
An Ontology System for

Rehabilitation Robotics

by

Zeynep Doğmuş

August, 2013

Submitted to the Graduate School of Sabancı University

in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University

August, 2013

An Ontology System for Rehabilitation Robotics

APPROVED BY:

Assoc. Prof. Dr. Esra Erdem
(Thesis Advisor) ..

Assoc. Prof. Dr. Volkan Patoğlu
(Thesis Advisor) ..

Prof. Dr. Kemal İnan ..

Assoc. Prof. Dr. Albert Levi ..

Asst. Prof. Dr. Hüsnü Yenigün ..

DATE OF APPROVAL: ..

c© Zeynep Doğmuş, 2013

All Rights Reserved

An Ontology System for Rehabilitation Robotics

Zeynep Doğmuş

CS, Master of Science, 2013

Thesis Supervisors: Assoc. Prof. Esra Erdem, Assoc. Prof. Volkan Patoğlu

Keywords: rehabilitation robotics, ontology development, query answering

Abstract

Representing the available information about rehabilitation robots in a
structured form, like ontologies, facilitates access to various kinds of infor-
mation about the existing robots, and thus it is important both from the
point of view of rehabilitation robotics and from the point of view of physi-
cal medicine. Rehabilitation robotics researchers can learn various properties
of the existing robots and access to the related publications to further im-
prove the state-of-the-art. Physical medicine experts can find information
about rehabilitation robots and related publications (possibly including re-
sults of clinical studies) to better identify the right robot for a particular
therapy or patient population. Therefore, considering also the advantages of
ontologies and ontological reasoning, such as interoperability of various het-
erogenous knowledge resources (e.g., patient databases or disease ontologies),
such an ontology provides the underlying mechanisms for translational phys-
ical medicine, from bench-to-bed and back, and personalized rehabilitation
robotics.

In this thesis, we introduce the first formal rehabilitation robotics on-
tology, called RehabRobo-Onto, to represent information about reha-
bilitation robots and their properties. We have designed and developed
RehabRobo-Onto in OWL, collaborating with experts in robotics and
in physical medicine. We have also built a software (called RehabRobo-
Query) with an easy-to-use intelligent user-interface that allows robot de-
signers to add/modify information about their rehabilitation robots to/from
RehabRobo-Onto. With RehabRobo-Query, the experts do not need
to know about the logic-based ontology languages, or have experience with
the existing Semantic Web technologies or logic-based ontological reason-
ers. RehabRobo-Query is made available on the cloud, utilizing Amazon
Web services, so that rehabilitation robot designers around the world can

iv

add/modify information about their robots in RehabRobo-Onto, and re-
habilitation robot designers and physical medicine experts around the world
can access the knowledge in RehabRobo-Onto by means of questions
about robots, in natural language, with the guide of the intelligent user-
interface of RehabRobo-Query.

The ontology system consisting of RehabRobo-Onto and RehabRobo-
Query is of great value to robot designers as well as physical therapists and
medical doctors. On the one hand, robot designers can access various proper-
ties of the existing robots and to the related publications to further improve
the state-of-the-art. On the other hand, physical therapists and medical doc-
tors can utilize the ontology to compare rehabilitation robots and to identify
the ones that serve best to cover their needs, or to evaluate the effects of var-
ious devices for targeted joint exercises on patients with specific disorders.

v

Rehabilitasyon Robotları için Bir Ontoloji Sistemi

Zeynep Doğmuş

CS, Yüksek Lisans Tezi, 2013

Tez Danışmanları: Doç. Dr. Esra Erdem, Doç. Dr. Volkan Patoğlu

Anahtar Kelimeler: rehabilitasyon robotları, ontoloji geliştirme, sorgu

cevaplama

Özet

Rehabilitasyon robotları ile ilgili bilgilerin yapısal olarak; örneğin ontoloji-
ler ile gösterimi, mevcut robotlar hakkında bilgilere erişime olanak vermekte,
hem rehabilitasyon robotları hem de fizik tedavi açısından önem arz etmek-
tedir. Rehabilitasyon robot bilimi araştırmacıları mevcut robotların çeşitli
özelliklerini öğrenebilir ve ilgili yayınlara erişerek mevcut teknikleri gelişti-
rebilir. Fizik tedavi uzmanları ise rehabilitasyon robotlarıyla ilgili bilgilere
ve klinik çalışmaların sonuçlarını da içerebilen yayınlara erişebilir, bu sayede
belirli bir terapi veya hasta popülasyonu için uygun robotu belirleyebilir.
Bundan dolayı, ontolojilerin ve ontolojik akıl yürütmenin çeşitli heterojen
bilgi kaynakları (hasta veri tabanları veya hastalık ontolojileri) için birlikte
işlerlik gibi avantajları da ele alındığında, böyle bir ontoloji, dönüşümsel fi-
zik tedavi ve kişiselleştirilmiş rehabilitasyon robot bilimi için temel yöntemler
sağlamaktadır.

Bu tezde, rehabilitasyon robotları ve robotların özellikleri hakkında bil-
gileri gösterebilmek amacıyla yaratılan ilk biçimsel rehabilitasyon robotları
ontolojisi (RehabRobo-Onto) sunulmaktadır. RehabRobo-Onto, robo-
tik ve fizik tedavi uzmanları ile işbirliği içerisinde, OWL ontoloji dili ile ta-
sarlanmış ve geliştirilmiştir. Aynı zamanda, RehabRobo-Query adında,
kullanımı kolay, akıllı bir kullanıcı arayüzüne sahip bir yazılım geliştirilmiş-
tir. RehabRobo-Query, robot tasarımcılarının RehabRobo-Onto’ya re-
habilitasyon robotları hakkında bilgi ekleyebilmelerine ve bu bilgileri gün-
celleyebilmelerine olanak vermektedir. RehabRobo-Query ile, uzmanların
mantık tabanlı ontoloji dillerini bilmelerine, anlamsal ağ teknolojileri ya da
mantık tabanlı ontolojik akıl yürütücüleri ile ilgili deneyim sahibi olmalarına

vi

gerek kalmamaktadır. RehabRobo-Query, Amazon Web hizmetleri kul-
lanılarak internet üzerinden erişilebilir hale getirilmiştir. Böylece, dünya ça-
pındaki rehabilitasyon robotu tasarımcıları RehabRobo-Onto’ya robotları
hakkında bilgi ekleyebilir ve bu bilgileri güncelleyebilirler, ve dünya çapındaki
rehabilitasyon robotu tasarımcıları ve fizik tedavi uzmanları RehabRobo-
Onto içerisindeki bilgiye robotlar hakkında doğal dilde sorular aracılığıyla,
RehabRobo-Query’nin rehberliği ile erişebilirler.

RehabRobo-Onto ve RehabRobo-Query’den oluşan ontoloji sistemi,
robot tasarımcıları için olduğu kadar fizyoterapistler ve tıp doktorları için de
büyük öneme sahiptir. Bir taraftan, robot tasarımcıları mevcut robotların çe-
şitli özelliklerine ve ilgili yayınlara erişebilir, mevcut teknikleri geliştirebilir-
ler. Diğer taraftan, fizyoterapistler ve tıp doktorları rehabilitasyon robotlarını
mukayese etmek ve ihtiyaçları için en uygun olan robotları saptamak, veya
belirli hastalıklara sahip hastalar üzerindeki hedeflenmiş eklem egzersizlerini
gerçekleştiren çeşitli cihazların etkilerini değerlendirmek için bu ontolojiyi
kullanabilirler.

vii

Acknowledgements

First and foremost I would like to thank my thesis advisors Assoc. Prof.

Esra Erdem and Assoc. Prof. Volkan Patoğlu for their invaluable guidance

and support throughout this thesis. I would also like to express my regards

to the jury members, Prof. Kemal İnan, Assoc. Prof. Albert Levi, and Asst.

Prof. Hüsnü Yenigün for their time and feedback.

I would like to thank my friends and colleagues, including Zeynep Gözen

Sarıbatur, Giray Havur, Ahmetcan Erdoğan, Gizem Gezici, Peter Schüller

and Erdi Aker, for useful discussions. I am also grateful to Ayça Tekiner,

İpek Özdemir and Bahriye Karakaş for their friendship and for making the

laboratory enjoyable.

My special thanks are due to Ozan Tokatlı, for being the source of in-

spiration and motivation throughout my time at Sabancı University. I am

grateful to him for enriching my life, and empowering me to complete this

thesis with his encouragement and support. My graduate years would not

be same without him.

Finally, I am pleased to thank my dearest parents Cangül and Cebrail

Doğmuş, for their unconditional love and infinite support throughout my

life.

This thesis was partially supported by the Scientific and Technological Re-

search Council of Turkey (TÜBİTAK) under grants 111E116 and 111M186,

and by Sabancı University under IRP Grant IACF09-00643.

viii

Contents

1 Introduction 1

1.1 Outline . 4

2 Preliminaries 5

2.1 Ontologies . 5

2.2 Representing Ontologies in RDF(S) 8

2.3 Query Answering over RDF(S) Graphs 12

2.4 Representing Ontologies in Description Logics 19

2.5 RDF(S) vs. DLs . 23

2.6 Web Ontology Language (OWL) 25

2.7 Pellet: A DL Reasoner . 26

2.8 Protégé: An Ontology Editor 29

2.9 Jena: An Ontology Management Framework 29

2.10 Discussion . 30

3 RehabRobo-Onto 33

3.1 Design of RehabRobo-Onto 34

3.2 Development of RehabRobo-Onto 39

3.3 Maintaining RehabRobo-Onto 42

3.4 Overall System Architecture 52

3.5 RehabRobo-Onto on the Cloud 57

4 RehabRobo-Query 60

4.1 RehabRobo-CNL . 63

4.2 Transforming a Query in RehabRobo-CNL to a SPARQL

Query . 70

ix

4.3 Answering Queries Using Pellet 81

4.4 Intelligent User Interface for RehabRobo-Query 84

5 Interoperability of RehabRobo-Onto 89

5.1 Integration with FMA . 90

5.2 Integration with DO . 97

5.3 On Extending RehabRobo-Query 102

5.4 Integration of RehabRobo-Onto with Patient Data 105

6 Related Work 113

6.1 Ontologies and Robots . 113

6.1.1 Ontologies for Robots 113

6.1.2 Ontologies about Robots 114

6.1.3 Standardization of Rehabilitation Robots 115

6.2 Ontology Systems that Support Natural Language Queries . . 116

7 Conclusion 119

Appendix A Transformations of Sample Queries 122

Appendix B Example Queries over FMA and RehabRobo-Onto135

Appendix C Example Queries over DO and RehabRobo-Onto139

x

List of Figures

2.1 Example Ontology. 6

2.2 Class hierarchy in an RDF(S) knowledge base. 11

2.3 Specifying domain and range of a relation in an RDF(S) knowl-

edge base. 12

2.4 Example Knowledge Base in DL. 21

3.1 RehabRobo-Onto with main classes. 35

3.2 Hierarchy of lower extremity rehabilitation robots. 37

3.3 Hierarchy of lower extremity joint movements targeted by re-

habilitation robots. 37

3.4 Hierarchy of Assessments. 38

3.5 Declaring disjoint classes in Protégé. 40

3.6 Declaring ownedBy relation in Protégé. 41

3.7 Restricting range of has_Year in Protégé. 41

3.8 Adding a new robot to RehabRobo-Onto. 44

3.9 Warning for an existing robot with available options. 45

3.10 Adding to RehabRobo-Onto general information about the

rehabilitation robot AssistOn-Wrist. 45

3.11 Adding to RehabRobo-Onto kinematic properties of the

rehabilitation robot AssistOn-Wrist. 46

3.12 Adding to RehabRobo-Onto targeted joints of the rehabil-

itation robot AssistOn-Wrist. 46

3.13 Adding to RehabRobo-Onto a targeted joint (wrist) of the

rehabilitation robot AssistOn-Wrist, from a pop-up window. 47

3.14 Adding to RehabRobo-Onto power transmissions of the re-

habilitation robot AssistOn-Wrist. 47

xi

3.15 Adding to RehabRobo-Onto power transmissions of a tar-

geted joint (wrist), from a pop-up window. 48

3.16 Adding to RehabRobo-Onto assessments of the rehabilita-

tion robot AssistOn-Wrist. 48

3.17 Adding to RehabRobo-Onto related publications of the re-

habilitation robot AssistOn-Wrist. 49

3.18 Robots that are owned/mainted by a particular user. 51

3.19 An overview of RehabRobo-Query. 52

3.20 Work flow of addition. 57

3.21 Data flow of addition. 58

3.22 Main work flow, including login. 59

4.1 Tree representation of the sample query. 71

4.2 Consistency check for RehabRobo-Onto. 84

4.3 Explanation generation with Pellet. 85

4.4 Constructing Q1 (1). 86

4.5 Constructing Q1 (2). 87

4.6 Answer to Q1. 88

5.1 Hierarchy and integration of concepts for FMA1. 93

5.2 Importing ontologies and adding SWRL rules to answer FMA1. 94

5.3 Answer to FMA1. 95

5.4 Hierarchy and integration of concepts for FMA2. 96

5.5 SWRL rules to answer FMA2. 96

5.6 Defining a new concept with SWRL. 97

5.7 Answer to FMA2. 98

5.8 Hierarchy and integration of concepts for FMA3. 99

5.9 SWRL rules to answer FMA3. 99

xii

5.10 Answer to FMA3. 100

5.11 Hierarchy and integration of concepts for DO1. 101

5.12 SWRL rule to answer DO1. 101

5.13 Answer to DO1. 102

5.14 Hierarchy and integration of concepts for DO2. 103

5.15 SWRL rule to answer DO2. 103

5.16 Answer to DO2. 104

5.17 Hierarchy and integration of concepts for DO3. 105

5.18 SWRL rule to answer DO3. 105

5.19 Answer to DO3. 106

5.20 Patient ontology with main classes. 107

5.21 SWRL rules over patient ontology and RehabRobo-Onto. . 108

A.1 Transformation for Q1 . 123

A.2 Transformation for Q2 . 124

A.3 Transformation for Q3 . 125

A.4 Transformation for Q4 . 126

A.5 Transformation for Q5 . 127

A.6 Transformation for Q6 . 128

A.7 Transformation for Q7 . 129

A.8 Transformation for Q8 . 130

A.9 Transformation for Q9 . 131

A.10 Transformation for Q10 . 132

A.11 Transformation for Q11 . 133

A.12 Transformation for Q12 . 134

xiii

List of Tables

2.1 Reasoners . 8

2.2 Ontology Management Frameworks 9

2.3 A fragment of the SPARQL grammar. 13

2.4 Extensions to ALC . 23

2.5 DL Reasoners . 27

4.1 Sample Queries in RehabRobo-CNL 61

4.2 The Grammar of RehabRobo-CNL 64

4.3 The Ontology Functions . 65

4.4 Verbs that can occur after the nouns 66

4.5 Types that can occur after the verbs 67

4.6 Instances that can occur after the types 67

4.7 Nouns that can occur after the types 68

4.8 Values that can occur after the nouns 69

4.9 DL to SPARQL Transformation Examples 80

4.10 Answers for the query types 88

xiv

Chapter 1

1 Introduction

As the number of rehabilitation robots increase, the information about them

also increases, but most of the time in unstructured forms (e.g., as text in

publications), which make it harder to access the requested knowledge (e.g.,

the flexion/extension range of motion (RoM) of AssistOn-SE [76]) and

thus automatically reason about it (e.g., finding the rehabilitation robots

that target shoulder movements and also have at least 210◦ RoM for the

flexion/extension movements of the shoulder).

Also, due to interdisciplinary nature of rehabilitation robotics, sometimes

requested knowledge requires integration of further knowledge from related

disciplines (e.g., physical medicine). Consider, for instance, finding rehabil-

itation robots that can be used to treat a patient with rotator cuff lesions.

For that, we need to know that rotator cuffs are muscle units for moving

the shoulder, and that, for patients with rotator cuff lesions, abduction and

flexion movements of the shoulder should not have more than 90◦ RoM. Then

we can look for relevant rehabilitation robots.

On the other hand, there are efforts, e.g., by European Network on

Robotics for Neurorehabilitation1, for standardizing terminology as well as

assessment measures for rehabilitation robots. Given the growing number of
1http://www.rehabilitationrobotics.eu/

different approaches introduced by various research groups and the variabil-

ity of results available, the development of such a standardization would be

a critical step forward in the field, helping robotic rehabilitation technology

become widely understood and accepted as a useful tool.

Motivated by these challenges and efforts, we have designed and developed

the first formal rehabilitation robotics ontology, called RehabRobo-Onto.

RehabRobo-Onto represents knowledge about rehabilitation robotics in a

structured form, and allows automated reasoning about this knowledge. It is

open-source and available on the cloud via Amazon Web Services (in partic-

ular, Amazon Elastic Compute Cloud)2 so that every rehabilitation robotics

researcher can easily add information about his/her robot to it, and every

rehabilitation robotics researcher and every physical medicine expert can

access information about all available rehabilitation robots. RehabRobo-

Onto has been designed in a way that enables integration with other medical

ontologies, such as ontologies that capture rehabilitation protocols, patient

data and disorder details. Considering the standards of World Wide Web

Consortium (W3C), RehabRobo-Onto is represented in OWL (Web On-

tology Language) [4, 34].

To facilitate such modifications and uses of RehabRobo-Onto, we have

also developed a Web-based software (called RehabRobo-Query)3 with an

intelligent user-interface. In this way, experts do not need to know the un-

derlying logic-based representation languages of ontologies, like OWL, or Se-

mantic Web technologies, for information entry, retrieval and modification.

RehabRobo-Query also utilizes Amazon Web Services for cloud comput-

ing.
2http://aws.amazon.com/ec2/
3http://hmi.sabanciuniv.edu/?page_id=781

2

Since RehabRobo-Onto is publicly available, both rehabilitation robotics

experts and physical medicine experts can ask queries over it. To query over

ontologies, queries should be represented using formal query languages, such

as SPARQL. However, the experts, who can benefit from this ontology by

means of asking queries, may lack the knowledge of such formal query lan-

guages. Thus, we need to enable users to represent queries in a simpler

language. For that, we have developed a controlled natural language for

rehabilitation robots, called RehabRobo-CNL. In addition, we have de-

veloped an intelligent user interface (in RehabRobo-Query) that allows

experts to enter natural language queries about the existing robots and get

the answers in an understandable form, without having to know about the

logical formalism of the ontology or the formalism to represent queries. Fur-

thermore, the experts do not have to know about the use of the technologies

for computing answers to their questions about rehabilitation robots. By

means of such queries over RehabRobo-Onto, right rehabilitation robots

for a particular patient or a physical therapy can be found or designed; this

further paves the way for translational physical medicine (from bench-to-bed

and back) and personalized physical medicine.

The ontology system consisting of RehabRobo-Onto and RehabRobo-

Query is of great value to robot designers as well as physical therapists and

medical doctors. On the one hand, robot designers can benefit from the

system, for instance, to identify robotic devices targeting similar therapeu-

tic exercises or to determine systems using a particular kind of actuation-

transmission pair to achieve a range of motion that exceeds some threshold.

Availability of such information may help inspire new designs or may lead to

a better decision making process. The ontology can also be utilized to group

3

similar robots by quantifiable characteristics and to establish benchmarks for

system comparisons. Overall, an ontology designed to specifically meet the

expectations of the overall rehabilitation robotics effort has the potential to

become an indispensable tool that helps in the development, testing, and

certification of rehabilitation robots. On the other hand, physical therapists

and medical doctors can utilize the ontology to compare rehabilitation robots

and to identify the ones that serve best to cover their needs, or to evaluate

the effects of various devices for targeted joint exercises on patients with

specific disorders.

It is important to emphasize that the ontology RehabRobo-Onto and

the tool RehabRobo-Query introduced in this thesis have been developed

to initiate efforts in utilizing ontological technologies for the field of rehabil-

itation robotics. Therefore, by making RehabRobo-Onto available open-

source via RehabRobo-Query, it is our intention to continually update

and enhance capabilities of these tools according to the feedback provided

by the community.

1.1 Outline

The rest of the thesis is organized as follows. In Chapter 2, we introduce

some preliminaries for this thesis. We briefly introduce ontologies, RDF(S)

and Description Logic (DL). Next, we present the first formal rehabilitation

robotics ontology, RehabRobo-Onto in Chapter 3. Then, in Chapter 4,

we describe the software system RehabRobo-Query. After discussing the

interoperability of RehabRobo-Onto in Chapter 5, we provide in Chapter

6 the related work. We conclude the thesis in Chapter 7 with a summary of

our contributions and a discussion of possible future work.

4

Chapter 2

2 Preliminaries

In this chapter, we introduce some preliminaries for this thesis. We first give

an overview on ontologies. Then, we briefly introduce Resource Description

Framework (RDF) and RDF Schema (RDFS), with examples. After that we

give a short overview on SPARQL, a query language for RDFS knowledge

bases. Next, we describe Description Logics by providing a basic knowledge of

a simple Description Logic, and covering some reasoning tasks and reasoners.

Finally, we briefly introduce the semantic web technologies that we utilize in

this thesis.

2.1 Ontologies

Ontologies (like databases) are formal frameworks for representing knowledge

in a structured form, to aid access to relevant parts of the knowledge and au-

tomate reasoning over it. An ontology can be viewed as a graph where nodes

denote concepts (e.g., rehabilitation robots, joint movements) and the edges

between the nodes denote relations between the corresponding concepts. For

instance, as shown in Figure 2.1, an edge from a node that denotes “Upper

Extremity Rehabilitation Robots” to a node that denotes “Rehabilitation

Robots” may characterize the “is-a” hierarchy relation; whereas an edge from

5

a node that denotes “Rehabilitation Robots” to a node that denotes “Joint

Movements” may characterize “targets” relation.

Joint MovementsRehabilitation Robots
targets

Upper Extremity
Rehabilitation Robots

is-a

Figure 2.1: Example Ontology.

Due to their flexible graph-like structure, ontologies (unlike databases)

allow representation of incomplete knowledge, can easily be extended by new

information (e.g., with new sorts/features of rehabilitation robots).

Due to their formal representations, ontologies developed by different

parties at different locations can be integrated, and reasoning (e.g., query

answering) can be automated over concepts and their relations represented

in these ontologies. Therefore, it is not surprising that more and more

knowledge-intensive systems (including Semantic Web [10] that is planned

to provide automated services to Web by giving meaning to concepts) rely

on ontologies to enable content-based access, interoperability, and communi-

cation across the Web.

There are several formalisms to represent an ontology. One of them is Re-

source Description Framework (RDF). It relies on a data model of a directed

labeled graph, called RDF graph. Each edge in an RDF graph corresponds

to an RDF triple: <subject, predicate, object>. For instance, to represent

“targets” relation in an RDF graph, we may add an edge with label “targets”,

from “Rehabilitation Robots” to “Joint Movements”. This edge corresponds

6

to a triple whose subject is “Rehabilitation Robots”, predicate is “targets”

and object is “Joint Movements”. Therefore, it is possible to describe an

RDF graph by its edges, which results in a set of triples.

Another way to represent an ontology is using one of the languages in the

family of Description Logics (DLs). A DL knowledge base consists of logical

statements. Logical statements include concept descriptions, which are built

using atomic concepts and relations, with the use of logical constructors

(e.g., Boolean, existential restriction and value restriction constructors) as

well as assertions. For instance, we may describe ShoulderRobots concept

by adding the following statement to our DL knowledge base:

ShoulderRobots ≡

RehabilitationRobots u ∃targets.ShoulderMovements

We may also assert that a rehabilitation robot whose name is AssistOn-

Arm is a shoulder robot. Then, it can be inferred that AssistOn-Arm is a

rehabilitation robot which targets some shoulder movements.

