

Workload Balancing in Transportation Crew Scheduling

by

Fardin Dashty Saridarq

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

Summer 2013

© Fardin Dashty Saridarq 2013

All Rights Reserved

Qaradağ deprəmində yaşamını itirən kimsəsizlərə sunulur...

iv

Acknowledgements

I owe my deepest gratitude to my advisor, Dr. Güvenç Şahin, for his enthusiasm,

encouragement and guidance throughout my graduate studies. It has been and always will

be a great pleasure to work with him. Besides Dr. Şahin, I would like to thank Dr. Kemal

Kılıç, Dr. Abdullah Daşçı, Dr. Tonguç Ünlüyurt, Dr. Gündüz Ulusoy, Dr. John R. Current

and Dr. Hans Frenk for influencing me to higher education, to research, and to teaching. I

could not have asked for better role models, each inspirational, supportive and patient.

One of the joys of completion is to look over the past and remember all the friends and

family who have helped and supported me along this short but fulfilling journey. I am

indebted to my many student colleagues for providing a stimulating and fun environment in

which it is pleasure to learn and grow. I would like to express my heartiest thanks to all

Azerbaijani students of the Sabanci University and every single member of FENS-1021.

Finally and above all, I would like to thank my family for their love, patience and support

at all times.

This research has been supported by The Scientific and Technological Research Council of

Turkey (TÜBİTAK) under Grant 110M495.

v

WORKLOAD BALANCING IN TRASPORATION CREW
SCHEDULING

Fardin Dashty Saridarq

Industrial Engineering, Master’s Thesis, 2013

Thesis Supervisor: Assoc. Prof. Dr. Güvenç Şahin

Keywords: Crew Scheduling, Operational Planning, Workload Balancing, Cost Expanded

Network, Network Flow

Abstract

We focus on workload balancing in crew scheduling problems of transportation systems
where deadheading (repositioning with no duty) of crew is also possible. The deadheading
option could be just used unnecessarily for the sake of balancing the workload among team
members. Existing works have only focused on systems where deadheading is not
considered. The assignment of crew members to a sequence of duties in a finite planning
horizon is determined in such a way that the allocation of the workload among the crew
members is acceptably fair and almost equal when possible. This issue is a common
planning phenomenon for also other type of duty scheduling and rostering processes where
teams of crew members are in consideration such as hospitals and airlines. At the tactical
level, the crew schedules are feasible with respect to various restrictions and regulations;
yet, they may result in an imbalanced share of workloads among the crew. In addition,
unbalanced crew schedules may also cause unavoidable over-time costs and result in
unevenness with respect to time-based compensations. A solution approach based on a
network flow formulation of the problem is developed. In addition, we develop a binary
search method as an exact algorithm and a pool of conventional heuristic methods that
modify the schedules by reallocating the duties without disrupting the feasibilities. We
present the results of our computational experiments with well-known problem instances
from the crew scheduling literature and data sets that are representative of largest crew
region in Turkish State Railways.

vi

ULAŞIM SİSTEMLERİNİN EKİP PLANLAMA

PROBLEMLERİNDE İŞ YÜKÜ DENGELEME

Fardin Dashty Saridarq
Endüstri Mühendisliği, Yüksek Lisans Tezi, 2013

Tez Danışmanı: Doç. Dr. Güvenç Şahin

Anahtar Kelimeler: Ekip Planlama, Operasyonel Düzeyde Planlama, İş Yükü Dengeleme,
Maliyet Bazlı Genişletilmiş Çizge, Çizge Akış

Özet

Bu çalışmada ulaşım sistemlerinin ekip planlama problemlerindeki iş yükü dengeleme
konusu ele alınmıştır. Bu sistemlerde ekip üyelerini görevsiz konumlandırma (gerekli
olmadığı bir yerden gerekli olduğu bir yere her hangi bir göreve atanmadan gönderilmesi)
da olasıdır. Bu seçenek, ekip üyeleri arasında iş yükünü dengeli bir şekilde dağıtma
amacıyla gereksiz yere kullanılabilir. Dengeli iş yükü dağıtımı problemini ele alan mevcut
çalışmalar görevsiz konumlandırma olasığı olmayan sistemlere odaklanmıştır. Sonlu bir
planlama ufkunda ekip üyelerinin görev dizilerine ataması yapılırken, personel arasında iş
yükü tahsisi kabul edilebilir seviyede adil ve mümkün olduğunca hemen hemen eşit bir
şekilde belirlenir. Bu konu, hastaneler ve havayolları gibi görev planlama ve görev atama
süreçleriyle uğraşan işletmeler için de önemli bir planlama meselesidir. Taktik planlama
düzeyinde, ekip çizelgeleri çeşitli kurallar ve kısıtlar açısından uygun bir şekilde yapılabilir;
ancak, bu çizelgeler çalışanlar arasında iş yükünün dengesiz dağılımına neden olabilir.
Buna ek olarak, dengesiz bir ekip programı kaçınılmaz fazla mesai maliyetlerine yol
açabilir ve çalışm saatlerine bağlı tazminatların dağılımı açısından adaletsiz olabilir. Ele
aldığımız iş yükü dengeleme problemi için kesin çözüm yöntemleri olarak bir ağ akış
problemi gösterimi ve bir de ikili arama yöntemi geliştirildi. Sezgisel yöntemler olarak ise
konvansiyonel operatörler kullanılarak, görev çizelgelerinin olurluluklarını koruyarak
görevleri yeniden tahsis eden yerel komşuluk arama algoritmaları geliştirildi. Hesaplamalı
deney sonuçları ekip planlama literatürünün iyi bilinen problem örnekleri ve Türk Devlet
Demiryolları’nın en büyük ekip bölgelerinden alınan veri setleri için sunulmuştur.

vii

TABLE OF CONTENTS

Introduction ... 1

Literature Review .. 4

Problem Definition .. 6

3.1. The Balanced Path Problem .. 6

3.2. Network Representation.. 8

3.3. Workload Balancing in Crew Scheduling .. 12

Exact Algorithm .. 15

4.1. Cost Expanded Network ... 15

4.2. Binary Search Algorithm .. 16

4.3. Feasibility Check Procedure.. 18

4.4. Binary Search on Improved Interval .. 20

4.5. Improvements on the Feasibility Check Procedure .. 23

4.6. Properties of the Optimal Solution .. 26

Heuristic Methods .. 29

5.1. Conventional Heuristics .. 29

5.1.1. Operators .. 30

5.1.2. Selection Criteria .. 32

Computational Study ... 35

6.1. Crew Scheduling Instances from Literature ... 35

6.2. TCDD Instances ... 41

Conclusions and Future Research ... 43

List of Figures

viii

Figure 1 Network Representation for Turkish State Railways example .. 9
Figure 2 Binary Search Algorithm ...17
Figure 3 Revised BSA ...20
Figure 4 The exact cost extended network based exact BSA...27
Figure 5 Pair of schedules before Crisscross ..31
Figure 6 Pair of schedules After Crisscross ..31
Figure 7 Pair of schedules before Swap ...32
Figure 8 Pair of schedules after Swap ..32
Figure 9 Network representation of crew scheduling instances in Beasley and Cao (1996)36
Figure 10 Modified network representation of crew scheduling instances in Beasley and Cao (1996)37

1

Chapter 1

Introduction

Crew-related costs have a significant share in transportation system costs. Especially in

railways due to complex physical infrastructure and interrelated operations, this cost

constitutes a high portion of the expenditure. Abbink et al. (2007) predicts that a new

planning system would reduce costs of Dutch Railways by 6 million Euros. This huge

amount of reduction is due to large amount of crew related costs of more than 3000 drivers

working in 29 crew regions, covering more than 1000 duties using 14000 timetabled daily

trains.

In most systems, there are two types of crew related costs. Firstly, a crew member is paid a

fixed monthly salary. In addition, there is a time-based compensation that depends on the

workload of the crew. Assignment of different types of duties to a crew member may also

affect the time-based compensation. A railway system is usually composed of multiple and

sometimes many crew regions that are mostly independent from each other from a

managerial point of view. However, the system requires both coordination and cooperation

among these regions in order to successfully execute the operations that are imposed by a

central authority (i.e. the headquarters). Considering the importance of crew resources in

operations their significant share of costs necessitates a traditional hierarchical decision

making process which may be structured as follows:

 At a strategic planning level, system-wide issues are considered. Regulations

enforced by the labor unions and politics of the company are evaluated at this level.

2

Determining the number of regions and their spread over the system, locations of

the home stations, allocation of train duties among different regions and specifying

the locations of crew exchange stations are some examples of strategic level

problems.

 Tactical planning is usually concerned with regional problems related to managing

crew members in each crew region. For example, determining the minimum

required crew capacity of each region, i.e. the minimum sufficient crew resources

level for one crew region required to operate a given list of train duties is

determined at this level. Considering the significant portion of crew related costs in

railway companies, this problem is very important to decrease the total crew-related

costs.

 Operational planning is related to managing daily operations. Similar to the tactical

planning, each crew region is considered independently. Crew scheduling problems

at the operational level are concerned with final assignment of crew members to

duties during a finite short planning horizon. Managerial issues such as fairness in

duty assignments and balancing the workload (and associated payments) among the

crew are important planning issues at this level.

