

by using 5 independent replicates for each treatment involving transportation of 

foliarly-treated 26Mg application within plants. In addition, 3 independent replicates 

from each treatment were used for the control treatment without 26Mg application (e.g., 

ddH2O application). 

Coffee seedlings used in this study were received from Prof. Dr. Andreas 

Burkert, Kassel University, Germany. Seedlings received were first grown 

hydroponically in 5L pots for 224 days; then 1 day before application of 26Mg they were 

transferred to 1L pots as 1 seedling per pot. Throughout the entire experiment time the 

plants were supplied with the following nutrients: 1 mM of (NH4)2SO4, 0.5 mM 

Ca(NO3)2, 0.075 mM of KH2PO4, 0.25 mM of K2SO4, 0.4 mM of CaCl2, 0.03 mM of 
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Fe-EDTA, 1 µM of ZnSO4.7H2O, 5 µM of MnSO4.H2O, 0.2 µM of CuSO4, 10 µM of 

H3BO3 and 0.14 µM of (NH4)6Mo7O24.4H2O. Coffee plants were supplied with low and 

adequate (0.01 and 0.4 mM) Mg in the form of MgSO4.7H2O. 
26Mg isotope was obtained from MaTecK (Ireland) with 99.62% enrichment in 

the form of MgO. Since the absorption of MgO through leaves is extremely limited, 

MgO was converted into MgSO4.7H2O by following the steps according to the student 

manual of Preparation of Magnesium Sulfate (n.d): 50 mg MgO isotope was mixed with 

1M H2SO4 solution, and completed to 20 ml and pH of the solution was adjusted to 5.5. 

The final concentration ofl 26MgSO4.7H2O in the solution was 1.5%. Considering that 

coffee leaves had a very waxy structure, 26Mg solution was mixed with a surfactant 

Tween 20 in ratio of 0.01% to get a better coverage on the leaves. 

Treatment of coffee plants with 26Mg solution was realized by immersing 

(dipping) of the selected leaves into a 26Mg solution as following. Fully expanded 

leaves that were the 7th leaves from bottom for each plant were used in immersing 

leaves into 26Mg solution as shown in Figure 3.1.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Dipping of coffee (Coffea arabica cv. Murta) plant leaf in 26Mg solution 

under greenhouse conditions. 

 The control plants were immersed into double distilled water (ddH2O). The 

immersion process of the leaves has been conducted by using cylindrical flasks and the 

leaves were dipped (for about 10 seconds) into these solutions 3 times a day for 10 
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days. To enhance the absorption of the solutions and to avoid the quick drying of them, 

ddH2O was sprayed to all plants in a form of mist 3 times a day.  

Ten days after applying the first 26Mg solution, experimental plants were 

harvested. At harvest, following plant fractions were harvested separately: 1st fraction 

was the Mg26-applied leaves (app. leaves), 2nd fraction was the shoot part that was 

above the application leaves (youngest leaves), 3rd fraction was the remaining shoot part 

that is under the Mg26-applied leaves (old leaves) and 4th fraction was the roots. Before 

drying plant parts, all of the harvested parts of the plants were washed in 1 mM CaCl2, 

1mM EDTA and ddH2O solutions for about 3 minutes to desorb any 26Mg adhered on 

the leaf surface and existing in leaf apoplast. 

The plant parts harvested were dried in the oven for 3 days at 70°C. After the 

drying stage, dry weights of the fractions were taken. Thereafter, samples were ground, 

digested in microwave and subjected to ICP-MS analysis for measurement of 26Mg. The 

measurement of 26Mg in digested samples was realized in collaboration with Prof. Dr. 

Roland Bol and Dr. Bei Wu at the Institute of Bio- and Geosciences (IBG), 

Forschungszentrum Jülich in Jülich, Germany. Measurement 26Mg was performed in all 

of the plants; however there was no additional 26Mg rather than the natural aboundance 

found in ddH2O treated plants, because of that 
26Mg results of ddH2O treated plants was 

not shown. In all tables except 26Mg concentration table (Table 3.2), all of the plants 

were used for the calculations, because there was no significant difference in dry 

weights, Mg and K concentrations with respect to 26Mg and ddH2O applications. 