There are several ontology editors available to represent and manipulate

ontologies. One of them is Protégé [28], which supports developing on-

tologies in different formats. It is easy to use since it provides a graphical

user interface for designing ontologies. Protégé supports DL reasoners such

as Pellet [67], HermiT [66] and FaCT++ [71] to check the ontology for

consistency and to answer queries. With these reasoners, we can ensure that

our ontologies are meaningful and correct.

To query and reason over ontologies, many query engines and reasoners

have been developed. The reasoners are able to infer implicit knowledge

from a set of asserted facts and axioms. With reasoners, we can also ensure

that the ontologies that we developed are logically consistent, so that we

7

can query over our ontology. Some of the reasoners are shown in Table 2.1.

There are also some frameworks that can store and manipulate ontologies

while providing support for reasoners. They are listed in Table 2.2.

Table 2.1: Reasoners

Reasoner Language support
BaseVISor [49] RDF, OWL 2 RL
Bossam [36] RDF, OWL DL
FaCT++ [71] OWL DL, OWL 2 DL
HermiT [66] OWL 2 DL
Hoolet4 OWL DL
KAON2 [51] OWL DL, SWRL, F-Logic
Pellet [67] OWL DL, OWL 2 DL
RacerPro [30] OWL DL

In this thesis, we use the ontology language OWL 2 DL, the reasoner

Pellet, and the framework Jena. In the following sections, we give further

details about them.

2.2 Representing Ontologies in RDF(S)

Resource Description Framework (RDF) relies on a data model of a directed

labeled graph, called RDF graph. Each edge in an RDF graph corresponds

to an RDF triple:

subject predicate object.

For instance, to represent “targets” relation in an RDF graph, we may add

an edge with label “targets”, from “Rehabilitation Robots” to “Joint Move-

ments”. This edge corresponds to a triple whose subject is “Rehabilitation

Robots”, predicate is “targets” and object is “Joint Movements”. Therefore,
4http://owl.man.ac.uk/hoolet/

8

it is possible to describe an RDF graph by its edges, which results in a set of

triples.

Nodes in an RDF graph can be URIs, literals or blank nodes. A Uniform

Resource Identifier (URI) identifies a concept or an instance on the Web.

Concepts can be regarded as sets of instances. For instance, a “Rehabilitation

Robot” concept denotes a set of rehabilitation robots, whereas the instance

“AssistOn-Wrist” denotes an individual rehabilitation robot. There may exist

multiple URIs to identify the same concept or instance. A URI does not have

to physically correspond to a Web address. For instance, the rehabilitation

robot AssistOn-Wrist may be identified using the URI:

http://en.wikipedia.org/wiki/AssistOn-Wrist

It may also be possible to identify AssistOn-Wrist using the URI:

http://www.myresources.com/AssistOn-Wrist

Table 2.2: Ontology Management Frameworks

Framework Language Support Reasoner Support∗

AllegroGraph5 RDF, RDFS, OWL (limited) Default
Euler6 OWL, RDF Default
Jena [50] RDF, RDF(S), OWL Default, Pellet
OWL API [32] OWL 2, RDF (limited) Default, HermiT, Pellet, FaCT++
Redland [8] RDF Default
Sesame [2] RDF, OWL (limited) Default
Virtuoso [22] RDF, OWL (limited) Default

∗If the framework provides its own generic reasoner, it is stated as “default”.

Literals represent values, such as 15 or “Sabancı University” which have

Integer and String types, respectively. A blank node represents a concept or

instance having an unknown URI.

Consider a knowledge base about rehabilitation robots. With RDF, we
5http://www.franz.com/agraph/allegrograph/
6http://eulersharp.sourceforge.net/

9

want to specify rehabilitation robots, targeted joint movements, and their

relations. Assume that the concepts and instances use the same namespace

for their URIs and we abbreviate it using rkb, that stands for rehabilitation

robot knowledge base at http://rehabrobotkb.com/. With the relation

targets, we can say that AssistOn-Wrist targets WristFlexion/Extension

joint movement:

rkb:AssistOn-Wrist rkb:targets rkb:WristFlexion/Extension.

Although we intuitively know that AssistOn-Wrist is a rehabilitation

robot and wrist flexion/extension is a joint movement, we cannot represent

them with RDF. In other words, we can represent instances and their re-

lations with RDF but we cannot state that one instance is in the set of a

concept. For that, we need terminological/schema knowledge.

RDF Schema (RDFS or RDF(S)) is a W3C RDF recommendation which

provides generic constructs to represent schema knowledge. An RDF(S) doc-

ument is also a well-formed RDF document because RDF(S) statements are

simply RDF triples. Therefore, the tools that support RDF can read and

process RDF(S) documents. According to the formal ontology terminology

in RDF(S), concepts are called classes. With RDF(S), it is possible to repre-

sent classes and specify instances of classes using the predicates rdfs:Class

and rdf:type. We can characterize RehabilitationRobots as a class and

AssistOn-Wrist as its instance with the following triples:

rkb:RehabilitationRobots rdf:type rdfs:Class.

rkb:AssistOn-Wrist rdf:type rkb:RehabilitationRobots.

Assume that we have one more class, WristRobots, in our knowledge

base. Since AssistOn-Wrist is both a wrist robot and a rehabilitation robot,

we have to add one more triple indicating that AssistOn-Wrist is a wrist

10

robot as well:

rkb:WristRobots rdf:type rdfs:Class.

rkb:AssistOn-Wrist rdf:type rkb:WristRobots.

RDF(S) prevents these kinds of repetitions by supporting class hierarchies.

With the predicate rdfs:subClassOf (Figure 2.2), we can say that every

wrist robot is also a rehabilitation robot:

rkb:WristRobots rdfs:subClassOf rkb:RehabilitationRobots.

rkb:Wrist Flexion/Extensionrkb:AssistOn-Wrist
rkb:targets

rkb:Rehabilitation Robots

rkb:Wrist Robots
rdf:type

rdfs:subClassOf

Figure 2.2: Class hierarchy in an RDF(S) knowledge base.

It is also possible to specify hierarchies for relations in the ontology.

There is no need to declare that AssistOn-Wrist is a rehabilitation

robot and WristFlexion/Extension is a joint movement if the domain

and the range of targets relation are known. RDF(S) provides predicates

rdfs:domain and rdfs:range (Figure 2.3) to represent the domain and the

range of a relation:

rkb:targets rdfs:domain rkb:RehabilitationRobots.

rkb:targets rdfs:range rkb:JointMovements.

Our final knowledge base consists of the following triples:

rkb:targets rdfs:domain rkb:RehabilitationRobots.

rkb:targets rdfs:range rkb:JointMovements.

11

rkb:Wrist Flexion/Extensionrkb:AssistOn-Wrist
rkb:targets

rkb:RehabilitationRobots rkb:JointMovements

rdfs:domain rdfs:range

Figure 2.3: Specifying domain and range of a relation in an RDF(S) knowl-
edge base.

rkb:AssistOn-Wrist rkb:targets rkb:WristFlexion/Extension.

rkb:AssistOn-Wrist rdf:type rkb:WristRobots.

rkb:WristRobots rdfs:subClassOf rkb:RehabilitationRobots.

2.3 Query Answering over RDF(S) Graphs

The SPARQL Protocol and RDF Query Language (SPARQL) [58] is a query

language that can be used for querying ontologies in RDF(S). A SPARQL

query starts with a SELECT clause to specify the variables to appear in the

result, and continues with a WHERE clause that specifies what to query for

in an RDF(S) graph.

We introduce the syntax of SPARQL briefly by presenting a fragment of

the SPARQL grammar in Table 2.3. Full syntax of SPARQL can be found

in [58]. The queries in SPARQL are formed as follows: A SPARQL query

starts with an optional prefix declaration (PrefixDecl) which abbreviates

the namespace of a knowledge base. Then, in SelectQuery, we specify the

variables that we want to see in the results. It is possible to eliminate du-

plicate results with DISTINCT keyword. After that, the graph patterns

(abbreviated as GP) that need to be matched in the RDF(S) graph are spec-

12

ified in WhereClause. They are represented with triples (TriplesBlock),

or with expresssions (GPNotTriples) constructed by combining triples using

the operators UNION or FILTER.

Table 2.3: A fragment of the SPARQL grammar.

Query::= PrefixDecl* SelectQuery
PrefixDecl::= PREFIX PrefixName : < Namespace >
SelectQuery::= SELECT (DISTINCT)? (Var+ | ’*’) WhereClause
WhereClause::= WHERE? GroupGP
GroupGP::= ’{’ TriplesBlock? ((UnionGP | Filter) .?

TriplesBlock?)* ’}’
Filter::= FILTER? Constraint
Constraint::= BrackettedExpression | NotExistsFunc
NotExistsFunc::= NOT EXISTS GroupGP

We now describe the syntax and semantics of the simple graph patterns.

Let I, L, and V be disjoint infinite sets, denoting URIs, literals, and variables,

respectively. Then, the tuple t ∈ (I∪L∪V)× (I∪V)× (I∪L∪V) is called a

triple pattern, and var(t) denotes the set of variables that occur in t. A simple

graph pattern is a finite set of triple patterns; then, var(P) =
⋃

t∈P var(t) is

the set of variables that occur in a simple graph pattern P .

Let µ : V → I ∪L be a partial function that maps variables in V to URIs

and literals. The set of variables that are mapped to URIs and literals via µ is

called the domain of µ, and denoted by dom(µ). Mapping of the variables in

a triple pattern t with µ results in a new triple µ(t), where var(t) ⊆ dom(µ).

Thus, µ(P) is the resulting set of triples obtained by applying µ on a simple

graph pattern P , where dom(µ) consists of the variables in var(P).

It is possible to obtain complex expressions from a number of simple graph

patterns, and represent them with SPARQL. In this thesis, we consider the

binary operators And, Union and Filter to construct such expressions. We

13

use a dot sign as a substitute for And. If the expressions (G1 . G2) and (G1

Union G2) are constructed with simple graph patterns G1 and G2, then these

expressions are graph patterns. Similarly, if the expression (G Filter C) is

constructed with a simple graph pattern G and a value constraint C, then

this expression is also a graph pattern. We consider the value constraints

that are constructed using an element of the set V , an equality or inequality

symbol, and a constant.

To give the semantics of the binary operators And, Union and Filter, we

first define compatible mappings and then define required algebra operators.

Two mappings µ1, µ2 are compatibles if µ1(v) = µ2(v) for every variable

v ∈ dom(µ1) ∩ dom(µ2). Therefore, compatible mappings must agree on

their shared variables. For instance, mappings of disjoint domains are always

compatible.

Let M1 and M2 be sets of mappings. We define algebra operator Join,

that extends mappings in M1 with the mappings in M2, as follows.

M1 ./ M2 = {µ1 ∪ µ2 | µ1 ∈M1 and µ2 ∈M2 are compatible mappings}

We define algebra operator Union, that gets the union of the mappings in

M1 and the mappings in M2, as follows.

M1 ∪M2 = {µ | µ ∈M1 or µ ∈M2}

The binary operators And, Union and Filter are evaluated as follows.

Let G be an RDF graph, C a value constraint, and P1, P2 graph patterns.

Then we recursively define

JP1 . P2KG = JP1KG ./ JP2KG
JP1 UNION P2KG = JP1KG ∪ JP2KG
JP FILTER CKG = {µ ∈ JP KG | µ |= C}

where the base case is the simple graph pattern evaluation, described

14

above.

We also consider NOT EXISTS in SPARQL queries. It is evaluated in the

satisfiability check of a filter expression, and defined as follows. Let G be an

RDF graph, µ a mapping, and P a graph pattern. Then, µ |= NOT EXISTS(P)

iff Jµ(P)KG is an empty set.

Further information about the semantics of SPARQL, and the complexity

of evaluating graph patterns that can contain several operators, can be found

in [17] and in [57].

We now give some examples of queries over the knowledge base in Sec-

tion 2.2 and the SPARQL representations of these queries. Consider the

following query.

“What are the robots that target WristFlexion/Extension?”

The SPARQL query that corresponds to this query consists of PREFIX,

SELECT and WHERE parts. In PREFIX part, we declare the namespace

of our ontology. We assumed that the namespace of rehabitation robotics

ontology is http://rehabrobotkb.com/. In SELECT part, we specify the

variable “robot” to be appeared in the result. Variables are characterized

with the special symbol ’?’ at the beginning of their names. In WHERE

part, we specify the condition that must be met: The robot that we want

must target WristFlexion/Extension movement. The SPARQL query is as

follows.

PREFIX rkb: <http://rehabrobotkb.com/>

SELECT DISTINCT ?robot

WHERE {

?robot rkb:targets rkb:WristFlexion/Extension.

}

15

The first step to compute a SPARQL query involves translations into

SPARQL algebra. Each expression that can be constructed with SPARQL

has a direct transformation to SPARQL algebra. To express the (possibly

complex) graph patterns in the queries, SPARQL algebra uses some oper-

ators such as BGP, Join, or Union, corresponding to basic graph pattern,

conjunctions and disjunctions, respectively. Since our query consists of one

triple pattern, its transformation into SPARQL algebra is as follows.

BGP(?robot rkb:targets rkb:WristFlexion/Extension.)

With the mapping µ introduced earlier in this chapter, it is possible to assign

variables to URIs or literals in the RDF(S) graph. Then, a solution for a basic

graph pattern expression is found by applying the partial function µ. This

is the basic evaluation method to find an answer to a SPARQL query. With

this method, it is possible to answer more complex queries. For instance,

an expression with the operator Union is evaluated by applying µ to each

expression in Union, and then getting the disjunction of the solutions.

The answer to this query is:

robot
http://rehabrobotkb.com/AssistOn-Wrist

We can represent the answers to SPARQL queries using a table. Here,

each row of this table denotes a mapping found by applying µ over the

translated SPARQL algebra expression.

Another query example is as follows.

“What are the movements that are targeted by some wrist robots?”

SPARQL representation of this query:

PREFIX rkb: <http://rehabrobotkb.com/>

16

SELECT DISTINCT ?movement

WHERE {

?robot rkb:targets ?movement.

?robot rdf:type rkb:WristRobots.

}

Since the query above contains a relative clause, we need a variable movement

to represent the targeted movements and another variable robot to represent

the wrist robots. The answer to this query:

movement
http://rehabrobotkb.com/WristFlexion/Extension

Our knowledge base currently contains one robot targeting one wrist move-

ment. Therefore, only movement that is retrieved is WristFlexion/Extension.

We can also choose to retrieve both the robots and the movements. For

that, we append the robot variable in SELECT part of the query, with a

space between the preceding variables:

PREFIX rkb: <http://rehabrobotkb.com/>

SELECT DISTINCT ?movement ?robot

WHERE {

?robot rkb:targets ?movement.

?robot rdf:type rkb:WristRobots.

}

The answer to this query is as follows.

There are several SPARQL query engines that can compute answers to

SPARQL queries. Since matching of the variables in the WHERE clause

17

movement robot
http://rehabrobotkb.com/WristFlexion/Extension http://rehabrobotkb.com/AssistOn-Wrist

to URIs and literals makes up a graph pattern, the main query evaluation

mechanism of SPARQL involves matching the graph pattern in the WHERE

clause to the queried RDF(S) graph. However, the queried RDF(S) graph

may contain implicit knowledge. For instance, in the knowledge base in

Section 2.2, we do not explicitly say that AssistOn-Wrist is a rehabilitation

robot; however, we may query about it. In order to cover such cases, the

query engines use different implementation and optimization techniques for

processing and evaluating queries, as well as semantic inferencing.

One implementation technique is materialization, which involves extend-

ing the RDF(S) graph with all inferences that can be computed before pro-

cessing the SPARQL queries. This implementation technique is used by

Jena, Virtuoso, and AllegroGraph. Another approach proposes to rewrite

the queries instead of extending the RDF(S) graph. This approach is used

by Sesame, sparql2sql, and GiaBATA. Third principal approach is to mod-

ify existing approaches of mapping so that matching graph patterns can be

done along with complex inferencing. This approach is implemented in ARQ,

which also provides optimizations on translating algebra expressions, such as

introducing new operators. The order of evaluations can also be specified

with ARQ, which is one of the low-level optimizations.

In order to provide logic-based inferencing along with graph-based pro-

cessing of SPARQL queries, some query engines provide inference engines.

For instance, the inference engine in Sesame uses forward chaining whereas

the inference engine in Virtuoso uses backward chaining. The inference en-

18

gine in Jena utilizes both forward and backward chaining to obtain inferences

from data.

2.4 Representing Ontologies in Description Logics

Description Logics (DLs) [6] are a family of logic-based formalisms for knowl-

edge representation, that are decidable fragments of first-order logic. Ontolo-

gies represented formally in Web Ontology Language (OWL) are based on

variations of Description Logics (DL). DL provides the logical formalism not

only for such formal ontologies but also the Semantic Web.

DL terminology consists of concepts, roles, and objects. Objects denote

entities of our world with characteristics and attributes; concepts are in-

terpreted as sets of objects; and roles are interpreted as binary relations

on objects or concepts. A DL knowledge base consists of logical statements.

Logical statements include concept descriptions, which are built using atomic

concepts and roles, with the use of logical constructors as well as assertions.

The statements in a DL knowledge base are divided into two groups:

TBox and ABox. TBox statements contain terminological knowledge, which

corresponds to the database schema. ABox statements contain assertional

knowledge, which corresponds to the data in a database. Concepts and roles

are defined in TBox whereas objects are defined in ABox.

In this thesis, we consider a DL called Attribute Concept Language with

Complements (ALC) [63]. ALC includes conjunction, disjunction, negation,

universal restriction and existential restriction.

Let A be an atomic concept name and r be an atomic role name. The

concept descriptions C,D are formed in ALC as follows:

19

C,D ::= A |

> | (universal concept)

⊥ | (ground concept)

¬C | (complement of concept)

C tD | (union)

C uD | (intersection)

∃r.C | (existential restriction)

∀r.C | (universal restriction)

For instance, we can describe a new concept ShoulderRobots in terms of

another concept RehabilitationRobots and with an existential restriction

consisting of a role targets and a concept ShoulderMovements:

ShoulderRobots ≡

RehabilitationRobots u ∃targets.ShoulderMovements

Consider a DL knowledge base that consists of the following TBox:

Robot u Movement v⊥

∃targets.> v Robot

> v ∀targets.Movement

ShoulderRobot v Robot

Robot v≤ 2targets

The first statement expresses disjointness of Robot and Movement. The latter

two statements specify the domain and the range of targets. The fourth

statement declares that ShoulderRobot is a subset of Robot. Finally, we

assume that every robot should target at least two movements and we express

it with the last statement. This knowledge base can be illustrated by a figure

as in Figure 2.4.

We describe the semantics of ALC in terms of interpretations. An inter-

20

Robot

Shoulder
Robot

Movement

targets

. .

Figure 2.4: Example Knowledge Base in DL.

pretation I consists of a non-empty set 4I (the domain of I) and a function

that maps each ALC concept to a subset of 4I , and each atomic role to a

subset of 4I ×4I . Let C, D be ALC concept descriptions and r be a role

name. The extensions CI (resp. rI) of the concept C (resp. role r) in the

interpretation function are extended by inductive definitions, as follows:

>I = 4I

⊥I = ∅

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

¬CI = 4I \ CI

(∃r.C)I = {x ∈ 4I | There is some y ∈ 4I with 〈x, y〉 ∈ rI and y ∈ CI}

(∀r.C)I = {x ∈ 4I | For all y ∈ 4I , if 〈x, y〉 ∈ rI , then y ∈ CI}

If x ∈ CI , then x is an instance of concept C in interpretation I.

There are direct translations of ALC concept descriptions into first-order

formulas [6]. Consequently, a DL interpretation containing atomic concepts

and atomic roles is equivalent to a first-order interpretation, containing unary

and binary predicates. Since the two variable fragment of first-order logic

21

is decidable [29], reasoning problems such as satisfiability or entailment for

ALC are also decidable; there are decision procedures and algorithms for

them.

Reasoning tasks allow inferring additional knowledge which we do not

explicitly state in the knowledge base. Some reasoning tasks that can be per-

formed over a DL KB include consistency checking, which checks whether the

assertions and terminological knowledge in a KB have a contradiction. For

instance, consider an ABox that contains assertions declaring that an object,

AssistOn-Wrist is both a robot and a movement. If robot and movement

concepts are disjoint in TBox, then this causes inconsistency, meaning that

the assertions are not satisfiable with respect to the terminological axioms.

Another reasoning task is subsumption, which determines the relation-

ships of concepts that are in a hierarchy. A subsumption algorithm checks

whether a concept is subsumed by another concept, for all interpretations of

these concepts. For instance, if we state in our KB that all shoulder robots

target a shoulder movement, and that shoulder movement is a subconcept

of joint movement; then it is inferred that all shoulder robots target a joint

movement.

Instance checking is also an important reasoning task, which determines

whether an object is an instance of a specific concept. For example, if in

the terminology it is stated that rehabilitation robots are owned by either

physical therapists or robotics researchers, and in the assertions it is stated

that AssistOn-Wrist is a rehabilitation robot, it is owned by Jack, and Jack is

not a physical therapist, then Jack is inferred to be the instance of a robotics

researcher.

22

Other DLs

The names given to DLs reflect their expressiveness: each letter in the name

of a DL describes a particular constructor. The letters and the features they

express are listed in Table 2.4. Among these letters, letter S is one exception

because it is used to abbreviate ALC, extended with role transitivity. This

is done to prevent long names for the expressive DLs which provide many

constructors.

Table 2.4: Extensions to ALC

Letter Stands for, example
S ALC + transitive roles :If likes is transitive, and if John likes

Sue and Sue likes Jane, then John likes Jane.
H role hierarchies: hasMother is the subrole of hasParent.
O nominals: Functionality of a rehabilitation robot is one of the set

{clinic, home}.
I inverse roles: is targeted by is the inverse of targets.
N cardinality restrictions: A rehabilitation robot can have only one

owner.
D datatypes: Degree of freedom of a rehabilitation robot must be

integer.
Q qualified cardinality restrictions: A rehabilitation robot targets at

least one joint movement.
F role functionality: Minimum range of motion of a rehabilitation

robot.

2.5 RDF(S) vs. DLs

Both DLs and RDF(S) are formalisms that can be used to represent ontolo-

gies. With these formalisms, it is possible to represent terminological/schema

knowledge. However, RDF(S) has some semantic limits compared to DL.

To infer logical consequences, RDF(S) uses deduction rules. Using these

23

deduction rules, it is not possible to derive some information that we can

infer with DL. For instance, if we say that the domain of targets rela-

tion is ShoulderMovements, and that ShoulderMovements is a subconcept

of Movements, we cannot deduce that domain of targets is also Movements

with RDF(S) semantics. We illustrate the semantic limits and limited mod-

eling capabilities of RDF(S) over an example below.

Consider the knowledge base (KB) illustrated in Figure 2.4. It is not

possible to express some parts of this knowledge base with RDF(S). For in-

stance, it is not possible with RDF(S) to restrict the minimum number of

movements that a robot targets. In addition, we cannot model some classes

as disjoint. This is an important limitation of RDF(S) since reasoning with

negation is not possible. To illustrate, the following assertions

Robot(AssistOn)

Movement(AssistOn)

would not cause an inconsistency in an RDF(S) KB. On the contrary, in a DL

KB like the one above, these two assertions cause inconsistency due to the

disjointness statement added to the KB. Furthermore, it is possible with DLs

to declare some classes as the union/intersection/complement of other classes.

For instance, we can add a statement describing upper extremity proximal

robots as a new concept and as the union of elbow, lumbar spline and shoulder

robots. However, this is not possible with RDF(S). These semantic limits of

RDF(S) also limit the further logical consequences that can be inferred. In

conclusion, DL provides powerful semantics and reasoning for further logical

consequences, over RDF(S).

