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ABSTRACT 

Industrial robots have great importance in� manufacturing. Typical uses of the 
robots are welding, painting, deburring, grinding, polishing and shape recovery. Most of 
these tasks such as grinding, deburring need force control to achieve high performance. 
These tasks involve contour following.  

Contour following is a challenging task because in many of applications the 
geometry physical of the targeted contour are unknown. In addition to that, achieving 
tasks as polishing, grinding and deburring requires small force and velocity tracking 
errors. In order to accomplish these tasks, disturbances have to be taken account.  

In this thesis the aim is to achieve contour tracking with using fuzzy online 
tuning. The fuzzy method is proposed in this thesis to adjust a feedforward force control 
parameter. In this technique, the varying feedforward control parameter compensates 
for disturbance effects. 

The method employs the chattering of control signal and the normal force and 
tangential velocity errors to adjust the control term. Simulations with the model of a 
direct drive planar elbow manipulator are used to last proposed technique. 
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ÖZET 
 Endüstriyel robotların üretimdeki yeri çok büyüktür. Bu robotların genel 
kullanım araçları; kaynaklama, boyama, taşlama, zımparalama, cilalama ve şekil 
kurtarmadır. Bu çalışma alanlarının çoğu yüksek performans elde edeetmek için kuvvet 
kontrolüne ihtiyaç duymaktadır. Kuvvet kontrolüne ihtiyaç duyan alanların bazıları; 
taşlama ve zımparalamadır. Ek olarak bu çalışma alanları kontür izlemeyi de içerir. 
  Kontür izleme yüksek miktarda efor talep eden, komplike bir işlemdir, çünkü 
birçok uygulamada izlenmesi gereken kontürün fiziksel özellikleri ve geometrisi 
belirsizdir. Buna ek olarak cilalama, taşlama ve zımparalama gibi işlemlerin başarıyla 
tamamlanabilmesi için eser miktarda kuvvet ve hız hatası elde etmek gereklidir. Ayrıca 
bu işlemlerin başarıyla uygulanabilmesi için çevresel bozucu etkilerin de dikkate 
alınması gerekmektedir. 
 Bu tezin amacı bulanık çevrimiçi ayarlama kullanarak kontür izleme işlemini 
başarıyla gerçekleştirmektir. İleri beslemeli kuvvet kontrolü değişkenini ayarlamak için 
kullanılan bulanık methot, bu tezde anlatılmıştır. Bu teknikte, değişken ileri besleme 
control katsayısı çevresel bozucu etkileri kompanse eder. 
 Bu methot, kontrol signali çatırdamasını ve normal kuvvet ve teğetsel hız 
hatalarını kullanarak, kontrol katsayısını düzenler. Doğrusal işletme düzenli düzlemsel 
dirsek manipülatörü örnek alınarak yapılan simulasyonlar kullanılarak bahsedilen 
tekniğin uygulanmıştır. 
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Chapter 1 

1. INTRODUCTION 

 

 

 An industrial robot is a manipulator which is reprogrammable by computer 

interface, automatically controlled and multi-purpose. They typically have three or more 

degrees of freedom (DOF) [1]. Single or two DOF manipulators are mostly used for 

research purposes due to their simplicity. Industrial robots are employed for a wide range of 

manufacturing: such as grinding [2], deburring [2], polishing [3], painting [4], shape 

recovery [5], welding [6], assembly [7], pick and place [8] and product inspection and 

testing. Robots provide speed and accuracy, which provide quick production quality of 

products. 

 Force control comes into the picture in conjunction specialized tasks requiring 

production of smooth shaped surfaces and parts. Grinding, deburring, polishing and shape 

recovery are some of these tasks. These tasks are expected to meet not only predefined 

dimensions but also desired surface quality. Human force can accomplish these qualities, 

however, speed and perfection of human labor is lower than robotic manufacturing. 

Contour tracking poses a particularly challenging task [9]. Environmental conditions and 

disturbances can affect contour tracking results. Elasticity of joints, joint frictions, friction 

with the contact object and unknown geometry of the contact surface are the most common 

problems.   

 Feedforward control is a control method which concentrates on the inputs rather 

than on the outputs to maintain a specified state. It reacts faster than feedback control and it 

potentially minimizes problems before they occur. This means that disturbances accounted 

before they can affect the system. Feedforward gains can be computed adaptively. Adaptive 
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feedforward control is useful in environments where the disturbance is subject to several 

stimuli. 

 Fuzzy logic is a form of probabilistic reasoning. It deals with approximating values 

that are not fixed or exact. In controller design fuzzy logic is used to analyze analog input 

values that take continuous values between 0 and 1. It is different from classical or digital 

logic because classical logic works discrete, i.e. the truth values are equal to either 0 or 1. 

Fuzzy online tuning is useful with uncertainties and different operating conditions. It 

handles adaptation, tuning and scheleduling of the parameters of control systems for 

desired performance of robustness. This method can use two or more variables to tune 

controller parameters, in our case fuzzy online tuning is used to modify the feedforward 

control term, in a contour tracking application.  

 In contour tracking applications, considering that the robot manipulator is in contact 

with a rigid object, chattering in control signal is supposed to occur because of contact 

forces. In order to achieve a smooth tracking chattering must be lessened. Measurement of 

chattering in control signal is proposed in this thesis to tune the feedforward control 

parameter. Additionally, errors in tangential velocity and normal force must be small. 

Therefore, these errors are used for the tuning. The tuning algorithm includes chattering in 

the control signal and normal force and tangential velocity errors. 

 In the literature, contour tracking tasks are studied with various controllers. 

Feedforward control is one of them. Adaptive feedforward control is mentioned in several 

studies too. Fuzzy parameter adjustment is not used for feedforward gain adjustment in 

these studies. In this thesis adaptive feedforward control with a fuzzy parameter adjustment 

technique is proposed for contour tracking tasks to reduce errors in tangential and normal 

directions. 