We study the workload balancing problem in transportation crew scheduling where fairness

issue is studied in terms of the work hours of crew members. Fairness has been considered

in personnel scheduling literature, and in particular, in nurse rostering problems. In order to

minimize the time-based compensation, it is required to maintain fairness with respect to

working conditions for all crew members. This issue is a common planning phenomenon

for also other type of duty scheduling and rostering processes where teams of crew

members are in consideration such as railways and airlines.

At the tactical level, the planning problem is concerned with determining the sufficient

minimum capacity of a crew region in order to operate the assigned train schedule. The size

of the crew, i.e. number of crew members, in a region is determined at this level. Although

the resulting crew schedules are feasible with respect to various restrictions and regulations,

they may not satisfy the comfort and requests of the crew members particularly due to an

imbalanced share of workload among them. In addition, unbalanced crew schedules may

3

also cause unavoidable over-time costs and result in unevenness with respect to time-based

compensations. The workload balancing problem is concerned with the assignment of crew

members to a sequence of duties in a finite planning horizon in such a way that the

allocation of the workload among the crew members is acceptably fair and almost equal

when possible.

Our contributions in this study can be summarized as follows:

 We define the workload balancing problem in transportation crew scheduling; we

formulate a mathematical programming problem considering all rules and

restrictions.

 An exact algorithm is designed using a binary search method:

o various improvements on the search mechanism of the binary search

algorithm are presented;

o properties of the optimal solution of the problem are explored.

 Multiple conventional heuristic methods based on a neighborhood search idea are

developed.

 In order to compare the efficiency and effectiveness of designed algorithms, we

perform a computational study with well-known problem instances from the crew

scheduling literature and data sets that are representative of largest crew regions in

Turkish State Railways.

Following a review of the literature on crew-related fairness and balancing problems in

Chapter 2, we present our study on the workload balancing problem in transportation crew

scheduling in detail in Chapter 3. We develop an exact algorithm using a binary search

method in Chapter 4. In Chapter 5, we present a pool of conventional heuristic algorithms

based on a neighborhood search idea. Our computational study is presented in Chapter 6.

And finally in Chapter 7, we conclude with a summary and some remarks on future

research.

4

Chapter 2

Literature Review

There is very limited number of studies concerned with the workload balancing problem in

transportation crew scheduling literature. Burke et al. (2001) consider the fairness issue

constraint as a soft constraint for a nurse rostering problem. This constraint ensures

distributing the duty types -morning, night, waiting shifts, etc.- uniformly over the

personnel with the same work regulation. Bellanti et al. (2004) introduce evenly assigned

working shifts and days off during the weekends as well as the balanced assignment of

morning, afternoon and night working shifts as operational requirements. Employee

timetabling problems with flexible workload are studied by Chiarandini et al. (2000). They

define positive and negative flexibility for each employee. A positive flexibility is number

of weeks in which the employee worked more than a fixed workload while negative

flexibility is number of weeks in which the employee worked less than a fixed workload.

Two components of the objective function consists of balancing positive flexibility and

negative flexibility by keeping positive and negative values as uniform as possible for all

employees.

Cappanera and Scutellà (2005) consider the problem of finding ݇ balanced paths from a

source node to a destination node in a weighted acyclic network, where the difference in

cost between the longest and the shortest path is minimized. Cappanera and Scutellà (2005)

propose exact and approximate algorithms for node-disjoint and arc-disjoint versions of the

problem. This problem on a weighted network is presented by Cappanera and Scutellà

(2011). They focus on computing node-disjoint balanced paths in general case, where the

5

associated network could have any structure. A pool of algorithms which includes an exact

as well as alternative heuristics based on the color-coding method is designed.

In the context of crew planning problems, Şahin and Yüceoğlu (2011) study the tactical

crew capacity planning in railways which involves finding the minimum number of crew

members to cover all duties in a planning horizon called the minimum crew capacity

problem. They develop a sequential and an integrated approach based on a time-space

network representation. Moreover, Suyabatmaz and Şahin (2011) develop a set-covering

type formulation for the minimum crew capacity problem and propose a column-and-row

generation algorithm for the resulted problem formulation. Both of these studies focus on a

tactical planning level. In our work, we suppose that the results of the tactical planning

level could be an input as we focus on a more operational level where the decisions are

mostly concerned with the final assignment of duties to crew.

From a methodological point of view, our work follows the footsteps of both Cappanera

and Scutellà (2011) and Şahin and Yüceoğlu (2011). The balanced bath problem in

Cappanera and Scutellà (2011) works with node-disjointness of the path. This idea,

however, was not directly applicable on the more generic network representation in Şahin

and Yüceoğlu (2011). In particular, the existence of deadheading in transportation crew

schedules necessiates a further adaptation of the modelling approach in Cappanera and

Scutellà (2011) according to the network representation in Şahin and Yüceoğlu (2011).

6

Chapter 3

Problem Definition

In this study, we consider the workload balancing problem (WBP) as to balance the

workload of railway crew in a region by minimizing the difference between the maximum

workload assigned to a crew member and the minimum workload assigned to a crew

member during a finite planning horizon. This problem should be considered as an

operational level planning problem for a railway region during the final rostering phase of

the crew scheduling process while the crew members are assigned to their duties given the

available number of crew members (i.e. predetermined crew capacity of the region). In

order to formulate our problem we use the network representation and the network flow

model for the crew capacity planning problem (CCPP) suggested by Şahin and Yüceoğlu

(2011). From the methodological point of view, we benefit from the ideas and the solution

method for the balanced path problem (BPP) introduced by Cappanera and Scutellà (2011).

3.1. The Balanced Path Problem

Cappanera and Scutellà (2011) introduce the problem of computing ݇ balanced paths in a

network, called the balanced path problem (BPP). The problem is to find ݇ node-disjoint

paths on a weighted network. They consider two main versions of BPP arising in many

applications such as transportation and telecommunication networks. The single

commodity version of the problem does not discriminate between paths. ݇ node-disjoint

paths emanating from ݇ distinct source nodes and ending at ݇ distinct sink nodes

7

(considering all available source and sink nodes) are computed while the objective is to

minimize the difference between the longest path and the shortest path. This version finds

anonymous rosters in crew and personnel scheduling applications. When the problem is

solved on a network representing the associated scheduling problem in a similar way, multi

commodity version of the problem considers finding ݇ node-disjoint paths using ݇ source-

sink pairs and generates personalized rosters. For the proposed mathematical formulation of

the multi commodity version of BPP, they consider a network ܩ = ݇ where there are (ܧ,ܸ)

source-sink pairs as (ݏ௛ , ௜௝௛ݔ .(௛ݐ denotes the 0-1 unit flow on arc (݅, ݆) while ܼ௠௔௫ and ܼ௠௜௡

denote costs of the balanced longest and the shortest paths. The resulting mathematical

formulation of the corresponding network problem is:

min ܼ௠௔௫ − ܼ௠௜௡ (1)

subject to ෍ ௦೓௜ݔ
௛

(௦೓,௜)∈ா

= 1 ℎ ∈ {1, … , ݇} (2)

 ෍ ௜௧೓ݔ
௛

(௜,௧೓)∈ா

= 1 ℎ ∈ {1, … , ݇} (3)

 ෍ ௝௜௛ݔ
(௝,௜)∈ா

− ෍ ௜௝௛ݔ
(௜,௝)∈ா

= 0 ℎ ∈ {1, … , ݇},∀݅ ∈ ௛ݏ}ܸ , ௛} (4)ݐ

 ෍ ෍ݔ௜௝௛
௛(௜,௝)∈ா

≤ 1 ∀݅ ∈ ܸ (5)

௜ݑ − ௝ݑ + ௜௝௛ݔ݊ ≤ ݊ − 1 ∀(݅, ݆) ∈ ℎ,ܧ ∈ {1, … ,݇}, ݅, ݆ ∉ ௛ݏ} , ௛} (6)ݐ

 ෍ ܿ௜௝ݔ௜௝௛
(௜,௝)∈ா

≤ ܼ௠௔௫ ℎ ∈ {1, … , ݇} (7)

 ෍ ܿ௜௝ݔ௜௝௛
(௜,௝)∈ா

≥ ܼ௠௜௡ ℎ ∈ {1, … , ݇} (8)

௜௝௛ݔ ∈ {0,1} ∀(݅, ݆) ∈ ℎ,ܧ ∈ {1, … ,݇} (9)

 1 ≤ ௜ݑ ≤ ݊ ∀݅ ∈ ܸ (10)

8

Objective function (1) minimizes the difference between the paths with maximum cost and

the path with minimum cost where cost of a path is the summation of the cost of the arcs on

the path. Constraints (2)-(4) are traditional flow conservation constraints finding ݇ paths

from source nodes to sink nodes with zero flow balance for all nodes except source nodes

and sink nodes. Constraints (5) ensure that paths are node-disjoint. Sub-tour elimination

constraints are represented by constraints (6) where ݑ௜ is associated with node ݅ can be

interpreted as the position of node ݅ in a tour. Constraints (7) and (8) keep costs of ݇ paths

in the range of optimal shortest and longest paths. Constraints (9) and (10) are domain

constraints.