Additionally 26Mg concentrations were expressed and calculated as the enrichment of 
26Mg in the plants (26Mg concentration in found in the plant parts except the natural 

abundance of 26Mg).  
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3.3 Results 
 
 
 

 
Coffee plants supplied with low Mg exhibited chlorosis and necrosis symptoms 

in their old and middle leaves, whereas the plants supplied adequately with Mg did not 

show any chlorosis or necrosis symptoms and looked very healthy (Figure 3.2).  

 

 

Figure 3.2: Shoot growth of coffee (Coffea arabica cv. Murta) plants in 5L nutrient 

solution with low (0.01 mM) and adequate (0.4 mM) Mg supply under greenhouse 

conditions before starting the foliar treatment experiment with 26Mg solution. 

 

Low Mg 

Adequate Mg 
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Table 3.1 shows the average dry weights of the experimental plants used in the 

experiments with and without 26Mg treatment. Compared to shoot growth, root growth 

was more clearly affected from low Mg supply than the adequate Mg supply (Figure 

3.3; Table 3.1). As shown in Figure 3.3, shoot heights of Mg-deficient plants were less 

affected from low Mg supply. Both dry weight (Table 3.1) and density (Figure 3.3) of 

roots exhibited a clear difference between low and adequate Mg supply. Because shoot 

growth was less sentitive to low Mg supply, the shoot to root ratio was distinctly 

increased under low Mg supply (Table 3.1). These visible shoot and root biomass 

differences were reflected well in the dry weight results. As average, low Mg supply 

reduced the total shoot biomass by over 22%. Dry weights of the application (app.) 

leaves, old leaves and roots were significantly decreased under Mg-deficient conditions.  

Young leaves of coffee plants were weighed 19% higher under Mg-deficient conditions; 

however this increase was not significant. As indicated above, root growth was very 

sensitive to low Mg. Root dry weights of the Mg-adequate plants were on average 2 

fold higher than the root dry weight of low Mg plants. Consequently, a significantly 

higher shoot-to-root ratio was found under Mg-deficient conditions.  
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Figure 3.3: Growth of 224 days old coffee (Coffea arabica cv. Murta) plants in 5L 

nutrient solutions with low (0.01 mM) and adequate (0.4 mM) Mg supply under 

greenhouse conditions. 

 

 

 

 

 

 

 

 

 

 

 

Low Mg                        Adequate Mg 
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Table 3.1: Dry matter production of different parts of coffee plants (Coffea Arabica cv. 

Murta) used in the experiments with or withour 26Mg treatment and grown 

hydroponically with low (0.01 mM) and adequate (0.4 mM) Mg under greenhouse 

conditions. 

 

The concentrations and contents of the 26Mg that transported from the treated 

leaves to the rest of the plant parts are presented in Table 3.2 A and B, respectively. The 
26Mg concentration in application leaves was not significantly affected by the Mg 

supply (Table 3.2 A). For example, 26Mg concentrations in the young leaves of the Mg-

sufficient plants were found 3.5 times higher than the low Mg plants. In case of old 

leaves, Mg sufficient plants had 10 fold higher 26Mg than the Mg deficient plants. In 

contrast, low Mg plants showed higher 26Mg concentrations than the Mg-adequate 

plants. In the roots there was nearly 2.8-fold higher 26Mg concentration compared to the 

adequate Mg plants.  

Interestingly, old and young leaves of the Mg-adequate plants contained 

significantly higher amount of enriched 26Mg than the low Mg plants, while roots have 

shown a significant decrease in low Mg plants (Table 3.2 B). The enriched 26Mg content 

did not significantly differed between the application leaves of low and adequate Mg 

supplied plants, There was however slight increase in 26Mg concentration of the treated 

leaves under adequate Mg supply. Mg-deficient plants translocated nearly the same 

amount of 26Mg to young and old leaves; in contrast sufficient Mg-supplied plants 

translocated more amounts of 26Mg to old leaves when compared to young leaves. 

