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Abstract

Synthetic aperture radar (SAR) is one of the most widely used remote sensing

modalities, providing images for a variety of applications including those in defense,

environmental science, and weather forecasting. However, conventionally formed SAR

imagery from undersampled observed data, arising in several emerging applications and

sensing scenarios, suffers from artifacts that might limit effective use of such imagery

in remote sensing applications. Recently, sparsity-driven SAR imaging has emerged as

an effective framework to alleviate such problems. Sparsity-based methods for SAR

imaging have employed overcomplete dictionaries to represent the magnitude of the

complex-valued field sparsely. Selection of an appropriate dictionary with respect to

the features of the particular type of underlying scene plays an important role in these

methods.

In this thesis, we develop two new sparsity-driven SAR imaging methods that signif-

icantly expand the domain of applicability of sparsity-based methods in SAR imaging.

Our first contribution involves the development of a new reconstruction method that

is based on learning sparsifying dictionaries and using such learned dictionaries in the

reconstruction process. Adaptive dictionaries learned from data can represent the mag-



nitude of complex-valued field more effectively and hence have the potential to widen

the applicability of sparsity-based radar imaging. Our framework allows the use of both

adaptive dictionaries learned offline from a training set and those learned online from

the undersampled data used in image formation. We demonstrate the effectiveness of

the proposed dictionary learning-based SAR imaging approach as well as the improve-

ments it provides, on both synthetic and real data.

The second contribution of this thesis involves the development of a reconstruction

method that decomposes the imaged field into a sparse and a low-rank component. Such

a decomposition is of interest in image analysis tasks such as segmentation and back-

ground subtraction. Conventionally, such operations are performed after SAR image

formation. We exploit recent work on sparse and low-rank decomposition of matrices

and incorporate such a decomposition into the process of SAR image formation. The

outcome is a method that jointly reconstructs a SAR image and decomposes the formed

image into its low-rank background and spatially sparse components. We demonstrate

the effectiveness of the proposed method on both synthetic and real SAR images.
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Özet

Sentetik açıklıklı radar (SAR) savunma, çevre bilimi ve hava tahmini gibi çeşitli

uygulamalarda sıklıkla kullanılan uzaktan algılama yöntemlerinden biridir. Ancak

verinin düşük örneklemeyle gözlemlendiği durumlarda geleneksel yöntemler ile elde

edilmiş SAR görüntüleri yapay dokulara neden olmakta ve bu durum SAR görüntüleri-

nin uzaktan algılama yöntemlerinde etkili kullanımına engel olmaktadır. Son zaman-

larda bu sorunları azaltmak için seyreklik tabanlı SAR görüntüleme ortaya çıkmıştır.

Seyreklik tabanlı yöntemler karmaşık değerli yapının mutlak değerini seyrek bir şekilde

temsil edebilmek için sözlük kullanırlar. Bu yöntemlerde görüntünün özelliklerine gore

uygun bir sözlüğün seçilmesi çok önemlidir.

Bu tezde seyreklik tabanlı yöntemlerin daha geniş bir biçimde SAR görüntülerine

uygulanmasını sağlayacak iki yeni seyreklik tabanlı SAR görüntüleme yöntemi öneriyo-

ruz. Birinci katkı olarak seyreklik sözlüğünün öğrenilmesine dayanan ve bu öğrenilen

sözlüğü SAR görüntülerinin geri çatılma işleminde kullanılmasını sağlayan bir yöntem

geliştiriyoruz. Verinin kendisinden öğrenilen uyarlanır sözlüklerin karmaşık değerli



yapının mutlak değerini daha etkili bir şekilde temsil etme potensiyelleri vardır ve ve bu

sözlükler seyreklik tabanlı görüntülemeyi daha geniş bir biçimde uygulanmasını sağlar.

Bu önerdiğimiz yöntem uyarlanır sözlüklerin bir eğitim kümesinden çevirimdışı olarak

öğrenilmesini sağlayabildiği gibi sözlüğün hedef verinin kendisinden çevirimiçi şekilde

öğrenilmesini de sağlamaktadır. Önerdiğimiz sözlük öğrenimi tabanlı SAR görüntüleme

yönteminin etki ve katkısını sentetik ve gerçek SAR görüntülerinde gösteriyoruz.

Bu tezdeki ikinci katkı olarak görüntüyü seyrek ve düşük sıralı bileşenlerine ayıran

bir geri çatma yöntemi öneriyoruz. Bu ayırma yöntemi bölütleme ve arkaplan çıkarımı

gibi birçok görüntü tahlil yönteminde ilgi çekmektedir. Geleneksel olarak bu görüntü

tahlil yöntemleri SAR görüntüsünün oluşturulmasından sonra yapılır. Biz yeni bir

çalışma olan seyrek ve düşük sıralı matrislerin ayrıştırılması yöntemini SAR görüntüle-

me işleminde kullanıyoruz. Sonuç olarak SAR görüntüsünü geri çatarken aynı zamanda

görüntüdeki seyrek bileşenleri ve düşük sıralı arkaplanı da ayırmaktayız. önerdiğimiz

yöntemin etkisini sentetik ve gerçek SAR görüntülerinde gösteriyoruz.
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Chapter 1

Introduction

This thesis presents two new approaches for synthetic aperture radar (SAR) image

reconstruction. In this chapter, we first introduce the SAR imaging problem and discuss

the motivation of this thesis. We then provide a concise description of the technical

contributions of this thesis. Finally, we present an outline of the thesis.

1.1 Problem Definition and Motivation

Synthetic aperture radar (SAR) is a sensor type that offers several advantages for re-

mote sensing applications. Firstly, it illuminates the field which enables the use of SAR

day and night. Secondly, it uses microwaves which are robust to weather conditions

such as cloud and rain. Finally, SAR can provide high resolution images by collecting

data from different viewing angles. Therefore, there is a growing importance to SAR

systems for many applications because of its availability for all weather conditions and

high resolution results. SAR systems use an airborne or spaceborne sensor for imaging

the target field. In an airborne SAR system, while the aircraft moves along its flight

path, the sensor transmits microwave pulses. Some of these pulses are reflected from

the ground back to the sensor. The SAR sensor receives these signals. This process

is repeated for many aperture positions as the aircraft moves. These collected signals

from different view angles are synthesized for imaging the reflectivity field. SAR data

collection is illustrated in Figure 1.1. SAR data involves pre-processing steps such as

demodulation and windowing. The SAR imaging problem is the problem of reconstruc-
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Figure 1.1: SAR data collection geometry. (Image obtained from the web site of Sandia

National Laboratories.)

tion of the reflectivity field (image to be reconstructed) from the pre-processed SAR

data.

The history of SAR goes back to more than half a century [51]. Nevertheless,

both hardware and signal processing methods for SAR systems involve active areas of

research, mostly driven by new applications and mission requirements. One of the well

known spaceborne SAR systems called TerraSAR-X [4] provides high resolution earth

images with wide angles. This system features a recently launched mode called staring

spotlight mode for SAR imaging. This mode can provide a high resolution image of a

wide area with up to 25 cm resolution. These images can provide complementary infor-

mation to the optical images since reconstructed SAR images from return of microwave

signals can involve special characteristics of the field. An example SAR image obtained

2



(a) (b)

Figure 1.2: Arasen stadium, Norway. (a) Google Earth. (b) Conventionally recon-

structed SAR image.

from this mode is shown in Figure 1.2 along with the Google Earth photograph of the

field.

Once a SAR image is formed, it can be used for decision or interpretation. SAR

images have been used for a variety of applications in both military and civilian set-

tings. SAR images are used for target recognition, and environmental monitoring such

as sea-ice, cultivation, and oil spill to the ocean. These applications usually require

high resolution images for accurate decision or interpretation. Thus, image formation

of SAR data comes into prominence. Current SAR systems achieve image formation by

using Fourier transformation-based algorithms [12, 39]. These data-driven conventional

image formation algorithms are simple and efficient. However, they suffer from noise,

speckle limited-resolution, and sidelobe artifacts due to the limited bandwidth of the

SAR systems. Conventional methods do not involve any prior information related to

the field. Artifacts appearing of conventional reconstructions may complicate the per-

formance of the SAR imaging tasks. For example, noisy SAR image may deteriorate a

segmentation process for object recognition.

Therefore for better interpretation of the SAR images for a particular task, well

reconstructed SAR images are required. Once SAR image problem considered as typi-

cal ill-posed linear inverse problem, several regularization methods have been proposed

[19, 64, 14] and proven to offer better reconstruction quality as compared to conventional

3



methods by integrating prior information to the SAR image reconstruction framework.

These methods provide accurate results by combining reduced data of the reflectivity

and prior information such as sparsity on the characteristics of the image.

To summarize, quality of the image reconstruction depends to two elements of the

problem: Data and statistical prior information about the scene to be imaged. The first

one can improve the reconstruction process as better SAR system modes and hardware

architectures are presented while the latter one can improve the reconstruction of image

by proposing better representations for the prior term. Throughout the thesis, we will

focus on the latter one.

1.2 Contributions of this Thesis

As we mentioned before, adding prior information into the SAR image reconstruc-

tion framework improve the overall reconstruction as long as the prior information fits

with the actual image. Most of the regularization methods use a prior term such that

the image is assumed to be sparsely represented in terms of a predefined dictionary.

If in fact, this assumption holds, i.e. the dictionary contains features of the original

image, then the reconstructed image will be more accurate than the conventionally re-

constructed one. However, if the original image does not lend itself to accurate sparse

representation by the predefined dictionary, the reconstruction task becomes more chal-

lenging. Thus learning the dictionary for better representation of the images turns out

to be an important issue which will be one of the two main focuses of this thesis.

The first contribution of this thesis is the development of dictionary learning-based

SAR image reconstruction framework. Rather than predefined prior terms such as

Wavelet dictionary, 2D gradient approximation operator, our framework learns the fea-

tures of image in online manner. We also proposed an offline framework where the

dictionary is learned from training patches of SAR images.

The second contribution of this thesis is a framework and an associated algorithm

that separates the background which is assumed to be low-rank from sparse features

of the field while reconstructing the original image. Our approach has the potential to

4



provide an improvement for many interpretation tasks of SAR images since separating

low-rank texture and sparse regions are done during the reconstruction process.

1.3 Organization of the Thesis

In Chapter 2 we provide background material on SAR imaging, sparse representa-

tion, dictionary learning, and low rank matrix recovery. Chapter 3 contains the first

contribution of this thesis, namely a dictionary learning-based approach for sparsity-

driven SAR imaging. Chapter 4 contains the second contribution of this thesis, namely

a formulation and an associated algorithm for SAR imaging based on low-rank sparse

decomposition. In chapter 5 we summarize and discuss the results of this thesis and

suggest several potential future directions.
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Chapter 2

Background

In this chapter, we provide preliminary information on SAR imaging and sparse sig-

nal representation. We describe the basic principles of SAR and present the mathemati-

cal observation model for spotlight-mode SAR. We provide some background on sparse

signal representation and compressed sensing (CS). We then describe existing SAR

image formation methods including those exploiting sparsity. We introduce dictionary

learning for sparse representation. Finally, we review recent ideas on the decomposition

of matrices into their sparse and low-rank components.

2.1 Synthetic Aperture Radar Basics

2.1.1 Principles of SAR Imaging

Conventional radars were developed mainly for object-detection. They were mainly

used for military purposes such as detecting and tracking aircraft, vehicles, and tanks.

However, in modern world, radars are used for many civilian applications including

traffic control, imaging a terrain, and meteorological monitoring. Two objects that

reside in different ranges from the radar can be distinguished by the radar. The main

principle of radars is simple and unknowingly has been used for people when they try to

figure out the depth of a well. They drop a stone and wait for its echo knowing that the

duration of the waiting time is proportional to the depth of the well. Correspondingly,

radar antenna or sensor transmits high-bandwidth pulses and collects returned signals.

