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Abstract: Plant microRNAs (miRNAs) are small non-coding RNAs, about 21-24 nucleotides, which have 

important regulatory roles in growth, development, metabolic and defense processes. These critical 

elements regulate pathways either by inducing translational repression or messenger RNA (mRNA) decay. 

With the advent of the next-generation sequencing technologies and newly developed bioinformatics tools, 

the identification of microRNA studies by computational methods have been increased. Thus, the 

sequencing information provides us information for mining some known and unknown miRNAs in plants. 

In this study, we predict 34 putative miRNAs from Spinacia oleracea genome and two putative miRNA 

families from spinach transcriptome by using homology-based conservation method. RepeatMasker 

program is utilized to mask and eliminate five miRNA families out of 34 putative miRNA families from 

spinach genome. Finally, we analyze the targets of putatively identified miRNAs and their representation of 

genes (the copy number of each miRNA) throughout the genome. 
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1. Introduction 

Increasing world population, the drastic climate change, the threat of biotic stress and abiotic stress 

factors on the plants and the scarcity of arable lands have brought major concerns about the food security 

and its sustainability in the future; therefore, new agricultural technologies should be developed to prevent 

the worst-case scenario in the future [1]. With the advent of the next-generation sequencing (NGS) 

technologies, complex genomes of organisms can be unraveled [2]. Although new sequencing technologies 

are immature yet and not optimal compare to previous methods, such as Sanger sequencing, they reduce 

the process time, cost and the effort required [2]. Thanks to the impact of NGS technologies, most of the 

biotechnological methods are developed and the crops are improved [3]. 

MicroRNAs (miRNAs) are small, about 21-24 nucleotides, endogenous non-coding RNAs that play various 

roles in plants and animals. They regulate the miRNA-gene expression at the post-transcriptional level, and 

they are primarily located in intergenic regions of plant genomes [3]. MicroRNAs are derived from the 

stem-loop structure, and are modified by some specific enzymes. Plant microRNAs control the expression of 

genes encoding various transcription factors, stress-responsive elements, and the other proteins which 

have roles in growth, development and physiological properties [4]. Rapid growth in miRNA identification 

studies and related tools that use genomic data exposes the interest in this line of research among 

researchers from academia as well as practitioners from industries. Identifying miRNAs via computational 
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methods is qualified by reaching to the successful means, and some new miRNA families were validated 

experimentally. These experimentally identified miRNAs have roles on abiotic stresses due to drought, 

salinity, heat, cold, phosphorous deficiency or biotic stresses [4]. Currently, computational miRNA 

prediction is based on two methods: 1) Homology-based for conserved miRNA identification 2) other 

algorithms which use Support Vector Machine by setting some characteristics for pre-miRNA structure [5]. 

In our study, we used the ‘homology-conserved’ method to predict some putative miRNAs via employing 

in-house Perl scripts [6]. 

Spinach (Spinacia oleracea) is a valuable plant to study in different research areas including physiology, 

molecular biology and biochemistry [7]. For instance, Sklensky and Davies [8] found a relationship between 

plant senescence and resource partitioning to male and female flowers of Spinacia oleracea. In addition to 

this, cytogenetic studies have been performed on spinach to understand the sex determination mechanism 

[9]. In 2014, Dohm et al. [10] sequenced spinach genome with the Beta vulgaris species and they identified 

a significant number of genes affecting agronomically important traits. Yan et al. [11] showed the 

transcriptome and gene expression profile of spinach under the heat stress to elucidate its cold tolerance; 

they identified candidate genes so gene-gene interaction pathways might be found to understand the heat 

resistance mechanism in spinach in the future. 

In this article, we predict some putative miRNAs in spinach genome and transcriptome. We also 

investigate the targets of these predicted miRNAs. We show the copy number of those miRNA genes as 

representatives of each miRNA families in silico. RepeatMasker program is used to observe repetitive 

miRNAs throughout the genome.  

2. Materials and Methods 

2.1. Reference miRNAs and Spinach Dataset 

Currently, mature miRNA sequences (8,496 sequences and 73 plant species) are available in miRBase 

release 21 [12]. miRBase corresponds to 4,802 unique mature miRNA sequences, and they were used as 

queries in homology-based in silico miRNA identification. Also, spinach (Viroflay genotype) genome data 

has been retrieved from a publicly available website1 [10]. 

2.2. Transcriptome Dataset 

Spinacia oleracea (Viroflay genotype) raw RNA reads (SP78, SP82 and SP90)2 have been downloaded, 

and then assembled by using Trinity Genome Guided Transcriptome Assembly software based on the 

manual’s instructions3 [13]. Finally, three different assembled transcriptomes for SP72, SP80 and SP90 

have been created. We used these assemblies separately to predict putative miRNA families and the 

predicted putative miRNAs were called as “transcriptomic miRNAs”.  