 

 

 

Dry Weights (g.plant-1) 

Mg 
Supply 

  Young 
Leaves 

  App. 
Leaves 

  Old 
Leaves 

  
Roots 

  Total 
shoot 
biomass 

  Shoot/ 
Root 

      

                   
Low 0.44 a 0.21 a 0.94 a 0.51 a 1.59 a 3.18 a 

Adequate 0.37 a 0.33 b 1.37 a 1.09 b 2.06 b 1.92 b 

                                      
Values are means of eight independent replicates. Different letters indicate significant differences between means 
according to one-way ANOVA and Tukey’s HSD test (p≤0.05). 
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Table 3.2: Changes in the enriched concentrations (A) and contents (B) of 26Mg 

(mg.kg-1) measured by ICP-MS in coffee plants (Coffea arabica cv. Murta) grown with 

low (0.01 mM) and adequate (0.4 mM) Mg and treated with 26Mg by immersing 

selected leaves into 26Mg-contatining solution under greenhouse conditions. 
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B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26Mg enrichment concentration (mg.kg-1) 

Mg  
Supply 

  Young 
Leaves 

  App.  
Leaves 

  Old 
Leaves 

  
Roots 

  

     

              
Low 3.2 a 103 a 1.5 a 2.5 a 

Adequate 11.3 b 86 a 15.1 b 0.9 b 

                            
Values are means of five independent replicates. Different letters indicate significant 
differences between means according to one-way ANOVA and Tukey’s HSD test 
(p≤0.05). 

26Mg enriched content (µg.plant-1) 

Mg  
Supply 

  Young 
Leaves 

  App.  
Leaves 

  Old 
Leaves 

  
Roots 

  

     

              
Low 1.25 a 21.7 a 1.30 a 1.23 a 

Adequate 4.00 b 28.3 a 18.41 b 0.94 b 

                            
Values are means of five independent replicates. Different letters indicate significant 
differences between means according to one-way ANOVA and Tukey’s HSD test 
(p≤0.05). 
 



59 

 

As expected, Mg concentration of Mg-deficient plants was much lower than the 

Mg-adequate plants. At least 2 times more Mg was found in plants with adequate Mg 

supply (Table 3.3). Similarly, also Mg content results were significantly affected from 

varied Mg supplies (Table 3.4). In good agreement with better growth, plants with 

adequate Mg supply had much higher content (total uptake) of Mg. 

 

 

Table 3.3: Concentrations of Mg (mg.kg-1) in different parts of the coffee plants 

(Coffea arabica cv. Murta) supplied with low (0.01 mM) and adequate (0.4 mM) Mg 

under greenhouse conditions. 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4: Contents of Mg (µg.kg-1) in different parts of coffee plants (Coffea arabica 

cv. Murta) supplied with low (0.01 mM) and adequate (0.4 mM) Mg under greenhouse 

conditions. 

 

 

 

 

 

 

 

 

 

Mg concentration (mg.kg-1) 

Mg  
Supply 

  Young 
Leaves 

  App. 
Leaves 

  Old 
Leaves 

  
Roots 

  

     

              
Low 1139 a 534 a 655 a 1371 a 

Adequate 2744 b 2440 b 2819 b 3130 b 

                            
Values are means of eight independent replicates. Different letters indicate significant 
differences between means according to one-way ANOVA and Tukey’s HSD test 
(p≤0.05). 

Mg Content (µg.kg-1) 

Mg  
Supply 

  Young 
Leaves 

  App. 
Leaves 

  Old 
Leaves 

  
Roots 

  

     

              
Low 498 a 108 a 613 a 710 a 

Adequate 933 b 797 b 3863 b 3371 b 

                            
Values are means of eight independent replicates. Different letters indicate significant 
differences between means according to one-way ANOVA and Tukey’s HSD test 
(p≤0.05). 
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Potassium concentrations of the plants were also measured and shown in Table 

3.5. It is obvious that K concentrations were very much affected by the Mg supply level 

(Table 3.5). Potassium concentrations of low Mg plants were found higher when 

compared to Mg sufficient plants. All fractioned plant parts of Mg deficient plants 

(including roots) had shown increased concentration of K especially in leaves. 

 

Table 3.5: Concentrations of K (%) in different parts of the coffee plants (Coffea 

arabica cv. Murta) supplied with low (0.01 mM) and adequate (0.4 mM) Mg under 

greenhouse conditions. 

 

Potassium content of the plants is shown in Table 3.6. Similar trend that 

observed for K concentration results was also observed for K content data. Under Mg 

deficient conditions, K content of the all plant parts was significantly increased.  

