
BioCloud: A Resource Provisioning Framework for Bioinformatics Applications in
Multi-Cloud Environments

Izzet F. Senturka, Bala Krishnanb, Anas Abu-Doleha,∗, Kamer Kayaa,c, Qutaibah Malluhib, Ümit V. Çatalyüreka

aDept. Biomedical Informatics, The Ohio State University, Columbus, OH, 43210
bKINDI Center for Computing Research, Qatar University, Doha, Qatar

cFaculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey

Abstract

The significant advancement in Next Generation Sequencing (NGS) have enabled the generation of several gigabytes of
raw data in a single sequencing run. This amount of raw data introduces new scalability challenges in processing, storing
and analyzing it, which cannot be solved using a single workstation, the only resource available for the majority of
biological scientists, in a reasonable amount of time. These scalability challenges can be complemented by provisioning
computational and storage resources using Cloud Computing in a cost-effective manner. There are multiple cloud
providers offering cloud resources as a utility within various business models, service levels and functionalities. However,
the lack of standards in cloud computing leads to interoperability issues among the providers rendering the selected one
unalterable. Furthermore, even a single provider offers multiple configurations to choose from. Therefore, it is essential to
develop a decision making system that facilitates the selection of the suitable cloud provider and configuration together
with the capability to switch among multiple providers in an efficient and transparent manner. In this paper, we
propose BioCloud as a single point of entry to a multi-cloud environment for non-computer savvy bio-researchers. We
discuss the architecture and components of BioCloud and present the scheduling algorithm employed in BioCloud.
Experiments with different use-cases and scenarios reveal that BioCloud can decrease the workflow execution time for
a given budget while encapsulating the complexity of resource management in multiple cloud providers.

Keywords: Cloud computing, cloud broker, interoperability, multi-cloud, bioinformatics

1. Introduction

The last decade have witnessed rapid advances in the
field of genomics thanks to the evolution of the genome
sequencing technologies which lead to accelerated gener-
ation of digital biological information in unprecedented
amounts. The emergence of high-throughput NGS has rev-
olutionized genomics research by providing an astounding
cost reduction making the whole genome sequencing pos-
sible for as low as $1,000 [1] and hence making the tech-
nology pervasive. The availability of NGS on a wider scale
with its decreased cost and high-throughput have paved
the way for more complex NGS data at a rate outpacing
the advances in computation and storage capacities [2].

Minimizing the impact of the increased data complex-
ity requires scalable solutions for storing and analyzing
massive NGS data. The scalability issues of NGS drives
the efforts to cloud computing, which is converging as a
frontier to address this class of problems by enabling large
scale computing resources on demand, tailored to specific

∗Corresponding author
Email addresses: ifs5@cornell.edu (Izzet F. Senturk),

abudoleh.1@osu.edu (Anas Abu-Doleh), kaya@sabanciuniv.edu
(Kamer Kaya), qmalluhi@qu.edu.qa (Qutaibah Malluhi),
umit@bmi.osu.edu (Ümit V. Çatalyürek)

requirements in a pay-per-use manner [2]. Cloud comput-
ing renders maintaining large clusters unnecessary while
handling peak-time loads and addressing issues such as
availability, load balancing and fault tolerance.

Cloud providers tend to offer resources through their
custom APIs which restrict the development of the tools
with respect to the vendor specific API. In the long term,
customers are restricted to the vendor and cannot migrate
from one cloud provider to another seamlessly. The pro-
posed BioCloud1 employs a Multi-Cloud [6] model and
acts as a broker across the resources of multiple cloud
providers. Considering the vast number of hardware pro-
files available for selection in cloud providers, complexity
of determining the hardware profiles to be used and their
quantity can be overwhelming not to mention the com-
plexity of resource provisioning and configuration. Note
that there are 38 current generation “instance types” in
EC2 [7] and 19 “flavors” in RackSpace [8] available to
choose. Some of these hardware profiles are optimized for
memory, cpu, storage, etc. BioCloud analyzes workflow

1The term BioCloud is also used by the Beijing Institute of Ge-
nomics [3] to denote their bioinformatics cloud system. Recently,
the term BioCloud has been used as a general term to indicate the
cloud-based bioinformatics applications [4]. In this paper, the term
BioCloud denotes our multi-cloud bioinformatics framework [5].

Preprint submitted to Elsevier May 11, 2016

steps and evaluates hardware profiles in available resources
while considering user requirements such as deadline, bud-
get, etc. in order to determine the type and number of
resources to be used for each of the workflow steps indi-
vidually. BioCloud ensures availability of resources for
workflow execution by provisioning resources in such a way
that the resources are neither wasted nor additional delay
occurred due to the waiting time for resource initialization
(i.e., booting the resource, dynamic cluster configuration
on the cloud, etc.). This requires a scheduling algorithm
which considers several resource options (hardware profiles
in cloud providers, possibility of configuring a cluster in
the cloud and determining the number of compute nodes
to be used) and the possibility of exploiting parallelism
which is the main focus of this paper. Scheduling may not
yield the best solution unless an accurate estimation for
the running times cannot be attained. BioCloud exploits
its profiler to keep the execution times of the tools on the
given resources considering the size of the input and out-
put files. This enables a means to estimate the execution
time of the workflow steps. Scheduler employs resource
manager to ensure availability of the resources before the
workflow steps are dispatched for execution. Scheduler
also evaluates the workflow steps for parallelism and mod-
ifies workflows to enable parallelism if possible. Scheduler
cooperates with the workflow manager and takes care of
the required manipulations on the data and tool settings.

BioCloud encapsulates all the complexity of resource
management and provides a single entry point to create
custom workflows and run them in a simple and efficient
manner through its user-friendly web-interface. The pub-
lic virtual machine (VM) image we provide [5] can be em-
ployed to start a BioCloud instance. We assume Bio-
Cloud users have an existing account in at least one of the
cloud providers. In order to start using BioCloud, users
create a BioCloud account through the web-interface,
and complete their profiles by providing the available re-
sources to be used. The resources can be cloud account(s),
local clusters, servers, and datasets. Then a BioCloud
instance is started on the cloud using the provided cloud
credentials. Once the instance is initialized, leaving work-
flow manager interface (Galaxy [9]) is presented to the
user which runs on one of the resources provided by the
user. The workflows created by the user are executed over
the computational resources defined earlier. If multiple
computational resources are available, jobs in a multi-step
workflow can be run on different resources based on the
scheduling algorithm and the user requirements. Bio-
Cloud strives to exploit parallelism to reduce the overall
workflow execution time by running parallel steps using
different computing resources or dividing a single step into
multiple parallel steps by partitioning the input data and
computation, whenever possible.

BioCloud offers a loosely coupled architecture through
its service oriented architecture. BioCloud Portal web-
service is employed to expose some of the functionalities
of the system so that some of the workflow decisions (i.e.,

when to dispatch a workflow step and where to run this
step) are delegated to the BioCloud Portal web-service.
This enables modularity where scheduling logic is sepa-
rated from the core workflow system. This provides the
flexibility of updating the scheduling algorithm and other
features of the system (i.e., improving abstract workflows
submitted by the user and presenting the new workflow
for execution) without requiring a software update on the
user side.

The rest of the paper is organized as follows. Section 2
compares the features of the proposed work with notable
studies from the literature. Section 3 details the proposed
BioCloud architecture. The proposed scheduling algo-
rithm is discussed in Section 4. Section 5 demonstrates the
features of the proposed system by evaluating BioCloud
using two real-life use-cases. Finally, the concluding re-
marks are given in Section 6.

2. Related Work

The vast amount of data generated by NGS platforms
poses a challenge to store, access and manipulate data in
an efficient manner within a reasonable amount of time.
A single workstation is often not sufficient to complete the
analysis in a reasonable amount of time and organizations
need to own and maintain specific type of hardware to
handle operations in such scale. To remedy the problem,
some efforts have focused on parallelizing existing tools us-
ing various distributed memory parallelism schemes, such
as MPI (Message Passing Interface) [10, 11] or MapRe-
duce [12, 13]. However, both approaches require dealing
with complex software frameworks and hence require ex-
perienced developers for efficient parallelization, and also
experienced users to use developed applications.

In the rest of this section, we discuss various frame-
works commonly used in bioinformatics based on the un-
derlying infrastructure they support.

2.1. Web-based Frameworks

Many frameworks, such as Grendel [14], provides a web
service based architecture to access high performance com-
puting (HPC) resources. Web services can be invoked
remotely so that the functionality of the deployed tools
can be exposed on the network without interoperability
concerns. However, computational resources are limited
with the maintained HPC resources. MG-RAST [15] is an
open source platform specialized in metagenome analysis.
Users can analyze their data through the offered analysis
pipeline. The jobs and the data made public by the user
are stored in the system indefinitely which makes MG-
RAST a repository for metagenomic data.

Considering the lack of standards and complicated re-
producibility in NGS experiments, various genomics re-
search frameworks are presented such as GenePattern [16],

2

Mobyle [17], and Galaxy [9] within the concept of “Repro-
ducible Research System” to support reproducible compu-
tational research. These frameworks provide a unified web-
interface to access tools, form multi-step analysis pipelines,
run the experiments and share analysis with others for
reuse. New tools can be added by writing a tool configu-
ration file in Galaxy, a server configuration file in Mobyle,
and through the web-interface in GenePattern.