2.3. In silico miRNA Identification Based on Homology Conserved Method  

  For the prediction, we employed two previously developed, in-house Perl scripts: SUmirFind and 

SUmirFold, as described in details in [6]. In the first step of homology-based miRNA prediction, BLAST+ 

stand-alone toolkit, version 2.2.25 [14] was used for the detection of database sequences with homology 

(mismatch cutoff parameter set to ≤ 3) that previously were known plant mature miRNAs [5], [15]. In order 

to obtain secondary structures of predicted miRNAs, UNAFold version 3.8 was used with optimized 

parameters to include all possible stem-loops generated for each miRNA query. Hairpins with 

multi-branched loops, inappropriate DICER cut sites at the ends of the miRNA-miRNA* duplex, or mature 

 
1https://www.ncbi.nlm.nih.gov/assembly/GCA_000510995.2/ 
2ftp://www.spinachbase.org/pub/spinach/transcriptome/fastq 
3https://github.com/trinityrnaseq/trinityrnaseq/wiki 
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miRNA sequence portions at the head of the pre-miRNA stem-loop were eliminated manually.  

2.4. Repeat Masker Analysis of Putative miRNAs in Spinach Genome 

Masking and identification of repetitive elements were performed by a semi-automated pipeline, 

RepeatMasker version 4.0.6 (www.repeatmasker.org) at default settings with Cross-Match4 as an alignment 

algorithm. MIPS-REdat_ALL v9.35 was used as the repeat library [16]. 

2.5. Representative (Copy Number) miRNAs in Spinach Genome    

To avoid over-representation, we eliminated the repeated identical miRNAs which might be caused by 

similar query miRNA stem loop sequences.  

 

For EST analysis, the pre-miRNA sequences were retrieved, and duplicate sequences were removed to 

prevent over-representation. By using BLAST+ stand-alone toolkit, version 2.2.25 [14] pre-miRNA 

sequences were blasted to Spinach unigene sequences6. We downloaded 72,148 unigene sequences and the 

strict criteria were used for the analysis of the only miRNA families who had hits above the threshold as 98% 

identity and 99% query coverage. 

For the target annotation analysis, mature sequences were identified, and duplicates were removed. By 

using online web tool, psRNA7, we obtained a query file which had targets. These targets were blasted to 

Spinach unigenes. Then, the results file has been downloaded and used as a query for gene ontology 

analysis. Blast2Go8 online software was used [17] for gene ontology analysis. Additionally, we searched 

predicted mature miRNA sequences in miRBase [12] database to confirm their experimentally validated 

targets. 

3. Results and Discussions 

3.1. Putative miRNAs through Spinacia oleracea Genome and Its Transcriptome 

Lower Minimal Folding-Free Energy (MFE) values show high stability of predicted miRNAs. We calculate 

Minimal Folding Free-Energy Index (MFEI) by using MFE and GC% for genomic spinach miRNAs and the 

corresponding statistics are reported in Table 1. Minimal Folding Free-Energy Index (MFEI) differentiates 

miRNAs with typically higher MFEIs (> 0.67) from other types of cellular ssRNAs for which MFEIs were 

previously characterized: transfer RNAs (0.64), ribosomal RNAs (0.59), and mRNAs (0.62–0.66) 

(Fig.1.)(Supplementary Data 1) [18]. We could predict 34 putative miRNAs in spinach genome. miR5175, 

miR845, miR8766, miR5181 and miR1130 families were masked by RepeatMasker. RepeatMasker scans 

repetitive elements in query sequences based on the chosen RepeatMasker library. All putative predicted 

and masked miRNAs are shown in Table 2. The predicted miRNA structure and sequence is represented in 

Fig. 1. 

We could not detect any predicted miRNA families in SP78 transcriptome assembly; however in SP82 and 

SP90 transcriptome assemblies, listed miRNA families are identified: 

 SP82: miR167, miR5769, and miR6270 

 SP90: miR6270. 

 

 
4www.phrap.org/phredphrapconsed.html 
5http://pgsb.helmholtz-muenchen.de/plant/recat/ 
6http://www.spinachbase.org/cgi-bin/spinach/download.cgi 
7http://plantgrn.noble.org/psRNATarget/target 
8 https://www.blast2go.com/  
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Table 1. Statistics Values for Spinach Genomic miRNAs 
 Minimum Average Median Maximum 

Sequence length of pre-miRNAs 98 150±50.5nt 134 337 

Sequence length of mature miRNAs 20 21.2±0.93 21 24 

Minimal folding-free energy (MFE) -93.3 -58.61±13.86 -56.3 kcal/mol -25.7 

GC% 26.11 38.88±6.60 40 52.29 

Minimal Folding Free-Energy Index (MFEI) 0.68 1.05±0.17 1.01 1.63 

 

 
Fig. 1. Identified pre-miRNA stem loop structure of selected miRNA on spinach genome. Mature miRNA 

start and end points are showed designated by arrows. Structures are predicted using UNAFold program-an 

implementation of Zuker algorithm. 

 

To verify our results, MFE, GC%, and MFEI values of transcriptomic miRNAs have been checked, and they 
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supported the aforementioned criteria (Supplementary Data 2, Supplementary Data 3). 

