
How to Provide Developers only with Relevant Information?

Stefan Räbiger, Ataman Girişken, and Cemal Yilmaz
Faculty of Engineering and Natural Sciences

Sabanci University
Istanbul, Turkey

Email: {stefan, ataman, cyilmaz}@sabanciuniv.edu

Abstract—After the release of a new software version it is
difficult for individual developers to keep track of all newly
submitted bug reports complicating their decision making, e.g.,
which bug to resolve next? This problem is emphasized by the
presence of further information sources, such as social media,
which offer valuable user feedback to developers regarding
the software. However, due to an abundant amount of infor-
mation, developers might never notice this feedback. Hence,
we envision a real-time system that provides developers with
relevant information for improving the quality of their system
while filtering out irrelevant facts from multiple information
sources. For this system to work, it is necessary to compute
the similarity between different types of documents, e.g., tweets
and bug reports, in order to detect whether they are relevant
to a developer or not. In this feasibility study, we focus on
analyzing this core assumption in a simplified scenario in
which we identify related bugs for a given software fix with
the help of Natural Language Processing methods. In this
experimental setting, which exhibits the key characteristics of
our envisioned system, we obtain promising results indicating
that our approach is feasible.

1. Introduction

Nowadays individuals are exposed to a wide range of
information sources rendering them unable to distinguish
relevant from irrelevant knowledge. This gives rise to the
problem of information overload [1], i.e., not being able
to find the relevant information due to the sheer amount of
available data. Software developers are not exempt from that
problem. Whenever a new piece of software is released, it
is inevitable that new bugs are detected which in turn are
reported by users, customers or developers themselves. At
the end, these reports are added to the respective private or
public bug repositories making it more and more difficult
for individual developers to always keep track of all newly
submitted bug reports, the progress state of bugs that are
currently being resolved by other developers and so on. At
times, this problem becomes even more severe, namely after
releasing a new product or an improved version. Besides the
bug repository, social media, such as Twitter or Facebook,
have emerged over the last years as additional information
sources for developers. For example, customers suggest im-

provements like “the button for closing the window should
be in the top right corner” as comments below a Facebook
post about a product or they tweet about encountered bugs,
e.g., “upgrading my library from version 1.0 to 1.1 crashes
my entire system”. However, developers notice such useful
feedback rarely, mainly because of information overload.

Thus, we envision a real-time system that supports de-
velopers by filtering out unnecessary information and for-
warding only “relevant” data. In this context, the definition
of “relevant” depends on the information source. In the
case of social media, any customer feedback could prove
useful to developers, although developers might be currently
working on different aspects of the program, but this type
of user feedback helps for setting up long time visions and
prioritizing new features. In contrast, the term implies for
software repositories that only committed fixes or submitted
bug reports are presented to a developer which are related
to the piece of code on which she is currently working.
For example, if she is addressing a specific bug and a user
submits a new bug report related to the piece of code the
developer works on, it should be displayed to her so that she
may decide how to continue - either fixing the bug directly
or leaving it open for further investigation. Similarly, our
system can inform a developer A if someone else has just
committed a fix that affects A’s current piece of code. Also
the internal communication via email would be relevant to
A if it addresses her code.

For this system to work, we must assume that all doc-
uments (bugs reports, fixes, tweets, Facebook posts, etc.)
can be analyzed in a meaningful way, which allows to
tell whether a document is relevant to a developer or not.
Therefore, it is essential to verify the correctness of our
hypothesis before implementing this system. To do so, we
focus on the key concepts of this system, which involves
comparing document similarity, retrieving only relevant in-
formation and all of those functions should be carried out in
real-time or at least close to real-time. Hence, in this paper
we study the scenario of finding related bugs for a fix that
a developer is about to commit, i.e., she potentially entered
additional comments to describe how the fix works. Bugs
and fixes are comprised of a summary and a description.
An example is illustrated in Figure 1. Note that we discard
any source code regardless of whether it is part of a bug
report or fix. Once a fix is about to get committed, our

2016 7th International Workshop on Empirical Software Engineering in Practice

978-1-5090-1851-2/16 $31.00 © 2016 IEEE

DOI 10.1109/IWESEP.2016.14

12



Figure 1. a) Sample bug report. b) The related fix.

