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1 Abstract
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Two important issues in the current mobile cellular networks are: Firstly, the traffic on the

internet has shifted from the file downloads to the video and audio streaming, secondly, the

energy efficiency of cellular networks is a major concern. Particularly, the ever-increasing

number of users with the exponential growth of high-data-rate traffic demand creates new

challenges for wireless access providers. On the one hand, service providers want to sat-

isfy the growing mobile data traffic demands but on the other hand, they try to reduce the

operational costs and carbon emissions by decreasing the energy consumption.

In this work, we explicitly quantify the tradeoff between quality of experience (QoE) and

energy efficiency in a heterogeneous cellular network. We investigate an optimal resource
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on-off switching framework that minimizes the energy consumption of a heterogeneous cel-

lular network while satisfying a desired level of quality of user experience. Considering an

ON/OFF bursty arrival process, we introduce recursive equations to obtain the buffer starva-

tion probability, as a QoE metric, of a mobile device (MD) for streaming services. The MD is

in the coverage area of a femtocell base station (FBS) which is implemented at the cell edge

of a macrocell base station (MBS). The buffer starvation event occurs whenever the mobile

device’s buffer gets empty, and after each such event, the media player of the MD restarts the

service after a certain amount of packets are prefetched (start-up or initial buffering delay).

Our results have the potential to reduce carbon emissions of cellular networks by reducing

the energy consumption throughout the network, while guaranteeing a target starvation prob-

ability to mobile users.
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2 Introduction

2.1 Motivation

During the past decade, due to extensive popularization of smart mobile terminals, there has

been an increasing demand for wireless communication services, which have extended be-

yond telephony services to include audio and video streaming [1]. Accordingly, the conven-

tional homogeneous cellular networks based on the careful deployment of MBSs have faced a

serious challenge to meet this overwhelming demand of network capacity, as they suffer poor

signal quality for indoor and cell edge users. In order to address this issue and provide better

coverage, heterogeneous cellular networks have been introduced in the LTE-Advanced stan-

dardization [2–4]. A heterogeneous network, as shown in Fig. 1, uses a mixture of macrocells

and small cells such as microcells, picocells, and femtocells.

Even though implementing of small cell networks is seen to be a promising way of catering

to the ever increasing traffic demands, the dense and random deployment of small cells and

their uncoordinated operation raise important questions about the implication of energy effi-

ciency in such multi-tier networks [5–8]. In fact, the huge development of information and

communication technology (ICT) industry has become one of the leading sources of energy

consumption and is expected to grow exponentially in the future [9]. The rapid increase in

energy cost and CO2 emissions has made the network operators realize the importance of

designing their networks in an energy efficient manner [10–12]. The energy consumption of

the cellular networks mostly comes from the BSs [13]. It has been estimated that the energy

consumption of BSs is about 60% to 80% of that of the whole cellular network [11], [13–16].
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Figure 1: Typical Heterogeneous Cellular Network Architecture

There are many ways to reduce the energy consumption of BSs in Cellular networks: from

topological management (e.g., the deployment of micro BSs and/or relays [17–19]) to hard-

ware design (e.g., more energy efficient power amplifiers [20] and natural resource for cool-

ing [21]). Moreover, since the energy consumption of a BS mainly comes from the cool-

ing, controller, baseband signal processor and other circuits ( these energy consumptions are

known as the fixed power consumption of a BS), rather than the transmit power which con-

sumes only 3.1% [22], turning BSs into sleep mode whenever possible is another promising

strategy to reduce the energy consumption [13], [23–36]. Because of the high fluctuations

in traffic demand over space and time in cellular networks [12], [37], some BSs could be

switched off when the traffic load in their coverage area is low, and the users in sleeping cells

can be served by neighboring active BSs [36]. Nevertheless, applying sleep/active strategy

and turning some BSs into sleep mode may deteriorate the Quality of Service (QoS). There-

fore, in order to make a tradeoff between QoS and energy efficiency of cellular networks,

researchers have been investigating different active/sleep schedules while guaranteeing ac-

ceptable QoS such as delay [16], coverage performance [38], blocking probability [39], and

spectral efficiency [40].
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Motivated by the ever-growing demand for video streaming services in the past decade, the

QoE that we consider in this work is the starvation probability of a MD buffer. The probability

of buffer starvation is an important performance measure for video streaming services, as the

quality of the video perceived by mobile devices is strongly related to the starvation event.

The probability of starvation (also known as jitter probability) for video streaming services

has been investigated in [41–45]. The event of starvation happens when the buffer gets empty,

and after each such event, the media player of the MD resumes the service when there is a

certain amount of packets accumulated in the buffer (prefetching). According to studies

in [46–48], the user perceived video quality (or QoE equivalently) is deteriorated by two

major parameters, the large start-up delay and the frequent starvation. Therefore, the media

streaming service is under the influence of two factors which are the prefetching process and

the starvation event. In fact, as the prefetching process gets shorter the starvation event occurs

with a higher probability, and a longer prefetching process results in a larger start-up (initial

buffering) delay.

2.2 Contributions

In this work, we introduce recursive equations, based on the approach in [49], to obtain the

starvation probability of a buffer for an ON/OFF bursty arrivals and in a time-slotted queuing

system. Unlike [41] where the authors obtain the buffer starvation probability of a user that

could be served only through a single source, we evaluate the starvation probability while

the MD is within the coverage area of two BSs namely MBS and FBS. Accordingly, the

MD may be served by either of these BSs depending on which one is in active mode. On

the other hand, analyzing the aggregated active/sleep period length distribution analytically

has been an unsolved challenging problem in the literature. In [50], the authors use Monte

Carlo simulations to investigate the characteristics of the OFF-period length distribution in

an aggregated ON/OFF process. In our work, using a three state Markov chain and applying

the first step analysis, we investigate analytically the aggregated active/sleep period length

distribution for the first time in the literature.
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2.3 Organization of Work

This work is organized as follows: Chapter 2 is allocated to introduction. In chapter 3, we

go over literature. In 3.1, we explain what the green communication is and why we need

it. Video streaming and buffer starvation probability are discussed in 3.2, 3.3, respectively.

In chapter 4, we describe the system model under consideration. We introduce the BSs’

sleep/awake strategy in 4.2, and then the energy consumption model is given in 4.3. In

chapter 5, we present the calculation of buffer starvation probability with an ON/OFF bursty

arrival. In order to derive the buffer starvation probability, we first introduce a recursive

equation in 5.1. The relative recursive equation includes a term which denotes the probability

of number of packets leaving the MDs buffer during an inter-arrival period of time. To obtain

this term, we first derive the probability generating function of inter-arrival time in 5.2, and

then in 5.3, we obtain the distribution of number of packets that leave the MD’s buffer during

this period. We formulate our optimization problem in 5.4. In chapter 6, we validate our

analysis via simulation results. Lastly, our conclusions and future work directions are given

in chapter 7.
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3 Literature Review

3.1 Green Wireless Communications

During the past decade, the demand for wireless communication services has been increas-

ing exponentially, as the smart mobile terminals are getting more and more popular. This

issue has led to a wide deployment of wireless access networks to meet the overwhelming

demand for network capacity, and accordingly, the power consumption of the cellular net-

works has significantly increased [51]. The high energy consumption of cellular networks

has arisen environmental and financial concerns for both network operators and users, and

QoE considerations for the end users.

Regarding the environmental concerns, the research in [52] reports that ICT contributes 2

percent of the total CO2 emissions worldwide, and this amount is expected to increase to 4

percent by 2020. In addition, the study in [53] indicates that the high energy consumption

of BSs and MDs leads to high heat dispersion and electronic pollution. From a financial

perspective, energy costs constitute a significant part of the operating expenses of network

operators [38, 54]. In particular, according to [55], energy costs of network operators range

from 18 percent to 32 percent of their operational expenditure. From a mobile user QoE

aspect, in [56], it is claimed that more than 60 percent of users complain about their mobile

devices’ battery life time. Moreover, the gap between the energy demand and the battery

capacity offered to mobile users is significantly increasing [57]. Because of the above men-

tioned problems, there has been a crucial necessity for energy efficient solutions in cellular

networks. The conducted research works in this direction are referred to green solution,

where the term green indicates that the proposed solutions are friendly to the environment.
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In the following, we go over the set of research work carried out in the direction of green

communications.