3.2. Network Representation

Şahin and Yüceoğlu (2011) present a time-space network for CCPP. It is possible to adapt

this network representation for any transportation company considering different rules and

policies of the company. In railways, there are one or more main crew regions which

manage all operations of the region. Each region consists of a home station as its main

station where all the crew related operations are managed. In addition, there are some away

stations. Crew trips start from the home station (an away station) and end at an away (the

home station). These trips are listed in a predetermined list of train duties. Other types of

duties include station duties which are required to cover for absent crew of a train duty in

case of emergency. In addition, it is possible to transfer a crew member without assigning

any duty from one station to another in order to cover a duty starting at the destination

station. Transferring crew members to another location (on trains covered by other crew

members) is called deadheading. Deadheading plays an important role in covering duties

with minimum number of crew members. A crew member can be transferred from an away

station to the home station or vice versa. A deadheading from an away station to home

station will result in accumulating crew members at home, which is useful when crew

members are required for home to away duties. On the other hand, a deadheading from

home station to an away station allows covering a duty starting from away station when

there is no other crew member available at the away station to cover the duty.

9

The network representation in Şahin and Yüceoğlu (2011) also take into account a set of

rules that are in practice determined by labor unions and imposed by the policy of the

company. Some examples of these rules are as follows:

 There are predefined time periods to report for a train duty earlier than the departure

of the train and to finish the duty later than the arrival of the train for crew

members. These time windows, respectively called on-duty and off-duty times, are

used for filling paperwork and debriefs on the trip.

 The maximum and the minimum rest time period between two consecutive trips for

any crew member are predetermined. Crew members are subject to a rest time

following a duty and prior to performing next duty (or deadheading). These rest

times can differ for home and away stations.

 If the duration of a duty exceeds a predetermined length, it is required that at least

two crew member are assigned to the duty.

Figure 1 shows the network representation designed by Şahin and Yüceoğlu (2011) for the

Turkish State Railways example.

Figure 1 Network Representation for Turkish State Railways example

10

In the space-time network representations also suggested by Şahin and Yüceoğlu (2011),

nodes contain time and location information and represent the beginning and ending of

events. On-duty nodes denote the beginning time and location of a duty; tie-up nodes

denote the end time and location. A source node is the origin of all crew members at the

home station at the beginning of the planning time horizon. A sink node is the final

destination of all crew representing the home station at the end of the planning horizon. The

set of arcs includes six types:

 Source arcs emanate from the source node and enter the on-duty nodes at home

location.

 Sink arcs emanating from tie-up nodes and ending at the sink node send all crew

back to home station at the end of planning horizon.

 Duty arcs emanating from an on-duty node and entering a tie-up node represent

duties; flow on duty arc represents the coverage of the duty. Each duty arc has a

lower bound respecting minimum required number of crew members to cover the

duty.

 Rest arcs have been used to represent rest periods which connect a tie-up node to

an on-duty node at the same location.

 Direct arcs are used to connect two successive duties which have a total time

duration less than a predefined time period. These arcs represent the coverage of an

excess duty by a crew member. An excess duty covers the first duty, the waiting

period between the two duties, and the second duty.

 Deadheading arc from an away tie-up node to a home tie-up node is used to transfer

a crew member from the away station to the home station. Moreover, home to away

deadheading is represented using duty arcs from home to away nodes, where over

loading a duty arc means a deadheading from home to away.

On this space-time network, a source-sink path is composed of consecutive arcs which

represent duties, rest periods and deadheading that correspond to a feasible schedule for a

crew member from the beginning of the planning horizon until the end. As a result, each

source-sink path would correspond to a feasible crew schedule. Şahin and Yüceoğlu (2011)

propose a network flow problem on this network in order to find paths corresponding to

11

such feasible crew schedules while the necessity for covering the duties are handled by

appropriate lower bounds on the arcs representing different types of duties. Since they

consider CCPP, their objective function minimizes the number of source-sink paths.

For the network flow formulation of CCPP they consider a network ܩ = with a (ܣ,ܰ)

source node ݏ and a sink node ݐ where decision variable ݔ௔ denotes the amount of flow on

arc 	ܽ ∈ ܩ The set of duty arcs in network .ܣ is denoted by ௗܣ	 ିܣ/ାܣ . denotes set of

outgoing/incoming arcs at node ݅. Number of crew members required to cover the duty

represented by arc ܽ is demonstrated by	ܿ௔ . The mathematical programming formulation

for their network flow model is:

min ෍ ௔ݔ
௔∈஺ೞశ

 (11)

subject to ෍ ௔ݔ
௔∈஺ೞశ

= ෍ ௔ݔ
௔∈஺೟ష

 (12)

 ෍ ௔ݔ
௔∈஺೔ష

= ෍ ௔ݔ
௔∈஺೔శ

 ∀݅ ∈ ,ݏ}\ܰ (13) {ݐ

௔ݔ ≥ ܿ௔ ∀ܽ ∈ ௗ (14)ܣ

௔ݔ ∈ ℤା ∀ܽ ∈ (15) ܣ

The objective function (11) minimizes the flow emanating from the source node ݏ which

corresponds to the number of crew members required in the planning horizon. Constraint

(12) is the flow balance constraint between the source node ݏ and the sink node	ݐ, which

ensures that the flow emanating from the source node is equal to the flow entering the sink

node. We have the flow balance constraint of other nodes in (13). Constraint (14) is duty

coverage constraint, which ensures for a duty arc the flow amount is at least as much as the

number of required crew members, ܥ௔ . The integrality constraints on the variables are

given in (15).

A solution to the problem in (11)–(15) is composed of a set of ݏ − paths. The number ݐ

of	ݏ − paths in the (optimal) solution is equal to the (optimal/minimum) number of crew ݐ

members required. In essence, one could identify individual ݏ − paths in a solution via ݐ

12

post-processing with a depth-first search algorithm applied only on the arcs with

nonnegative flow in the solution. Then, from the solution of the minimum flow problem,

we may obtain a feasible assignment of duties to potential crew schedules with minimum

number of crew members.

3.3. Workload Balancing in Crew Scheduling

A straightforward attempt to formulate the network flow model for WBP based on the

network representation in Şahin and Yüceoğlu (2011) would modify the formulation (11)-

(15) by updating the objective function with (1) and adding the constraints (7) and (8) from

the BPP formulation. However, this straightforward approach seems to have some

problems as we discuss next. Based on the network representation in Şahin and Yüceoğlu

(2011), we develop a mathematical programming formulation of WBP inspired from the

formulation of BPP in Cappanera and Scutellà (2011). Due to some particular

characteristics and the nature of the problem, the new formulation for WBP is indeed quite

different from that of BPP. The node-disjoint constraints in BPP ensure that paths are

dissimilar from each other. Without this constraint the problem would result in ݇ equivalent

paths and the objective function would be equal to zero.

In the network flow model for CCPP, paths are not necessarily node-disjoint. As a result,

the straightforward adaptation approach would yield artificially inflated workload for some

crew so that the difference between the maximum and the minimum is smaller. This is

possible particularly due to the feasibility of freely adding unnecessary deadheading to the

crew schedules. In essence, the total cost of all paths (corresponding to the total workload

in crew schedules) is given and implicitly fixed in BPP which is imposed by the node-

disjointness of the paths. However, the opportunity for adding unnecessary workload such

as crew deadheading and the absence of disjointness constraints make it possible to create

extra workload and assign it to the crew in order to attain a more balanced workload at the

expense of extra crew cost for unnecessarily inflated workloads.

Based on the network representation	ܩ = ݇ WBP finds a set of ,(ܣ,ܰ) balanced paths

where ݇ is the optimal solution of CCPP. In the network flow formulation of WBP, ݔ௜௝௛ = 1

if arc (݅, ݆) is included in the feasible path	ℎ; otherwise,	ݔ௜௝௛ = 0. When (݅, ݆) is included in

13

a path, it means that it is covered by the schedule represented by the path. ௜ܹ௝ denotes the

workload of arc (݅, ݆); it is zero for all arcs other than duty and deadhead arcs. For a duty

arc	(݅, ݆), ܿ௜௝ is the number of crew members required to cover the duty. ߳ is an extremely

small positive quantity. Then, the network flow formulation for WBP becomes:

min ܼ௠௔௫ − ܼ௠௜௡ (16)

subject to ෍ ௦௜௛ݔ
(௦,௜)∈஺

= 1 ℎ ∈ {1, … , ݇} (17)

 ෍ ௜௧௛ݔ = 1
(௜,௧)∈஺

 ℎ ∈ {1, … , ݇} (18)

 ෍ ௝௜௛ݔ
(௝,௜)∈஺

− ෍ ௜௝௛ݔ
(௜,௝)∈஺

= 0 ℎ ∈ {1, … , ݇},∀݅ ∈ ,ݏ}ܰ (19) {ݐ

 ෍ݔ௜௝௛ ≥ ܿ௜௝
௛

 ∀(݅, ݆) ∈ (20) 	ܣ

 ෍ ௜ܹ௝ݔ௜௝௛
(௜,௝)∈஺

≤ ܼ௠௔௫ ℎ ∈ {1, … , ݇} (21)

 ෍ ௜ܹ௝ݔ௜௝௛
(௜,௝)∈஺

≥ ܼ௠௜௡ ℎ ∈ {1, … , ݇} (22)

 ෍ ෍ ௜ܹ௝ݔ௜௝௛
(௜,௝)∈஺௛

≤ ்ܹ + ߳ ∀(݅, ݆) ∈ ℎ,ܣ ∈ {1, … ,݇} (23)

௜௝௛ݔ ≥ 0 ℎ ∈ {1, … , ݇},∀(݅, ݆) ∈ (24) ܣ

The objective function (16) minimizes the workload difference between the two crew

schedules (i.e. feasible paths). Constraints (17), (18) and (19) are flow conservation

constraints which assure that, for each path ℎ, a unitary flow is pushed from the source

node to the sink node, representing the engagement of only one crew with the feasible

schedule represented by the path. Constraint (20) assures that all duties are covered.