Knowing the speed of the signal implies knowing the range of the target. These high-

6



bandwidth pulses used by radar antenna provide high range resolutions and they are

robust to all weather conditions such as cloud and rain which makes radar systems

preferable. However, for imaging of say a 2D spatial field, two objects at the same

distance from the radar but residing in different directions should be distinguished as

well. Capability of distinguishing such two objects is determined by the cross-range

(azimuth) resolution of the radar. Cross-range resolution of a radar can be expressed

as follows:

ρy =
Rλ

d
(2.1)

where R is the distance between the radar and the target (range), λ is the wavelength

of the source, and d is the size of the antenna aperture. With a simple calculation,

it can be observed that, for X-band radar operating at a 30 km range with a typical

wavelength of 3 cm, 1 m resolution capability requires a 900 m physical antenna. In

other words, distinguishing vehicles or tracks on ground patch requires an unfeasibly

large antenna.

Synthetic aperture radar (SAR) achieves this required resolution capability by send-

ing multiple pulses and collecting the received signals from different observation points.

In particular, it synthesizes the effect of a large antenna by using multiple observations

of a small antenna [13]. Small antenna travels the required path by means of an aircraft.

SAR systems provide high cross-range resolutions and they can operate both day and

night. Thus, SAR imaging with its capability of high cross-range resolution has become

an important technology in remote sensing.

Stripmap-mode SAR and spotlight-mode SAR are two distinct modes in which a

SAR system can operate. In stripmap-mode SAR radar, the platform uses a fixed an-

tenna. Therefore, radar scans the ground as the aircraft flies. On the other hand, in

spotlight-mode SAR, the physical antenna is steered to the ground patch to be imaged

so as to illuminate the same terrain continuously [39]. Spotlight-mode SAR provides

higher resolution since the same terrain is observed from many angles. Recently, star-

ing spotlight-mode SAR has been used on the TerraSAR-X radar, which is capable of

providing a resolution of up to 25 cm. Hence these high resolution SAR images pro-

vide complementary information to the optical images. We show the geometry for data

7



Figure 2.1: Ground-plane geometry for spotlight-mode SAR.

collection in spotlight-mode SAR in Figure 2.1. The x coordinate represents azimuth

(cross range) and the y coordinate which is parallel to the flight path represents range.

The reflectivity field f is illuminated by a radar RF beam. As the airborne radar trav-

els its path by means of an aircraft, for particular azimuth angles θk, high-bandwidth

pulses are transmitted and echoes are received. Then these signals are processed. As

illustrated in Figure 2.1, SAR returns at a particular observation point provide a pro-

jectional view of the scene after some pre-processing steps which we describe in the

following section.
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Figure 2.2: Graphical representation of the support of the known phase history data

samples in 2D spatial frequency domain.

2.1.2 Spotlight-mode SAR Signal Model

In this section we briefly describe the tomographic formulation of spotlight-mode

SAR following the development in [39]. Let f(x, y) be the complex-valued reflectivity

field (image to be reconstructed). SAR sends and collects returned signals to this field

as it traverses its flight path. A common signal transmitted in SAR is the FM chirp

pulse

s(t) =

e
j(w0t+αt2) |t| ≤ Tp

2

0 else

(2.2)

where w0 is the carrier frequency, Tp is the pulse duration, and 2α is the FM rate. Return

signals for every aperture position are collected by a radar sensor which is continuously
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steered to the ground patch. After some pre-processing steps, the relationship between

the return signals for a given angle θ and the complex-valued reflectivity field f(x, y)

becomes:

rθ(t) =

∫∫
x2+y2<=L2

f(x, y)e−jK(t)(x cos θ+y sin θ)dxdy (2.3)

In this equation; L is the radius of the reflectivity field, and K(t) is the radial spatial

frequency:

K(t) =
2

c
(w0 + 2α(t− 2

Rθ

c
)) (2.4)

where c is the speed of the light and Rθ is the distance between radar and reflectivity

field at angle θ. Note that, this spatial frequency is limited to a finite frequency interval

since the pulse duration and the FM rate is limited. Therefore we can see that rθ(t)

corresponds to a limited slice from the 2D Fourier transform of the reflectivity field

f(x, y) at angle θ. For M observation points, we can formulate the discrete observation

model as follows: 
r1

r2

rM


︸ ︷︷ ︸

r

=


C1

C2

CM


︸ ︷︷ ︸

C

f (2.5)

where r contains phase histories and C contains the discretized approximation to the

observation kernel for all of the M observations. These sampled returned signals called

phase histories lie on an annular region in the 2D spatial frequency domain which is

illustrated in Figure 2.2.

2.2 Image Reconstruction and Sparse Representa-

tion

In this section, we explain the need for regularization in solving inverse problems in

imaging. We then briefly review compressed sensing theory and sparse representations.
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2.2.1 Regularization in Image Processing

For most of the engineering problem such as image restoration, and reconstruction

the following discrete observation model

g = Hf + n (2.6)

has been used in a way that g ∈ CM is measurement vector, f ∈ CN is original image

vector, and H ∈ CM×N is a measurement matrix. Generally measurement noise n is

also included in the equation. This is a typical inverse problem in imaging where we

try to estimate f given the observation vector g. Note that this discrete observation

model is also applied in to the SAR imaging problem. Solution of this problem can be

found with the least squares approach:

f̂LS = arg min
f
‖g −Hf‖2

2 (2.7)

where ‖.‖2 is the l2 norm. Least squares approach deals with the non-existence of the

solution. If the null space of the measurement matrix H is not empty as is the case

for the underdetermined problems, the least squares solution is not unique. Choosing

the solution that has minimum l2 norm provides unique solution which is called the

least-squares min-norm solution. However, in the presence of noise this solution may

not provide the desired solution when H is ill-conditioned. To find a better solution, a

priori information can be included into the main problem. This type of method is called

regularization. A general framework for regularization can be established as follows:

f̂ = arg min
f
φdata(f |g) + λφprior(f) (2.8)

where φdata(.) represents the data fidelity term, φprior(.) is a prior function that enhances

predetermined features of the original image f , and λ is a regularization parameter that

balances data and prior terms.

A simple way to use this framework is including a quadratic term as a prior func-

tion. This type of method is called quadratic regularization. A general Tikhonov type

regularization is [41, 56]

f̂T ik = arg min
f
‖g −Hf‖2

2 + λ ‖Lf‖2
2 (2.9)
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where L is regularization matrix. Note that, selecting this matrix as identity matrix

leads to the Lagrangian form of the generalized solution. Selecting L as an approxi-

mation to the 2D gradient operator enforces smooth regions and suppresses noise that

provides useful results for piecewise smooth images.

Although quadratic regularization type solutions are computationally efficient and

simple, powerful constraints and consequently powerful results are possible by using

non-quadratic regularization. Most of the images admit sparse representation in some

transform domain. For example, if the image consists of a few nonzero elements, sparse

solution is preferable. It has been shown that non-quadratic lp norm where p < 2 pro-

vides sparse solutions. One example of this type is using smooth expression of lp norm

[59]:

‖f‖pp =
N∑
i

(|fi|2 + ε)p/2 (2.10)

where ε is small constant for avoiding non-differentiability around 0. Smaller p implies

sparser results. Another non-quadratic regularization model commonly used in image

processing is total variation (TV) model [48, 52]

f̂TV = arg min
f
‖g −Hf‖2

2 + λ ‖∇f‖1
1 (2.11)

where ∇ is gradient operator. TV regularization provides successful results for piece-

wise constant images and preserves strong edges [59]. Note that TV regularization is a

special form of (2.9) where L = ∇ and the norm of the prior term is l1 norm.

So far we analyzed both non-quadratic and quadratic regularization methods, and

in many contexts it can be observed that non-quadratic regularization methods provide

better solutions as compared to quadratic regularization methods. One of the con-

straints we mentioned for the non-quadratic regularization methods is sparsity. Spar-

sity can be enforced to the image if the underlying scene consists of only a few nonzero

elements. Moreover most of the images admit sparsity on some transform domain and

using such transform matrices these images can be represented sparsely. Hence powerful

results can be obtained by exploiting the sparse feature of the image on some transform

domain.
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2.2.2 Sparse Representation

As an alternative, an image can be represented with a few coefficients of the spars-

fying transform in synthesis-based formulation where image is formed by selecting a

few columns of the matrix. This matrix is generally called dictionary. In particular,

let D = [d1, d2, ...dN ] ∈ CN×K be the dictionary where its column di is called atom. If

K > N this dictionary is called overcomplete. One can represent the signal f with this

dictionary as follows:

f = Dα (2.12)

where α ∈ CK is the vector of sparse coefficients in which f is represented with linear

combination of the atoms of D. This representation has infinitely many solutions.

Therefore, the one with linear combination of few atoms -sparsest- is attractive. General

aim becomes trying to represent f with an overcomplete dictionary D sparsely. This

sparse representation problem can be expressed in two ways:

min
α
‖α‖0 s.t. ‖f −Dα‖2

2 ≤ ε (2.13a)

min
α
‖f −Dα‖2

2 s.t. ‖α‖0 ≤ T (2.13b)

where ‖.‖0 is the l0 norm, counting the nonzero elements, ε is the sparsity precision

and T is the sparsity level. The main difference between two problems is the second

one enforces certain level of sparsity while the first one does not. Unconstrained form

of the sparse representation problem can be expressed as follows:

min
α
λ ‖α‖0 + ‖f −Dα‖2

2 (2.14)

where for a particular choice of λ these two equations become equivalent. Solution of

the problem (2.14) is generally called sparse coding. Note that because of the l0 norm,

this problem is non-convex and solution is NP-hard so that pursuit algorithm can be

used in order to solve this problem.

Several greedy algorithms are proposed for sparse coding. Matching pursuit [38] and

orthogonal matching pursuit (OMP) [40] are well known greedy algorithms for sparse

coding. OMP selects a dictionary atom having the largest support on the data and esti-

mates its corresponding coefficient using a least squares approach. The OMP algorithm
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for a certain sparsity threshold is explained in Algorithm 1. Note that the error bound

between the original signal f and the sparsely represented one Dα can also be used as a

stopping criterion. These pursuit algorithms are simple and computationally efficient.

As an alternative one can solve the following sparse coding problem by relaxing the

sparsity term in order to make the problem convex:

min
α
λ ‖α‖1 + ‖f −Dα‖2

2 (2.15)

This problem is the Lagrangian form of a well known problem in statistics, the least

absolute shrinkage and selection operator (LASSO) [55]. This convex sparse coding

problem can be solved via basis pursuit (BP) [17]. The focal under-determined system

solver (FOCUSS) [27] solves the sparse coding problem (2.14) by replacing the l0 norm

with an lp norm where p < 1. Thus, FOCUSS provides powerful results but small p

leads to a non-convex problem and computational inefficiency.

Algorithm 1 Orthogonal matching pursuit (OMP) algorithm

Input: f ∈ CN , D = [d1, d2, ..., dK ] ∈ CN×K , T

Initialization: r = f, i = 0, α = 0 ∈ CK , S = ∅

while i ≤ T do

k = arg max
i

dTi r

S = S ∪ k

α = arg min
α
‖f −Dα‖2

2 s.t. αSc = 0

r = f −Dα

i = i+ 1

end while

Output: Sparse Coefficients α

2.2.3 Compressed Sensing

In the previous section we introduced sparsity and sparse recovery algorithms. In

this section, we will introduce widely used phenomena in image processing: Compressed

sensing (CS) theory [21, 10]. Consider the inverse problem of (2.6) where M < N .
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Assuming that unknown signal f can be represented sparsely in some transform domain

D i.e. sparsifying dictionary D = [d1, d2, ..., dK ] ∈ Cn×K represents f with linear

combination of its atoms di. CS theory suggests that accurate recovery of the following

convex relaxation of the sparse recovery problem

min
α
‖α‖1

1 + λ ‖g −HDα‖2
2 (2.16)

can be obtained with limited measurements provided that f = Dα is T-sparse such

that ‖α‖0 ≤ T and Φ = HD satisfies restricted isometry constant (RIC) with constant

σK such that:

(1− σK) ‖x‖2
2 ≤ ‖Φx‖

2
2 ≤ (1 + σK) ‖x‖2

2 (2.17)

where x is any vector with at most K nonzero entries. Under these conditions CS

theory guarantees accurate recovery under limited samples even below Nyquist rate.