Studies on the energy footprint of mobile networks indicate that energy consumption of the

cellular networks mostly comes from the BSs. In particular, the research in [16] indicates that

BSs contributes 60% to 80% of the total energy consumed by a cellular network. Reducing

the transmitted power of BSs [58] is not sufficient enough to reduce the energy consumption

of cellular networks, as a major part of the energy comes from load-independent compo-

nents, such as cooling, controller, baseband signal processor, and other circuits. Different

approaches aiming at minimizing the power consumption in BSs can be divided into follow-

ing three types. First, increasing the number of cells in order to reduce the cell size, which

brings the BSs and mobile terminals close to each other, i.e., it reduces the distance between

BSs and MTs, and accordingly the BSs need on average a lower transmission power for es-

tablishing a reliable communication. Secondly, introducing femtocells and indoor distributed

antenna systems which use MIMO technology. This approach has been proposed to maintain

high spectral efficiency through reducing the co-channel interference resulted from frequency

reuse between the femtocells. Thirdly, according to [54] BSs in a mobile network are typi-

cally underutilized. Motivated by high fluctuations of traffic load which is shown in Fig. 2,

in order to reduce the energy consumption of cellular networks, some BSs could be switched

off when the traffic load in their coverage area is low. However, turning some BSs into sleep

mode may deteriorate the QoS or QoE required by the end users. Therefore, an important

set of works on green communications has been dedicated to the tradeoff between energy

efficiency and QoS/QoE.

In [16], the authors formulate a total cost minimization problem that provide a tradeoff

between flow-level performance and energy consumption. Under the assumption of time-

scale separation, the authors decouple user association and dynamic BS on/off operation

and purely focus on each of these problems. In [28], the optimal design of proportion of

off-mode MBSs, active MBSs’ transmission power power, and small cell BSs density has

been investigated to minimize BS energy consumption while satisfying MDs power con-
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Figure 2: Normalized real traffic load (voice call information) during one week that are recorded by
an anonymous cellular operator

sumption constraint. In [38], based on two different sleeping mechanisms, random sleeping

and strategic sleeping, the authors model different optimization problems to minimize the

power consumption of BSs subject to a coverage probability constraint for both homoge-

neous and heterogeneous cellular networks. In [39], a dynamic programming (DP) problem

has been formulated to minimize the energy consumption while satisfying a target blocking

probability as the QoS metric.

In [59], in an OFDMA cellular network, assuming that the base stations and mobile devices

are located according to homogeneous Poisson point process with different rates, they study

the impact of switching off base stations on the total expected power consumption, on the

coverage, and on the amount of radiation to the humans body, under the following two con-

ditions, considering interference when the traffic is heavey and neglecting radio interference

for a light traffic. In [33], the authors introduce a 2-level scheme that adjusts cell sizes be-

tween two fixed values to optimize the energy consumed in a mobile network. They show

that there are factors such as base station technology, data rates, and traffic demands that
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significantly affect the choice of optimal cell size to minimize the energy consumption in a

mobile network. In [60], the authors study energy consumption of different cellular network

architectures. Specifically, they compare the transmit power consumption between a single

large cell with multiple antennas, multiple small cell with a single antenna at each cell, and

a large cell with a distributed antenna. They claim that macrocells with distributed antennas

have the best energy efficiency compare to other two architectures under perfect channel state

information (CSI).

The research work in [61] formalizes the problem of jointly optimizing the base stations

transmit power and user association to minimize overall power consumption while guaran-

teeing a target blocking probability, and then an iterative algorithm, which takes the inter-cell

interference into account, has been proposed to solve the problem. The work in [29] aims

in minimizing the energy consumption of the overall heterogeneous cellular network while

satisfying the Quality of Service (QoS) required by the mobile terminals. Using Markov

Decision Processes, the authors study optimal sleep/awake schemes for the femtocell base

stations , which are deployed within macrocell BS, for the following three different cases,

the information on traffic load and user localization in the cell is complete, partial or delayed.

In [62], the authors propose a theoretical framework for BS energy saving that considers dy-

namic BS operation and user association jointly. They formulate a total cost minimization

problem to analyze the tradeoff between flow-level performance and energy consumption

in a cellular network. By decomposing the general problem into two subproblems, energy-

efficient user association and energy-efficient BS operation, they investigate these problems

separately. For the user association problem, they propose an optimal energy-efficient user

association policy and also introduce a distributed implementation. For the dynamic BS op-

eration problem, they propose greedy-on and greedy-off algorithms.

The research in [63] investigates a component-level deceleration technique in BS operation,

called speed-scaling, which can conserve dynamic power effectively during periods of time

when traffic is low, while guaranteeing full coverage at all times. Their main goal is to eval-

uate an equilibrium which results from the interaction between speed-scaling and load bal-
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ancing for green cellular networks, and then introduce a distributed iterative optimal speed

control and user association policy. [64] study how small cell network deployment can meet

the growth in data traffic demand, while reducing both the cost and energy consumed. The

authors first obtain the closed form expressions for capacity , energy consumption and total

cost, and then present a tradeoff between Capacity, Energy and Cost. In [40], using stochastic

geometry and markov chain theory, the authors compute the analytical expressions of average

energy consumption and spectrum efficiency. Afterward, they analyze the tradeoff between

spectral efficiency and energy minimization of a heterogeneous cellular network with a sleep

control in which small cell BSs are adaptively turned into active or sleep mode based on traf-

fic variation.

The work in [65] characterize the trade-off between initial delay and the usage cost for guar-

anteeing a target interruption probability. In the first part, the author study the problem of

efficient streaming in technology-heterogeneous settings, where the mobile device is able to

receive a stream from different servers. To alleviate the duplicate packet reception problem

which is a major challenge in multi-server systems, the authors propose a random linear net-

work coding (RLNC) across packets within each block of the media file. In the second part,

considering an unreliable wireless channel, and assuming that each server delivers packets

according to a Poisson process with a known rate, they aim at developing an algorithm that

switches between the free and the costly servers to satisfy the desired QoE, which are the

probability of interruption throughout media playback and the initial buffering delay, at the

minimum cost. The authors use a Markov Decision Process, with a probabilistic constraint to

formulate the optimal control problem, and using the Hamilton-Jacobi-Bellman (HJB) equa-

tion, a characterization of the optimal policy has been presented.

In a heterogeneous cellular network, small cell BSs can be powered by distributed electricity

generators that utilize green energy provided by renewable resources such as wind and so-

lar. However, due to user traffic and energy supplies’ dynamic behavior, managing the green

energy powered small cell BSs to maximize the utilization of green energy is an challenging

issue. In networks powered by renewable sources,The fundamental design issue is how to
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utilize the gained energy to provision traffic demands of users in the network. Intelligent Cell

brEathing (ICE) is an approach which is proposed in [66] to minimize the maximal energy

depleting rates (EDRs) of Low-power base stations (LBSs), and hence maximizing the uti-

lization of the green energy. Due to the limited energy storage, the energy consumption of

LBSs might be larger than their energy storage, and thus these BSs are not able to serve all

the users with green energy. Accordingly, the relative users will be served by the high power

BS (HBS) which consume the main-grid energy. The authors in [66] demonstrate how ICE

enables more users to be served with green energy by balancing the energy consumptions

among LBSs, and therefore reduces the on-grid energy consumption.