24

2.6 Web Ontology Language (OWL)

Web Ontology Language (OWL) is a W3C recommendation for ontology

modeling. It is emerged as a new ontology language to balance the expres-

sivity and reasoning services. To address the first challenge and to overcome

the limited expressivity of RDF(S), OWL introduces new constructs to de-

sign an ontology. For the second challenge, OWL is based on variations of

Description Logics (DL). According to the formal ontology terminology in

OWL, concepts are called classes, attributes of classes are called data prop-

erties, roles are called object properties, and objects are called individuals.

OWL provides translations of its constructs into DL. Therefore, the mod-

eling capabilities of DLs compared to RDF(S) also applies to OWL. However,

to provide different levels of expressivity, OWL introduces some variants, such

as OWL Lite, OWL DL or OWL 2 DL.

OWL Lite is designed to have little expressivity; thus it has no support

for describing union or complement of classes, disjoint classes or value re-

strictions. It has little support for cardinality restrictions; only the numbers

0 and 1 can be used in these restrictions. OWL Lite corresponds to the

description logic SHIF(D).

Another variant, OWL DL, provides support for the restricted features in

OWL Lite, such as representing disjoint classes and combination of classes.

In addition, it contains OWL Lite; that is, it supports all of the features that

are fully supported in OWL Lite.

OWL DL is contained by OWL 2 DL, another variant of OWL, which

is an extension of OWL DL that preserves decidability. For instance, it is

possible in OWL 2 DL to restrict the range of the values allowed for some

properties, and infer the inverse of a role without an assertion. For instance,

25

if is targeted by is declared to be the inverse of targets role, and there is

an assertion stating that robot A targets movement B, then we know that

movement B is targeted by robot A. OWL DL corresponds to the descrip-

tion logic SHOIN (D) whereas OWL 2 DL corresponds to the description

logic SROIQ(D). SROIQ(D) supports qualified cardinality restrictions

(denoted by ’Q’) and role inclusion axioms (denoted by ’R’), which encom-

pass cardinality restrictions (denoted by ’N ’) and role hierarchies (denoted

by ’H’) supported by SHOIN (D). Therefore, OWL 2 DL contains OWL

DL and extends it with new constructors.

In this thesis, we use OWL 2 DL to design our ontology about rehabilita-

tion robots. In our ontology, we need to represent some concepts as disjoint

and use cardinality restrictions, as well as inverse roles. OWL DL covers

most of them; however, it does not cover some restrictions that we need. We

need to restrict the range of values allowed for some properties. For instance,

we want to restrict maximum/minimum range of motion of the movements,

and we want to restrict the year of the related publications about the robots.

OWL 2 DL covers these features, and as long as role inclusions are not re-

cursive, it is decidable. Therefore, it is our choice of ontology language.

2.7 Pellet: A DL Reasoner

There are many DL reasoners such as FaCT++, HermiT, or Pellet

that implement different kinds of algorithms for theorem proving, such as a

tableau-based algorithm [6] for consistency checking. Some of them provide

wrappers to the frameworks presented in Section 2.1. They might support

different DLs with different expressivities as summarized in Table 2.5.

In this thesis, we use the DL reasoner Pellet for reasoning over on-

26

Table 2.5: DL Reasoners

Reasoner Expressivity Features

CEL [5]
(v.1.1.2)

EL+ Accepts inputs in KRSS (Knowl-
edge Representation System Specifica-
tion) [64] syntax. Provides an OWL
API wrapper as a Protégé plug-in.
Supports axiom pinpointing to com-
pute a justification for a consequence.

FaCT++ [71]
(v.1.6.2)

SROIQ(D) Accepts inputs in FaCT++ in-
put language. Provides an OWL
API wrapper. Supports explana-
tion generation through OWL API.

fuzzyDL [12]
(August, 2013)

Fuzzy SHIF Accepts ontologies in lisp-like syntax.
Extends SHIF to the fuzzy case.

HermiT [66]
(v.1.3.8)

SROIQ Provides an OWL API wrapper and
uses it as a parser. Supports expla-
nation generation through OWL API.

KAON2 [51]
(August, 2013)

SHIQ Additionally manages SWRL and
F-Logic ontologies. Supports
SPARQL querying. Provides
a wrapper through Protégé.

MSPASS [35]
(August, 2013)

ALB A prover for modal logics and rela-
tional calculus as well. Provides a
proof in addition to a yes/no answer.

Pellet [67]
(v.2.3.1)

SROIQ Provides wrappers for OWL API and
Jena. Supports SPARQL query-
ing. Supports explanation generation.

RacerPro [30]
(v.2.0)

SHIQ Provides a wrapper for OWL API.
Supports explanation generation.

27

tologies in OWL 2 DL. It can be used for consistency checking. In fact,

Pellet reduces the reasoning tasks of DL, which are exemplified above,

to consistency checking. For instance, checking a subsumption in the form

WristRobots v RehabilitationRobots can be done by checking the incon-

sistency of WristRobots u ¬RehabilitationRobots in TBox. Since con-

cepts can be viewed as sets of instances, recall that if set A contains set

B, then the set difference of B from A must be an empty set. In addi-

tion, Pellet reduces instance checking to consistency checking. For exam-

ple, to test whether AssistOn-Wrist is a WristRobot, a negated statement

¬WristRobot(AssistOn-Wrist) can be added to ABox and then the knowl-

edge base can be checked for inconsistency. For consistency checking, Pellet

implements a tableau-based theorem proving approach [6].

Pellet also supports conjunctive query answering by means of the query

languages SPARQL and RDQL [65]. For that, it first parses the query us-

ing the parser that is provided by ARQ query engine. ARQ generates the

SPARQL algebra that corresponds to the SPARQL query, and then Pel-

let evaluates basic graph patterns. For that, it maps the statements in

OWL, to RDF triples. SPARQL query evaluation over RDFS knowledge

bases involves simple entailment; however, query evaluation over ontologies

in DL-based OWL variants should allow using logical entailment relations.

Therefore, Pellet matches graph patterns using OWL-DL entailments, that

extend simple entailment. According to the answers that Pellet generates,

ARQ handles complex queries. For instance, if a SPARQL query contains

the UNION construct, ARQ gets the answers to each disjoined basic graph

pattern from Pellet, and then gets disjunction of these answers.

28

Pellet is implemented in Java, and available online as open source7. It

also supports many Java based APIs and can be reached through a command

line interface as well.

2.8 Protégé: An Ontology Editor

Ontology editors are applications that provide graphical user interfaces to

help the users design and manipulate ontologies easily. There are many

ontology editors, such as Protégé [28], Neon Toolkit [31] or Vitro [48]

that are available online. They are able to visualize ontologies as well. For

instance, Protégé provides both tree-based and graph-based visualizations

for ontologies.

We used Protégé to design our ontology, in particular, our terminology.

In other words, we represented general concepts and described their relations

using the ontology editor Protégé. Protégé supports design of ontologies

in OWL 2 DL, and it also supports design of ontologies in several represen-

tation formats. Therefore, we were able to represent RehabRobo-Onto

in the logic-based ontology language OWL 2 DL and in OWL/XML format.

Since Protégé provides plug-ins for DL reasoners, we utilized the plug-in

of Pellet to ensure the consistency of our terminology.

2.9 Jena: An Ontology Management Framework

Among the frameworks that are presented in Section 2.1, we decided to use

Jena. Jena provides an application programming interface (API) to read

and process OWL ontologies. Using its API, we can add new assertions to
7http://clarkparsia.com/pellet/

29

RehabRobo-Onto. Therefore, we are able to add and extract assertions

using Jena framework. Jena contains various internal reasoners; however, we

are interested in using Pellet. Since Pellet provides a wrapper for Jena,

we are able to check the consistency in our ontology while adding a new

assertion. We also query over RehabRobo-Onto via Jena framework. We

transform natural language queries into SPARQL, and thanks to availability

of the DL reasoner Pellet in Jena, it computes answers to these queries

automatically. In this way, Jena differs from other ontology management

frameworks. For instance, OWL API, which is another framework to manip-

ulate ontologies, does not provide support for SPARQL queries. Querying

with SPARQL over ontologies is done in OWL API via Jena.

2.10 Discussion

In this section, we discuss our choices of semantic web technologies, as well

as query languages and reasoners. We review our choices and decisions for

this thesis, compare our approach with other possible approaches and discuss

several directions for future work in terms of other technologies that can be

used.

Why SPARQL?

In order to query over an ontology, we need to use a query language. Although

the queries are entered in natural language, they should be transformed into

an existing query language to execute a query over a query engine and then,

to get an answer. There are several options to choose from. One option is to

use a DL query language, and another option is to use SPARQL.

30

Ontology editor Protégé and OWL API framework support DL queries

in Manchester OWL syntax. With DL queries, it is possible to query about

the logical structure of the ontology, and the queries can include subsumption.

However, by the time we started developing RehabRobo-Query, OWL

API provided no support for DL query languages. In addition, asking DL

queries to Protégé externally (e.g., via command line) was not possible.

Therefore, instead of DL queries, we decided to query over RehabRobo-

Onto with SPARQL, considering that it is a W3C recommendation and a

technology that is widespread in semantic web community.

Why Pellet?

We developed RehabRobo-Onto in OWL, in particular, in OWL 2 DL.

We also designed RehabRobo-Onto with the features that OWL 2 DL

provides, such as inverse roles, disjoint concepts and value restrictions for

properties of concepts. With these features, we do not have to specify all

knowledge explicitly; some of the knowledge are implicit in the ontology.

Since OWL 2 DL is based on Description Logics (DL), we can use DL rea-

soners to infer implicit knowledge. In addition, DL reasoners can check the

ontologies for consistency or do instance checking. Therefore, we decided to

use a DL reasoner.

There are various DL reasoners such as HermiT, FaCT++, or Pellet.

We decided to use Pellet because of several reasons. First, we have chosen

to query RehabRobo-Onto with SPARQL; and Pellet is one of the DL

reasoners that provides support for SPARQL querying by conjunctive query

answering and instance checking. Second, it can also be used for consistency

checking in frameworks such as OWL API or Jena, like other DL reasoners,

31

and it can explain inconsistencies. However, SPARQL query support of Pel-

let is only available in Jena framework, and OWL API supports SPARQL

queries over Pellet with a plug-in that Jena framework provides for OWL

API. We want to benefit from the various reasoning tasks that Pellet pro-

vides by using one framework; thus, our decision about the framework is

affected by our reasoner choice.

Why Jena?

The preliminary version of RehabRobo-Query was designed as a desktop

application. It utilized OWL API and DL reasoner HermiT for reasoning.

After deciding to add a query feature in RehabRobo-Query, we realized

that there is no support in OWL API for DL queries and it is only possi-

ble to execute DL queries in Protégé manually. Then, we redesigned our

system considering SPARQL, a W3C recommendation, and Pellet, that

provides support for SPARQL querying over OWL ontologies. Since OWL

API provides support for SPARQL queries through Jena, we also changed

the ontology management framework that we use.

The final version of RehabRobo-Query is a Web-based software that

utilizes Jena framework for ontology manipulation. For querying over RehabRobo-

Onto, we use SPARQL with Pellet, via Jena framework. Our choices are

made according to the state-of-the-art in semantic web technologies.

32

Chapter 3

3 RehabRobo-Onto

We have designed an ontology about rehabilitation robots, called RehabRobo-

Onto, considering suggestions of the rehabilitation robotics researchers and

physical medicine experts whom we collaborate with.

Our goal of developing an ontology for rehabilitation robotics is mainly

to maintain a knowledge repository containing information about all reha-

bilitation robots and relevant references, to facilitate access to requested

information in this repository for both robot designers as well as physical

medicine experts. In this way, not only it will be easier for robot designers

to improve the state-of-the-art in rehabilitation robotics but also it will aid

translation from bench-to-bed and back, and personalized physical medicine

by allowing the physical medicine experts to choose the right rehabilitation

robots for specific patients/therapies.

As suggested in [72] about designing an ontology, we have first identified

the purpose, and then identified and defined the basic concepts and their

thematic classes, and their relationships for the chosen subject domain.

We have developed this ontology in OWL 2 DL using the ontology editor

Protégé. For the users to add/modify the ontology, we have also built an

intelligent, interactive user interface for it. Let us tell these contributions in

detail.

33

3.1 Design of RehabRobo-Onto

We have designed our ontology (Figure 3.1) considering five main concepts

(or thematic classes):

• RehabRobots (representing rehabilitation robots and their properties),

• JointMovements (representing targeted joint movements and their prop-

erties),

• Owners (representing robot designers who add/modify information in

the ontology about their own robots),

• References (representing publications related to rehabilitation robots),

• Assessments (representing assessment measures for rehabilitation robots).

These concepts are related to each other by the following relations:

• a rehabilitation robot targets joint movements,

• a rehabilitation robot is ownedBy a robot designer,

• a rehabilitation robot hasReferences to some publications,

• a rehabilitation robot hasAssessment with respect to some evaluation

measure.

As seen in Figure 3.1, each class has its own properties. RehabRobots

have the following properties about rehabilitation robots:

• name

• active degree-of-freedom: integer

34

RehabRobots

JointMovements

targets
1..*

has_Name: String
has_Active_DOF: Integer
has_Passive_DOF: Integer
has_Control_Modes: {ADL, BCI, EMG, active, assistive,
bilateral, multilateral, passive, resistive}
has_Disorder_Level: {mild, moderate, severe}
has_Functionality: {clinic, home}
has_Interaction_Type: {endE�ector, exoskeleton,
mixed, suspension}
has_Intervention_Time: {acute, chronic, subacute}
has_Kinematic_Type: {fully-actuated, under-actuated,
redundant}
has_Mechanism_Type: {serial, parallel, hybrid, mobile}
has_Motion_Capability: {grounded, mobile}
has_Targeted_Population: {adult, pediatric}
has_Targeted_Disorder: {stroke, spineCordInjury}

has_ROM_Type: {active, passive}
has_ROM_Max: �oat
has_ROM_Min: �oat
has_Actuation: {electrical, electro-rheological, hydrolic,
pneumatic, series elastic, variable impedance, other}
has_Transmission: {belt drive, cable drive, capstan drive,
direct drive, gear train, harmonic drive, other}
has_Backdrivability: {backdrivable, non-backdrivable}
has_Backdrivability_Type: {active, passive}

1..*

References

has_Title: String
has_Authors: String
has_Clinical_Study: Boolean
has_Year: Integer
has_Published_At: String
has_URL: String

Owners

has_User_Name: String
has_Mail: String
has_Institution: String

Assessments

hasReference
1..* 1..*

1

1..*

ownedBy

hasAssessment

1..*

1..*

Figure 3.1: RehabRobo-Onto with main classes.

• passive degree-of-freedom: integer

• control modes: bilateral, active, passive, resistive, assistive, ADL, mul-

tilateral, EMG, BCI

• disorder level: mild, moderate, severe

• functionality: clinic, home

• interaction type: end-effector, exoskeleton, suspension, mixed

35

• intervention time: acute, subacute, chronic

• kinematic type: fully-actuated, under-actuated, redundant

• mechanism type: parallel, hybrid, serial, mobile

• motion capability: grounded, mobile

• targeted population: pediatric, adult

• targeted disorder: stroke, spline cord injury

JointMovements have the following properties about the joint movements

targeted by the rehabilitation robots:

• RoM type: active, passive

• minimum RoM: float

• maximum RoM: float

• actuation: electrical, hydrolic, pneumatic, series elastic, variable impedance,

electro-rheological, other

• transmission: harmonic drive, belt drive, cable drive, direct drive, cap-

stan drive, gear train, other

• backdrivability: backdrivable, nonbackdrivable

• backdrivability type: active, passive

Considering various sorts of rehabilitation robots and various sorts of

joint movements, RehabRobots and JointMovements classes have subclasses;

some of these subclasses are illustrated in Figures 3.2 and 3.3. Maintaining

36

such a hierarchy aids not only compact representation of knowledge about

rehabilitation robots (by avoiding repetitions) but also efficient reasoning

about it. Currently there are 147 classes represented in RehabRobo-Onto.

RehabRobots

LowerExtremityRobots

ProximalLowerExtremity
Robots

DistalLowerExtremity
Robots

KneeRobots PelvicGirdle
Robots

HipRobots AnkleRobots FootRobots

Figure 3.2: Hierarchy of lower extremity rehabilitation robots.

JointMovements

LowerExtremityMovements

ProximalLowerExtremityMovements DistalLowerExtremityMovements

Hip
Movements

PelvicGirdle
Movements

Knee
Movements

HipAbduction/
Adduction

HipFlexion/
Extension

HipExternal/
InternalRotation

PelvicGirdleAnterior/
PosteriorRotation

KneeAnterior/
Posterior
Translation

KneeFlexion/
Extension

PelvicGirdleRight/Left
LateralTilt

PelvicGirdleRight/Left
TransverseRotation

Ankle
Movements

Foot
Movements

FootInterphalangeal
JointsOfToeFlexion/

Extension

FootMetatarsophalangeal
JointsFlexion/Extension

AnkleRotational
Dorsi�exion/Plantar�exion

AnkleRotational
Supination/Pronation

Figure 3.3: Hierarchy of lower extremity joint movements targeted by reha-
bilitation robots.

We have designed Assessments also as a hierarchy of evaluation metrics

(Figure 3.4): movement quality assessments, effort assessments, psychomo-

toric assessments, muscle strength assessments, kinematic assessments. Each

37

assessment subclass has its own subclasses. For instance, MovementQualityAssessments

class contains the following subclasses: bi-manual coordination, combined

task coordination, compensation, dexterity, interlimb coordination, single

joint coordination, visiomotor coordination.

Assessments

E�ort
Assessments

AmountOfAssistance

AmountOfCompensation

BiomechanicalWork
EnergyPower

MovementIndependent
MechanicalE�ort

PainInducedBy
Movement

KinematicAspects
Assessments

MovementQuality
Assessments

MuscleStrength
Assessments

PsychomotoricAspects
Assessments

OxygenConsumption

TimeToInitiateMovement

ActiveROM

PassiveROM

PathLength

WorkspaceOf
Ende�ector

Speed

CombinedTask
Coordination

Bimanual
Coordination

Interlimb
Coordination

Compensation

Dexterity

SingleJoint
Coordination

Visuomotor
Coordination

Attention

Automaticity

Engagement

HumanLikeness

Endurance

Fatigue

MaxMinForce

GaitRelated

MuscleSti�ness
Spasticity

VelocityPro�le

MainSpeed

MaximumAngularVelocity
InJointSpace

MaximumLinearVelocity
AtEndE�ector

OtherSpeedAssessment

CenterOfMass

CenterOfPressure

Ground
ReactionForces

OtherGaitRelated
Assessment

Tonic Phasic

OtherMuscleSti�ness
SpasticityAssessment

Isokinetic

JointTorques

ForceAtEndE�ector

OtherMaxMinForce
Assessment

MentalEngagement

PhysicalEngagement

ReactionTime

OtherEngagement
Assessment

Figure 3.4: Hierarchy of Assessments.

The other concepts, Owners and References, do not have hierarchies.

Though, for owners, we keep their contact information; and for references,

in addition to their traditional descriptions, we also keep information about

whether they contain results of some clinical studies.

RehabRobo-Onto is essentially a DL knowledge base: the classes, class

hierarchies, data properties and object properties constitute TBox; and the

assertions about the robots constitute ABox.

38

3.2 Development of RehabRobo-Onto

Based on the design of the classes, their properties, subclasses, relations be-

tween classes, we need to represent the ontology formally using a logic-based

ontology language. Considering the standards of W3C8, we have decided to

represent RehabRobo-Onto in the ontology language OWL 2 DL, with

OWL/XML syntax.

We have chosen OWL due to its expressive power over RDF, as explained

in Section 2.6. OWL has DL based semantics and is decidable. On the one

hand, DL provides well-defined semantics and supports powerful reasoning

tools. We can express such disjoint classes, range restrictions and cardinality

restrictions with OWL DL, one of the variants of OWL. Since we want to

restrict the ranges of the properties and make some classes (e.g., subclasses

of assessments) disjoint, OWL DL seems to be suitable; however, we need

additional restrictions. For instance, we want to restrict the range of values

allowed for some properties, such as maximum/minimum range of motion of

the movements, or year of the references. This datatype restriction is allowed

in OWL 2 DL, which is an extension of OWL DL that preserves decidability.

We now give references to the parts of RehabRobo-Onto that contain

these desired features. For instance, we can describe the following subclasses

of assessments as disjoint with DL.

EffortAssessment u MuscleStrengthAssessment v⊥

We describe such disjoint classes using Protégé, ontology editor. In

Figure 3.5, the same disjointness description is done in the graphical user

interface of Protégé.

Using Protégé, we can also use a cardinality restriction for ownedBy re-
8http://www.w3.org/standards/

39

Figure 3.5: Declaring disjoint classes in Protégé.

lation between RehabRobots and Owners to declare that every rehabilitation

robot is owned by at most one owner. Declaring ownedBy as a functional

object property, as shown in Figure 3.6, is sufficient to describe such knowl-

edge.

We restrict the range of the has_Year property of References in the

ontology, as shown in Figure 3.7.

After deciding on the ontology language, we have used the OWL ontology

editor Protégé [28] to construct RehabRobo-Onto by describing gen-

eral concepts and their properties/relations. RehabRobo-Onto consists of

TBox, which contains terminological knowledge; and ABox, which contains

assertional knowledge. We define concepts and their properties/relations in

TBox, and the instances in ABox. We have used Protégé solely to describe

the TBox; however, our knowledge base also contains some assertions, infor-

mation about the robots, in the ABox. How we enable the robot designers

to add assertions is explained in the next section.

40

Figure 3.6: Declaring ownedBy relation in Protégé.

Figure 3.7: Restricting range of has_Year in Protégé.

41

3.3 Maintaining RehabRobo-Onto

Once we represent general concepts and their properties/relations about reha-

bilitation robots in OWL, we are not done yet. We would like the rehabilita-

tion robotics ontology to be shared by researchers so that robot designers can

add/modify information about their robots, and both rehabilitation robotics

experts and physical medicine experts can ask queries over it. Therefore, we

would like to allow researchers to add information about specific rehabili-

tation robots by “assertions” (like, “the rehabilitation robot whose name is

AssistOn-Wrist is a wrist robot and it has clinic use”) as well.

Such assertions about specific individuals can be added to RehabRobo-

Onto using Protégé. However, since Protégé downloads the whole on-

tology to be able to add new information, ensuring that the users add infor-

mation to RehabRobo-Onto without letting them modify other parts of

the ontology may be problematic. Also, assuming that the existing robotics

experts and physical medicine experts know about DL and logic-based ontol-

ogy languages, that they have experience in using DL reasoners or Semantic

Web technologies, and that they keep track of the most recent versions of

these software, may not be reasonable along our goals for an effective use of

the rehabilitation ontology.

To facilitate the effective use of the rehabilitation ontology by different

users, we have designed a tool (called RehabRobo-Query) with an easy-

to-use intelligent user interface. Such a user interface should be interactive

such that it should guide the user through robot addition. Moreover, a user

might forget to add an information or postpone entering a particular property

to make sure that it is correct. In this case, the user interface should support

modification of the assertions afterwards. There may be cases where a reha-

42

bilitation robot should be removed completely. For this purpose, deletion of

an assertion should be supported as well. RehabRobo-Query provides all

of these features by allowing robotics researchers to add/modify information

to/in RehabRobo-Onto about their robots by following consecutive tabs

of the intelligent user interface, without having to know about the underlying

logic-based formalism.

Registration

Only registered users can add/modify/delete information to/in/from RehabRobo-

Onto. One can register by entering his/her name, institution, e-mail address

and a password. Next, RehabRobo-Query sends a confirmation mail in-

cluding an activation link. Once the user clicks on the link, then his/her

membership gets confirmed. Registered users and their passwords are ad-

ministrated by a database. For security, access to this database utilizes

encryption via the cryptographic hash function SHA-1 [1].