 
Table 2. Predicted Putative miRNAs from Unmasked and Masked Spinach Genome 

Unmasked genome 
miRNAs 

Masked genome 
miRNAs 

miR160 miR393 miR160 miR393 

miR162 miR399 miR162 miR399 

miR172 miR403 miR172 miR403 

miR319 miR827 miR319 miR827 

miR396 miR395 miR396 miR395 

miR156 miR5168 miR156 miR5168 

miR159 miR5174 miR159 miR5174 

miR167 miR5175 miR167 miR1863 

miR394 miR845 miR394 miR1436 

miR408 miR1863 miR408 miR5049 

miR157 miR8766 miR157 miR1511 

miR164 miR1436 miR164 miR535 

miR165 miR5049 miR165 
 miR166 miR1511 miR166 
 miR169 miR535 miR169 
 miR170 miR5181 miR170 
 

miR171 miR1130 miR171   

 
 

  

For this section, we use unmasked genomic data to find representatives of each miRNA families in 

spinach genome. According to the analysis, miR169 families are highly represented whereas miR1130, 

miR151, miR170, miR403, miR535, miR845 and miR876 families have lower representation (Fig.2.). Low 

representations of miRNA families are also included in the analysis because they might be ‘young-miRNAs’. 

On the other hand, the highest number of hits might be repetitive elements since most of the transposable 

elements have been domesticated into microRNA genes and they have high number of copies throughout 

the genome [19]. 

 

 
Fig. 2. Representation of predicted putative miRNAs on spinach genome. 
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All predicted putative miRNAs were searched through the miRBase database to understand whether they 

have experimentally validated targets [8]. According to the results, miR156, miR157, miR159, miR160, 

miR162, miR164, miR165, miR166, miR167, miR169, miR170, miR171, miR172, miR319, miR393, miR394, 

miR395, miR396, and miR399 have experimentally validated targets (Table 3). Most of these targets are 

transcription factors, promoter-binding proteins, and F-box proteins. As depicted in Fig. 3, top species that 

have highly similar genes to spinach organism are specified by Blast2Go. 

 

 
Fig. 3. Top-Hit species are shown after blast results to spinach genome. 

 

Based on these results, Beta vulgaris have the most similar genes to spinach genes. In Supplementary 

Table 1, potential silencing mechanism of putative spinach miRNAs and the predicted functions of their 

target genes are shown. Blast2Go is utilized to visualize molecular functions, biological processes, and 

cellular components of identified targets from predicted miRNAs (Fig. 4.). 

 

 
Fig. 4. Target annotation charts of putative spinach miRNAs based on GO analysis are depicted as a.) 

biological processes, b.) molecular function and c.) cellular component. 

 

EST analysis results show that genomic miR1863 and miR827 families are expressed in spinach genome. 
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The remaining predicted miRNAs may also be transcribed, but they may not been found in the current 

unigene file that we use as a database. 

 
Table 3. Experimentally Validated Target Proteins of Predicted miRNAs in miRBase 

miRNA Experimental Targets 

miR156 Squamosa-promoter Binding Protein (SBP) box. 

miR157 Squamosa-promoter Binding Protein (SBP) box. 

miR159 MYB and TCP transcription factors. 

miR160 Auxin response factor proteins. 

miR162 DICER-LIKE 1 (DL1) proteins. 

miR164 NAC domain containing proteins such as Cup-Shaped Cotyledon 2 (CUC2). 

miR165 HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV). 

miR166 HD-Zip transcription factors including Phabulosa (PHB) and Phavoluta (PHV). 

miR167 Auxin response factors. 

miR169 CCAAT Binding Factor (CBF) and HAP2-like transcription factors. 

miR170 GRAS domain or SCARECROW-like proteins. 

miR171 GRAS domain or SCARECROW-like proteins. 

miR172 APETALA2-like transcription factors. 

miR319 TCP genes for cleavage. 

miR393 F-box proteins and bHLH transcription factors. 

miR394 F-box proteins. 

miR395 ATP sulphurylases. 

miR396 

Growth Regulating Factor (GRF) transcription factors, rhodenase-like proteins, 

and kinesin-like protein B. 

miR399 Phosphatase transporter. 

 

4. Conclusions   

The advent of modern sequencing technologies and computational methods help researchers to filter 

redundant data for better understanding of plant genomes. To the best of authors' knowledge, the 

presented paper is the first study that employed computational methods to identify miRNA elements on the 

spinach genome. Since spinach has important agronomical properties and sex determination mechanism, 

identification of its miRNA repertoire may provide some clues about the pathways. Our findings may also 

help researchers to understand the regulatory roles of putative miRNAs in other spinach accessions which 

show genetic diversities between each other and those which was analyzed by some molecular markers 

[20].  

For the future studies, widely distributed and highly conserved miRNA families including miR169, 

miR156, miR166 and miR171 families should be experimentally validated. These miRNAs are known as 

important elements in different mechanisms ranging from abiotic stress tolerance to seed development; 

specifically, miR169 families, which are highly represented in spinach genome based on our findings, were 

shown to be up-regulated under drought and cold stresses in Arabidopsis [21]-[24]. Furthermore, 

performing evolutionary studies for spinach’s relatives to understand their similarities/differences based 

on the miRNA repertoires and the functions of these putative miRNAs inside the organisms are valuable. 
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