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Abstract—Rapid and reliable characterization of 

hematopoietic cells still remain the first step for precise 

medicine. Diagnosis of various diseases, ranging from infectious 

to cancer, relies on quantification of hematopoietic cells from 

blood. Therefore, there is an emerging need for label-free, low-

cost, time-efficient, reproducible and quantitative 

characterization tools for the blood cells. Addressed herein is a 

numerical analysis for dielectrophoretic characterization of red 

blood cells, T-lymphocytes, B-lymphocytes and monocytes, 

which quantitatively incorporate with the membrane features of 

these cells to provide more insight into their dielectrophoretic 

responses. 

Keywords— Hematopoietic cells; Dielectrophoresis; Numeric 

Analysis; Characterization; Quantification 

I. INTRODUCTION  

Blood is the most used bodily fluid for diagnostics that 

comprises different types of cells circulated throughout the 

body with their complex interactions. Thanks to the 

developments in the lab-on-a-chip technologies, novel 

diagnostic methods intended to quantitatively characterize 

specific cell types in a fast and efficient way, directly from 

blood [1]. Integration of microfluidics with Micro-Electro-

Mechanical Systems (MEMS) provided portable, low-cost, 

high-throughput, fast and precise tools for medical 

diagnostics and biological sciences [2]. Miniaturized 

dimensions in microfluidic systems allow mimicking natural 

interactions of cells either with other cells or their 

microenvironments while providing high-resolution data at 

single-cell resolution [3].  

Contrary to recently emerged microfabricated tools, 

dielectrophoresis (DEP) is an old and well-established 

phenomenon, which is applied to biology in the 1950s [4]. As 

a method, DEP has the capability of quantifying intrinsic 

properties of cells in a label-free manner [5]. Therefore, DEP-

isolated or DEP-characterized cells are both genetically and 

phenotypically preserved and reliably eligible to be used for 

downstream assays [6]. Precise, low-volume liquid handling 

features of microfluidics have been incorporated with 

sensitive and specific DEP manipulation techniques; as a 

consequence, DEP methods have again become one of the 

powerful methods for biological and clinical applications 

[7,8].  

Fluorescent-activated cell sorters (FACS) or magnetic-

activated cell sorters (MACS) are very much used high-

throughput techniques today [9-14]. Both FACS and MACS 

use antibodies against a particular protein that might cause 

some phenotypic changes for the cells with metastable 

phenotypes such as drug-tolerant cells, persisters [6]. 

Moreover, other microfluidic-based cell sorting technologies 

still require optimization for cell recovery, throughput, and 

user-friendliness to move from bench side to diagnostics. 

In this study, we focus on DEP-based numerical 

approaches for isolation and characterization of 

hematopoietic cells, particularly red blood cells and immune 

cells. Immune cells are highly heterogeneous cells and their 

heterogeneity increases with limited response time when they 

encounter abnormal changes in their microenvironments [15]. 

Furthermore, labeling surface antigens might alter their 

immune response via affecting cellular signaling. 

Considering all these limitations precise modeling and 

simulations are promptly required to provide reliable insights 

on their dielectrophoretic characterization. Most of the 

numerical methods use single-shell dielectric model with 

spherical surface area consideration for cells. Additionally, 

most of the simulations are performed to determine the 

gradient of the streaming dielectric field and flow [16-20] or 

to predict the interactions of cells [21] in the microfabricated 

devices. Nevertheless, Gascoyne and Shim obtained a 

dielectric model for the cells where they considered 

morphologic changes of circulating tumor cells through 

metastasis; however, they used smooth sphere assumption for 

the blood cells in this study [7]. One of the major limitations 

of developing precise and accurate numerical models 

underlines the lack of accuracy of measured cellular 

parameters. Most of the dielectric properties of cells were 

obtained from electrorotation, produced by rotating electric 

fields [22]. However, thanks to advanced imaging and recent 

measurement techniques, we can obtain more realistic 
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dielectric models for the cells via introducing the surface 

structure of cells and variations of their microenvironment. 

Herein we reported numeric analysis results for 

hematopoietic cells, including Red Blood Cells (RBC), T- 

Lymphocytes (T-cell), B-Lymphocytes (B-cell) and U937-

Monocytes (U937-MC) incorporation with their surface 

morphology based on recent cell surface measurements. 

These results will be used for quantification of the 

dielectrophoretic behavior of these cells in biological and 

clinical characterizations. 

II. MATERIALS AND METHODS 

A. DEP Theory and Numerical Method  

DEP has a well-established basic theory [23]. 

Characterization of cells is one of its applications, relies on 

its capability of generating specific dielectrophoretic forces 

( FDEP) for different types of cells, in (1).  

