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Abstract

Simultaneous Localization and Mapping (SLAM) maintains autonomy for
mobile robots and it has been studied extensively during the last two decades.
It is the process of building the map of an unknown environment and deter-
mining the location of the robot using this map concurrently. Different kinds
of sensors such as Global Positioning System (GPS), Inertial Measurement
Unit (IMU), laser range finder and sonar are used for data acquisition in
SLAM. In recent years, passive visual sensors are utilized in visual SLAM
(vSLAM) problem because of their increasing ubiquity.

This thesis is concerned with the metric and appearance-based vSLAM
problems for mobile robots. From the point of view of metric-based vSLAM, a
performance improvement technique is developed. Template matching based
video stabilization and Harris corner detector are integrated. Extracting
Harris corner features from stabilized video consistently increases the accu-
racy of the localization. Data coming from a video camera and odometry
are fused in an Extended Kalman Filter (EKF) to determine the pose of the
robot and build the map of the environment. Simulation results validate the
performance improvement obtained by the proposed technique. Moreover, a
visual perception system is proposed for appearance-based vSLAM and used
for under vehicle classification. The proposed system consists of three main
parts: monitoring, detection and classification. In the first part a new cata-
dioptric camera system, where a perspective camera points downwards to a
convex mirror mounted to the body of a mobile robot, is designed. Thanks to
the catadioptric mirror the scenes against the camera optical axis direction
can be viewed. In the second part speeded up robust features (SURF) are
used to detect the hidden objects that are under vehicles. Fast appearance
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based mapping algorithm (FAB-MAP) is then exploited for the classification
of the means of transportations in the third part. Experimental results show
the feasibility of the proposed system. The proposed solution is implemented
using a non-holonomic mobile robot. In the implementations the bottom of
the tables in the laboratory are considered as the under vehicles. A database
that includes different under vehicle images is used. All the algorithms are
implemented in Microsoft Visual C++ and OpenCV 2.4.4.
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Mobil Robotlar İçin Metrik ve Görünüm Tabanlı Görsel Eş

Zamanlı Konumlama ve Haritalama

Caner Şahin

ME, Master Tezi, 2013

Tez Danışmanı: Prof. Dr. Mustafa Ünel

Anahtar Kelimeler: Görsel Eş Zamanlı Konumlama ve Haritalama,
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Özet

Eş Zamanlı Konumlama ve Haritalama (EZKH) mobil robotlarda otonom-
iyi sağlamakta ve son yirmi yıldır kapsamlı olarak çalışılmaktadır. EZKH bil-
inmeyen bir ortamın haritasının çıkartılması ve bu haritanın robot pozisyon-
unu hesaplamak için eş zamanlı olarak kullanılmasıdır. Global Pozisyonlama
Sistemi (GPS), Atalet Ölçüm Ünitesi, lazer mesafe ölçme cihazı veya sonar
gibi çeşitli sensörler veri toplamak için EKZH’ de kullanılmaktadır. Son za-
manlarda, pasif görsel sensörler kullanımındaki artıştan dolayı görsel EKZH
(gEKZH) probleminde faydalanılmaktadır.

Bu tez, mobil robotlar için metrik ve görünüş tabanlı gEKZH problem-
leri ile ilgilenmektedir. Metrik tabanlı gEKZH açısından bir performans iyi-
leştirme tekniği geliştirilmiştir. Şablon eşleme tabanlı video stabilizasyonu
ve Harris köşe sezicisi bütünleştirilmektedir. Tutarlı olarak stabilize edilmiş
videodan Harris köşe özniteliklerinin çıkarımı konumlama doğruluğunu artır-
maktadır. Video kamera ve odometreden gelen datalar mobil robotun duruş-
unu hesaplamak ve ortamın haritasını çıkarmak için genişletilmiş Kalman
filtresinde tümleştirilmektedir. Simulasyon sonuçları önerilen teknikle elde
edilen performans iyileştirmesini doğrulamaktadır. Ayrca, görünüş tabanlı
gEKZH algoritması için bir görsel algılama sistemi önerilmektedir ve araçlar-
ın sınıflandırılması için kullanılmaktadır. Önerilen sistem üç ana kısımdan
oluşur: görüntüleme, sezme ve sınıflandırma. Birinci kısımda perspektif kam-
eranın mobil robotun gövdesine bağlanan konveks aynaya doğru hizalanmış
olduğu bir katadioptrik kamera sistemi geliştirilmiştir. Katadioptrik ayna sa-
yesinde kamera optik ekseni yönünün tersindeki alanlar görüntülenebilmek-
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tedir. İkinci kısımda araçların altındaki gizlenmiş nesneleri sezmek için Hızlan-
dırılmış Gürbüz Öznitelikler (HGÖ) kullanılmaktadır. Hızlı görünüş tabanlı
haritalama algoritmasından araçları sınıflandırmak için üçüncü bölümde yara-
rlanılmıştır. Deneysel sonuçlar önerilen sistemin uygulanabilirliğini gösterme-
ktedir. Önerilen çözüm bir holonomik olmayan mobil robot kullanılarak
uygulanmıştır. Uygulamalarda, laboratuar ortamında bulunan masaların alt
kısımları araç alt gövdeleri olarak düşünülmüştür ve farklı araç altı görüntüleri-
nden oluşan bir veritabanı kullanılmıştır. Tüm algoritmalar Microsoft Visual
C++ ve OpenCV 2.4.4 kütüphanelerinde gerçeklenmiştir.
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Chapter I

1 Introduction

If you are a pilot of an aeroplane flying in the sky you may want to know

where you are. You might be a traveller in your car having a long journey and

be curious about the remaining kilometers to the destination. In summer,

having a holiday in the middle of the Mediterranean with your yacht may

require the latitude and longitude data according to the Greenwich. Also, a

mobile robot can be launched to Mars by a general of an army and a radar

can tell the position of the mobile robot. Moreover, if you are a researcher

in robotics community you may want to navigate your mobile robot without

noticing if it is an unmanned aerial vehicle, autonomous underwater vehicle

or non-holonomic wheeled mobile robot. In all kinds of applications that are

mentioned above one must answer the question ”How can I solve navigation

problem?”. The main aim of all navigation processes including dead reck-

oning, pilotage, celestial navigation, radio navigation, radar navigation and

satellite navigation etc. is the determination of a navigator’s exact position

and direction with respect to a fixed reference frame.

In mobile robotics applications simultaneous localization and mapping

(SLAM) is one of the methods that is used for navigation. It provides auton-

omy for mobile robots and has been studied extensively during the last two

decades [3–9]. SLAM is concerned with the ability of an autonomous vehicle



to navigate through an unknown environment and incrementally build a map

of the environment while localising itself within this map. At the beginning

the map of the environment and the mobile robot position are not known and

the mobile robot starts to navigate in the environment which has features

that are artificial or natural. The SLAM process comprises finding appropri-

ate representation for both the observation and motion model [1]. In order

to do so, different kinds of sensors mounted to the mobile robot are utilized.

Sonar, laser, inertial and vision based sensors are most commonly used sen-

sors in SLAM applications for data acquisition. Sonar based systems are fast

and relatively cheap but they tend to produce less accurate and more noisy

measurements compared to other kinds of sensors [10]. Laser range finders

achieves significant improvements over the ultrasonic range sensors (sonar)

owing to the use of laser light instead of sound, but their point-to-point mea-

surement characteristic is limited [10]. Inertial sensors such as odometers and

inertial measurement units (IMU) are extremely sensitive to measurement er-

rors. On the other hand, vision-based systems are passive, they have long

range and high resolution. One can extract features nearly at infinity using

a visual sensor. In recent years, because of the increasing ubiquity of passive

vision - based systems, there has been intense research into visual SLAM (vS-

LAM) using primarily standard perspective cameras. Another reason why

cameras are being used in SLAM process is that the acquired data from im-

ages can be directly applicable in the existing computer vision techniques

for extracting and matching visual features [11]. Despite the fact that the

computational load of the applied algorithms in computer vision exceeds ca-

pacities of typical embedded computers and must be considered in real-time

applications, many of the most successful visual SLAM implementations uti-
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lize state-of-the-art feature extraction and matching, structure from motion

and scene modelling computer vision techniques. Moreover outputs of the

vision algorithms facilitate the solution of the challenging problems such as

loop closure, data association etc. This fact is one of the main motivations

for using vision sensors.