 This thesis is organized as follows. Chapter 2 presents a literature reviews on fuzzy 

logic, force control and contour tracking. The model of the robot arm used as a simulation 

test bed as described and the contour tracking algorithm is introduced in Chapter 3. Chapter 

4 is devoted to the proposed fuzzy parameter adjustment method. The conclusion is 

presented lastly. 
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Chapter 2 

2. LITARATURE REVIEW 

 

 

In order to have satisfactory control performance in contour tracking applications 

robot joint friction effects should be taken into account. In the literature there are a number 

of reports on this subject. In first part of this section, firstly, fuzzy logic systems and fuzzy 

control are discussed, and then contour tracking and lastly feedforward control are 

reviewed. 

 

 

2.1. Fuzzy Logic Systems 

 

 

 In a study by Liu [10], a technique with fuzzy control is proposed for robotic 

deburring. The deburring process is illustrated in Figure 2.1.1, where n stands for the 

normal direction, t denotes tangential direction and v represents velocity. The fuzzy control 

algorithm is used to decrease normal and tangential velocity errors. Force feedback is 

employed. This technique is useful for the systems with positional inaccuracies and 

unknown burr size. Experimental results show that this technique is successful at 

decreasing the position error. 
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Figure 2.1.1: Deburring Process [10] 

 

 Another important force control study [11] employs sliding mode fuzzy control. 

The authors compare fuzzy control with sliding mode control. They show that a fuzzy 

controller with boundary layer provides adaptive tracking quality under changing plant 

parameters. And a well designed fuzzy controller with boundary layer gives better results 

than sliding mode controller with boundary layer [11]. 

 A completely fuzzified adaptive control scheme is developed for single degree of 

freedom mechanisms whose end effector is in contact with their environment (Figure 

2.1.2).  Here  is mass of the manipulator,  is its velocity, 1m 1v r  is radius of the reduction 

gear,  represents the stiffness coefficient of the force sensor,  is the damping 

coefficient of the force sensor, ,  and  are positions of the manipulator, the end 

effector and the work piece, respectively. Also,  denotes the mass of end effector and 

 represents the stiffness coefficient of environment.  and  stand for the torque and 

the angular velocity of the reduction gear, respectively. The force control loop has adaptive 

fuzzy force controller with a subordinated fuzzy velocity controller embedded in it. The 

algorithm has a nonintegral behavior and it is active only during system transitions. 

Simulations are done with different stiffness values of the environment. The error between 

the model and the system output can be maintained in desired limits by using a second 

order reference input [12]. 

sK sb

1x 2x 3x

2m

eK eT w
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Figure 2.1.2: Model of contact between end effector and environment [12] 

 

 Fuzzy logic systems have the ability to deal with human knowledge and neural 

networks have the ability to learn from experiments. The two methods can be used together 

to compensate for their weak points. A fuzzy-neural controller is reported for robot 

manipulator contact force control to an unknown environment [13]. The fuzzy neural 

network is shown in the Figure 2.1.3, where  is the momentum of the robot 

manipulator, is the error between the desired force and the applied force, ∑  stands for 

the sum of the inputs, and ∏ depicts the product of inputs. The fuzzifier layer has 10, the 

rule layer has 17 and the defuzzifier layer has 2 neurons,  and  are activation 

functions, and U represents the force command to the robot manipulator. The error 

between the desired force and the measured force and the momentum of robot manipulator 

are used as inputs to the controller. The controller is adjusted online by a back propagation 

algorithm and the approach velocity is controlled to be slow to reduce initial applied force. 

Simulations show that contact force is controlled efficiently [13, 14].  

OM

E

Gf Sf
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Figure 2.1.3: Fuzzy-Neural Network [14] 

 

 In some works, position and force control techniques are unified. In this scheme, 

these two methods and an intermediator control are realized through one controller. The 

observed disturbance is used to increase the robustness of the system. The observer makes 

it possible to estimate the parameters of the environment. A force controller based on the 

impedance control idea uses the estimated parameters. Switching between control-laws is 

carried out by using fuzzy logic. The fuzzy rule base studied by Shibata and Murakami [15] 

is shown in Figure 2.1.4, where  represents the reaction force from the object which 

end effector is in contact with, and  means a fuzzy rule 1. The resulting system is used 

for touching and pushing tasks. Results are demonstrated by simulations and experiments 

and one can see that switching between control laws is quick and smooth. Also the 

resulting control law is stable [15]. 

resF

1f
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Figure 2.1.4: Membership function of fuzzy rule [15] 

 

 Nonlinear friction compensation is an area where fuzzy logic used extensively. In 

the work by Teeter and Chow [16] friction compensation of a DC motor is carried out via 

fuzzy logic. In [16], the authors used a single fuzzy rule to compensate the nonlinearity of 

the physical system. Compared with typical fuzzy logic, this method has fewer adjustable 

parameters and requires a less accurate mathematical model. The resulting model improves 

the performance of the DC-motor system. This method can be useful in systems where an 

accurate mathematical modeling is not feasible [16]. 

 Adaptive fuzzy hybrid force-position control is used for achieving contour tracking 

tasks in the lack of knowledge of exact geometric shape and manipulator dynamics. Figure 

2.1.5 shows contour a tracking task. The control algorithm can adaptively update fuzzy 

control rules and the position trajectory command. Stability of the system is global and 

tracking errors converge to zero. This control algorithm is applied to a five degrees-of-

freedom manipulator and a quick algorithmic convergence is observed [2]. 
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Figure 2.1.5: Contour tracking task [2] 

 

 Another neuro-fuzzy controller is proposed in [17] by Kiguchi and Fukuda. The 

controller is designed to compensate for friction for a position-force hybrid controlled 

robot. The controller has a neural division for trajectory control and another component for 

friction compensation. Weight adjustment is switched between these two parts depending 

on the current situation. Results show that the Coulomb friction is compensated effectively 

and the measured trajectory follows desired trajectory accurately. 

 Another investigation on friction compensation is carried out with a fuzzy adaptive 

technique incorporated into conventional feedback control. Low speed control of a DC-

motor which has both lubricated and dry-joints, is used for experiments. Comparison 

between this technique and control systems without fuzzy adaptation shows that systems 

that do not have fuzzy adaptation have large stick slip type oscillations and poor tracking 

performance. Three different control systems, which are type I system with feedback 

controller, type II system with first order controller, and type II system with PI controller, 

are examined. They all alleviate of stick-slip type oscillations and achieve high tracking 

performance [18]. 