 

Table 3.6: Contents of K (mg.plant-1) in different parts of the coffee plants (Coffea 

arabica cv. Murta) supplied with low (0.01 mM) and adequate (0.4 mM) Mg under 

greenhouse conditions. 

K Concentration (%) 

Mg  
Supply 

  Young 
Leaves 

  App.  
Leaves 

  Old 
Leaves 

  
Roots 

  

     

              
Low 3.10 a 3.37 a 3.18 a 2.73 a 

Adequate 2.15 b 1.57 b 1.74 b 2.41 b 

                            
Values are means of eight independent replicates. Different letters indicate significant differences 
between means according to one-way ANOVA and Tukey’s HSD test (p≤0.05). 

K Content (mg.plant-1) 

Mg  
Supply 

  Young 
Leaves 

  App.  
Leaves 

  Old 
Leaves 

  
Roots 

  

     

              
Low 13.6 a 7.0 a 29.9 a 13.9 a 

Adequate 7.8 b 5.1 b 23.7 b 26.1 b 

                            
Values are means of eight independent replicates. Different letters indicate significant differences 
between means according to one-way ANOVA and Tukey’s HSD test (p≤0.05). 
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3.4 Discussion 
 
 
 
 

Intervenial chlorosis and necrosis of leaves is a common symptom of Mg 

deficiency in plants. In the present experiment, coffee plant developed yellowish color 

and too many necrotic spots when exposed to low Mg supply. Similar observations have 

been also made previously on 2 different variaties of coffee plants by Silva et al. (2014). 

According to Nagao et al. (1986), Mg-deficient coffee plants first developed slight 

chlorosis symptoms on the older leaves; then when the Mg-deficiency conditions 

prolonged light brown necrotic spots was observed on older leaves while younger 

leaves were not affected as observed in the present study. The chlorosis symptoms and 

necrotic spots are attributed to chlorophyll degration under Mg deficient conditions 

(Gransee and Führs, 2013), most probably by the peroxidative attack of oxygen free 

radicals which generated in chloroplasts, especially when plants exposed to high light 

(Cakmak and Kirkby, 2008, Mengutay et al., 2013). 

In this study, as expected, low Mg plants produced less shoot and root biomasses 

when compared to adequate Mg plants (Table 3.1). Root growth of Mg deficient coffee 

plants was found to be more susceptible to Mg deficiency than shoot growth (Table 3.1; 

Figure 3.2). Therefore, a higher shoot to root ratio was found under low Mg conditions. 

Increased shoot to ratios under Mg deficiency was also reported for different plant 

species such as citrus (Yang et al. 2012), common bean (Cakmak et al. 1994a), spinach 

(Fisher et al. 1988) and pepper (Riga and Anza, 2003). Susceptibility of root growth to 

Mg deficiency can be a result of impaired carbohydrate supply from source to sink 

organs, such as roots (Cakmak et al. 1994b). 

The adequate leaf Mg and K concentrations for coffee plants are given as 0.25-

0.40% and 2.1-2.6% respectively (FAO, 2015). Also in other studies, following Mg 

ranges for coffee plants were reported as 0.25-0.40% for sufficient Mg concentration 

(Lima Filho and Malavolta, 2003), and 0.30-0.35% for sufficient and 0.04-0.11% for 

deficient Mg conditions (Nagao et al., 1986). In this study Mg concentrations in the 

shoot parts of coffee plants were in sufficient range when Mg supply was adequate 

(Table 3.3). Under Mg-deficient conditions, Mg concentration was found below the 

optimum level. 
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To our knowledge, there is no published report that studied the translocation and 

absorption rate of 26Mg from leaves in coffee plants under low and adequate Mg 

concentrations. The results showed that Mg-adequate plants absorbed and translocated 

more 26Mg than the low Mg plants (Table 3.2). This result was not expected. Normally, 

the hypothesis was low Mg plants should exhibit higher uptake and transportation rate 

due to increased demand for Mg. For this contradictory result: one explanation could be 

the presence of higher leaf K concentrations in low Mg plants (Table 3.5). Higher tissue 

K concentrations in the 26Mg-treated leaves may represent an inhibitory factor for leaf 

uptake and transport of Mg. It is well-known that higher K concentrations in growth 

medium have an inhibitory effect on root uptake of Mg (Ding and Xu, 2011; Gransee et 

al., 2013). Previously, also Pettiet (1988) showed that root Mg uptake reduces when 

there is sufficiently high K in the soil. Antagonistic relationships between Mg and K 

elements were studied in a variety of plant species such as tomato (Solanum 

lycopersicum) (Hartz et al. 1999), wheat (Triticum aestivum) (Ohno and Grunes, 1985), 

maize (Zea Mays) (Pathak and Kalra, 1971; Bertic et al. 1989) and spinach (Spinacia 

oleracea) (Hohlt and Maynard, 1996).   