1.1 Objective

The main goal of this thesis is to improve the performance of a metric based

vSLAM algorithm and utilize the fast appearance based mapping (FAB-

MAP) algorithm for detecting and classifying objects that are mounted to

the under frames of the means of transportations. A non-holonomic mobile

robot and its kinematic model are used in implementations including both

simulations and experimental work.

This thesis concerns with the performance improvement in vSLAM where

the map of the environment is built with metric data. When a non-holonomic

wheeled mobile robot (WMR) navigates in an unknown environment, some

undesired phenomena such as vibrations on the mobile robot and the speed

bump constructions in the environment might occur. To prevent the nega-

tive effects caused by such events, a novel method is presented. It enhances

the consistency of the constructed map using stabilized corner features. The

proposed method integrates template matching based video stabilization and

Harris corner detector. Also, extracting Harris corner features from stabilized

video consistently increases the accuracy of the localization. Data coming

from a video camera and odometry are fused in an Extended Kalman Filter

(EKF) to determine the pose of the robot and build the map of the environ-

ment. Moreover, imaging and classification of under vehicles are provided
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and hidden objects are detected. In order to do so, a solution consisting of

three main parts is proposed: monitoring, detection and classification. In

the first part a new catadioptric camera system in which the perspective

camera points downwards to the catadioptric mirror mounted to the body

of a mobile robot is designed. Thanks to the catadioptric mirror the scenes

against the camera optical axis direction can be viewed. In the second part

speeded up robust features (SURF) are used in an object recognition algo-

rithm. Fast appearance based mapping algorithm (FAB-MAP) is exploited

for the classification of the means of transportations in the third part.

1.2 Structure of the Thesis and Contributions

The rest of this thesis is organized as follows:

Chapter 2 reviews the most commonly used SLAM techniques for the

navigation of a mobile robot. Particular attention is devoted to Kalman

filter and appearance based SLAM algorithms since they will be used in

subsequent chapters. Furthermore, most common computer vision methods

and a variety of visual features used in vSLAM are described.

Chapter 3 presents an improvement technique for the performance of

the vSLAM algorithm. In this technique, odometry and standard perspective

camera data are fused in an extended Kalman filter (EKF) to determine the

pose of the robot and build the map of the environment. Template matching

based video stabilization and Harris corner detector are integrated to increase

the consistency of the map building and the localization.

Chapter 4 proposes an imaging and classification framework for under

vehicles using object detection and the fast appearance based mapping (FAB-

MAP) algorithm where a catadioptric camera is utilized.
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Chapter 5 describes the simulation results obtained from the work pre-

sented in Chapter 3 and experimental results for Chapter 4.

Chapter 6 concludes the thesis and indicates possible future directions.

Contributions of the thesis can be summarized as follows:

• A performance improvement technique for vSLAM that extracts stabi-

lized Harris corner features using template matching based stabilized

video sequences is proposed. Stabilized feature extraction ensures both

consistency in map building and localization of the mobile robot.

• A new under vehicle perception system is developed for high level safety

measures using appearance based vSLAM.

• The perception system classifies means of transportations via FAB-

MAP algorithm and an object recognition algorithm is used to detect

hidden objects.

5



Chapter II

2 Background

An autonomous mobile robot equipped with sensors is being used to

achieve a variety of tasks in different environments that have randomly dis-

tributed landmarks. Throughout the processes control commands are being

sent to the actuators utilizing the kinematic model of the mobile robot. Dif-

ferent kinds of sensors acquire data in the environment and they should be

fused in sensor fusion algorithms. Approximations for the motion model of

the mobile robots, inaccurate control commands, noisy and biased sensor

readings make the realization of the tasks unreliable. Moreover, we want the

mobile robot achieve the tasks fully autonomously and navigate in the envi-

ronment in a reliable manner. Leonard and Durrant-Whyte [4] summarized

the general problem of mobile robot navigation by three questions:

• Where am I?

• Where am I going?

• How should I get there?

SLAM has been one of the main research topics to ensure autonomy and

reliable navigation in the mobile robotics. When a mobile robot navigates in

an environment, it is hard to compute the deterministic value of the robot



pose and landmark positions. We estimate their approximate values. Hence,

in this chapter we will firstly review the SLAM problem in a probabilistic

framework and then explain the required material for the rest of the thesis.

2.1 SLAM Techniques

2.1.1 Formulation of the SLAM Problem

SLAM is the process of building the map of an unknown environment and

determining the location of the robot using this map concurrently. In SLAM,

the position of the mobile robot and the location of the landmarks that are

used to represent the map are estimated without any a priori knowledge of lo-

cation [1]. Assume that a non-holonomic wheeled mobile robot is navigating

through an unknown environment and taking measurements from a number

of unknown landmarks with a sensor (laser range finder or sonar) as shown in

Figure 2.1. In robotics, a non-holonomic system has less controllable degrees

of freedom than the total degrees of freedom. At a given time instant k, the

following quantities are defined:

• xk: a state vector describes the pose of the mobile robot

• uk: a control vector, applied to the mobile robot at time k-1 to drive

the vehicle to the state xk at time k

• mi: a vector involves the position of the ith feature whose true location

is fixed.

• zik: an observation for the location of the ith feature at time k.

If X0:k is defined as the history of vehicle locations, U0:k is the history of

control inputs, m is the set of all landmarks and Z0:k is the set of all feature
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Figure 2.1: The SLAM problem [1]

observations, then SLAM problem can be formulated as a recursive Bayesian

estimation problem [1]:

P (xk,m | Z0:k,U0:k,x0) =
P (zk | xk,m)P (xk,m | Z0:k−1,U0:k,x0)

P (zk | Z0:k−1,U0:k)
(2.1)

Note that depending on the assumptions made about the probability density

functions, this formulation may imply the map building or localization prob-

lem and may lead to the different SLAM algorithms. For example, the map

building problem may be formulated as computing the conditional density:

P (m | X0:k,Z0:k,U0:k) (2.2)

This density function assumes that the pose of the mobile robot is known

up to and including time instant k. The map of the environment can be

8



calculated using the robot location data. Similarly, the localization problem

may be formulated as computing the conditional density:

P (xk | Z0:k,U0:k,m) (2.3)

This density function assumes that the map of the environment is known and

the pose of the mobile robot is estimated with respect to the built map.

SLAM problem can be adapted to the systems that use visual sensors to

take observations. Using the visual sensors, natural or artificial landmarks

are extracted, matched and tracked between consecutive video frames. A

captured image can be described as I(x, y, t) where (x, y) is the location of a

pixel which has an intensity value and t is the acquisition time [12]. Suppose

that there are displacements d=(ξ,η) and the time difference between two

consecutive frames τ is small. The relation between these two images is

expressed as the following equation [2]:

I(x, y, t+ τ) = I(x− ξ, y − η, t) (2.4)

In Eq. (2.4) the displacements are related to the movement of the visual sen-

sor. If the displacement of a visual feature is estimated, then the movement

of the visual sensor can be calculated. These visual features can be extracted

using Harris corner detector, Fast Corner detector, SIFT or SURF. Extracted

features can be further used for the tracking of feature point positions con-

tinuously [2] and permits the concept of vSLAM (Figure 2.2).

The visual sensors also provide range, bearing and elevation information

and can be fused with other kinds of sensors such as laser, sonar or inertial

sensors. In order to fuse visual sensors, output of other sensors are combined

9



Figure 2.2: The concept of vSLAM [2]

with visual sensor data in SLAM process as shown in Figure 2.3. Navigation

information (position, velocity, attitude etc.) and errors in sensors are esti-

mated by integrating information from visual and other sensors. Assuming

feature points are time invariant in the local coordinate frame, navigation

errors come from mainly sensor outputs. Thus, by compensating estimated

errors from sensor output, navigation data can be precisely calculated [2].