 In another work, a robust fuzzy-neural-network sliding-mode-control system based 

on computed torque control design for a two axis motion control system was studied by Lin 

[19]. Fuzzy-neural-network sliding-mode-control system is designed to approximate the 

equivalent control part of the sliding control law. In this study, two axes are controlled 

independently. The resulting controller eliminated the need for prior knowledge of the 

controlled plant. The fuzzy neural network estimates a nonlinear function which contains 
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the uncertainty of the plant. An adaptive algorithm is proposed to adjust the uncertainty 

term. Experiments and simulations are done employing contour references. The 

contributions are the derivation of adaptive learning algorithms based on Lyapunov 

stability for fuzzy neural networks, the development of a robust-fuzzy-neural-network-

sliding-mode-control system that can handle approximation error and disturbance, and a 

control system that can track different reference contours with robust control performance 

[19]. 

 [20] is another study on an adaptive neural fuzzy controller by Hung and Na. It 

proposes that friction and disturbances are highly nonlinear and not easy to model. The 

work firstly presents a feedback linearization controller for the manipulator trajectory 

tracking, without success. Then a fuzzy system is added on the original system as a parallel 

controller. This addition improved the tracking performance. Finally a neural network 

compensator is added in order to obtain friction and disturbance from experiments on a two 

link manipulator (Figure 2.1.6). Here,  and are link lengths.  and  are link center of 

mass distances.  and  are link masses,  and are joint positions, and  and  are 

link inertias. The resulting system is successful in high accuracy position control. 

1l 2l

1q

1cl 2cl

1m 2m 2q 1I 2I

 

 
Figure 2.1.6: Figure of a two link manipulator [20] 

 

 A study by Wang et al. [21] proposes a force control algorithm for the robot 

manipulators in contact with constraining surfaces of unknown geometry and a certain 

stiffness error. Real-time adjustment via fuzzy logic is used to obtain an accurate estimate 
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of the stiffness parameter. The adjustment depends on position feedback and force. The 

resulting control law is able to minimize the amount of off-line work. 

 Data mining techniques are useful to develop adaptive fuzzy friction models. In a 

study by Wang and Wang [22], a data mining algorithm is proposed to extract fuzzy rules 

(Figure 2.1.7) and to create a static fuzzy friction model. , , , , , ,  , 

,  and  are two sets of linguistic labels. An updating law for fuzzy friction model 

parameter adjustment is applied based on Lyapunov stability theory. The resulting model is 

effective and useful to improve control performance.  

FB1
FB2

FB3
FB4

FB5
xA 

1
xA 
2

xA 
3

xA 
4

xA 
5

 

 
Figure 2.1.7: Complete fuzzy rule base [22] 

 

 Force control to handle contact with surfaces can be divided into two subsections: 

The phase of approaching the work piece and the phase of manipulator contact with the 

work piece. In the work by Plius et al. [23], the first phase is controlled by admittance 

control and second phase is controlled by integral force control. For scheduling the two 

controllers, a fuzzy logic scheduling approach is employed. Moreover, this technique is 

compared to crisp controller switching method. Both free moving pieces and rigidly fixed 

pieces are used as work pieces. In both cases fuzzy logic based scheduler has better 

performance than crisp controller switching method. 
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 [24] is a research work on force control with disturbed force sensing. Authors of the 

study proposed a low-pass filter, to reduce the disturbance, combined with a fuzzy PD 

control method. The proposed system is compared with traditional PD control. Results 

show that the PD controller has good dynamic characteristics; however, when the signal is 

noisy traditional PD control cannot deal with it. A fuzzy PD controller with a low pass filter 

can obtain successful force output responses. It shows that proposed low pass filter 

smoothes the noise out and that the fuzzy PD controller achieves better performance and is 

more efficient than the traditional PD controller. 

 Online fuzzy tuning method is a technique which is used in a number of control 

algorithms. Indirect field orientation controlled induction machine drives is an area which 

is an online fuzzy tuning scheme is used. In [25] by Li et al. speed is controlled by a fuzzy 

controller, detuning of field orientation is corrected by two fuzzy compensations. Detuning 

effects of indirect field orientation is minimized by these controllers. The overshoot, steady 

state error, torque disturbance rejection and variable speed tracking performances are 

improved. An advantage of this control scheme is that this method does not need additional 

hardware and machine parameter information. 

Online fuzzy tuning can also be used for improving sliding mode controller 

performance. Fuzzy controller dimensions are independent from sliding mode controller 

complexity. The fuzzy system in [26] by Javaheri and Vossoughi continuously optimizes 

sliding mode controller gains, i.e. such as hitting control gain, boundary layer thickness, 

sliding surface slope and intercept. Numbers of fuzzy rules, which are used in the 

controller, are not restricted with system order and complexity. They are only depending on 

system outputs. The combined system is robust with high tracking speed and low tracking 

error and tit achieves minimal chattering without increasing system’s sensitivity to external 

disturbances. 

A self tuning controller structure simulating the self tuning of an intelligent human 

controller is designed with fuzzy logic rules [27]. A cart double pendulum system is 

controlled with swing up control and the control system has fuzzy tuning abilities. Figure 

2.1.8 shows four phases of swing up control and handstand control processes of the cart 

double pendulum. Simultaneously, sensitive and nonsensitive parameters are separated 

from each other. This separation solves explosion problem in the parameter rules. 
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Separation of parameters also reduces dimension of the control rule and improves the real 

time characteristics of the proposed algorithm. 

 

 
Figure 2.1.8: Phases of swing up and handstand control process [27] 

 

 The adaptive controller named in [28] by Truong et al. as online tuning modified 

grey fuzzy proportional integral derivative controller is a combination of a main control 

unit with an online tuning fuzzy PID unit and an online tuning modified grey predictor. The 

controller consists of an adaptive PID controller based on online fuzzy neural technique. A 

smart learning mechanism is implemented on the controller to optimize parameters for error 

minimization. Simulation results show that resulting system can deal with environments 

with large perturbations. 