Constraints (21) and (22) ensure that all paths have a workload within the range of the

minimum and the maximum workload, and also determine the value of the workload for the

maximum-workload schedule/path and the minimum-workload schedule/path, respectively.

14

Constraint (23) assures that the total workload of all paths does not exceed the minimum

total workload and constraint (24) is the domain constraint for the decision variables.

Without preventing excessive use of deadheading, the WBP in crew scheduling results in

assigning extra duties to crew. We should clearly state that constraint (23) is the resolution

of the problem with the straightforward adaptation of the network flow model for CCPP; it

avoids the addition of unnecessary workload through deadheading by limiting the total

workload that can be assigned to crew. In essence, ்ܹ can be calculated as the optimal

objective function value of a variant of CCPP where the objective function minimizes the

total workload rather than the number of crew members. The corresponding mathematical

formulation is:

்ܹ =min ෍ ෍ ௜ܹ௝ݔ௜௝௛
(௜,௝)∈஺௛

 (25)

subject to (17)− (20)	ܽ݊݀	(24)

The proposed network flow formulation (16)-(24) finds an optimal solution for WBP in

crew scheduling. In order to decrease the computational effort required to solve the

problem some improvements shall be done by narrowing down the feasible region of the

problem. In addition to a feasible upper bound on the total workload ்ܹ, we also impose a

lower bound as ∑ ∑ ௜ܹ௝ݔ௜௝௛(௜,௝)∈஺௛ ≥ ஽ܹ + ߳ where the lower bound ஽ܹ can be found as

the summation of workload of all (train and station) duties with no deadheading to be

covered within the planning horizon.

15

Chapter 4

Exact Algorithm

In this section, we introduce an exact algorithm to solve WBP. This algorithm avoids

solving the mathematical programming problem formulation; rather, it obtains the optimal

solution using a binary search method. In essence, we first determine the interval where the

optimal objective function value (i.e. the difference between the path with maximum cost

and the path with minimum cost) lies in; then, we explore this interval to find out where a

feasible solution with the minimum difference exists.

4.1. Cost Expanded Network

For any directed and weighted network	ܩ = ݏ with a source node (ܣ,ܰ) ∈ ܰ , the cost

expanded network ܩ௎ = (ܰ௎,ܣ௎) is defined as an un-weighted directed network

containing the source node ݏ of network ܩ and several copies of all other nodes. Each node

݅ ∈ ܰ is represented by at most ܷ + 1 copies in	ܩ௎ where ܷ is the cost of the longest path

in	ܩ. On the cost expanded network	ܩ௎, ݅௣ ∈ ܰ௎ represents a copy of ݅ ∈ ܰ while ݌ is the

cost of s directed path from ݏ to	݅. ݏ ∈ ܰ is represented by only one copy as ݏ଴ in	ܩ௎. A

weighted arc (݅, ݆) ∈ ,ܿ is represented by multiple un-weighted arcs (݅௣	with cost ܣ ݆௣ା௖) ∈

௎ܣ for all possible values of ݌	 . If there exist a sink node ݐ , the sink node ݐ ∈ ܣ is

represented by	ݐ௣ ∈ ܰ௎, where	݌ ∈ {0,1, … ,ܷ}. Any 	ݐ௣ shows a directed source-sink path

with cost of ݌ on the original network. Following is an algorithm for generating the cost

expanded network for network	ܩ:

16

Generate Cost Expanded Network (ܩ):

Add the source node ݏ଴ to ܩ௎

Topological Order (ܩ);

For ݅ = 0; 	݅ <= ;ݎ݁݀ݎܱ_݌݋ܶ_ݔܽܯ 	݅ + + do

 For each arc (݅, ݆) with cost ܿ௜௝ do

 For each ݅௣ in ܩ௎ do

 q=݌+ܿ௜௝;

 Add node 	݆௤ to	ܩ௎;

Add arc (݅௣, ;௎ܩ	to 	(ݍ݆	

Return ܩ௎;

Representing each node of the original network with at most ܷ + 1 copies in the cost

expanded network, the set of nodes of the cost expanded network	ܰ௎ , will have ܱ(ܷ݊)

nodes. Similarly, the cost expanded network contains ܱ(ܷ݉) arcs. Considering that ܷ is

the cost of the longest path in the network	ܩ, the size of the nodes and the arcs of the cost

expanded network can be very large.

4.2. Binary Search Algorithm

We develop a binary search algorithm to solve WBP. It is clear that [0,ܷ] contains the

optimal objective function value. The binary search algorithm (BSA) starts with ߙ = ܷ/2

and checks if there are ݇ paths satisfying constraints (2)-(5), (8) and (9) where the

difference between shortest and longest path is equal to	ߙ. If the result is positive, then the

search continues on the interval [0,ߙ]; if not, the interval changes to [ߙ,ܷ]. The algorithm

continues in this fashion until the right hand side (RHS) and the left hand side (LHS) of the

search interval is equal to each other. Figure 2 shows a flow chart of BSA.

The proposed network	ܩ, the minimum total workload ்ܹ and the cost of the longest path

ܷ are inputs of BSA. The algorithm initials LHS of the search interval a zero and the RHS

of the search interval as	ܷ. Then, BSA checks if there is a feasible subset selection of

17

schedules with	ߙ = ܵܪܮ) + ,otherwise ;ߙ If the result is positive RHS changes to .2/(ܵܪܴ

LHS changes to ߙ. The algorithm continues until RHS and LHS are equivalent.

Figure 2 Binary Search Algorithm

18

4.3. Feasibility Check Procedure

During one iteration of BSA, the major task is to figure out if the problem has a feasible

solution given a difference value (ߙ) corresponding to the objective function value of WBP.

Therefore, in order to check if there are ݇ paths satisfying constraints (17)-(20) and (23)-

(24) where the difference between shortest and longest path is equal to	ߙ, the cost expanded

network ܩ௎ is used. For each value of	ߙ, a family of sub-graphs of 	ܩ௎ is employed. Recall

that 	ܩ௎ contains a set of sink nodes	ܶ = ௤ݐ} , ݍ ∈ {0, … ,ܷ}}. For a given value ߙ	 , one

should seek feasibility in a series of problems where the network includes a subset of the

sink nodes ௤ܶ
ఈ = ;௤ݐ} ݍ ∈ ,ᇱݍ} … , ᇱݍ + In essence, if there are ݇ paths on ௤ܶ .{{ߙ

ఈ covering

the required duty arcs, corresponding WBP instance has a solution where the difference of

maximum workload and minimum workload is	ߙ.

Let each instance of such sub-graphs be denoted by ܩఈ
௤ = (ఈܰ

௤ ఈܣ,
௤) for	ݍ ∈ ,଴ݍ} … , ௎}. Forݍ

a fixed ߙ value, if at least one of these sub-graphs has ݇ paths where all duties are covered

and total workload does not exceed the minimum total workload,	 ்ܹ, then ߙ is an upper

bound for the optimal value of WBP.

There are at most ܷ + 1 subgraphs for each value of	ߙ. Considering the minimum total

workload constraint, sub-graphs ܩఈ
௤ with smaller values of ݍ are most likely to have ݇ paths

where coverage and minimum total workload constraints are satisfied. It is sufficient to

start with ܩఈ
௤బ and check the feasibility for this sub-graph. If the result is positive, the

iteration for ߙ is terminated and the feasibility check procedure ends with a positive result.

If the result is negative, the iteration continues to check for larger values of ݍ in the same

fashion. For each sub-graph ܩఈ
௤, a feasibility problem is solved. We should check if the

sub-graph contains ݇ paths from source node ݏ to sink nodes with aforementioned

constraints. The exact formulation for this feasibility problem [1ܨ] is as follows:

෍ ௦௜ݔ
(௦,௜)∈஺ഀ

೜

= ݇ (26)

19

෍ ෍ ௜௧ݔ = ݇
(௜,௧)∈஺ഀ

೜௧∈{௧೜,…,௧೜శഀ}

 (27)

෍ ௝௜ݔ
(௝,௜)∈஺ഀ

೜

− ෍ ௜௝ݔ
(௜,௝)∈஺ഀ

೜

= 0 ∀݅ ∈ ఈܰ
௤\{ݏ, ௤ݐ , … , ௤ାఈ} (28)ݐ

෍ ௜௝ݔ
(௜,௝)∈ோೖ೗

≥ ௞௟ܥ ∀(݇, ݈) ∈ (29) ܣ

෍ ௧ܹ ෍ ௜௧ݔ	
(௜,௧)∈஺ഀ

೜௧∈{௧೜,…,௧೜శഀ}

≤ ்ܹ + ߳ (30)

௜௝ݔ ≥ 0 ∀(݅, ݆) ∈ ఈܣ
௤ (31)

Constraints (26), (27) and (28) are flow conservation constraints which assure that ݇ unit

flows are pushed from the source node to sink nodes. Constraint (29) assures that, all duties

are covered. Note that for each arc there are several copies in sub-graph ఈܩ	
௤ shown

by	ܴ௞௟ , (k, l) ∈ Constraint (30) assures that the total workload of all paths does not exceed .ܣ

the minimum total workload	 ௧ܹ. Constraint (31) is the domain constraint for the decision

variables.