Adding Information to RehabRobo-Onto

When the user wants to add information about his/her robot, he/she should

enter the name of the robot first (Figure 3.8). Then, RehabRobo-Query

checks whether a robot with the given name exists in the ontology. This is

done using DL reasoner Pellet, with the following SPARQL query.

SELECT ?robot

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ’<robotName>’.

43

Figure 3.8: Adding a new robot to RehabRobo-Onto.

}

We pass the name of the robot to this query before execution. If there

is a robot in the ontology with such a name, then it lists some options, as

shown in Figure 3.9. Otherwise, the user continues to add information by

navigating the tabs.

Relevant properties are grouped into a tab in RehabRobo-Query. For

instance, General Info tab (Figure 3.10) contains functionality, targeted pop-

ulation, targeted disorder, intervention time and disorder level. Kinematic

Properties tab (Figure 3.11) contains motion capabilities, kinematic type,

mechanism type and interaction type. We represent functional properties

with radio buttons and relational properties with comboboxes. The targeted

joint movements are entered via Targeted Joints and Power Transmission

tabs, as shown in Figures 3.12, 3.13, 3.14 and 3.15. By clicking on a joint,

its minimum/maximum ranges of motion and its range of motion type can

be entered in Targeted Joints tab. Similarly, by clicking on a joint, its actu-

ation, transmission and backdrivability properties can be specified in Power

44

Figure 3.9: Warning for an existing robot with available options.

Figure 3.10: Adding to RehabRobo-Onto general information about the
rehabilitation robot AssistOn-Wrist.

Transmission tab. The user can specify measured assessment metrics in As-

sessment tab (Figure 3.16). Since some of the subclasses of assessments have

further subclasses, specifying particular metrics are handled by the pop-up

windows, opened after clicking on a relevant assessment metric. Control

Modes tab includes comboboxes for the control modes property only, and in

Related Pubs tab (Figure 3.17) the user can add the publications related to

his/her rehabilitation robot.

45

Figure 3.11: Adding to RehabRobo-Onto kinematic properties of the re-
habilitation robot AssistOn-Wrist.

Figure 3.12: Adding to RehabRobo-Onto targeted joints of the rehabili-
tation robot AssistOn-Wrist.

46

Figure 3.13: Adding to RehabRobo-Onto a targeted joint (wrist) of the
rehabilitation robot AssistOn-Wrist, from a pop-up window.

Figure 3.14: Adding to RehabRobo-Onto power transmissions of the re-
habilitation robot AssistOn-Wrist.

47

Figure 3.15: Adding to RehabRobo-Onto power transmissions of a tar-
geted joint (wrist), from a pop-up window.

Figure 3.16: Adding to RehabRobo-Onto assessments of the rehabilitation
robot AssistOn-Wrist.

48

Figure 3.17: Adding to RehabRobo-Onto related publications of the re-
habilitation robot AssistOn-Wrist.

As the user describes the robot by filling the tabs, he/she has the chance

to return to any tab to change the information. After entering all proper-

ties of the robot, in the End tab, all the information entered by the user is

displayed as a summary for the last time. After the user checks the informa-

tion and confirms its addition to RehabRobo-Onto, the information about

the rehabilitation robot is transformed into assertions in OWL and added to

RehabRobo-Onto.

Modifying RehabRobo-Onto

A user can modify or delete his/her own robots only. First the relevant

robots are found by querying RehabRobo-Onto using the DL reasoner

Pellet [67] via Jena [50], and listed in a pull-down menu (Figure 3.18). To

find the robots that are owned by a user, we query RehabRobo-Onto with

49

the following ready-to-use SPARQL query. To this query, we pass the e-mail

address of the user, since it is the unique property of the user.

SELECT DISTINCT ?robotName

WHERE {

?owner rdf:type rr:Owners.

?owner rr:has_Mail ’<mail>’.

?robot rr:ownedBy ?owner.

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ?robotName.

}

For modification, after the user chooses a robot from the list, the user

interface that we have seen earlier for adding information appears but now

with tabs filled with the robot’s properties. The user can make changes via

this interface and the updated information can be saved as a set of assertions

in OWL, in a new file while keeping the previous version as “modified”. For

deletion, after the user chooses a robot from the list, the relevant file con-

taining assertions about that robot is marked as “deleted”. Note that in both

cases, we keep the information about the robot before modification/deletion

as well; these files may be needed if the user accidentally deletes his/her

robot from RehabRobo-Onto, or modifies it incorrectly.

Authorization

When a user wants to make changes on a robot that the user is not au-

thorized to make changes about, the permission of its owner is required via

RehabRobo-Query. After clicking Modify with Permission in Figure 3.9,

50

Figure 3.18: Robots that are owned/mainted by a particular user.

the same user interface for modification and addition appears with tabs filled

with the robot’s properties. The user makes modifications navigating the tabs

and in the End tab, the user checks the information and confirms sending

a request to the owner of the robot. The information entered by the user

is saved as a set of assertions, marked as “requested”. Then the information

is sent to the e-mail address of the owner for confirmation. Once the owner

confirms the new information, requested assertion is replaced as the latest

version of this robot, while keeping the previous version as “modified”. If the

owner does not confirm the new information, the requested information is

deleted from the server.

Feedback

After adding, modifying and deleting information, RehabRobo-Query al-

lows users to provide feedback about the system. To prevent automated

access to the system by computer programs, Google reCAPTCHA9 is used.
9http://www.google.com/recaptcha

51

HTML & CSS

User Interface

JavaScript
(JQuery)

PHP
Scripts Java

Functions

Jena Framework

Pellet
Reasoner

User Login Info
(Database)

Previous Assertions
Robot 1

Previous Assertions
Robot k

(OWL)

Assertion - Robot 1

Assertion - Robot k

RehabRobo-Onto
(OWL)

Terminology

InstructionsUpdated
HTML

AJAX calls to
send & request data

Zend Framework Wrapper

Client

Server

Authentication
(MySQL)

Maintenance,
Backup Read & write requests,

SPARQL queries

Figure 3.19: An overview of RehabRobo-Query.

3.4 Overall System Architecture

The overall system architecture for RehabRobo-Query on the cloud is

illustrated in Figure 3.19.

Since RehabRobo-Query is a Web-based system available via Amazon

Web Server, it consists of two parts: client and server. In general, client part

provides interaction with the user whereas server part makes the operations

that user does not actually see, in the background.

After entering the web page, the user sees a set of texts and buttons,

that are designed to guide the user through pages. For adding or modify-

52

ing robots, RehabRobo-Query provides more graphical features, such as

radiobuttons, checkboxes or pop-up windows to make this process easier for

the user. These features are provided with a set of HTML and CSS files. We

use the components that Twitter Bootstrap [44] provides for styling the web

pages.

According to the instructions that the user specifies on the user interface,

RehabRobo-Query modifies the components that the user sees, or changes

the displayed web page. For that, we use JavaScript to specify how the user

interface changes according to the instructions. Therefore, instructions are

JavaScript calls that cause the web page or the components in the web page

to change. For instance, when the user finishes entering information about a

robot and clicks Add button, a JavaScript call is generated and according to

the operations in the background, the web page displays an error message in

the same window, or moves to the feedback page, indicating that addition is

successful.

Up to this point, we have described the client part of RehabRobo-

Query. In order to make the operations that are requested by the user,

the client part should interact with the server part. Ajax is a technique to

provide such interactions. Using Ajax scripts, we can make calls to the server

side and then get a return value indicating success or error. We utilize Ajax,

and we make Ajax calls from the scripts in JavaScript. In particular, we use

the JavaScript library JQuery [13] because it enables Ajax interactions with

the server side scripts. For example, assume that a user wants to add a new

robot. Then, the user enters information and clicks Add button. When the

user clicks Add button, the JavaScript calls are generated to the scripts that

are associated with addition page. Then, in these scripts, the information

53

about the robot in the tabs are collected and serialized. After that, the script

sends the serialized information about the robot to the server side with an

Ajax call and waits for a response, or if the Ajax call is asynchronized, the

script continues to execute rest of the script while waiting for the response

from the Ajax call.

Reasoning, SPARQL querying, file operations, and authentication are

done on the server side. Ajax calls from the client side start execution

of associated PHP scripts. For instance, when the user tries to log in to

RehabRobo-Query by entering the user name and password, then through

the JavaScript file associated with login page, an Ajax call is done to a lo-

gin script in PHP. Then, this script gets the entered information via Ajax,

connects to the user database and runs an SQL query over MySQL, to check

whether such a user exists. If a user exists, then PHP script sets the ses-

sion for this user and returns success. Otherwise, it catches the possible

exceptions and returns failure.

Both the user database and the rehabilitation robotics ontology are stored

on the server. We store the assertions about each rehabilitation robot in a

separate file, to make it easy to modify/delete RehabRobo-Onto as well as

for efficient query answering. In other words, when the user adds information

about his/her robot, it is stored (in OWL/XML syntax) as an assertion in a

unique file. The terminology of the ontology (that consists of classes, their

properties and relations as described in Section 3.1) is kept in a separate file,

also in OWL/XML syntax. The ontology RehabRobo-Onto consists of the

terminological part and the assertions of the robots. Users are not allowed

to modify the terminological part of the ontology, but only assertions about

the robots.

54

When the user modifies (resp., deletes) information about his/her robot,

then we mark the related assertion file as “modified” (resp., “deleted”). We

do such file manipulations from PHP scripts. Thus, when the user chooses a

robot and clicks Delete from the user interface, then we call the associated

deletion script in PHP, via an Ajax call. Then, we locate the related file in

the server and mark it as deleted.

Adding new assertions and querying with SPARQL is done by making

calls to Java functions that utilize Jena Framework and DL reasoner Pel-

let. For that, we call our ready-to-use functions in Java, from PHP scripts.

Calling Java functions from PHP scripts is enabled with the PHP-Java bridge

of Zend Framework. We have functions to extract related information about

robots, such as getting the references of a robot or getting the assessments of

a robot. We also have a function to add a new assertion into RehabRobo-

Onto or to execute a query over RehabRobo-Onto. For instance, after

the user enters information about a robot and clicks Add button, the asso-

ciated PHP script gets the information from the client side and delegates to

the related Java function for robot addition. Then, the assertions about the

properties of the robot are added one by one, and all of them are written on

a unique file. If the user chooses to modify a robot, then the associated PHP

scripts for modification call the Java functions to extract the information

(targeted joints, general information etc.) about the robot. Such Java func-

tions use Pellet to load the terminology and the related assertions. Then,

a ready-to-use SPARQL query is executed by completing the query with the

related robot’s ID. The SPARQL query that we use to extract the references

is as follows.

SELECT ?refInd

55

WHERE {

rr:<robotID> rr:hasReference ?refInd.

}

After extracting the indices of the references, we extract their relevant

information. For instance, the following query returns the title of a reference.

SELECT ?title

WHERE {

rr:<refInd> rr:has_Title ?title.

}

We get the answers from Pellet and serialize them to send back to the

PHP scripts. On the client side, we unserialize them and fill the user interface

with related information.

We give the details of the addition process by presenting the work flow

in Figure 3.20 and the data flow in Figure 3.21. The main work flow, which

covers the login of the user to reach to the main page, is shown in Figure 3.22.

The work flow of modification starts by getting the user’s robots via Jena

framework. Then, the system displays robot names to the user and the user

chooses a robot to modify. After modifying information and clicking Modify,

the name of the file containing assertions for this robot, say “RehabOntoIn-

stance_R5.owl” is changed to “modified_RehabOntoInstance_R5.owl”. The

rest of this process involves connecting to Jena framework again, which is the

same process as in addition. The work flow of deletion begins by displaying

user’s robots and getting a choice, which is same as modification. Then, the

system asks if the user is sure about the deletion. If the user chooses “yes”,

56

then the name of the file containing assertions for this robot, say “RehabOn-

toInstance_R5.owl” is changed to “deleted_RehabOntoInstance_R5.owl”. If

the user chooses “no”, then the system returns to main menu.

User enters a robot name

Send the robot name to the server side via AJAX

Connect to Java via Zend Framework

From the server, �nd all �les that
contain assertions

Pellet (via Jena) loads RehabOnto.owl (TBox)
and all of the assertions (ABox)

Construct a SPARQL query
to �nd a robot with the given name

Such a robot exists?
Yes

YesDoes the current user
own this robot?

No

Display error message with two options:
View and Modify with Permission

Display warning message,
guide the user for modi�cation

No

User enters information about the robot
and clicks Add

Send information to server via Ajax

Assign a unique ID for this robot

Connect to Java via Zend Framework

Return success to PHP, then to AJAX

Display feedback page, get feedback

Load RehabOnto.owl (TBox), create a
new model that imports TBox and

includes the entered assertions

Write the model to
“RehabOntoInstance_R<unique_id>.owl”

Figure 3.20: Work flow of addition.

3.5 RehabRobo-Onto on the Cloud

We utilize Amazon Elastic Compute Cloud (Amazon EC2) for both develop-

ing and maintaining RehabRobo-Onto, and for querying RehabRobo-

57

User Ajax request to PHP,
then to MySQL

Set session
with user’s mail

mail, password

User database

user
query

user
exists

user’s choice

(add)
Ask for a

robot name

robot
name

AJAX request to PHP,
then to Java via

Zend Framework

RehabRobo-Onto (TBox+ABox)

robot
queryresponse

with success

Show other
options

response
with failure

User enters rest of the
information, clicks Add

all properties
of robotCheck the properties

for emptiness

Robot Index File

unique id
requestnew id

<unique_id>

properties,
new id

Add new assertions
via Jena Framework

TBox
terminology

import
requestget

terminology

new
�le

RehabOntoInstance_R<unique_id>.owl

Figure 3.21: Data flow of addition.

Onto via RehabRobo-Query. Amazon EC2 is a web service that provides

resizable compute capacity in the cloud, and makes web-scale computing

easier for developers. Considering the possibility of various researchers from

around the world add/modify/query RehabRobo-Onto via RehabRobo-

Query, and the possibility of integrating various sorts of knowledge on the

web related to rehabilitation robotics, Amazon EC2 provides a reliable en-

vironment for development and maintenance of RehabRobo-Onto and

RehabRobo-Query. RehabRobo-Query is available via a webpage10

hosted by a Web server running on Amazon EC2.

The server utilizes a standard LAMP stack, which refers to Linux, Apache

HTTP Server, MySQL and PHP. In particular, the server runs on Ubuntu

12.04 (64 bit), utilizing Apache v2, MySQL v5.5 and PHP v5.3. While

Apache provides a web server, server side development is done by PHP and

the user database is stored in a MySQL database.

To access RehabRobo-Query, having a javascript enabled web browser
10http://hmi.sabanciuniv.edu/?page_id=781

58

Display login page

User enters mail address and password

Pass information to PHP, using AJAX

Check database and send back the response

Such a user exists
(with approved activation)?

User choice?

No

Yes

Display main page

AddAddition Process Modi�cation ProcessModify

Delete

Deletion Process

Figure 3.22: Main work flow, including login.

is sufficient. In particular, RehabRobo-Query is tested with Google Chrome

24.0.1312.70, Mozilla Firefox 16.0.2, Opera 12.01 and Internet Explorer 8+.

For reliable maintenance, we conduct regular backups of RehabRobo-

Onto. With regular backups, it is also possible to restore further data that

may be lost, such as requested but declined modifications of a robot.

59

Chapter 4

4 RehabRobo-Query

Reasoning over RehabRobo-Onto is done by means of answering questions

posed by the user in natural language. To overcome the ambiguities in the

vocabulary and grammar of natural languages, we introduce a Controlled

Natural Language (CNL), a subset of a natural language with a restricted

vocabulary and grammar. A CNL is essentially formal language, and thus it

is not difficult to convert a CNL to a logic-based formalisms. In that sense,

a CNL facilitates the use of automated reasoners to find answers to queries

expressed in a CNL.

In order to express queries about rehabilitation robots, we designed and

developed a new CNL, called RehabRobo-CNL. Although we designed

RehabRobo-CNL considering RehabRobo-Onto, it is possible to expand

it to support queries about integrated knowledge resources (e.g., patients,

diseases, genetic information).

Some example queries are listed in Table 4.1. To answer these queries,

RehabRobo-Query transforms them into the formal query description lan-

guage SPARQL, also an official W3C Recommendation. To give an overall

idea of the transformation, consider, for instance, the following query (Q1 in

Table 4.1):

60

Table 4.1: Sample Queries in RehabRobo-CNL

Q1 What are the robots that target some wrist movements with actu-
ation=’series elastic’?

Q2 What are the effort metrics that are evaluated by some robots with
active degree of freedom ≥ 2?

Q3 What are the movement quality metrics that are evaluated by all
robots with motion capability = ’grounded’ ?

Q4 What are the users with institution=’Sabanci University’ and that
own/maintain the robot ’AssistOn-Wrist’?

Q5 What are the publications with clinical study and that do not ref-
erence any robots with active degree of freedom ≤ 1?

Q6 What are the movements that are targeted by some robots with
(some intervention time or with all targeted disorders)?

Q7 What are the publications without clinical study or that reference
some robots that do not evaluate any movement quality metrics?

Q8 What are the robots that target the shoulder horizontal abduc-
tion/adduction with range of motion type=’active’ or that target
the elbow flexion/extension with transmission={belt drive, cable
drive}?

Q9 What are the robots that target all foot movements and (with tar-
geted population=’pediatric’ or with control modes={active, assis-
tive})?

Q10 What are the publications with place of publication ’ICORR’ and
that reference some robots that are owned/maintained by some users
with institution ’Sabanci University’ ?

Q11 What are the robots with no targeted disorder or (with intervention
time!=’chronic’ and with motion capability=’grounded’) or with no
disorder level?

Q12 What are the robots with interaction type = ’exoskeleton’ and that
target some finger movements (with actuation = ’electrical’ or with
actuation = ’hydrolic’ or with actuation = ’series elastic’) ?

61

What are the robots that target some wrist movements with actuation=’series

elastic’?

First, we parse this query and represent it as a tree. The following tree de-

scribes a concept: A robot that targets some wrist movements with actuation

’series elastic’.

root-node

that-node

with-node

“What are the robots”

“that target some wrist movements”

“with actuation = ’series elastic’ ”

Second, we transform the tree into a DL concept by traversing the tree.

The following DL concept corresponds to the tree above.

Robot u ∃targets.(WristMovement u ∃actuation.{series elastic})

Third, we transform the DL concept into a SPARQL concept and con-

struct the SPARQL query:

SELECT DISTINCT ?name

WHERE {

?robot1 rr:has_Name ?name.

?robot1 rdf:type rr:RehabRobots.

?robot1 rr:targets ?movement1.

?movement1 rdf:type rr:WristMovements.

?movement1 rr:has_Actuation ’series elastic’.

62

}

Finally, we execute the SPARQL query and get the answer from Pellet

(answer is “AssistOn-Mobile”).

The answers to a given query are presented to the user as a list. If

the query is about robots, then we also enable the users to click on one of

the robots. By clicking one of the listed robots, the users can view further

properties of these robots.

4.1 RehabRobo-CNL

RehabRobo-Query allows users to express queries about rehabilitation

robots. We introduced a controlled natural language (CNL), called RehabRobo-

CNL, to express these queries.

The grammar of RehabRobo-CNL is shown in Table 4.2. With RehabRobo-

CNL, it is possible to construct queries that contain nested relative clauses,

disjunctions, conjunctions, negations, and quantifications; such as some, all,

any, none.

To eliminate the ambiguities in nesting of conjunctions and disjunctions,

RehabRobo-CNL provides two ways of constructing a query: A query in

RehabRobo-CNL should either be in Conjunctive Normal Form (CNF),

or in Disjunctive Normal Form (DNF). In other words, RehabRobo-CNL

supports conjunctions of simple disjunctions, and disjunctions of simple con-

junctions. No further nesting of conjunctions (resp., disjunctions) in a simple

disjunction (resp., conjunction) is allowed. A query can contain any number

of conjunctions and disjunctions on the condition that they match to the rule

above. An example of a query in CNF is as follows.

63

Table 4.2: The Grammar of RehabRobo-CNL

Query → WhatQuery QuestionMark
WhatQuery → What are the Type() GeneralRelation
GeneralRelation → SimpleRelation NestedRelation∗

SimpleRelation → (that RelativeClause)+
SimpleRelation → that InstanceRelation
SimpleRelation → WithRelation

NestedRelation → (and LP SimpleDisjunction RP)∗
NestedRelation → (or LP SimpleConjunction RP)∗

SimpleDisjunction → (SimpleRelation or)∗ SimpleRelation
SimpleConjunction → (SimpleRelation and)∗ SimpleRelation
RelativeClause → V erb() (some | all | the) Type()
RelativeClause → Neg V erb() any Type()

InstanceRelation → Neg? V erb() the Type() Instance()
WithRelation → with Noun() EqCheck V alue()+
WithRelation → with Quantifier Noun()
WithRelation → (with | without) Noun()

EqCheck → = | ! = | ≤ | ≥
Quantifier → some | all | none
Neg → Neg()
LP → (
RP →)
QuestionMark → ?

What are the robots with mechanism type=’hybrid’ and (with motion ca-

pability =’grounded’ or with functionality=’clinic’) and that target some wrist

movements?

The following query is in DNF:

“What are the robots with no targeted disorder or (with active degree of

freedom>1 and with control modes=’{active,assistive}’ and with no disorder

level)?”

The italic functions in the grammar extract relevant information from

RehabRobo-Onto. These ontology functions are described in Table 4.3.

64

Table 4.3: The Ontology Functions

Type() Returns the types that correspond to concept names. They
are: Robots, movements, users, publications and metrics.

Instance() Returns robot names for robots and user names for users.
V erb() Returns the verbs that correspond to object properties be-

tween concepts. Returns both active and passive forms of
these verbs. Active forms of these verbs are: Target, evalu-
ate, reference, own.

Noun() Returns the nouns that correspond to data properties. ex.
targeted disorder, active degree of freedom.

V alue() Returns the suitable values according to a given noun. Cor-
responds to the pre-defined ranges of data properties.

Neg() Returns a suitable negation phrase. These phases are: do
not, are not.

The information extracted with the ontology functions are coupled by

their relevance. For instance, only the verb “reference” can appear after the

type Publications. By matching types with verbs, it is possible to prevent

semantically wrong queries like “What are the publications that target some

shoulder movements?”. All of the matches between types and verbs are shown

in Table 4.4. Similarly, it is necessary to match verbs with types.

Table 4.5 lists the available types that can occur after a verb in the query

(e.g., in a RelativeClause).

Table 4.5 also demonstrates what kinds of types are extracted from the

ontology according to the query. If a quantifier such as “some” is used in

a relative clause, then the types which have a number of subclasses are ex-

tracted. If “the” keyword is used after the verb, then the leaf classes are

extracted to select one specific type. The following query illustrates the first

case.

What are the robots that evaluate some wrist movements?

65

Since wrist movements class have subclasses (e.g., wrist flexion/extension,

wrist radial deviation/ulnar deviation) in RehabRobo-Onto, this query

will retrieve all robots that target at least one of these subclasses. An example

for a query with “the” is as follows.

What are the robots that target the wrist radial deviation/ulnar deviation?

Wrist radial deviation/ulnar deviation is a leaf class. It is also a subclass

of wrist movements. This query will retrieve the robots that target this

specific wrist movement. If there is a robot that targets some other wrist

movements but wrist radial deviation/ulnar deviation, then this robot will

not be included in the answer to this query.