Considering multicell cooperation technique, the authors in [67] aim at improving the en-

ergy efficiency of cellular networks through the following three approach. The first approach

is traffic-intensity-aware multicell cooperation, which adapts the network layout according

to users traffic demands to reduce the number of active base stations by switching off BSs

with a light traffic load. The second approach is energy-aware multicell cooperation, which

switches mobile users from on-grid base stations to green BSs powered by renewable sources

such as wind or solar, and accordingly, reducing the on-grid energy consumption. In the

third approach, the authors study coordinated multipoint transmissions for improving the en-

ergy efficiency of cellular networks. In [68], by define the network energy efficiency as the

ratio of the network total throughput to the network total power consumption, the authors in-

vestigate the optimal transmission power of micro BSs through formulating an optimization

problem to maximize the network energy efficiency while ensuring a target traffic coverage

ratio. In [69], considering both greedy and round-robin scheduling schemes at the active BSs,

for a typical sleeping cell user, the authors study two user association schemes as Maximum

best-case Mean channel Access Probability (MMAP) and Maximum Received Signal Power

(MRSP)-based user association. After the association is performed, the authors evaluate the

spectral and energy efficiencies by obtaining the exact access probability for a mobile user in

a sleeping BS and the statistics of its received signal and interference powers.

Cognitive radio and cooperative relaying are two other promising technologies that enable
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green communications in mobile networks. The main goal of cognitive radio is collecting

information on the spectrum usage and trying to access the unused frequency bands, in order

to compensate for the spectrum under-utilization. In order to understand how using spectrum

more efficiently can reduce power consumption, we refer to Shannones capacity formula [70],

where we find the trade-off between the bandwidth and power. In [71], it is claimed network

operator can save up to 50 percent of power through dynamically managing their spectrum

or sharing of spectrum which allow channel bandwidths to be increased. On the other hand,

owing to some undesirable properties of wireless communication channels, such as shadow-

ing effects, different types of fading and large path losses, serving the users which are far

from the BS requires a high transmission power from the relative BS to establish a reliable

communication. This high transmission power not only generates high levels of interface at

nearby users and BSs, but also leads to a high power consumption in the cellular network.

Cooperative communication is able to improve the MIMO systems in terms of coverage en-

larging and capacity enhancement [72]. Cooperative relaying technique divides a direct link

between BS and mobile terminals into several shorter links [73]. This technique alleviates

the wireless channel impairments such as path loss, and accordingly, BS and relays need a

lower transmission power for establishing a reliable communication. Enabling green com-

munication through cooperative techniques can be obtained by two different approaches. The

first approach aims at provisioning service to more users with less power consumption, and

is done through installing fixed relays within the coverage area of networks. And the second

approach is exploiting the mobile terminals to behave as relays.

In [74], the authors introduce an energy-efficient video streaming system for mobile ter-

minals. The video streaming system simultaneously benefits two communication channels,

cellular links which carry media content from the media Cloud to mobile terminals and WiFi

links enabling cooperation among mobile terminals. The latter one is due to the fact that

utilization of short-range communication links not only result in higher data rate and shorter

delays, two crucial performance metrics for multimedia streaming, but also according to [75],

it improves the energy efficiency on mobile terminals. The research in [76] studies the mobile

devices’ optimal sleep policy which minimizes both the energy consumption and the system
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response delay simultaneously, while sustaining the desired balance between the two. The

authors consider the following three different sleep period length distribution for the mo-

bile terminals, Exponential distribution, Hyper-exponential distribution which is for the case

when there is a prior distribution on the parameter of the exponential distribution, and the

parameter itself is unknown, and finally General distribution.

3.2 Video Streaming

Due to widespread development of ICT industry, ubiquity of internet access, and increasing

usage of mobile devices, there is an ever-growing demand for video streaming services. For

example, web video constitutes up to more than 37 percent of total traffic during peak hours

in USA [77]. In 2014, YouTube and Netflix hog up to 49 percent of the fixed access Internet

traffic, in North America, and YouTube solely constitutes 20 percent of the mobile internet

traffic [78]. In addition, according to the predictions of Cisco Visual Networking Index,

79 percent of all internet traffic will be based on internet protocol (IP) video traffic [79] in

2018. In contrast to exponential growth of internet traffic, bandwidth provision usually falls

behind. In this context, maintaining a satisfactory QoE of streaming service has been a crucial

challenge for network operators. In the literature, various QoS metrics, such as statistical

delay bound [80], are proposed to measure the quality of video perceived by mobile devices.

12



3.3 Buffer Starvation Probability

The probability of buffer starvation (also known as jitter probability), as an important perfor-

mance metric, has various applications in different fields, such as video streaming services.

Accordingly, there has been a great effort to investigate the starvation probability, as a QoE

metric, to improve to the video quality experienced by mobile devices. In [41], to obtain

the distribution of the number of starvations for a single file, two approaches has been in-

troduced. The first approach, which is suitable for independent and identically distributed

(i.i.d.) arrival process, is based on Ballot theorem. According to the Ballot theorem, for a file

of size N packets of which x1 packets is initially buffered before the service starts, the buffer

starvation probability is given as follows.

Ps =
N−1

∑
k=x1

x1

2k− x1

(
2k− x1

k− x1

)
pk−x1

a (1− pa)
k, (1)

pa =
λ

λ +µ
, (2)

where pa denotes the probability of packet arrival in a system in which the packet arrival and

the packet departure are modeled according to Poisson processes with rates λ and µ , respec-

tively. Their second approach is based on a recursive equation which can be used to obtain

the starvation probabilities for more complicated arrival process. In [42], the authors aim to

to investigate the amount of initial buffering needed for meeting a target interruption proba-

bility during a video file streaming. Modeling the receivers buffer as a queue with Poisson

arrivals and deterministic departures, i.e. M/D/1, they provide upper and lower bounds on

the minimum initial buffering required to keep the playback interruption probability below

a target level. Additionally, they show that for arrival rates slightly larger than the playback

rate, the minimum initial delay for a given jitter probability remains bounded as the file size

grows, and the interruption probability is given by:
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Pjitter = e−I(R)T1, (3)

where I(R) denotes the reliability function and is the largest root of γ(r) = r+R(e−r−1), T1

denotes the initial buffering delay. In [43], the video streaming problem has been investigated

over both constant and variable bit-rate (VBR) channels. To prevent the interruption event,

they specify the minimum required buffer for a given video stream and a deterministic VBR

channel. In [44], the authors aim to optimize the streaming of VBR encoded video over a

random VBR channel through, by investigating the fundamental tradeoffs between the initial

buffering delay, the end user buffer size, and the jitter-free playback probability. In [45],

considering the receiver buffer as a G/G/1/∞ and G/G/1/N queue,respectively, with arbitrary

packet arrival and packet departure processes, they compute the interruption probability us-

ing the diffusion approximation, and try to optimize the user perceived video quality in terms

of the initial buffering delay, seamless video playback and packet loss rate. In [81], the au-

thors study the effect of feedback based rate controls on video streaming service. Modeling

the receiver buffer as a finite-capacity single-server queue with a state-dependent arrival pro-

cess, the buffer-overflow and buffer starvation probabilities are analyzed using a discrete-time

Markov chain.
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4 Problem Definition

4.1 System Model

We consider a heterogeneous cellular network consisting of two base stations where a FBS

is implemented within the coverage area of a MBS. Our main goal is to optimize the energy

consumption of this heterogeneous cellular network while satisfying user QoE, which in this

work is guaranteeing a target buffer starvation probability for streaming services. To this

end, we consider a single media file with finite size N. The media content is pre-stored in the

media server (e.g., video on demand (VoD) service). After a request by the MD, the server

(either MBS or FBS) segments the file into packets and transfers them to the MD. In order

to correctly model the packet arrivals to the media player of the MD, we should consider

several important points. Firstly, we consider an ON/OFF bursty traffic model where the

sources (BSs) may stay for relatively long durations in ON and OFF modes, and the packet

arrival occurs only when a BS is in ON mode. Secondly, we divide the time into small slots

with duration h, and denote by ρm, ρ f the probability of packet arrival from MBS and FBS

to the media player of MD in a time slot, respectively. Assuming that in a continuous-time

scenario the packet arrival from MBS and FBS is modeled according to poisson processes

with rates λm and λf, respectively, ρm and ρ f can be defined as

ρm = (λmh)e−λmh, (4)

ρ f = (λfh)e−λfh. (5)
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Thirdly, we denote by ψm the probability that MBS is active, given that the system is in

ON mode, and by ψ f the probability that FBS is active, given that the system is in ON

mode. Note that the system is active whenever either MBS or FBS is in ON mode. To obtain

the probabilities ψm, ψ f , we use the Markov chain of our system model as shown in Fig.