system should display a list of likely related bugs in real-
time which could be analyzed by the developer to decide
whether one or more of the suggested bugs get resolved
by the current fix as well. This concrete scenario covers
all of the aforementioned key concepts of our future system
because it has to work in real-time, a developer is forwarded
only a relevant piece of information, namely that someone
reported a bug related to the code on which this developer is
currently working, and the similarity between different bugs
and fixes must be calculated. In addition, recommending
related bugs to a fix, which is about to be committed, has
another advantage, namely easing maintenance of a bug
repository. For example, if we assume that multiple bugs
exist in a repository that are produced by the same root
cause and if developers are working on fixing bugs with
high priority first, it could be possible that bugs with lower
severity could automatically get resolved when the latter
are presented as part of the related bugs. It would also be
possible that a related bug report was submitted recently
and developers are unaware of it yet. Presenting such a
bug report among the suggested related bugs would allow
developers to resolve it directly as well.

We carry out a feasibility study to evaluate our basic
hypothesis that calculating document similarity in this set-
ting yields meaningful results in real-time. Here, bug reports
as well as fixes represent documents which we compare
with each other to find the k most similar bugs for a
fix. To improve performance, we preprocess the documents
with the help of Natural Language Processing (NLP) tech-
niques before converting them into a vector space model
to calculate pairwise similarities. To evaluate our approach,
we resort to pairs of bug reports and fixes we collected
manually from a real software repository. Each of the col-
lected fixes addresses one specific report. The goal is to
find the corresponding bug within the first k most similar
bug reports calculated by our approach. Finding similarities
between documents based on NLP techniques has been
studied before in software engineering. However, to the best
of our knowledge, we are the first ones to search for related
bugs that could be resolved with a given fix.

The rest of the paper is organized as follows. Section

1 presents related work on measuring document similarities
combined with NLP. Section 3 describes our approach to
select the k most similar bugs; Section 4 explains our experi-
mental design and we discuss our results. Section 5 explains
potential threats to the validity; and Section 6 summarizes
the proposed approach and discusses future work.

2. Related Work

The vector space model approach is widely used in in-
formation retrieval studies for identifying similar documents
[2]. Vector space models work well on measuring word,
phrase and document similarities. Most search engines are
also using the vector space models to match queries with
documents [3]. In our approach, we regard a single fix as a
document as well as bug reports as separate documents to
compute pairwise similarities for finding the most similar
bugs for a given fix. While the aim in detecting duplicate
bug reports is to find exact matches, we are only interested in
similar matches, i.e., the output of our approach is a ranked
list of potentially related bug reports and not a single bug
report.

The use of Natural Language Processing (NLP) tech-
niques is crucial in information retrieval problems in order
to increase the recall rate which is the amount of retrieved
relevant documents. These techniques include stop word
removal and stemming in in the tokenization step. Stop
word removal is to ignore common words that carry no
information, e.g. ”the” or ”a”. Stemming is used to convert
words into root words, e.g., “rains”, which could be the third
person form of the verb “to rain” or the plural form of the
noun “rain”. With the help of stemming, both forms would
be transformed into “rain” which reduces the dimensionality
in the vector model representation. This is important since
it is well-known that this representation suffers from the
curse of dimensionality, i.e., finding similarities across many
dimensions tends to yield meaningless results. Therefore,
reducing the dimensionality is of utmost importance for the
vector space model to work well. However, other methods
for dimensionality reduction could also be applied, com-
monly this would be latent semantic indexing [4], especially
since stemming does not always lead to an enhanced per-
formance of a system, e.g., tweets on Twitter tend to be
short (at maximum 140 characters) and informal, so the
heuristics applied for identifying root words do not always
work. For example, in the work of Bao et al. [5], the authors
report that using stemming affects their results negatively.
Runeson et al. [6] calculate the textual similarity of bug
reports to identify duplicates using NLP techniques, such as
stop word removal and stemming. Afterwards, they convert
those bug reports into a vector space representation which is
used for computing pairwise bug report similarities to find
the most similar ones. Finally, they present them to an end
user to manually choose the duplicates from the presented
list. Their approach is able to find an estimated maximum of
60% duplicates utilizing cosine similarity. Jalbert et al. [7]
focus on finding duplicate bug reports in real-time in a bug
report environment. In other words, previously unknown bug

13



Figure 2. Overview of our approach to determine the k most similar bugs.

reports are matched with historical bug report data to reduce
development costs. In a more recent study by Sun et al. [8],
the authors focus on implementing a new similarity formula
to increase the recall rate for finding duplicate bug reports.
Again, in contrast to previous works we are not interested
in finding duplicates, but rather related bugs to a given fix
which could potentially also be repaired by that fix. The
developer, who is about to commit her fix, has to decide
whether any of the bug reports, suggested by our approach,
get also resolved by that fix or not.