               FDEP = 2πεmr3Re[fCM]∇Erms
2                             (1)   

where, the radius of the spherical cell (r), applied electric 

field (E), the permittivity of the suspending medium (ℇm), 

and real part of Clausius-Mossotti factor Re[fcm(ω)] are 

used. Thanks to the real part of Clausius-Mossotti factor, 

Re[fcm(ω)], which creates specificity based on the 

conductivity and permittivity of the cells and their 

surrounding buffer as calculated in (2). 

                    fcm =
ℇeff

∗ −ℇm
∗

ℇeff
∗ +2ℇm

∗                                                        (2)                                                            (2) 

where ℇm
∗  is the complex permittivity of the medium, ℇeff

∗  is 

the effective permittivity of the cell using (3) and (4), 

according to single-shell model using 

             ℇ∗ = ℇ −   
jσ

ω
                                                                 (3)                                                    (3) 

ℇeff
∗ = ℇmem

∗
(

r

r−d
)3  +   2

ℇint 
∗ −  ℇmem

∗

ℇint
∗  + 2ℇmem

∗

(
r

r−d
)3  −   

ℇint 
∗ −  ℇmem

∗

ℇint
∗  + 2ℇmem

∗

                                      (4)       

(4) 

distinct dielectrophoretic properties of the cells such as 

permittivity (ℇ) and conductivity (σ), complex permittivity of 

the membrane (ℇmem
∗ ), complex permittivity of the cytoplasm 

(ℇint
∗ ), membrane thickness (d), the imaginary number (j) [24, 

25].  

These intrinsic dielectric properties determine the 

polarizability of the cells under the applied nonuniform 

electric field. In other words, each specific cell type will 

experience a specific DEP force. When the Re[fcm(ω)] is 

positive, positive DEP (pDEP) occurs, and strong electric 

field streams attract the cells. When the Re[fcm(ω)] is 

negative, negative DEP (nDEP) occurs, and electric field 

repels the cells. The frequency when the cells experience 

almost zero  FDEP and change their behavior form pDEP to 

nDEP, or vice versa, is defined as the crossover frequency 

(CF). 
 

B. Effect of membrane morphology on Dielectric Properties  

The single-shell cell models are widely employed 

mathematical models for dielectrophoresis owning to their 

simplicity and fast computation costs, Fig. 1. 

 

 
Fig. 1. Dielectric shell models for cells. a) Homogeneous sphere model, b) 

Single-shell model, shell thickness equals to cellular membrane thickness, c) 

Single-shell model with membrane features such as microvilli, filopodia, 
ruffles and folds, d) Applied nonuniform electric field (E), e) characterized 

subpopulations of cells due to their membrane differences 
 

In this study, we used the single-shell spherical cell 

model developed by Pauly and Schwan [26] where cell 

membrane dielectric properties depend on ℇmem, σmem, r, and 

frequency of the applied electric field. However, different 

types of cells have different membrane morphologies. 

Gascoyne and Shim introduced membrane folding factor, 

Ф in (5) to link membrane differences to the 

dielectrophoretic responses of the cells to isolate cancer cells 

from blood due to their greater membrane folding factor 

compared to normal cells [7]. 

                                       Ф =
A

4π.r2                                          (5) (5) 

The effective permittivity of the cell using in (4) and (5) can 

be rewritten as in (6).  

                 ℇeff
∗ = ℇmem

∗
(

rΦ

rΦ−d
)3  +   2

ℇint 
∗ −  ℇmem

∗

ℇint
∗  + 2ℇmem

∗

(
rΦ

rΦ−d
)3  −   

ℇint 
∗ −  ℇmem

∗

ℇint
∗  + 2ℇmem

∗

                     (6) 

(6) 

 

For the cells based on the most recent surface area data 

using advanced measurement techniques from literature, we 

created Table I. Our homemade MATLAB script (Version 

R2016a, MathWorks) uses (4) and (6) and compares the 

dielectrophoretic responses of different types of blood cells in 

the absence and presence of membrane features.  

III. RESULTS 

 Fig. 2 represents the dielectric properties of T-cell, B-cell, 

RBC and U937-MC using single-shell model based on the 

assumption that the membrane of these cells is homogeneous 

single shell. Different cell types exhibit different crossover 

frequencies under the same environmental conditions due to 

their intrinsic dielectric properties, extending frequencies 

from 0.1 kHz to 10 GHz, Table II. The crossover frequencies 

for RBC and U937-MC are 88.35 kHz and 19.59 kHz, 

respectively. Both T- cells and B-cells exhibit pDEP behavior 

for the whole frequency spectrum. 
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 Fig. 3 shows the dielectric properties of these cells when 

measured membrane surfaces or membrane folding factors 

(m-ff) are reflected. The real part of Clausius Mossotti factor 

did not change its trend. The crossover frequency for RBC 

remained 88.35 kHz while it increased 44 kHz for the U937-

MC, Table II. Although T- cells with folding-factor 1.22 and 

B-cells with folding-factor 1.94 demonstrate pDEP behavior 

for the whole frequency range (Table II), their DEP-response 

curves are shifted, Fig. 3. 