   

 

2.2. Contour Tracking 

 

 

 Shape recovery is the process of finding out the shape information of an object with 

unknown contour. It can be performed by contour tracking algorithms. Figure 2.2.1 shows 

displacement along a contour. Usually, force feedback used for this process. In Ahmad and 
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Lee’s work [5], authors discussed about creating an algorithm to follow unknown planar 

contour with position controlled robot using steady state contact force information: When 

direct kinematics is used to recover object’s shape, there is distortion of the original contour 

because of the nonlinearities of drive train and lack of knowledge of position of robot tool. 

The drive train is used to generate a mathematical model of these errors. In addition to that, 

several compensation strategies are explored by the authors. Results of conducted 

experiments show that joint compliance is conveniently compensated. This compensation 

improves the quality of shape recovery. 

 

 
Figure 2.2.1: Displacement along contour [5] 

 

 An early research on edge following with industrial manipulators shows that PUMA 

560 manipulator can be used in edge following tasks [29]. Figure 2.2.2 illustrates the 

situation when the robot tool is up against an edge. The PUMA 560 manipulator is 

employed with an unmodified unimation controller with Val-II language and with a wrist 

force sensor. Accommodation force control is achieved. The resulting model is fourth order 

and conditionally stable. Model analysis carried out and experimental results are obtained 

in Starr’s study [29]. Results show that using a simple model is beneficial and response of 

the model is quite successful. 
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Figure 2.2.2: Geometry of tool against an edge [29] 

 

 Another contour following or surface following algorithm is proposed by Bossert et 

al. [30]. In this research hybrid position and force control is used. The proposed algorithm 

works with unknown surfaces. Their mechanism has a low friction roller at the end of a two 

link manipulator and the normal force is measured. In addition to normal force, joint angle 

information is known too. With the knowledge of them, the surface normal direction and 

position reference are calculated. Algorithm can handle line, concave and convex arc. It 

performs successfully with different geometries and different force levels, too. It can be 

also used to exert constant force to known geometries. 

 The control strategy called dual drive control is a form of hybrid force velocity 

control. In dual drive control, surface tangent and normal are computed from measured 

force and velocity. It is useful for tasks that require motion orthogonal to the contact force, 

such as tracking a surface or turning a crank. These tasks can be performed with a high 

level planner without continuous intervention. For a two dimensional slot following case, 

relative velocity and force of a defined point is specified as depicted in Figure 2.2.3: is a 

point which is chosen inside the slot region,  and Y are coordinate axes. 

P

X R is a vector 

drawn from  to the end effector. P V and F  are velocity and force of end effector, 

respectively. Three dimensional cases can be solved by reducing the number of dimensions 

and representing the problem with two dimensions. Experiments are done with IBM 7565 

manipulator and results show that algorithm is applicable to surface tracking and crank 

turning [31]. 
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Figure 2.2.3: Slot following in two dimensions [31] 

 

 A contour following algorithm which uses hybrid force velocity control is proposed 

by Yu and Kieffer [9]. The controller allows the end effector tool to follow unknown 

contours. An empirical force motion model is obtained with experimental measurements. 

The proposed algorithm is tested for stability and it is proved to be stable. Experiments are 

conducted with the controller, and it is verified that the tracking performance of tangential 

velocity and normal forces for various unknown contours of the controller is reliable. To 

increase controller’s tolerance to variations in contact parameters an adaptive control 

method is developed. This method uses on-line recursive parameter estimation. This update 

is seen to be effective in experiments. 

 An extension of the hybrid position force control method, dynamic hybrid control, 

is proposed by Raibert and Craig [32]. This method needs the knowledge of the 

manipulator dynamics and constraints on the end effector. However, the object with which 

the end effector is in contact with, has usually unknown parameters such as size and 

position. Dynamic hybrid control method with unknown constraint is further investigated to 

cope with this difficulty. An online estimation algorithm is proposed to predict the local 

shape of the constraint surface accurately. The estimator uses end effector position and 

force data. Combination of the estimation algorithm and dynamic hybrid control method is 

tested on SCARA type manipulator. Experiments show that the combination is successful 

and it is useful to decrease the amount of data which should be provided for the algorithm. 

 A comparison between control strategies is presented for the trajectory tracking 

control of an industrial robot arm by Visioli and Legnani [1]. Controllers that are compared 

are decentralized controllers like proportional, integral, and derivative action based 

controllers, sliding mode controllers; and model based controllers such as computed torque 

controllers and a neural network based controller. Experimental results on a SCARA 

manipulator (Figure 2.24) with a simple estimated dynamic model shows that decentralized 
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controllers can be adequate for most of the industrial operations. However, this work 

suggests that, in order to achieve low tracking errors for high speed operations, neural 

network based control algorithms are more convenient [1]. 

 

 
Figure 2.2.4: SCARA manipulator [1] 

 

 A new model based adaptive force control algorithm is developed by Whitcomb et 

al. [33]. This new controller provides position and force trajectory tracking of a 

manipulator which is in contact with a smooth rigid surface. Experiments are carried out 

with a Toshiba direct drive manipulator (Figure 2.2.5). Stability tests show that this 

algorithm is stable due to commonly accepted rigid body nonlinear dynamical model for 

robot arms. Comparison between this new model and a non-model based controller shows 

that the new method has better performance. 
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Figure 2.2.5: Toshiba direct drive arm [33] 

 

 

2.3. Feedforward Control 

 

 

 Adaptive feedforward robot control techniques are used in the literature frequently. 

One of the methods in this field is neural networks. A study by Novakovic [34] presents 

several concepts, such as combination of input and output functions, input time and varying 

signal distributions, discrete time domain synthesis and a one step iteration approach. 

Based on the concepts above, a feedforward neural network is proposed for an adaptive 

nonlinear robot control. This neural network based approach can process parallelly nominal 

and feedback robot control. 

 Another feedforward control algorithm which is based on neural networks is 

presented by Katic and Vukobratovic [35]. This algorithm is for contact tasks. 