Web service based solutions encapsulate the complex-
ity of the maintained infrastructure and tools and pro-
vide interoperability between different platforms. Work-
flow management systems contribute reproducibility of the
experiments. Despite the convenience of the mentioned
platforms, users are bounded to the limitations of the pro-
vided resources. Our BioCloud framework leverages the
commonly used Galaxy framework for creating workflows,
but extends that by enabling not only elasticity of the
cloud, but also provides a mechanism to use multi-cloud
providers together. Furthermore, it can improve submit-
ted abstract workflows by generating a new workflow to
exploit parallelism if possible.

2.2. Frameworks with Cloud Computing

Cloud computing is already embraced by many bioin-
formatics projects [13, 18, 19, 20]. The common approach
of these frameworks is applying the MapReduce model
to provide parallelism for a particular problem. Cloud-
Burst [18] is a parallel mapping algorithm optimized to
map NGS data to reference genomes. It is modeled by
using a short-read mapping program to report alignments
with mismatches. CloudAligner [19] is an alternative tool
for mapping short reads. It also supports pair-end map-
ping and longer reads. Crossbow [13] focuses on human
resequencing and SNP detection and unlike CloudBurst
and CloudAligner, it considers billions of reads. Cross-
bow presents a pipeline of short-read alignment and SNP
calling by combining the features of Bowtie and SOAP-
snp [21] respectively. Myrna [20] provides a pipeline to
calculate differential gene expression of the RNA-seq data
by integrating short read alignment, interval calculations,
normalization, aggregation and statistical modeling steps.
Myrna requires Bowtie, R, and Bioconductor. These frame-
works focus on a single problem such as sequence align-
ment and SNP detection. Our BioCloud framework is
not limited to a single problem and can be extended as
long as new tools are added to the workflow manager.

2.3. Frameworks as a Service

Bioinformatics frameworks which are presented as a
virtual machine also exist [22, 23, 24, 25, 26]. They pro-
vide a means of convenience by eliminating the installa-
tion and configuration of tools while ensuring configuration
consistency which facilitates reproducible research. Also,
by eliminating the time required to configure the operat-
ing system with the essential tools and data, these frame-
works can alleviate the time to start conducting research.

We also note that virtual machine images can be run on
personal computers with a virtualization software as well
as in cloud with an option of forming a cluster.

CloVR [23] is pre-configured with automated sequence
analysis pipelines for microbial genomics including whole
genome and metagenome sequence analysis. Besides the
analysis tools and pipelines, CloVR is bundled with Bi-
oLinux, job schedulers, and a workflow management sys-
tem. CloudBioLinux [24] provides several bioinformatics
tools including alignment, clustering, assembly, phyloge-
netics, etc. Tools are complemented with the provided
web-based documentation which explains tool functional-
ities. Also, scripts are provided to access a repository of
reference genomes on an Amazon S3 bucket.

Galaxy CloudMan [22] is built on top of CloudBioLinux
and it provides an integrated solution using the Galaxy
workflow management system. Thanks to the user-friendly
Galaxy interface, it is possible to design custom workflows
for various scenarios and exploit elasticity of cloud by mod-
ifying resources at run-time. Another platform, which is
based on Galaxy, is presented in [26]. By integrating a
tool, called Globus Provision, the platform automatically
deploys and configures the tools and applications required
by Galaxy. Also, Globus Transfer is integrated in order to
ensure reliable, high-performance data transfer.

2.4. Federated and Multi-Cloud Brokers

The primary objective of OPTIMIS [27] toolkit is to
provide a new cloud ecosystem that provisions the re-
sources and services using multiple coexisting cloud providers
in both federated and multi-cloud fashion. However, OP-
TIMIS requires its agents to be deployed at the cloud
provider side. This is not always feasible since the deploy-
ment depends on the permission from the cloud provider.
In our approach, we use Deltacloud [28] adapters to enable
seamless communication between different cloud providers
and BioCloud so that the requirement of deploying agents
on the cloud provider is avoided.

In Contrail [29] project, the applications get the re-
sources from multiple cloud providers using federation or
multi-cloud manner. Also, it uses internal adapters to re-
alize a cloud federation with multiple cloud providers run-
ning the contrail software and external adapters for multi-
cloud environment with the cloud providers which do not
have it. In order to support multi-cloud environment, it
requires the development of external adapters which is not
fully matured.

Aeolus [30] is a cloud management software that pro-
vides tools and services for the creation, management and
monitoring of instances across multiple clouds. BioCloud
leverages Deltacloud and TIM components of Aeolus.

2.5. Cloud Workflow Scheduling Algorithms

Though the workflow scheduling has the potential op-
portunity to utilize cloud computing, very few initiatives
are made to integrate cloud environments. For example,

3

critical path allocation based workflow scheduling is pro-
posed in Rahman et al. [31], Chen et al. [32] describe an
QoS constraint ant colony optimization algorithm and Yu
et al. explain about budget constraint scheduling on util-
ity Grids using Genetic Algorithms in [33]. However, they
do not provide optimal solutions for cloud environments.
Mao and Humphrey depict a vibrant method to schedule
workflow steps on clouds [34] . The proposed approach
tries to minimize the execution cost by considering sev-
eral VM instance types with different prices. But they do
not provide a near-optimal solution. Malawski et al. [35]
explicate a deadline and budget constraint scheduling al-
gorithm which tries to maximize the amount of work com-
pleted. But, it considers a single type of VM and fails to
consider the heterogeneous nature of clouds. Abrishami et
al. [36] propose a scheduling solution which tries to opti-
mize tasks in partial critical path by executing them on
cloud resources. But they do not provide global optimiza-
tion by considering complete workflow structure. Particle
Swarm Optimization(PSO) based near-optimal scheduling
algorithm is proposed by Wu et al. [37]. Though it could
handle different VM types, it do not reap the benefit of
cloud elasticity since it presumed that it has an initial
set of VMs available ahead of time. The scheduling al-
gorithm propose by Byun et al. [38] estimated the min-
imum number of resources needed to execute the work-
flow in a cost-effective way. Though the algorithm uti-
lizes the elastic nature of cloud, it fails to consider the
heterogeneous nature of cloud by assuming a single VM
type. Maria et al. [39] propose a PSO based algorithm
to minimize the workflow execution cost satisfying dead-
line constraints. BioCloud solves the above mentioned
issues using the knowledge gained from application pro-
filer. Firstly, it classifies each tool/software used in each
workflow step into CPU,memory,storage or I/O intensive.
Secondly, it gathers the knowledge about the relationship
of execution time and cost with each instance type for
that tool/software. During workflow execution, the class
of the instance for each workflow step can be decided by
the software used in that step. Next, the initial assignment
of an apt instance from that class will be decided by ana-
lyzing their peak usage from previous runs. The number
of counts in each instance type will be decided based on
the budget and deadline constraints. The execution time
adjustment can be achieved either by assigning the high
capacity instance type which in turn reduces the execution
time or combining the dependent tasks into groups and ex-
ecute them in a single instance thereby reducing their data
transfer time. The cost adjustment can be done by either
upgrade or downgrade the instance type without affecting
deadline constraints.

3. BioCloud System Design

BioCloud follows a service oriented architecture and
consists of two main components, namely, BioCloud Por-
tal and BioCloud Workflow Manager (BCWM). Bio-

Cloud Portal implements and encapsulates functions to
orchestrate workflow execution across disparate platforms.
These functions are exposed as a service to enable inter-
operability and flexibility across platforms. BioCloud
Portal also hosts a web application to register and start
using the system. BioCloud Portal can be regarded as
the single access point of the BioCloud for all users (vir-
tual organizations). BCWM, on the other hand, is the
workflow management component of the system. While a
unique BioCloud Portal is employed for all virtual or-
ganizations (VOs), an exclusive BCWM is created and
employed for each VO. Although we provide virtual ma-
chines for both components, it is also possible to use a
custom workflow manager to consume BioCloud Portal
services due to the loosely-coupled architecture.

A VO is regarded as a single entity (organization) with
multiple users. Once a VO is registered to BioCloud,
admin of the VO can manage its own users. We note that
BioCloud does not provide computing resources and it
is assumed that VO has its own resources; which can be
a cloud provider account, local cluster, or a personal com-
puter. BioCloud uses the VO-provided resources to host
the BCWM and run the workflows. A VO may have mul-
tiple users, sharing datasets and workflows. The overall
BioCloud system architecture for multiple VOs is illus-
trated in Fig. 1.

It is possible to start using the system through the
web application hosted on BioCloud Portal. Upon reg-
istration, VO can simply define the resources to be used
by BioCloud. These resources will be employed to host
BCWM for the corresponding VO and run the workflows.
VO can select the resource to host the BCWM. If a cloud
resource is selected BioCloud initializes the BCWM in-
stance using the pre-configured BCWM image in the cor-
responding cloud provider. Once the BCWM is initial-
ized, BioCloud Portal enables the link to access the BCWM
so that the VO can visit BCWM in a seamless manner
without leaving the web-page. A local cluster or a PC can
also be used to host the BCWM if OpenStack is available
on the target system.

A single unique BCWM instance is employed per VO
to avoid data replication across multiple cloud providers
and local clusters defined by the VO. This is realized with-
out sacrificing the ability of using resources in multiple
cloud providers simultaneously which is the key contri-
bution of the presented system. Based on the workflow
and the available resources, BioCloud can determine the
computational resources to be used for particular steps.