1. The state space of this Markov chain is {(sm(k),sf(k)) : si(k) ∈ (ON,OFF) ; i = m, f},

where sm(k), sf(k) denote the state of MBS and FBS at time k, and ti j denotes the transition

probability from state i to state j. In Fig. 1, the states 0, 1, 2 denote the state space (OFF,OFF),

(OFF,ON), and (ON,OFF), respectively. In this model, since we consider the MD that is under

the coverage area of both FBS and MBS, only one base station is needed to be in active mode

for serving this MD. Moreover, keeping in mind that we more prefer the FBS rather than MBS

to server the end user, there will be one transition from the state (ON,OFF), which denotes the

MBS to be active and FBS to be in sleep mode, to state (ON,ON) and there would not be any

transition back to (ON,OFF), instead there would be one transition from state (ON,ON) to

(OFF,ON), which denotes the MBS to be in sleep and FBS be in active mode, and again there

would not be any transition back to state (ON,ON). Accordingly, omitting the state (ON,ON)

in our system model, will not effect the general problem of minimizing the cellular network

energy consumption. However, the consequence of this assumption is that the MD cannot be

served while both MBS and FBS are in active mode.

Figure 3: Markov Chain
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We denote by π1, π2 the steady state probabilities of states 1 and 2, i.e., the proportion of

time that each FBS and MBS is in active mode at the steady state. Therefore, we obtain ψm

and ψ f as follows.

ψm =
π2

π2 +π1
, (6)

ψ f =
π1

π2 +π1
. (7)

Using equations (4)-(7), we obtain the probability of packet arrival to the media player of a

MD during a time slot h as follows.

ς = ψmρm +ψ f ρ f . (8)

The probability ς denotes the probability of packet arrival from either MBS or FBS to the

MD’s buffer during a time-slot h. We model the arrival process as a bernoulli process with

this success probability ς . In addition, we assume that at the buffer of a MD packet depar-

ture follows an exponential distribution with rate µ . Using this assumption we obtain the

probability of packet departure, denoted by ω , in a time-slot h as follows.

ω = 1− e−µh. (9)

Considering ω as the probability that a packet completes its service during a small time slot

h, we model the service process at the media player of the MD as a bernoulli process with

probability ω .
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4.2 Base Stations Active/Sleep Schedules

The active/sleep period durations of BSs are modeled as four independent and identically

distributed (i.i.d.) random variables. More specifically, we model the active period durations

of MBS and FBS according to an exponential distribution with rates αm and αf, respectively.

The sleep period durations of the BSs are modeled as exponential distributions with rates βm,

βf for macrocell and femtocell, respectively. Recall that we are considering those users that

are under the coverage area of femtocell base station, so the users could be served by FBS

or MBS depending on which one is active. However, we assume that the arrival rate from a

FBS is more than that a MBS provides to the MDs.

4.3 Energy Consumption Model

The expected energy consumption of this cellular network is given by:

Etotal = Ef + γEm, (10)

where Em, Ef denote the expected energy consumptions of MBS and FBS, respectively. In

this model, we assume that the energy consumption of the MBS is γ times more than what

a FBS consumes per unit time. Note that Ef and Em are proportional to the average amount

of time that each FBS and MBS spends in active mode. Accordingly, to obtain Ef and Em,

we compute the average amount of time the system spends in states 1 and 2 of the Markov

chain shown in Fig. 1, respectively, in steady state. The energy consumed by a FBS per unit

time is considered as 5 Microjoule (5µJ). In addition, based on [12], the fixed power (load-

independent) consumption of MBS and FBS are set to 118.7 and 4.8 W. Accordingly, the real

value of γ can be approximately considered as 25.

18



Table 1: List of Parameters

h Time is divided into small slots and h denotes the duration of each time-slot
N File Size, i.e., number of packets of the considered file.
ti j The transition probability from state i to state j
ψm, ψ f The probability that MBS/FBS is active, given that the system is in ON mode
λm, λ f Poisson Packet arrival rate from MBS/FBS
π1, π2 The proportion of time that FBS/MBS is in active mode at the steady state

ρm, ρ f
Probability of packet arrival from MBS and FBS to the media player of MD in a
time slot

ς
Probability of packet arrival from either MBS or FBS to the MD’s buffer during a
time-slot

ω Probability of packet departure during a time-slot
αm, α f MBS/FBS active period exponential durations rates
βm, β f MBS/FBS sleep period exponential durations rates
Em, Ef The expected energy consumptions of MBS/FBS
p Probability of packet arrival during an active period
τ Packet inter-arrival time to MD’s buffer
ν Number of packets that leave the MD’s buffer during the inter-arrival time τ

Pi(m)
Probability of starvation for a file of n packets, given that there are i packets in the
buffer of the MD upon arrival of the first packet of this file
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5 Buffer Starvation Analysis

5.1 Probability of Starvation for an ON/OFF Bursty Arrival

In this section, we define a recursive approach to obtain the buffer starvation probability of a

MD that is in the coverage area of the FBS, and FBS is implemented within the coverage of

the MBS, i.e. the mobile device could be served by both BSs. Note that the buffer starvation

analysis developed in this work can be used both for video and audio streaming services in

a video on demand basis, where the finite media file is pre-stored in the media server. We

denote by Pi(n) the probability of starvation for a file of n packets, given that there are i

packets in the buffer of the MD upon arrival of the first packet of this file. In our system, we

aim to obtain the starvation probability for streaming a file of size N packets (with a typical

packet size of 1460 bytes) while x packets of this file are prefetched before the service begins.

Therefore, the starvation probability in our system model corresponds to Pi(n) with i = x−1

and n = N− x+ 1. To compute Pi(n), we introduce recursive equations. To this end, we

define a quantity QON
i (k), 0≤ i≤ N−1, 0≤ k≤ i, which is the probability that k packets out

of i leave the MD’s buffer upon an arrival at the ON state, i.e., there is no packet arrival when

the system is in OFF mode (both BSs are switched off). To apply the recursive equations, we

start from the case n = 1.

Pi(1) = 0, ∀i≥ 1. (11)

When the file size is 1 and the only packet observes a non-empty queue, the probability of

starvation is zero. If i is zero, i.e. upon arrival we find the buffer empty, the starvation occurs
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for sure, thus yielding

P0(n) = 1, n = 1, ...,N. (12)

For n ≥ 2 , we have the following recursive equation:

Pi(n) =
i+1

∑
k=0

QON
i+1(k)Pi+1−k(n−1), 0≤ i≤ N−1. (13)

According to (13), when the first packet of the file arrives and finds i packets in the system, the

starvation does not happen. However, the starvation might happen in the service of remaining

n−1 packets. Upon the arrival of the next packet, k packets out of i+1 leave the system with

probability QON
i+1(k). Since the total number of packets is N, the starvation probability must

satisfy Pi(n) = 0 for i+n >N. In order to obtain Pi(n) using (13), we should first obtain the

term QON
i (k).

5.1.1 Number of Packets Leaving the Mobile Device’s Buffer During an Inter-Arrival

Period

As it is mentioned earlier, the term QON
i (k) denotes the probability that k packets out of i leave

the buffer of the MD during an inter-arrival period. First, we denote the random variable (r.v.)

of inter-arrival period by τ , and let T (z) = E[zτ ] be its probability generating function. Sec-

ondly, we denote by ν the r.v. of the number of packets that leave the MD’s buffer during

an inter-arrival period, and let N(z) = E[zν ] be its probability generating function. Using

the probability generating function T (z), we obtain the probability generating function of the

number of bernoulli departures, with a success probability as defined in (9), during the inter-

arrival period τ , i.e. we obtain N(z) from T (z). Finally, by evaluating the inverse transform

of N(z), we obtain the probability mass function (pmf) of r.v. ν , from which we obtain the

term QON
i (k).