Connectionist structures are used in non learning control laws. The proposed control law 

achieves stability and good tracking performance of position and force. Four layer 

perception network is used as a part as hybrid learning control algorithm. In order to 

minimize training time and effort, available sensor information is used in the task. The 

resulting four layer feedforward neural network is used to control both force and position. 

The problem of tracking a reference trajectory with a constant force reference is solved. 

17 
 



 The use of an adaptive feedforward neural network control is for the disturbance 

rejection problem of a missile seeker is proposed in [36] by Lin and Hsiao. To improve the 

seeker tracking accuracy, feedforward control is added (Figure 2.3.1). Feedforward 

controller is realized by a multilayer neural network. The controller can eliminate highly 

nonlinear disturbance torques. Connecting link masses between neural network layers are 

updated adaptively to achieve a reasonable performance. Results are compared with 

controllers without disturbance compensation and it is validated that the disturbance 

compensation is beneficial for tracking accuracy. 

 

 
Figure 2.3.1: Feedback-feedforward control system [36] 

 

 Feedforward control can be used for flexible joints and flexible links of 

manipulators. A study by Lanari and Wen on flexible robots proposes a controller structure 

mainly consisting of a stabilizing feedback loop and a model based feedforward control 

block. The feedforward control law is applied for flexible joint robots and single link 

flexible links [37]. 

 In many cases, adaptive feedforward controllers are used for canceling disturbance 

effects. In the study by Flores, Tang and Osorio [38], a design procedure based on adaptive 

feedforward control and adaptive feedforward disturbance cancellation is discussed. This 

controller is implemented by using frequency domain techniques. Resulting model only 

needs general knowledge of the plant structure. A reduced-order parametric model is used 

in order to achieve simplified analysis. 
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 In [39], the selection of proportional and derivative gains with computed 

feedforward control (Figure 2.3.2) of robot manipulators is carried out by using a design 

procedure. The procedure employs robot dynamics and desired trajectory of the end 

effector and assures that the closed loop system is locally exponentially stable and has a 

unique equilibrium point. Here, and are actual position and actual velocity of the 

robot. ,  and  are desired trajectory, desired velocity and desired acceleration, 

respectively.  denotes the manipulator inertia matrix, 

q q

dq dq

M

dq

 dq  dd qqC ,  is the vector of 

centripetal and corrolis torques,  dqg  is the vector of gravitational torques.  and  

are derivative and proportional gain matrices, respectively. 

vK pK

 

 
Figure 2.3.2: PD control with computed feedforward [39] 

 

 A controller design applicable to both linear and nonlinear models is presented by 

Zaher et al. [40]. The design technique is a combination of Lyapunow based techniques and 

state feedback. The main goal is to find the best parameter update law that guarantees 

satisfactory transient performance and stability. Trade off situations between the two 

concepts are studied. Simulations are carried out on a single-dof robotic arm model In 

Figure 2.3.3,  is the arm length, m  represents the arm mass,  denotes gravity, L g   is 

displacement angle and u  represents the actuation input. This study is different from 

adaptive techniques which estimate unknown parameters by iterative methods. Dynamic 

parameter estimation is used to predict unknown parameters, and the adaptive feedforward 

control is used to eliminate the uncertainty of unknown parameters.  
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Figure 2.3.3: Single dof robot arm model [40] 

 

 Robots with elastic joints have the problem that the product of the angle rotors and 

the reduction gear ratio does not always correspond to the the link angle. To solve this 

problem, a multirate feedforward control scheme is proposed in [41] by Shimada and 

Takeda. State references for elastic joint manipulators are designed. A prototype robot 

manipulator (Figure 2.3.4) with high precision rotary encoders installed on the output side 

of the elastic joints is used in the experiments. Experimental results indicate good tracking 

performance. 

 

 
Figure 2.3.4: Prototype robot manipulator [41] 

 

 As a robust control method, a variable structure system with a feedforward 

compensator is proposed in [42] by Duan et al. for payload uncertainties for robotic 

manipulators. Improved tracking precision is achieved by implementing the feedforward 

compensation. A proportional and integral regulator with feed sequence compensator is 

used for improving the dynamical performance and lessening the chattering problem. The 

compensator is asymptotically stable and the tracking performance is found to be 

satisfactory. 
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Chapter 3 

3. PLANT, FORCE CONTROL AND CONTOUR TRACKING  

 

 

3.1. The Plant 

 

 

 The manipulator used in this thesis, is SCARA type direct drive two-degrees-of-

freedom robot. The manipulator was built in Sabanci University in 2005. The control 

algorithm of the manipulator runs on a Dspace 1102 DSP based hardware. The board is 

programmable in C language and therefore new servo routines can be implemented. Base 

and elbow motors are Yokogawa Dynaserv direct drive motors. These motors are capable 

of providing position signals with a resolution of 102000 pulses/rev. Elbow motor torque 

capacity is 40 Nm and the base torque capacity is 200 Nm.  

 The robot’s dynamic equation can be given as 
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 In equation 3.1.1,  and  stand for the rotor inertia parameters of base and 

elbow, respectively. Their values are taken from manufacturer’s documentation. Above, D 

is manipulator inertia matrix.  and  are joint angular positions for base joint and elbow 

joints, respectively.  and  are first order derivatives of joint angular positions,  and 

are angular accelerations. C is a matrix which is representing centripetal and Corrolis 

effects.  and  are constant viscous friction coefficients for base and elbow joints, 

respectively. Viscosity coefficients are obtained experimentally by using force sensors. 

and  represent Coulomb friction torques.  is jacobian of the manipulator. 
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xeF

yeF

stands for the force on tool tip in x direction which is applied on the environment, and 

force component of the tool tip in y direction. Lastly, 1  and 2  are the joint actuation 

torques, which are used to control robot. The SCARA-type manipulator has horizontal 

kinematic arrangement so gravity effect cannot be seen at the joint dynamics.  