The underlying assumption for matching bug reports
with their respective fixes, normally containing source code,
is that both documents share common terms. Moreno et al.
[9] provide empirical evidence that this assumption indeed
holds. Hence, this work is closely related to our study. To
compute similarities between source code and bug reports,
the authors create a bag-of-words representation of both
documents. Our work, in contrast, differs in three points.
First, in our current implementation we disregard source
code for matching bug reports with fixes - we focus on
the summaries and descriptions for the sake of simplicity.
Secondly, Moreno et al. do not utilize summaries or de-
scriptions of fixes in their work. Thirdly, we represent our
documents as TF-IDF vectors instead of using the bag-of-
words approach.

3. Approach

An overview of our approach is depicted in Figure 2.
We are given a set of bugs and a fix the developer is about
to commit. After preprocessing the set of bugs, all bugs
are converted into the vector space representation with TF-
IDF weights and cosine similarity is employed to calculate
pairwise similarities between the given fix and all bugs. The
fix is converted into the same representation that was used
for the bug reports. The list of the k most similar bugs
is presented to the developer who must decide whether a
suggested bug report gets resolved by her current fix or not.
The details about this procedure follow in the next section.

3.1. How to Select the k most Similar Bugs?

For our proof of concept implementation, we utilize
Scikit-learn [10] and NLTK [11]. From NLTK we employ
the Snowball stemmer to obtain root words. First we tok-
enize bugs and fixes; we then preprocess them by stemming
and lowercasing them, removing stop words and punctua-
tion. The main reason for not performing more sophisticated
strategies at the moment, e.g. removing adjectives and ad-
verbs to reduce the dimensionality with the help of POS
(Part of Speech) tags, is that we focus on investigating how
well this approach is in general suitable to solve our problem
at hand. More involved preprocessing strategies are to be
performed in the future. We convert our bugs and fixes into
a vector space representation to be able to compute inter-
document similarities. Specifically, we employ TF-IDF [12]
which is computed as follows:

wi,j = tfi,j × log

(
N

dfi

)
(1)

where wi,j is the weight of term i in document j, N is
the number of documents in our collection, tfi,j is the
term frequency of term i in document j and dfi is the
document frequency of term i, i.e. in how many documents i
occurs. Higher TF-IDF weights of words indicate that these
words act as good discriminators for a document. Intuitively,
weights are higher if words occur frequently in a document
(the first term), but rarely in the document collection (the
second term). In any other case, words are assumed to be not
representative for a document resulting in lower weights. We
expect TF-IDF to be a good representation for our problem
since specific and seldom used function names occur in
bug reports and fixes. For example, since function names
could exist in various classes, normally the package of a
function is also mentioned. After converting documents into
the vector space representation, we compute the pairwise
cosine similarity between fix dj and bug dk as:

sim(dj , dk) =

n∑
i=1

wi,jwi,k√∑N
i=1 w

2
i,j

√∑N
i=1 w

2
i,k

(2)

where sim(dj , dk) lies between −1 (exactly opposite) and
1 (exactly the same), while a cosine similarity of 0 indicates
no correlation at all. After computing the pairwise similar-
ities of fix dj with all bugs dk, we store the k most similar
bugs for dj if sim(dj , dk) > 0.

4. Evaluation

With the help of our experiments, we want to analyze
three research questions specifically related to bug reports
and corresponding fixes:

1) Which parts of the documents should be compared
to compute similarity?

2) Which preprocessing steps are useful for bug re-
ports/fixes?

3) What is the execution time?

14



4.1. Dataset Description

We collected 46 matching pairs of bug reports and
fixes from the Scikit-learn repository1. The main criterion
for deciding whether to add a document pair or not was
whether the fix linked to a bug report resolved the associated
problem. If other participants in the respective bug thread re-
ported further issues after applying the fix, we discarded the
pair. Apart from that, we selected the documents randomly.
As mentioned before, each of the documents is comprised
of a summary and a description. Some of the bug reports
were submitted by developers, while others were reported
by users. During the collection of our dataset, we discarded
any code snippets in the collected documents because our
approach does not exploit this type of information yet. After
stripping off the source code, in total 25 fixes and 4 bug
reports did not include descriptions anymore.