CS theory senses (recovers) unknown signal f from its underdetermined measurement

g while compressing it with a dictionary D. Thus, once a dictionary that compresses

the signal to be reconstructed is found, limited linear observations becomes sufficient

for reconstruction purposes that makes selection of the dictionary more of an issue. A

variety of predetermined overcomplete dictionaries have been proposed and used for

sparse representations such as discrete cosine transform (DCT), wavelets, curvelets.

These dictionaries are found to be very effective for sparse representations.

2.3 Dictionary Learning

In the previous section, we mentioned that predetermined dictionaries have been

used for sparse representations. However, the predetermined characteristic of dictio-

naries limits effective use of CS on signals that cannot be represented parsimoniously by

these dictionaries. Thus, the following question emerges: Can we form an application-

based dictionary? This question evoked an area of research under the name of dictionary

learning where dictionary atoms are adaptively learned from training sets.

The general problem of dictionary learning can be expressed as follows. Let {fi}Ni=1

be the set of signals. We seek an overcomplete dictionary D in order to represent this
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set of signals with sparse coefficients {αi}Ni=1. Note that, for extremely sparse problems

where each signal is represented with only one dictionary atom {di}Ki=1 finding sparse

coefficients and dictionary atoms turn out to be the K-means clustering problem [26].

The iterative K-means algorithm assigns each cluster to an atom of D in the first stage

by assuming D is fixed and updates elements of D for better clustering. This approach

has become the essence of most of the dictionary learning methods recently. In par-

ticular, dictionary learning methods involve two stages: Sparse coding and dictionary

update.

There are several dictionary learning methods such as probabilistic approaches

[32, 33], and method of optimal directions (MOD) [23] (see [2, 47] for details). Re-

cently, a dictionary learning method called K-SVD [3] has been used widely in imaging

applications. We introduce K-SVD in the next section.

2.3.1 K-SVD

We now explain the details of the K-SVD algorithm. Let F = {fi}Ni=1 be the set

of training signals and Γ = {αi}Ni=1 be the sparse coefficients matrix. Then, the sparse

representation problem in (2.13) takes the form of

min
α,D
‖F −DΓ‖2

F s.t. ∀i ‖αi‖0 ≤ T (2.18)

1 Note that this problem involves N sparse representation problems hence dictionary D

is subject to update adaptively. K-SVD iteratively updates sparse coefficients and dic-

tionary via two steps: the sparse coding stage and the codebook update stage. Former

stage requires the solution of N sparse recovery problems. While keeping dictionary D

fixed, sparse coefficients are updated by using OMP. Note that, any pursuit algorithm

that we mentioned in Section 2.2.2 can be used in that stage. In the codebook update

stage, dictionary atoms {di}Ki=1 and the corresponding sparse coefficients are updated

sequentially. In particular, assuming that Γ and D are fixed except the ith dictionary

atom and its corresponding sparse coefficients αTi (ith row of Γ), then the penalty term

1Please note that unlike its use in Section 2.2, the variables fi, N in this section denote training

signals and number of training signals respectively. The distinction should be clear from context
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for that dictionary atom takes the form of∥∥∥∥∥
(
F −

K∑
j 6=i

djα
T
j

)
− diαTi

∥∥∥∥∥
2

F

=
∥∥Ei − diαTi ∥∥2

F
(2.19)

where Ei represents the error induced by the of K-1 terms when the ith term is removed

from the dictionary. K-SVD sequentially updates all dictionary atoms di and αTi so

as to minimize this penalty term. Note that, diα
T
i is a rank-1 matrix. Indeed, this

property makes K-SVD distinctive from other dictionary learning methods. Singular

value decomposition (SVD) is used for finding an alternative di and αTi . SVD finds a

rank-1 matrix that effectively approximates the error matrix Ei. However, this approach

may damage the sparsity of αi. Therefore, by defining following set

wi = {j|αj 6= 0, 1 ≤ j ≤ K} (2.20)

the update step is restricted to the nonzero indices of the sparse coefficients. Defining

a selection matrix Ωi such that its (wi(j), j) entries are one and other entries are zero.

Using this matrix, the penalty term becomes∥∥EiΩi − diαTi Ωi

∥∥2

F
=
∥∥∥Ẽi − diα̃iT∥∥∥2

F
(2.21)

where Ẽi represents error columns in which the dictionary atom di is used. Hence zero

entries are discarded from the rank-1 matrix. In that way the sparsity condition of the

sparse coding stage is preserved. Then, Ẽi is decomposed to UΣV T by using SVD. The

first column of U is assigned to di and the first column of V multiplied with the first

singular value Σ(1, 1) is assigned to sparse coefficient α̃i. This SVD is applied for all K

dictionary atoms sequentially. Therefore, this method is called K-SVD. Note that the

main difference between K-SVD and other dictionary learning methods is it updates

both the dictionary and the sparse coefficients in the codebook update step. Steps of

K-SVD are listed in Algorithm 2.

K-SVD has been widely used for many imaging applications [22, 45, 20] and it is

reported that it provides strong results on learning application specific dictionaries.

However, it has not yet had a significant presence in SAR imaging. We present a

preliminary usage of K-SVD in SAR imaging in Section 2.4.3. We will discuss the

usage of K-SVD in the SAR image reconstruction concept in Chapter 3.
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Algorithm 2 The K-SVD algorithm

Input: Initial dictionary: D(0) , Data: F = {fi}Ni=1 , Sparsity level: T .

Output: Sparse coefficients: Γ = {αi}Ni=1 , Learned dictionary D.

Problem: min
α,D
‖F −DΓ‖2

F s.t. ∀i ‖αi‖0 ≤ T

while Stopping criteria is not satisfied do

1. Sparse Coding Stage

Solve the following problem by OMP algorithm for i = 1, 2, ..., N .

min
α
‖fi −Dαi‖2

2 s.t. ‖αi‖0 ≤ T

2. Codebook Update Stage

Update each dictionary atom di and its corresponding sparse coefficients sequen-

tially using the following procedure.

Calculate error matrix Ei by using the following relation

Ei = F −
K∑
j 6=i

diα
T
i

Define set of indices wi that indicate training samples which use the dictionary

atom di

wi = {j|αj 6= 0, 1 ≤ j ≤ K}

Calculate Ẽi by extracting only the columns corresponds to wi.

Decompose Ẽi to UΣV T via SVD.

Assign the first column of the U to the dictionary atom di and update nonzero

entries of corresponding sparse coefficients with the first column of V multiplied

with Σ(1, 1).

end while
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2.4 SAR Image Reconstruction Methods

The SAR imaging problem can be interpreted as linear inverse problem of the form

(2.6) where the reflectivity field is reconstructed from noisy and underdetermined mea-

surements of returned signals from the scene. In this section we explain SAR image

reconstruction methods for this ill-posed problem.

2.4.1 Conventional Methods

Based on equation (2.3), we observed that phase histories and unknown reflectivity

field are related through a band-limited Fourier transform. Thus, early SAR imaging

algorithms exploited this relationship. The most widely used SAR image formation

algorithm is the polar format algorithm (PFA) [12]. PFA is based on the 2D inverse

Fast Fourier transform (FFT). First, phase history samples shown in Figure 2.2 are

interpolated from the polar to the Cartesian grid. After interpolation inverse 2D FFT

is applied. In order to reduce sidelobes, windowing can be applied before the inverse

2D FFT. Another well-known algorithm is filtered backprojection (FBP) [39]. Similar

to PFA, this algorithm does not use prior information. FBP exploits the tomographic

formulation of SAR. These algorithms are simple and computationally efficient. There-

fore, these algorithms are used in many radar imaging applications. Thus, we called

these methods conventional methods.

Although conventional methods are tempting to use because of their simplicity and

efficiency, they suffer from noise, speckle, limited resolution, and sidelobes. These al-

gorithms do not include any prior information about reflectivity field.

2.4.2 Sparsity-driven SAR Image Reconstruction Methods

As we expressed repeatedly in Section 2.2 ill-posed inverse problems can be well re-

constructed by adding prior information to the objective function. We see that, sparsity-

driven reconstruction methods assume that underlying reflectivity admits sparsity in

a particular domain. In SAR imaging, sparsity-driven reconstructions have proven to

be very effective. Here we discuss both analysis-based formulations where sparsity
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is imposed on the features of the reflectivity and synthesis-based formulations where

reflectivity is represented sparsely with a dictionary by imposing sparsity on the coef-

ficients of representation through a dictionary.

In [14] an analysis model is proposed for sparsity-driven SAR imaging. The objective

function in [14] has the following form:

f̂ = arg min
f
‖g −Hf‖2

2 + λ1 ‖f‖pp + λ2 ‖L|f |‖pp (2.22)

where λ1 and λ2 are regularization parameters and L is discrete gradient approxima-

tion. In this function, the first term enforces data fidelity, the second term enforces

sparsity on the point scatterers when p < 2, and the third term enforces sparsity on the

gradient of the magnitude of the reflectivity. As we mentioned previously on TV and

Tikhonov regularization, enforcing sparsity on the gradient leads to be piecewise smooth

solutions. However, in this model sparsity is imposed on the magnitude of the reflec-

tivity. This is because the phases of the reflectivities are highly random and spatially

uncorrelated. Hence imposing sparsity on the real and imaginary parts (which would

be the more straightforward approach) may not lead to the desired effect of smoothing

out reflectivity magnitudes in homogeneous regions. This model tries to enhance two

features: Point-based structures such as point scatterers and man-made sparse struc-

tures, and region-based features such as spatially distributed objects, including, e.g.,

buildings. Sparsity is enforced with lp norm, with p chosen around 1 or smaller than

1. In the remainder of our discussion, we will call this approach point-region enhanced

non-quadratic regularization. If the underlying scene exhibits these two features, this

model provides strong reconstruction results. Hence if underlying scene contains only

point scatterers, this algorithm provide accurate results with highly underdetermined

cases. This algorithm is solved with quasi-Newton type numerical method with partic-

ular Hessian scheme using a smooth approximation of lp norm (2.10).

An alternative of the approach described above is using a synthesis-based sparse

representation framework for SAR imaging. However, complex-valued and poten-

tially random-phase nature of SAR reflectivities make the formulation of a sparse

representation-based framework for solving the inverse problem of SAR image forma-
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tion just a bit more challenging than inverse problems involving real-valued fields, such

as those appearing several medical imaging applications. The recent work in [49] pro-

poses a synthesis-based sparse representation framework for SAR imaging that involves

solving the magnitude and the phase of the reflectivities separately. This approach

paves the way for using overcomplete dictionaries to represent the magnitude of the re-

flectivity field sparsely. In particular, introducing the notation f = Θ |f |, where Θ is a

diagonal matrix containing the unknown phase of the reflectivity in exponentiated form

and |f | represents the magnitude of the reflectivity , represented by an overcomplete

dictionary Ψ such that |f | = Ψα ,[49] poses the following joint optimization problem

for SAR image formation:

α̂, Θ̂ = arg min
α,Θ
‖g −HΘΨα‖2

2 + λ ‖α‖pp s.t. ∀i |Θ(i,i)| = 1 (2.23)

where α denotes the sparse coefficients and λ is a regularization parameter balancing

data fidelity and reflectivity magnitude sparsity in terms of dictionary Ψ. This problem

can be solved using a coordinate descent approach with two update steps. In the

first stage, sparse coefficients are updated. The second step involves estimation of the

unknown phase. Using a number of dictionaries such as wavelets, and shape-based

dictionaries enhances some features of the magnitude.