Despite less absorption of 26Mg by low Mg plants, there was, however, higher 

accumulation of 26Mg in roots of low Mg plants than Mg-adequate plants (Table 3.2 B). 

Probably, the 26Mg that was observed by low Mg plants is preferentially translocated 

into roots. Since root growth shows much higher sensitivity to low Mg supply than 

shoot growth (Table 3.1; Cakmak et al., 1994), probably roots are a very strong sink for 

the absorbed 26Mg under low Mg supply. Consequently, roots of low Mg plants 

accumulated higher amounts of 26Mg when compared to Mg sufficient roots. Since 

adequate Mg roots had already sufficiently high amount of Mg, transportation of 26Mg 

into roots was restricted in plants with adequate Mg supply. 

The results clearly demonstrate that coffee plants can absorb foliarly applied Mg 

and transport it in other parts of shoots and roots. This result might be important in 

respect to better root growth and development in acidic soil conditions, especially in 

subsoil part of soils where soil applied Mg cannot be moved adequately. Since low Mg 

plants did not show higher foliar absorption of 26Mg in contrast to the expectations, 

there is a need to repeat such type of foliar spray experiment by using 26Mg also in 

other crop plants such as wheat and maize.  

Collection of information on leaf absorption and transportation of foliarly 

sprayed Mg is also important in terms of human nutrition. Biofortification of food crops 
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with Mg is becoming an important topic because of increasing number of people is 

affected from low dietary intake of Mg, especially in western countries due to low 

dietary intake (Rosanoff, 2013). Improving Mg concentrations of edible parts of food 

crops, such seeds/grains and leaves by foliar spray of Mg-containing fertilizers would 

be an effective way to mitigate Mg deficiency problem in human populations. 
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 (C)  GENERAL DISCUSSION AND CONCLUSIONS 
 
 

 Rising of the global mean temperature (IPCC, 2007) is expected to lead to 

extreme environmental conditions on a large scale for crop plants such as drought and 

heat stress. It a known fact that the size of agricultural lands is limited and together with 

increasing risk with more severe environmental stress factors it will become too 

challenging to feed the increasing world population and produce nutritious food 

(Schmidhuber and Tubiello, 2007). In addition to heat and drought stress factors, nearly 

40% of the agricultural soils in world have acidity and Al toxicity problem which 

eventually leads to Mg deficiency (Gransee and Fuhrs, 2012). The soils which have low 

pH and Al toxicity problem are also found in the tropical climate regions where drought 

stress and high temperature can be observed often and simultaneously. Under such 

adverse circumstances risk with Mg deficiency in plants and foods become inevitable. 

 Besides its importance for crop production, Mg also represents a crucial element 

for human diet and required for a successful and healthy functioning of organs and 

muscles (de Baaij et al., 2015). However, according to Worthington (2001) Mg content 

of food crops, especially in fruits, cereal grains and vegetables are decreasing and up to 

90% of the Mg content in foods is lost during the food processing (Rosanoff, 2013; de 

Baaij et al., 2015). The loss of Mg in diet results in diverse of impairments in human 

health including cardiovascular diseases, stroke, neurodegenerative disease etc. (Bo and 

Pisu, 2008; Broadley and White, 2010; Rosanoff et al., 2012) and increasing the content 

of Mg in food and feed became an important challenge of plant scientists. 