Considering that an arbitrary packet has been generated by the system, we denote the time
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period from the instant at which this packet is generated until the point when the system goes

to sleep mode, i.e., both MBS and FBS goes to sleep mode, by active period number 1, and

the following sleep period by sleep period number 1. Then, we number the subsequent active

(sleep) periods by the numbers 2,3, ... . We define the event φm as the event in which the next

packet arrives during active period number m, (m=1,2, ...). The probability of φm is given as

follows.

Pr(φm) = qm−1 p, m≥ 1, (14)

where p denotes the probability of packet arrival in an active period, and q = 1− p. In other

words, the probability p denotes the event in which the time duration from the beginning of

an active period until the next packet arrival is less than or equal to the duration of that active

period. We let r.v. R denote the time duration from the beginning of an active period until

the next packet arrival in that active period, and r.v. Y denote the time duration of an active

period. In order to obtain p, we shoud first derive the distributions of random variables Y and

R.

5.1.2 System’s Aggregated Active Period Length Distribution

According to our system model which is shown in Fig. 1, and using the first step analysis we

obtain the probability mass function (pmf) of r.v. Y as follows.

T1(1) = t10, (15)

T1(k) = t11T1(k−1), (16)

T2(1) = t20, (17)

T2(k) = t22T2(k−1)+ t21T1(k−1), (18)
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where T i(.) denotes the number of steps that it takes to get to state zero, given that we are

initially at state i(i= 1,2), and ti j denotes the transition probability from state i to state j. To

obtain T1(k) in a closed formula, we rewrite (16) as follows:

T1(k) = t11T1(k−1) = t211T1(k−2) = ...

= tk−1
11 T1(1) = tk−1

11 t10, k = 1,2,3, ....
(19)

To obtain T2(k) in a closed formula, we rewrite (18) as follows.

T2(k) = t22T2(k−1)+ t21T1(k−1)

= t22[t22T2(k−2)+ t21T1(k−2)]+ t21T1(k−1)

= t222T2(k−2)+ t22t21T1(k−2)+ t21T1(k−1) = ...

= tk−1
22 T2(1)+ tk−2

22 t21T1(1)+ tk−3
22 t21T1(2)+ ...+ t21T1(k−1).

(20)

Inserting (17) and (19) in (20) results in:

T2(k) = tk−1
22 t20 + tk−2

22 t21t10 + tk−3
22 t21t11t10 + ...+ t21tk−2

11 t10

= tk−1
22 t20 + t21t10[tk−2

22 + tk−3
22 t11 + tk−4

22 t211 + ...+ tk−2
11 ]

= tk−1
22 t20 + t21t10tk−2

22

k

∑
r=2

(
t11

t22
)

r−2

= tk−1
22 t20 + t21t10(

tk−1
22 − tk−1

11
t22− t11

), k = 1,2,3, ....

(21)
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Using (19) and (21), we obtain the aggregated active period length distribution as follows.

FY (y) = ty−1
11 t10ψ f +

(
ty−1
22 t20 +

t21t10(t
y−1
22 − ty−1

11 )

t22− t11

)
ψm, (22)

where ti j denotes the transition probability from state i to state j.

5.1.3 Distribution of Inter-Arrival time R

Considering that the packet arrival to the MD’s buffer is modeled as a Bernoulli process with

a success probability defined in (8), we obtain the pmf of r.v. R as follows.

FR(r) = ς(1− ς)r−1, r = 1,2,3, .... (23)

5.1.4 Packet Arrival Probability During an Active Period

By the use of FY (y) and FR(r) we obtain the probability of packet arrival during an active

period as follows.
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p = Pr(R≤ Y) =
∞

∑
y=1

FY(y)
y

∑
r=1

FR(r) =
∞

∑
y=1

FY(y)
y

∑
r=1

ς(1− ς)r−1

=
∞

∑
y=1

FY(y)ς [1+(1− ς)+(1− ς)2 + ...+(1− ς)y−1]

=
∞

∑
y=1

FY(y)ς
1− (1− ς)y

ς
=

∞

∑
y=1

FY(y)−
∞

∑
y=1

FY(y)(1− ς)y

=
∞

∑
y=1

(t10ψ f −
t21t10

t22− t11
ψm)t

y−1
11 +(t20 +

t21t10

t22− t11
)ψmty−1

22

−
∞

∑
y=1

[(t10ψ f −
t21t10

t22− t11
ψm)t

y−1
11 (1− ς)y +(t20 +

t21t10

t22− t11
)ψmty−1

22 (1− ς)y]

= (t10ψ f −
t21t10

t22− t11
ψm)

1
1− t11

+(t20 +
t21t10

t22− t11
)ψm

1
1− t22

− (t10ψ f −
t21t10

t22− t11
ψm)

1− ς

1− (1− ς)t11
− (t20 +

t21t10

t22− t11
)ψm

1− ς

1− (1− ς)t22

= d1 +d2

(24)

where the values of d1 and d2 are given as follows.

d1 = (
1

1− t11
− 1− ς

1− (1− ς)t11
)(t10ψ f −

t21t10

t22− t11
ψm), (25)

d2 = (
1

1− t22
− 1− ς

1− (1− ς)t22
)(t20 +

t21t10

t22− t11
)ψm. (26)
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5.2 Probability Generating Function of Inter-Arrival Period

In Fig. 2, we illustrate the inter-arrival time τ in terms of three subsections, i.e., Ck, Sk, Dk.

Note that Ck denotes the time duration of active period number k given that this period ends

before the arrival of the next packet. Sk denotes the time duration of sleep period number k.

Dk denotes the time duration from the beginning of active period number k until the arrival

of the next packet given that this packet has arrived in this active period. Note that Ck, Sk,

Dk, k ≥ 1, are i.i.d. random variables. In Fig. 2, the sleep events point to the time instances

at which both BSs are in sleep mode, and thus the system is in sleep mode. The activation

events, after a sleep event, point to the time instances at which either FBS or MBS wakes up,

i.e. the system is in active mode.

Figure 4: Illustration of random variables τ , Ck, Sk, and Dk, k≥ 1, given that the next packet arrival
occurs in active period number m.

Accordingly, using (14) we define the probability generating function of inter-arrival time τ

as follows.

T (z) = E[zτ ] =
∞

∑
m=1

Pr(φm)E[zτ | φm],

=
∞

∑
m=1

pqm−1E[z

m−1
∑

k=1
(Ck+Sk)+Dm

],

=W (z)
∞

∑
m=1

pqm−1(U(z)V (z))m−1,

=W (z)
p

1−qU(z)V (z)
,

(27)

where U(z), V(z), W(z) denote the probability generating functions of random variables Ck,
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Sk, and Dk, k≥ 1, respectively, are derived in the following three subsections.

5.2.1 Probability Generating Function of Random Variable C

In order to obtain the probability generating function U(z), we first need to obtain the pmf of

r.v. Ck. To this end, we first derive the probability Pr(Ck > m), and then we obtain the cdf of

random variable Ck as ZCk(m) = 1−Pr(Ck > m). Finally, from the obtained cdf, we derive

the pmf of r.v. Ck as FCk(m) = ZCk(m)−ZCk(m−1).

Pr(Ck > m) = Pr(Yk > m | Nk) =
Pr(Yk > m, Nk)

Pr(Nk)

=
Pr(Yk > m, Nk−1, Yk < Rk)

Pr(Nk−1, Yk < Rk)

=
Pr(m < Yk < Rk)Pr(Nk−1)

Pr(Yk < Rk)Pr(Nk−1)

=
∑

∞
r=m+2 FRk(r)∑

r-1
y=m+1 FYk(y)

∑
∞
r=2 FRk(r)∑

r-1
y=1 FYk(y)

.