4.2. Experimental Design

We simulate our scenario using those pairs, i.e., a de-
veloper has just finished adding her descriptions to the fix
and she is about to commit it to the repository. The bug
report that should initially be fixed using the commit is
unknown to us, we instead utilize the matching bug report
as the related bug that would automatically get resolved
by committing the current fix. The reason for selecting
this evaluation scheme is that the information necessary for
knowing whether a fix resolves multiple bugs at a time or
not is not available. Before starting with the experiments,
the documents need to be transformed. To do so, at first a
vector representation is generated based on all 46 bugs using
Equation (1). In the next step, the fix is converted into the
generated vector representation. Now its similarities with all
bugs are computed according to Equation (2) and only the
k most similar bug reports are retained.

4.3. Evaluation Framework

When looking at the k most similar bugs for a given fix,
it is most important that the corresponding bug is contained
in the list, ideally at the highest position in the ranking.
Therefore, we use recall to evaluate our approach. More
precisely, we utilize recall@k [13] as a metric which takes
the recall up to rank k into consideration for the calculation.
For example, when computing recall@3, the three most
similar bugs returned for a given fix are checked - if the
relevant bug is among those three bugs, it is counted as a
match. This example also illustrates that the recall@k will
always be either 1 or 0 in our experimental setup. Hence,
we sum up the scores for all our 46 fixes to obtain our recall
for a given k.

1. https://github.com/scikit-learn/scikit-learn

TABLE 1. DOCUMENT SIMILARITY USING DIFFERENT PARTS OF THE

DOCUMENTS.

k summaries descriptions descriptions & summaries

1 52.2% 19.6% 63.0%
2 58.7% 26.1% 71.7%
3 63.0% 26.1% 71.7%
4 65.2% 28.3% 76.1%

4.4. Which Parts to Consider for Document Simi-
larity?

We analyze in this section the extent to which each part
of a bug/fix is relevant for calculating pairwise document
similarity. Since each document is comprised of two parts,
we test all three combinations to quantify their importance:
the documents could be described according to their a)
summaries, b) descriptions, or c) a combination of the
previous two options, i.e., both parts are merged into a single
document. Calculating pairwise similarities between a fix
and all bug reports leads to the results shown in Table 1.
Considering summaries and descriptions of bugs and fixes
as single documents yields the highest recall@k, while only
performing pairwise comparisons based on the descriptions
leads to a low recall. The latter observation is unsurprising
since 29/46 documents feature no descriptions. But since
source code is used regularly to illustrate bugs in software
or to fix existing defects, we argue that our results are
transferable to other repositories as well. On the one hand,
using only summaries for computing document similarity
works reasonably well, but on the other hand it depends on
the fact that bug reports and fixes use the same words. Of
course, the same problem exists when combining summaries
and descriptions, but due to the larger amount of available
text, this problem is less likely to occur. We note that it is
unclear whether the good performance of sole summaries is
an artifact of our dataset or not. To some extent they confirm
the findings of Ko et al. [14] who noted that exploiting
bug summaries only would suffice to identify similar docu-
ments as descriptions would be too noisy. However, at the
same time our results contradict their findings because the
performance benefits from descriptions. The results shown
in Table 1 were obtained by tokenizing, lowercasing, and
stemming all documents. We note that the same tendencies
prevail when using different preprocessing methods (see
Table 2 for an overview of all the techniques we tested),
i.e., the combination of summaries and descriptions appears
to be superior. Therefore, we opt for treating summaries and
descriptions of a bug report/fix as single documents in the
remainder of this paper.

4.5. Which Preprocessing Steps are Beneficial?

With this question we examine which preprocessing
steps help achieve our goal. For example, employing stem-
ming could lead to a deterioration of our results because this
technique relies heavily on heuristics which do not hold true

15



TABLE 2. EFFECT OF DIFFERENT PREPROCESSING STEPS ON

DOCUMENT SIMILARITY.