Table 4.4: Verbs that can occur after the nouns

Type() that V erb()
robots → target
robots → are owned/maintained
robots → evaluate

movements → are targeted by
users → own/maintain
publications → reference
effort metrics → are evaluated by
kinematic aspect metrics → are evaluated by
movement quality metrics → are evaluated by
muscle strength metrics → are evaluated by
psychomotoric aspect metrics → are evaluated by

In RehabRobo-CNL, the instances of the concepts are represented by

one of their distinctive properties. For robots, this distinctive property is its

name; for users, it is the user name. To illustrate, when the user wants to

query about AssistOn-Shoulder, s/he specifies the instance using the name of

the robot. For movements and metrics, there is no such distinctive property

66

Table 4.5: Types that can occur after the verbs

V erb() (some | all | any∗ | the) Type()
target (some | all | any) all movements except leaf classes
target the leaf classes of movements

evaluate (some | all | any) all metrics except leaf classes
evaluate the leaf classes of metrics

are targeted by (some | all | any) robots
are evaluated by (some | all | any) robots
reference (some | all | any) robots
own (some | all | any) robots
are owned by (some | all | any) users

∗ any is used after negative verbs.

because the concept names are sufficient to specify a movement or metric.

In fact, using RelativeClause is sufficient to query about them. To query

about robots or users, however, we use InstanceRelation to extract the

instances. Table 4.6 demonstrates the relevant properties of the instances

that appear when a type is selected.

Table 4.6: Instances that can occur after the types

Type() Instance()
robot → name of the robot
user → username of the user

In addition to types and verbs, types are matched with the relevant nouns,

as shown in Table 4.7. For instance, control modes are matched with robots

whereas actuation is matched with movements. Further, the values for the

nouns are extracted to allow suitable entries from the users. These values

are listed in Table 4.8. The values can be considered as ranges of the nouns,

that the user can choose from.

67

Table 4.7: Nouns that can occur after the types

Type() with Noun()
robots → active degree of freedom
robots → control modes
robots → disorder level
robots → functionality
robots → interaction type
robots → intervention time
robots → kinematic type
robots → motion capability
robots → name
robots → passive degree of freedom
robots → targeted disorder
robots → targeted population

movements → actuation
movements → backdrivability
movements → backdrivability type
movements → maximum range of motion
movements → minimum range of motion
movements → range of motion type
movements → transmission

publications → authors
publications → clinical study
publications → place of publication
publications → title
publications → url
publications → year

users → institution
users → mail
users → username

68

Table 4.8: Values that can occur after the nouns

Noun() ∗ V alue()
active DoF∗∗ → any integer value entered by the user
actuation → electrical, electro-rheological, hydrolic, pneu-

matic, series elastic, variable impedance, other
authors → one of the authors that are added to the ontol-

ogy up to now
backdrivability → backdrivable, non-backdrivable
backdrivability type → active, passive
control modes → ADL, BCI, EMG, active, assistive, bilateral,

multilateral, passive, resistive
disorder level → mild, moderate, severe
functionality → clinic,home
institution → one of the institutions that are added to the

ontology up to now
interaction type → exoskeleton, mixed, suspension, end effector
intervention time → acute, chronic, subacute
kinematic type → hybrid, parallel, serial
motion capability → grounded, mobile
name → one of the robot names that are added to the

ontology up to now
passive DoF → any integer value entered by the user
place of publication → one of the places of publication that are added

to the ontology up to now
maximum RoM∗∗∗ → any float value entered by the user
minimum RoM → any float value entered by the user
RoM type → active, passive
targeted disorder → stroke, spine cord injury
targeted population → adult, pediatric
title → one of the publication titles that are added to

the ontology up to now
transmission → belt drive, cable drive, capstan drive, direct

drive, gear train, harmonic drive, other
url → one of the urls that are added to the ontology

up to now
username → one of the usernames that are added to the on-

tology up to now
year → any year (integer value) entered by the user

∗ (EqCheck|Quantifier)
∗∗ degree of freedom
∗∗∗ range of motion 69

4.2 Transforming a Query in RehabRobo-CNL to a SPARQL

Query

To answer a query in RehabRobo-CNL, we transform the query into a

SPARQL query with the following steps.

1. We parse the query and form a query description tree.

2. We traverse the tree and obtain a DL concept description.

3. We transform the DL concept into a SPARQL concept.

4. We form a SPARQL query.

Query Description Trees (QDT)

We use a rooted, directed tree, called query description tree (QDT), to parse

the RehabRobo-CNL query entered by the user. In this tree, there are five

types of nodes:

• root-node: Represents the sort of the query.

• that-node: Represents a relative clause beginning with “that”.

• with-node: Represents a relative clause beginning with “with”.

• and-node: Represents a conjunction.

• or-node: Represents a disjunction.

Every root/that/with-node characterizes a phrase and a type/instance.

An and/or-node cannot be a leaf. For each path from the root node to a leaf

70

node, there can be at most one and-node and one or-node. With-nodes are

leaves only. That-node has one child only.

Consider, for instance, the QDT in Figure 4.1 for the query: “What are

the robots that target some shoulder movements with actuation=’electrical’

and (with transmission=’cable drive’ or with transmission=’direct drive’)?”

root-node

that-node

with-node

“What are the robots”

“that target some shoulder movements”

“with actuation=’electrical’ ”

and-node

or-node

with-node

“with transmission=’cable drive’ ”

with-node

“with transmission=’direct drive’ ”

Figure 4.1: Tree representation of the sample query.

This tree is constructed online while the user expresses the query by the

help of the user interface. The root denotes the beginning of the query “What

are the robots...”. According to the root, the answer to the query will contain

robot names only. Since the query is about robots, the type contained in the

root is “robot”.

The relative clause about these robots is the child of the root, and since

this relative clause starts with “that”, it is a that-node. The type contained

in this node is “shoulder movement”.

The query continues with a conjunction of relative clauses, including a

simple disjunction. Clauses joined with a conjunction (resp., disjunction) are

71

characterized by an and-node (resp., or-node) as their parent. Since these

relative clauses start with “with”, they are with-nodes. They include values

of properties instead of types.

From QDT to a DL concept

The tree representing the query, in fact, represents a concept. While creating

a query, we define a new concept and search for its instances. Retrieved

instances that fit our description are the answers to our query.

By a depth-first traversal of a QDT, we represent the corresponding con-

cept in Description Logics (DL) as presented in Algorithm 1. Algorithm 2

demonstrates the transformation for a that-node and Algorithm 3 demon-

strates the transformation for a with-node.

As the algorithm traverses a QDT, according to the types of nodes, it

generates parts of the DL concept. For instance, let us explain Algorithm 1

by an example. Suppose that the input is the tree in Figure 4.1. It starts

from the root node and enters the first if condition. Since the associated

class of the node is “robot”, our concept description starts with Robot. Then,

the algorithm calls transform recursively for each child of the root node. In

the first recursive call, since the current node is a that-node, the algorithm

calls transformThatNode (Algorithm 2) and passes that-node as an input.

Since it has a child node, the first condition of having children is satisfied.

Next, the algorithm calls transform for its child node, and-node, whose

children are conjoined after each transformation. The first child of and-node

is transformed into an existential restriction by calling transformWithNode

(Algorithm 3). The second child of and-node contains a simple disjunction.

The algorithm transforms the information in the children of or-node into

72

existential restrictions and disjoins them. Finally, the algorithm finishes

recursions and returns to that-node, covers the transformation of its children

with brackets, and transforms that-node into an existential restriction. The

resulting DL concept that is returned from the algorithm is as follows.

Robot u ∃targets.(ShoulderMovementsu

(∃actuation.{electrical}u

(∃transmission.{cabledrive} t ∃transmission.{directdrive})))

Algorithm 1: transform
Input : A tree T representing the concept that the user described
Output: A DL concept description Q that represents the concept in T
// n.class denote associated class of a node n
// n.children denote children of a node n
Q← ∅;
n← first (root) node in T ;
if n is a root-node then

Q← Q u n.class;
foreach child node c ∈ n.children do

Q← Q u transform(c);

else if n is a that-node then
Q← Q u transformThatNode(n);

else if n is a with-node then
Q← Q u transformWithNode(n);

else if n is an and-node OR n is an or-node then
tempQ← ∅;
foreach child node c ∈ n.children do

if n is an and-node then
tempQ← tempQ u transform(c);

else
tempQ← tempQ t transform(c);

Q← Q u (tempQ);
return Q

73

Algorithm 2: transformThatNode
Input : A that-node n
Output: A DL concept description Q that represents the concept in n
// n.class denote associated class of a node n
// n.verb denote associated verb of a node n
// n.negative denote the negativity of a node n
// n.quantifier denote the quantifier of a node n
// n.instance denote the instance of a node n, if exists
// n.child denote child of a node n
// n.class.identifierNoun denote the noun that identifies n.class
Q← ∅;
childQ← ∅;
if n.child is not empty then

childQ← transform(n.child);
else if n includes an instance then

childQ← ∃(n.class.identifierNoun).{n.instance};
if n.quantifier = ALL then

if n.verb is passive then
Q← Q u ∀(n.verb)−.((n.class) u childQ);

else
Q← Q u ∀(n.verb).((n.class) u childQ);

else
// If there is no quantifier or the quantifier is SOME
if n.verb is passive then

Q← Q u ∃(n.verb)−.((n.class) u childQ);
else

Q← Q u ∃(n.verb).((n.class) u childQ);

if n.negative = True then
Q← ¬Q;

return Q

74

Algorithm 3: transformWithNode
Input : A with-node n
Output: A DL concept description Q that represents the concept in n
// n.noun denote associated noun of a node n
// n.values denote the list of values of a node n
// n.quantifier denote the quantifier of a node n
// n.aggregator denote the aggregator of a node n
// n.datatype denote datatype of the noun in a node n
Q← ∅;
if n.noun is functional then

if n.datatype = boolean then
Q← Q u ∃(n.noun).{′n.values′0^^xsd : boolean};

else
if n.aggregator =′≥′ or n.aggregator =′≤′ then

Q← Q u ∃(n.noun).(n.aggregator)n.values0 ;
else if n.aggregator =′=′ then

Q← Q u ∃(n.noun).{n.values0};
else if n.aggregator =′! =′ then

foreach value v ∈ n.values do
Q← Q u ¬∃(n.noun).{v};

else
if n.quantifier = NO then

Q← Q u ¬∃(n.noun).xsd : (n.datatype);
else if n.quantifier = ALL then

Q← Q u ∀(n.noun).xsd : (n.datatype);
else if n.quantifier = SOME then

Q← Q u ∃(n.noun).xsd : (n.datatype);
else

if n.aggregator =′=′ then
foreach value v ∈ n.values do

Q← Q u ∃(n.noun).{v};

else if n.aggregator =′! =′ then
foreach value v ∈ n.values do

Q← Q u ¬∃(n.noun).{v};

return Q

75

From a DL concept to a SPARQL concept

To obtain a SPARQL concept from a DL concept, we utilize some of the

existing translations in related publications, such as [53] and [24]. We also

introduce some novel transformations that are not covered by other work.

Some transformation examples are shown in Table 4.9. The transformations

without a citation are novel transformations introduced in this thesis.

Novel transformations include the transformation of inverse roles. Con-

sider the inverse role example in Table 4.9. DL representation of this concept

corresponds to the following first-order formula.

∃x.targets(x, y) ∧Robot(x)

In this formula, we state that “there exists a robot x that targets a movement

y”. Our transformation to SPARQL includes two triples, having a common

variable x. The variable x should satisfy two conditions: it must be a robot

and it must target a movement y. According to the semantics of AND operator

(denoted with a dot) in Section 2.3, the result contains the mappings of x

and y to the nodes in the ontology, that agree on the nodes that correspond

to x. This corresponds to the existential restriction in the first-order formula,

that should satisfy two conditions combined with a conjunction. Therefore,

evaluation of the DL concept and the SPARQL concept will return the same

result.

Consider the complement example in Table 4.9. DL representation of this

concept contains a negated existential quantifier. SPARQL transformation

contains a triple covered with FILTER NOT EXISTS. The triple searches for a

mapping of variable x to a node, that is related to another node AssistOn

with an edge that characterizes has_Name relation. This corresponds to an ex-

istential restriction. However, we do not want such mappings of x. Therefore,

76

according to the semantics of NOT EXISTS in a filter expression (explained in

Section 2.3), FILTER NOT EXISTS {C} is satisfied if the mapping of C is an

empty set. Therefore, there should not be any mapping of the variables in

C to a node in the ontology. The result that is returned from our SPARQL

concept will not contain any node that satisfies the condition in the triple,

and that corresponds to a negated existential restriction: all x must not have

name AssistOn. Therefore, evaluation of the DL concept and the SPARQL

concept will return the same result.

Finally, consider the universal restriction example in Table 4.9. DL de-

scription of this concept represents the publications that reference all robots,

and for that, it contains a universal quantifier. To represent this concept

with SPARQL, we need to describe such publications by making sure that

there is no robot in the ontology that is not referenced by that publication.

To describe such publications in SPARQL, we use an expression constructed

with two FILTER NOT EXISTS. Since a universal restriction such as ∀xA(x)

corresponds to a negated existential restriction ¬∃x¬A(x), each FILTER NOT

EXISTS operator in the SPARQL query corresponds to a negation.

We first use two triples to represent a publication that references a robot.

Then, we refer to that publication with its variable, x. We also use these

triples to make sure that the query does not return an answer if there is no

robot in the ontology. In such a case, even though the remaining FILTER

expression is satisfied, the set of mappings for x will be an empty set because

none of the publications in the ontology could reference a robot.

The first FILTER NOT EXISTS expression contains another FILTER NOT

EXISTS expression, which contains a triple that represents the robots y2 ref-

erenced by the previously described publication x. There is a triple in the

77

first expression as well, that states y2 is a robot. Since both expressions

contain the same variable, the mappings should agree on the robot y2. In

addition, the set of mappings for y2 must be an empty set to satisfy the

inner FILTER NOT EXISTS expression. The outer FILTER NOT EXISTS ex-

pression then contains the instances of the robots (mappings for y2) that

are not referenced by the publication x. The set of such instances must be

empty to satisfy this expression. Otherwise, the query does not return an an-

swer. Therefore, we represent a universal restriction as a negated existential

restriction in SPARQL using its operators.

Let us explain the transformation of a DL concept to a SPARQL concept

by explaining it over our DL concept. The following DL concept is the

concept description that we obtained from our example query.

Robot u ∃targets.(ShoulderMovementsu

(∃actuation.{electrical}u

(∃transmission.{cabledrive} t ∃transmission.{directdrive})))

First, we transform the concept Robot. For that, we assign a variable for

robot, and specify its type, RehabRobots:

?robot1 rdf:type rr:RehabRobots.

Second, we transform the existential restriction ∃targets.(ShoulderMovements).

The transformation of an existential restriction results in two triples. The

first triple is about the relation, and the second triple is about the type of

the second variable in the relation. With the following triple, we say that

our robot targets a movement of type ShoulderMovements.

?robot1 rr:targets ?movement1.

?movement1 rdf:type rr:ShoulderMovements.

78

Then, the concept description contains a hasValue restriction, which is trans-

formed into one triple. The triple specifying that the targeted movement has

an electrical actuation is as follows.

?movement1 rr:has_Actuation ’electrical’.

Finally, we transform the simple disjunction that contains two hasValue re-

strictions as follows. We combine the triples with UNION, a keyword that

SPARQL provides for disjunctions.

{?movement1 rr:has_Transmission ’cable drive’.}

UNION

{?movement1 rr:has_Transmission ’direct drive’.}

The resulting SPARQL concept:

?robot1 rdf:type rr:RehabRobots.

?robot1 rr:targets ?movement1.

?movement1 rdf:type rr:ShoulderMovements.

?movement1 rr:has_Actuation ’electrical’.

{?movement1 rr:has_Transmission ’cable drive’.}

UNION

{?movement1 rr:has_Transmission ’direct drive’.}

Then, we can construct a SPARQL query as follows. We start with a

PREFIX part and we declare the namespace (the location of an ontology on

the Web) of RehabRobo-Onto. Next, we continue with a SELECT clause.

The instances of type Robot, by themselves, are not meaningful to the users.

Thus, we want to display the names of the instances to the users. We specify

79

Table 4.9: DL to SPARQL Transformation Examples

Constructor DL SPARQL
Concept [24] Robot ?x rdf:type ns:RehabRobots.

Role [53] targets ?x ns:targets ?y.

Complement ¬∃name.{AssistOn}
FILTER NOT EXISTS {
?x ns:has_Name ’AssistOn’.
}

Inverse Role ∃targets−.Robot ?x ns:targets ?y.
?x rdf:type ns:RehabRobots.

Existential Restriction [53] ∃targets.ShoulderMovements ?x ns:targets ?y.
?y rdf:type ns:ShoulderMovements.

hasValue Restriction [53] ∃name.{AssistOn} ?x ns:has_Name ’AssistOn’.

Universal Restriction ∀reference.Robot

?x rr:reference ?y.
?y rdf:type rr:RehabRobots.
FILTER NOT EXISTS {
FILTER NOT EXISTS {
?x rr:reference ?y2.}
?y2 rdf:type rr:RehabRobots.}

Intersection [24] Robot u ∃functionality.{clinic} ?x rdf:type ns:RehabRobots.
?x ns:has_Functionality ’clinic’.

Union [24] ∃functionality.{clinic}t
∃motionCapability.{grounded}

{?x ns:has_Functionality ’clinic’.}
UNION
{?x ns:has_Motion_Capability ’grounded’.}

it with an additional triple in the beginning of the WHERE clause, and

continue the clause with the transformed SPARQL concept:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rr: <http://www.semanticweb.org/ontologies/2012/RehabOnto.owl#>

SELECT DISTINCT ?name

WHERE {

?robot1 rr:has_Name ?name.

?robot1 rdf:type rr:RehabRobots.

?robot1 rr:targets ?movement1.

80

?movement1 rdf:type rr:ShoulderMovements.

?movement1 rr:has_Actuation ’electrical’.

{?movement1 rr:has_Transmission ’cable drive’.}

UNION

{?movement1 rr:has_Transmission ’direct drive’.}

}

In Appendix A, the transformation of each query in Table 4.1 is demon-

strated step by step, including its CNL, tree, DL and SPARQL representa-

tions; and the answers to the queries computed by Pellet.

4.3 Answering Queries Using Pellet

We use the DL reasoner Pellet to find answers to queries, through the Jena

framework. With Pellet, it is possible

• to check the consistency of RehabRobo-Onto, and

• to generate explanations in the case of inconsistencies, and

• to query RehabRobo-Onto with SPARQL.

Consider, for instance, the query Q1 from Table 4.1, whose SPARQL

representation is as follows.

SELECT DISTINCT ?name

WHERE {

?robot1 rr:has_Name ?name.

?robot1 rdf:type rr:RehabRobots.

?robot1 rr:targets ?movement1.

81

?movement1 rdf:type rr:WristMovements.

?movement1 rr:has_Actuation ’series elastic’.

}

After loading RehabRobo-Onto into Pellet, we present this SPARQL

query to Pellet, and get the following answer:

(?name = "AssistOn-Mobile")

Consider, for instance, another query, Q10 from Table 4.1:

What are the publications with place of publication ’ICORR’ and that ref-

erence some robots that are owned/maintained by some users with institution

’Sabanci University’ ?

SPARQL representation of this query is as follows.

SELECT DISTINCT ?name

WHERE {

?publication1 rr:has_Title ?name.

?publication1 rdf:type rr:References.

?publication1 rr:has_PublishedAt ’ICORR’.

?robot1 rr:hasReference ?publication1.

?robot1 rdf:type rr:RehabRobots.

?robot1 rr:ownedBy ?user1.

?user1 rdf:type rr:Owners.

?user1 rr:has_Institution ’Sabanci University’.

}

We get the following answers from Pellet to this query:

82

(?name = "Brain Computer Interface based Robotic Rehabilitation

with Online Modification of Task Speed")

(?name = "Passive Velocity Field Control of a Forearm-Wrist

Rehabilitation Robot")

(?name = "Design of a reconfigurable ankle rehabilitation robot

and its use for the estimation of the ankle impedance")

In order to prevent inconsistencies in RehabRobo-Onto, we do consis-

tency checks with Pellet. A consistency check can be done before adding an

assertion to RehabRobo-Onto, or before querying RehabRobo-Onto.

An example consistency check in Java is demonstrated in Figure 4.2.

Here, we load the terminology and all of the assertions into the reasoner.

Then, Pellet creates an inference graph and traces the ontology to pinpoint

a contradictory fact, if exists in the ontology. Since RehabRobo-Onto is

consistent, Pellet does not enter the inconsistency condition and displays

a message stating that the ontology is consistent.

Assume that one of the assertions about a robot causes inconsistency in

RehabRobo-Onto, and it is about the motion capability of that robot. We

defined motion capability as a functional property in RehabRobo-Onto;

that is, a robot must have at most one motion capability. Suppose that

a robot has both “grounded” and “mobile” motion capabilities, even though

entering such information is prevented in RehabRobo-Query, by providing

radiobuttons for functional properties. Pellet can detect the statements in

the ontology that cause an inconsistency, as shown in Figure 4.3. We can

instruct Pellet to display the inconsistent statements in OWL/XML format

(as specified in Figure 4.2), or we can iterate over the statements one by one

in triples as shown in Figure 4.3. Pellet can also detect inconsistencies in

83

Figure 4.2: Consistency check for RehabRobo-Onto.

TBox and pinpoint the unsatisfiable concepts.

4.4 Intelligent User Interface for RehabRobo-Query

RehabRobo-Query allows users to express queries in RehabRobo-CNL,

about rehabilitation robots, by the help of its intelligent and interactive user

interface.

The main user interface for querying includes a drop-down list, showing

the possible ways to begin a query. Then, according to the user’s choices, it

provides different types of features.

RehabRobo-Query provides auto-completion to help users enter values

for nouns that correspond to data properties of type string.

If the user should choose a concept among a hierarchy, then RehabRobo-

Query displays an accordion view and enables the user to click on the option

84

Figure 4.3: Explanation generation with Pellet.

s/he wants.

In addition, RehabRobo-Query allows multiple selection of values for

relational properties. For functional properties, user is able to select multiple

items for inequality. User can choose a number of options among “less than

or equal”, “more than or equal”, “equal” and “not equal” while entering values

for a data property of type integer or float.

In Figures 4.4 and 4.5, constructing the query Q1 with RehabRobo-

Query is shown.

How the results of a query is displayed to user depends on the query. For

instance, if the query is about robots, then the user sees the names of the

retrieved robots. If the query is about movements or metrics, then the user

sees the concept names instead of the instance URIs which would make no

sense to the user. In Table 4.10 the answers corresponding to the starting

85

Figure 4.4: Constructing Q1 (1).

type of the queries are shown.

The answer to this query is shown in Figure 4.6. As seen from this figure,

it is possible to click on the robot name. The user can click on the robot

name to see further properties of this robot.

86

Figure 4.5: Constructing Q1 (2).

87

Table 4.10: Answers for the query types

Q∗ Type() Answer
robots → names of the robots
movements → leaf classes of the movements
users → usernames of the users
publications → the titles of the publications
effort metrics → leaf classes of the effort metrics
kinematic aspect metrics → leaf classes of the kinematic as-

pect metrics
movement quality metrics → leaf classes of the movement

quality metrics
muscle strength metrics → leaf classes of the muscle

strength metrics
psychomotoric aspect metrics → leaf classes of the psychomotoric

aspect metrics
∗ Q represents the beginning of the query: “What are the”

Figure 4.6: Answer to Q1.

88

Chapter 5

5 Interoperability of RehabRobo-Onto

Having a structured formal representation of knowledge about rehabilitation

robots allows reasoning (e.g., answering complex queries) that requires inte-

gration with other knowledge resources. We consider two existing ontologies.

The first one is Foundational Model of Anatomy (FMA) [60], which is an on-

tology about human anatomy. The second related domain is Human Disease

Ontology (DO) [54], which provides a hiearchy for human diseases.

FMA is first created as a MySQL relational database, then there had been

ongoing efforts to convert FMA into a DL-based representation in OWL, to

stay close to the original representation and to represent the knowledge cor-

rectly. The ontology is open source and its OWL representation is available

online.

