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Abstract—Can people use text-entry based brain-computer
interface (BCI) systems and start a free spelling mode without
any calibration session? Brain activities differ largely across
people and across sessions for the same user. Thus, how can the
text-entry system classify the desired character among the other
characters in the P300-based BCI speller matrix? In this paper,
we introduce a new unsupervised classifier for a P300-based BCI
speller, which uses a disjunctive normal form representation to
define an energy function involving a logistic sigmoid function
for classification. Our proposed classifier updates the initialized
random weights performing classification for the P300 signals
from the recorded data exploiting the knowledge of the sequence
of row/column highlights. To verify the effectiveness of the
proposed method, we performed an experimental analysis
on data from 7 healthy subjects, collected in our laboratory.
We compare the proposed unsupervised method to a baseline
supervised linear discriminant analysis (LDA) classifier and
demonstrate its effectiveness.

Keywords—Brain-computer interface, P300 Speller, calibration
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I. INTRODUCTION

A significant number of individuals suffer from losing all
voluntary muscle control due to amyotrophic lateral sclerosis
(ALS), traumatic brain injuries or spinal cord injuries [1].
Although the motor pathway is lost, neuronal activity of the
brain still works in many of these cases. A brain-computer in-
terface (BCI) aims to establish a direct communication channel
between the brain and a computer or machine so disabled in-
dividuals can interact with the real-world [2]. Studies over last
two decades have shown that the electroencephalogram (EEG)
measured through the scalp can be used as the cornerstone for
BCI [3]. Besides decoding a user’s intent signals, it can be
used to provide input signals in many applications including
text entry [4], robotic arm control [5], cursor control [6].

The P300 speller is one of the most common BCI-based
text-entry systems, which allows subjects to write text on the
computer screen. Farwell and Donchin [4] demonstrated the
first P300 speller paradigm which is also called the oddball
paradigm. P300 is an event-related potential (ERP) elicited
in the brain as a response to a visual or auditory stimulus.
It is a positive deflection measured around the parietal lobe,
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nearly 300 ms after the occurrence of the attended stimulus
[7]. The system allows people to spell words and numbers by
focusing on the desired character in a matrix shown on the
screen (see Fig. 1). When the desired character is highlighted,
the subject attends to the unexpected stimuli and a P300
wave is generated. The character which the user intends to
type can be inferred by the intersection of the detected P300
responses in the sequence of row/column highlights. EEG
signals suffer from low signal to noise ratio (SNR) due to
several factors including the variability in brain activities.
Therefore, P300 spellers need several stimulus repetitions to
increase the classification accuracy [8].

One of the common problems in BCIs is the calibration
process. The brain signals vary across people and across ses-
sions for the same user [9]. For this reason, supervised training
methods based on calibration sessions involving labeled train-
ing data are usually used. Furthermore, the BCI system should
be trained for a specific person. The downsides of having to
use such sessions include the consumption of additional time
and increased fatigue for the users. Furthermore, such sessions
might have to be repeated to account for any non-stationary
behavior of the brain signals over the course of system use.

The work in this paper provides a contribution towards
addressing these problems by proposing a new unsupervised
classifier for P300-based spellers. In this approach, the dis-
junctive normal form plays a role in forming an energy
function, which allows to update the randomly initialized
classifier weights by using the logistic sigmoid function for
classification and by exploiting the knowledge of the sequence
of row/column highlights [10]. The idea is that one round of
row/column highlights in the speller matrix should evoke a
P300 response only after two (one row and one column) of
the highlights. Note that exploiting this fact does not require
knowledge of the labels of the data, hence this idea can be a
basis for unsupervised learning. There have been several pieces
of work on unsupervised methods for P300-based BCI spellers.
An unsupervised method was proposed by Lu et al. [11].
Although that unsupervised classifier has also been applied
to P300 data, it still needs some labeled data to train a subject
independent classifier which then goes through adaptation.
Another recent unsupervised classification method, based on a
Bayesian model, has been proposed by Kindermans et al. [12].
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There also exist semi-supervised adaptation methods which
involve supervised training followed by adaptation of the
classifier with the incoming EEG data [13]. We evaluate our
disjunctive normal unsupervised linear discriminant analysis
(DNUL) approach on EEG data collected in our laboratory and
demonstrate its effectiveness in unsupervised learning through
a comparison with a supervised method. We also demonstrate
the sequential learning/adaptation capability of our approach
as test data are collected.

II. METHODS

The following sections will provide the details of our
proposed unsupervised classification method based on the
disjunctive normal form [10].

A. Model Architecture

Consider a two-class classification problem: C = {0, 1}, for
which we observe the data samples (x1, x2, ..., xn) where n is
the number of samples. Let us assume one row/column flash
among a full sequence of flashes comes from the class C =
1 and all other (n − 1) row/column flashes in that sequence
come from the class C = 0 where C = 1 corresponds to
row/column containing the target letter and C = 0 corre-
sponds to row/column not containing the the target letter. Let
yj = f(xj) for j ∈ {1, ..., n} where y ∈ {0, 1} and f(xj) is
the classification function. Let us define the following Boolean
indicator function, which we will call the one-vs-all function
g(y).

g(y1, y2, ..., yn) =

{
1, if only one argument is 1;
0, otherwise.