 
TABLE I.  Dielectric parameters for hematopoietic cells. 

ℇ0 is the permittivity of the free space, 8.85 x 10-12 F/m. 

TABLE II.  Membrane features affect dielectrophoretic response of the cells 

 

Membrane 
morphology 

Crossover frequencies and dielectrophoretic 

responses 

RBC T-cell B-cell U937-MC 

Smooth 88.35 kHz pDEP pDEP 19.59 kHz 

Membrane 

features 
88.35 kHz pDEP pDEP 44 kHz 

 

IV. DISCUSSION 
 

 Mathematical models and numeric analysis methods 

provide rapid and powerful insights when they are capable of 

presenting necessary features of the required tasks in a clear, 

high-throughput and low computational complexity. 

According to obtained simulation results, both 

microfabricated device designs and experimental conditions 

might be determined in a short time, using fewer samples and 

less labor. Recently, precision medicine becomes one of the 

frontier research fields where fast, reliable, high-throughput 

and low-cost technologies will take place. In this area, 

dielectrophoretic tools will be widely used in separation, 

characterization and manipulation of clinical samples thanks 

to its label-free and quantitative nature [8,12,17,23].  

 In this study, we presented a simple and improved 

dielectric model of a cell using single-shell model [26]. Our 

model incorporates with the membrane features of a cell as 

Gascoyne and Shim reported for morphologic changes of 

circulating tumor cells through metastasis [7]. In their study, 

they introduced membrane folding factor for tumor cells 

while employing a smooth sphere assumption for blood cells, 

which successfully worked for isolation of tumor cells from 

blood. However, hematopoietic cells have different intrinsic 

and membrane properties that directly contribute their 

functional roles in blood circulation or immune defense. 

Likewise, the dielectrophoretic tools are sensitive enough to 

quantify these properties without modifying their genotype or 

phenotype [15,18,28,30,33]. In our model, we introduced the 

membrane folding factor using membrane surface area 

measurements from literature. Our results showed that 

membrane morphology of hematopoietic cells changed the 

crossover frequencies for U937-MC and RBC, while 

affecting the magnitude of pDEP responses of T-cells and B-

cells.  

 Our model is clear enough to interpret the dielectric 

responses of the cells, it is accurate enough to distinguish 

biological features of hematopoietic cells, and last but not 

least it is computationally fast. In the era of precision 

medicine, the first step will be obtaining precise data from 

biological systems. Therefore, our model might be improved 

further to provide more realistic cellular dielectric models. 

The more accurate and precise cellular data gained, the 

smarter DEP devices and experimental conditions might be 

Dielectric parameters 

(Symbol, unit) 

RBC T-cell B-cell U937-MC 

 

Radius (r, µm) 

 

2.8 [27] 

 

3.29 [28] 

 

3.29 [28] 

 

7 [29] 

Membrane thickness (d, 

nm) 
4.5 [25] 7.5 [30] 7.5 [30] 7 [29] 

Medium conductivity 

(σm, S/m) 
0.01 0.01 0.01 0.01 

Medium permittivity (ℇm, 
F/m) 

80ℇ0 80ℇ0 80ℇ0 80ℇ0 

Membrane conductivity 

(σmem, S/m) 
10-6  [31] 

2.7x 10-5  

[32] 
5.6x 10-5  

[32] 
1x10-6 [33] 

Membrane permittivity 

(ℇmem, F/m) 

4.44ℇ0 
[31] 

8.89ℇ0 
[28] 

10.67ℇ0  
[28] 

12.5ℇ0 
[29] 

Cytoplasm conductivity 

(σint, S/m) 
0.31 [31] 0.65 [28] 0.73 [28] 0.5 [29] 

Cytoplasm permittivity 

(ℇint, F/m) 
59ℇ0 

[31] 
103.9ℇ0 
[28] 

154.4ℇ0 
[28] 

50ℇ0 
[29] 

Measured surface area of 

the cells (A, µm2) 
- - 265 [34] 280 [35] 

Membrane folding factor 

(Ф) 
1 [27] 1.22 [36] 1.94 0.45 

Fig. 2. The real part of Clausius-Mossotti factor (Re[fcm]) vs. applied 
frequency shown for T-cell, B-cell, RBC and U937-MC in magenta, 

blue, green and purple, respectively. 

Fig. 3. The real part of Clausius-Mossotti factor (Re[fcm]) including 

membrane features vs. applied frequency is shown for T-cell, B-cell, 

RBC and U937-MC in magenta, blue, green and purple, respectively. 
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designed. Thus, complex biological interactions might be 

uncovered and applied to precision medicine in the near 

future.  
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