The flow chart of BSA using the feasibility check procedure is shown in Figure 3. Note that

for fixed value of	ߙ, the algorithm checks if [1ܨ] is true at least on one of sub-graphs	ܩఈ
௤

starting from	ݍ = ଴. If the iteration terminates with negative result, the algorithm continuesݍ

with changing LHS to	ߙ; otherwise, RHS changes to	ߙ.

20

Figure 3 Revised BSA

4.4. Binary Search on Improved Interval

A binary search in interval [0,ܷ] includes performing ݈݃݋(ܷ) feasibility check iterations.

By decreasing the distance between the two sides of the interval, the number of iterations of

the algorithm is expected to decrease. ܷ, on the right hand side of the interval, represents

21

the case when the maximum workload is ܷ, i.e. the length of the longest source-sink path,

and the minimum workload is 0. Instead, a lower bound for the right hand side such as

	ܼ௠௔௫
௎஻ − 	ܼ௠௜௡

௅஻ ≤ ܷ would narrow down the search interval from the right hand side where

	ܼ௠௔௫
௎஻ denotes an upper bound for the maximum workload (i.e. the length of the longest

path) and 	ܼ௠௜௡
௅஻ denotes a lower bound for the minimum workload (i.e. the length of the

shortest path).

In this respect, if

	ܼ௠௔௫
௎஻ is an upper bound for the workload of the schedule with maximum workload

in an optimal solution of WBP (ܼ௠௔௫
∗) , and

	ܼ௠௜௡
௅஻ is a lower bound for the workload of the schedule with minimum workload in

an optimal solution of WBP	(ܼ௠௜௡
∗),

then, the difference between		ܼ௠௔௫
௎஻ and 	ܼ௠௜௡

௅஻ is an upper bound for the optimal value of

optimal objective function value (equation (16)), i.e. 	ܼ௠௔௫
∗ − 	ܼ௠௜௡

∗ ≤ 	ܼ௠௔௫
௎஻ − 	ܼ௠௜௡

௅஻ .

In order to find 	ܼ௠௔௫
௎஻ we can modify the mathematical formulation of WBP. Extra

constraints are needed to prevent an infinite value for the upper bound.	ܼ௠௔௫
௎஻ is the optimal

value of the following problem [௠ܲ௔௫
௎஻]:

Max ܼ̅௠௔௫ (32)

subject to (17)− (20)		ܽ݊݀	(23)− (24)

 ෍ ௜ܹ௝ݔ௜௝௛
(௜,௝)∈஺

+ 1)ܯ − (௛ݕ ≥ ܼ̅௠௔௫ ℎ ∈ {1, … , ݇} (33)

 ෍ ௜ܹ௝ݔ௜௝௛
(௜,௝)∈஺

≤ ܼ̅௠௔௫ ℎ ∈ {1, … , ݇} (34)

 ෍ݕ௛
௛

≥ 1 (35)

௛ݕ ∈ {0,1} ℎ ∈ {1, … , ݇} (36)

where ݕ௛ = 1 if the corresponding path is the feasible schedule with the maximum possible

workload; ݕ௛ = 0, otherwise. The objective function (32) maximizes the workload of the

feasible schedule with the maximum workload. Constraints (33), (34) and (35) ensure that

22

there is at least one schedule with workload amount of		ܼ̅௠௔௫. Constraint (36) is the binary

domain constraint.

 Similarly, by modifying the mathematical formulation of WBP, a mathematical

formulation to find		ܼ௠௜௡
௅஻ can be developed. The optimal value of the following problem

([௠ܲ௜௡
௅஻]) is equal to		ܼ௠௜௡

௅஻ :

Min ܼ̅௠௜௡ (37)

subject to (17)− (20)		ܽ݊݀	(23)− (24)

 ෍ ௜ܹ௝ݔ௜௝௛
(௜,௝)∈஺

+ 1)ܯ − (௛ݕ ≥ ܼ̅௠௜௡ ℎ ∈ {1, … , ݇} (38)

 ෍ ௜ܹ௝ݔ௜௝௛
(௜,௝)∈஺

≥ ܼ̅௠௜௡ ℎ ∈ {1, … , ݇} (39)

 ෍ݕ௛
௛

≥ 1 (40)

௛ݕ ∈ {0,1} ℎ ∈ {1, … , ݇} (41)

where ݕ௛ = 1 if the corresponding path is the feasible schedule with the minimum possible

workload; ݕ௛ = 0, otherwise. The objective function (37) minimizes workload of the

schedule with the minimum possible workload. Similar to	[௠ܲ௔௫
௎஻], Constraints (38), (39)

and (40) ensure that there is at least one path with workload amount of		ܼ̅௠௜௡. Constraint

(41) is the binary domain constraint.

In order to narrow down the search interval from the left hand side, instead of using zero, a

better lower bound for the optimal value of equation (16) can be found. If 	ܼ௠௔௫
௅஻ is a lower

bound for 	ܼ௠௔௫
∗ and 	ܼ௠௜௡

௎஻ is an upper bound for	ܼ௠௜௡
∗ , 	ܼ௠௔௫

௅஻ − 	ܼ௠௜௡
௎஻ is a lower bound for

the optimal value of equation (16), i.e. 	ܼ௠௔௫
௅஻ − 	ܼ௠௜௡

௎஻ ≤ 	ܼ௠௔௫
∗ − 	ܼ௠௜௡

∗ . In this respect, we

develop relaxations of the network flow formulation for WBP.

We first consider a relaxation of the feasible region of (16)-(24) without constraint (22).

Since (16) implicitly minimizes	ܼ௠௔௫ , setting the objective function to minimization of

	ܼ௠௔௫ only produces a lower bound. Therefore, we use the following problem formulation

([௠ܲ௔௫
௅஻]) to find 	ܼ௠௔௫

௅஻ :

23

min ܼ̅௠௔௫ (42)

subject to (17)− (21)		ܽ݊݀	(23)− (24)

In a similar fashion, deleting constraint (21) from formulation (16)-(24) and setting the

objective function to maximize	ܼ௠௜௡, an upper bound for 		ܼ୫୧୬∗ can be obtained. Clearly,

the feasible region of the new problem [௠ܲ௜௡
௎஻] is a relaxation of (17)-(24). Therefore,	ܼ௠௜௡

௎஻

is the optimal objective function value of the following is the mathematical formulation

[௠ܲ௜௡
௎஻] :

max ܼ̅௠௜௡ (43)

subject to (17)− (20), (22)		ܽ݊݀	(23)− (24)

 A binary search on [0,ܷ] for the optimal solution of WBP is equivalent to 	.1	ܻܴܶܧܱܴܲܲ

a binary search on	[(ܼ௠௔௫
௅஻ − 	ܼ௠௜௡

௎஻), (ܼ௠௔௫
௎஻ − 	ܼ௠௜௡

௅஻)].

As a result of Property 1, BSA will speed up and the number of iterations will be equal

to	log	[(ܼ௠௔௫
௎஻ − 	ܼ௠௜௡

௅஻)− ൫	ܼ௠௔௫
௅஻ − 	ܼ௠௜௡

௎஻ ൯].

4.5. Improvements on the Feasibility Check Procedure

During the feasibility check procedure of BSA, we observe that there is no need to check

all sub-graphs ܩఈ
௤ for a fixed value of	ߙ. Constraint (30) imposes that the total workload

cannot exceed	 ்ܹ. In this respect, if the sum of the cost labels of the first ݇ sink nodes

(corresponding to the total workload of first ݇ schedules) exceeds the minimum total

workload ்ܹ , then the result of the feasibility problem [1ܨ] for this sub-graph will be

negative.

24

ఈܩ	For a sub-graph 	.2	ܻܴܶܧܱܴܲܲ
௤, if the sum of the cost labels of the first ݇ sink nodes

exceeds the minimum total workload	 ்ܹ , then none of the sub-graphs ܩఈ
௤ᇱ where ݍᇱ ≥ ݍ

and ݍ′ ≤ ܷ will not satisfy the feasibility problem	[1ܨ].