Figure 2.3: Sensor fusion in vSLAM [2]

10



2.1.2 Kalman Filter Based SLAM

Proposed solutions to the SLAM problem using Kalman filter (KF) approx-

imates the joint posterior in Eq. (2.1) in the form of a state space model

with additive Gaussian noise. For both observation and motion model ap-

propriate representations must be found. In [1] EKF based SLAM algorithm

is summarized.

The inception of the EKF-SLAM algorithm occured in 1986 and is due

to Smith and Cheeseman [13]. They proposed an estimation method for the

uncertainty of a frame relative to another and show how the reduction in

uncertainty due to sensing can be mapped into any frame. A mobile robot is

used to show the estimation of uncertainties in three degrees of freedom (x,

y, θ). A simple EKF is used in sensor fusion algorithm.

In the prominent paper of Smith, Self and Cheeseman [14] the landmark

based mapping is used for the representation of the environment and EKF

formulation of SLAM is described. The vehicle and landmark covariances

are approximated by Gaussian distributions. To improve the accuracy of the

map building process, a GUI is developed for a mobile robot in [15]. The

proposed method enables the operator of the mobile robot to compare the

built map using different sensors with the video camera frames. Laser range

finder is used for observation and EKF is used to improve the self-localization

of the mobile robot. In a separate work, CCD camera and sonar sensors are

fused in EKF [8] to enhance the reliability and precision of the environment

observations used for the SLAM. Hough transform is applied to the data

both acquired from sonar and vision sensors. Due to a multi-sensor system,

composed of laser range finder and monocular camera, weighted least square

fitting and Canny operator are used to extract two dimensional features and

11



vertical edges to be utilized in EKF-SLAM [16]. In the paper of Karlsson

et al. [16] they aim to handle dynamic changes in the environment such as

lighting changes, moving objects and/or people. In order to do so, vision and

odometry based vSLAM algorithm allows low cost navigation in cluttered

and populated environments. The sensor data is fused in EKF. Davison et

al. proposed a new EKF based monocular vSLAM algorithm [17] utilizing

computer vision techniques. The algorithm is real-time and uses a single

camera that can recover the 3D trajectory when moving rapidly through a

previously unknown scene.

As it is shown in the given applications of the EKF based SLAM algo-

rithm, it is being widely used. Consistent maps are constructed and robust

localization data are obtained. A variety of sensors are fused in EKF and suc-

cessful results are obtained. The reason why these successful results are ob-

tained is that it provides the optimal Minimum Mean-Square Error (MMSE)

estimates for the pose and feature states, and the covariance matrix converges

strongly [18].

On the other hand, in the applications that require the estimation of

large-scale maps, EKF is relatively slow, because every single measurement

generally affects all parameters of the Gaussian, therefore in the environments

that have many landmarks, the update process takes very long time, com-

putational complexity increases and consequently computer resources is not

sufficient to update the map in real-time. The Compressed Extended Kalman

Filter (CEKF) [5] decreases the computational load significantly without in-

fluencing the accuracy of the results. CEKF stores and maintains all of the

obtained data in a local area with a cost proportional to the square of feature

numbers in the environment. This data is transferred to the remaining part

12



of the global map with a cost similar to the SLAM [18].

Moreover, EKF linearizes all of the functions that the algorithm concerns

about their current estimate points. This approximation gives rise to the

errors, especially in the case of highly non linear functions. To prevent these

kind of flaws, the problem is addressed by Unscented Kalman filter (UKF).

UKF was first published in 1997 by Julier and Uhlmann [19]. In the UKF

the state distribution is again represented by a Gaussian Random Variable

(GRV), but is now specified using a minimal set of carefully chosen sample

points. These sample points completely capture the true mean and covari-

ance of the GRV, and when propagated through the true non-linear system,

captures the posterior mean and covariance precisely up to the 3rd order for

any nonlinearity. In order to do that, the unscented transform (UT) is used

[18]. By sampling a Gaussian distribution with a fixed number of so called

sigma-points, and passing these sigma-points through the desired nonlinear

function or transformation, the UT avoids linearisation by taking explicit

derivatives (Jacobians), which can be very hard in some cases. Once the

sigma-points are passed through the nonlinear function, mean and covari-

ance of the resulting transformed distribution can be retrieved from them.

The UT sampling is a deterministic sampling, in contrast to techniques like

particle filters, that sample randomly. This way, the number of samples can

be kept small, compared to particle filters: To sample an n-dimensional dis-

tribution, 2n+1 sigma-points are necessary. Further improvements on the

UT, like [20] reduce this number to n + 2 [21].
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2.1.3 Particle Filter Based SLAM

Rao-Blackwellized particle filter solution to the SLAM problem was intro-

duced first in [7] by Montemerlo et al. and it is also known as FastSLAM.

The algorithm utilizes the fact that estimated landmark positions are condi-

tionally independent from the trajectory of the mobile robot. FastSLAM di-

rectly represents the nonlinear process model and non-Gaussian distribution

unlike the EKF based algorithm which linearizes the process and measure-

ment models using first order Taylor series expansion. Application of particle

filter directly to the SLAM problem is not feasible if the state-space dimen-

sion is reasonably high. Utilizing Rao-Blackwellization (R-B) joint state is

partitioned according to the product rule P (x1,x2) = P (x2 | x1)P (x1) and

consequently sample space is reduced. Also P (x2 | x1) must be represented

analytically, and then only P (x1) is sampled such that x
(i)
1 ≈ P (x1). The

joint distribution is represented by the set (x
(i)
1 , P (x2 | x(i)

1 )Ni and marginal

statistics

P (x2) ≈ 1

N

N∑
i

P (x2 | x(i)
1 ) (2.5)

can be obtained with greater accuracy than is possible by sampling over the

joint space [1]. The joint SLAM state is shown as the multiplication of the

vehicle trajectory and map component:

P (X0:k,m | Z0:k,U0:k,x0) = P (m | X0:k,Z0:k)P (X0:k | Z0:k,U0:k,x0) (2.6)

In Eq. (2.6) the probability distribution involves all of the states of the ve-

hicles up and including time instant k because of the fact conditioning on
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the trajectory makes the map landmarks independent and this is the dis-

tinctive feature of FastSLAM and the reason for its speed [1]. The map

is represented as a set of independent Gaussians which can be processed

with linear rather than quadratic complexity [1]. In this form FastSLAM

is principally a Rao-Blackwellised state, where the trajectory is indicated

by weighted samples and the map is calculated analytically. Likewise, a set

of particle weights, trajectory hypotheses and associated map hypotheses

(w
(i)
k ,X

(i)
0:k, P (m | X(i)

0:k,Z0:k))
N
i are used to represent the joint distribution at

time k. The maps are composed of a set of independent Gaussian distribu-

tions:

P (m | X(i)
0:k,Z0:k) =

M∏
j

P (mj | X(i)
0:k,Z0:k) (2.7)

Pose estimation of the mobile robot is carried out via particle filtering

and the map of the environment is built using EKF. Interested readers may

refer to [1] for more information.

2.1.4 Appearance Based SLAM

Filter based solutions proposed for large-scale SLAM problems are incapable

for handling challenging phenomena such as loop closure and data associa-

tion. Appearance based localization and mapping techniques have recently

received significant attention and have been developed to utilize the rich

appearance information acquired by visual sensors. They do not rely on

position priors and are a useful approach to loop closure detection, since ap-

pearance based techniques can perform a global search through previously

seen locations [22]. Environment is modeled exploiting well known SIFT
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or SURF features, Discrete Cosine Transform (DCT), multidimensional his-

tograms and Fourier Transforms. Extracted features in all of the models are

matched via L1 (Manhattan Distance) or L2 (Euclidian Distance) [23].