(28)

In (28), if we set m = 0, the numerator and denominator will be the same. Hence, we first

obtain the numerator and then set m = 0 in the obtained result to get the answer for the

denominator.
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∞

∑
r=m+2

FRk(r)
r-1

∑
y=m+1

FYk(y)

=
∞

∑
r=m+2

FRk(r)
r-1

∑
y=m+1

[((t10ψ f −
t21t10

t22− t11
ψm)t

y−1
11 +(t20 +

t21t10

t22− t11
)ψmty−1

22 )]

=
∞

∑
r=m+2

FRk(r)[
1

1− t11
(t10ψ f −

t21t10

t22− t11
ψm)(tm

11− tr−1
11 )+

1
1− t22

(t20 +
t21t10

t22− t11
)ψm(tm

22− tr−1
22 )]

=
ς

1− t11
(t10ψ f −

t21t10

t22− t11
ψm)

∞

∑
r=m+2

(tm
11− tr−1

11 )+
ς

1− t22
(t20 +

t21t10

t22− t11
)ψm

∞

∑
r=m+2

(tm
22− tr−1

22 )

= c1tm
11(1− ς)m + c2tm

22(1− ς)m,

(29)

where c1 and c2 are given as follows.

c1 =
ς(1− ς)

1− t11
(

1
1− (1− ς)

− t11

1− (1− ς)t11
)(t10ψ f −

t21t10ψm

t22− t11
), (30)

c2 =
ς(1− ς)

1− t22
(

1
1− (1− ς)

− t22

1− (1− ς)t22
)(t20 +

t21t10

t22− t11
)ψm. (31)

By setting m = 0 in (29) we obtain the denominator of (28). Hence, we rewrite the (28) as

follows.
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Pr(Ck > m) =
∑

∞
r=m+2 FRk(r)∑

r-1
y=m+1 FYk(y)

∑
∞
r=2 FRk(r)∑

r-1
y=1 FYk(y)

=
c1tm

11(1− ς)m + c2tm
22(1− ς)m

c1 + c2

(32)

From (32), we obtain the pmf of random variable Ck as follows.

FCk(m) = ZCk(m)−ZCk(m−1) = (1−Pr(Ck > m))− (1−Pr(Ck > m-1))

=
c1

c1 + c2
(1− t11(1− ς))tm−1

11 (1− ς)m−1 +
c2

c1 + c2
(1− t22(1− ς))tm−1

22 (1− ς)m−1

(33)

Using (33) we obtain the probability generating function U(z) as follows.

U(z) = E[zC] =
∞

∑
r=1

zrFCk(r)

=
c1

c1 + c2
(1− t11(1− ς))

∞

∑
r=1

zrtr−1
11 (1− ς)r−1 +

c2

c1 + c2
(1− t22(1− ς))

∞

∑
r=1

zrtr−1
22 (1− ς)r−1

=
c1(1− t11(1− ς))z

(c1 + c2)(1− t11(1− ς)z)
+

c2(1− t22(1− ς))z
(c1 + c2)(1− t22(1− ς)z)

.

(34)
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5.2.2 Probability Generating Function of Random Variable D

To obtain the probability generating function W(z), we first need to obtain the pmf of r.v. Dk.

To this end, we first derive the probability Pr(Dk > m), and then we obtain the cdf of random

variable Dk as ZDk(m) = 1−Pr(Dk > m). Finally, from the obtained CDF, we will end up to

the pmf of r.v. Dk as FDk(m) = ZDk(m)−ZDk(m−1).

Pr(Dk > m) = Pr(Rk > m | φk) = Pr(Rk > m | Rk ≤ Yk,Nk−1)

=
Pr(Rk > m, Rk ≤ Yk, Nk−1)

Pr(Rk ≤ Yk, Nk−1)
=

Pr(m < Rk ≤ Yk)Pr(Nk−1)

Pr(Rk ≤ Yk)Pr(Nk−1)

=
Pr(m < Rk ≤ Yk)

Pr(Rk ≤ Yk)
=

∑
∞
y=m+1 FYk(y)∑

y
r=m+1 FRk(r)

∑
∞
y=1 FYk(y)∑

y
r=1 FRk(r)

,

(35)

where the term Nk denotes the event in which the next packet arrival does not happen in the

first k active period. Note that the denominator in (35) is equal to pgiven in (24). Substituting

(22) and (23) in (35) results in:
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Pr(Dk > m) =
∑

∞
y=m+1 FYk(y)∑

y
r=m+1 ς(1− ς)r−1

p

=
∑

∞
y=m+1 FYk(y)(1− ς)m−∑

∞
y=m+1 FYk(y)(1− ς)y

p

= [
∞

∑
y=m+1

(
(t10ψ f −

t21t10

t22− t11
ψm)(1− ς)mty−1

11 +(t20 +
t21t10

t22− t11
)ψm(1− ς)mty−1

22

)

−
∞

∑
y=m+1

(
(t10ψ f −

t21t10

t22− t11
(1− ς)y

ψm)t
y−1
11 +(t20 +

t21t10

t22− t11
)ψm(1− ς)yty−1

22

)
(1− ς)y ]/p

= [(t10ψ f −
t21t10

t22− t11
ψm)

tm
11(1− ς)m

1− t11
+(t20 +

t21t10

t22− t11
)ψm

tm
22(1− ς)m

1− t22

− (t10ψ f −
t21t10

t22− t11
ψm)

tm
11(1− ς)m+1

1− (1− ς)t11
− (t20 +

t21t10

t22− t11
)ψm

tm
22(1− ς)m+1

1− (1− ς)t22
]/p

=
d1tm

11(1− ς)m +d2tm
22(1− ς)m

d1 +d2
.

(36)

The values of d1, d2 are given in (25) and (26), respectively. From (36), we obtain the pmf

of random variable Dk as follows:
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FDk(m) = ZDk(m)−ZDk(m−1) = (1−Pr(Dk > m))− (1−Pr(Dk > m-1)) = Pr(Dk > m-1)−Pr(Dk > m)

=
d1tm−1

11 (1− ς)m−1 +d2tm−1
22 (1− ς)m−1

d1 +d2
−

d1tm
11(1− ς)m +d2tm

22(1− ς)m

d1 +d2

=
d1(1− t11(1− ς))

d1 +d2
tm−1
11 (1− ς)m−1 +

d2(1− t22(1− ς))

d1 +d2
tm−1
22 (1− ς)m−1.

(37)

Using (37) we obtain the probability generating function W(z) as follows:

W (z) = E[zD] =
∞

∑
r=1

zrFDk(r)

=
d1(1− t11(1− ς))

d1 +d2

∞

∑
r=1

zrtr−1
11 (1− ς)r−1 +

d2(1− t22(1− ς))

d1 +d2

∞

∑
r=1

zrtr−1
22 (1− ς)r−1

=
d1(1− t11(1− ς))z

(d1 +d2)(1− t11(1− ς)z)
+

d2(1− t22(1− ς))z
(d1 +d2)(1− t22(1− ς)z)

.

(38)

5.2.3 Probability Generating Function of Random Variable S

Using the Markov chain shown in Fig. 1, we obtain the pmf of sleep period as follows.

FSk(m) = tm−1
00 (t01 + t02). (39)

From this pmf we obtain the probability generating function of r.v. Sk as follows.
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V (z) = E[zS] =
∞

∑
r=1

zrFSk(r)

= (t01 + t02)
∞

∑
r=1

zrtr−1
00 =

(t01 + t02)z
1− t00z

(40)

Inserting the obtained generating functions, (34), (38) and (40) in (27) gives us the probability

generating function of inter-arrival time τ . In the following subsection, we obtain the proba-

bility generating function of random variable ν and then, by comparing it to the probability

generating function V(z), we derive the pmf of random variable ν .

5.3 Distribution of Number of Packets Leave the MD’s Queue During

an Inter-Arrival Time

Recalling that r.v. ν denotes the number of packets that leave the buffer of the MD during an

inter-arrival period τ and its probability generating function is denoted by N(z). We express

the generating function of r.v. ν as follows.