(1)

Any Boolean function can be written as a disjunction of
conjunctions, also known as the disjunctive normal form [14].

E(x) = g(y1, y2, ..., yn)

= (y1, y
′
2, ..., y

′
n) ∪ (y′1, y2, ..., y

′
n) ∪ ... ∪ (y′1, y

′
2, ..., yn)

(2)
Furthermore, allowing M repeated observations, we define:

E(x) =

M∑
i

g(f(x1i), f(x2i), ..., f(xni)) (3)

where we can relax the function f so it has real valued outputs
in [0, 1] rather than binary. We perform such relaxation through
a logistic sigmoid function, where β is a sensitivity parameter.

f(xji) =
1

1 + e−β(
∑n

j wijxj+bij)
(4)

Using De Morgan’s laws and products of conjunctions
yields the following differentiable energy function [14].

E(x) =

M∑
i

(
1−

n∏
j

(
1− f(xji)

n∏
k 6=j

(
1− f(xki)

)
︸ ︷︷ ︸

Qj

))
(5)

where M denotes the number of rounds for row/column
highlights.

B. Model Initialization

Let us consider a P300 speller paradigm with Γ =
{(x, L(x))}, where x denotes the data and L(x) denotes the
binary class label corresponding to x. Furthermore, let Γ+

denote class L = 1 corresponding to the desired target and Γ−

denote class L = 0 corresponding to the non-desired target.
Since the model is designed to work in an unsupervised

fashion, the labels for learning the model will not be available
to the algorithm. We will use the disjunctive normal form-
based energy function in (5) to classify the two classes
without using any labels. The weights wij of the disjunctive
normal unsupervised linear discriminant (DNUL) classifier are
randomly initialized and the bias terms set to 1. Consider a
speller matrix as in Fig. 1. We have 6x6 characters that means
the target character needs a set of row/column intensifications
(highlights) to cover the matrix. We call the set of intensifica-
tions covering the entire array a trial group. Therefore, n = 6
in our algorithm.

The sigmoid function in (4) takes the value 0.5 in the middle
of the classification line between two classes. The goal is to
design a classifier to put the data from the desired class in
Γ+ when f(xji) ≥ 0.5 and data from non-desired class in Γ−

when f(xji) < 0.5 by optimizing the energy function in (5).

C. Model Optimization

In order to learn the DNUL classifier, we use gradient
ascent to maximize the energy function by taking the partial
derivatives of the energy function with respect to the weights.
The gradient of the energy function in (5) is given by:

∂E

∂w
= −

M∑
i

∂

∂w

( n∏
j

Qj

)

= −
M∑
i

n∑
j

(
∂Qj
∂w

n∏
l 6=j

Ql

)
∂Qj
∂w

= − ∂

∂w
f(xji)

n∏
k 6=j

(
1− f(xki)

)
− f(xji)

n∑
p 6=j

(
− ∂

∂w
f(xpi)

n∏
k 6=p,j

(
1− f(xki)

))
(6)

The model performs iterations till the DNUL classifier con-
verges updating the weights at each iteration: (7) where α is
the step size. The bias term is included in the weight vector.

wnewij = wij + α
∂E

∂wij
(7)

III. EXPERIMENTAL RESULTS

The proposed DNUL and supervised LDA classification
techniques are evaluated in this section with a real P300-based
speller dataset. In this study, 7 male healthy subjects performed
offline spelling, whose ages are between 18 and 30. Only
two of the subjects had prior BCI experience before. These
datasets were recorded in our lab at Sabancı University [15].
Temporal EEG data was recorded from 12 active channels



Fig. 1. Interface of P300-based speller matrix used in this study.

during the experiment which were placed at Fp1, Fp2, Fz,
Cz, Pz, Oz, P3, P4, Po7, and Po8 locations according to the
international 10-20 system, in addition to the two auxiliary
electrodes for reference. The data are sampled at 2048 Hz. The
recorded data are bandpass filtered in 1-12 Hz and decimated
by 64. The signals are divided into one-second epochs which
are used as the feature vectors for classification. The 6 × 6
spelling matrix uses the most common stimulus type. The
intensification covers the rows and columns of the matrix
in a block-randomized fashion. Each intensification flashes
exactly once with an inter-stimulus interval (ISI) of 125 ms;
the intensification duration of 50 ms and the remaining 75
ms waiting for the next intensification. Each subject recorded
two sessions: one for the training session and one for the test
session. The training session involved spelling 14 characters
forming 2 Turkish words. The test session involved spelling
26 characters forming 4 Turkish words. In this work, we split
the test dataset into two versions, one with 14 characters and
the other one with 26 characters as shown in Table I. The data
were recorded with the BioSemi ActiView software. We used
the data preprocessing methods described in detail in [16].