We may also call Property 2 as the stopping sink node property as it specifies where to stop

the search for a given value of	ߙ. With the list of sink nodes of network ܩ௎ sorted based on

cost as input, an algorithm to find the stopping sink node can be summarized as follows:

Find Stopping Node (ܵ):

௤ೄ೟೚೛೛೔೙೒ݐ = 0
Stop=False;

ܰ = ∅;

While Stop! =True do

 For all ݐ௤ ∈ ܵ do

 Select first ݇ nodes and add to list ܰ

 If sum of elements (ܰ)>	 ்ܹ do

 Stop=True;

௤ೄ೟೚೛೛೔೙೒ݐ = ;௤ݐ

Return	݃݊݅݌݌݋ݐܵݍݐ ;

For a given value of	ߙ, we may define the set of ܩఈ
௤ where	ݍ = ,ଵݍ … , ௌ௧௢௣௣௜௡௚ݍ . To avoid

checking all of these sub-graphs for a specific value of ߙ one by one, all of them can be

combined in a new sub-graph and execute the feasibility check procedure for a combined

sub-graph called ఈܩ	 = (ఈܰ,ܣఈ) . It would then suffice to check if ܩఈ with sink nodes

௤భݐ} , … , ௤ೄ೟೚೛೛೔೙೒ାఈ} contains ݇ paths from the source node to sink nodes where all dutiesݐ

are covered and the difference between the length of each pair of paths is at most	ߙ. For

this purpose, we develop the following mathematical programming formulation for this

new feasibility problem	[2ܨ]:

25

෍ ௦௜ݔ
(௦,௜)∈஺ഀ

= ݇ (44)

෍ ෍ ௜௧ݔ = ݇
(௜,௧)∈஺ഀ௧∈{௧೜భ ,…,௧೜ೄ೟೚೛೛೔೙೒శഀ}

 (45)

෍ ௝௜ݔ
(௝,௜)∈஺ഀ

− ෍ ௜௝ݔ
(௜,௝)∈஺ഀ

= 0 ∀݅ ∈ ఈܰ\{ݏ, ௤భݐ , … , ௤ೄ೟೚೛೛೔೙೒ାఈ} (46)ݐ

෍ ௜௝ݔ
(௜,௝)∈ோೖ೗

≥ ,݇)∀ ௞௟ܥ ݈) ∈ (47) ܣ

෍ ௧ܹ ෍ ௜௧ݔ	
(௜,௧)∈஺ഀ௧∈{௧೜భ ,…,௧೜ೄ೟೚೛೛೔೙೒శഀ}

≤ ்ܹ + ߳ (48)

ܯ ∗ ቌ ෍ ௜௝ݔ
(௜,௝)∈஺ഀ

ቍ − ௧ݕ ≥ 0
ݐ∀ ∈ ௤భݐ} , … , ௤ೄ೟೚೛೛೔೙೒ାఈ} (49)ݐ

ߝ ∗ ቌ ෍ ௜௝ݔ
(௜,௝)∈஺ഀ

ቍ − ௧ݕ ≤ 0
ݐ∀ ∈ ௤భݐ} , … , ௤ೄ೟೚೛೛೔೙೒ାఈ} (50)ݐ

௧భݕ ௧ܹభ − ௧మݕ ௧ܹమ ൫2ܯ− − ௧భݕ − ௧మ൯ݕ ≤ ,ଵݐ∀ ߙ ଶݐ ∈ ௤భݐ} , … , ௤ೄ೟೚೛೛೔೙೒ାఈ} (51)ݐ

௧భݕ ௧ܹభ − ௧మݕ ௧ܹమ + ൫2ܯ − ௧భݕ − ௧మ൯ݕ ≥ ,ଵݐ∀ ߙ− ଶݐ ∈ ௤భݐ} , … , ௤ೄ೟೚೛೛೔೙೒ାఈ} (52)ݐ

26

௧ݕ ∈ ݐ∀ {0,1} ∈ ௤భݐ} , … , ௤ೄ೟೚೛೛೔೙೒ାఈ} (53)ݐ

௜௝ݔ ≥ 0 ∀(݅, ݆) ∈ ఈ (54)ܣ

Constraints (44)-(48) are similar to constraints (26)-(30) in [1ܨ]. Constraints (49), (50) and

(53) ensure that 	ݕ௧ = 1 if there is incoming flow at sink node ݐ	 ; otherwise, ௧ݕ		 = 0 .

Constraints (51) and (52) assure that the difference between workload of any pair of

schedules is equal to	ߙ. The result of (44)-(54) is positive, if ܩఈ contains ݇ paths from the

source node to sink nodes where all duties are covered and the difference between the

length of each pair of paths is at most	ߙ.

4.6. Properties of the Optimal Solution

In order to reduce the computational burden at each iteration of BSA, we explore other

useful properties of the optimal solution. If the lower bound and the upper bound for 		ܼ୫୧୬∗

are equal, and in a similar way if the lower bound and the upper bound for 		ܼ୫ୟ୶∗ are equal,

the following property is useful:

 	.3	ܻܴܶܧܱܴܲܲ

a) If 	ܼ௠௜௡
௅஻ = 	ܼ௠௜௡

௎஻ then 		ܼ୫୧୬∗ = 	ܼ௠௜௡
௅஻ = 	ܼ௠௜௡

௎஻ and the optimal solution of the

workload balancing problem is equal to	ܼ௠௔௫
௅஻ − 	ܼ௠௜௡

௅஻ .

b) If 	ܼ௠௔௫
௅஻ = 	ܼ௠௔௫

௎஻ then 		ܼ୫ୟ୶∗ = 	ܼ௠௔௫
௅஻ = 	ܼ௠௔௫

௎஻ and the optimal solution of the

workload balancing problem is equal to	ܼ௠௔௫
௎஻ − 	ܼ௠௜௡

௎஻ .

To prove Property 3 part (a), let’s suppose that 	ܼ௠௔௫
௅஻ − 	ܼ௠௜௡

௅஻ ≠ 	ܼ௠௔௫
∗ − 	ܼ௠௜௡

∗ ⇒ 	ܼ௠௔௫
௅஻ ≠

	ܼ௠௔௫
∗ then:

1)	ܼ௠௔௫
௅஻ > 	ܼ௠௔௫

∗ which is a contradiction.

2)	ܼ௠௔௫
௅஻ < 	ܼ௠௔௫

∗ ⇒ Optimal solution of [௠ܲ௔௫
௅஻ ௛,௅஻,௠௔௫ݔ [

∗ < 	ܼ௠௜௡
∗ at least for one

value of ℎ ⇒ ݔ௛,௅஻,௠௔௫
∗ < 	ܼ௠௜௡

௅஻ at least for one value of ℎ ⇒ ݔ௅஻,௠௔௫
∗ is an optimal

solution of [௠ܲ௜௡
௅஻] which is a contradiction.

27

From (1) and (2), one may conclude that 	ܼ௠௔௫
௅஻ = 	ܼ௠௔௫

∗ (and 	ܼ௠௔௫
௅஻ − 	ܼ௠௜௡

௅஻ = 	ܼ௠௔௫
∗ −

	ܼ௠௜௡
∗). A similar proof can be presented for Property 3 part (b).

Using Property 3, Figure 4 shows the flow chart of the exact cost extended network based
BSA. At each iteration for a fixed value of	ߙ ఈܩ is checked for [2ܨ] , . If the iteration
terminates with negative result, the algorithm continues with changing LHS to ߙ	 ;
otherwise, RHS changes to	ߙ.

Figure 4 the exact cost extended network based exact BSA

28

The exact cost extended network based exact BSA can be summarized as follows:

Input	ܩ,݇, ,ܷ,ܮ ்ܹ

If 	ܼ௠௜௡
௅஻ = 	ܼ௠௜௡

௎஻ or 	ܼ௠௔௫
௅஻ = 	ܼ௠௔௫

௎஻ do

Output		ܼ݉ܽܤܮݔ − ܤܷܼ݊݅݉	 ;

 ;(ܩ) ௎=Generate Cost Expanded Networkܩ

ܵ=list of sink nodes of ܩ௎ sorted based on cost;

௤ೄ೟೚೛೛೔೙೒ݐ =	Find Stopping Node (ܵ):

Return Binary Search (ܮ,ܷ);

Where the Binary Search functions works as follows:

Binary Search (ݔܽܯ,݊݅ܯ):

If ݊݅ܯ == ;݊݅ܯ Return ݔܽܯ

ߙ = +݊݅ܯ ݔܽܯ)	 − ;2/(݊݅ܯ

ܲ=First element of the sorted sink nodes;

While ݐ> ݌௤ೄ೟೚೛೛೔೙೒+	ߙ do

 Add ݌ and all the nodes connected to ݌ to the sub graph ܩ’

If ܩ’	contains all the duty arcs of network ܩ do

 If Check-Feasibility (ܹ_ܶ	, ܩ ,ߜ’)==True do

 Binary Search (,݊݅ܯ	ߜ);

 Break;

Binary Search (ݔܽܯ ,ߜ);

29

Chapter 5

Heuristic Methods

Heuristic ideas are introduced in this section. Multiple conventional heuristic algorithms

are developed in order to find good feasible solutions and optimal solution when it is

possible for the workload balancing problem.

5.1. Conventional Heuristics

Our conventional heuristic framework consists of a pool of different algorithms based on

traditional neighborhood search ideas. The heuristic works iteratively and tires to improve

the workload difference between the schedule with maximum workload and the schedule

with minimum workload each iteration. From a feasible solution, a neighboring solution is

obtained by exchanging some duties between a pair of schedules. An initial set of feasible

schedules is required as input, which can be generated from an optimal or a feasible

solution of the minimum capacity problem. These schedules are possibly unbalanced with

respect to the difference between the maximum and the minimum workload.

At each iteration of the algorithm, a pair of schedules is selected. A neighborhood operator

looks for a neighboring solution by exchanging a set of duties between these schedules. A

neighboring solution is called improving if it decreases the workload gap between the

selected pair. The algorithm works in the following manner:

Input initial set of feasible schedules

While there is an improvement do

30

 Select a pair of schedules;

 Perform the operator on the pair;

 Update set of schedules;

Output set of schedules;

Two main parameters of the heuristic are the operator and the selection criteria; we develop

two operators and three different selection criteria.