Cummins and Newman proposed the Fast Appearance Based Mapping

(FAB-MAP) method to map the large scale environments and to detect loop

closures [24]. They extracted SURF visual features in the large areas and

utilized the bag-of-words approach to generate a vocabulary. Chow-Liu tree

is used to calculate the co-occurence statistics of the visual words that are in

the vocabulary. To represent the co-occurence statistics a mutual information

graph is constructed. The nodes describe a visual word and the links between

nodes indicate weight (mutual information) in the graph. Confusion matrix

is used to indicate the loop closure detections. The elements of the matrix

show that a visited place is either a new location or detection of a loop

closure. For very large scale navigation Cummins and Newman propose

the second version of FAB-MAP which is a new formulation of appearance

only SLAM [25]. The proposed system is highly scalable. The scalability

of the system is achieved by defining a sparse approximation to the FAB-

MAP model suitable for implementation using an inverted index. Lui and

Jarvis presented a pure vision based topologic SLAM technique that uses

appearance based place recognition system [9]. They use a mobile robot

which estimates its motion via visual odometry and recognise places while

performing concurrent localization and mapping.

2.1.5 Map Representation

Constructed maps are represented in different ways depending on the task

that a mobile robot performs. Particularly there are four different kinds of
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map representation:

Metric Map

In metric map representation, special features extracted from the environ-

ment using various sensors such as laser, sonar, inertial or visual are used.

These are the features such as lines, corners, curves or planes that have

geometrical representations. Metric map representation is used frequently

in filter based SLAM algorithms and provides direct information about free

collision trajectories for the navigation of a mobile robot [23].

Topologic Map In the environments where metric map representation

cannot be used efficiently, topologic map representation is utilized. Topo-

logic map is extremely suitable for the appearance based SLAM algorithms

that are improved for large scale environments. It accelerates the naviga-

tion process of a mobile robot providing decrease in the computer memory

consumption. Graph structures are used in topologic map representation.

All nodes indicate the appearance data of the locations and links between

nodes represent traversable paths between locations. There is no geometric

relationship in the topologic map. Cummins and Newmans work in [24] is a

good example to show the efficiency of the topologic map.

Hybrid Map This kind of representation incorporates the high perfor-

mances of the metric and topologic maps. Topologic maps represent large

scale environments in a compact form. Metric maps deal with the uncer-

tainties of the pose and landmark states. Metric map indicates the spatial

relationship between the topologic maps elements.

Occupancy Grid Occupancy Grid Mapping addresses the map gener-

ation problem from uncertain and noisy measurement data. This mapping

assumes that the pose of the mobile robot is known. In occupancy grid the
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map of the environment is represented as an evenly spaced field of binary

random variables. The random variables show the presence of an obstacle at

that location in the environment.

2.2 Feature Extraction and Matching

Passive vision based sensors are used to extract, match and track the visual

features that are artificial or natural in the environment. Also 3D location

of the features and the pose of the mobile robot are estimated utilizing com-

puter vision techniques. Because of the fact that we assume the visual sensor

is attached to the body of a mobile robot, computing the pose of the camera

will give rise the calculation of the robot pose. Hence, the goal is to track

some keypoints precisely. In this subsection, we present how the extraction

of features is performed and how the keypoints are matched, in order to

compute a rigid transformation between a couple of frames. To find a set

of corresponding locations in different images, generally between two con-

secutive images, point features such as Harris corners, SIFT or SURF can

be used. There are two main approaches to find feature points and their

correspondences [26]. In the first approach, features are found in a single

image and then tracked accurately using a local search technique such as

correlation or least squares. This method is suitable when images are taken

rapidly or from nearby viewpoints. The second approach detects the features

in all frames of a video sequence and then match them based on their local

appearance and it is more suitable when a large amount of motion is applied.
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2.2.1 Feature Detectors

Tracking and matching the visual features in an accurate way depends on

the quality of the extracted features. To show the reliability of the extracted

features three sample patches are shown in Fig. 2.4. A textureless patch is

indistinguishable and cannot be recognized easily. To localize a patch easily

it should have large contrast changes (gradients), but straight line segments

at a single orientation suffer from the aperture problem [27], [28], [29], i.e., it

is only possible to align the patches along the direction normal to the edge

direction. Patches that have gradients at least two different orientations are

the easiest to localize.

Figure 2.4: Different Orientations
[26]

In a comparison of two different image patches, sum of squared difference

estimator can be used to formalize the intuition which is underlying feature

detection [26],

EWSDD(u) =
∑
i

w(xi)[I1(xi + u)− I0(xi)]
2 (2.8)

where I0 and I1 are the two images being compared, u = (u, v) is the dis-

placement vector, w(x) is a spatially varying weighting function, and the

summation i is over all the pixels in the patch. When performing feature
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detection, we do not know which other image locations the feature will end

up being matched against. Therefore, we can only compute how stable this

metric is with respect to small variations in position 4u by comparing an

image patch against itself, which is known as an auto-correlation function:

EAC(4u) =
∑
i

w(xi)[I0(xi +4u)− I0(xi)]
2 (2.9)

Figure 2.5: Three auto-correlation surfaces
[26]

Note how the auto-correlation surface for the textured flower bed (Fig-

ure 2.5 b) and the red cross in the lower right quadrant of (Figure 2.5 a)

exhibits a strong minimum, indicating that it can be well localized. The
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correlation surface corresponding to the roof edge (Figure 2.5 c) has a strong

ambiguity along one direction, while the correlation surface corresponding to

the cloud region (Figure 2.5 d) has no stable minimum.

Using a Taylor Series expansion of the image function I0(xi + 4u) ≈

I0(xi) +∇I0(xi)4u we can approximate the auto-correlation surface as,

EAC(4u) =
∑
i

w(xi)[I0(xi +4u)− I0(xi)]
2 (2.10)

≈
∑
i

w(xi)[I0(xi) +∇I0(xi)4u− I0(xi)]
2 (2.11)

=
∑
i

w(xi)[∇I0(xi)4u]2 (2.12)

= 4uTA4u (2.13)

(2.14)

where

∇I0(xi) = (
∂I0

∂x
,
∂I0

∂y
)(xi) (2.15)

is the image gradient at xi. This gradient can be computed using a variety

of techniques [30]. The classic Harris detector [31] uses a [-2 -1 0 1 2] filter,

but more modern variants [30], [32] convolve the image with horizontal and

vertical derivatives of a Gaussian.

The auto-correlation matrix A can be written:

A = w ∗

 I2
x IxIy

IxIy I2
y

 (2.16)

where we have replaced the weighted summations with discrete convolutions
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with the weighting kernel w. This matrix can be interpreted as a tensor

(multiband) image, where the outer products of the gradients ∇I are con-

volved with a weighting function w to provide a per-pixel estimate of the

local (quadratic) shape of the auto-correlation function.

As first shown by [33], the inverse of the matrix A provides a lower

bound on the uncertainty in the location of a matching patch. It is therefore

a useful indicator of which patches can be reliably matched. The easiest way

to visualize and reason about this uncertainty is to perform an eigenvalue

analysis of the auto-correlation matrix A, which produces two eigenvalues

(λ0 , λ1) and two eigenvector directions. Since the larger uncertainty depends

on the smaller eigenvalue, i.e., λ
−1/2
0 , it makes sense to find maxima in the

smaller eigenvalue to locate good features to track [34].

Harris Corners: Harris corner point detector was proposed in 1988 by

Harris and Stephens [31]. Harris also showed its value for efficient motion

tracking and 3D structure from motion recovery, and the Harris corner de-

tector has been widely used for many other image matching tasks. Despite

the fact that these feature detectors are usually called corner detectors, they

are not selecting just corners, but rather any image location that has large

gradients in all directions at a predetermined scale [35]. The formulation of

the scale is proposed by Harris in the following form,

R = det(A)− αtrace(A) (2.17)

= λ0λ1 − α(λ0 + λ1)2 (2.18)

The windows that have a score R greater than a certain value are extracted

as corners. They are good tracking points.
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Scale Invariant Feature Transform: The Scale Invariant Feature

Transform (SIFT) is a method developed by David Lowe [35] and intensely

used in vision and robotics applications. SIFT method extracts features from

images that are invariant to scale, rotation, illumination and viewpoint and

allows to perform tasks such as object detection and recognition, comput-

ing geometrical transformations between images. It has 4 major stages to

generate the set of image features:

1) Scale-space extrema detection: This process searches over all

scales and image locations. In this stage a difference-of-Gaussian function is

implemented to identify potential interest points that are invariant to scale

and orientation. When a mobile robot moves in an environment, the fea-

tures are seen both larger and smaller regarding the vantage point of the

visual sensor mounted to the vehicle. For the vSLAM problem providing

the scale invariance condition for the extracted features ensures consistent

map building and localization for a mobile robot. Hence, it is a fundamental

requirement. The theory of the scale space is based on Lindeberg’ s work in

[36] and the main idea is shown in (Figure 2.6). The scale space is defined

as the convolution of an image I with a Gaussian G,

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.19)

where

G(x, y, σ) =
1

2πσ2
e−

(x2+y2)

2σ2 (2.20)
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Figure 2.6: Difference of Gaussians at different scales
[35]

The DoG is the difference between two layers in scale space along the σ axis:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (2.21)

= L(x, y, kσ)− L(x, y, σ) (2.22)

This provides a close approximation to the scale-normalized Laplacian of

Gaussian σ2∇2G, as shown by Lindeberg [36]:

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ)−G(x, y, σ)

kσ − σ
(2.23)

and thus,

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∇2G (2.24)

The σ2 defines the invariance for the scale. At the end of the stage the
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keypoint candidates are found via extrema in DoG that approximates the

Laplacian σ2∇2G, however this process finds the unstable keypoints that

have low contrast and are poorly localized along edges. So, these unstable

keypoints must be rejected.

2) Keypoint localization: To reject the keypoints that have low con-

trast and sensitive to noise or localized poorly along an edge, a detailed fit

is required to the data around the keypoint for location, scale, and ratio of

principal curvatures. This process is achieved by the method which Brown

developed. In this method, a 3D quadratic function is fitted to the local sam-

ple points to determine the interpolated location of the maximum which uses

the Taylor expansion up to the quadratic terms of the scale-space function

D(x, y, σ):

D(x) = D +
∂DT

∂x
x +

1

2
xT
∂2D

∂x2
x (2.25)

where D and its derivatives are evaluated at the sample point and x =

(x, y, σ)T is the offset from this point. The location of the extremum, x̄, is

determined by taking the derivative of this function with respect to x and

setting it to zero, giving

x̄ = −∂
2D

∂x2

(−1)
∂D

∂x
(2.26)

The function value at the extremum, D(x̄), is useful for rejecting unstable

extrema with low contrast. This can be obtained:

D(x̄) = D +
1

2

∂DT

∂x
x̄ (2.27)
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Assigning a threshold value to |D(x̄)| results in the feature points extraction

that are stable. From the point of keypoints poorly located along an edge,

principal curvatures are computed using a Hessian matrix at the location

and scale of the keypoints:

H =

Dxx Dxy

Dxy Dyy

 (2.28)

The reason why principal curvature are being calculated is that the difference-

of-Gaussian function has a strong response along edges, even if the location

along the edge is poorly determined and therefore unstable to small amounts

of noise. A poorly defined peak in the difference-of-Gaussian function will

have a large principal curvature across the edge but a small one in the per-

pendicular direction [35]. The principal curvatures of D are proportional to

the eigenvalues of H. Herein, to check the ratio of principal curvatures, the

following ratio value is used:

Tr(H)2

Det(H)
<

(r + 1)2

r
(2.29)

where r is the ratio of largest and smaller eigenvalues of H.

Thus far, we determined stable keypoint candidates. In the next step we

assign an orientation to these keypoints which will be used to define keypoint

descriptors.

3) Orientation assignment: The magnitude and orientation is calcu-

lated for all pixels around the keypoint.
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m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

(2.30)

θ(x, y) = tan−1(
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
) (2.31)

An orientation histogram is formed from the gradient orientations. Each

sample added to the histogram is weighted by its gradient magnitude and

by a Gaussian weighted circular window. Peaks in the orientation histogram

correspond to dominant directions of local gradients [35].

4) Keypoint descriptor: A keypoint descriptor is created by first com-

puting the gradient magnitude and orientation at each image sample point

in a region around the keypoint location, as shown on the leftmost of Fig-

ure 2.7. These are weighted by a Gaussian window. This figure shows a 2x2

descriptor array computed from an 8x8 set of samples.

Figure 2.7: Image gradients and keypoint descriptor
[35]

Speeded Up Robust Feature: The Speeded Up Robust Feature (SURF)

is a robust detector and descriptor that is presented by Bay in [37]. This is
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a method to extract feature points, that readily can be matched between

images to detect and recognize, to compute geometrical transformations be-

tween images and to use in structure from motion method. The main dif-

ference from SIFT features is the performance, providing low computational

complexity through an efficient use of integral images for the image convo-

lutions, Hessian matrix-based detector and sums of approximated 2D Haar

wavelet responses for the descriptor. The standard version of SURF is nearly

4 times faster than SIFT.

2.2.2 Feature Matching

Once we have extracted features and their descriptors from two or more im-

ages, the next step is to find matched features between images. In order to

do so, we assume that there is enough overlapped area that have the same

features between two images. To find potential matches we calculate the Eu-

clidean distance between the feature descriptors through a nearest neighbour

search. Given a Euclidean distance metric, the simplest matching strategy

is to set a threshold (maximum distance) and to return all matches from

other images within this threshold. Setting the threshold too high results

in too many false positives, i.e., incorrect matches being returned. Setting

the threshold too low results in too many false negatives, i.e., too many

correct matches being missed. This matching method is widely used when

images are taken from nearby viewpoints or in rapid succession. When a

large amount of motion or appearance change is expected detect then track

method is much more suitable for matching. In this matching method a set

of feature locations are found in the first image and then searched for their

corresponding locations in subsequent images. In the latter process good
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visual features must be selected to track. Regions containing high gradients

in both directions provide stable locations at which to find correspondences.

However, if the illumination change is large in the images, explicitly com-

pensating for such variations or using normalized cross-correlation may be

preferable. If the search range is large, it is also often more efficient to use a

hierarchical search strategy, which uses matches in lower-resolution images to

provide better initial guesses and hence speed up the search. Alternatives to

this strategy involve learning what the appearance of the patch being tracked

should be and then searching for it in the vicinity of its predicted position

[26].

Over longer image sequences, the appearance of the features being tracked

can undergo larger changes. An affine motion model is proposed as a feasible

solution that compares the original patch to later image locations. Shi and

Tomasi (1994) first compare patches in neighbouring frames using a trans-

lational model and then use the location estimates produced by this step to

initialize an affine registration between the patch in the current frame and

the base frame where a feature was first detected. In their system, features

are only detected infrequently, i.e., only in regions where tracking has failed.

In the usual case, an area around the current predicted location of the feature

is searched with an incremental registration algorithm. This tracking process

is called the Kanade Lucas Tomasi (KLT) tracker [26].
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Chapter III

3 Performance Improvement in vSLAM Us-

ing Stabilized Feature Points

In this chapter, we propose a performance improvement technique for

vSLAM that extracts stabilized Harris corner features using template match-

ing based stabilized video sequences. When a non-holonomic wheeled mo-

bile robot (WMR) navigates in an unknown environment, some undesired

phenomena such as vibrations on the mobile robot and the speed bump con-

structions in the environment might occur. With the proposed technique,

these problems are eliminated, and as a result stabilized feature extraction

is achieved. Stabilized keypoint extraction ensures both consistency in map

building and localization of the mobile robot.

3.1 Sensor Fusion Architecture

The sensor fusion architecture developed in this work is shown in Figure 3.1

and composed of several modules. Data generated by both the camera and

the odometry are used in feature extraction (FE) and dead reckoning (DR)

blocks, respectively. The output of FE is the observation, and the output of

DR is the robot state prediction. In measurement prediction block, predicted

states obtained from the robot model are used and the sensor measurement



model is utilized to predict the measurements. In matching module, measure-

ment predictions are subtracted from observations to calculate the innovation

and innovation covariance. The output of the matching block is transferred

to EKF update block to estimate the non-holonomic WMR states and build

the map.

Figure 3.1: Sensor fusion architecture

3.2 Mathematical Model of the Mobile Robot

The non-holonomic WMR shown in Figure 3.2 includes two driving wheels

and a back caster that are non deforming. The robot moves on the horizontal

plane and the contact of the wheels with the ground is assumed to satisfy

rolling without any skidding or slipping.
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3.2.1 Kinematic Model

In the kinematic modelling of the non-holonomic WMR, orientation must

be considered since it affects the robot movement along x and y directions

based on the kinematic constraints of the system.