3.1. Web Interface and User Interaction

Despite the underlying distributed architecture of mul-
tiple components (i.e., BioCloud Portal and BCWM),
users access BioCloud through a single, unified web in-
terface. This user-friendly web-interface enables users to
manage resources (i.e., local clusters and cloud services),
design and run workflows, and collect results. Workflow
management component of BioCloud is extended from

4

User at Virtual Organization (VO) ABioCloud Portal

Amazon EC2
VO A

D
atabase

Shared S3 Storage

Local ResourcesRackspace

Figure 3. Job Monitoring for Four-Node Job.

The Job Monitor application displays a table of active jobs (i.e.,
jobs that are queued or running). A user can sort the table by job
properties or search by username. A user may stop any of their
jobs that are queued or running by pressing a “Cancel Job” button.
For any selected running job, the Job Monitor can display a
performance monitor view (see Figure 3) providing a per-node
performance report including CPU, memory and network
utilization. In addition, overall cluster utilization statistics can be
displayed.

3.3 Command-line Cluster Access
A goal of the OnDemand project is to convert as much HPC work
as possible from a command line interface to a web application
interface. For example, Job Constructor started as an attempt to
create a web app alternative to qsub and Job Monitor started as an
attempt to create a web app alternative to qstat. However, we are
just starting with web apps and we recognize that command
prompts provide great flexibility. So, we decided to supply a
web-based solution for obtaining terminal access on the login
nodes of our clusters through OnDemand. The “Cluster” menu in
the dashboard allows users to launch a shell on either the Glenn or
Oakley clusters. OnDemand incorporates the Anyterm open
source terminal emulator (http://anyterm.org). AnyTerm provides
an HTML5 web view of a terminal accessible from any
compatible browser (see Figure 4). Users can create as many
terminal sessions as they wish. Each terminal session is displayed
in a separate browser tab. Users can customize background color
in the terminal. As with AjaXplorer, the unique deployment of
Anyterm ensures that each user’s UNIX userid is used in the shell.

Figure 4. OnDemand Access to Login Node Terminal.

3.4 Web and VNC Applications
The OnDemand applications discussed thus far focus on general
system access (File Browser and Terminal) and job management
(Job Constructor and Job Monitor). In addition, the Dashboard
can serve as a central location for any number of web and VNC
applications (see Figure 5).

Figure 5. List of Available Web and VNC Apps

As part of an industrial engagement program, our team built
multiple web applications for simulating various physical
phenomena, such as welding properties and airflow through an
industrial manifold. These web applications were built from a
common web app template based on the Drupal (www.drupal.org)
content management system called “PUDL” (pronounced
“puddle”) for “Per-User DrupaL”. OnDemand’s centralization of
authentication and identity at the Dashboard, along with the
PUDL template’s infrastructure provide the majority of
functionality required to write a custom web app to manage HPC
jobs. This has reduced the time and expense required to write a
web app and, we hope, will lead to more apps being developed.

Regardless of the means employed to produce results, users often
want to view their results graphically. OnDemand supports VNC
apps including remote desktops on Glenn and Oakley, Abaqus,
Ansys, COMSOL and ParaView (see Figures5 and 6). Support
for VNC apps is provided through the establishment of a VNC
connection between the user’s machine and a visualization server
at OSC.In order to provide a VNC connection without requiring

Web Browser

BioCloud Web-
Services

www.biocloud.info

User at Virtual Organization (VO) B

Figure 3. Job Monitoring for Four-Node Job.

The Job Monitor application displays a table of active jobs (i.e.,
jobs that are queued or running). A user can sort the table by job
properties or search by username. A user may stop any of their
jobs that are queued or running by pressing a “Cancel Job” button.
For any selected running job, the Job Monitor can display a
performance monitor view (see Figure 3) providing a per-node
performance report including CPU, memory and network
utilization. In addition, overall cluster utilization statistics can be
displayed.

3.3 Command-line Cluster Access
A goal of the OnDemand project is to convert as much HPC work
as possible from a command line interface to a web application
interface. For example, Job Constructor started as an attempt to
create a web app alternative to qsub and Job Monitor started as an
attempt to create a web app alternative to qstat. However, we are
just starting with web apps and we recognize that command
prompts provide great flexibility. So, we decided to supply a
web-based solution for obtaining terminal access on the login
nodes of our clusters through OnDemand. The “Cluster” menu in
the dashboard allows users to launch a shell on either the Glenn or
Oakley clusters. OnDemand incorporates the Anyterm open
source terminal emulator (http://anyterm.org). AnyTerm provides
an HTML5 web view of a terminal accessible from any
compatible browser (see Figure 4). Users can create as many
terminal sessions as they wish. Each terminal session is displayed
in a separate browser tab. Users can customize background color
in the terminal. As with AjaXplorer, the unique deployment of
Anyterm ensures that each user’s UNIX userid is used in the shell.

Figure 4. OnDemand Access to Login Node Terminal.

3.4 Web and VNC Applications
The OnDemand applications discussed thus far focus on general
system access (File Browser and Terminal) and job management
(Job Constructor and Job Monitor). In addition, the Dashboard
can serve as a central location for any number of web and VNC
applications (see Figure 5).

Figure 5. List of Available Web and VNC Apps

As part of an industrial engagement program, our team built
multiple web applications for simulating various physical
phenomena, such as welding properties and airflow through an
industrial manifold. These web applications were built from a
common web app template based on the Drupal (www.drupal.org)
content management system called “PUDL” (pronounced
“puddle”) for “Per-User DrupaL”. OnDemand’s centralization of
authentication and identity at the Dashboard, along with the
PUDL template’s infrastructure provide the majority of
functionality required to write a custom web app to manage HPC
jobs. This has reduced the time and expense required to write a
web app and, we hope, will lead to more apps being developed.

Regardless of the means employed to produce results, users often
want to view their results graphically. OnDemand supports VNC
apps including remote desktops on Glenn and Oakley, Abaqus,
Ansys, COMSOL and ParaView (see Figures5 and 6). Support
for VNC apps is provided through the establishment of a VNC
connection between the user’s machine and a visualization server
at OSC.In order to provide a VNC connection without requiring

Web Browser

Scheduler

Profiler

Resource
Manager

Image Manager

Cluster 2 - VO BCluster 1 - VO B

BioCloud WM
for VO B

BioCloud WM
for VO A

VO B

Cluster

VO A

Figure 1: Overall architecture of BioCloud.

Galaxy [9] so that multi-step pipelines can be created in a
simplified manner. It is possible to specify the computa-
tional resource to be used for a particular workflow step.
Unless a particular resource is specified, BioCloud ex-
ploits its scheduling algorithm to designate the resources
to be used for each step based on the workflow and user
requirements such as cost and time. The details are pro-
vided in sections 3.2, 3.7.

3.2. Workflow Management and Execution

BioCloud workflow management component (BCWM)
enables workflow creation in a drag-and-drop fashion thanks
to the underlying Galaxy [9] application. On the design
pane, each workflow step is represented by an indepen-
dent box. Each box is associated with a tool (i.e., ap-
plication) to be used in the corresponding workflow step.
Two boxes can be connected with a directed edge to in-
dicate the data flow and the resulting data dependency
between them. Incoming and outgoing edges connected
to the box represent input and output data respectively.
Data dependency between workflow steps require preced-
ing steps to be completed before initiating following steps.
Galaxy assumes execution of the whole workflow on a sin-
gle resource which also hosts Galaxy and cannot ensure
data dependency when multiple resources of various cloud
providers and local clusters are to be used. BioCloud
eliminates such constraints and enables running different
workflow steps on different resources simultaneously or se-
quentially. BioCloud segregates workflow management
and workflow execution through its service oriented archi-
tecture. While web-services in BioCloud Portal is re-

sponsible from determining the resources to be used for
each workflow step and ensuring availability of the re-
sources through resource management and provisioning,
BCWM is responsible from dispatching workflow steps for
execution on the resources pre-determined by BioCloud
Portal and monitoring them.

Initially, BCWM informs BioCloud Portal about the
workflow to be run by sending the related information
through the web-services. In order to designate the work-
flow execution schedule and determine the resources to be
used at each step, BioCloud scheduler 3.7 is employed
by BioCloud Portal. Scheduler receives the submitted
workflow as a DAG (Directed Acyclic Graph) along with
the associated tool names at each step and input data
size. One of the key features of the scheduler is inherent
workflow improvement through data partitioning and par-
allelism. Scheduler automatically manipulates the DAG
to enable parallelism. Scheduler employs profiler 3.4 to
estimate expected running times of the tools, the amount
of data to be produced, and the cost of execution to be
incurred considering available resources. Based on this in-
formation, scheduler identifies the resources to be used at
each step considering cost and time requirements. Sched-
uler employs resource manager 3.5 to ensure availability
of the resources before executing a workflow step. When
the resources are provisioned BCWM is allowed to dis-
patch the next available workflow step for execution. This
enables dynamic scaling up of the resources right before
the execution of a particular workflow step to meet the
resource demand of the corresponding VO. Resource man-
agement module also tracks the provisioned resources to

5

scale down based on the supply-demand balance in the
next billing cycle of the provisioned resources.

BioCloud not only provides an efficient scheduler to
minimize execution cost while meeting cost and time re-
quirements which is the key contribution of this paper,
it also offers a user-friendly platform to encapsulate the
complexity of identifying resources to be used among sev-
eral options, using resources simultaneously on multiple
cloud providers to execute workflows while handling data
partitioning and parallelism, dynamic resource scaling and
cluster configuration in the cloud. Hiding such a complex-
ity from the user enables her to focus on the workflow
design. The user simply clicks the run button to execute
the workflow. Figure 2 depicts the steps involved in exe-
cution of a workflow where the user has Amazon EC2 and
Rackspace cloud accounts as well as local clusters.