The analysis-based model provides accurate reconstructions, but it only enhances

two features of the reflectivity field hence it may suppresses non-smooth regions and

patterns involved in the scene. Similarly, while synthesis-based approach produces

very good results in certain contexts using dictionaries simultaneously representing

multiple types of features, one of its limitations is that these dictionaries are predefined

and cannot be easily adapted for a certain context in a data-driven manner. Both

models do not consider particular characteristics of certain reflectivity fields. They

provide accurate results if the reflectivity field corresponds to their pre-defined sparsity

constraints. This problem can be resolved incorporating the dictionary learning ideas

discussed in Section 2.3 into the sparsity-driven SAR imaging framework. We propose

such an approach in Chapter 3.
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2.4.3 Recent SAR Image Reconstruction Methods

Recent sparsity-driven SAR imaging problems can be divided into two groups. The

first group is regularization-based frameworks as discussed in Section 2.4.2. There are

also preliminary usage of learning-based frameworks in SAR imaging. In [1] incomplete

SAR data are reconstructed using K-SVD approach as an image inpainting problem.

In [31] a dictionary learning algorithm is used for SAR image despeckling. In [28] dic-

tionary learning algorithm has been proposed for SAR image super-resolution. In [53],

K-SVD is used in the process of decomposing a SAR image into a spatially sparse and

a spatially non-sparse component. Sparsity-driven imaging has also been extended to

various variations or extensions of SAR such as inverse SAR (ISAR) [44] and SAR to-

mography (TomoSAR) where the SAR principle is extended into the elevation direction

[64]. Morover, there exists some preliminary research [63, 18] on SAR imaging based on

low-rank sparse matrix decomposition (LRSD). The second group involves probabilistic

approaches. In these frameworks, the SAR imaging problem is considered as maximum

a posteriori (MAP) problem with a Bayesian perspective. These approaches [43, 61] uti-

lize prior distributions to model the reflectivity field. In [42, 15] recent sparsity-driven

SAR imaging methods are reviewed in detail.

2.5 Low-rank Matrix Recovery

2.5.1 Theoretical Background

Recent years have witnessed rapidly increasing interest in matrix completion or

recovery problems and in efficient solutions of these problems. Consider a basic survey

matrix M ∈ <n×m where each column consists of ratings for a particular object such

as movie and book, each row represents a particular user. Suppose each user has rated

a random subset of the objects. Suppose we want to fill this matrix for an automatic

recommendation system. At first glance, it seems there is no solution for this ill-

posed problem. However, given the fact that this matrix is low-rank with rank r where

r < (n,m) one may turn this matrix completion problem into the following optimization
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problem

min
F

rank(F ) subject to Ω(F ) = Ω(M) (2.24)

where Ω is the set indices where M has nonzero elements. Note that, this low-rank

matrix F has only r(2n− r) degrees of freedom. This problem is NP-hard and involves

minimizing the number of nonzero singular values. Recent work on the subject [11, 46]

however have proved that the nuclear norm, defined as

‖F‖∗ =
r∑
i=1

σi(F ) (2.25)

can, under certain conditions, be used as a surrogate convex form of the rank mini-

mization constraint. After this relaxation, the resulting convex optimization problem

is given by

min
F

‖F‖∗ subject to Ω(F ) = Ω(M) (2.26)

It has been shown that most low-rank matrices can be recovered perfectly with high

probability if the observed number of samples is above a certain limit [11]. Note that,

there is an interesting relationship between compressed sensing and low-rank matrix

completion. In compressed sensing, l1 norm is used for convex relaxation of the l0

norm. In other words, rather than minimizing the number of nonzero elements in the

vector, the convex problem tries to minimize the sum of the magnitudes of the elements

of the vector. Similarly in the low-rank matrix completion problem, minimization of

the number of nonzero singular values is relaxed to the sum of the singular values. As

we will explain in detail, this similarity can be observed in the process of solving the

problems as well.

This problem can be extended to the recovering problem of a corrupted matrix

min
F

‖F‖∗ + λ ‖H(F )− g‖2
2 (2.27)

where H is linear mapping operator and λ is Lagrange multiplier. In this case this

problem is generally called low-rank matrix recovery. Note that when H is a selection

operator this problem turns to a matrix completion problem. Minimizing nuclear norm

can be achieved by using semidefinite programming with interior methods [57]. How-

ever, for large matrices these methods are inefficient in terms of computation time.
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Recently, simple and efficient methods [8, 36] have been developed in order to solve

the nuclear norm minimization problem. We will focus on the singular value threshold-

ing method and provide its theoretical legitimacy.

2.5.2 Singular Value Thresholding (SVT)

Consider the following nuclear norm minimization problem

min
F

λ ‖F‖∗ +
1

2
‖F −M‖2

F (2.28)

where ‖.‖F is the Frobenius norm. It is asserted that singular value shrinkage operator

Cλ(M) is the solution of the above mentioned problem where for SVD of M = UΣV T

Cλ(M) = UCλ(Σ)V T s.t. C̃λ(Σ) = max(σi − λ, 0) ∀i (2.29)

This method essentially applies soft thresholding to the singular values of M . Thus it

is called singular value thresholding. Proof of Cλ(M) being the unique minimizer of

(2.28) is straightforward. Let us first note that the subgradient of the nuclear norm has

the form of Y = UV T +W with the following optimality conditions [11]

UTW = 0 , WV = 0 (2.30a)

‖W‖2 ≤ 1 (2.30b)

then, for F̃ = Cλ(Y ) to be the unique minimizer following condition should hold.

0 ∈ λ∂||F̃ ||∗ + F̃ −M (2.31)

Note we can decompose M such that M = U1Σ1V
T

1 + U2Σ2V
T

2 where Σ1 and Σ2

represent singular values greater than λ and smaller than λ respectively. We have

F̃ = U1Σ1V
T

1 − λU1IV
T

1 . Combining these two relation allows us to express M − F̃ =

λU1V
T

1 + W where W = U2Σ2V
T

2 . Note that, W obeys optimality conditions and

therefore F̃ is the unique minimizer.

2.5.3 Alternating Direction Method of Multipliers (ADMM)

Consider the following unconstrained optimization problem

min
x
f(x) + g(x) (2.32)
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where f and g are convex functions, and x ∈ Cn. This problem can be turned into a

constrained optimization problem by using variable splitting method. In particular, a

new variable z ∈ Cn can be added to the problem as follows:

min
x,z

f(x) + g(z) s.t. x = z (2.33)

At first glance, this step may seem pointless, but the main idea behind variable splitting

is that constrained form of the problem may be solved easier than its unconstrained

form by using algorithms such as Augmented Lagrangian Method (ALM) [29]. Hence,

variable splitting can be useful when the objective function has a separable structure.

Augmented Lagrangian form of this constrained optimization problem is

L(x, z, c) = f(x) + g(v) 〈c, x− z〉+
β

2
‖x− z‖2

2 (2.34)

where c ∈ Cm is Lagrange multiplier and β is a positive penalty parameter. ALM solves

this problem by iterating between (x, z) and c. In particular, solution for iteration k

has the following form:

(x(k+1), z(k+1)) = arg min
x,z

L(x, z, c(k))

c(k+1) = c(k) + β(x(k+1) − z(k+1))

(2.35)

However, solution of the subproblem for (x(k+1), z(k+1)) is generally not straightforward,

because in general the corresponding subproblem is non-smooth and it involves a non-

separable quadratic term.

Instead of a joint solution of (x, z), one can solve x and z separately for each it-

eration. In fact, alternating direction method of multipliers (ADMM) [24] solves the

problem by alternating between variables as follows:

x(k+1) = arg min
x
L(x, z(k), c(k))

z(k+1) = arg min
z
L(x(k+1), z, c(k))

c(k+1) = c(k) + β(x(k+1) − z(k+1))

(2.36)

History of ADMM and ALM goes back to half a century ago. However, these meth-

ods have recently found use for many applications. In [5] ADMM has been proposed
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for distributed optimization. In particular, if the objective function has a separable

structure, ADMM can be used by exploiting variable splitting and ALM. Thus, large

problems can be solved by updating relatively small subproblems in parallel. In im-

age processing applications, ADMM has found use when the objective function has a

separable structure.

2.5.4 Low-rank Sparse Decomposition (LRSD)

Previously described solution for the nuclear norm minimization paved the way for

the problem of decomposing a matrix into the low rank and sparse components. For the

imaging problem, this can be considered as decomposing an image into the low-rank

background and sparse part. Sparse part may consist of the small objects in the image.

In particular low-rank sparse matrix decomposition can be expressed as

min
L,S

λ ‖L‖∗ + ‖S‖1 s.t. A = L+ S (2.37)

where λ balances two constraints. Note that this problem is a convex relaxation of rank

and l0 norm minimization. This formulation is also called robust principle component

analysis (RPCA) [9]. One may claim that this optimization problem is high dimensional

and non-smooth so the solution is not scalable. However, both nuclear norm and l1

norm have special structures and they can be separable. Therefore, this problem can

be viewed as a separation of low-rank structures from sparse objects of the scene.

Several efficient solutions have been proposed for this problem using gradient descent

algorithms such as iterative thresholding [9], the accelerated proximal gradient approach

and alternating direction method for augmented Lagrangian method (ALM) [34, 60].

Augmented Lagrangian form of the (2.37) is

min
L,S

λ ‖L‖∗ + ‖S‖1 + 〈Z,A− L− S〉+
β

2
‖A− L− S‖2

F (2.38)

where Z is the Lagrange multiplier and β is a positive constant. Note that, the objective

function has separable structure. Therefore, ADMM can be used for the solution of

this problem. Solution is outlined in Algorithm 3. The SLRD framework has recently

found use in image processing applications such as face recognition [16], and background
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Algorithm 3 Alternating direction methods of multipliers (ADMM) for SLRD

Input: Matrix A that contains both low-rank and sparse features, β , λ.

Output: Sparse matrix S and low-rank matrix L.

while Stopping criteria is not satisfied do

1. S(k+1) = C̃1/β(A− L(k) + Z(k)

β
) Soft thresholding

2. L(k+1) = Cλ/β(A− S(k+1) + Z(k)

β
) Singular value thresholding

3. Z(k+1) = Z(k) + β(A− L(k+1) − S(k+1)) Lagrange multiplier update

end while

subtraction [7]. Some preliminary ideas have been reported for SAR imaging as well

[63, 18]. We will integrate this framework into the SAR imaging problem in Chapter 4.
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Chapter 3

Dictionary Learning for Sparsity-Driven SAR Imaging

In this chapter, we formulate our SAR image reconstruction framework by inte-

grating patch-based dictionary learning into the sparsity-driven SAR imaging model

described in the previous chapter. We introduce using an adaptive dictionary for rep-

resenting magnitudes of the complex-valued SAR reflectivities. This dictionary can be

learned from training data in an offline manner or from test data in an online man-

ner. We present an iterative algorithm for the solution of the optimization problem

emerging in our framework for dictionary learning-based SAR image formation. Fur-

thermore, we present experimental results on both synthetic scenes and real scenes from

the TerraSAR-X data-set [4].

3.1 Proposed Dictionary Learning Framework

In order to formulate a sparse representation-based framework with a dictionary that

sparsely represents the data for solving the inverse problem of SAR image formation,

one should consider following facts:

� SAR exhibits complex-valued and potentially random phase reflectivities.

� Large size images require computationally inefficient large dictionaries for the

sparse representation.