Figure 3.2: Non-holonomic wheeled mobile robot

The kinematic model of the NWMR is described by the following equa-

tions [38]:

ẋ = vcos(θ) (3.1)

ẏ = vsin(θ) (3.2)

θ̇ = w (3.3)

or, can be written in a more compact form as

ẋ = f(x,u) (3.4)

where x = [x, y, θ]T is the pose (position and orientation) of the centre of
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mass of the mobile robot C, with respect to world coordinate frame O, u =

[v, w]T is the control input vector, where v is the linear velocity and w is

the angular velocity of the mobile robot, respectively. Using Eulers forward

difference approximation for the derivative, the discrete form of the mobile

robot kinematic model can be written as:

xk+1 = xk + Tvcos(θk) (3.5)

yk+1 = yk + Tvsin(θk) (3.6)

θk+1 = θk + wT (3.7)

or in a more compact form as

xk+1 = f(xk,uk) (3.8)

f(xk,uk) =


fx

fy

fθ

 =


xk + Tvcos(θk)

yk + Tvsin(θk)

θk + wT

 (3.9)

where k is the discrete time index, T is the sampling period and f(xk,uk)

is a nonlinear mapping [39]. In order to implement EKF, this nonlinear

system must be linearized. In [40], it is shown that applying the Taylor series

approximation to the right-hand side of Eq. (3.4) and ignoring the higher

order terms yields the following linear state-space model of the mobile robot:

x(k + 1) = A(k)x(k) +B(k)u(k) (3.10)
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The state A(k) and input B(k) matrices are defined as follows:

A(k) =


∂fx
∂xk

∂fx
∂yk

∂fx
∂θk

∂fy
∂xk

∂fy
∂yk

∂fy
∂θk

∂fθ
∂xk

∂fθ
∂yk

∂fθ
∂θk

 =


1 0 −Tvksin(θk)

0 1 Tvkcos(θk)

0 0 T

 (3.11)

B(k) =


∂fx
∂uk

∂fx
∂wk

∂fy
∂uk

∂fy
∂wk

∂fθ
∂uk

∂fθ
∂wk

 =


Tcos(θk) 0

Tsin(θk) 0

0 T

 (3.12)

3.2.2 Camera Sensor Model

Ideal pin hole camera model is used as a measurement model. Acquired

measurements from the camera generate the measurement vector y,

y = [y1k, y2k, ..., ypk]
T (3.13)

where p is the number of the features observed at a particular time index k.

At the same time, all the observed image features build up the map of the

environment. At any time k, for one observed image feature camera model

implies: mix

miy

 =

Ox + fc
scix
sciz

Oy + fc
sciy
sciz

 for i= 1, 2, 3, ..., p (3.14)

where fc is the focal length of the camera, (Ox, Oy) is the principal point

of the image plane in pixels, sc = [scix, s
c
iy, s

c
iz]
T is the 3D location of the

extracted feature with respect to the camera frame. 3D location of the ith
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feature with respect to the world coordinate frame is given as [41]:

qi = [Xi, Yi, Zi]
T = r +RW

C s
c
i (3.15)

where qi is the 3D location of the image feature in world frame, RW
C is the

rotation matrix that defines the orientation of the camera frame with respect

to the world frame, r is the 3D translation vector from world frame to cam-

era frame. A rotation matrix can be parameterized by three independent

variables such as Euler angles. Due to the planar robot motion assumption,

the orientation matrix will be just in terms of the yaw angle [42]:

RW
C =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (3.16)

In Eq. (3.16), θ (heading angle) is taken from the estimated states of the

EKF that will be summarized in the next section. By rearranging Eq. 3.15,

one can calculate the sci as:

sci = RC
W (qi − r) (3.17)

where RC
W is simply the transpose of the rotation matrix RW

C . Plugging Eq.

(3.17) into the measurement model yields the extracted feature location in

image plane: mix

miy

 =

Ox + fc
cos(θ)(Xi−rx)+sin(θ)(Yi−ry))

Zi−rz

Oy + fc
−sin(θ)(Xi−rx)+cos(θ)(Yi−ry)

Zi−rz

 (3.18)
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The measurement Jacobian Hk is calculated by taking the derivative of the

right hand side of the Eq. (3.18) with respect to the states of the mobile

robot xk . Thus,

H(k) =

∂mix
∂rx

∂mix
∂ry

∂mix
∂θ

∂mix
∂Xi

∂mix
∂Yi

∂miy
∂rx

∂miy
∂ry

∂miy
∂θ

∂miy
∂Xi

∂miy
∂Yi

 (3.19)

H(k) =
fc

Zi − rz

−cos(θ) −sin(θ) −sin(θ)(Xi − rx) + cos(θ)(Yi − ry) cos(θ) sin(θ)

sin(θ) −cos(θ) −cos(θ)(Xi − rx)− sin(θ)(Yi − ry) −sin(θ) cos(θ)


(3.20)

Observation and measurement prediction data are fused in EKF to cal-

culate the innovation and innovation covariance.

3.3 Extended Kalman Filter

The mobile robot navigates in an unknown environment, without any a pri-

ori knowledge about the map, takes measurements to extract feature points

and consequently localizes itself. External (camera) and internal (odometry)

sensory data will be fused in EKF. The robot pose x and the locations of the

extracted feature points XF with respect to the world frame can be stacked

in a new state vector as:

X =

 x

XF

 (3.21)
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where x = [x, y, θ]T defines position and orientation of the robot, and is

governed by the following nonlinear model:

xk+1 = f(xk,uk+1, ηk) (3.22)

yk+1 = h(Xk+1, ξk) (3.23)

where ηk and ξk are the process and the measurement noise, which are mod-

eled as zero-mean, independent Gaussian distributions with covariance ma-

trices Fk and Gk, respectively.

The second element of X is defined as:

XF =

Xfi

Yfi

 for i= 1, 2, ..., n (3.24)

where XF = [Xfi, Yfi]
T are the locations of the extracted features with re-

spect to the world frame and added to the map at time k. Since the positions

of the extracted features are not changed, they remain at the same locations

during the navigation i.e.;

XF,k+1 =

Xfi

Yfi


k+1

= XF,k (3.25)
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Linearisation of Eqs. (3.22) and (3.25) with respect to X imply new Jaco-

bians for the process model [38]:

Ā =

 A O1

OT
1 I

 , B̄ =

B
O2

 (3.26)

H̄ =

 ∂mix
∂(rx,ry ,θ,Xfi,Yfii=1,2,...,n

)

∂miy
∂(rx,ry ,θ,Xfi,Yfii=1,2,...,n

)

 (3.27)

where A ∈ R(3×3), O1 ∈ R(3×2n) (zero matrix), I ∈ R(2n×2n) (identity matrix),

B ∈ R(3×2) and O2 ∈ R(2n×2) (zero matrix) with n being the number of

features extracted at time k. With this framework, the following algorithm

summarizes the recursions involved in computing the EKF [43]:

Xk+1|k = f(Xk,uk+1) (3.28)

Pk+1|k = Āk+1,kPkĀ
T
k+1,k + F̄k (3.29)

Kk+1 = Pk+1|kH̄
T
k+1[H̄k+1Pk+1|kH̄

T
k+1|k +Gk]

−1 (3.30)

Xk+1 = Xk+1|k +Kk+1(yk+1 − h(Xk+1|k)) (3.31)

Pk+1 = (I −Kk+1H̄k+1)Pk+1|k (3.32)

where F̄k is the covariance matrix of the combined state X. To initialize the

filter, X0 and P0 are set to some arbitrary random values.

3.4 Stabilized Feature Point Extraction

Extracting feature points accurately increases the performance of vSLAM

algorithm since they are used in EKF measurement update. It provides
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improvement in both map building and localization of the mobile robot.