N(z) = E[zν ] =
∞

∑
t=1

E[zν |τ = t]Fτ(t) =
∞

∑
t=1

Fτ(t)
t

∑
k=0

zkPr(ν = k|τ = t),

=
∞

∑
t=0

Fτ(t)
t

∑
k=0

zk
(

t
k

)
ω

k(1−ω)t−k =
∞

∑
t=1

Fτ(t)(1−ω)t
t

∑
k=0

(
t
k

)
(

ωz
1−ω

)k,

=
∞

∑
t=0

Fτ(t)(1−ω)t(1+
ωz

1−ω
)t =

∞

∑
t=1

Fτ(t)(1+ω(z−1))t ,

(41)

where Fτ(t) denotes the pmf of inter-arrival period τ , and ω denotes the probability of service

completion as defined in (9). On the other hand, the probability generating function of r.v. τ

is equal to
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T (z) = E[zτ ] =
∞

∑
t=1

ztFτ(t). (42)

By comparing the equations (41) and (42), we conclude the following expression which

results in the probability generating function of r.v. ν

N(z) = T (1+ω(z−1)),

=
W (1+ω(z−1))p

1−qU(1+ω(z−1))V (1+ω(z−1))
.

(43)

Let Fν(t) denote the pmf of r.v. ν . By evaluating the inverse transform of N(z), we obtain

Fν(t). Meanwhile, recall that QON
i (k) denotes the probability that k packets out of i leave the

MD’s buffer during the inter-arrival period τ . According to [49], the term QON
i (k) is obtained

as follows.

QON
i (k) = Fν(k), 0≤ k ≤ i−1, (44)

QON
i (i) =

∞

∑
n=i

Fν(n). (45)

Therefore, inserting (44) and (45) in the recursive equation (14) gives us the probability

of starvation for streaming a file with size N, given that there are x packets (start-up delay)

accumulated in the buffer before the service begins.

5.4 Formulating an Optimization Problem

In this section, we use the results from the previous sections to investigate the energy effi-

ciency related optimization problem subject to a QoE constraint in terms of starvation prob-

ability. We formulate an optimization problem that minimizes the energy consumption of
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heterogeneous cellular network while guaranteeing a target buffer starvation probability for

a MD as follows.

Minimize
βm,βf

Etotal = Ef + γEm

s.t. Pi(n)≤ ε,

i = x−1,

(46)

where Em, Ef denote the expected value of the energy consumptions of MBS and FBS, re-

spectively, and x denotes the start-up delay. Using the Markov chain shown in Fig. 1, we

obtain the values of Em, Ef as the proportion of time that MBS and FBS are in active mode

in the steady state. We also assume that a femtocell’s energy consumption is 1/γ of that a

MBS consumes per unit time. Note that βm, βf denote the rates at which MBS and FBS go to

active mode, respectively. Therefore, Em, Ef increase with the increase in rates βm, βf. On the

other hand, the starvation probability, which is given in (14), is a decreasing function of βm

and βf. In order to solve the above problem, we first find the values of βm and βf that satisfy

the buffer starvation constraint with equality, and then, we solve the minimization problem

considering the β ∗m’s and β ∗f ’s.
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6 Numerical Results

In this section, we first investigate the energy minimization problem, and then compare the

buffer starvation probability of a MD in a heterogeneous and a homogeneous cellular net-

work. In the following, we set γ to 10 if not explicitly mentioned.

6.1 Energy Consumption Optimization Subject to a QoE Constraint

Fig. 5 illustrates the minimum amount of energy consumed for streaming a file with size

N packets while guaranteeing a target starvation probability ε which is set to 0.15. The file

size in this experiment ranges between 100 and 300 in terms of packets, and the start-up

delay x is set to 50 packets. The energy consumed by a FBS is considered as 5 Microjoule

(5µJ) per unit time. For the heterogeneous network, we let the rates αm, αf be 0.1 and 0.15,

respectively. The rate βm varies between 0.01 and 0.11, and the rate βf varies between 0.05

and 0.15. We set λm, λf, µ , and time-slot h to 1.5, 1.7, 1, and 10−5, respectively. In the case of

homogeneous cellular network with a single MBS, in order to satisfy the QoE constraint (i.e.,

the buffer starvation probability to be less than or equal to ε ), the rate βm should vary between

0.11 and 0.21. The expected energy consumption of the network increases with the increase

in the rates at which the BSs go to active mode. Nevertheless, our system model, in which

the MD is covered by two BSs, significantly reduces the expected energy consumption of

cellular network while guaranteeing a target starvation probability in comparison to the case

where the MD is covered only by a MBS. In order to quantify the energy savings in MBS by

using a FBS, in Fig. 5, we denote by green line the MBS’s expected energy consumption in

a heterogeneous mobile network. Accordingly, the difference between green and red lines,

which is the energy that can be saved in MBS by implementing a FBS, demonstrates the
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efficacy of our system in term of reducing the MBS’s energy consumption for streaming a

file with various sizes.

Figure 5: Expected energy consumption of cellular networks with initial-buffering delay x= 50, target
starvation probability ε = 0.15, and γ = 10
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6.2 Cellular Network Expected Energy Consumption for Different val-

ues of γ

In the following two experiments, we depict the impact of γ on the energy consumption of

mobile networks. The fixed power (load-independent) consumption of MBS and FBS are

typically set to 118.7 and 4.8 W, respectively [12]. Accordingly, the real value of γ , which

denotes the ratio of energy consumption between a MBS and a FBS, can be approximately

considered as 25. Fig. 6 and 7, illustrate the minimum amount of energy consumed for

streaming a file with size N packets while ensuring a target starvation probability ε and for

γ = 25, γ = 40, respectively. The file size in these experiments ranges between 100 and 300

packets, and the start-up delay x is set to 50 packets. The rest of parameters are the same as in

part 6.1. According to these figures, as we increase the value of γ , the efficacy of our system

in terms of reducing the expected energy consumption gets much better compared to the case

of homogeneous mobile network. Furthermore, with a bigger γ , we can save more energy in

MBS by using a FBS as the gap between red and green lines gets bigger with the increase in

γ . The reason behind this is the fact that in a heterogeneous mobile network, the MD is able

to get service from the FBS, and accordingly, we can keep the MBS mostly in sleep mode.

However, in the homogeneous network, the MBS has to be more often in active to be able

to satisfy the user required QoE. Therefore, this issue leads to a high energy consumption

especially when the γ gets larger.
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Figure 6: Expected energy consumption of cellular networks with initial-buffering delay x= 50, target
starvation probability ε = 0.15, and γ = 25
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Figure 7: Expected energy consumption of cellular networks with initial-buffering delay x= 50, target
starvation probability ε = 0.15, and γ = 40
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6.3 Buffer Starvation Probability with respect to File Size

In Fig. 8, we plot the buffer starvation probability with initial buffering delay x = 30. The file

size increases from 100 to 600 packets. In order to make a fair comparison in two systems,

for the heterogeneous mobile network we set the active/sleep mode rates as αm = βm = 0.1,

αf = βf = 0.15, however, in the in the homogeneous network, letting the rate αm, the rate

at which MBS goes to sleep mode, be 0.1, we raise the rate at which MBS goes to active

mode, βm, to 0.163 such that the expected energy consumption in two systems would be the

same. The probability of buffer starvation increases with the increase in file size, however,

the probability of having a buffer starvation while streaming a file (with the same size) in our

system with two BSs is much less than the case where the MD could be served only through

a single MBS. Moreover, as the file size increases, the starvation probability in a system with

one MBS increases with a much faster rate compared to our system. The reason is that in a

heterogeneous cellular network, the MD could be served by either MBS or FBS, and since

the arrival rate from a FBS is usually more than that of a MBS, a starvation event occurs less

frequently.
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Figure 8: Buffer starvation probability in two systems with the same energy consumption and with the
initial-buffering delay x= 30
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6.4 Buffer Starvation Probability with respect to Start-Up Delay