 The matrix D can be expressed as: 
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In 3.1.2,  and  are link masses,  and are link lengths.  and  are distances 

of joint center of masses.  and  are link inertias, and  and  are center of mass 

points. Corresponding values to above constants are given in Table 3.1.1. Center of mass 

locations and link inertias are computed via CAD models of links (Figure 3.1.1). Center of 

mass distances and link lengths are shown in Figure 3.1.2.  and  are computed along 

the principle axes, which are perpendicular to the sketch plane on the center of mass 

locations. Axes of moment of inertia computation are shown in Figure 3.1.2 too.  
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 C can be expressed as: 
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 C and D matrices are calculated by using the Euler-Lagrange method. Numerical 

values of the matrices and expressions can be found by using parameter values in Table 

3.1.1.  
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Figure 3.1.1: SCARA type robot arm and link models (picture of assembled links above 

and CAD drawings of the links below.) 
 

  
Figure 3.1.2: Robot joint angle descriptions and length parameters (coordinate axes at left, 

link lengths at right) 
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Table 3.1.1 
Robot Parameters 

Link 1 weight  1m

(including elbow 

motor) 

17.9 kg 

 

Link 2 weight  2m 3.25 kg 

Link 1 inertia  1I

(Including elbow 

motor) 

0.54 kg 

m2 

 

Link 2 inertia  2I 0.04 kg m2 

Motor 1 rotor inertia  1J
0.167 kg 

m2 

 Motor 2 rotor inertia 

 2J
0.019 kg m2 

Link 1 length  1l

(Joint center to joint 

center) 

0.4 m 

 Link 2 length  2l

(Joint center to tool 

center) 

0.28 m 

Link 1 joint to center 

of mass distance  1cl
0.277 m 

 Link 2 joint to center 

of mass distance  2cl
0.09 m 

Joint 1 viscous friction 

coefficient  1B̂
3 Nms/rad 

 Joint 2 viscous friction 

coefficient  2B̂
0.6 Nms/rad  

 
 

 

3.2. Force control and the contour tracking algorithm 

 

 

 As mentioned before manipulator dynamic equation is 
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 Since due to the nature of contour tracking tasks velocity and acceleration is very 

low, effects of inertial and corrolis terms can be neglected. A simplified version of the 

dynamic equation of the manipulator can hence be expressed as 
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 Based on the equation above, the following contour tracking control law is proposed 

in [43] by Jatta et al.: 
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 Here, is PID action for tangential velocity control. is PID action for 

normal force control. and are feedforward gains of tangential velocity and normal 

force. and are reference tangential velocity and reference normal force, 

respectively.  

VPIDU

ref

FPIDU

Vk Fk

tref n

 This thesis adopts the method in [43] partially. Although the main control law used 

in the thesis is the same as in (3.2.3) the way of computation of  and the reference 

signal are different. A fuzzy parameter adjustment system is used for the online 

determination of , as is discussed in the next chapter. This chapter considers the control 

algorithm without fuzzy online tuning and presents simulation results with manual tuning 

of this matrix along with other controller parameters. 

RK

RK

 The control parameters and  tuned in by trial and error manually, after tests  

and trials the values that gave more successful results are chosen as final values. They are 

listed below (Table 3.2.1). 

Vk Fk

 

Table 3.2.1 
Controller Parameters 

Vk  1.5 

Fk  1.5 

 

 PID control is a well known mathematical algorithm used to eliminate the error 

between the desired reference state and the actual state of the system. The error is the 
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difference between the data obtained by sensors, which are embedded in the system, and 

the reference signal which is implemented within the control software. The expression for 

error in this case are 
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PIDU  is computed as 
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where the coefficient matrices are explicitly written as 
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Force and velocity control parameters, k , , , ,  and are tuned by 

trial and error too. Final values are chosen as they have best results when compared to other 

trial values. Their values are listed in Table 3.2.2. 

fP vPk
fIk

vIk
fDk

vDk
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Table 3.2.2 
Force, velocity control parameters 

fPk  2 

fIk  0 

fDk  0.1 

vPk  1000 

vIk  100 

vDk  3 

 

 

The full robot model (3.1.1) and the controller structure explained above are used in 

the simulations to track the surface of a wall. The wall surface is represented with a line 

equation as follows: 

wally = (wallb wallx wallc )/ + .        (3.2.14) walla walld

wally

wallb c

 and  are wall’s Cartesian coordinates of a generic point on the the wall, 

, ,  and  are wall position and orientation parameters and their values are 

presented in Table 3.2.3. The tool contact with wall is modeled as a spring and damper 

system. Normal force on its surface is computed with equation 

wallx

d

F

walla wall wall

N

NF = + .     (3.2.15) kF bF

Here,  is wall spring force, is wall damper force. Spring force is nonzero 

when the simulated tool tip of the manipulator penetrates the wall surface. With the specific 

choices of the wall position and orientation parameters in Table 3.2.2, the wall is parallel to 

the y-axis and the penetration occurs when the tool tip x position is larger than the wall 

position along the x-axis. Damper force nonzero when  the x-directional velocity of the end 

effector is positive while in contact. 

kF bF

kF = ( - ),        (3.2.16) wallk ex wallx
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bF =  ,              (3.2.17) wallbk  xeV
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Here,  is walls spring constant,  is walls damper constant, and and  

are end effector’s position in Cartesian coordinates.  and are end effector’s velocity 

components in Cartesian representation. Wall contact model parameters are shown in Table 

3.2.3.  

wallk wallbk  ex ey

xeV
yeV

 

Table 3.2.3 
Wall parameters 

wallk  100000 

wallbk   200 

walla  0 

wallb  -2 

wallc  0.5 

walld  0.5 

 

 

Figure 3.2.1 shows the wall and end effector position obtained in a simulation 

scenario. In this scenario, the tool tip is initially positioned at a distance from the wall. An 

x-directional (normal) force reference of 10 Newtons and a y-directional (tangent) position 

reference are applied simultaneously with the control law in (3.2.3). The y-directional 

position reference corresponds to a trapezoidal velocity curve with a 1 cm per second speed 

and 1 s acceleration/decceleration time. A distance on 5 cm is to be travelled in the positive 

y-direction on the wall surface. As can be observed form the figure, firstly, the end effector 

reaches and hits the wall. This is followed by a phase in which the tool tip tries to track the 
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wall. However, the tool cannot track the position reference. The distance between end 

effector and contact surface is not constant.  