Video stabilization is one of the most crucial video processes that reduces

the blurring level of image sequences and unwanted camera motions. Ex-

tracting point features from stabilized video frames improves the consistency

of the static landmarks and provides robust matching between corresponding

points. Proposed video stabilization method in this work is based on a tem-

plate matching that uses the sum of absolute differences (SAD) algorithm:

SAD =
∑

(i,j)∈W

|I1(i, j)− I2(x+ i, y + j)| (3.33)

where I1 and I2 are two consecutive image frames. I1(i, j) and I2(x+ i, y+ j)

defines the pixel intensity values. In I1, a window W , e.g. size of (15 x 15),

is generated around an interest point. Meanwhile, each pixel in the second

video frame is scanned by shifting this window along horizontal (x) and

vertical (y) directions. Note that the intensity values in the second window

is subtracted from those values in the first window. The absolute values of

all these pixel intensities in W are summed. If there is a correct match, the

SAD function gives a near 0 value. Thus, a similar window is created in the

second video frame [44]. Scan process can be applied both over the entire

image or just using a region of interest. In each subsequent video frame, SAD

algorithm determines the camera motion relative to the previous frame. It

uses this information to remove unwanted translational camera motions and

generate a stabilized video.

Feature extraction from consecutive images is one of the essential steps

of vSLAM applications. In this work, extracted image features are corners

that are obtained via Harris corner detector. Some example images and
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extracted Harris corner features are shown in Figure 3.3. A video sequence

is deliberately subject to jitter and noise in Figure 3.3 (a) and extracted

Harris corner features from this image are shown in Figure 3.3 (b). It is then

stabilized using the proposed technique and the resultant image is depicted

in Figure 3.3 (c). Extracted features are shown in Figure 3.3 (d) where there

is an increase in the number of consistent features due to video stabilization.

(a) (b)

(c) (d)

Figure 3.3: Stabilized feature point extraction: (a) a sample image before
video stabilization, (b) extracted Harris corner features before video

stabilization, (c) a sample image after video stabilization, (d) extracted
Harris corner features after video stabilization
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Chapter IV

4 Under Vehicle Perception Using a Cata-

dioptric Camera System

In recent years, under vehicle surveillance and the classification of the

vehicles become an indispensable task that must be achieved for security

measures in certain areas such as shopping centers, government buildings,

army camps etc. The main challenge to achieve this task is to monitor the

under frames of the means of transportations. In this chapter, we present a

novel solution to achieve this aim. Our solution consists of three main parts:

monitoring, detection and classification. In the first part we design a new

catadioptric camera system in which the perspective camera points down-

wards to the catadioptric mirror mounted to the body of a mobile robot.

Thanks to the catadioptric mirror the scenes against the camera optical axis

direction can be viewed. In the second part we use speeded up robust features

(SURF) in an object recognition algorithm. Fast appearance based map-

ping algorithm (FAB-MAP) is exploited for the classification of the means

of transportations in the third part.

Since the conventional camera systems have limited field of view, real-

ization of above task becomes infeasible. In such a scenario, conventional

systems require many cameras that give rise to high computational cost.

Moreover, displaying the under frames of the vehicles by typical perspective



cameras that have different orientations or a single rotating camera requires

wide installation space and extensive calibration. On the other hand, because

of the fact that catadioptric camera systems are able to capture omnidirec-

tional images of the environments, i.e. providing 360 degree field of view,

one can monitor the under frames of the vehicles, detect the undercovered

materials and classify the vehicles just using a single catadioptric camera.

This unique feature of the catadioptric cameras eliminates disadvantages of

perspective cameras. Moreover, increase in the number of extracted features

from panoramic images maintains stability for object detection and classifi-

cation.

A catadioptric camera system consists of a convex mirror such as a

parabolic, a spherical, an elliptical or a hyperbolic mirror and a single con-

ventional perspective camera. They are also called as omnidirectional vision

systems and have been studied extensively in [45, 46]. Catadioptric cam-

era systems can be categorized into central and noncentral catadioptric sys-

tems. In a central catadioptric camera system convex mirror is aligned with

a central camera where it has a single projection center. For more details,

interested readers may refer to [47, 48]. Nevertheless, in practice, the real

catadioptric cameras have to be treated as noncentral cameras since they

have multiple effective viewpoints. Misalignment between the perspective

lens and convex mirror, structural imperfection in the convex mirror types,

inexact positioning of the perspective camera in one of the focal points of

the convex mirror should cause the noncentrality [49]. Regarding the uti-

lization of the multiple catadioptric cameras, different omnidirectional vision

systems are designed for different tasks. Schönbein et al. propose two dif-

ferent catadioptric stereo camera systems in [50] that are the combination of

42



the catadioptric-perspective and catadioptric-catadioptric systems mounted

on a car. In [51] Lui and Jarvis present vertically aligned stereo catadioptric

system that has a variable vertical baseline. Gandhi and Trivedi design an

omnidirectional stereo system for visualizing the nearby environment of a ve-

hicle [52]. Schnbein et al. combine three catadioptric cameras and align them

horizontally in [53] to increase the robustness of the ego motion estimation

and localization by 3D features all around the autonomous vehicles.

From the point of under vehicle surveillance, various monitoring systems

are proposed. In [54] a vehicle inspection system is proposed that uses an

image mosaic generation technique for different perspective views. A mobile

robot equipped with a 3D range sensor to inspect the under frames of the

vehicles is offered by Sukumar et al. [55]. A combination of the vehicle

recognition and the inspection system is proposed in [56] to improve safety

precautions. In [57] an automatic under vehicle inspection system is utilized

to monitor the under frames of the vehicles. Regarding the under vehicle

surveillance in most of the proposed solutions, different computer vision and

image processing algorithms are utilized with perspective cameras.

In this study we propose a new catadioptric camera system that consists

of a perspective camera pointing downwards to the convex mirror mounted

to the body of a mobile robot to monitor the under frames of the vehicles.

We show how to solve one of the most common safety measure problems in

structures where extra safety precautions must be taken by displaying un-

der frames of the vehicles that cannot be dealt with conventional perspective

cameras easily. While mobile robot navigates under the means of transporta-

tions, it starts to detect the hidden materials attached to the under vehicles

and classify the vehicles utilizing the fast appearance based mapping (FAB-
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MAP) algorithm [24]. If the robot detects a peculiar material such as a bomb

it warns the detection of the material by drawing a line between the object

image in the database and the object that is seen in the video frame.

4.1 Catadioptric Camera System

4.1.1 Catadioptric Camera Model

In the design of the catadioptric camera systems one important property that

must be considered is determining the shapes of the mirrors in such a way

that the single effective viewpoint condition is ensured. The reason why a

single effective viewpoint is desirable is that it allows the derivation of the

epipolar geometry of two omnidirectional images and it is a requirement for

the generation of pure perspective images from the sensed images. Regarding

our omnidirectional vision system, we used hyperbolic convex mirrors and the

projection model that Mei et al. propose in [58]. In the following steps we

summarize the imaging model (Figure 4.1):

1) The projective ray x coming from X intersects the unit spherical sur-

face in M,

(M)0 =
X

‖ X ‖
= (

X

‖ X ‖
,

Y

‖ X ‖
,

Z

‖ X ‖
)T (4.1)

where ‖ X ‖=
√
X2 + Y 2 + Z2.

2) Once the world points are projected onto the unit sphere, the points

are changed to a new reference frame centered in Oc = (0, 0,−ξ),

(M)0c = (
X

‖ X ‖
,

Y

‖ X ‖
,

Z

‖ X ‖
+ ξ)T (4.2)
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where ξ mirror parameter is the distance between Oc and sphere center O.

3) These points are projected onto the normalized image plane Z = ψ−2ξ.

The intersection of the projective ray y with the plane is the catadioptric

image of the 3D point X,

xi = (
X

Z + ξ ‖ X ‖
,− Y

Z + ξ ‖ X ‖
, 1)T = fi(X) (4.3)

4) The final projection matrix includes a camera projection matrix K

with γ the generalized focal length, (u0, v0) the principal point, s the skew

and r the aspect ratio [15].

p = k(xi) =


γ γs u0

0 γr v0

0 0 1

xi = Kxi (4.4)

Figure 4.1: Modelling central catadioptric image formation
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4.1.2 Catadioptric Camera System

The catadioptric camera system proposed in this paper is a combination of

a hyperbolic mirror and a perspective camera. The hyperbolic mirror is at-

tached to a plexiglass plate and it is passed through a four sided transparent

plexiglass tube in such a way that the mirror is settled down in the base.