Cluster B - VO ACluster A - VO A

User at Virtual Organization (VO) ABioCloud Portal

Rackspace - VO AAmazon EC2 - VO A

Local Resources

Figure 3. Job Monitoring for Four-Node Job.

The Job Monitor application displays a table of active jobs (i.e.,
jobs that are queued or running). A user can sort the table by job
properties or search by username. A user may stop any of their
jobs that are queued or running by pressing a “Cancel Job” button.
For any selected running job, the Job Monitor can display a
performance monitor view (see Figure 3) providing a per-node
performance report including CPU, memory and network
utilization. In addition, overall cluster utilization statistics can be
displayed.

3.3 Command-line Cluster Access
A goal of the OnDemand project is to convert as much HPC work
as possible from a command line interface to a web application
interface. For example, Job Constructor started as an attempt to
create a web app alternative to qsub and Job Monitor started as an
attempt to create a web app alternative to qstat. However, we are
just starting with web apps and we recognize that command
prompts provide great flexibility. So, we decided to supply a
web-based solution for obtaining terminal access on the login
nodes of our clusters through OnDemand. The “Cluster” menu in
the dashboard allows users to launch a shell on either the Glenn or
Oakley clusters. OnDemand incorporates the Anyterm open
source terminal emulator (http://anyterm.org). AnyTerm provides
an HTML5 web view of a terminal accessible from any
compatible browser (see Figure 4). Users can create as many
terminal sessions as they wish. Each terminal session is displayed
in a separate browser tab. Users can customize background color
in the terminal. As with AjaXplorer, the unique deployment of
Anyterm ensures that each user’s UNIX userid is used in the shell.

Figure 4. OnDemand Access to Login Node Terminal.

3.4 Web and VNC Applications
The OnDemand applications discussed thus far focus on general
system access (File Browser and Terminal) and job management
(Job Constructor and Job Monitor). In addition, the Dashboard
can serve as a central location for any number of web and VNC
applications (see Figure 5).

Figure 5. List of Available Web and VNC Apps

As part of an industrial engagement program, our team built
multiple web applications for simulating various physical
phenomena, such as welding properties and airflow through an
industrial manifold. These web applications were built from a
common web app template based on the Drupal (www.drupal.org)
content management system called “PUDL” (pronounced
“puddle”) for “Per-User DrupaL”. OnDemand’s centralization of
authentication and identity at the Dashboard, along with the
PUDL template’s infrastructure provide the majority of
functionality required to write a custom web app to manage HPC
jobs. This has reduced the time and expense required to write a
web app and, we hope, will lead to more apps being developed.

Regardless of the means employed to produce results, users often
want to view their results graphically. OnDemand supports VNC
apps including remote desktops on Glenn and Oakley, Abaqus,
Ansys, COMSOL and ParaView (see Figures5 and 6). Support
for VNC apps is provided through the establishment of a VNC
connection between the user’s machine and a visualization server
at OSC.In order to provide a VNC connection without requiring

Step
1

Step
2

Step
3

Step
4

Web Browser

1. Login to BioCloud

3.
Des

ign
 W

or
kfl

ow
 an

d S
en

d E
xe

cu
te

Re
qu

es
t

4. Contact Resource Manager

Workflow
BioCloud Web-

Services

4.1. Contact
 Reso

urce
 Manager

5.1. Resource manager
forms a cluster

and runs the determined steps

Step
1

Step
2

Step
3

Step
4

5.2. Resource
manager assigns

step 3

BioCloud WM
for VO A

5.
2.

 O
pt

io
na

l U
se

r
En

do
rs

em
en

t

on
 t

he
 D

ec
is

io
n

5.
3.

 P
ro

vi
si

on
 t

he
 R

es
ou

rc
es

 a
nd

N

ot
ify

 t
he

 W
M

www.biocloud.info

5.
1.

 S
ch

ed
ul

in
g

D
ec

is
io

n

2.
 G

et
/I

ns
ta

nt
ia

te
 W

or
kf

lo
w

 M
an

ag
er

Figure 2: Steps of a workflow execution.

3.3. Authentication

Alberich policy engine [40] is leveraged by BioCloud
to authenticate the users based on the defined roles and
permissions. BioCloud Portal exploits permissions of the
account provided by the user for the initial deployment of
the BCWM and to run the workflows. Considering the
fact that various steps of the workflow can be executed us-
ing different computational resources, the Alberich policy
engine authenticates user for the particular resource. The
users provide cloud service credentials so that the Alberich
policy engine retrieves roles, permissions, and privileges
to authenticate and authorize users for the resource pools.
Accessing the image details, profiler information, resource
information and the allowed actions are determined based
on the access rights. The policy engine is extended so that
the resources from different cloud resources can be used.

3.4. Profiler

Scheduling distributed applications can be challenging
in a multi-cloud environment due to the lack of knowl-
edge about the application characteristics. In order to

realize a versatile multi-cloud scheduling algorithm, the
knowledge about the application’s runtime behavior on
various resources is needed. Besides, not all the applica-
tions exhibit same kind of resource consumption pattern
in all stages. Thus, looking into the resource consumption
pattern, extracting the knowledge and classifying the ap-
plications can assist the scheduling algorithm for a better
decision making in a multi-cloud environment. In Bio-
Cloud, we present a profiler component that monitors
the resource consumption of applications and stores it in
a profile database. BioCloud monitors execution of the
workflow steps individually and collects profiling informa-
tion such as running time and output file size for the tool
used in the corresponding workflow step considering the
resources exploited such as CPU, memory, number of com-
pute nodes if a cluster is used, input file size, etc.

3.5. Resource Manager

Resource manager is a component to collect the re-
source information about various resources hosted in mul-
tiple cloud environments periodically. This information
includes but not limited to hardware, OS image, network,
secondary storage and memory of all the instances present
in multiple clouds. For advanced metrics, the instances are
enabled with cloud monitoring tools such as cloud watch
and then these metrics are up-streamed to the broker via
Deltacloud APIs. This resource information together with
image information gives the unified view about the multi-
cloud environment that will be used by the scheduler.

3.6. Image Manager

Image manager is a component to collect the avail-
able VM image information from multiple cloud providers.
This information includes but not limited to Operating
System, metadata about the software installed and the
description of all the images present in multiple clouds. It
can be collected from the images deployed in various cloud
providers using Deltacloud API via controller. BCWM
uses image manager to lunch new instances.

3.7. Scheduler

Dynamic nature of the multi-cloud environment and
availability of wide variety of resources with diverse char-
acteristics and capabilities demands provisioning appro-
priate set of resources in a dynamic manner in order to
satisfy the requirements of an application. Some of the
recent work focuses on managing applications modeled as
bag of tasks. For example, the scheduling algorithm in [41]
uses a linear programming model to calculate the optimal
deployment configuration. The scheduler adds and elimi-
nates instances based on the incoming requests. The work
of [42] focuses on the bag of distributed tasks and intro-
duces a heuristic algorithm that takes into account the
location of the running tasks and their data sources. In
contrast to these studies, the resource provisioning sched-
uler in BioCloud manages the workflow as a directed
acyclic graph (DAG).

6

Efficient cloud computing requires solving multi-objective
combinatorial problems such as partitioning and schedul-
ing. Our goal is providing a scheduler which considers cost
and time to complete tasks so that the resources are allo-
cated in a such way that the execution time is reduced for
the given budget while the throughput and resource uti-
lization is improved. Therefore, scheduler should be aware
of the cost model, resource availability and favorable sub-
mission time of all the cloud providers to estimate the cost
involved in resource schedule. The scheduler should have
the capability to estimate the completion time of an appli-
cation using profiling information of the tools based on the
earlier executions. One can model the execution time and
utilize that for deciding the optimum number of resources
under different scheduling scenarios [43].

BioCloud scheduler regards the submitted workflows
as DAG and aims to maximize parallelization. For steps
that can be executed in a data-parallel manner, BioCloud
partitions the data and hence the associated computation
as much as possible to decrease the overall running time.
Once the user submits the workflow for execution, Bio-
Cloud partitions the data to match with the available
resources. The details of the scheduling algorithm is pro-
vided in the next section.

Galaxy [9] also provides a partitioning capability for
the tools. However, it cannot fully optimize the execution
of workflows where two (or more) consecutive steps can
be run using the partitioned data. In such cases, Galaxy
would redundantly merge and partition the data in be-
tween the consecutive steps. As illustrated in Fig. 3, the
partitioning scheme we employed in our scheduler post-
pones the merging step until it is required.

Figure 3: Partitioning scheme in BioCloud’s scheduler avoids
redundant merging and partitioning.

4. Scheduling Algorithm

BioCloud scheduler aims to designate a schedule for
the given abstract workflow so that the execution of the
improved workflow can be completed within the given dead-
line using the supplied budget. Scheduler also determines

the resources to be used in each workflow step and coop-
erates with the Resource Manager to ensure provisioning
of these resources. A formal definition of the scheduling
algorithm is given in Alg. 1 and Alg. 2. Notations used in
the algorithm are summarized in Table 1.