� In SAR imaging applications, sample scenes representing the ground truth reflec-

tivities are usually not available.
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Firstly, the problem of SAR scenes exhibiting random phase can be overcome by rep-

resenting the magnitude of the complex-valued field by sparsfying dictionaries as in

[49, 50] , and as described in Chapter 2. Using the notation of f = Θ |f | the random

phase and the magnitude of the complex-valued reflectivity field f can be represented

separately where Θ is a diagonal matrix containing the unknown phase of the reflectiv-

ity in exponentiated form. In particular Θ(j,j) = ejφj where φj is the unknown phase

of the jth element of f . The second problem arises when the size of the image to be

reconstructed is large. For example, if we reconstruct a 128 × 128 image, at least a

dictionary of size 16384 × 16384 is required. For an overcomplete dictionary an even

larger size is required. Therefore, a patch-based sparse representation [22] can be pre-

ferred for computational efficiency. Patch-based dictionaries learned by K-SVD have

been used in many imaging applications [62, 37]. In particular, one can represent the

small patches of the reflectivity field with a relatively small sized sparsifying dictio-

nary. Small patches extracted with a patch extraction operator Ei are assumed to be

represented sparsely with a dictionary D (e.g, Ei|f | ≈ Dαi ∀i). The third problem

is caused by the nature of the SAR system. Observed signals suffer from noise and

reconstructed image from these signals contains certain level of noise. Moreover, due to

the limited bandwidth of the SAR systems, SAR images suffer from sidelobes, artifacts,

and speckle. Therefore, learning a sparsfying dictionary from these data may result in

imperfect learning of the features of the reflectivity field. Several pre-processing steps

may be required in order to suppress noise and artifacts. These pre-processing steps

will be discussed in Section 3. Considering the above mentioned problems, we define

the following joint problem for dictionary learning and image formation.{
|̂f |, Θ̂, D̂, α̂i

}
= arg min

|f |,Θ,D,αi
λ ‖g −HΘ |f |‖2

2 +
∑
i

‖Ei |f | −Dαi‖2
2 +

∑
i

µi ‖αi‖0

s.t. |Θ(j,j)| = 1 ∀j
(3.1)

In this optimization problem; the first term measures data fidelity, the second term

measures the proximity between sparse representations and the magnitude of the im-

age patches, and the third term measures the sparsity of the image patches, where λ

is the weight of the data fidelity term. This parameter depends on the measurement

29



noise and the percentage of the available data. Lastly, Θ is a diagonal matrix where

Θ(j,j) is jth exponentiated phase of the reflectivity field.

Solution of this optimization problem needs a coordinate descent procedure. In

order to solve one parameter, other parameters are assumed to be fixed. There are

four different parameters to be solved: |̂f |, Θ̂, D̂, α̂i. If the dictionary D is learned

from several training patches offline, before the image reconstruction process, then the

formulation decomposes into sequential steps of offline dictionary learning and online

image formation. In this case, the online process would not contain the dictionary as

one of its unknowns. For the sake of generality, here we describe the solution of the

problem as online learning. Each iteration of this process involves three steps: dictio-

nary learning, phase update, and magnitude update. In the first step, the dictionary

D and the sparse coefficients αi are jointly updated. If the dictionary is learned offline,

then in the online process, this step involves just the update of αi through a pursuit

algorithm. The second step minimizes the phase of the reflectivity field by using the

iterative method used in [49]. The last step reconstructs the magnitude of the reflec-

tivity field. A Graphical representation of the proposed method is shown in Figure 3.1.

Next we explain these three update steps in detail.

3.1.1 Sparse Coefficients and Dictionary Update

This step solves for the patch-based overcomplete dictionary as well as the sparse

representation coefficients over that dictionary, while keeping |f | and Θ fixed. More

specifically, dropping the constant variables, our subproblem takes the following form:{
D̂, α̂i

}
= arg min

D,αi

∑
i

‖Ei |f | −Dαi‖2
2 +

∑
i

µi ‖αi‖0 (3.2)

This subproblem has itself a two steps alternating solution. One solution of this problem

is K-SVD [3] as described in Chapter 2. K-SVD solves for the sparse coefficients and the

dictionary jointly. In the first step, sparse coefficients are updated through the OMP

algorithm and in the second step, each column of the dictionary and sparse coefficients

are jointly updated consecutively. In this subproblem, if dictionary D is assumed to

be known, e.g, because it has been learned offline, the subproblem has only one type

30



Figure 3.1: Graphical representation of the iterative algorithm.

of unknown which is sparse coefficients. Since minimizing the l0 norm is not tractable,

sparse coefficient can be solved by any given pursuit algorithm as previously mentioned

[27, 17, 40]. We will use OMP within our framework since it is computationally efficient

and easy to implement.

3.1.2 Phase Update Step

In this step, the phase of the reflectivity field is estimated by keeping the other

parameters fixed. This requires solving a subproblem of (3.1) involving the data fidelity

term and the constraint only. An algorithm for solving such a phase estimation problem

has been proposed in [49, 50], which we utilize in this step. Let us introduce a vector

p ∈ CN that contains the diagonal elements of the phase matrix Θ, and the matrix B ∈

CN×N whose diagonal elements contain information about the reflectivity magnitudes.
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Let us also invoke the constraint that the magnitudes of the elements of p should be

1, simply because they contain phases in the form ejφ(f) where φ(·) denotes the phase.

Then, we obtain the following optimization problem in Lagrangian form:

p̂ = arg min
p
‖g −HBp||22 + λp

N∑
i=1

(|pi| − 1)2 (3.3)

where

B = diag

{ (∑
iE

T
i Dαi

)
k

(
∑

iE
T
i Ei)(k,k)

}
(3.4)

and λp is a Lagrange multiplier. As mentioned above, B contains information about

the current estimate of the reflectivity magnitudes. Here we could use the estimate

of |f | from the previous iteration, but instead we choose to incorporate its sparse

representation from the current iteration through the αi. Since this representation is

patch-based, (3.4) performs appropriate operations to produce an N×N matrix, whose

N diagonal entries correspond to the N reflectivity magnitudes in the scene. As in [49],

we solve this optimization problem through a fixed point algorithm, which can also be

shown to be equivalent to a particular quasi-Newton algorithm:

G(p(n))p(n+1) = 2 (HB)H g + 2λpe
jφ(p(n)) (3.5)

where

G (p) = 2 (HB)H (HB) + 2λpI (3.6)

Note that each iteration in (3.5) involves solving a set of linear equations. This is an

indication that the approach here solves the non-quadratic optimization problem in

(3.3) by turning it into a series of quadratic problems. These linear set of equations can

be efficiently solved by the conjugate gradient algorithm with the convergence criterion

‖pn+1−pn‖
‖pn‖ < δp

3.1.3 Magnitude Update Step

In this last step, the magnitude of the reflectivity field is estimated keeping the other

parameters fixed. The subproblem of (3.1) for updating the reflectivity magnitudes can
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be expressed as:

|̂f | = arg min
|f |

∑
i

‖Ei |f | −Dαi‖2
2 + λ ‖g −HΘ |f |‖2

2 (3.7)

This is a quadratic optimization problem with a closed form solution. Taking the

derivative with respect to |f | and equating it to zero gives the following equation.(∑
i

ET
i Ei + λΘHHHHΘ

)
|̂f | = λΘHHHg +

∑
i

ET
i Dαi (3.8)

We solve this linear set of equations using the conjugate gradient algorithm. One im-

portant point in this step is that the solution of the subproblem may produce complex

values. Hence because of the misalignment of the phase, the real part of the solution

may be negative. One can propose to convert this problem to into a constrained problem

to enforce non-negativity. Non-negativity constraints in sparsity problems have been

explored recently and provide an improvement over the final solution [30, 6]. However,

this constraint will complicate the solution further. Thus, we simply take the magni-

tude part of the solution at each iteration.

These three steps are run until the convergence criterion
‖|f |n+1−|f |n‖

‖|f |n‖ < δm is sat-

isfied. Proof of the convergence of the proposed algorithm is not straightforward. We

known that sparse coefficients and dictionary update step minimize the second and

third terms of the optimization problem (3.1). Similarly phase update and magnitude

update steps minimize the data fidelity term. However, it does not mean that the

convergence of the algorithm is guaranteed. We leave the convergence of the proposed

method for further research. In experimental results, we have used maximum iteration

limit in order to solve convergence problem. The overall algorithm is demonstrated in

Algorithm 4.

3.2 Experimental Results

In this section, we demonstrate the effectiveness of our proposed approach for of-

fline learning and online learning scenarios using both synthetic scenes and real SAR

scenes from the TerraSAR-X data-set. We used a band-limited Fourier transform as
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Algorithm 4 Structure of the Proposed Algorithm

1. Input: g,H, σ2, δm, δp, λ, λp

2. Initialization: |f |(0) = |HHg|, p0 = ejφ(HHg), n = 0

3. Dictionary Learning Stage:

if Offline learning i.e., Dictionary D is known then

Find α
(n)
i by using OMP

else

Find D(n) and α
(n)
i by using K-SVD

end if

4. Phase Update Stage:

Update Θ(n) by solving (3.5) with CG until
‖pk+1−pk‖
‖pk‖ < δp is satisfied.

5. Magnitude Update Stage:

Solve (3.8) and update |f |(n)

if
‖|f |n+1−|f |n‖

‖|f |n‖ < δm then

Return |f |

else

Return to 3.

n = n+ 1

end if
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our forward model H. We provide qualitative results on both synthetic and real SAR

scenes, and quantitative results with respect to noise and the percentage of the available

data for comparison of our models with three other techniques: Conventional recon-

struction [12, 39], point-region enhanced regularization [14], and sparsity-driven SAR

image reconstruction with wavelet dictionary. Note that, our algorithm involves some

parameters that need to be set. One can tune the parameters for the specific exper-

iment (constant noise and available data). However, when the noise or percentage of

the available data changes, these parameters should be considered again. Therefore,

for a generic usage of our algorithm, we tried to relate these parameters dynamically

with standard deviation of the noise σ and the percentage of the available data L. In

particular L = Na
Nd

where Na is the number of available data samples and Nd is the

number of phase history samples in full band-width data.

� Data fidelity parameter λ: This parameter balances the data fidelity term and

the term which measures the proximity between sparse representations and the

magnitude of the image patches in the magnitude update step. These terms are

the first and the second terms of the optimization problem respectively. In the

presence of high level noise and low available data, the weight of the dictionary

should be increased as compared to the observed data. In particular, small value

of λ should be selected. On the other hand, if the observed data is reliable

such that σ is low and L is high, the weight of the data fidelity term should be

increased by selecting a large lambda. Therefore, λ is inversely proportional to σ

and proportional to L.

� Phase parameter λp: In the phase update step, this parameter enforces the

magnitude of the estimated phase elements to be 1 and as it can be seen from

(3.5), λp determines the weight of the estimated phase obtained from the previous

iteration. We used p0 = ejφ(HHg) for the initial value of the phase where HHg can

be considered as conventional reconstruction. When L is high initial phase is more

reliable as compared to the case where L is low. Thus, λp is inversely proportional

to L. We relate λp with 1
L

.
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� Sparsity level and precision (T, ε): Sparsity level T expressed in (2.13) is

related to other factors such as power of the dictionary and complexity of the

image. Therefore, this parameter should be selected with respect to the dictionary

and test image. Sparsity precision ε determines how far the current estimate is

sparsely represented with respect to the dictionary. When the sparsifying term

is more preferable comparing to the data fidelity as in the case of small L and

large σ this parameter should be large. Thus it is proportional to L. One can also

relate this parameter to σ. However, since the proposed algorithm iterative, in the

presence of convergence, it is believed that, noise effect will be reduced iteratively

if the algorithm converges to the optimal solution. Therefore, we decrease ε slowly

at each iteration.

The overall parameters used in both synthetic and real SAR scene experiments are

shown in Table 3.1. We present our results in the following two subsections. We

present synthetic scene experiments and provide quantitative results of the comparison

in Section 3.2.1. We then provide the performance of our approach on real SAR scenes

in Section 3.2.2.