The DNUL classification model is one of the most chal-
lenging as it starts initially unlearned without using labels.
In this case, there is no need for the training session, the
approach just evaluates the model on the upcoming EEG
data. The accuracies presented in this study refer to the
spelled characters. Most systems, including ours, classify the
individual intensifications and combine the outputs to predict
the spelled character.

The number of trial groups for spelling a character was
pre-defined, the maximum number of trial groups recorded in
these datasets was 15. Our experiments are divided into two
categories. The first four experiments involve offline analysis
(batch mode) as shown in Fig. 2. The last experiment, depicted
in Fig. 3, is designed to simulate online spelling (sequential
mode) in order to evaluate the sequential adaptation process
of the classifier.

The initialization parameters of the DNUL model is the
same for all experiments. For each classifier, we perform 10
optimizations. For each optimization, we initialize 2 random-
weight vectors drawn from normally distributed random num-
bers ∼ N (0, 1), one with w and one with -w. In total, we have
20 classifiers and we pick the classifier with the highest energy
function. The number of iterations is set to 500 and the step
size is set to α = 0.2. The sensitivity parameter β = 0.1 was

chosen empirically and is used for the whole dataset. We are
working on a mechanism to set this parameter automatically
based on data.

Batch mode analysis: To start, we compare our approach
with the supervised LDA classifier. The first two experiments
are carried out by averaging the EEG dataset with a chunk of
15 trial groups for supervised or unsupervised learning and
then the classifier is re-evaluated on the sequence of trial
groups starting from 1 to 15. Both classifiers in Fig. (2a)
are evaluated on the test dataset (I). As a rule, the LDA
always learns with the training data and the DNUL learns
on the fly with the test data. The curves display classification
accuracy as a function of the number of trial groups involved
in each data sample used to test the classifiers. In Fig. (2b)
both classifiers are evaluated on the test dataset (II). Note
that LDA and DNUL both learn on 14 characters for the
experiment in Fig. (2a), whereas DNUL uses (of course
unlabeled) data from all 26 characters for the case in Fig. (2b).
The other two experiments in Fig. (2c) and (2d) follow the
same methodology, but apart from this, they have a different
configuration. In these two experiments, the number of trial
groups the LDA and DNUL techniques use for supervised
and unsupervised learning respectively matches the number

TABLE I
SPELLED WORDS IN TRAINING AND TEST DATASETS

Dataset Spelled characters Characters

Training dataset KALEM YOLCULUK 14
Test dataset (I) KITAP MASA AGL 14
Test dataset (II) KITAP MASA AGLAMAK SIKINTI 26

(a) OFF-15-14 (b) OFF-15-26

(c) OFF-N-14 (d) OFF-N-26

Fig. 2. Offline (Batch mode) analysis showing character classification
accuracy over 7 subjects comparing DNUL with LDA. Error bars show 95%
confidence intervals from the mean with sample size = 7.



Fig. 3. Online spelling (sequential mode) showing the performance averaged over the 7 subjects using a different number of trial groups to predict a character.
The horizontal axis represents the number of processed characters. The vertical axis represents the number of characters that were classified correctly. The
dashed line is an upper bound showing the number of the seen characters.

of trial groups used for testing. These results demonstrate the
unsupervised classification capability of DNUL. Interestingly,
when the unlabeled data quality (through more repetitions) and
quantity (through more characters) is sufficiently high, DNUL
appears to provide better performance than supervised LDA
trained on labeled data from a separate session. We speculate
this might be due to the nonstationary nature of the EEG
data across the sessions. The detailed accuracies for individual
subjects corresponding to the experiments in Fig. 2 are shown
in Table II.

Sequential mode analysis: This is a simulation to test the
online adaptation process of DNUL. We design and update
(adapt) the classifier after the data are received for each
character and perform classification. We observe (see Fig. 3)
that the classifier is improved as we receive more data. As
expected, the classifier performs better if the data involve more
trial groups. Finally, we also perform an offline ”retest”, that
is we classify each previously seen character with the final
classifier. This experiment demonstrates how DNUL can in
principle be adapted and refined as more test data are received.

IV. CONCLUSION

In this paper, we have developed a novel unsupervised
method for P300-based BCI speller systems, which allows us
to run the classifier without using any calibration process and
without any labeled data. Future work will include comparison
with other unsupervised classification methods in BCI, such as
[12]. It might also be possible to modify our energy function
to incorporate additional terms to enforce various forms of
clustering in the data.

TABLE II
PERFORMANCE VALUES FOR EACH SUBJECT OBTAINED WITH 15 TRIAL

GROUPS FOR FIG. 2. (A) AND (D)

Test dataset (I) Test dataset (II)
Subjects LDA % DNUL % LDA % DNUL %

S1 28.57 85.71 15.38 88.46
S2 28.57 42.85 34.62 69.23
S3 35.71 71.43 34.62 76.92
S4 35.71 92.86 61.54 88.46
S5 57.14 85.71 50 100
S6 42.86 21.43 50 42.31
S7 50 85.71 61.54 96.15

Average 39.8 69.39 43.96 80.22
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