The scheduling algorithm initially evaluates whether
the given workflow can be improved or not through data
partitioning and restructures the provided abstract work-
flow considering execution time and cost of the workflow
when different partition counts are used (Alg. 2). Dur-
ing this phase of the algorithm, g ∈ G, the subset of the
tasks that can be executed in a data-parallel manner, is
identified (Alg. 2, line 1). Having been subject to DAG, g
may contain one or more tasks. For example, in the Ex-
omeSeq workflow, presented in Section 5.1.2, sampe and
alignment steps form g due to data dependency between
them and thus the same partition count will be used for
both steps. On the other hand, no data dependency exists
between the functional annotation steps in the Transcrip-
tome Assembly workflow, presented in Section 5.1.3, and
therefore different partition counts may be used. Remark
that the partition count denotes the number of compute
nodes to be used.

As mentioned earlier, BioCloud exploits its profiler
to estimate the execution time of the tasks based on the
input file size and the resource profile to be used while con-
sidering earlier executions. Similar to our earlier work [44],
we use kNN [45] as the model learning algorithm. The k
nearest executions in our profile are retrieved based on a
distance metric on the input parameters and their execu-
tion times are averaged and used to estimate the execution
time. Cost can be calculated by considering the estimated
execution time and the hourly cost of the resource profile
to be used (Alg. 2, line 2).

The abstract workflow is restructured based on the de-
sired partition count in accordance with the number of
available resources that can be used in parallel and im-
proved workflow is obtained (Alg. 2, line 4). Enabling par-
allelism may decrease the overall execution time of g up to
a certain point and increasing the partition count beyond
that may not yield the best solution due to the increased
cost of resources and the inherent limits of parallelization
which is related to the dynamics of the application. Con-
sidering this, we define an improvement function, I, and
two thresholds, T and T ′, to determine the partition count
while considering changes in execution time and cost. I is
defined based on the relative execution time reduction and
the cost increase (Alg. 2, line 6). If the relative time/cost
improvement and the absolute time reduction are above
the thresholds T and T ′ respectively, (Alg. 2, line 7), ap-
plication of data partitioning to the abstract workflow will
be pursued with the increased partition count.

BioCloud scheduler pursues a heuristic where the al-
lotments of the workflow steps are initialized with the
cheapest resource profile (Alg. 1, line 1) and gradually
ameliorated while the workflow execution time is above
the deadline and the cost is less than the available bud-

7

Table 1: Notation

G = (V, E) DAG of tasks V, task dependency edges E
R = Z ∪ U Resources (Private and Public cloud)

D Deadline
B Budget
L Set of tasks in critical path

W (L) Overall runtime of DAG
C(G) Overall cost of DAG
g Subset of G

amc Resource profile (∈ R) incurring the cheapest cost
I Relative runtime improvement based on cost
Aj List of profiles (∈ R) ordered by cost for vj
Ij List of improvements upon using profiles in Aj for vj
T Relative runtime/cost improvement threshold
T ′ Absolute runtime reduction threshold

Algorithm 1 Schedule(G, R, D, B)

1: setResourceProfile(G, amc)
2: improveWF(G)
3: for j = {1, 2, . . . , |V|} do
4: Aj , Ij = getValidAllotments(vj)
5: end for
6: groupTasksOnCP(L,D)
7: W (L), C(G) = getRunningTimeAndCost(G)
8: while W (L) > D and C(G) < B do
9: maxI = maxIStep = −1

10: for ∀vj ∈ L do
11: I = getNextAllocationImpr(vj , Ij)
12: if I > max then
13: maxI = I
14: maxIStep = vj
15: end if
16: end for
17: if maxI == −1 then
18: break . deadline/budget cannot be met
19: end if
20: updateGroupAllocation(G,getGroup(maxIStep))
21: groupTasksOnCP(L,D)
22: W (L), C(G) = getRunningTimeAndCost(G)
23: end while

get. This procedure introduces two challenges that need
to be addressed. The first one is identifying the workflow
step(s) for allotment improvement and the second one is
determining the new allotment(s) for the selected workflow
step(s). To address these issues, a list of allotments, Aj ,
and the resulting improvement, Ij , are assigned to each
individual workflow step (Alg. 1, lines 3-5). Aj is not only
sorted in the ascending order of cost but also it ensures
a certain improvement, I, upon using the next allotment
in the list. We use the same improvement function, I, as
defined earlier to assess the resource profiles for the cor-
responding workflow step. The list of “valid” allotments,
Aj , may contain a subset of available resource profiles and

may vary for different workflow steps.
Data dependency between workflow steps may pose a

major burden on meeting the deadline when consecutive
workflow steps run on different resource types or cloud
providers. This is referred to as inter-cluster data trans-
fer and the cost may not be negligible especially in terms
of time considering the large amount of data to be trans-
ferred. To ensure feasability of inter-cluster data transfers
for the given deadline, it may be imperative to group tasks
on the critical path so that the tasks in the same group
will be executed on the same resource. Initially, we assume
all the tasks to be run on a different resource and thus we
regard each task as a separate group. If the inter-cluster
data transfers are feasible for the given deadline, group-
ing of the tasks is completed. Otherwise, two groups with
a data dependency that incurs the highest data transfer
time are merged as a single group until meeting the dead-
line requirement. This process is referred to as grouping
tasks on the critical path (Alg. 1, line 6).

Algorithm 2 improveWF(G)

1: while g = getUnvisitedPartitionableSubset(G) do
2: W (L), C(g) = getRunningTimeAndCost(g)
3: n = 2 . # nodes that will be used
4: g′ = restructureSubset(g, n)
5: W (L′), C(g′) = getRunningTimeAndCost(g′)

6: I = (W (L)−W (L′))/W (L)
(C(g′)−C(g))/C(g)

7: while ((I > T) && (W (L) − W (L′) > T ′)) ‖
(C(g′)− C(g) < 0)) do

8: g′ = restructureSubset(g, ++n)
9: W (L) = W (L′), C(g) = C(g′)

10: W (L′), C(g′) = getRunningTimeAndCost(g′)

11: I = (W (L)−W (L′))/W (L)
(C(g′)−C(g))/C(g)

12: end while
13: end while

In the rest of the algorithm, we ameliorate the allot-
ments in an iterative manner to meet the deadline as long
as sufficient budget exists to cover the costs to be incurred

8

(Alg. 1, line 8). Recall that we already considered avail-
able allotments for each individual step and “valid” allot-
ments along with the resulting improvements are available.
Thus, we can identify the workflow step with the highest
improvement (Alg. 1, lines 9-16). Note that, the require-
ments may not always be satisfied due to the lack of suf-
ficient budget or the tight deadline (Alg. 1, lines 17-19).
Since we enforce the workflow steps in the same group to be
run on the same resource, the new allotment is applied for
the steps in the identified group (Alg. 1, line 20). Critical
path is updated upon the change of the resource allocation
and the execution time and the cost are calculated again.
The algorithm proceeds unless the execution time drops
below the deadline or the cost exceeds the budget.

5. Experimental Evaluation

5.1. Evaluating Flexibility and Interoperability

Here, we present two different scenarios to demonstrate
the smooth transition from a single workstation, the only
resource available for the majority of biological scientists,
to a multi-cloud environment. In the first scenario, only a
single workstation is assumed to be available to the user.
On the other hand, besides the workstation we assume
availability of multiple cloud resources in the second sce-
nario. Two different cloud vendors are selected to demon-
strate the flexibility and interoperability of BioCloud.
These scenarios are tested with two different use cases
(bioinformatics workflows) as explained below. We first
specify the system configurations used.

5.1.1. Environment

Our testbed consist of a local workstation, and multiple
instances from two cloud vendors; Amazon and Rackspace.
The workstation is equipped with two Intel Xeon E5520
CPU clocked at 2.27Ghz and 48GB memory. Each CPU is
a quad-core, with HyperThreading enabled and all cores
share a 8MB L3 cache. The “instance type” BioCloud
uses on Amazon EC2, is M3 general purpose double extra
large (m3.2xlarge). This configuration has 8 cores with a
memory of 30GB. The “flavor” selected on Rackspace is
Performance 2 with a memory of 30GB and 8 cores. More
information regarding the configuration of these particular
instance types can be found in the respective cloud ven-
dors’ websites. BioCloud forms a dynamic cluster, on
the fly, upon needed in the corresponding cloud service
using instances of these types.

5.1.2. Use Case I: ExomeSeq Workflow

Our first use case is an exome sequence analysis pipeline
obtained from our collaborators [46], which we will call as
ExomeSeq. Test and control data with paired-end reads
are used as input. In the first two steps, sequencing reads
are aligned to human reference genome using BWA [47]
alignment and sampe steps. The third step sorts the align-
ments by leftmost coordinates. Duplicates are marked in

the following two steps using two different tools. In step
six, local realignments around indels are performed and the
last step detects indels. The abstract ExomeSeq workflow
is depicted in Fig. 4. The readers can refer to [46] for more
information regarding the workflow steps.

Figure 4: Abstract ExomeSeq workflow for BioCloud.