 
Figure 3.2.1: Wall and end effector positions 
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 Figure 3.2.2 depicts the reference and the actual normal force curves. Although the 

reference force signal is 10 Nm the actual normal force varies between 7.8 Nm and 12.9 

Nm. 

 
Figure 3.2.2: Actual and reference normal force: actual concrete, reference dashed line 
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Next, Figure 3.2.3 shows actual y-position of the end effector together with the y-

directional position reference. Reference signal cannot be tracked and error varies between 

-0.01 and 0.01 meters. 

 

 
Figure 3.2.3: Actual and reference y-axis position; actual concrete and reference dashed 

line. 
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Figure 3.2.4 shows elbow and shoulder joint positions. Steady state cannot be 

reached; positions of shoulder and elbow are varying. 

 

 
Figure 3.2.4: Time dependent shoulder and elbow positions. 
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Finally, Figure 3.2.5 presents the corresponding shoulder and elbow joint torques. 

The control torques are smooth, however they do not exhibit dynamic control effort to 

overcome tracking errors. 

 

 
Figure 3.2.5: Time dependent shoulder and elbow torques. 

 

The results presented with the manually tuned control method are far from being 

satisfactory. To that end, further improvements are necessary. The next chapter approaches 

this problem with an online fuzzy parameter adjustment technique. 

In this chapter: 

 The model of the 2-DOF SCARA type manipulator is built. 

 The wall model as a contact surface for contour tracking algorithm is 

proposed. 

 PID control parameters tuned by trial and error method and PID controller is 

added to model. 
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 Feedforward control with constant feedforward parameters is added to the 

controller, feedforward parameters are tuned by trial and error, manually. 

 Resulting plant and controller system is simulated and results are explained.  
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Chapter 4 

4. FUZZY PARAMETER ADJUSTMENT 

 

 

 As mentioned above, the results with the manually tuned contour tracking algorithm 

are not satisfactory. Simulations in previous chapter are carried out with parameters that are 

tuned by trial and error. A fuzzy parameter adjustment approach is proposed in this chapter 

to tune the feedforward gains and  of the system. This is an online tuning system. 

The developed fuzzy system aims to find a balance between chattering in control signal 

 and tangential velocity and normal force errors. 

Vk Fk

PIDU

 Chattering can be defined as high frequency oscillations in a control signal. It is an 

indicator of control effort. However, too much chattering can invoke high frequency 

manipulator dynamics. It is also undesirable for mechanical parts like bearings and 

transmission elements. In order to assess the amount of chattering in the control signals a 

chattering variable, , is introduced in this thesis as 
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where k stands for the discrete time index. 

 The main idea after the fuzzy parameter adjustment method proposed is: 

(i) When chattering is small, control parameter is smooth and the controller 

activity is low. In order to increase the control activity control parameter 

(feedforward gain) should be increased. 

(ii) When chattering is large, it means that controller activity is high. This may 

harm the robotic mechanical hardware. Therefore, the control parameter 

should be decreased. 
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This logic alone can be applied to adjust feedforward control parameters; however, 

this information does not contain data about the end effector is in contact with the surface. 

Therefore another variable should be used in addition to chattering variable. Normal force 

and tangential velocity errors become useful at this point. A similar approach is used for 

these errors: 

(i) When errors are low, control parameters are suitable; therefore do not adjust 

feedforward control parameter. 

(ii) When errors are high, control parameters are not sufficient; therefore 

increase (or decrease) control parameter. 

 

Combining the four principles above, a fuzzy rule table is created (Table 4.1) for the 

magnitude of the required change in the feedforward gains every sampling instant (2 ms in 

the simulations presented in this thesis). The table is applied for the feedforward gains 

responsible with the feedforward control actions in the tangential and normal directions 

independently. The fuzzy rules only decide upon the required magnitude of the change on 

the gain. The sign of the change is determined by the sign of the corresponding error 

(tangential position error or normal force error). The numerical values for the rule 

strengths , ,  and 
SSRK SBRK BSRK BBRK  are listed in Table 4.2. 

 

Table 4.1 
Fuzzy rule parameters 

    
  Small   Big   

Small E

 
 

SSRK  

 
Rule A 

 
 

SBRK  

 
Rule B  

E  

Big E  

 
 

BSRK  

 
Rule C 

 
 

BBRK  

 
Rule D 
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Table 4.2 
Fuzzy rule values 

SSRK  1 

SBRK  0 

BSRK  10 

BBRK  3 

  

 Feedforward control gains are updated with the equation: 

 )sgn()1()1()( ekKkKkK   .           (4.2) 

Here, K signifies or  and  stand for the tangential position error or the normal 

direction force error. sgn is the sign function. The same formula is used for the parameter 

update of the two directional feedforward gains. The fuzzy rules, when used for the 

adjustment of  use  and the force error as the input variables. When used for the 

chattering input is  and the error input is the y-directional position error. It should also be 

mentioned that the error signal absolute values are used as the inputs to the fuzzy system. 

Therefore, it is the sign function in (4.2) what makes the feedforward gains increase or 

decrease. 

Vk

2

Fk

1

e

Fk  Vk

  is a small gain (0.0001 in the simulations) which is used for smooth variation 

of the feedforward gain parameters.  is the time index variable. k

 The change magnitude K in feedforward gain in (4.2) can be expressed as 

           
               








        E

      E

BigEBigBigESmallSmallEBigSmallSmall
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EEEE
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

.      (4.3) 

 Here, E Small , EBig  ,  Small  and  Big  are trapezoid membership functions. They 

are shown in Figure 4.1 and Figure 4.2. Small , Big ,  and are the corner values of 

trapezoid functions. They are also chosen by trial and error method manually. Their 

numerical values are listed in Table 4.3. 