DO is also initially developed as a relational database, then made available

in obo format 11. Currently, its OWL representation is available online, which

is created using a conversion script obo2owl, owned by The Open Biological

and Biomedical Ontologies (OBO) Foundry.
11http://www.geneontology.org/GO.format.obo-1_2.shtml

89

5.1 Integration with FMA

Below are example queries (FMA1-FMA3) that can be asked over FMA and

RehabRobo-Onto. Under each query, additional information about the

concepts in FMA, the rules in Semantic Web Rules Language (SWRL) [33]

to integrate relevant concepts, SPARQL representations of the queries, and

the answers to the queries are presented. Queries FMA4 -FMA8 are presented

in Appendix B.

SWRL combines OWL DL with the Unary/Binary Datalog RuleML sub-

language. A SWRL rule contains two parts. They are called body and head,

that constitute the antecedent part and the consequent part, respectively.

According to the human readable syntax in [33], where the syntax and se-

mantics of SWRL are described, a SWRL rule has the form as follows.

antecedent→ consequent

As seen from the form above, the rules in SWRL are in the form of an

implication. Therefore, if the conditions in the body are true, then the

conditions in the head are also true. The conditions are constituted using

zero or more atoms; and multiple atoms are conjoined. The atoms that we

consider in this thesis have the form C(?x) where C is a concept and x is a

variable that corresponds to instances. Atoms can be of other forms, such as

properties; however, we do not consider them in this thesis and refer to [33]

for further information.

The variables in a rule are universally quantified, and their scope are

limited to the corresponding rule. According to the safety condition, the

variables in the head of a rule must occur in the body.

We define the semantics of a SWRL rule as follows [33]. An interpretation

I is a tuple I =< R,EC, S >, where R is a set of resources, EC is a mapping

90

from concepts to subsets ofR, and S is a mapping from names of the instances

to elements of EC(owl : Thing). A binding B(I) extends an interpretation

I such that S maps variables to elements of EC(owl : Thing). Let C be

an OWL concept and x a variable, then an atom C(x) is satisfied by an

interpretation I under the condition of S(x) ∈ EC(C).

A binding B(I) satisfies a body A (resp., head C) iff B(I) satisfies every

atom in A (resp., C). An interpretation I satisfies a rule iff every binding

B(I) that satisfies the body also satisfies the head.

It is possible to add rules in SWRL into an ontology in OWL, using

Protégé ontology editor. In the examples below, we demonstrate the rules

window of Protégé from where we add rules. In order to add rules that

contain concepts of different ontologies, we import the relevant ontologies.

Then, Protégé allows storing the rules in a seperate file from the ontologies.

To ask queries over the ontologies and the rules, we utilize DL reasoner

Pellet. We load the ontologies and the relevant files that keep the rules.

Then we query over instances as shown in the examples below.

FMA1. What are the body parts that can be affected by some forearm

robots?

In order to answer FMA1, we can add a rule in SWRL to integrate some

parts that can be affected by forearm pronation/supination movement. For

instance, “Ulna” or “Radius” are modeled as constitutional parts of “Forearm”,

and regional parts of “Skeleton of forearm” in FMA (Figure 5.1). In the

figures, we label the edges that relate the relevant concepts as “related”, for

illustration purposes.

Both “constitutional_part_of” and “regional_part_of” are properties that

are subproperties of “part_of”. The rules that integrate concepts Forearm

91

and Skeleton of forearm in FMA with the concept ForearmMovements ac-

cording to Figure 5.1 are shown in Figure 5.2. These concepts are integrated

with an SWRL rule, to state that the instances of ForearmMovements are

also instances of Forearm and Skeleton of forearm. We consider the con-

cepts of RehabRobo-Onto in the body of the rules, and the concepts of

the other ontologies in the head. However, it is possible to add rules that

contain concepts of the other ontology in the body whereas the concepts of

RehabRobo-Onto are in the head. Figure 5.2 demonstrates both types of

rules.

The following SPARQL query corresponds to FMA1. With the implica-

tion rule stating that the instances of forearm pronation/supination move-

ment are related to concepts about forearm, we can obtain related concepts

in FMA using the variable of the related movement and rdf:type predicate.

SELECT DISTINCT ?bodyPartLabel

WHERE {

?robot rdf:type rr:ForearmRobots.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?fmaConcept.

?bodyPart rdfs:subClassOf ?restriction.

?restriction owl:onProperty fma:part_of.

?restriction owl:someValuesFrom ?fmaConcept.

?bodyPart rdfs:label ?bodyPartLabel.

}

The answer to FMA1, with the code snippet that presents the query to

Pellet for execution, is shown in Figure 5.3. In this code snippet, the parts

92

Bone Organ

UlnaRadius

...

Forearm

Skeleton of forearm

constitutional_part_of

is_a

regional_part_of

ForearmMovements

JointMovements

related

FMA RehabRobo-Onto

related

Figure 5.1: Hierarchy and integration of concepts for FMA1.

of the SPARQL query that relate the integrated concepts are highlighted

with a circle.

FMA2. What are the rehabilitation robots that do not affect a joint

under synovial joint of free limb segment?

SELECT DISTINCT ?robotName

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ?robotName.

FILTER NOT EXISTS{

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?fmaConcept.

?fmaConcept rdfs:subClassOf ?superClass.

?superClass rdfs:label ’Synovial joint of free limb segment’.

}

}

93

Figure 5.2: Importing ontologies and adding SWRL rules to answer FMA1.

“Synovial joint of free limb segment” concept in FMA has subclasses such

as “Elbow joint”, “Knee joint”, “Wrist joint”, “Ankle joint”. They can be in-

tegrated with the concepts “ElbowMovements”, “KneeMovements”, “Wrist-

Movements” and “AnkleMovements” in RehabRobo-Onto (Figure 5.4).

The rules that integrate relevant concepts for FMA2 are shown in Figure 5.5.

With SWRL, it is also possible to add rules that define new concepts based

on the existing concepts of the different ontologies. For instance, defining a

new concept called “AffectedElbowParts” is shown in Figure 5.6. We define

this new concept with the concepts of FMA and RehabRobo-Onto, using

conjunction.

The answer to FMA2, with the code snippet that presents the query to

Pellet for execution, is shown in Figure 5.7. The answer includes robots

that do not target any movements that can affect elbow, knee, wrist or ankle

joints.

94

Figure 5.3: Answer to FMA1.

FMA3. What are the rehabilitation robots that do not affect any muscle

of upper limb?

SELECT DISTINCT ?robotName

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ?robotName.

FILTER NOT EXISTS{

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type fmaConcept.

?fmaConcept rdfs:subClassOf ?superClass.

?superClass rdfs:label ’Muscle of upper limb’.

}

95

Synovial joint of free limb segment

FMA

RehabRobo-Onto

Ankle joint Elbow joint Knee joint Wrist joint

AnkleMovements

ElbowMovements

KneeMovements

WristMovements

related related related related

Figure 5.4: Hierarchy and integration of concepts for FMA2.

Figure 5.5: SWRL rules to answer FMA2.

}

“Muscle of upper limb” class in FMA has many subclasses that can be

mapped to joint movements in RehabRobo-Onto, such as “Muscle of fore-

arm” or “Muscle of shoulder” (Figure 5.8), with the rules shown in Figure 5.9.

The answer to FMA3, with the code snippet that presents the query to

Pellet for execution, is shown in Figure 5.10. The robots that do not target

forearm, shoulder, or hand movements are included in the answer.

96

Figure 5.6: Defining a new concept with SWRL.

5.2 Integration with DO

The possible queries (DO1-DO3) that can be asked over DO and RehabRobo-

Onto are as follows. Under each query, additional information about the

concepts in DO, the rules in SWRL to integrate relevant concepts, SPARQL

representations of the queries, and the answers to the queries are presented.

Queries DO4-DO12 are presented in Appendix C.

DO1. What are the rehabilitation robots that can be used to treat

’shoulder impingement syndrome’ and that target the shoulder scapular ele-

vation/depression?

The following SPARQL query corresponds to DO1. With the implication

rule stating that the instances of shoulder movements are related to shoulder

impingement syndrome, we can obtain related concepts in DO using the

variable of the related movement and rdf:type predicate.

SELECT DISTINCT ?robotName

97

Figure 5.7: Answer to FMA2.

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ?robotName.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?doConcept.

?doConcept rdfs:label ’shoulder impingement syndrome’.

?robot rr:targets ?movement2.

?movement2 rdf:type rr:ShoulderScapularElevation/Depression.

}

“shoulder impingement syndrome” is a bone disease and can be mapped to

(possibly particular) shoulder movements (Figure 5.11) with the rule shown

in Figure 5.12.

98

Muscle of upper limb

FMA

RehabRobo-Onto

Muscle of arm Muscle of forearm Muscle of hand

ForearmMovements

HandMovements

ShoulderMovements

related

Muscle of free upper limb Muscle of pectoral girdle

Muscle of shoulder Pectoral muscle

related related

Figure 5.8: Hierarchy and integration of concepts for FMA3.

Figure 5.9: SWRL rules to answer FMA3.

The answer to DO1, with the code snippet that presents the query to

Pellet for execution, is shown in Figure 5.13.

DO2. What are rehabilitation robots that can be used to treat some

’agnosia’?

SELECT DISTINCT ?robotName

WHERE {

?robot rr:has_Name ?robotName.

?robot rdf:type rr:RehabRobots.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?doConcept.

?doConcept rdfs:subClassOf ?superClass.

99

Figure 5.10: Answer to FMA3.

?superClass rdfs:label ’agnosia’.

}

In FMA, “finger agnosia” is a subclass of “agnosia”, which can be mapped

to (possibly particular) finger movements in RehabRobo-Onto(Figure 5.14).

The rule that relates these concepts is shown in Figure 5.15.

The answer to DO2, with the code snippet that presents the query to

Pellet for execution, is shown in Figure 5.16. The answer includes the

robots that target some finger movements.

DO3. What are the rehabilitation robots that can be used to treat some

’spinal canal and spinal cord meningioma’ and that are target some lumbar

spline movements?

100

Musculoskeletal system disease

FMA RehabRobo-Onto

Arthropathy

Shoulder impingement syndrome
related

ShoulderMovements

...

Figure 5.11: Hierarchy and integration of concepts for DO1.

Figure 5.12: SWRL rule to answer DO1.

SELECT DISTINCT ?robotName

WHERE {

?robot rr:has_Name ?robotName.

?robot rdf:type rr:RehabRobots.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?doConcept.

?doConcept rdfs:subClassOf ?superClass.

?superClass rdfs:label ’spinal canal and spinal cord meningioma’.

?robot rr:targets ?movement2.

?movement2 rdf:type rr:LumbarSplineMovements.

}

101

Figure 5.13: Answer to DO1.

Subclasses of “spinal canal and spinal cord meningioma” include “lumbar

spinal canal and spinal cord meningioma”. It can be mapped to lumbar

spline movements of RehabRobo-Onto (Figure 5.17) with the rule shown

in Figure 5.18.

The answer to DO3, with the code snippet that presents the query to

Pellet for execution, is shown in Figure 5.19. Currently there is no such

robot in RehabRobo-Onto that can be used to treat spinal canal and

spinal cord meningioma, and that targets some lumbar spline movements.

Therefore, we do not get an answer.

5.3 On Extending RehabRobo-Query

By enabling interoperability of FMA and DO with RehabRobo-Onto by

means of a rule layer, it is possible to answer complex queries over multiple

ontologies, in the same way complex queries are answered in [20]. We rep-

102

Speci�c development disorder

FMA RehabRobo-Onto

Agnosia

Finger agnosia
related

FingerMovements

...

JointMovements

Figure 5.14: Hierarchy and integration of concepts for DO2.

Figure 5.15: SWRL rule to answer DO2.

resent the rules in the rule layer, in the rule language Semantic Web Rules

Language (SWRL) [33]. Using SWRL, we can integrate relevant concepts

in the ontologies and perform reasoning tasks (e.g., query answering). DL

reasoners such as Pellet [67] and KAON2 [51] support reasoning over on-

tologies in OWL that include a rule layer.

Some of the queries are grammatically correct with respect to RehabRobo-

CNL, such as

“What are the body parts that can be affected by some forearm robots?”

or

“What are the diseases that require some rehabilitation robots that target

the elbow flexion/extension?”.

To enable such queries, extensions in the vocabulary are sufficient. We need

103

Figure 5.16: Answer to DO2.

to provide “body part” and “disease” as types, “require” and “can affect” as

verbs. Additionally, enabling passive forms of the verbs solves our problem.

However, some queries are not covered by RehabRobo-CNL, such as

“What are the rehabilitation robots that do not affect any muscle of upper

limb?”.

Here, “muscle” and “upper limb” are different concepts. The keyword “of”

specifies the muscles that are subclasses of upper limb. RehabRobo-CNL

does not support such clauses.

In addition, the beginning of the query

“What types of spinal muscular atrophy can be treated using rehabilita-

tion robot X? ”

violates the grammar of RehabRobo-CNL. We need to add one more query

104

Spinal cancer

FMA RehabRobo-Onto

Spinal canal and
spinal cord meningioma

related
LumbarSplineMovements

JointMovements

Lumbar spinal canal and
spinal cord meningioma

Figure 5.17: Hierarchy and integration of concepts for DO3.

Figure 5.18: SWRL rule to answer DO3.

type for WhatQuery to answer this query.

While extending the grammar and the vocabulary, we can also extend

the user interface by providing templates for most common queries. Since

an extension in the grammar would increase the number of options in the

drop-down list, instead of forcing the users to construct a query from the

very beginning, providing templates may assist the users for constructing

new queries as well.

5.4 Integration of RehabRobo-Onto with Patient Data

Enabling integration with patient data allows answering queries about ther-

apies and related information, such as lesions. This paves the way for further

integration with the patient data and the existing ontologies (e.g., disease

ontology) presented in Sections 5.1 and 5.2.

105

Figure 5.19: Answer to DO3.

We present a patient ontology (Figure 5.20), built by Sinan Yurtsever

(2010), which provides information about the patients, their lesions, and

how the therapy is done on a particular patient. It also provides a hierarchy

for movements similar to RehabRobo-Onto. The possible queries that can

be asked over this patient ontology and RehabRobo-Onto are as follows.

We can integrate the Movement concept in the patient ontology with the

JointMovements concept in RehabRobo-Onto. Movements in the patient

ontology also have subconcepts. These subconcepts are integrated with the

concepts in the JointMovements hierarchy in RehabRobo-Onto. With

the SWRL rules shown in Figure 5.21, it is possible to answer the following

queries.

P1. What are the rehabilitation robots that have been used for some

106

IteratedMovement

Patient

hasIteration: positiveInteger

IndexedIteratedMovement

hasIndex: nonNegativeInteger

hasAge: positiveInteger
hasName: string

Movement

ROM: nonNegativeInteger [>=0, <=5]
assistance: short [>=-1, <=1]
speed: nonNegativeInteger [>=0, <=5]

Therapy

ClinicalOutcomeFG: nonNegativeInteger [>=0, <=66]
ClinicalOutcomeFIM: nonNegativeInteger [>=18, <=126]
RoboticROM: nonNegativeInteger [>=0, <=5]
RoboticStrength: nonNegativeInteger [>=0, <=5]

SetOfIIM
Lesion

lesionLocation: string
lesionSize: string

hasIteratedMovement

hasMovement

hasSetofIIM

isElement

treated

hasLesion

Figure 5.20: Patient ontology with main classes.

therapies with clinical outcome FIM ≥ 100?

SELECT DISTINCT ?robotName

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ?robotName.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?movement2.

?movement2 rdf:type po:Movement.

?iteratedMov po:hasMovement ?movement2.

?indexedIteratedMov po:hasIteratedMovement ?iteratedMov.

107

Figure 5.21: SWRL rules over patient ontology and RehabRobo-Onto.

?setOfIIM po:isElement ?indexedIteratedMov.

?therapy po:hasSetofIIM ?setOfIIM.

?therapy po:ClinicalOutcomeFIM ?value. FILTER(?value >= 100)

}

P2. What are the rehabilitation robots that have been used for some

therapies that treated some patients with age ≤ 15?

SELECT DISTINCT ?robotName

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ?robotName.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?movement2.

?movement2 rdf:type po:Movement.

?iteratedMov po:hasMovement ?movement2.

?indexedIteratedMov po:hasIteratedMovement ?iteratedMov.

?setOfIIM po:isElement ?indexedIteratedMov.

108

?therapy po:hasSetofIIM ?setOfIIM.

?therapy po:treated ?patient.

?patient po:hasAge ?value. FILTER(?value <= 15)

}

P3. What are the lesion locations of the patients that have been treated

with the rehabilitation robot ’AssistOn-SE’?

SELECT DISTINCT ?lesionLocation

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ’AssistOn-SE’.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?movement2.

?movement2 rdf:type po:Movement.

?iteratedMov po:hasMovement ?movement2.

?indexedIteratedMov po:hasIteratedMovement ?iteratedMov.

?setOfIIM po:isElement ?indexedIteratedMov.

?therapy po:hasSetofIIM ?setOfIIM.

?therapy po:treated ?patient.

?patient po:hasLesion ?lesion.

?lesion po:lesionLocation ?lesionLocation.

}

P4. What are the therapies that have used some rehabilitation robots

with motion capability=’mobile’?

109

SELECT DISTINCT ?therapy

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:has_Motion_Capability ’mobile’.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?movement2.

?movement2 rdf:type po:Movement.

?iteratedMov po:hasMovement ?movement2.

?indexedIteratedMov po:hasIteratedMovement ?iteratedMov.

?setOfIIM po:isElement ?indexedIteratedMov.

?therapy po:hasSetofIIM ?setOfIIM.

}

P5. What are the publications that reference some rehabilitation robots

that have been used for some therapies that treat some patients that have

lesion size=’small’?

SELECT DISTINCT ?publicationTitle

WHERE {

?publicationTitle rr:has_Title ?publication.

?publication rdf:type rr:References.

?robot rr:has_Reference ?publication.

?robot rdf:type rr:RehabRobots.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?movement2.

110

?movement2 rdf:type po:Movement.

?iteratedMov po:hasMovement ?movement2.

?indexedIteratedMov po:hasIteratedMovement ?iteratedMov.

?setOfIIM po:isElement ?indexedIteratedMov.

?therapy po:hasSetofIIM ?setOfIIM.

?therapy po:treated ?patient.

?patient po:hasLesion ?lesion.

?lesion po:lesionSize ’small’.

}

P1 is grammatically correct with respect to RehabRobo-CNL. By pro-

viding “therapy” in types, “have been used for” in verbs and “clinical outcome”

in nouns that relate to therapies, it is possible to answer P1. Now consider

P3. In the patient ontology, lesions and patients are related to each other

with “hasLesion” relation, and lesions have a lesion location property. Not

only we query for the data properties of the lesion instances, but we also

relate lesions with patients using “of” keyword. Both of them violate the

grammar of RehabRobo-CNL. By providing a new query type (e.g., a new

WhatQuery) in RehabRobo-CNL, or by providing templates for queries

as such, we can overcome these queries which are not covered grammatically

or vocabulary-wise. Note that we use the verbs in present perfect tense since

we are asking about the therapies that have been and still being used for real

patients.

For CNL and user interface, the extensions that we propose here are very

similar to the extensions that we proposed in Section 5.3. The approaches

that we propose for integrating ontologies are also similar to them. By de-

termining the alignments between RehabRobo-Onto and the patient on-

111

tology, we can provide background knowledge with some approaches, such

as rule-based integration. Moreover, by using the automated reasoners that

support these approaches, we can answer queries about the relevant parts of

these two ontologies.

The integration of RehabRobo-Onto and patient ontology is slightly

different from the integration with FMA and DO. It is actually easier due to

the semantic equivalence between the JointMovements concept in RehabRobo-

Onto and Movement concept in patient ontology. Moreover, their hierarchies

are almost equivalent. Therefore, it is possible to provide rules to integrate

these concepts.

Note that the sample queries directly ask about therapies that use robots.

However, in the patient ontology, movements and therapies are not directly

related; there are some other concepts between them such as iterated move-

ments or indexed iterated movements. Since therapies, patients and lesions

in the patient ontology are more important than these concepts, it is possible

to skip these concepts to provide simple natural language queries. We can

add an exceptional condition for patient ontology in our algorithm to make

the necessary connections in the SPARQL query. It is also possible to provide

further integrations, such as mapping of the lesions in the patient ontology

with the diseases in the disease ontology.

112

Chapter 6

6 Related Work

In this section, we discuss related work in two parts. First, we present the

ontologies that are designed and developed for the use of robots. Then, we

provide ontologies about robots. After discussing the most recent efforts

to standardize the terminology about rehabilitation robots, we conclude the

related publications for the first part. The second part involves ontology

systems and tools that support natural language queries over ontologies. We

present most recent research related to our work, and discuss the methods

used in these systems, compared to our system.

6.1 Ontologies and Robots

6.1.1 Ontologies for Robots

There are some ontologies maintaining information about objects or environ-

ments [14,37,55,68,75,77], developed for the use of robots.

Recent works having similar purposes include [39], which constructs an

ontology about the environment of a robot in a semi-automatic way. As their

system makes text analysis, they add the classified terms as ontology entities.

Another work in [9] propose a space ontology to model space with spatial

relations and to define interest zones for a robot.

113

[42] introduce a system built on humanoid robot Nao, which utilizes a

Japanese Wikipedia Ontology as a dictionary for semantic grammar to make

it able to dialogue with the users on many topics. It also utilizes a Robot

Action Ontology to perform related actions to dialogue topics. To integrate

actions and dialogues, they align two ontologies. For that, they register

related keywords manually using rdfs:label property of RDF(S), editing the

keywords from Protégé.

Another recent work is [59], which proposes to use an ontology for the

contexts of the objects recognized by a robot. With this ontology, which

is made beforehand, the robots re-evaluate their regions of interest to send

minimum information to each other.

In [70], an ontology (in OWL) is introduced that serves as a knowledge

base about actions, objects and environments of the robots.

6.1.2 Ontologies about Robots

The related ontologies that are designed and developed for robots cover the

environment and objects around robots, and actions of robots. However,

there are only several works in the literature that have proposed ontologies

specifically about robots.

In particular, Amigoni and Neri [3] introduce two ontologies (in OWL):

one to store general concepts and properties/relations about the movement

capabilities of mobile robots (e.g., wheels and their properties) and the other

to describe the high level tasks that these robots can perform (e.g., move,

rotate). The idea is then to allocate tasks and/or assign roles to mobile

robots by means of querying these two ontologies using a description logics

reasoner.

114

Schlenoff and Messina [62] introduce an ontology (in OWL) for urban

search and rescue robots. The ontology captures structural characteristics

(such as size), functional capabilities (such as locomotion capabilities) and

operational considerations (such as display type) of the robots with a goal of

assisting in the development and testing of search and rescue robot systems.

Juarez et al. [38] introduce a database (called RoboDB) for storing phys-

ical characteristics of robots; but also note that they plan to transform the

knowledge stored in RoboDB into an OWL ontology to benefit from this

“common” language of ontologies and related reasoners.

Nilsson et al. [52] propose to use an ontology (in OWL-S) for modeling

and design of robots. They introduce some possible properties (e.g., cost,

height, length, material, environment conditions) and classes (e.g., sensor,

connector, workpiece) and demonstrate them using Protégé.

6.1.3 Standardization of Rehabilitation Robots

There are some efforts to standardize the methodology for knowledge repre-

sentation in robotics and automation. For instance, a newly formed IEEE

RAS Ontologies and Automation (ORA) working group has recently pub-

lished a paper [61] including ideas for the ontology development process, in-

troducing their subgroups (upper ontology/methodology, autonomous robots,

service robots and industrial robots) and describing domains where the de-

veloped ontologies could be utilized.