Fig. 9 depicts the impact of start-up delay on the starvation probability. In this set of experi-

ments, N= 600 and the start-up delay varies between 30 and 100 packets. In order to make a

fair comparison in two systems, for the heterogeneous mobile network we set the active/sleep

rates as αm = βm = 0.1, αf = βf = 0.15, however, in the in the homogeneous network, letting

the rate αm, the rate at which MBS goes to sleep mode, be 0.1, we raise the rate at which MBS

goes to active mode, βm, to 0.163 such that the expected energy consumption in two systems

would be the same. λm, λf, and h are set to 1.5, 1.7, 10−5, respectively. First, for the same

file size and the same start-up delay, the starvation probability of a MD in our system model

is much less than that of a MD in a system with a single MBS. Second, a slight increase in

start-up delay can greatly improve the starvation probability in our system compared to the

case where the MD is in a homogeneous cellular network.
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Figure 9: Buffer starvation probability in two systems with the same expected energy consumption
and for streaming a file of size N= 600.
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In the following simulation experiment, we investigate the effects of FBS arrival rate on the

probability of starvation for different start up delay threshold. According to the Fig. 10, as

we expected, reducing the FBS packet arrival rate λ f from 1.7 to 1.5, while keeping all the

other parameters the same as in part 6.3, increases the probability of starvation for streaming

a video file of size N=600.
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Figure 10: The effect of FBS packet arrival rate λ f on starvation probability for streaming a file of
size N= 600
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6.5 Buffer Starvation Probability with respect to FBS packet arrival

rate

In Fig. 11, for streaming a file of size N=600 packets with initial buffering delay x=30

packets, we characterize how FBS Poisson packet arrival rate λ f affects the starvation prob-

ability. We let λm, and h be 1.5, 10−5, respectively. Further, we increase the FBS Poisson

packet arrival rate λ f from 1 to 2. The active/sleep mode duration rates are as αm = βm = 0.1,

αf = βf = 0.15. Clearly, the buffer starvation probability decreases with increase in the packet

arrival rate λ f to mobile device, as the buffer of the mobile device receive more packets per

unit time with increase in the arrival rate.
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Figure 11: Buffer starvation probability for streaming a file of size N=600 packets and initial buffering
delay x=30 packets.
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6.6 Buffer Starvation Probability with respect to Energy Consumptions

In this experiment, we illustrate how the starvation probability is related to the energy con-

sumption of BSs in a heterogeneous cellular network. We set the file size N, and start-up

delay x to 300 and 60, respectively. The rate of going to active mode for MBS increases from

0.01 to 0.11, and this rate for FBS ranges between 0.05 and 0.15. The values of h, λm, λf are

the same as in the first part of this section. It is clear that the starvation probability increases

with the decrease in MBS’s and FBS’s energy consumption.
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Figure 12: Buffer starvation probability with N= 300 and x= 60.
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6.7 Buffer Starvation Probability with Respect to initial waiting time

and Video File Size

Fig. 13 illustrates how the probability of starvation at the buffer of a MD is dependent to the

both initial buffering delay and the length of the video going to be streamed. We let αm, βm

be 0.1, and α f , β f be 0.15. λm, λf, and h are set to 1.5, 1.7, 10−5. We increase the file size

N from 150 to 650 packets, and increase the initial buffering delay from 30 to 80 packets.

Clearly, as the file size increases, for a given start-up threshold, the probability of starvation

increases as well. On the other hand, the starvation probability decreases, for a given file size,

with increase the initial buffering delay.
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Figure 13: The changes in buffer starvation probability with file size N and initial waiting time x
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6.8 Comparison of Buffer Starvation Probability in two different sys-

tem models each with a single BS

In all the above simulations, we compare our system model composed of two BSs with an-

other system model which contains a single BS and is actually taken from the work in [41].In

order to validate the results of our numerical experiments, in Fig. 14, we plot the buffer

starvation probability with respect to video file size for our system model and the system

described in [41] while considering only a single BS in both system models. The goal is to

check if the results of these two system models with one BS match each other or not. In this

experiment, fhe file size increases from 100 to 600. The initial buffering delay x, the Poisson

arrival rate λf, and the time-slot h are set to 30, 1.5, 10−5, respectively. We let α f = β f = 0.1,

αm = βm = 0. By setting βm to 0, we confirm that only one BS in our system model is able

to go to active mode, i.e., our system is operating with a single BS. As it is shown in Fig. 9,

the figures from two different system models completely match one another, which help us

to verify our numerical simulations.
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Figure 14: Buffer starvation probability with initial-buffering delay x= 30 in two different system
models while both systems contain a single BS

49



7 Conclusions and Future Works

7.1 Conclusion

In this work, we have investigated the tradeoff between quality of experience and energy effi-

ciency in a heterogeneous cellular network with two BSs, MBS and FBS. Proposing a simple

system model, where MBS and FBS goes into sleep and active modes randomly throughout

the system operation, we demonstrate the efficacy of heterogeneous cellular networks in min-

imizing the energy consumption while improving the QoE of MDs. The QoE that we consider

in this work is the buffer starvation probability of a MD streaming a media file with finite size.

For an on/off bursty traffic, we derived the buffer starvation probability of a MD in a system

with multiple servers, where the MD could be served by a MBS or FBS depending on which

one is in active mode, for the first time. In addition, by the use of a three state Markov

chain and applying the first step analysis we investigated the aggregated active/sleep period

length distribution analytically. The simulation results reveal that the proposed system model

provides significant energy savings compared to a homogeneous cellular network. Finally,

the proposed framework in this work can be used both for the energy efficient design and

operation of different types of base stations in a heterogeneous networks and for improving

the mobile devices’ quality of experiences. In order to implement the proposed sleep/awake

strategy in the real network, we should note that switching off BSs deteriorates the end user’s

desired QoE. Accordingly, we first investigate the impact of switching off BSs on the star-

vation probability for streaming a finite media file, and then based on the results, we obtain

MBS/FBS optimal activation rate, βm/β f , and the optimal rate by which MBS/FBS should

go to sleep mode, αm/α f , in a way that a threshold buffer starvation probability constraint is

guaranteed.
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7.2 Future Works

We believe that our model can be used as a useful starting point for future studies on in-

terruption analysis in video streaming for mobile devices in a system with multiple servers,

and specially in studying the aggregated active/sleep mode duration distribution. Interesting

future direction to extend this work include developing analytical approaches towards ana-

lyzing the buffer starvation probability of mobile devices in a heterogeneous network with

more than one femtocell base station.

51



References

[1] M. Ismail and W. Zhuang, Cooperative networking in a heterogeneous wireless medium.

Springer, 2013.

[2] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and

D. Malladi, “A survey on 3gpp heterogeneous networks,” Wireless Communications,

IEEE, vol. 18, no. 3, pp. 10–21, June 2011.

[3] D. Lopez-Perez, I. Guvenc, G. de la Roche, M. Kountouris, T. Quek, and J. Zhang,

“Enhanced intercell interference coordination challenges in heterogeneous networks,”

Wireless Communications, IEEE, vol. 18, no. 3, pp. 22–30, June 2011.

[4] A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Visotsky, T. Thomas,

J. Andrews, P. Xia, H. Jo, H. Dhillon, and T. Novlan, “Heterogeneous cellular networks:

From theory to practice,” Communications Magazine, IEEE, vol. 50, no. 6, pp. 54–64,

June 2012.

[5] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Femtocell networks: a survey,”

Communications Magazine, IEEE, vol. 46, no. 9, pp. 59–67, 2008.

[6] I. Ashraf, F. Boccardi, and L. Ho, “Sleep mode techniques for small cell deployments,”

Communications Magazine, IEEE, vol. 49, no. 8, pp. 72–79, 2011.

[7] J. Hoydis, M. Kobayashi, and M. Debbah, “Green small-cell networks,” Vehicular Tech-

nology Magazine, IEEE, vol. 6, no. 1, pp. 37–43, 2011.

[8] T. Q. Quek, W. C. Cheung, and M. Kountouris, “Energy efficiency analysis of two-tier

heterogeneous networks,” in Wireless Conference 2011-Sustainable Wireless Technolo-

gies (European Wireless), 11th European. VDE, 2011, pp. 1–5.

[9] M. A. Marsan, L. Chiaraviglio, D. Ciullo, and M. Meo, “Optimal energy savings in

cellular access networks,” in Communications Workshops, 2009. ICC Workshops 2009.

IEEE International Conference on. IEEE, 2009, pp. 1–5.

52



[10] A. Fehske, G. Fettweis, J. Malmodin, and G. Biczók, “The global footprint of mobile
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