As mentioned earlier, one of the key features of Bio-
Cloud is its inherent workflow improvement facility through
data partitioning and parallelism. BioCloud scheduler
evaluates the submitted abstract workflow and generates
an optimized workflow that would utilize available resources
and hence enable parallelism. For example, for the ab-
stract ExomeSeq workflow designed by the user (Fig. 4),
BioCloud designates an improved version of this work-
flow as given in Fig. 5. Here, BioCloud scheduler checks
whether data partitioning can be enabled for workflow
steps and considering available resources and profiling data
of earlier executions BioCloud scheduler determines to
dispatch the test data and the control data to separate
cloud resources for execution. In our scenario, the work-
flow steps for test data are run in Amazon EC2 and the
steps for the control data are run in Rackspace. The out-
put data of step six are transferred back to workstation
and the last step is executed locally where the final result
will also be stored.

The execution times of the ExomeSeq workflow us-
ing a single workstation and multiple cloud resources are
provided in Fig. 6. It can be observed that the total exe-
cution time is reduced by half thanks to data partitioning
and parallelism in the first two steps. While the jobs are
run sequentially on the single workstation, a higher level
of scalability is attained by partitioning data, creating a
separate job for each data part and dispatching jobs to dif-
ferent compute nodes in the cluster formed in the respec-
tive cloud resources. It should be noted that data transfer
time is also considered for the cloud environments. De-
pending on the sequence of workflow steps, data flow and
the characteristics of the tools used in the workflow steps,
total execution time can be reduced even further through
simultaneous execution of the steps on different computing
resources.

5.1.3. Use Case II: Transcriptome Assembly and Func-
tional Annotation

De novo transcriptome assembly and functional anno-
tation is considered as an essential but computationally
intensive step in bioinformatics. The objective of the as-
sembly and the annotation workflow is to assemble a big

9

Figure 5: Generated workflow

Figure 6: Execution times of the ExomeSeq workflow on a
single workstation and multi-cloud environments

dataset of short reads and extract the functional annota-
tion for the assembled contigs. As can be seen in Fig. 7,
the workflow consists of four stages. The first stage is
data cleaning in which a Trimmomatic [48] tool is ap-
plied on the paired-end reads dataset. After that, the
output is converted to fasta format. In stage two, the
assembly, the clean dataset is used as input to five dif-
ferent denovo transcriptome assemblers: Tran-Abyss [49],
SOAPdenovo-Trans [50], IDBA-tran [51], Trinity [52] and
Velvet-Oases [53]. The assembled contigs from each assem-
bler are merged and used as input to stage three which in-
cludes clustering and removing redundant contigs as well
as applying reassembly for the unique contigs. In stage
three, we used TGICL tool [54] which utilizes MEGABLAST
[55] for contigs clustering and CAP3 [56] for assembly.
Functional annotation is done in the last stage and it is the
most computational part. The blast comparison and func-
tional annotation used in this workflow follows the pipeline
detailed in [57]. Three major sequences databases: NCBI
Non-redundant protein sequences (nr), Uniprot/Swiss-Prot
and Uniprot/TrEMBL, are used in the sequences compar-
ison steps. The Blastx results are parsed in the last step

and their associated GO categories are generated.

Figure 7: Assembly and annotation workflow

The used dataset is rice transcriptome data from Oryza
sativa 9311 (http://www.ncbi.nlm.nih.gov/sra/SRX017631).
9.8M paired-end reads of 75bp length and totaling 1.47
Gbp were generated using Illumina GA platform [58]. The
output contigs of TGICL step were filtered by removing
contigs of length less than 400 base pairs. For practi-
cal issues, the number of sequences of the three proteins
databases were reduced to 1% of it’s original sequences
count and the databases were installed in the single work-
station and remote clusters.

Figure 8: Execution times of the assembly and annotation
workflow on a single workstation and multi-cloud

environments

Similar to ExomeSeq, transcriptome assembly and an-
notation use case is tested in two different scenarios. In
the first one, we assume that the user has access to a single
commodity workstation to run the workflow. The second
scenario assumes availability of multiple cloud resources
besides the workstation. Fig. 8 illustrates the workflow
execution times considering both scenarios. It can be seen
that by utilizing the cloud resources BioCloud increases
the performance 4 times. It can also be observed that the
execution time of the annotation step is reduced the most
due to the availability of running this step in parallel after
partitioning the input data.

10

5.2. Evaluating Time and Cost Efficiency

In this subsection, we evaluate BioCloud in terms of
cost and execution time efficiency by considering two dif-
ferent user scenarios on ExomeSeq and Transcriptome as-
sembly workflows, in comparison with running each work-
flow with BioCloud scheduler.

In the first user scenario, we assume a user with lim-
ited budget who selects a considerably cheap resource pro-
file in order to minimize the workflow execution cost. In
the second scenario, we assume a user with considerable
amount of budget so that the user is tempted to use the
most powerful configurations, which also has high hourly
cost. We provide the results for both ExomeSeq work-
flow and Transcriptome Assembly workflow. The results
for the ExomeSeq workflow are depicted in Figures 9 and
10 while the results for Transcriptome Assembly are shown
in Figures 11 and 12 respectively in terms of the resource
scaling and the incurred cost. In the figures, we denote the
first scenario with “LB” (representing user with Limited
Budget) and the second scenario with “LT” (representing
user with Limited Time).

Figures 9 and 11 show the number of allocated nodes
while running three scenarios: LB, LT and BioCloud
Portal’s scheduler (BCP). As expected LT scenario al-
ways completes before LB, since LT uses more powerful
instances. As seen in the figures 10 and 12, while LB is try-
ing to minimize the cost using cheapest resources, it ends
up with a longer workflow execution time and eventually
with an even higher cost than the solution offered by Bio-
Cloud (BCP). Similarly, while LT is trying to minimize
the execution time using expensive configurations, the user
only obtains limited benefit in the execution time reduc-
tion while incurring much more cost. These results show
that while BioCloud provides a flexible and easy to use
environment for users to execute their workflows according
to their preferences, users could also benefit BioCloud’s
scheduler to further optimize time vs. cost trade-off.

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	

N
um

be
r	
 o

f	
 N
od

es
	

Timeframe	
 (Hours)	

BCP	
 LB	
 LT	

Figure 9: Scaling of the resources during the ExomeSeq workflow
execution.

Figure 10: Change in the cost of executing ExomeSeq workflow.

0	

1	

2	

3	

4	

0	
 1	
 2	
 3	
 4	
 5	

N
um

be
r	
 o

f	
 N
od

es
	

Timeframe	
 (Hours)	

BCP	
 LB	
 LT	

Figure 11: Scaling of the resources during the Transcriptome
Assembly workflow execution.

6. Conclusion

In this paper, we present BioCloud, a Cloud Bro-
ker system, that can reduce workflow execution time for
the given budget thanks to BioCloud scheduler. Bio-
Cloud enables extending local resources to a multi-cloud
environment to exploit parallelism by simultaneous use of
multiple computing resources for the non-computer savvy
bio-researchers who lack the sufficient computing resources
in order to complete executing their workflows in a reason-
able amount of time. BioCloud collects data regarding
execution behavior of the tools considering the resources
in use so that the profiler can estimate running time and
cost for the BioCloud scheduler. This enables determin-
ing the most efficient hardware profile to be used for the
corresponding workflow steps. BioCloud manages re-
source provisioning and configuration on disparate cloud
resources to assure availability of matching resources to
meet the requirements dynamically at the run-time. This
requires dynamic cluster configuration and dynamic scal-
ing of the compute nodes in the cluster which would be
overwhelming for the users otherwise. Another key feature

11

Figure 12: Change in the cost of executing Transcriptome
Assembly workflow.

of BioCloud is the inherent workflow improvement facil-
ity which enhances the submitted abstract workflows and
generates an improved version on-the-fly through data par-
titioning and parallelism. User-friendly BioCloud plat-
form encapsulates all such complexities and simplifies the
migration from single workstation to a multi-cloud envi-
ronment so that the users can focus on the workflow de-
sign.

Acknowledgment

This publication was made possible by NPRP grant
#4-1454-1-233 from the Qatar National Research Fund
(a member of Qatar Foundation). The statements made
herein are solely the responsibility of the authors.

References

[1] M. A. DePristo, The $1,000 genome: The revolution in DNA se-
quencing and the new era of personalized medicine, The Amer-
ican Journal of Human Genetics 87 (6) (2010) 742 –.

[2] L. Stein, The case for cloud computing in genome informatics,
Genome Biology 11 (5) (2010) 207.

[3] BioCloud at the Beijing Institute of Genomics.
URL http://biocloud.big.ac.cn/hindex.jsp

[4] C.-H. Hsu, C.-Y. Lin, M. Ouyang, Y. K. Guo, Biocloud: Cloud
computing for biological, genomics, and drug design, BioMed
Research International 2013.
URL http://europepmc.org/articles/PMC3808097

[5] BioCloud.
URL http://confluence.qu.edu.qa/display/KINDI/BioCloud

[6] N. Grozev, R. Buyya, Inter-cloud architectures and application
brokering: taxonomy and survey, Software: Practice and Expe-
rience 44 (3) (2014) 369–390.

[7] Hardware Profiles in EC2.
URL https://aws.amazon.com/ec2/instance-types/

[8] Hardware Profiles in Rackspace.
URL http://www.rackspace.com/cloud/servers

[9] J. Goecks, A. Nekrutenko, J. Taylor, T. G. Team, Galaxy:
a comprehensive approach for supporting accessible, repro-
ducible, and transparent computational research in the life sci-
ences, Genome Biology 11 (8) (2010) R86+. doi:10.1186/

gb-2010-11-8-r86.

[10] A. E. Darling, L. Carey, W. chun Feng, The design, imple-
mentation, and evaluation of mpiblast, in: In Proceedings of
ClusterWorld 2003, 2003.