Moreover, in [56], ORA working group specifies some elements which

will be represented in the ontologies that they plan to develop, such as path

planning, control, robotic platform, or sensor. As an ontology language, they

plan to use OWL and its variations.

115

None of the existing and proposed robot ontologies have been designed

to target rehabilitation robots and, without further customization, they fail

to capture many important aspects of rehabilitation robots, including the

interoperability with the existing ontologies in physical medicine.

6.2 Ontology Systems that Support Natural Language

Queries

We now give an overview of the tools that support natural language queries

over ontologies. Development of natural language interfaces that provide

query answering over ontologies has been subject of research for many years.

For this reason, many systems [7,11,15,26,40,41,43,47,69,74,78] have been

developed that propose various approaches over some common challenges,

such as processing of the natural language input (balancing ambiguity and

expressiveness) and support for broad or narrow domains (portability).

The most recently developed systems include BioQuery-ASP [21], which

is a software system that answers natural language queries over biomedical

databases and ontologies. It utilizes Answer Set Programming (ASP) [45]

to query such knowledge resources. It allows the users to enter queries in

a controlled natural language from its user interface, and then answers the

queries by transforming the query in a controlled natural language into an

ASP program. To enable interoperability over multiple biomedical ontologies

and databases, it integrates ontologies via a rule layer in ASP. To answer

queries, it utilizes ASP solvers such as clasp [27] and clasp-nk, and it also

provides explanations to the queries.

Ferrández et al. [25] introduce QACID, which covers a movie ontology.

The idea is to train the system using many queries and keep the resulting

116

set of clusters (mostly asked questions) in a database. Then, manually, each

query type is associated with a SPARQL query. Finally, the queries are

answered by a query engine that is implemented in QACID and proposed as

a new entailment-based engine.

FREyA [18] is developed by the creators of and as a development upon

QuestIO [69]. In order to support natural language queries, it uses Stanford

Parser [19] to generate a parse tree. Then, using GATE libraries [16], it tries

to find some ontology concepts that can be mapped to the query terms. Then,

it generates a SPARQL query and executes the query using the inference

engine in BigOWLIM, that supports SPARQL, on the top of Sesame. It

relies on clarification dialogues with users in the cases of ambiguity or in the

cases where the system cannot find an answer to a query. Over time, the

system learns to ask the correct questions to the users by placing correct

suggestions on top of similar queries. The system is tested on one dataset,

and it is stated that FREyA failed to answer some questions (e.g., queries

including negation) correctly. These questions could not be mapped to a

SPARQL query in spite of clarification dialogues and learning mechanism.

Lopez et al. [46] introduce PowerAqua, which is evolved from Aqua-

Log [47]. It provides natural language querying over multiple ontologies;

thus, supports high scalability and portability. It uses GATE libraries and

WordNet [23] to process natural language queries. It transforms the queries

to triples and answers them with its own query engine. To limit the search

space, it uses filtering and ranking heuristics. Since it does not contain any

linguistic knowledge in the background, it has a limited linguistic coverage.

It is good at answering simple questions yet it fails on questions that contain

comparisons and quantifiers.

117

Valencia-García et al. [73] introduce OWLPath, which gets user queries

in a controlled natural language, transforms it into a SPARQL query and ex-

ecutes the query over an ontology via Jena framework and using the DL rea-

soner Pellet. The statements in its CNL start with “View any...” and follow

English grammar. However, they are not full and valid English sentences. Al-

though it is stated that OWLPath provides a Web interface through AJAX,

it is not available online. For each condition in the query, OWLPath adds a

FILTER statement in the SPARQL query. Therefore, the transformation of

the query into SPARQL is not, in fact, a transformation to triples but a set

of FILTER statements. Evaluations are done on ontologies in OWL DL.

118

Chapter 7

7 Conclusion

In this thesis, we presented the first formal rehabilitation robotics ontol-

ogy, called RehabRobo-Onto, to represent information about rehabilita-

tion robots; and a software system RehabRobo-Query to facilitate ac-

cess to this ontology. We have made RehabRobo-Query available on the

cloud, utilizing Amazon EC2 Web services, so that rehabilitation robot de-

signers around the world can add/modify information about their robots in

RehabRobo-Onto, and rehabilitation robot designers and physical medicine

experts around the world can access the knowledge in RehabRobo-Onto

by means of questions about robots, in natural language, with the guide of

the intelligent user-interface of RehabRobo-Query. The users do not have

to know about the underlying logical formalism of the ontology or the for-

malism to represent queries; they do not have to know about the use of the

technologies for computing answers to their questions.

By means of such queries over RehabRobo-Onto, right rehabilitation

robots for a particular patient or a physical therapy can be found or designed;

this further paves the way for translational physical medicine (from bench-

to-bed and back) and personalized physical medicine. RehabRobo-Query

aids exchange of information across rehabilitation robots researchers over the

world, and thus to improve the state-of-the-art; it allows to identify “gaps”

119

in functionality of rehabilitation robots, that can further improve research

efforts. Furthermore, having a structured formal representation of knowledge

about rehabilitation robots, allows answering complex queries that requires

integration with other knowledge resources (e.g., patient databases, disease

ontologies).

The importance of designing and developing ontologies for robotics is em-

phasized by IEEE-RAS Ontologies for Robotics and Automation Working

Group12. The group has initiated the design and development of ontolo-

gies for several sorts of robots (e.g., mobile robots, urban search and rescue

robots). However, none of the existing robot ontologies have been designed to

target rehabilitation robots and, without further customization, they fail to

capture many important aspects of rehabilitation robots, including the inter-

operability with the existing ontologies in physical medicine. Furthermore,

none of them is open-source where the researchers are allowed to contribute

and access. In that sense, our work contributes to efforts towards designing

and developing robotics ontologies.

For many years, there has been an ongoing effort to develop an expressive

and portable natural language interface to query over ontologies. Therefore,

many tools have been developed that cover some aspects of this challenge.

However, the existing tools fail to answer complex questions, such as the ques-

tions that include quantifiers or negation. Moreover, most of them are not

available online to evaluate. In this regard, the grammar of RehabRobo-

CNL supports queries with negation and quantifiers, as well as conjunctions

and disjunctions. Our natural language query answering system is available

online for evaluation.
12http://www.ieee-ras.org/industrial/standards.html

120

We presented possible extensions for interoperability of RehabRobo-

Onto. As future work, integration of RehabRobo-Onto with existing

anatomy, disease and patient ontologies can be achieved by providing a rule

layer between these ontologies and RehabRobo-Onto, for integration of

the related concepts. In addition, some extensions in the grammar, the

algorithms and the user interface are needed to be able to answer complex

queries about therapies, diseases and anatomy. Providing templates for most

common queries may be interesting as well.

121

Appendix

A Transformations of Sample Queries

Every SPARQL query in RehabRobo-Query starts with the prefixes:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rr: <http://www.semanticweb.org/ontologies/2012/RehabOnto.owl#>

Prefix part is removed from the examples in this chapter for simplicity.

122

Q1. What are the robots that target some wrist movements with
actuation=’series elastic’?

Q1 in Query Description Tree:

root-node

that-node

with-node

“What are the robots”

“that target some wrist movements”

“with actuation = ’series elastic’ ”

Q1 in Description Logics (DL):
Robot u ∃target.(WristMovement u ∃actuation.{series elastic})

Q1 in SPARQL:
SELECT DISTINCT ?name
WHERE {

?robot1 rdf:type rr:RehabRobots.
?robot1 rr:has_Name ?name.
?robot1 rr:targets ?movement1.
?movement1 rdf:type rr:WristMovements.
?movement1 rr:has_Actuation ’series elastic’.

}
Answer to Q1:

• AssistOn-Mobile

Figure A.1: Transformation for Q1

123

Q2. What are the effort metrics that are evaluated by some robots with
active degree of freedom ≥ 2?

Q2 in Query Description Tree:

root-node

that-node

with-node

“What are the e�ort metrics”

“that are evaluated by some robots”

“with active degree of freedom>=2”

Q2 in Description Logics (DL):
EffortMetric u ∃evaluate−.(Robot u ∃activeDOF ≥2)

Q2 in SPARQL:
SELECT DISTINCT ?leafClass
WHERE {

?effortmetric1 rdf:type ?leafClass.
?leafClass rdfs:subClassOf rr:EffortAssessment.
FILTER NOT EXISTS {?cl rdfs:subClassOf ?leafClass.
FILTER(?cl != owl:Nothing)}

?robot1 rr:hasAssessment ?effortmetric2.
?effortmetric2 rdf:type ?leafClass.
?robot1 rdf:type rr:RehabRobots.
?robot1 rr:has_Active_DOF ?val1. FILTER(?val1>=(2))

}
Answer to Q2:

• Time To Initiate Movement

• Amount Of Compensation

• Biomechanical Work Energy Power

• Movement Independent Mechanical Effort

• Pain Induced By Movement

• Amount Of Assistance

Figure A.2: Transformation for Q2

124

Q3. What are the movement quality metrics that are evaluated by all
robots with motion capability = ’grounded’ ?

Q3 in Query Description Tree:

root-node

that-node

with-node

“What are the movement quality metrics”

“that are evaluated by all robots”

“with motion capability = ‘grounded’ ”

Q3 in Description Logics (DL):
MovementQualityMetric u
∀evaluate−.(Robot u ∃motionCapability.{grounded})

Q3 in SPARQL:
SELECT DISTINCT ?leafClass
WHERE {

?movementqualitymetric1 rdf:type ?leafClass.
?leafClass rdfs:subClassOf rr:MovementQualityAssessment.
FILTER NOT EXISTS {?cl rdfs:subClassOf ?leafClass.
FILTER(?cl != owl:Nothing)}

FILTER NOT EXISTS {
FILTER NOT EXISTS {
?robot1 rr:hasAssessment ?movementqualitymetric2.
?movementqualitymetric2 rdf:type ?leafClass.

}
?robot1 rdf:type rr:RehabRobots.
?robot1 rr:has_Motion_Capability ’grounded’.

}
}
Answer to Q3:

• Visuomotor Coordination

• Combined Task Coordination

• Single Joint Coordination

• Bimanual Coordination

• Compensation

• Interlimb Coordination

Figure A.3: Transformation for Q3
125

Q4. What are the users with institution=’Sabanci University’ and that
own/maintain the robot ’AssistOn-Wrist’?

Q4 in Query Description Tree:

root-node

with-node

“What are the users”

“with institution = ’Sabancı University’ ” “that own/maintain the robot ‘AssistOn-Wrist’ “

and-node

that-node

Q4 in Description Logics (DL):
User u (∃institution.{Sabanci University}u

∃own.(Robot u ∃name.{AssistOn− Wrist}))

Q4 in SPARQL:

SELECT DISTINCT ?name
WHERE {

?user1 rdf:type rr:Owners.
?user1 rr:has_User_Name ?name.
?user1 rr:has_Institution ’Sabanci University’.
?robot1 rr:ownedBy ?user1.
?robot1 rdf:type rr:RehabRobots.
?robot1 rr:has_Name ’AssistOn-Wrist’.

}

Answer to Q4:

• RehabRobo Onto

Figure A.4: Transformation for Q4

126

Q5. What are the publications with clinical study and that do not
reference any robots with active degree of freedom ≤ 1?

Q5 in Query Description Tree:

root-node

with-node

“What are the publications”

“with clinical study”

“that do not reference
 any robots”

and-node

that-node

with-node

“with active degree of freedom<=1”

Q5 in Description Logics (DL):
Publication u ∃clinicalStudy.{′true′^^xsd : boolean}u
¬∃reference.(Robot u ∃activeDOF ≤1)

Q5 in SPARQL:

SELECT DISTINCT ?name
WHERE {

?publication1 rdf:type rr:References.
?publication1 rr:has_Title ?name.
?publication1 rr:has_Clinical_Study ’true’^^xsd:boolean.
FILTER NOT EXISTS {

?robot1 rr:hasReference ?publication1.
?robot1 rdf:type rr:RehabRobots.
?robot1 rr:has_Active_DOF ?val1. FILTER(?val1<=(1))

}
}

Answer to Q5: No answer

Figure A.5: Transformation for Q5

127

Q6. What are the movements that are targeted by some robots with
(some intervention time or with all targeted disorders)?

Q6 in Query Description Tree:

root-node

with-node

“What are the movements”

“that are targeted by some robots”

“with some intervention time” “with all targeted disorders”

or-node

with-node

that-node

Q6 in Description Logics (DL):
Movement u ∃target−.(Robotu

(∃interventionTime.(xsd : string)t
∀targetedDisorder.(xsd : string)))

Q6 in SPARQL:
SELECT DISTINCT ?leafClass
WHERE {
?movement1 rdf:type ?leafClass.
?leafClass rdfs:subClassOf rr:JointMovements.
FILTER NOT EXISTS {?cl rdfs:subClassOf ?leafClass.
FILTER(?cl != owl:Nothing)}

FILTER NOT EXISTS{?movement1 rr:has_Actuation ’hydrolic’.}
FILTER NOT EXISTS{?movement1 rr:has_Actuation

’pneumatic’.}
FILTER NOT EXISTS{?movement1 rr:has_Actuation ’other’.}
?robot1 rr:targets ?movement1.
?robot1 rdf:type rr:RehabRobots.
{?robot1 has_Intervention_Time ?val1.} UNION
{?robot1 has_Targeted_Disorder ’stroke’.
?robot1 has_Targeted_Disorder ’spineCordInjury’.}

}
Answer to Q6:

• Index Finger DIPFlexion/Extension

• Shoulder Scapular Elevation/Depression

• Wrist Flexion/Extension
...

Figure A.6: Transformation for Q6
128

Q7. What are the publications without clinical study or that reference
some robots that do not evaluate any movement quality metrics?

Q7 in Query Description Tree:

root-node

with-node

“What are the publications”

“without clinical study”

“that reference some robots”

or-node

that-node

that-node

“that do not evaluate any
movement quality metrics”

Q7 in Description Logics (DL):
Publication u (∃clinicalStudy.{′false′^^xsd : boolean}t

∃reference.(Robot u ¬∃evaluate.MovementQualityMetric))

Q7 in SPARQL:
SELECT DISTINCT ?name
WHERE {
?publication1 rdf:type rr:References.
?publication1 rr:has_Title ?name.
{FILTER NOT EXISTS {
?publication1 rr:has_Clinical_Study ’true’8sd:boolean.

}} UNION
{?robot1 rr:hasReference ?publication1.
?robot1 rdf:type rr:RehabRobots.
FILTER NOT EXISTS {
?robot1 rr:hasAssessment ?metric1.
?metric1 rdf:type rr:MovementQualityAssessment.

}}
}
Answer to Q7:

• Kinematics and design of AssistOn-SE: A self-adjusting shoulder-
elbow exoskeleton

• A Self-Adjusting Knee Exoskeleton for Robot-Assisted Treatment
of Knee Injuries

• Brain Computer Interface based Robotic Rehabilitation with On-
line Modification of Task Speed
...

Figure A.7: Transformation for Q7
129

Q8. What are the robots that target the shoulder horizontal abduc-
tion/adduction with range of motion type=’active’ or that target the
elbow flexion/extension with transmission={belt drive, cable drive}?

Q8 in Query Description Tree:
root-node

with-node

“What are the robots”

“with range of motion type = ’active’ “

“that target the elbow
�exion/extension”

or-node

that-nodethat-node

with-node

“with transmission = {belt drive, cable drive}”

“that target the shoulder
horizontal abduction/adduction”

Q8 in Description Logics (DL):
Robot u (∃target.(ShoulderHorizontalAbduction/Adduction u

∃ROMType.{active})t
∃target.(ElbowFlexion/Extension u

∃transmission.{belt drive} u
∃transmission.{cable drive}))

Q8 in SPARQL:
SELECT DISTINCT ?name
WHERE {
?robot1 rdf:type rr:RehabRobots.
?robot1 rr:has_Name ?name.
{?robot1 rr:targets ?movement1.
?movement1 rdf:type rr:ShoulderHorizontalAbduction/

Adduction.
?movement1 rr:has_ROM_Type ’active’. } UNION
?movement2 rdf:type rr:ElbowFlexion/Extension.
?movement2 rr:has_Transmission ’belt drive’.
?movement2 rr:has_Transmission ’cable drive’.}

}
Answer to Q8:

• AssistOn-Mobile

• AssistOn-Arm

Figure A.8: Transformation for Q8
130

Q9. What are the robots that target all foot movements and (with tar-
geted population=’pediatric’ or with control modes={active, assistive})?

Q9 in Query Description Tree:

root-node “What are the robots”

and-node

that-node

with-node

“with targeted population = ‘pediatric’ ”

with-node

“with control modes = {active,assistive}”

“that target all foot movements”

or-node

Q9 in Description Logics (DL):
Robot u ∀target.FootMovementu
(∃targetedPopulation.{pediatric} t (∃controlModes.{active}u

∃controlModes.{assistive}))

Q9 in SPARQL:
SELECT DISTINCT ?name
WHERE {
?robot1 rdf:type rr:RehabRobots.
?robot1 rr:has_Name ?name.
{?robot1 rr:targets ?movement1.
?movement1 rdf:type rr:FootInterphalangealJointsOfToe

Flexion/Extension.
?robot1 rr:targets ?movement2.
?movement2 rdf:type rr:FootMetatarsophalangealJoints

Flexion/Extension.
{?robot1 rr:has_Targeted_Population ’pediatric’.} UNION
{?robot1 rr:has_Control_Modes ’active’.
?robot1 rr:has_Control_Modes ’assistive’.}

}
Answer to Q9: No answer

Figure A.9: Transformation for Q9

131

Q10. What are the publications with place of publication ’ICORR’ and
that reference some robots that are owned/maintained by some users
with institution ’Sabanci University’ ?

Q10 in Query Description Tree:

root-node “What are the publications”

and-node

with-node

“with place of publication ‘ICORR’ ”

that-node

that-node

with-node

“that reference some robots”

“that are owned/maintained
by some users”

“with institution ‘Sabancı University’ ”

Q10 in Description Logics (DL):
Publication u ∃placeOfPublication.{ICORR}u
∃reference.(Robot u

∃own−.(User u ∃institution.{Sabanci University}))

Q10 in SPARQL:
SELECT DISTINCT ?name
WHERE {
?publication1 rdf:type rr:References.
?publication1 rr:has_Title ?name.
?publication1 rr:has_PublishedAt ’ICORR’.
?robot1 rr:hasReference ?publication1.
?robot1 rdf:type rr:RehabRobots.
?robot1 rr:ownedBy ?user1.
?user1 rdf:type rr:Owners.
?user1 rr:has_Institution ’Sabanci University’.

}
Answer to Q10:

• Brain Computer Interface based Robotic Rehabilitation with On-
line Modification of Task Speed

• Design of a reconfigurable ankle rehabilitation robot and its use for
the estimation of the ankle impedance

• Passive Velocity Field Control of a Forearm-Wrist Rehabilitation
Robot

Figure A.10: Transformation for Q10
132

Q11. What are the robots with no targeted disorder or (with interven-
tion time!=’chronic’ and with motion capability=’grounded’) or with no
disorder level?

Q11 in Query Description Tree:

root-node “What are the robots”

or-node

and-nodewith-node

“with no targeted disorder”

with-node

“with no disorder level”

with-node

“with intervention time != ‘chronic’ ”

with-node

“with motion capability = ‘grounded’ ”

Q11 in Description Logics (DL):
Robot u (¬∃targetedDisorder.(xsd : string)t
(¬∃interventionTime.{chronic} u ∃motionCapability.{grounded})t
¬∃disorderLevel.(xsd : string))

Q11 in SPARQL:
SELECT DISTINCT ?name
WHERE {
?robot1 rdf:type rr:RehabRobots.
?robot1 rr:has_Name ?name.
{FILTER NOT EXISTS {
?robot1 rr:has_Targeted_Disorder ?val1.

}} UNION
{FILTER NOT EXISTS {
?robot1 rr:has_Intervention_Time ’chronic’.

}
?robot1 rr:has_Motion_Capability ’grounded’.
} UNION
{FILTER NOT EXISTS {
?robot1 rr:has_Disorder_Level ?val2.

}}
}
Answer to Q11: No answer

Figure A.11: Transformation for Q11
133

Q12. What are the robots with interaction type = ’exoskeleton’ and
that target some finger movements (with actuation = ’electrical’ or with
actuation = ’hydrolic’ or with actuation = ’series elastic’) ?

Q12 in Query Description Tree:
root-node “What are the robots”

and-node

with-node

“with interaction type = ‘exoskeleton’ ”

that-node

or-node

with-node

“that target some
�nger movements”

“with actuation = ‘hydrolic’ ”

with-node

“with actuation = ‘electrical’ ”

with-node

“with actuation = ‘series elastic’ ”

Q12 in Description Logics (DL):
Robot u ∃interactionType.{exoskeleton}u
∃target.(FingerMovement u (∃actuation.{electrical} t

∃actuation.{hydrolic} t
∃actuation.{series elastic}))

Q12 in SPARQL:

SELECT DISTINCT ?name
WHERE {

?robot1 rdf:type rr:RehabRobots.
?robot1 rr:has_Name ?name.
?robot1 rr:has_Interaction_Type ’exoskeleton’.
?robot1 rr:targets ?movement1.
?movement1 rdf:type rr:FingerMovements.
{ ?movement1 rr:has_Actuation ’electrical’. } UNION
{ ?movement1 rr:has_Actuation ’hydrolic’. } UNION
{ ?movement1 rr:has_Actuation ’series elastic’. }

}

Answer to Q12: No answer

Figure A.12: Transformation for Q12
134

B Example Queries over FMA and RehabRobo-

Onto

FMA4. What are the publications that reference some rehabilitation robots

that can affect palmaris brevis?

SELECT DISTINCT ?publicationTitle

WHERE {

?publicationTitle rr:has_Title ?publication.

?publication rdf:type rr:References.

?robot rr:has_Reference ?publication.

?robot rdf:type rr:RehabRobots.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?fmaConcept.

?fmaConcept rdfs:label ’palmaris brevis’.

}

In FMA, palmaris brevis is a muscle of hand. The answer to this query

includes the publications that reference the robots that target some hand

movements. We can also specify the hand movements that may affect this

muscle. However, since there is one movement of hand in RehabRobo-

Onto, we match hand movements to some muscles of hand directly.

FMA5. What are the muscles that can be affected by some shoulder

robots?

SELECT DISTINCT ?bodyPartLabel

WHERE {

135

?robot rdf:type rr:ShoulderRobots.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?fmaConcept.

?movement rdfs:label ?bodyPartLabel.

?movement rdfs:subClassOf ?superClass.

?superClass rdfs:label ’Muscle of shoulder’.

}

FMA includes the sets of all extrinsic and intrinsic muscles of the shoulder.

Particular shoulder movements can be mapped to particular muscles.

FMA6. What are the users that own/maintain some rehabilitation

robots that can affect interphalangeal joint?

SELECT DISTINCT ?userName

WHERE {

?userName rr:has_User_Name ?user.

?user rdf:type Owners.

?robot rr:ownedBy ?user.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?fmaConcept.

?fmaConcept rdfs:subClassOf ?superConcept.

?superConcept rdfs:label ’Interphalangeal Joint’.

}

“Interphalangeal joint” has subclasses such as “Interphalangeal joint of

finger” and “Interphalangeal joint of toe” in FMA. Further subclasses of

136

“Interphalangeal joint of finger” include distal/proximal joints of left/right

index/little/middle/ring fingers and thumb. They can be mapped to the

particular finger movements in RehabRobo-Onto.

FMA7. What are the rehabilitation robots that can affect some muscles

of lower limb that attach to ’Greater trochanter’?

SELECT DISTINCT ?robotName

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ?robotName.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?fmaConcept.

?fmaConcept rdfs:subClassOf ?superClass.