SmallE BigE
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Figure 4.1: Trapezoid functions for   

 

 
Figure 4.2: Trapezoid functions for  E

 

Table 4.3 
Corner values 

Small  3 

Big  200 

SmallE  0.1 

BigE  1 

 

It can be noted that the choice of membership functions and rule base parameters 

satisfies the previously mentioned chattering and error principles. Rules A to D in Table 4.1 

are explained below in detail. 

 Rule A is used if the chattering and the error both are small. In that case 

feedforward control gain K is increased (or decreased if the error is negative) by the 

rate . Since error is low, drastic changes in feedforward gain is unnecessary, but 

small chattering shows that control action can be changed safely, therefore gain should 

increased (or decreased if the error is negative) with a relatively little rate. 

SSRK

 Rule B is applied when the error is small but chattering is big. Rule B’s rate is 

 which is set to zero. It means that when this condition is valid feedforward control 

gain is kept unchanged. Small error and big chattering is a desired scenario, assuming that 

SBRK
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chattering increased to this level gradually. Control effort is high and error is low. So this 

region chosen as a dead zone and tuning action in this region is kept inactive. The 

feedforward action should not get bigger in order not to increase chattering further, and it 

should not be decreased, because this could cause the error to grow. 

 Rule C is invoked when the chattering is small while the error is high. This region 

represents the worse condition since we desire a certain chattering level and low error. This 

regions’ change rate is . This constant represents the biggest rate in Table 4.1. The 

feedforward gain is increased (or decreased if the error is negative) rapidly should this 

situation arise. 

BSRK

 Rule D is for the case when both the chattering and the error are high. For this 

situation, error should be decreased; therefore a modification in feedforward control gain is 

necessary. The change rate  chosen bigger than rule A’s change rate and smaller 

than rule C’s rate. Feedforward control gain is increased (or decreased if the error is 

negative) for this region too.  

BBRK

 In following parts of this section, simulation results of this fuzzy parameter 

adjustment system are presented. In the simulations in the previous chapter, feedforward 

gain is tuned by hand; however, for the following simulations, the fuzzy tuning system is 

used to tune feedforward control gain online. The fuzzy system variables and parameters 

are newly introduced as tabulated, while other control and plant parameters and references 

are preserved as used in the previous simulation. 

 In Figure 4.3 wall and end effector positions are shown. There are no noticeable 

changes between the previous simulation and current simulation as observed in this figure. 

This is because temporal information and contact force data is missing in this x-y trajectory 

plot.  
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Figure 4.3: Wall and end effector positions 
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 Figure 4.4 shows position and normal force errors. In normal force error significant 

improvement is visible. The force reference of 10 N is achieved to a large extend. The y-

directional position tracking is improved too. Position tracking error goes to steady state 

after 8 seconds. 

 

 
Figure 4.4: Actual and reference y-axis positions (top); actual and reference normal force 

(bottom). 
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 Figure 4.5 shows shoulder and elbow joint positions. Elbow position chattering 

occurs when end effector touches wall at first time. However chattering dies before 0.5 

seconds rest of the signal is smooth. 

 

 
Figure 4.5: Shoulder and elbow positions in polar coordinates 

 

 Next two figures, i.e. Figure 4.6 and Figure 4.7, show chattering variable values for 

elbow and shoulder joints together with corresponding control torque curves. Although the 

chattering computations carried out used the orthogonal control actions  and  as 

inputs, the chattering on the joint control torques are significant too. These control torques 

should not exhibit high levels of oscillatory behavior for the sake of mechanical parts. The 

chattering curves in Figure 4.6 and Figure 4.7 are found by applying (4.1) directly on the 

control torques. The figures show that the chattering in the control torques remains quite 

low, except for a short while in the phase of touching the wall.  

FPIDU
VPIDU
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Figure 4.6: Shoulder torque (top) and chattering (bottom). 
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Figure 4.7: Elbow torque (top) and chattering (bottom). 

 

 The evolution of the feedforward gain parameters and  is shown in Figure 

4.8. The initial value of both parameters is 1. The fuzzy tuning method tunes them so that 

the applied feedforward control matched the demands of the situation. 

Fk Vk
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Figure 4.8: Feedforward gain parameters 
 

Figures 4.9 and Figure 4.10 compare the control results with and without the fuzzy 

tuning on the same graph. It is observed that with fuzzy parameter tuning, the resultant 

adjustment leads to more successful results. Normal force error in this case is significantly 

smaller. Furthermore, the tangential error converges to a constant value with fuzzy 

adjustment while with the constant-parameter feedforward control, normal error and 

tangential error cannot be stabilized. As we can see in these figures, the system with fuzzy 

adaptation moves to a steady state in both normal force and tangential directions more 

rapidly.  
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Figure 4.9: Error of y-axis positions for two simulations  
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Figure 4.10: Error of normal force for two simulations 

 

In this chapter: 

 A chattering variable is introduced. 

 A rule bases for fuzzy parameter adjustment is proposed. 

 Chattering variable and normal force and tangential errors are used to tune 

feedforward parameters using fuzzy parameter adjustment. 

 The previous controller mentioned at Chapter 3 is improved. 

 Simulation results are explained. 

 A comparison between the two controllers is presented. 

 Improvement in controller performance is achieved. 
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Chapter 5 

5. Conclusion 

 

 

In this thesis, a contour tracking problem is investigated. A hybrid control method 

with position control action in the tangential direction and explicit force control in the 

normal direction is chosen from the literature and is used as a controller backbone. This 

controller contains building blocks for PID actions and feedforward control. The study in 

this thesis shows that feedforward control action does not provide satisfactory tracking 

results when applied with constant gain parameters.  

The thesis proposes an online tuning method for these gains. The tuning method 

relies on fuzzy logic. A control effort indicator termed as a chattering variable is 

introduced. This chattering variable, together with the tangential position and normal force 

errors, is used as an input of the fuzzy tuning algorithm. 

Simulation results carried out with the model of a direct drive SCARA-type 

manipulator indicate that the online fuzzy tuning method improves the reference following 

performance in both the position and force control directions significantly. This makes the 

proposed method a candidate for implementation on real robots.  

Application of this control scheme on a real SCARA-type manipulator considered 

as a future work. 
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