5.1.1. Operators

The Crisscross operator works on a pair of schedules; it partitions each schedule into two

parts in such a way that first part of the first schedule is continued by second part of the

second schedule and vice versa. A feasible connection may be performed if the schedules

are partitioned through partially or completely overlapping rest periods. Therefore the

schedules remain feasible with respect to minimum and maximum home and away rest

constraints. The operator starts by finding a feasible crisscross point in schedules. The

feasible point is either a home tie-up node or an away tie-up node. To assure the feasibility

of the crisscross operation, the algorithm checks the following:

 If both schedules are at the end of a home to away/away to home trip, then after

performing the crisscross action, the rest period of both crew members should be

between minimum and maximum home/away rest periods.

 If both schedules are at the end of a home to away then the location of the away

stations in both should be the same.

For any pair of schedules there could be more than one, and indeed several possible

crisscross operations. The feasibility of crisscross operation in both schedules is ensured

while the difference between the workloads of schedules for a possible crisscross is

calculated. If the workload gap is to decreases for a possible crisscross then the change is

improving and the amount of the improvement is recorded. The operator checks all such

improving changes in the pair and performs the crisscross with best improvement. If no

such improvement is found, the crisscross operator ends without any change in the pair.

31

Figure 4 shows a pair of schedules demonstrated as paths on the network representation

with a feasible crisscross operation. The new pair of schedules is shown in Figure 5 where

schedules are generated by partitioning the schedules from rest periods (A,C) and (B,E) and

replacing them with rest periods (A,E) and (B,C).

Figure 5 Pair of schedules before Crisscross

Figure 6 Pair of schedules After Crisscross

The Swap operator replaces a pair of consecutive duties together with the corresponding

rest periods among the pair of schedules. Swap operation consists of a trip from home to an

away station, an away rest period and a trip from the away station back to home station. For

each schedule, the operator starts with the first duty in the first schedule of the pair and

searches for a duty in the second schedule of the pair partially or completely overlapping

with the first duty. The overlap depends on the home and away rest periods. If such a duty

in the second schedule is not found the operator tries with another duty from the first

schedule. As in the procedure for the crisscross operation, the swap operation with the best

improvement is selected. If there is no such improvement in workload gap the operator

terminates with initial pair of schedules kept without any change. Figure 6 shows a pair of

schedules demonstrated as paths on the network representation with duties to be swapped.

By replacing these duties, new schedules in Figure 7 are obtained.

C

D

E

F

BA

C

D

E

F

BA

32

Figure 7 Pair of schedules before Swap

Figure 8 Pair of schedules after Swap

Both crisscross and Swap operators highly depend on the characteristics and parameters of

the problem. It is possible to use these operators in any kind of transportation crew

scheduling problem for which our network representation can be used. Yet, the

performance of the operators may differ in different instances and none of each dominates

the other. In order to obtain a better local improvement, it is possible to use the operator

with a better improvement for any pair of schedules. For a selected pair, both operators are

examined and the operator with the better improvement can be performed. A Hybrid

Operator could be designed using this procedure.

5.1.2. Selection Criteria

Each iteration of the algorithm first selects a pair of schedules that might be changed at the

end of the iteration. In order to select the pair to perform the operator alternative selection

methods are used. In essence, a selection method is expected to find the pairs that are more

likely to improve the workload gap. We propose three alternative selection methods.

C

D

E

F G I

H JBA K L

C

D

E

F G I

H JBA K L

33

In Fixed List selection method, a sorted list of ݇ initial schedules in non-decreasing order

with respect to workload amount is used. The method iterates as follows:

 At the first iteration, the first (minimum-workload) and the last (maximum

workload) schedules are selected.

 The first schedule and (݇ − 1)௧௛ schedule are selected.

 The pair selection proceeds from the bottom of the list until the first and the second

schedules are selected. If no improvement is attained, the second schedule is

paired with the last one.

The algorithm continues in this fashion until the first schedule of the selected pair is in the

middle of the list.

Comparative Gap method selects pairs with respect to workload gap in any iteration. This

method works in the following fashion:

 At the first iteration, the first and the last schedules are selected as they have the

maximum workload gap.

 If the workload gap of the first and (݇ − 1)௧௛ schedules is bigger than the workload

gap of the second and the last schedules, they are selected. Next comparison should

be made between workload gap of pair of the second and the last schedules and

pair of the first and (݇ − 2)௧௛ schedule.

 If the workload gap of the second and the last schedule is bigger than the workload

gap of the first and (݇ − 1)௧௛ schedules, they are selected. Next comparison should

be made between workload gap of pair of the first and (݇ − 1)௧௛ schedules and pair

of the third and the last schedule.

The algorithm continues in this fashion until all pairs are examined.

Sorted Gap is an extension of the Comparative Gap method where pairs of schedules are

listed in a non-increasing order according to the workload gap amount. The algorithm

selects the first and the last schedule as they have the maximum gap. Then the selection

process continues using the generated list.

Static and dynamic versions of the selection methods are designed. There are particular

differences between Static and Dynamic versions of selection methods. In the static

34

version, the process continues in the predetermined iterative manner. Whereas in the

Dynamic version, if a operators manipulate the crew schedules, the crew selection

procedure starts from the very beginning with new set of crew schedules.

A pool of conventional heuristic algorithms is designed using different combinations of the

operators and selection methods.

35

Chapter 6

Computational Study

Our computational experience is conducted with two sets of problems in the context of

transportation crew scheduling. The exact mathematical programming formulation (using

CPLEX without additional cuts or inequalities) and BSA are implemented using C++ and

CPLEX Concert Technology.

6.1. Crew Scheduling Instances from Literature

Beasley and Cao (1996) proposed a set of crew scheduling instances. Each instance

consists of a depot and a set of duties to be covered by crew. Instances are represented by a

duty network, where nodes represent duties. The length of each duty (the time duration

required to perform the duty) is given. For any pair of duty nodes, there is a transition arc

with an associated transition cost ܿ if it is possible for a crew to perform these duties

consecutively. The depot is shown using one source node and one sink node. Figure 8

shows the proposed network representation.

36

Figure 9 Network representation of crew scheduling instances in Beasley and Cao (1996)

We modify these instances adding the possibility of deadheading for crew members.

Consequently, the proposed network representation is modified and deadheading arcs are

added. According to Şahin and Yüceoğlu (2011), each duty node is converted to an on-duty

node, tie-up node and a duty arc emanating from the on-duty node and ending at the tie-up

node. For each transition arc (݅, ݆) with cost of ܿ in the original network, a rest arc from the

associated tie-up node of the duty ݅ to the associated on-duty node of duty ݆ with the cost

of	ܿ is added in the modified network. In addition, a deadheading is represented by an arc

emanating from the associated tie-up node of duty ݅ to the associated tie-up node of duty ݆

with the cost of	ܿ. Figure 9 shows the modified network.

37

Figure 10 Modified network representation of crew scheduling instances in Beasley and Cao (1996)

In the tables that represent our results, the name of each instance consists of the following

fields: number of nodes, number of paths to be balanced which is the result of the

associated minimum capacity problem with the assumption that each duty requires one

crew, policy in adding source and sink nodes and whether duties have costs or not. In the

third field, “a” is used to show that source arcs emanate from the source node and end at all

on-duty nodes, and sink arcs emanate from all tie-up nodes and end at the sink node. “s” is

used to show that source arcs emanate from the source node and end at all on-duty nodes

with no other incoming arcs, and sink arcs emanate from all tie-up node with no other

outgoing arc and end at the sink node. In the fourth field, “c” is used to show that each duty

has a cost equal to the length of the duty.

The results of the exact mathematical programming formulation and BSA for these

instances are shown in Table 1. A time limit of 24 hours is imposed for the CPU time.

Despite our expectation, BSA does not dominate the exact mathematical programming

problem solution, though in some cases BSA ends with an optimal solution earlier than the

exact mathematical programming problem. CPLEX fails to solve csp80-20-s-c instance

with an “out of memory” error. In order to show the effect of using the improved interval

for BSA, results for BSA on [0,ܷ] are shown. Except two instances - csp80-20-s, csp80-

20-s-c- BSA with improved interval has better CPU time compared to BSA on [0,ܷ]

interval.

...

s

t

38

Table 2 shows results of the conventional heuristic algorithms for crew scheduling

instances. The heuristic algorithms are coded with two fields. In the first field “S” is used

for static and “D” is used for dynamic methods. In the second field, “FL” stands for fixed-

list, “CG” stands for comparative-gap and “SG” stands for sorted-gap methods. All

algorithms end in less than a second with an optimal or near optimal solution. S-FL, D-FL,

S-CG and D-CG algorithms using crisscross operator and D-FL and D-CG algorithms with

hybrid operator find the optimal solution in all instances. As a result, the crisscross operator

dominates the swap operator in all instances.