 With its diverse of critical physiological functions Mg greatly contributes to 

maintenance of successful growth and development process. For example, distribution 

of Mg in plant leaves gives an important clue about the function of Mg: up to 75% of 

the Mg is associated with the protein synthesis, approximately 20% of it located in the 

chloroplasts and the remaining Mg is found to be stored in vacuoles (Karley and White, 

2009). Therefore, efficienct functioning of the chlorophyll for light energy capturing 
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(Cowan, 2002), activation of key enzymes in the photosynthetic pathway (Wedding and 

Black, 1988; Portis, 1992); synthesis and function of the ATP (Ko et al., 1999); 

functioning of H+-ATPase required to drive the phloem loading of assimilates (Bush, 

1989, Hermans et al., 2005) depend on adequate Mg nutrition of plants. In addition, 

Mg-ATP has been shown as the major comple of ATP in cellular systems (Getz and 

Klein, 1995).  

 Under drought stress conditions, photosynthesis machinery is seriously affected. 

As a result of closure of stomata and decreased accumulation CO2 (Chaves et al., 2003; 

Flexas et al., 2004); due to reduced flow of CO2 into mesophyll tissues and thus 

restriction in CO2 fixation, high energy light electrons which are normally released for 

carbon fixation are transferred to O2 instead of CO2 leading to generation os highly 

dangerous ROS (Asada, 1994).  Since due to very similar physiological impairments, 

also Mg deficiency promotes ROS generation in chloroplasts (Cakmak and Kirkby, 

2008; Mengutay et al., 2013), it is plausible to suggest that combination of Mg 

deficiency with drought stress condition will maximize depressions in growth and yield 

formation. In Chapter 2 (Table 2.1 and 2.5), the results obtained showed that growing 

low Mg plants under water limited conditions, grain yield was more severly depressed. 

It is known that grain yield capacity of wheat under drought stress conditions is greatly 

affected from the total amount of water soluble carbohydrates from stem into seeds 

(Goggin and Setter, 2004; Ehdai et al., 2006; Rebetzke et al., 2008). It is suggested that 

up to 70% of grain yield capacity of wheat under drought stress depends on delivery of 

carbohydrates from stem into grain. Since Mg has fundamental effects on both 

biosynthesis and transportation of carbohydrates in plants (Cakmak et al., 1994 b; 

Hermans et al., 2005; Cakmak and Kirkby, 2008), Mg nutritional status of plants under 

drought stress should be highly important. Probably, low Mg supply caused further 

decreases in yield capacity of plants because of its adverse effect on transportation of 

carbohydrates not only from leaves but also stem into grains. 

In chapter 2, exposure of plants simultaneously to low Mg and drought stress 

conditions severely reduced straw dry weights and grain yield. Under low water 

availability, adequate Mg supply enhanced the grain yield, concentration and content of 

grain Mg and grain starch contents. These results indicate that even though plants are 

suffering from low amount of water, supply an adequate Mg can improve grain yield 

probably due to better transportation of carbon from vegetative tissues into grains and 

consequently higher starch content in grains as shown in both Chapter 1 and 2.  
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In Chapter 1,  it was shown that starch content of seeds were increased by  

adequate Mg supply, while starch was accumulated in vegetative parts of low Mg 

plants. Starch contents and concentrations were found to be higher in flag and 

remaining leaves under low compared to adequate Mg supply, while concentrations and 

especially content of grain starch were markedly higher in Mg adequate plants. It was 

also found that the adverse effect of low Mg supply on grain yield is related to 

decreases in weight of individual seeds rather than number of seeds per spike. These 

results highlight importance of Mg in yield formation by affecting carbon allocation 

into seeds during the reproductive growth stage. Foliar spray of Mg in form of MgSO4 

to low Mg plants was very effective to improve grain yield, and this  positive effect of 

foliar Mg spray was closely related to better transportations of photoassimilates into 

grain because grain starch content and seed weight were strongly improved by Mg 

spray. Foliar supply of Mg nearly doubled the starch content per grain that emphasizes 

again particular role of Mg in phloem transportation of photoassimilates into seeds. 

 In practical agriculture, foliar spray of Mg fertilizers is often used. Foliar Mg 

fertilization could be of great importance under low water status of soils. It is known 

that Mg reaches to roots through bulk flow in soils which is directly under influence of 

soil water content (Granse and Fuhrs, 2013). Transpiration capacity of plants has also a 

significant effect on root Mg uptake (Jezek et al., 2015). Based on these observations 

and findings it can be suggested that low soil moisture can impair Mg nutritional status 

of plants. Cakmak and Kirkby (2008) indicated that during the reproductive growth 

stage topsoil is usually dry which may reduce root Mg uptake substantially. Therefore, 

under such growth conditions and growth stages a foliar spray of Mg fertilizers could be 

very beneficial. As shown in the present study, foliar Mg application was very effective 

to mitigate deficiency stress and improve grain yield. Since Mg deficiency might be 

hidden and may reduce yield without appearance of leaf symptoms it is advisable for 

growers to monitor Mg nutritional status of plants during the reproductive growth stage 

and examine plant response to foliar Mg spray. 