k T T+L T+L+S T+L+P All

1 58.7% 58.7% 63.0% 52.2% 56.5%
2 67.4% 67.4% 71.7% 65.2% 71.7%
3 69.5% 69.5% 71.7% 67.4% 71.7%
4 71.7% 71.7% 76.1% 76.1% 78.3%

for all datasets, e.g., the use of informal language makes it
difficult to benefit from applying stemming to Twitter in
specific tasks [5]. In general, stemming works better on
longer texts and bug reports/fixes potentially vary heavily
in length [15]. In our work, we focus on tokenization (T),
lowercasing (L), stop word removal (SR), stemming (S) and
punctuation removal P as preprocessing techniques2. The
effect of the different combinations of preprocessing steps
on the recall@k is illustrated in Table 2. In the last column,
indicated by “All”, we apply all previously mentioned tech-
niques, that is T+L+P+SR+S. A combination of tokenizing,
stemming and lowercasing documents seems most suitable
to our problem. When increasing k, using all preprocessing
methods becomes a viable alternative. Yet, the implications
of choosing an appropriate k must be discussed. For it takes
developers time to go through each suggested related bug
and to think about whether her current fix resolves a listed
bug, it becomes infeasible to present long lists. This problem
is known as decision paralysis [16]. Due to the implications
of this problem and based on Table 2, we opt for a small
value of k, namely k = 2, as developers need to investigate
at most two more bugs besides the one they are addressing
with their current fix. The main reason is that the recall@k
is not improving drastically thereafter for larger values of
k. Since there is still room for improvement in terms of
NLP techniques, e.g., POS tagging to remove adjectives or
adverbs as they are not carrying meaning in this context,
we find these results encouraging. If one would increase
k, the results would naturally improve further. This would
solely be due to the definition of recall@k. Suppose we set
k = 46, then all 46 bug reports will be ranked in our list,
so the recall@46 will be inevitably 100% regardless of our
approach.

4.6. What is the Execution Time?

In the last question we study the execution time of
our approach to show it performs document similarity cal-
culations in real-time. The more preprocessing steps we
combine, the longer it takes the system to compute the k
most similar bugs for a fix. The results are illustrated in
Table 3. Our system manages to yield results in at most
0.5 seconds, clearly showing the calculations are carried
out almost in real-time. To compute the execution time, we
averaged the results over 10 runs. We only depict them for

2. We tried all combinations of these operations in preliminary experi-
ments and due to space limitations, we only report the best ones.

TABLE 3. EXECUTION TIME IN SECONDS DEPENDING ON WHICH

PREPROCESSING STEPS ARE APPLIED.

k T T+L T+L+S T+L+P All

1 0.15 0.15 0.25 0.18 0.47

k = 1 because the execution times remain the same for
larger values of k as the same computations are performed in
the background. For larger bug repositories the complexity
of pairwise comparisons will increase linearly. The vector
space model can be updated efficiently with the help of an
incremental version of TF-IDF [17]. If the number of bug
reports in the repository becomes too large, computing the
similarities can be sped up by parallelization. Alternatively,
it would be possible to cache similarities and recompute
them only after every x instances, accepting some inaccu-
racies in the results.

5. Threats to Validity

The dataset we used is small in size, meaning the results
obtained using our approach might not be generalizable and
the choice of the dataset could have affected our results as
well. Another inherent threat is that the proposed approach
completely relies on the assumption that similar words occur
in similar bugs and respective fixes. Although it turned
out that this observation held true for our dataset, we do
not know whether other datasets would exhibit the same
property. A way to alleviate this issue is incorporating more
diverse sources for extracting information to compare the
similarity of documents, e.g., source code. When discover-
ing related bugs for a fix, those similar bugs can be resolved
by changing the code in the vicinity of the given fix.

6. Concluding Remarks

In this paper we have explored the possibility to support
developers actively by presenting them the most similar bugs
to a fix those developers are about to commit. This allows
them to realize that their fix is repairing multiple bugs at
a time which simplifies the process of keeping track of
ever-growing bug repositories as well as it is reducing the
workload for bug triagers and developers. The preliminary
results of our feasibility study suggest that the proposed
approach is a promising one, but there is still room for
improvement. We hope that the results of our feasibility lead
to more research toward supporting developers in real-time
while they are working on a piece of code.

In the future, we plan on making our approach more
robust by incorporating source code snippets from descrip-
tions of either bug reports or fixes. For example, in our
work more than half of the documents contained source
code that we discarded. That implies a good opportunity for
improvement as pairwise similarity computations could turn
out to be more accurate with these additional information.
However, we would have to adjust our approach because

16



NLP techniques do not work well on raw source code. One
possible solution is described by Wang et al. [18], who
extract class and method names from a bug report and build
a vector space representation based on these information
instead of using all words from a report. According to this
approach the source code is parsed and all classes and
methods (including overridden and overloaded ones), that
were extracted from the bug report, are converted into a
vector space representation. This allows to compute pairwise
similarities and the most likely class/method would be con-
sidered to cause a bug. In this way bug reports and source
code can be linked with each other. In the next step, we
plan to retrieve costumer feedback from tweets for software
developers. For example, the approach recently described in
[19] utilizes NLP techniques and a bag-of-words represen-
tation to categorize short app reviews into four categories,
including bug reports. This information would complement
bug reports and prove useful to developers.