39

Table 1 Result of the exact formulation solution and BSA for crew scheduling instances in Beasley and Cao (1996)

 CPLEX

BSA

BSA [0,	ܼ௠௔௫
௎஻]

Prob. name (#Var, #Cons)
Min Total

WL Obj. 	ܼ௠௜௡ ܼ௠௔௫ Time

Obj. ܼ௠௜௡
௅஻ 					ܼ௠௜௡

௎஻ 						ܼ௠௔௫
௅஻ 	ܼ௠௔௫

௎஻ Time

Obj. Time

csp50-13-a (4760,597) 7440 993 0 993 9 s

993 0 0 993 993 14 s

993 3.11 m

csp50-13-s (3655,558) 10693 686 307 993 14 s

686 307 307 993 1190 11 s

686 1.68 m

csp50-13-a-c (16216,1169) 13838 1499 161 1660 24 s

1499 161 161 1660 1705 1.11 m

1499 15.75 h

csp50-13-s-c (5072,1091) 17304 948 712 1660 28 s

948 572 712 1660 1794 2.36 h

948 2.94 h

csp80-20-a (21456,1581) 6706 536 0 536 3.16 m

536 0 0 536 647 3.56 m

536 14.28 m

csp80-20-s (17301,1481) 8979 508 229 737 20.56 m

508 202 229 737 737 27.31 m

508 14.48 m

csp80-20-a-c (25322,2761) 16739 1160 34 1194 42.6 m

1160 34 34 1194 1299 2.25 m

1160 10.69 h

csp80-20-s-c (22642,2681) 20090 - - - -

[485.492] 512 734 1222 1401 L:24 h

488 22.14 h

csp100-20-a (29422,2241) 8841 658 0 658 6.93 m

658 0 0 658 804 2.01 h

658 5.44 h

csp100-20-s (25422,2141) 13069 669 321 990 39.15 m

669 229 321 990 990 2.81 h

669 7.3 h

csp100-20-a-c (34142,3721) 21344 - - - L:24 h

1540 34 34 1574 1672 33.45 m

- L:24 h

csp100-20-s-c (30522,3641) 26650 566 1030 1596 5.38 h

- 707 1030 1596 1805 L:24 h

- L:24 h

40

Table 2 Results of the conventional heuristic algorithms for crew scheduling instances in Beasley and Cao (1996)

Crisscross

Swap

Hybrid

Prob. Name S-FL D-FL S-CG D-CG S-SG D-SG

S-FL D-FL S-CG D-CG S-SG D-SG

D-FL D-CG D-SG

csp50-13-a 993 993 993 993 993 993

993 993 993 993 993 993

993 993 993

csp50-13-s 686 686 686 686 686 686

698 698 698 698 698 698

686 686 686

csp50-13-a-c 1499 1499 1499 1499 1499 1499

1544 1544 1544 1544 1544 1544

1499 1499 1499

csp50-13-s-c 948 948 948 948 948 948

1145 1145 1145 1145 1145 1145

948 948 948

csp80-20-a 536 536 536 536 536 536

536 536 536 536 536 536

536 536 536

csp80-20-s 508 508 508 508 508 508

535 535 535 535 535 535

508 508 508

csp80-20-a-c 1168 1168 1168 1168 1168 1168

1225 1225 1225 1225 1225 1225

1168 1168 1168

csp80-20-s-c 488 488 488 488 488 488

797 797 797 797 797 797

488 488 488

csp100-20-a 685 685 685 685 700 700

720 720 720 720 720 720

685 685 700

csp100-20-s 669 669 669 669 669 669

761 761 761 761 761 761

669 669 669

csp100-20-a-c 1540 1540 1540 1540 1540 1540

1540 1540 1540 1540 1540 1540

1540 1540 1540

csp100-20-s-c 566 566 566 566 571 577

981 981 981 981 981 981

566 566 623

41

6.2. TCDD Instances

A set of instances from Turkish State Railways (TCDD) is used. Istanbul, Ankara and

Eskisehir are three main regions of TCDD. In each of these regions, for planning period of

one week instances of WBP are generated. Table 3 shows the result for the exact

mathematical programming formulation solution and BSA. The second field in name of

instances shows the number of paths to be balanced which is the result of the associated

minimum capacity problem. A time limit of 24 hours is imposed for both algorithms. BSA

is not able to find any results in 24 hours for these instances.

Table 3 Result of the exact formulation solution and BSA for TCDD instances

Prob. Name (#Var, #Cons) Min Total WL CPU Time CPLEX BSA
Istanbul-38 (246052,23093) 1570.75 h 5.65 h 30.1 h -
Ankara-50 (180052,23263) 2660.69 h 14.98 m 60.81 h -
Eskisehr-65 (348337,37446) 3951.63 h 12.98 h 49.18 h -

Table 4 shows the results of conventional heuristic methods for TCDD instances. All

algorithms terminate with solutions which are better compared to the results of the exact

mathematical programming problem. D-FL and D-CG algorithms using hybrid operator

give the best results.

42

Table 4 Results of the conventional heuristic algorithms for TCDD instances

Crisscross

Swap

Hybrid

Prob. name S-FL D-FL S-CG D-CG S-SG D-SG

S-FL D-FL S-CG D-CG S-SG D-SG

D-FL D-CG D-SG

Istanbul-38 8.08 h 8.08 h 8.08 h 8.08 h 14.93 h 13.63 h

12.05 h 12.05 h 12.05 h 12.05 h 18.56 h 18.56 h

6.95 h 6.95 h 13.1 h

Ankara-50 25.4 h 25.4 h 25.4 h 25.4 h 38.71 h 38.71 h

31.13 h 28.01 h 31.13 h 28.01 h 41.33 h 41.33 h

14.2 h 16.15 h 33.11 h

Eskisehr-65 14.31 h 13.43 h 12.51 h 13.43 h 36.01 h 31.31 h

33.75 h 33.75 h 33.75 h 33.75 h 35.76 h 40.3 h

9.25 h 7.3 h 29.65 h

43

Chapter 7

Conclusions and Future Research

The fairness issue is a critical planning phenomenon for all type of duty scheduling and

rostering process where teams of crew members are in consideration such as railways and

airlines. We study the fairness in terms of the workload of crew members. We define WBP

as concerned with the assignment of crew members to as sequence of duties in a finite

planning horizon in such a way that the allocation of the workload among them is

acceptably fair and almost equal when possible. In order to formulate WBP, we focus on

BPP (Cappanera and Scutellà (2011)) which determines ݇ node-disjoint paths on a

weighted network. Based on the suggested network representation in Şahin and Yüceoğlu

(2011), we develop a network flow formulation of WBP ispired from the formulation of

BPP. Due to the deadheading issue in trasportation crew scheduling, the formulation of

WBP is indeed quite different from that of BBP.

We develop an exact algorithm to solve WBP based on a binary search method.

Improvements on the search interval of BSA are discussed. The feasibility check procedure

used in BSA is based on the cost expanded network of the original network. Using a

property of the cost expanded network, a feasibility problem is developed for the feasibility

check procedure. Some properties of the optimal solution of WBP are used to speed up

BSA. Moreover, a pool of conventional heuristic methods based on a neighborhood search

method is developed. Crisscross and swap operators as well as different selection criteria

lead to multiple versions of such heuristic methods. We perform a computational study

44

with well-known problem instances from crew scheduling literature and data sets that are

representative of largest crew regions in TCDD. Our computational study shows that the

proposed exact mathematical programming formulation of WBP (using CPLEX solver) is

not capable of solving WBP on large networks to optimality within reasonable

computational time. One the other hand, BSA does not dominate the exact mathematical

programming formulation. For both sets of the problem instances, conventional heuristic

methods are able to find either an optimal or a near optimal solution within a second. In

conclusion, the computational study indicates that heuristic approaches are more efficient

and effective for WBP.

For future research, we consider the fairness in terms of the allocation of different type of

duties among crew as a valuable venue. In addition, minimizing operational costs of

unbalanced allocation of different type of duties is an open research question to be studied.

From the methodological point of view, different solution approaches for WBP such as a

column generation approach etc. can be investigated.

45

Bibliography

[1] Abbink, E., Wout, J.V., Huisman, D., Solving Large Scale Crew Scheduling Problems
by Using Iterative Partitioning, In: Liebchen, C., Ahuja, R.K., Mesa, J.A. (Eds.), ATMOS
2007, (2007).

[2] Beasley, J. E. and Cao, B., A Tree Search Algorithm for the Crew Scheduling Problem,
European Journal of Operational Research, 94(3), 517–526 (1996).

[3] Bellanti, F., Carello, G., Della Croce, F., Tadei, R., A Greedy-Based Neighborhood
Search Approach to A Nurse Rostering Problem, European Journal of Operational
Research,153, 28-40 (2004).

[4] Burke, E., Cowling, P., Causmaecker, P. D., Berghe, G. V., A Memetic Approach to the
Nurse Rostering Problem, Applied Intelligence, 15, 199–214 (2001).

[5] Cappanera, P. and Scutellà, M., Balanced Paths in Acyclic Networks: Tractable Cases
and Related Approaches, Networks, 45(2), 104-111 (2005).

[6] Cappanera, P. and Scutellà, M., Color-Coding Algorithms to the Balanced Path Problem:
Computational Issues, INFORMS Journal on Computing, 23, 446-459 (2011).

[7] Chiarandini, M., Schaerf, A., Tiozzo, F., Solving Employee Timetabling Problems with
Flexible Workload using Tabu Search, In: Burke, E. and Erben, W. (Eds.), Proceedings of
PATAT 2000, (2000).

46

[8] Suyabatmaz, A. Ç. and Şahin, G., A Column-and-Row Generation Algorithm for A
Crew Planning Problem in Railways, In: Klatte, D., Lüti, H. J., Schmedders, K. (Eds.),
Proceedings of OR 2011, 335–340 (2011).

[9] Şahin, G. and Yüceoğlu, B., Tactical Crew Planning in Railways, Transportation
Research Part E: Logistics and Transportation Review, 47, 1221–1243 (2011).