?superClass rdfs:label ’Muscle of lower limb’.

?fmaConcept fma:attaches_to ?attachedBodyPart.

?attachedBodyPart rdfs:label ’Greater trochanter’.

}

In FMA, subclasses of “muscle of pelvic girdle” such as “Piriformis” or

“Gluteus minimus” attach to “Greater trochanter”. We can get this informa-

tion by matching robots that target pelvic girdle movements to the (possibly

particular) muscles of pelvic girdle.

FMA8. What are the rehabilitation robots that can affect some body

parts that contains some sacro-iliac joint?

SELECT DISTINCT ?robotName

WHERE {

137

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ?robotName.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?fmaConcept.

?bodyPart fma:part_of ?fmaConcept.

?bodyPart rdfs:label ’Sacro-iliac joint’.

}

In FMA, “left sacro-iliac joint” and “right sacro-iliac joint” (subclasses of

“sacro-iliac joint”) are parts of “Left side of bony pelvis” and “Right side of

bony pelvis”, respectively. We use “contains” for the inverse of “part of”.

138

C Example Queries over DO and RehabRobo-

Onto

DO4. What are the rehabilitation robots that can be used to treat ’cere-

brovascular accident’?

SELECT DISTINCT ?robotName

WHERE {

?robot1 rdf:type rr:RehabRobots.

?robot rr:has_Name ?robotName.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?doConcept.

?doConcept rdfs:label ’cerebrovascular accident’.

}

In FMA, “cerebrovascular accident” is used as a synonym of “stroke”.

Some particular movements in RehabRobo-Onto can be matched to this

class.

DO5. What are the diseases that can be treated using some rehabilitation

robots that target the shoulder scapular elevation/depression?

SELECT DISTINCT ?diseaseLabel

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:targets ?movement.

?movement rdf:type rr:ShoulderScapularElevation/Depression.

?robot rr:targets ?movement2.

139

?movement2 rdf:type rr:JointMovements.

?movement2 rdf:type ?doConcept.

?doConcept rdfs:label ?diseaseLabel.

}

DO6. What are the rehabilitation robots that can be used to treat ’frozen

shoulder’?

SELECT DISTINCT ?robotName

WHERE {

?robot1 rdf:type rr:RehabRobots.

?robot rr:has_Name ?robotName.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?doConcept.

?doConcept rdfs:label ’Frozen Shoulder’.

}

“Frozen shoulder” concept in DO can be mapped to particular shoulder

movements in RehabRobo-Onto.

DO7. What are the muscular dystrophies that may be treated using

rehabilitation robot X?

SELECT DISTINCT ?diseaseLabel

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ’X’.

?robot rr:targets ?movement.

140

?movement rdf:type rr:JointMovements.

?movement rdf:type ?doConcept.

?doConcept rdfs:label ?diseaseLabel.

?doConcept rdfs:subClassOf ?superClass.

?superClass rdfs:label ’Muscular Dystrophy’.

}

In DO, “Muscular Dystrophy” has some subclasses that can be mapped

to RehabRobo-Onto movements, such as “Distal Muscular Dystrophy”

or “Limb-Girdle Muscular Dystrophy”. They can be mapped to distal joint

movements or pelvic girdle movements in RehabRobo-Onto, respectively.

DO8. What are publications that reference some rehabilitation robots

that can be used to treat ’hip enthesopathy’?

SELECT DISTINCT ?publicationTitle

WHERE {

?publicationTitle rr:has_Title ?publication.

?publication rdf:type rr:References.

?robot rr:has_Reference ?publication.

?robot rdf:type rr:RehabRobots.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?doConcept.

?doConcept rdfs:label ’hip enthesopathy’.

}

DO9. What are the diseases that can be treated using some rehabilitation

robots that target the wrist flexion/extension?

141

SELECT DISTINCT ?diseaseLabel

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:targets ?movement.

?movement rdf:type rr:WristFlexion/Extension.

?movement rdf:type ?doConcept.

?doConcept rdfs:label ?diseaseLabel.

}

DO10. What are the rehabilitation robots that have pediatric targeted

population and that can be used to treat spastic hemiplegia?

SELECT DISTINCT ?robotName

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ?robotName.

?robot rr:has_Targeted_Population ’pediatric’.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?doConcept.

?doConcept rdfs:label ’spastic hemiplegia’.

}

In DO, “spastic hemiplegia” is a subclass of “spastic cerebral palsy”, which

is the subclass of “cerebral palsy”, under brain diseases. They can be mapped

to particular movements in RehabRobo-Onto.

DO11. What types of spinal muscular atrophy can be treated using

rehabilitation robot X?

142

SELECT DISTINCT ?diseaseLabel

WHERE {

?robot rdf:type rr:RehabRobots.

?robot rr:has_Name ’X’.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?doConcept.

?doConcept rdfs:label ?diseaseLabel.

?doConcept rdfs:subClassOf ?superClass.

?superClass rdfs:label ’Spinal Muscular Atrophy’.

}

DO12. What are the publications that reference some rehabilitation

robots that can be used to treat nervous system diseases?

SELECT DISTINCT ?publicationTitle

WHERE {

?publicationTitle rr:has_Title ?publication.

?publication rdf:type rr:References.

?robot rr:has_Reference ?publication.

?robot rdf:type rr:RehabRobots.

?robot rr:targets ?movement.

?movement rdf:type rr:JointMovements.

?movement rdf:type ?doConcept.

?doConcept rdfs:label ’nervous system disease’.

}

143

In DO, “nervous system disease” has subclasses such as “spinal cord dis-

ease”, “cerebral palsy”. They have further subclasses and they can be mapped

to particular movements in RehabRobo-Onto.

144

References

[1] Secure Hash Standard. National Institute of Standards and Technology,

Washington, 1995. Federal Information Processing Standard 180-1.

[2] Sesame: A generic architecture for storing and querying rdf and rdf

schema. In Ian Horrocks and James Hendler, editors, The Semantic

Web — ISWC 2002, volume 2342 of Lecture Notes in Computer Science,

2002.

[3] F. Amigoni and M.A. Neri. An application of ontology technologies to

robotic agents. In Proc. of IEEE/WIC/ACM International Conference

on Intelligent Agent Technology, pages 751–754, 2005.

[4] Grigoris Antoniou and Frank Van Harmelen. Web ontology language:

Owl. In Handbook on Ontologies in Information Systems, pages 67–92.

Springer, 2003.

[5] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time

reasoner for life science ontologies. In U. Furbach and N. Shankar, ed-

itors, Proceedings of the 3rd International Joint Conference on Auto-

mated Reasoning (IJCAR’06), volume 4130 of Lecture Notes in Artificial

Intelligence, pages 287–291. Springer-Verlag, 2006.

[6] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics.

In Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors,

Handbook of Knowledge Representation, chapter 3, pages 135–180. Else-

vier, 2008.

145

[7] Alexander De Leon Battista, Natalia Villanueva-Rosales, Myroslav

Palenychka, and Michel Dumontier. SMART: A web-based, ontology-

driven, semantic web query answering application. In Semantic Web

Challenge, volume 295, 2007.

[8] David Beckett. The design and implementation of the redland rdf ap-

plication framework. In Proceedings of the 10th international conference

on World Wide Web, WWW ’01, pages 449–456, 2001.

[9] L. Belouaer, M. Bouzid, and A. Mouaddib. Ontology based spatial

planning for human-robot interaction. In Temporal Representation and

Reasoning (TIME), 2010 17th International Symposium on, pages 103–

110, 2010.

[10] Hendler J. Berners-Lee, T. and O. Lassila. The semantic web. Scientific

American, 2001.

[11] Abraham Bernstein and Esther Kaufmann. GINO - a guided input

natural language ontology editor. In Proceedings of the 5th international

conference on The Semantic Web, pages 144–157, 2006.

[12] F. Bobillo and U. Straccia. fuzzydl: An expressive fuzzy description

logic reasoner. In Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World

Congress on Computational Intelligence). IEEE International Confer-

ence on, pages 923–930, 2008.

[13] Jonathan Chaffer and Karl Swedberg. Learning jquery: better inter-

action design and web development with simple javascript techniques.

Packt Publishing, 2007.

146

[14] Antonio Chella, Massimo Cossentino, Roberto Pirrone, and Andrea

Ruisi. Modeling ontologies for robotic environments. In Proc. of SEKE,

pages 77–80, 2002.

[15] Philipp Cimiano, Peter Haase, Jörg Heizmann, Matthias Mantel, and

Rudi Studer. Towards portable natural language interfaces to knowledge

bases - the case of the ORAKEL system. Data Knowl. Eng., 65(2):325–

354, 2008.

[16] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin

Tablan, Niraj Aswani, Ian Roberts, Genevieve Gorrell, Adam Funk,

Angus Roberts, Danica Damljanovic, Thomas Heitz, Mark A. Green-

wood, Horacio Saggion, Johann Petrak, Yaoyong Li, and Wim Peters.

Text Processing with GATE (Version 6). 2011.

[17] Carlos Viegas Damásio, Anastasia Analyti, and Grigoris Antoniou.

Provenance for sparql queries. In The Semantic Web–ISWC 2012, pages

625–640. Springer, 2012.

[18] Danica Damljanovic, Milan Agatonovic, and Hamish Cunningham.

FREyA: an interactive way of querying linked data using natural lan-

guage. In Proceedings of the 8th international conference on The Se-

mantic Web, ESWC’11, pages 125–138, 2012.

[19] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D.

Manning. Generating typed dependency parses from phrase structure

trees. In LREC, 2006.

147

[20] Esra Erdem, Yelda Erdem, Halit Erdogan, and Umut Öztok. Finding

answers and generating explanations for complex biomedical queries. In

AAAI, 2011.

[21] Esra Erdem, Halit Erdogan, and Umut Oztok. BIOQUERY-ASP:

Querying biomedical ontologies using answer set programming. In Proc.

of RuleML2011@BRF Challenge, 2011.

[22] Orri Erling and Ivan Mikhailov. Rdf support in the virtuoso dbms.

In Tassilo Pellegrini, Sóren Auer, Klaus Tochtermann, and Sebastian

Schaffert, editors, Networked Knowledge - Networked Media, volume 221

of Studies in Computational Intelligence, pages 7–24, 2009.

[23] C. Fellbaum. WordNet: An Electronic Lexical Database. Language,

Speech and Communication. Mit Press, 1998.

[24] D. Y. S. Fernandes. Using Semantics to Enhance Query Reformulation

in Dynamic Distributed Environments. PhD thesis, Federal University

of Pernambuco, 2009.

[25] Oscar Ferrández, Rubén Izquierdo, Sergio Ferrández, and José Luis

Vicedo. Addressing ontology-based question answering with collections

of user queries. Information Processing and Management, 45(2):175 –

188, 2009.

[26] Anette Frank, Hans-Ulrich Krieger, Feiyu Xu, Hans Uszkoreit, Berthold

Crysmann, Brigitte Jörg, and Ulrich Schäfer. Question answering from

structured knowledge sources. Journal of Applied Logic, 5(1):20 – 48,

2007.

148

[27] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten

Schaub. clasp: A conflict-driven answer set solver. In Logic Program-

ming and Nonmonotonic Reasoning, pages 260–265. Springer, 2007.

[28] John H. Gennari, Mark A. Musen, RayW. Fergerson, William E. Grosso,

Monica Crubézy, Henrik Eriksson, Natalya Fridman Noy, and Sam-

son W. Tu. The evolution of Protégé: an environment for knowledge-

based systems development. Int. J. Hum.-Comput. Stud., 58(1):89–123,

2003.

[29] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision

problem for two-variable first-order logic. Bulletin of Symbolic Logic,

3(1):53–69, 1997.

[30] Volker Haarslev, Kay Hidde, Ralf Möller, and Michael Wessel. The

RacerPro knowledge representation and reasoning system. Semantic

Web, 3(3):267–277, 2012.

[31] Peter Haase, Holger Lewen, Rudi Studer, Duc Thanh Tran, Michael

Erdmann, Mathieu d’Aquin, and Enrico Motta. The neon ontology

engineering toolkit. WWW, 2008.

[32] Matthew Horridge and Sean Bechhofer. The owl api: A java api for owl

ontologies. Semantic Web, 2(1):11–21, 2011.

[33] Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said Tabet, Ben-

jamin Grosof, Mike Dean, et al. SWRL: A semantic web rule language

combining OWL and RuleML. W3C Member submission, 21:79, 2004.

149

[34] Ian Horrocks, Peter F. Patel-Schneider, and Frank Van Harmelen. From

shiq and rdf to owl: The making of a web ontology language. Journal

of Web Semantics, 1:2003, 2003.

[35] Ullrich Hustadt and RenateA. Schmidt. Mspass: Modal reasoning by

translation and first-order resolution. In Roy Dyckhoff, editor, Auto-

mated Reasoning with Analytic Tableaux and Related Methods, volume

1847 of Lecture Notes in Computer Science, pages 67–71, 2000.

[36] Minsu Jang and Joo-Chan Sohn. Bossam: An extended rule engine

for owl inferencing. In Grigoris Antoniou and Harold Boley, editors,

Rules and Rule Markup Languages for the Semantic Web, volume 3323

of Lecture Notes in Computer Science, pages 128–138. Springer Berlin

Heidelberg, 2004.

[37] Benjamin Johnston, Fangkai Yang, Rogan Mendoza, Xiaoping Chen,

and Mary-Anne Williams. Ontology based object categorization for

robots. In Proc. of PAKM, pages 219–231, 2008.

[38] Alex Juarez, Christoph Bartneck, and Loe M. G. Feijs. Using semantic

technologies to describe robotic embodiments. In Proc. of HRI, pages

425–432, 2011.

[39] Dongyeop Kang, Eugene Seo, Sookyung Kim, and Ho-Jin Choi. Au-

tomatically learning robot domain ontology from collective knowledge

for home service robots. In Advanced Communication Technology, 2009.

ICACT 2009. 11th International Conference on, volume 03, pages 1766–

1771, 2009.

150

[40] Esther Kaufmann, Abraham Bernstein, and Lorenz Fischer. NLP-

Reduce: A naive but domain-independent natural language interface for

querying ontologies. In 4th European Semantic Web Conference, 2007.

[41] Esther Kaufmann, Abraham Bernstein, and Renato Zumstein. Querix:

A natural language interface to query ontologies based on clarification

dialogs. In 5th ISWC, pages 980–981. Springer, 2006.

[42] S. Kobayashi, S. Tamagawa, T. Morita, and T. Yamaguchi. Intelligent

humanoid robot with japanese wikipedia ontology and robot action on-

tology. In Human-Robot Interaction (HRI), 2011 6th ACM/IEEE In-

ternational Conference on, pages 417–424, 2011.

[43] Yuangui Lei, Victoria Uren, and Enrico Motta. SemSearch: A search

engine for the semantic web. In Proc. 5th International Conference on

Knowledge Engineering and Knowledge Management Managing Knowl-

edge in a World of Networks, Lect. Notes in Comp. Sci., pages 238–245.

Springer-Verlag, 2006.

[44] Reuven M. Lerner. At the forge: twitter bootstrap. Linux J., 2012(218),

2012.

[45] Vladimir Lifschitz. What is answer set programming?. In AAAI, vol-

ume 8, pages 1594–1597, 2008.

[46] Vanessa Lopez, Miriam Fernández, Enrico Motta, and Nico Stieler. Pow-

erAqua: Supporting users in querying and exploring the semantic web.

Semantic Web, 3(3):249–265, 2012.

[47] Vanessa Lopez, Victoria Uren, Enrico Motta, and Michele Pasin. Aqua-

Log: An ontology-driven question answering system for organizational

151

semantic intranets. Web Semantics: Science, Services and Agents on

the World Wide Web, 5(2):72–105, 2007.

[48] Brian Lowe, Brian Caruso, Nick Cappadona, Miles Worthington, Stella

Mitchell, and Jon Corson-Rikert. The vitro integrated ontology editor

and semantic web application. In ICBO, 2011.

[49] C.J. Matheus, K. Baclawski, and M.M. Kokar. BaseVISor: A triples-

based inference engine outfitted to process ruleml and r-entailment rules.

In Rules and Rule Markup Languages for the Semantic Web, Second

International Conference on, pages 67–74, 2006.

[50] Brian McBride. Jena: Implementing the rdf model and syntax specifi-

cation. In SemWeb, 2001.

[51] Boris Motik. KAON2 - Scalable reasoning over ontologies with large

data sets. ERCIM News, (72), 2008.

[52] A. Nilsson, R. Muradore, K. Nilsson, and P. Fiorini. Ontology for

robotics: A roadmap. In Advanced Robotics, 2009. ICAR 2009. In-

ternational Conference on, pages 1–6, 2009.

[53] Giorgio Orsi. Context Based Querying of Dynamic and Heterogeneous

Information Sources. PhD thesis, Politecnico di Milano, 2011.

[54] John D. Osborne, Jared Flatow, Michelle Holko, Simon M. Lin, War-

ren A. Kibbe, Lihua J. Zhu, Maria I. Danila, Gang Feng, and Rex L.

Chisholm. Annotating the human genome with disease ontology. BMC

genomics, 2009.

152

[55] Massimo Paolucci and Katia Sycara. Ontologies in agent architectures.

In Rudi Studer Steffen Staab, editor, Handbook on Ontologies in Infor-

mation Systems. Springer, 2004.

[56] L. Paull, G. Severac, G.V. Raffo, J.M. Angel, H. Boley, P.J. Durst,

W. Gray, M. Habib, B. Nguyen, S.V. Ragavan, G. Sajad Saeedi, R. Sanz,

M. Seto, A. Stefanovski, M. Trentini, and H. Li. Towards an ontology

for autonomous robots. In Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on, pages 1359–1364, 2012.

[57] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and

complexity of sparql. In The Semantic Web-ISWC 2006, pages 30–43.

Springer, 2006.

[58] Eric Prud’Hommeaux, Andy Seaborne, et al. Sparql query language for

rdf. W3C recommendation, 15, 2008.

[59] M. Rokunuzzaman, K. Sekiyama, and T. Fukuda. Common region of

interest generation between mobile robots by cognitive ontology. In Elec-

trical Computer Engineering (ICECE), 2012 7th International Confer-

ence on, pages 117–120, 2012.

[60] Cornelius Rosse and José L. V. Mejino. The foundational model of

anatomy ontology, pages 59–117. Springer, 2007.

[61] C. Schlenoff, E. Prestes, R. Madhavan, P. Goncalves, H. Li, S. Bal-

akirsky, T. Kramer, and E. Miguelanez. An IEEE standard ontology

for robotics and automation. In Intelligent Robots and Systems (IROS),

2012 IEEE/RSJ International Conference on, pages 1337–1342, 2012.

153

[62] Craig Schlenoff and Elena Messina. A robot ontology for urban search

and rescue. In Proc. of CIKM-KRAS, pages 27–34, 2005.

[63] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descrip-

tions with complements. Artificial Intelligence, 48(1):1–26, 1991.

[64] Peter P. Schneider and Bill Swartout. Description-logic knowledge rep-

resentation system specification from the KRSS group of the ARPA

knowledge sharing effort. Technical report, DARPA Knowledge Repre-

sentation System Specification (KRSS) Group of the Knowledge Sharing

Initiative, 1993.

[65] Andy Seaborne. RDQL - A Query Language for RDF. Technical report,

W3C (proposal), 2004.

[66] Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A Highly-Efficient

OWL Reasoner. In Alan Ruttenberg, Ulrile Sattler, and Cathy Dolbear,

editors, Proc. of the 5th Int. Workshop on OWL: Experiences and Di-

rections (OWLED 2008 EU), Karlsruhe, Germany, October 26–27 2008.

[67] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,

and Yarden Katz. Pellet: A practical owl-dl reasoner. Web Semantics:

Science, Services and Agents on the World Wide Web, 5(2):51 – 53,

2007.

[68] Il Hong Suh, Gi Hyun Lim, Wonil Hwang, Hyowon Suh, Jung-Hwa Choi,

and Young-Tack Park. Ontology-based multi-layered robot knowledge

framework (omrkf) for robot intelligence. In Proc. of IROS, pages 429–

436, 2007.

154

[69] Valentin Tablan, Danica Damljanovic, and Kalina Bontcheva. A natural

language query interface to structured information. In Proceedings of the

5th European semantic web conference on The semantic web: research

and applications, ESWC’08, pages 361–375, 2008.

[70] M. Tenorth, A.C. Perzylo, R. Lafrenz, and M. Beetz. The roboearth lan-

guage: Representing and exchanging knowledge about actions, objects,

and environments. In Robotics and Automation (ICRA), 2012 IEEE

International Conference on, pages 1284–1289, 2012.

[71] Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Rea-

soner: System Description. In Ulrich Furbach and Natarajan Shankar,

editors, Automated Reasoning, volume 4130 of Lecture Notes in Com-

puter Science, pages 292–297. Springer Berlin Heidelberg, 2006.

[72] M. Uschold and M. King. Towards a methodology for building ontolo-

gies. In Proc. of Workshop on Basic Ontological Issues in Knowledge

Sharing, held in conjunction with IJCAI-95, 1995.

[73] R. Valencia-García, F. García-Sánchez, D. Castellanos-Nieves, and J.T.

Fernández-Breis. OWLPath: An OWL ontology-guided query editor.

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on, 41(1):121–136, 2011.

[74] Chong Wang, Miao Xiong, Qi Zhou, and Yong Yu. PANTO: A portable

natural language interface to ontologies. In Proceedings of the 4th Eu-

ropean conference on The Semantic Web: Research and Applications,

ESWC ’07, pages 473–487, 2007.

155

[75] Eric Wang, Yong Se Kim, Hak Soo Kim, Jin Hyun Son, Sanghoon Lee,

and Il Hong Suh. Ontology modeling and storage system for robot

context understanding. In Proc. of KES (3), pages 922–929, 2005.

[76] M. Yalcin and V. Patoglu. Kinematics and design of AssistOn-SE: A

self-adjusting shoulder-elbow exoskeleton. In Proc. of IEEE BioRob,

pages 1579–1585, 2012.

[77] Holly A. Yanco and Jill L. Drury. Classifying human-robot interaction:

an updated taxonomy. In Proc. of SMC (3), pages 2841–2846, 2004.

[78] Qi Zhou, Chong Wang, Miao Xiong, Haofen Wang, and Yong Yu.

SPARK: adapting keyword query to semantic search. In Proceedings

of the 6th international The semantic web and 2nd Asian conference

on Asian semantic web conference, ISWC’07/ASWC’07, pages 694–707,

2007.

156

	Introduction
	Outline

	Preliminaries
	Ontologies
	Representing Ontologies in RDF(S)
	Query Answering over RDF(S) Graphs
	Representing Ontologies in Description Logics
	RDF(S) vs. DLs
	Web Ontology Language (OWL)
	Pellet: A DL Reasoner
	Protégé: An Ontology Editor
	Jena: An Ontology Management Framework
	Discussion

	RehabRobo-Onto
	Design of RehabRobo-Onto
	Development of RehabRobo-Onto
	Maintaining RehabRobo-Onto
	Overall System Architecture
	RehabRobo-Onto on the Cloud

	RehabRobo-Query
	RehabRobo-CNL
	Transforming a Query in RehabRobo-CNL to a SPARQL Query
	Answering Queries Using Pellet
	Intelligent User Interface for RehabRobo-Query

	Interoperability of RehabRobo-Onto
	Integration with FMA
	Integration with DO
	On Extending RehabRobo-Query
	Integration of RehabRobo-Onto with Patient Data

	Related Work
	Ontologies and Robots
	Ontologies for Robots
	Ontologies about Robots
	Standardization of Rehabilitation Robots

	Ontology Systems that Support Natural Language Queries

	Conclusion
	Appendix Transformations of Sample Queries
	Appendix Example Queries over FMA and RehabRobo-Onto
	Appendix Example Queries over DO and RehabRobo-Onto