[11] K.-B. Li, Clustalw-mpi: Clustalw analysis using distributed and
parallel computing, Bioinformatics 19 (12) (2003) 1585–1586.
doi:10.1093/bioinformatics/btg192.

[12] A. Matsunaga, M. Tsugawa, J. Fortes, Cloudblast: Combin-
ing mapreduce and virtualization on distributed resources for
bioinformatics applications, in: eScience, 2008. eScience ’08.
IEEE Fourth International Conference on, 2008, pp. 222–229.
doi:10.1109/eScience.2008.62.

[13] B. Langmead, M. Schatz, J. Lin, M. Pop, S. Salzberg, Searching
for snps with cloud computing, Genome Biol 10 (11) (2009)
R134.

[14] A. Hunter, D. Schibeci, H. L. Hiew, M. I. Bellgard, Grendel:
A bioinformatics web service-based architecture for accessing
HPC resources., in: R. Buyya, P. D. Coddington, P. Montague,
R. Safavi-Naini, N. P. Sheppard, A. L. Wendelborn (Eds.),
ACSW Frontiers, Vol. 44 of CRPIT, Australian Computer So-
ciety, 2005, pp. 29–32.

[15] MG-RAST: Metagenomics Analysis Server.
URL http://blog.metagenomics.anl.gov/

[16] M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo, J. P.
Mesirov, GenePattern 2.0, Nat Genet 38 (5) (2006) 500–501.

[17] B. Nron, H. Mnager, C. Maufrais, N. Joly, J. Maupetit,
S. Letort, S. Carrre, P. Tuffry, C. Letondal, Mobyle: a new full
web bioinformatics framework., Bioinformatics 25 (22) (2009)
3005–3011.

[18] M. C. Schatz, CloudBurst: highly sensitive read mapping with
MapReduce, Bioinformatics 25 (11) (2009) 1363–1369.

[19] T. Nguyen, W. Shi, D. Ruden, CloudAligner: A fast and full-
featured MapReduce based tool for sequence mapping, BMC
Research Notes 4 (1) (2011) 171+.

[20] B. Langmead, K. Hansen, J. Leek, Cloud-scale RNA-sequencing
differential expression analysis with Myrna, Genome Biology
11 (8) (2010) R83+. doi:10.1186/gb-2010-11-8-r83.

[21] R. Li, Y. Li, X. Fang, H. Yang, J. Wang, K. Kristiansen,
J. Wang, Snp detection for massively parallel whole-genome re-
sequencing, Genome Research 19 (6) (2009) 1124–1132. doi:

10.1101/gr.088013.108.
[22] E. Afgan, D. Baker, N. Coraor, B. Chapman, A. Nekrutenko,

J. Taylor, Galaxy cloudman: delivering cloud compute clusters,
BMC Bioinformatics 11 (Suppl 12) (2010) S4.

[23] S. Angiuoli, M. Matalka, A. Gussman, K. Galens, M. Vangala,
D. Riley, C. Arze, J. White, O. White, W. F. Fricke, CloVR: A
virtual machine for automated and portable sequence analysis
from the desktop using cloud computing, BMC Bioinformatics
12 (1) (2011) 356+.

[24] K. Krampis, T. Booth, B. Chapman, B. Tiwari, M. Bicak,
D. Field, K. E. Nelson, Cloud BioLinux: pre-configured and
on-demand bioinformatics computing for the genomics commu-
nity., BMC bioinformatics 13 (1) (2012) 42+.

[25] G. Minevich, D. S. Park, D. Blankenberg, R. J. Poole,
O. Hobert, CloudMap: A cloud-based pipeline for analysis of
mutant genome sequences, Genetics 192 (4) (2012) 1249–1269.
doi:10.1534/genetics.112.144204.

[26] B. Liu, B. Sotomayor, R. K. Madduri, K. Chard, I. T. Foster,
Deploying bioinformatics workflows on clouds with Galaxy and
Globus provision., in: SC Companion, IEEE Computer Society,
2012, pp. 1087–1095.

[27] A. J. Ferrer, F. Hernndez, J. Tordsson, E. Elmroth, A. Ali-
Eldin, C. Zsigri, R. Sirvent, J. Guitart, R. M. Badia, K. Dje-
mame, W. Ziegler, T. Dimitrakos, S. K. Nair, G. Kousiouris,
K. Konstanteli, T. Varvarigou, B. Hudzia, A. Kipp, S. Wesner,
M. Corrales, N. Forg, T. Sharif, C. Sheridan, Optimis: A holis-
tic approach to cloud service provisioning, Future Generation
Computer Systems 28 (1) (2012) 66 – 77.

[28] Deltacloud.
URL http://deltacloud.apache.org/

[29] E. Carlini, M. Coppola, P. Dazzi, L. Ricci, G. Righetti, Cloud
federations in contrail, in: Euro-Par 2011: Parallel Processing

12

http://biocloud.big.ac.cn/hindex.jsp
http://biocloud.big.ac.cn/hindex.jsp
http://europepmc.org/articles/PMC3808097
http://europepmc.org/articles/PMC3808097
http://europepmc.org/articles/PMC3808097
http://confluence.qu.edu.qa/display/KINDI/BioCloud
http://confluence.qu.edu.qa/display/KINDI/BioCloud
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://www.rackspace.com/cloud/servers
http://www.rackspace.com/cloud/servers
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1186/gb-2010-11-8-r86
http://dx.doi.org/10.1093/bioinformatics/btg192
http://dx.doi.org/10.1109/eScience.2008.62
http://blog.metagenomics.anl.gov/
http://blog.metagenomics.anl.gov/
http://dx.doi.org/10.1186/gb-2010-11-8-r83
http://dx.doi.org/10.1101/gr.088013.108
http://dx.doi.org/10.1101/gr.088013.108
http://dx.doi.org/10.1534/genetics.112.144204
http://deltacloud.apache.org/
http://deltacloud.apache.org/

Workshops, Vol. 7155 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2012, pp. 159–168.

[30] Aeolus.
URL www.aeolusproject.org/

[31] M. Rahman, S. Venugopal, R. Buyya, A dynamic critical path
algorithm for scheduling scientific workflow applications on
global grids, in: Proceedings of the Third IEEE International
Conference on e-Science and Grid Computing, E-SCIENCE ’07,
IEEE Computer Society, Washington, DC, USA, 2007, pp. 35–
42. doi:10.1109/E-SCIENCE.2007.3.
URL http://dx.doi.org/10.1109/E-SCIENCE.2007.3

[32] W.-N. Chen, J. Zhang, An ant colony optimization approach
to a grid workflow scheduling problem with various qos require-
ments, Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on 39 (1) (2009) 29–43.

[33] J. Yu, R. Buyya, A budget constrained scheduling of work-
flow applications on utility grids using genetic algorithms, in:
Workflows in Support of Large-Scale Science, 2006. WORKS
’06. Workshop on, 2006, pp. 1–10. doi:10.1109/WORKS.2006.

5282330.
[34] M. Mao, M. Humphrey, Auto-scaling to minimize cost and meet

application deadlines in cloud workflows, in: High Performance
Computing, Networking, Storage and Analysis (SC), 2011 In-
ternational Conference for, 2011, pp. 1–12.

[35] M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, Cost- and
deadline-constrained provisioning for scientific workflow ensem-
bles in iaas clouds, in: Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and
Analysis, SC ’12, IEEE Computer Society Press, Los Alamitos,
CA, USA, 2012, pp. 22:1–22:11.
URL http://dl.acm.org/citation.cfm?id=2388996.2389026

[36] S. Abrishami, M. Naghibzadeh, D. H. Epema, Deadline-
constrained workflow scheduling algorithms for infrastructure
as a service clouds, Future Gener. Comput. Syst. 29 (1) (2013)
158–169. doi:10.1016/j.future.2012.05.004.
URL http://dx.doi.org/10.1016/j.future.2012.05.004

[37] Z. Wu, Z. Ni, L. Gu, X. Liu, A revised discrete particle swarm
optimization for cloud workflow scheduling, in: Computational
Intelligence and Security (CIS), 2010 International Conference
on, 2010, pp. 184–188.

[38] E.-K. Byun, Y.-S. Kee, J.-S. Kim, S. Maeng, Cost optimized
provisioning of elastic resources for application workflows, Fu-
ture Gener. Comput. Syst. 27 (8) (2011) 1011–1026. doi:

10.1016/j.future.2011.05.001.
URL http://dx.doi.org/10.1016/j.future.2011.05.001

[39] M. Rodriguez, R. Buyya, Deadline based resource provi-
sioningand scheduling algorithm for scientific workflows on
clouds, Cloud Computing, IEEE Transactions on 2 (2) (2014)
222–235.

[40] Alberich.
URL https://github.com/aeolus-incubator/alberich

[41] S. Srirama, A. Ostovar, Optimal resource provisioning for scal-
ing enterprise applications on the cloud, in: Cloud Comput-
ing Technology and Science (CloudCom), 2014 IEEE 6th In-
ternational Conference on, 2014, pp. 262–271. doi:10.1109/

CloudCom.2014.24.
[42] L. Thai, B. Varghese, A. Barker, Executing bag of distributed

tasks on the cloud: Investigating the trade-offs between perfor-
mance and cost, in: Cloud Computing Technology and Science
(CloudCom), 2014 IEEE 6th International Conference on, 2014,
pp. 400–407. doi:10.1109/CloudCom.2014.29.