Table 3.1: Parameters and their values used in synthetic and real SAR scene experi-

ments.

Parameters Synthetic scene Experiments Real SAR scene experiments

λ 2L√
σ

8L√
σ

λp
2
L

0.01
L

T 20 35

ε 0.2√
L

0.02√
L

δp 10−4 5 ∗ 10−4

δm 10−4 5 ∗ 10−4
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3.2.1 Synthetic Scene Experiments

We first demonstrate our approach on 64×64 synthetically constructed scenes. The

main advantage of using synthetic scenes is it provides quantitative results for compar-

ison with other techniques and synthetic results generally provide a rough idea about

the likely performance of the approach on the real SAR scenes. We add uniformly dis-

tributed random phase between [−π, π] to the data. We take the band-limited discrete

Fourier transform of this complex-valued data and finally complex Gaussian noise is

added to the data. Final data correspond to the phase history of the SAR data on a

rectangular grid. Our aim is to reconstruct an estimate of the original scene by using

these simulated phase histories.

For offline learning, an overcomplete dictionary should be generated from the train-

ing data. For synthetic experiments we formed 16 64 × 64 training images. Training

patches are extracted from this training set. We use 60000 training patches of 8 × 8

pixels. Number of atoms of the overcomplete dictionary is chosen to be 441. The reason

is we want to compare our approach with the same sized overcomplete Haar dictionary.

We show randomly selected 1000 training patches in Figure 3.2. We run the K-SVD

algorithm for 200 iterations with the sparsity level T = 5. Initial dictionary is selected

to be an overcomplete discrete cosine transform (DCT) dictionary. Our offline learned

dictionary and the overcomplete Haar dictionary are shown in Figure 3.3 and Figure

3.4 respectively.

Figure 3.2: Randomly selected 1000 training patches for offline dictionary learning

based on synthetic scenes.
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Figure 3.3: Offline learned 64× 441 overcomplete dictionary.

Figure 3.4: Overcomplete 64× 441 Haar dictionary.
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We first demonstrate the visual performance of our approach and compare it with

other 3 methods as mentioned before. For that purpose, a synthetic scene that re-

sembles a SAR scene is constructed. Throughout the all experiments we used [0, 1]

scale for images. We deliberately added some patterns in the synthetic images in or-

der to show the effects of our approach. As we explained before, the main rationale

of the dictionary learning is dictionaries learned from the training sets may capture

some features which are not easily representable in the predetermined transforms such

as wavelets, and DCT. All of the algorithms were implemented using non-optimized

MATLAB code on an Intel Xeon 2.67GHz CPU. We used λ2
1 = 10 and λ2

2 = 10 for

point region enhanced non-quadratic regularization. For the synthetic experiments we

used the parameters shown in Table 3.1. In the first experiment we select L = 0.9

such that 90% of the data is available. Reconstruction results are shown in Figure 3.5.

In this experiment all of the methods provide reasonable reconstructions except the

conventional reconstruction and also we see that overcomplete Haar dictionary-based

approach suffers from the diagonal patterns in the image. We then decrease the value

of L to 0.8 and 0.7. These results are shown in Figure 3.6 and 3.7 respectively. We can

see that both online and offline learning provide better reconstruction compared to the

other three methods. Since both point region enhanced non-quadratic regularization

and overcomplete wavelet dictionary-based reconstructions are based on the predeter-

mined dictionaries, they fail to reconstruct the genuine diagonal patterns. For the case

of L = 0.7 we see that offline learning results are better than online learning. The

reason is as the image itself deteriorates the performance of the dictionary learned from

this image is decreases. We show the online learned dictionaries in Figure 3.8 which

validates the previous statement.

We carry out more general experiments in order to see the full picture of the recon-

struction performances. We analyze the performance of the methods with varying noise

level and L. In particular, we take 5 different synthetic test images unrelated to the

training set. These test images are shown in Figure 3.9. Next we perform an experiment

such that each image is reconstructed via all of the methods with L decreasing from 1

to 0.5. We then take the average of the reconstruction performances. The performance
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Results of the synthetic experiment with available data ratio L = 0.9.

(a) Original scene. (b) Conventional reconstruction. (c) Sparsity-driven point-region

enhanced reconstruction. (d) Sparsity-driven reconstruction with overcomplete Haar

dictionary. (e) Proposed method with offline dictionary learning. (f) Proposed method

with online dictionary learning.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Results of the synthetic experiment with available data ratio L = 0.8.

(a) Original scene. (b) Conventional reconstruction. (c) Sparsity-driven point-region

enhanced reconstruction. (d) Sparsity-driven reconstruction with overcomplete Haar

dictionary. (e) Proposed method with offline dictionary learning. (f) Proposed method

with online dictionary learning.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Results of the synthetic experiment with available data ratio L = 0.7.

(a) Original scene. (b) Conventional reconstruction. (c) Sparsity-driven point-region

enhanced reconstruction. (d) Sparsity-driven reconstruction with overcomplete Haar

dictionary. (e) Proposed method with offline dictionary learning. (f) Proposed method

with online dictionary learning.
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(a) (b) (c)

Figure 3.8: Online learned dictionaries for the synthetic test image with different L.

(a) L = 0.9. (b) L = 0.8. (c) L = 0.7.

criterion is selected to be Minimum square error defined as:

MSE =
1

N

∥∥∥|f | − |̃f |∥∥∥ (3.9)

where |f | and |̃f | are the magnitudes of the original and reconstructed images. N is

the total number of the pixels. We repeat this experiment for two different standard

deviations of noise: σ = 0.01 and σ = 1 in order to assess the robustness of the methods

to noise. For the two scenarios, reconstruction performances are shown in Figure 3.10.

For the first case where σ = 0.01, both online and offline learning outperforms the

other three methods. Wavelet-based reconstruction and point region enhanced non-

quadratic regularization perform similarly. However, we can see that, as L decreases

the former one provides better performance. For the second scenario where σ = 1 we see

that, when L is between 0.6 and 1, our offline dictionary-based approach provides the

best performance. However, the robustness of the point region enhanced non-quadratic

regularization put itself forward.

3.2.2 Real SAR Scene Experiments

In this section we demonstrate the performance of our approach on the real SAR

images obtained from the TerraSAR-X data set. Unlike the synthetic scene experiments

for real SAR scenes a natural problem as mentioned in the beginning of this chapter
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Figure 3.9: 5 synthetic test images used for the quantitative analysis.

arises. Resolution of the SAR images is limited because of the SAR system bandwidth.

Therefore, SAR images formed with conventional reconstruction suffer from sidelobes,

and speckle. Thus, ground truth images does not exist in SAR imaging. Dictionar-

ies learned from these SAR images may not be effective for reconstruction, because

the learned dictionaries will also suffer from noise, speckle, and sidelobe. Remedy of

this problem is applying a pre-processing stage for despeckling and denoising such as

median filtering or learning from high resolution SAR images and applying it to SAR

images with lower resolution. In this work, we preferred the latter one. We learn the

dictionary from a data set and we test the proposed method with the test images with

low resolution.

We used the Toronto data set provided by TerraSAR-X. These data have been col-

lected in a spot-light mode. Range and azimuth resolutions are 3.75 and 3.69 meters

respectively. The center frequency is 10 GHz. Polarization is HH. Approximate space

between two consecutive pixels is 1.75 meters. In order to fit more information in one

atom of the dictionary and reduce the size, we downsampled the data such that the

pixel spacing to be 3.5 meters. For real SAR image experiments the dictionary size

is selected to be 121 × 256. In particular patch size is 11 × 11 so that each atom in

the dictionary spans an area of 35 × 35 m2. We select 100000 patches from SAR im-

ages. Training images are shown in Figure 3.11. DC component is removed from all

the patches for efficiency. We run the K-SVD algorithm 300 times with sparsity level

T = 5. Learned dictionary is shown in Figure 3.12.

As it is seen, the learned dictionary mostly captures the point scatterers and some

edges. This is related to the intensity distribution of the SAR images. Natural SAR

images usually have a background with low intensity and point scatterers with much
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Figure 3.10: Results of the synthetic experiment with 5 test images. Different available

data ratio values L vs MSE (a) Standard deviation of noise σ = 0.01. (b) σ = 1.
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Figure 3.11: Training SAR images.

higher intensities. Thus, the learned dictionary is dominated by the point scatterers.

It can be seen that, the bottom atoms of the dictionary represent the boundary regions

between the foreground objects and the background.

However, learning a dictionary form the SAR image data set is questionable. Firstly,

nonexistence of the true SAR image prevents the evaluation of the performance of the

dictionary. Secondly, natural speckle and sidelobe of the SAR images affect the learning

the dictionary. Therefore, before the reconstruction step, we visit another imaging

problem which is image inpainting. We conduct an experiment for the performance of

the learned dictionary over image painting. Note that our formulation can turn out

to be an image inpainting formulation by changing the SAR forward model H to a

pixel selection operator. For the sake of simplicity, rather than complex-valued data,

we use only the magnitude of the SAR images. Therefore we can neglect the phase

update step in our formulation. For this experiment, we removed 50% of the pixels of a

SAR image and applied image inpainting with both DCT and learned dictionary. The

results are shown in Figure 3.13. It can be seen that, the learned dictionary performs

better than a predetermined DCT dictionary. This experiment reveals that, learned

dictionaries and consequently our approach can be used for SAR image reconstruction.

We perform three distinct experiments with three distinct SAR images. For each of

these experiments we have used a different L in order to demonstrate the performance

of the reconstruction with respect to the percentage of available data. We compare our

approach with conventional reconstruction, point-region enhanced regularization and
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Figure 3.12: Learned dictionary from SAR images.

overcomplete DCT dictionary. For the first experiment we set L ≈ 0.8 and σ = 0.01. We

fixed the value of the σ for the SAR image reconstruction experiments. In Figure 3.14

we demonstrate the reconstruction results of all methods. We also provide magnified

version of a particular region in the test image so as to analyze the reconstruction

performances in detail. As we mentioned before, conventional reconstruction suffers

from limited data. Point-region enhanced regularization performs fine but as we focus

on the magnified version of the image, it can be seen that, this method causes some

artifacts and suppresses small details. Overcomplete DCT dictionary fails to reconstruct

the sidelobes effectively. We can see that, both offline and online learning provides

successful reconstructions and as it is seen in the magnified image, these methods

preserve edges effectively. However, since online learning learns the dictionary from

the corrupted image patches, it also suffers from sidelobe and noise as in the case of

DCT. We also demonstrate the reconstruction performance of the methods by reducing

L further. In particular, reconstruction results are shown in Figure 3.15 and Figure

3.16 for L ≈ 0.7 and L ≈ 0.66. One important observation is, as we decrease L, online
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(a) (b)

(c) (d)

Figure 3.13: Result of inpainting of the SAR image with 50% missing pixels. (a) Original

SAR scene. (b) %50 pixel missing data. (c) Inpainting result with overcomplete DCT.