Since we have obtained promising results in this feasibil-
ity study, as an avenue for future research, we plan to extend
our implementation for the system described in Section 1.
To reduce the dimensionality of the TF-IDF vectors, we
will utilize more advanced preprocessing methods like POS-
tagging to be incorporated for reducing the dimensionality or
the vector space model. For example, adjectives and adverbs
usually do not carry information about bugs, thus removing
them should not affect our results negatively. We also believe
our described approach could be directly applied to bug
repositories. In that scenario our approach would suggest a
list of developers who have fixed bugs in the past similar to
the one that was just submitted. This strategy could improve
the efficiency of addressing bug reports automatically to
assigning bug reports to developers.

References

[1] N. Davis, “Information overload, reloaded,” Bulletin of the American
Society for Information Science and Technology, vol. 37, no. 5, pp.
45–49, 2011.

[2] C. D. Manning and H. Schütze, Foundations of statistical natural
language processing. MIT press, 1999.

[3] P. D. Turney and P. Pantel, “From frequency to meaning: Vector space
models of semantics,” Journal of Artificial Intelligence Research,
vol. 37, pp. 141–188, 2010.

[4] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas,
and R. A. Harshman, “Indexing by latent semantic analysis,” JAsIs,
vol. 41, no. 6, pp. 391–407, 1990.

[5] Y. Bao, C. Quan, L. Wang, and F. Ren, “The role of pre-processing in
twitter sentiment analysis,” in Intelligent Computing Methodologies,
ser. Lecture Notes in Computer Science, D.-S. Huang, K.-H. Jo, and
L. Wang, Eds. Springer International Publishing, 2014, vol. 8589,
pp. 615–624.

[6] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of dupli-
cate defect reports using natural language processing,” International
Conference on Software Engineering, no. 29, pp. 499–510, 2007.

[7] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in Dependable Systems and Networks With FTCS
and DCC, 2008. DSN 2008. IEEE International Conference on.
IEEE, 2008, pp. 52–61.

[8] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” International Conference on Soft-
ware Engineering, pp. 253–262, 2011.

[9] L. Moreno, W. Bandara, S. Haiduc, and A. Marcus, “On the rela-
tionship between the vocabulary of bug reports and source code,”
in Software Maintenance (ICSM), 2013 29th IEEE International
Conference on. IEEE, 2013, pp. 452–455.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[11] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python, 1st ed. O’Reilly Media, Inc., 2009.

[12] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11,
pp. 613–620, 1975.

[13] S. Büttcher, C. Clarke, and G. V. Cormack, Information Retrieval:
Implementing and Evaluating Search Engines. The MIT Press, 2010.

[14] A. J. Ko, B. A. Myers, and D. H. Chau, “A linguistic analysis of
how people describe software problems,” in Proceedings of the Visual
Languages and Human-Centric Computing. IEEE Computer Society,
2006, pp. 127–134.

[15] M. Kantrowitz, B. Mohit, and V. Mittal, “Stemming and its effects
on tfidf ranking,” SIGIR conference on Research and development in
information retrieval, no. 23, pp. 357–359, 2010.

[16] G. Giddings, “Humans versus computers differences in their ability
to absorb and process information for business decision purposesand
the implications for the future,” Business Information Review, vol. 25,
no. 1, pp. 32–39, 2008.

[17] T. Brants, F. Chen, and A. Farahat, “A system for new event detec-
tion,” in Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval.
ACM, 2003, pp. 330–337.

[18] D. Wang, M. Lin, H. Zhang, and H. Hu, “Detect related bugs
from source code using bug information,” in Computer Software
and Applications Conference (COMPSAC), 2010 IEEE 34th Annual.
IEEE, 2010, pp. 228–237.

[19] W. Maalej and H. Nabil, “Bug report, feature request, or simply
praise? on automatically classifying app reviews,” in Requirements
Engineering Conference (RE), 2015 IEEE 23rd International. IEEE,
2015, pp. 116–125.

17