[43] D. Bozdağ, C. Barbacioru, Ü. Çatalyürek, Parallel short se-
quence mapping for high throughput genome sequencing, in:
Proc. of 23rd Int’l. Parallel and Distributed Processing Sympo-
sium, 2009, pp. 1–10.

[44] G. Teodoro, T. D. R. Hartley, Ü. V. Çatalyürek, R. Ferreira, Op-
timizing dataflow applications on heterogeneous environments,
Cluster Computing 15 (2) (2012) 125–144.
URL http://dx.doi.org/10.1007/s10586-010-0151-6

[45] E. Fix, J. Hodges, Discriminatory analysis, nonparametric dis-
crimination, consistency properties, Computer science techni-

cal report, School of Aviation Medicine, Randolph Field, Texas
(1951).

[46] J. A. Woyach, R. R. Furman, T.-M. Liu, H. G. Ozer, M. Za-
patka, A. S. Ruppert, L. Xue, D. H.-H. Li, S. M. Steggerda,
M. Versele, S. S. Dave, J. Zhang, A. S. Yilmaz, S. M. Jaglowski,
K. A. Blum, A. Lozanski, G. Lozanski, D. F. James, J. C. Bar-
rientos, P. Lichter, S. Stilgenbauer, J. J. Buggy, B. Y. Chang,
A. J. Johnson, J. C. Byrd, Resistance mechanisms for the bru-
ton’s tyrosine kinase inhibitor ibrutinib, New England Jour-
nal of Medicine 370 (24) (2014) 2286–2294, pMID: 24869598.
doi:10.1056/NEJMoa1400029.

[47] H. Li, R. Durbin, Fast and accurate short read alignment with
burrowswheeler transform, Bioinformatics 25 (14) (2009) 1754–
1760. doi:10.1093/bioinformatics/btp324.

[48] A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: A flex-
ible trimmer for illumina sequence data, Bioinformaticsdoi:
10.1093/bioinformatics/btu170.

[49] G. Robertson, J. Schein, R. Chiu, R. Corbett, M. Field, S. D.
Jackman, K. Mungall, S. Lee, H. M. Okada, J. Q. Qian, M. Grif-
fith, A. Raymond, N. Thiessen, T. Cezard, Y. S. Butterfield,
R. Newsome, S. K. Chan, R. She, R. Varhol, B. Kamoh, A.-L.
Prabhu, A. Tam, Y. Zhao, R. A. Moore, M. Hirst, M. A. Marra,
S. J. M. Jones, P. A. Hoodless, I. Birol, De-novo assembly and
analysis of RNA-seq data, Nature Methods 7 (11) (2010) 912.

[50] Y. Xie, G. Wu, J. Tang, R. Luo, J. Patterson, S. Liu, W. Huang,
G. He, S. Gu, S. Li, X. Zhou, T.-W. Lam, Y. Li, X. Xu,
G. K.-S. Wong, J. Wang, SOAPdenovo-Trans: De novo tran-
scriptome assembly with short RNA-Seq reads, Bioinformat-
icsdoi:10.1093/bioinformatics/btu077.

[51] Y. Peng, H. C. M. Leung, S.-M. Yiu, M.-J. Lv, X.-G. Zhu,
F. Y. L. Chin, IDBA-tran: a more robust de novo de bruijn
graph assembler for transcriptomes with uneven expression lev-
els, Bioinformatics 29 (13) (2013) i326–i334. doi:10.1093/

bioinformatics/btt219.
[52] M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A.

Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowd-
hury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke,
N. Rhind, F. di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-
Toh, N. Friedman, A. Regev, Full-length transcriptome assem-
bly from RNA-Seq data without a reference genome, Nature
Biotechnology 29 (7) (2011) 652.

[53] M. H. Schulz, D. R. Zerbino, M. Vingron, E. Birney, Oases:
Robust de novo rna-seq assembly across the dynamic range of
expression levels, Bioinformaticsdoi:10.1093/bioinformatics/
bts094.

[54] G. Pertea, X. Huang, F. Liang, V. Antonescu, R. Sultana,
S. Karamycheva, Y. Lee, J. White, F. Cheung, B. Parvizi,
J. Tsai, J. Quackenbush, TIGR gene indices clustering tools
(tgicl): a software system for fast clustering of large est
datasets, Bioinformatics 19 (5) (2003) 651–652. doi:10.1093/

bioinformatics/btg034.
[55] L. W. Zheng Zhang, Scott Schwartz, W. Miller, A greedy al-

gorithm for aligning dna sequences, Computational Biology 7
(2000) 203–214. doi:10.1089/10665270050081478.

[56] X. Huang, A. Madan, Cap3: a dna sequence assembly
program, Genome Res 9 (1999) 868877. doi:10.1089/

10665270050081478.
[57] P. De Wit, M. H. Pespeni, J. T. Ladner, D. J. Barshis,

F. Seneca, H. Jaris, N. O. Therkildsen, M. Morikawa, S. R.
Palumbi, The simple fool’s guide to population genomics via
RNA-Seq: an introduction to high-throughput sequencing data
analysis, Molecular Ecology Resources 12 (6) (2012) 1058–1067.
doi:10.1111/1755-0998.12003.

[58] G. Zhang, G. Guo, X. Hu, Y. Zhang, Q. Li, R. Li, R. Zhuang,
Z. Lu, Z. He, X. Fang, L. Chen, W. Tian, Y. Tao, K. Kris-
tiansen, X. Zhang, S. Li, H. Yang, J. Wang, J. Wang, Deep RNA
sequencing at single base-pair resolution reveals high complex-
ity of the rice transcriptome, Genome Research 20 (5) (2010)
646–654. doi:10.1101/gr.100677.109.

13

www.aeolusproject.org/
http://dx.doi.org/10.1109/E-SCIENCE.2007.3
http://dx.doi.org/10.1109/E-SCIENCE.2007.3
http://dx.doi.org/10.1109/E-SCIENCE.2007.3
http://dx.doi.org/10.1109/E-SCIENCE.2007.3
http://dx.doi.org/10.1109/E-SCIENCE.2007.3
http://dx.doi.org/10.1109/WORKS.2006.5282330
http://dx.doi.org/10.1109/WORKS.2006.5282330
http://dl.acm.org/citation.cfm?id=2388996.2389026
http://dl.acm.org/citation.cfm?id=2388996.2389026
http://dl.acm.org/citation.cfm?id=2388996.2389026
http://dl.acm.org/citation.cfm?id=2388996.2389026
http://dx.doi.org/10.1016/j.future.2012.05.004
http://dx.doi.org/10.1016/j.future.2012.05.004
http://dx.doi.org/10.1016/j.future.2012.05.004
http://dx.doi.org/10.1016/j.future.2012.05.004
http://dx.doi.org/10.1016/j.future.2012.05.004
http://dx.doi.org/10.1016/j.future.2011.05.001
http://dx.doi.org/10.1016/j.future.2011.05.001
http://dx.doi.org/10.1016/j.future.2011.05.001
http://dx.doi.org/10.1016/j.future.2011.05.001
http://dx.doi.org/10.1016/j.future.2011.05.001
https://github.com/aeolus-incubator/alberich
https://github.com/aeolus-incubator/alberich
http://dx.doi.org/10.1109/CloudCom.2014.24
http://dx.doi.org/10.1109/CloudCom.2014.24
http://dx.doi.org/10.1109/CloudCom.2014.29
http://dx.doi.org/10.1007/s10586-010-0151-6
http://dx.doi.org/10.1007/s10586-010-0151-6
http://dx.doi.org/10.1007/s10586-010-0151-6
http://dx.doi.org/10.1056/NEJMoa1400029
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btu170
http://dx.doi.org/10.1093/bioinformatics/btu170
http://dx.doi.org/10.1093/bioinformatics/btu077
http://dx.doi.org/10.1093/bioinformatics/btt219
http://dx.doi.org/10.1093/bioinformatics/btt219
http://dx.doi.org/10.1093/bioinformatics/bts094
http://dx.doi.org/10.1093/bioinformatics/bts094
http://dx.doi.org/10.1093/bioinformatics/btg034
http://dx.doi.org/10.1093/bioinformatics/btg034
http://dx.doi.org/10.1089/10665270050081478
http://dx.doi.org/10.1089/10665270050081478
http://dx.doi.org/10.1089/10665270050081478
http://dx.doi.org/10.1111/1755-0998.12003
http://dx.doi.org/10.1101/gr.100677.109

Supplementary Materials

• Fig. S1 : Full size image of the abstract ExomeSeq
workflow Fig. 4.

• Fig. S2 : Full size image of the generated workflow
Fig. 5.

• Fig. S3 : Full size image of the assembly and anno-
tation workflow Fig. 7.

14

	Introduction
	Related Work
	Web-based Frameworks
	Frameworks with Cloud Computing
	Frameworks as a Service
	Federated and Multi-Cloud Brokers
	Cloud Workflow Scheduling Algorithms

	BioCloud System Design
	Web Interface and User Interaction
	Workflow Management and Execution
	Authentication
	Profiler
	Resource Manager
	Image Manager
	Scheduler

	Scheduling Algorithm
	Experimental Evaluation
	Evaluating Flexibility and Interoperability
	Environment
	Use Case I: ExomeSeq Workflow
	Use Case II: Transcriptome Assembly and Functional Annotation

	Evaluating Time and Cost Efficiency

	Conclusion