MSE = 0.0002547 (d) Inpainting result with learned dictionary. MSE = 0.0001666
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.14: Result of the first experiment with L ≈ 0.8. (a) Reconstructed image with

full data. (b) Zoomed in version of a part of a. (c) Conventional reconstruction. (d)

Zoomed in version of a part of c. (e) Image reconstructed with point-region enhanced

regularization. (f) Zoomed in version of a part of e. (g) Image reconstructed with

overcomplete DCT. (h) Zoomed in version of a part of g. (i) Image reconstructed with

offline learning. (j) Zoomed in version of a part of i. (k) Image reconstructed with

online learning. (l) Zoomed in version of a part of k.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.15: Result of the second experiment with L ≈ 0.7. (a) Reconstructed image

with full data. (b) Zoomed in version of a part of a. (c) Conventional reconstruction. (d)

Zoomed in version of a part of c. (e) Image reconstructed with point-region enhanced

regularization. (f) Zoomed in version of a part of e. (g) Image reconstructed with

overcomplete DCT. (h) Zoomed in version of a part of g. (i) Image reconstructed with

offline learning. (j) Zoomed in version of a part of i. (k) Image reconstructed with

online learning. (l) Zoomed in version of a part of k.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.16: Result of the third experiment with L ≈ 0.66. (a) Reconstructed image

with full data. (b) Zoomed in version of a part of a. (c) Conventional reconstruction. (d)

Zoomed in version of a part of c. (e) Image reconstructed with point-region enhanced

regularization. (f) Zoomed in version of a part of e. (g) Image reconstructed with

overcomplete DCT. (h) Zoomed in version of a part of g. (i) Image reconstructed with

offline learning. (j) Zoomed in version of a part of i. (k) Image reconstructed with

online learning. (l) Zoomed in version of a part of k.
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Table 3.2: Reconstruction performance of the methods on real SAR scenes in terms of

MSE.

Method L = 0.9 L = 0.85 L = 0.80 L = 0.71 L = 0.66 L = 0.63

Conventional 0.00066 0.00107 0.00147 0.00201 0.00232 0.00254

PR enh. reg. 0.00006 0.00016 0.00032 0.00069 0.00095 0.00112

DCT 0.00008 0.00019 0.00044 0.00087 0.00111 0.00124

Offline learning 0.00003 0.00007 0.00017 0.00052 0.00081 0.0009

Online learning 0.00003 0.00011 0.00030 0.00073 0.00100 0.00116

learning suffers greater than offline learning. The reason is obvious. As the images are

corrupted more, learning a sparsifying dictionary from these corrupted images becomes

more difficult.

We also provide some quantitative result of the reconstruction performances of the

methods in Table 3.2. We average MSE of the reconstruction over 3 experiments. We

used reconstructed image with full data (L = 1) as ground truth image. Note that,

the performance of the online learning is diminishing more than offline learning since

online learning is harder when L is small.
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Chapter 4

Low-rank Sparse Decomposition Framework for SAR Imaging

In this chapter, we integrate low-rank sparse decomposition (LRSD) into the SAR

image reconstruction problem. We formulate the optimization problem and propose an

iterative solution. We present the effectiveness of the proposed method on synthetic

and real SAR scenes.

4.1 Proposed LRSD-based Framework

Decomposing an image or signal into two or more parts has found use in many

image analysis problems such as background subtraction, denoising and segmentation.

These methods are used for supporting later stages of analysis such as object detection

and recognition. Therefore, the accuracy of the decomposition affects the performance

of these inference or decision making tasks. Decomposing sparse objects and the back-

ground of the scene is one of the typical problems for the above mentioned applications.

Recently, there has been interest in this decomposition problem, where the background

of the scene is assumed to be a low-rank matrix. Besides, recent pieces of work have

reported that under very mild conditions, decomposition of low-rank and sparse com-

ponents (LRSD) from partial or corrupted measurements is possible [54, 9]. The LRSD

model has been used in many applications problem including face recognition [16] and

background subtraction [7]. LRSD has also been used as a prior term in inverse prob-

lems in imaging, such as medical image reconstruction [35, 58].

SAR imaging applications also involve the above mentioned interpretation tasks
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such as object recognition, and object tracking. In general, SAR image formation and

further image analysis are performed in a decoupled fashion. Interpretation methods

are applied to the SAR image after SAR image formation has been completed. How-

ever, this situation has one disadvantage. The image formation algorithm may produce

an unsuitable image for interpretation methods since the higher level objectives of the

interpretation stage are not used in the formation process. Therefore, a SAR image

that is potentially better suited to the higher-level inference goals might be formed by

adding information about these objectives into the SAR imaging problem.

In this work, we integrate the LRSD framework into the SAR imaging problem. The

proposed method has two advantages. Firstly, we decompose sparse components and

low-rank background in the SAR scene while reconstructing the SAR image. Therefore,

for SAR applications, the proposed method provides two additional images along with

a composite SAR image: a sparse image which contains sparse objects on the scene

and the low-rank background image. Secondly, the proposed method may essentially

perform partial image analysis during the reconstruction phase, if for example the ap-

plication involves segmentation of the sparse objects, or subtraction of the background

from the SAR scene.

In order to exploit the LRSD framework in SAR image reconstruction, the vector-

ized form of SAR image f ∈ CN should be converted to the matrix form. The image

form of this vector where size of the image is
√
N ×

√
N can be used as a matrix.

However, low-rank assumption of a complete SAR image is unrealistic and may provide

inefficient results. Therefore, we use a patch-based method for constructing the matrix

form of the SAR image. Let R be the linear operator that constructs a patch-based

matrix from the image. Image patches fi ∈ C
√
n×
√
n are obtained from the image by

using a sliding window starting from top-left of the image to the bottom-right. Note

that, for the sake of simplicity and with a slight abuse of notation, we use fi for both

the matrix and the vectorized forms of the image patches. Vectorized form of these

patches form columns of the patch-based matrix. The patch-based matrix F ∈ Cn×K
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has the form of

F =

f1 f2 . . . . fK

 (4.1)

where K depends on sliding distance and size of the patches. This matrix can be

deconstructed to recover the original image. Note that if the sliding distance is smaller

than
√
n, there will be overlapping patches and F will contain repeated entries for

the same pixels. We take mean of these values in the process of deconstructing F to

reconstruct the image f . This patch-based method has been used in [25] for small

target detection.

As discussed in Chapter 3, SAR scene exhibits random phase, which should be taken

into account in imposing sparsity and low-rank structure to the complex-valued SAR

scene. Thus, we represent the magnitude of the SAR image with this matrix F such

that F = R(|f |). The reconstruction process can be expressed as |f | = R∗(F ). Let B

and S be the patch-based image for low-rank background and sparse part respectively.

Thus, SAR observation model can be expressed as

g = HΘR∗(B + S) + n (4.2)

Using this notation, the proposed LRSD-based SAR imaging problem can be expressed

as follows: {
B̂, Ŝ, Θ̂

}
= arg min

B,S,Θ
‖g −HΘR∗(B + S)‖2

2 + λb ‖B‖∗ + λs ‖S‖1

s.t. |Θ(i,i)| = 1 ∀i
(4.3)

where the diagonal matrix Θ contains the exponentiated phase of the reflectivity field, λb

and λs are regularization parameters, ‖.‖∗ is the nuclear norm as described in Chapter 2,

the ‖.‖1 is l1 norm. The first term enforces the data fidelity, the second term enforces the

matrix to be low-rank and the third term enforces sparsity. It is not straightforward

to solve this problem with current LRSD methods since it involves the data fidelity

term. Therefore, we use variable splitting method by introducing a variable F such
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that F = B + S. Constraint optimization problem takes the form of{
F̂ , B̂, Ŝ, Θ̂

}
= arg min

F,B,SΘ
‖g −HΘR∗(F )‖2

2 + λb ‖B‖∗ + λs ‖S‖1

s.t F = B + S

s.t. |Θ(i,i)| = 1 ∀i

(4.4)

In the image domain, S represents the image that contains sparse components, B rep-

resents the approximately low-rank background image, and F represents the composite

image. The proposed method enforces the low-rank constraint to the patches of the im-

age. This enforces that small regions of the background are correlated. The augmented

Lagrangian form of this problem can be expressed as follows:

L(F,B, S,Θ, Z) = arg min ‖g −HΘR∗(F )‖2
2 + λb ‖B‖∗ + λs ‖S‖1

+ 〈Z, F −B − S〉+
β

2
‖F −B − S‖2

F

s.t. |Θ(i,i)| = 1 ∀i

(4.5)

where Z is the Lagrange multiplier, and β > 0 penalizes the violation of the constraint.

We use alternating direction method of multipliers (ADMM) for the solution of the

problem. In particular, we introduced an auxiliary variable F in order to solve B and

S separately. We minimize the problem over one variable while keeping other variables

fixed. ADMM simplifies the problem hence it allows to take the advantage of the

separable structures of B and S as it is expressed in LRSD schemes.

4.2 Solution of the Optimization Problem

There are 5 different variables to be solved for F,B, S, Z,Θ. For each iteration,

each of these parameters is solved for by keeping other variables fixed by using ADMM.

Below, we describe the process of updating each of these variables for a generic (k + 1)st

iteration.
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Solution of the Sparse Matrix S(k+1)

This step solves for the sparse matrix S while keeping the other variables fixed.

Dropping the constant terms, the subproblem of interest takes the form of

S(k+1) = arg min
S
λs ‖S‖1 +

〈
Z(k), F (k) −B(k) − S

〉
+
β

2

∥∥F (k) −B(k) − S
∥∥2

F
(4.6)

This problem is in a form that it equivalent to the well-known LASSO problem and

can be solved via soft thresholding as discussed in Section 2.5.4. Recall that the soft

thresholding operator can be expressed as follows:

C̃ε(S) =


S − ε if S > ε

S + ε if S < −ε

0 otherwise

(4.7)

Therefore solution of the problem is S(k+1) = C̃λs
β

(F (k) −B(k) + Z(k)

β
).

Solution of the Low-rank Matrix B(k+1)

In this step, we update the low-rank matrix B. The subproblem for this step is

B(k+1) = arg min
B
λb ‖B‖∗ +

〈
Z(k), F (k) − S(k+1) −B

〉
+
β

2

∥∥F (k) − S(k+1) −B
∥∥2

F
(4.8)

This subproblem involves nuclear norm minimization and as we discussed in Section

2.5.2, its subgradient computation can be done through singular value thresholding. In

particular the soft thresholding operator is applied on the singular values of the matrix.

The solution of this problem can be expressed as follows:

S(k+1) = UkC̃λb
β

(Σk)V
T
k (4.9)

where UkΣkV
T
k is the singular value decomposition of the matrix F (k) − S(k+1) + Z(k)

β
.

Both singular value thresholding and soft thresholding are element-wise operations.

Thus, these operations are computationally efficient except for the computation of the

singular value decomposition.
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Solution of the Patch-based Matrix F (k+1)

In this step, we update the patch-based matrix F for the following subproblem.

F (k+1) = arg min
F

∥∥∥g −HΘ(k)R∗(F )
∥∥∥2
2

+
〈
Z(k), F − S(k+1) −B(k+1)

〉
+
β

2

∥∥∥F − S(k+1) −B(k+1)
∥∥∥2
F

(4.10)

This subproblem is quadratic and can be solved analytically. Taking the derivative with

respect to F and equating it to zero gives the following equation.(
2
(
HΘ(k)R∗

)H (
HΘ(k)R∗

)
+ βI

)
F (k+1) =

(
2
(
HΘ(k)R∗

)H
g + β

(
B(k+1) + S(k+1)

)
− Z(k)

)
(4.11)

We solve this problem with a few conjugate gradient steps.

Solution of the Phase Matrix Θ(k+1)

For this solution we introduce a vector p consisting the diagonal elements of the

phase matrix Θ. The corresponding subproblem is

p̂ = arg min
p

∥∥∥g −HB̃p|∣∣∣2
2

+ λp

N∑
i=1

(|pi| − 1)2 (4.12)

where B̃ is the diagonal matrix consists of elements of R∗(F (k+1)). This problem is sim-

ilar to the phase update step involved in our dictionary learning-based image formation

algorithm described in Section 3.1.2. We solve this problem in the same way.

Lagrange Multiplier Update and Continuation

We update the Lagrange multiplier Z at each iteration with step size β. In partic-

ular, Z is updated as follows:

Z(k+1) = Z(k) + β(F (k+1) −B(k+1) − S(k+1)) (4.13)

Note that when value of β is high, the ALM form of the optimization problem ap-

proaches to the constrained version of the problem in (4.4). However, large value of

β leads to slow convergence of the algorithm. Thus, we use a continuation strategy

for β. In particular, we start with small β and at each iteration we increase β slowly.