The positive effects of foliar Mg application in Chapter 1 were found with 

application of 4% MgSO4.  Interestingly, there was no significant change in straw and 

shoot dry weights between the low Mg and low+foliar Mg plants. Also, the number of 

grains per spike and number of spikes per plant remained unaffected from different Mg 

supply rates. However, grain yield and thousand grain weight (TGW) of grains were 

significantly increased with foliar Mg application to Mg-deficient plants, indicating 
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important role of foliarly sprayed Mg in transportation of photoassimilates into grain. 

Probably, foliar spray of Mg had also increasing effect on phloem transportation of 

amino acids and Zn. A positive effect of Mg on phloem transportation of amino acids 

has been shown previously (Cakmak et al. 1994b), supporting the findings with grain 

protein in Chapter 1. Grain contents of N were significantly increased under foliar 

application of Mg than low Mg conditions. 

Foliar application of Mg could be also very important in acidic soils, especially 

in case of subsoil acidity. Correction of pH and overcoming Al toxicity could be 

realized in topsoil by applying lime or organic substances (Masrschner, 2012). 

Similarly, other typical nutritional problems of acidic soils such as Ca and Mg 

deficiencies can be also minimized by applying Mg- and Ca-containing fertilizers to 

soil. However, such agronomic tools are not helpful to mitigate Al toxicity or Mg 

deficiency in subsoil. One approach to provide Mg to roots growing in subsoil zone 

could be foliar spray of Mg fertilizer. In Chapter 3, the effectiveness of foliar Mg spray 

in increasing root Mg was studied. In this part of the thesis, we used coffee seedlings 

because coffee is a typical crop in acidic soils and very sensitive to low Mg (Matiello, 

1985; Nagao et al., 1986). There is also no published evidence about the role of foliarly 

sprayed Mg in transportation of Mg in the roots, at least for coffee. 

The experiment in Chapter 3 was designed to investigate the uptake and 

transport of foliarly applied Mg in Mg-deficient and Mg-sufficient plants. To measure 

the translocation rate of Mg precisely and distinguish the foliarly absorbed Mg from the 

Mg absorbed from roots or exiting in plants already, a stable isotope of magnesium, 
26Mg, was used. The results have shown that coffee plants are very sensitive to low Mg 

in growth medium, especially the root growth. The results with 26Mg applications 

showed that leaves absorb and translocate 26Mg under both low and adequate Mg 

supply. Interestingly, low Mg plants translocated more 26Mg into roots than the Mg-

adequate plants; but much less in the leaves.  The 26Mg concentrations of young and old 

leaves of the adequate Mg plants were found significantly higher than the Mg-deficient 

plants. It is not well understood why foliarly absorbed 26Mg is translocated 

preferentially in the roots but not in the other sink organs such as young leaves in plants 

with low Mg supply. Additional experiments are needed to clarify this result. One 

explanation could be related to root growth. As mentioned several times, root growth is 

highly sensitive to low Mg. Probably, roots under low Mg are stronger sink for the 

foliarly absorbed Mg than other plant organs. 
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Based on the results presented in this thesis, it can be concluded that Mg has 

critical functions in plants that affect both productivity and nutritional quality of plants. 

In the Chapter 1 and 2, results are presented showing that by affecting the amounts of 

protein and micronutrient concentrations (especially Fe), an adequate Mg nutrition may 

contribute to better nutritional value of the harvested products. Foliar spray of Mg is 

also important in improving grain Mg and also root Mg. Improving root Mg by foliar 

spray is of great importance for the marginal soil conditions which reduce root capacity 

of plants to absorb Mg. Increase in grain-Mg by foliar Mg applications can contribute to 

higher Mg concentrations in cereal based foods and thus better dietary intake of Mg in 

human populations. 
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