These iterative steps are run until the convergence criterion
‖|F |(k+1)−|F |(k+1)‖

F

‖|F |(k)‖
F

< δx is

satisfied. The steps of the proposed method are summarized in Algorithm 5.
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Algorithm 5 Structure of the Proposed Algorithm

1. Input: g,H, δx, δp, λb, λsλp

2. Initialization: F (0) = R(|HHg|), p0 = ejφ(HHg), S(0) = 0, B(0) = F (0), Z(0) = 0, k =

0

while Stopping criteria is not satisfied do

3. Sparse Matrix Update:

S(k+1) = C̃λs
β

(F (k) −B(k) + Z(k)

β
)

4. Low-rank Matrix Update:

Uk+1Σk+1V
T
k+1 = F (k) − S(k+1) + Z(k)

β

B(k+1) = C̃λb
β

(Σk+1)

6. Phase Update

Update Θ(k+1) by solving (4.12) with CG until
‖p(n+1)−p(n)‖
‖p(n)‖ < δp is satisfied.

7. Patch-based Matrix Update:

Solve (4.11) and update F (k+1)

8. Multiplier Update:

Z(k+1) = Z(k) + β(F (k+1) −B(k+1) − S(k+1))

β = ρβ

k = k + 1

end while
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4.3 Experimental Results

In this section we present experimental results evaluating the performance of the

proposed method using both synthetic scenes and real SAR scenes from the TerraSAR-

X dataset. We provide quantitative results on the synthetic scene experiments. In the

experiments we used a band-limited Fourier transform as our forward model H. We dis-

play the sparse part, the low-rank background part and the composite image produced

by the proposed approach. We compare the performance of the proposed method with

conventional reconstruction methods and point-region enhanced regularization method

[14] with respect to mean squared error (MSE) as we did in the previous chapter.

4.3.1 Synthetic Scene Experiments

We use a 64 × 64 synthetic scene for the first set of experiments. We compose a

synthetically constructed sparse scene and a low-rank background scene. The sparse

and low-rank background parts used for this experiment along with the composite scene

are presented in Figure 4.1. Note that, the composite image can be seen as man-made

metallic scatterers on natural terrain. Uniformly distributed random phase between

[−π, π] is added to the composite image. We add Gaussian noise to the phase history

data generated using a band-limited Fourier transform operator as mentioned above.

(a) (b) (c)

Figure 4.1: Synthetically constructed test Image. (a) Low-rank background part. (b)

Sparse part. (c) Composite image.
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Table 4.1: Reconstruction performance of the methods on synthetic SAR scenes in

terms of MSE.

Method L = 0.88 L = 0.76 L = 0.66

Conventional 0.02087 0.04174 0.05666

PR enhanced reg. 0.00004 0.00014 0.00214

Proposed method 0.00005 0.00012 0.00055

We aim to reconstruct an estimate of the low-rank background, the sparse part and the

composite image based on these phase histories. We present synthetic scene experiment

results for three different values of L. Recall that L is the percentage of the available

data. We show the performance of the proposed method, conventional reconstruction

method and point-region enhanced reconstruction. The results of this experiment are

shown in Figure 4.2. For the first two results where L = 0.88 and L = 0.76, the proposed

method decomposes the sparse and the low-rank parts of the scene accurately. Hence

it provides an accurate composite image. Note that, the conventional approach does

not produce sufficiently accurate results for visual or automated interpretation of the

scene. Proposed method provides accurate sparse part and low-rank background for the

interpretation. As an example, if the task of the SAR application is detection of these

sparse parts, the sparse part from the proposed method can be used for such analysis.

When L = 0.66 the performance of the proposed method in terms of decomposing the

sparse and low-rank background components deteriorates. However it still provides a

good estimate for the low-rank background. The proposed method provides comparable

reconstruction results with respect to point-region enhanced regularization. Note that,

point-region enhanced reconstruction suffers from artifacts and it fails to provide an

efficient reconstruction for the background of the image when L = 0.66. One advantage

of the proposed method is that it also provides sparse and low-rank background images

since it decomposes sparse and background components of the image. We provide the

corresponding MSE results for this experiment in Table 4.1.
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Figure 4.2: Result of the first experiment with L = 0.88, 0.76, 0.66 for the first, second

and third columns respectively. Conventional reconstruction (first row). Point-region

enhanced reconstruction (second row). The composite image produced by the proposed

approach (third row). The sparse component produced by the proposed approach

(fourth row). The low-rank component produced by the proposed approach (fifth row).
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4.3.2 Real SAR Scene Experiments

We now present experimental results on real SAR scenes obtained from the Terra-

SAR-X dataset. In the first experiment we use SAR data that have been collected in

a staring spotlight mode with 0.85 m range and 0.35 m azimuth resolution. We use

128 × 128 SAR data for the experiments. The test image contains a water treatment

facility in Egypt. Note that this image contains repeating objects. For an appropriate

selection of patch size, columns of the patch-based matrix will be similar to each other

implying that patch-based matrix is low-rank. Therefore, the patch-based low-rank

component in our approach enforces that small regions in the image are similar. Thus,

this test image is a good candidate for the LRSD framework. Available data ratio is set

to L ≈ 0.9 for this experiment. Reconstruction results are shown in Figure 4.3. Pro-

posed method appears to effectively decompose the background and sparse part of the

SAR scene and it provides similar reconstruction result with point-region enhanced reg-

ularization. The sparse part contains the point scatterers around the repeating objects

and the background part enhances these repeating objects. Note that the background

part can be more useful for SAR imaging analysis such as counting these repeating

objects in the image since it does not involve sparse point scatterers.

In the second experiment, we have used SAR data collected in a spotlight mode with

3.75 m range and 3.69 m azimuth resolutions. Image size is 128× 128. The test image

covers a region in Toronto including roads and small houses. Note that, these structures

exhibit similarity as in the case for the first experiment hence low-rank background can

be enforced on these structures. We reduce available data ratio to L ≈ 0.77 for the

second experiment. Reconstruction results are shown in Figure 4.4. The proposed

method captures sparse scatterers in the sparse part and low-rank structures are well

preserved in the low-rank background image as compared to the point-region enhanced

regularization and conventional methods. We also provide the zoomed-in version of this

experiment in Figure 4.5. Note that, the background part preserved the road and small

repeating objects on the image.

For the third experiment we used an image of a park in Toronto. The SAR parame-

ters are identical to those of the second experiment. Image size is 100×100. This image
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contains strong scatterers and a weak background structure in terms of the intensity.

We aim to represent these weak textures in the low-rank background part and strong

scatterers in the sparse part. Reconstruction results are shown in Figure 4.6. Available

data ratio for this experiment is set to L ≈ 0.71. Conventional method suffers from the

noise and speckle. Point-region enhanced regularization preserves strong point scatter-

ers. However, since point-region enhanced regularization method is a sparsity-driven

method, it suppresses weak textures in the background. Proposed method preserves

these weak texture in the background part and strong scatterers in the sparse part.

Therefore, for SAR imaging applications where the background texture is required,

proposed method provides an efficient reconstructed composite image along with the

sparse part and the low-rank background part.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Result of the first experiment with L ≈ 0.90. (a) Reconstructed image

with full data. (b) Conventional reconstruction. (c) Image reconstructed with point-

region enhanced regularization. (d) Proposed method: Composite image. (e) Proposed

method: sparse image. (f) Proposed method: low-rank image.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Result of the second experiment with L ≈ 0.77. (a) Reconstructed image

with full data. (b) Conventional reconstruction. (c) Image reconstructed with point-

region enhanced regularization. (d) Proposed method: Composite image. (e) Proposed

method: sparse image. (f) Proposed method: low-rank image.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Zoomed in version of the second experiment. (a) Reconstructed image

with full data. (b) Conventional reconstruction. (c) Image reconstructed with point-

region enhanced regularization. (d) Proposed method: Composite image. (e) Proposed

method: sparse image. (f) Proposed method: low-rank image.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Result of the third experiment with L ≈ 0.71. (a) Reconstructed image

with full data. (b) Conventional reconstruction. (c) Image reconstructed with point-

region enhanced regularization. (d) Proposed method: Composite image. (e) Proposed

method: sparse image. (f) Proposed method: low-rank image.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have contributed the area of SAR image reconstruction. Firstly,

we have incorporated learning-based dictionaries into the sparsity-driven SAR imaging

problem. Our approach can learn dictionaries from a training set of images offline,

or from the data to be used in image reconstruction online. Experimental results have

shown that learning-based approaches can widen the domain of applicability of sparsity-

driven SAR imaging, and enable exploitation of context-based knowledge for more

effective sparse representation in SAR. Secondly, we have proposed low-rank sparse

decomposition (LRSD) based SAR image reconstruction framework. The proposed

method reconstructs the SAR image while decomposing the sparse and the low-rank

background part of the SAR image.

In Chapter 3 we have presented the mathematical formulation of our dictionary

learning-based framework. Our sparsity-driven framework consists of a data term and

a prior term. We have used a prior term that is sparsity-based on a learned dictionary.

Our framework is adaptive to the reflectivity field so it can represent wide set of images

sparsely. We have proposed an iterative method for the solution of the optimization

problem posed in our framework by using a coordinate descent method. We have pro-

vided both synthetic and real SAR image experiments. In synthetic image experiments,

we have compare our online and offline learning-based approaches with the conventional

reconstruction method, point-region enhanced non-quadratic regularization, as well as
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sparsity-driven SAR imaging with predefined dictionaries. We present the performance

of these methods with respect to number of available data and noise. Our experiments

have shown that, our online and offline dictionary learning-based approaches provides

more accurate reconstructions. We have also presented visual experiment results for

qualitative comparison. We have seen that, our approach can preserve patterns and

features in the image because of its adaptivity.

In Chapter 4 we have proposed a framework for SAR image formation based on a

low-rank and sparse decomposition of the scene to be imaged. Most of the imaging

applications involving SAR images require background subtraction or segmentation for

better interpretation of the image. Thus, we have proposed a SAR image reconstruc-

tion framework that separates background from sparse regions while reconstructing the

SAR image. We have shown that this approach provides accurate reconstruction per-

formance as compared to the existing reconstruction methods. Moreover, separating

background from sparse regions may facilitate further SAR image analysis.

5.2 Potential Future Directions

There are several potential future directions for our research. In Chapter 3 we

proposed SAR image reconstruction method that is based on adaptively learned dictio-

naries. An alternative for this framework is using combined dictionaries. In particular,

a dictionary may consist of fixed atoms and adaptive atoms. We mentioned that the

performance of the online learning approach deteriorates when the number of data sam-

ples data is low. Thus, fixed atoms may improve the reconstruction performance for

the first iterations in such settings and for the later iterations online learning may be

more effective.

We have used a relatively simple method for phase estimation in our approach. As

a prior term we have exploited the fact that the magnitude of exponentiated phase is

unity. However, even though the phase of the complex-valued SAR images is usually

highly random, there might be some features within the phase that is to be learned.

These features can be adapted to phase estimation framework. Besides, probabilistic
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approaches can also be used by enforcing uniformly distributed phase.

We have separated the reconstruction of the magnitude and the phase of SAR image

in our framework. Thus, we enforce sparsity on the magnitude of the SAR image. This

situation poses an additional constraint that the solution should be non-negative. We

have not used non-negativity constraints in our framework due to the additional com-

putational burden that would be caused by the extra constraint. However, in future

work this constraint can be used for better performance.

In Chapter 4 we enforce sparsity on the SAR image directly. An alternative ap-

proach can be using sparsfying transform (dictionary) for better sparse representation.

Moreover, proposed LRSD-based SAR image reconstruction framework can be used for

further SAR imaging applications such as wide-angle, and moving target imaging.
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