Top side of the tube is covered with a hole centered transparent plate that

the camera lens is able to point down to the hyperbolic mirror. Some exam-

ple photos taken using the catadioptric system are depicted in Figure 4.2.

Since the perspective camera points downwards we can see the ceiling of the

laboratory in these images. Once we designed this system, we mounted it

to the body of a non-holonomic mobile robot. The main advantage of such

a system is to monitor the vehicle under frames that cannot be achieved

easily using conventional camera systems. Other benefits obtained from this

system can be listed as: It increases the field of view and as a result not

only the frontal direction but also the right, left and back sides of the mobile

robot are displayed. The number of extracted features from single catadiop-

tric image is higher than a perspective image and so matching between two

consecutive images taken from catadioptric cameras gives rise to much more

consistent results in terms of object recognition and classification, localiza-

tion and mapping. In this study we use just a single catadioptric camera

for object recognition and vehicle classification that is able to monitor upper

side of the camera mounting area. One can also design a catadioptric stereo

system to utilize for 3D reconstruction, visual simultaneous localization and

mapping, structure from motion and pose estimation etc.
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Figure 4.2: Catadioptric images

4.2 Object Recognition

In a typical object recognition system, extracted features from a test object

are matched against the features of the object model database to deter-

mine the identity of an object as shown in Figure 4.3. There are two main

approaches in object recognition: model-based recognition and appearance-

based recognition. In model-based recognition problem, an object model

is being used and it is subjected to geometric transformation that maps

the model in 3D world into the camera sensor coordinate frame. In such a

recognition approach, efficient algorithms for estimating geometric transfor-

mations are central to many model-based recognition systems. In contrast,

an appearance-based approach does not require any prior knowledge of an

object. The latter approach is suitable for the algorithms such as simulta-

neous localization and mapping which deals with unknown environments [59].

Figure 4.3: Object recognition

Several approaches are proposed for appearance based object recognition.
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Santos et al. present the support vector machine (SVM) learning technique

as an option to perform appearance-based object recognition [60]. Itti et al.

propose the saliency based region selection strategy that extracts multi-scale

image features to find salient objects in a cluttered natural scene [61]. Lowes

Scale Invariant Feature Transform (SIFT) features [35] provide invariance to

change in rotation, scale and viewpoint and are successfully used in object

recognition.

4.2.1 Speeded Up Robust Feature (SURF) Extraction and Match-

ing

SURF features are proposed in [37] and they are exploited in various object

recognition algorithms. SURF descriptor represents a distribution of Haar

wavelet responses within interest point neighbourhood. It is based on the

Hessian matrix and relies on integral images to reduce the computation time.

In [37] three different versions of the descriptors have been examined and

compared with the SIFT descriptor: the standard SURF descriptor, which

has a dimension of 64, the extended SURF which has a dimension of 128

and U-SURF version that is not invariant to rotation and has a length of 64

elements. According to the results of the performances for 3 different versions

it is indicated that while SURF, extended SURF and upright SURF (U-

SURF) extraction processes take 354ms, 391ms, 255ms computational time

respectively, SIFT feature extraction method takes 1036ms. In a comparison

between the performance of SURF and SIFT feature extraction methods, it

is shown that for a scene requiring about 1000ms with SIFT, the extraction of

the SURF features takes about 250ms, meaning that the time is reduced by

a factor of 4 [62]. Because of the fact that SURF features are not only scale
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and rotation invariant but also offer the advantage of being computed very

efficiently compared other feature extraction methods, in this work we utilize

SURF features in our object recognition algorithm. Extracted SURF features

in a catadioptric image are shown in Figure 4.4 and 252 SURF keypoints are

extracted.

Figure 4.4: Extracted SURF features

Once the SURF keypoints are detected in both database object image

and video frames the nearest neighbour matching algorithm is implemented

between SURF keypoints. A keypoint in the test image is compared to a

keypoint in the database object image by calculating the Euclidean distance

between their descriptor vectors. In our work we use SURF descriptor vectors

that have lengths of 64 elements. After detection of a matching pair it is

examined that the distance is closer than 0.7 times the distance of second

nearest neighbour.

4.3 Vehicle Classification via Place Recognition

In this section, we describe the place recognition algorithm to classify the

under frames of the vehicles and utilize appearance based mapping algorithm

in [14]. This important work proposes an appearance based probabilistic
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solution for many problems such as loop closure and perceptual aliasing in

SLAM that cannot be solved easily using standard EKF.

To recognize places, the world is modelled as a set of discrete locations

and each location is described by a probability distribution over appearance

words. Extracted features from images are converted into a bag-of-words

representation and a vocabulary is generated. Also, for each location, obser-

vation probability of coming from a place in the map or not is examined.

4.3.1 Bag of Words Model

In bag-of-words model, an image is represented as a sort of document, and

it contains a set of local descriptors. In order to obtain visual words from

images the feature space of the descriptors must be quantized. Thus, a new

descriptor vector can be held in terms of the discretized region of feature space

to which it belongs. Then, the vocabulary that includes collection of words is

generated collecting a large sample of features from a representative corpus

of images and quantizing the feature space according to their statistics. In

[63], Sivic and Zisserman propose quantizing local image descriptors for the

sake of rapidly indexing video frames with an inverted file. They show that

local descriptors extracted from features can be mapped to visual words

by computing prototypical descriptors with k-means clustering, and that

having these tokens enabled faster retrieval of frames containing the same

words. Once the descriptor vectors are quantized into visual words, weighting

and indexing processes are applied to the vector model as follows: In a

vocabulary which includes k words, each document is represented by a k-
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vector Vd = (t1, ..., ti, ...tk)
T of weighted frequencies with components

ti =
nid
nd
log

N

ni
(4.5)

where nid is the number of occurences of word i in the document d, nd is the

total number of words in the document d, ni is the number of occurences

of term i in the database and N is the number of documents in the whole

database. The weighting is the multiplication of the word frequency and the

inverse document frequency. The word frequency weighs words occuring often

in a particular document, while the inverse document frequency downweighs

words that appear often in database [63]. All of these steps are applied before

actual retrieval, and the set of vectors representing all the documents in a

corpus are organized as an inverted file. An inverted file index is almost the

same as an index in a book, where the keywords are mapped to the page

numbers where those words are used. In the visual word case we have, we

have a table that points from the word number to the indices of the database

images in which that word occurs. Retrieval via the inverted file is faster than

searching every image, assuming that not all images include every word. In

this work, we utilize SURF features and descriptors to have a bag-of-words

representation.

4.3.2 Loop Closure Detection

Detection of loop closure requires the capability of recognizing a previously

visited place from current visual sensor measurements. To make it clear one

can consider the following illustrative example: Suppose that you are making

camp on an island you have not visited before. You would like to discover the
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camping environment. At the beginning you mentally keep track of the path

you travelled but after some time it would be a challenging work for you to

remember in what point you are with respect to the camping area. Instead,

if you follow a circular path you will pass the places that you have visited

before. Thus, recognizing previously visited places will allow you to estimate

your trajectory and where you are with respect to the camping area.

In this work, we address the problem of loop closure detection as an image

retrieval task. To classify the vehicles, a newly visited place is examined if it

is a new under frame or an old one that is seen before. To achieve this aim

P (Zk | Zk−1) is calculated which stands for the probability of an observation

at a particular sample time k, given the observations till sample time k − 1.

For the theory of loop closure detection interested readers may refer to [24].

4.3.3 Loop Closure Probability Calculation

To calculate p(Zk | Zk−1) explicitly, the world is divided into the set of

mapped places M and the unmapped places M̄ [24]:

p(Zk | Zk−1) =
∑
m∈M

p(Zk | Lm)p(Lm | Zk−1) +
∑
u∈M̄

p(Zk | Lu)p(Lu | Zk−1)

(4.6)

where p(Zk | Lm) and p(Zk | Lu) are observation likelihoods, and p(Lm |

Zk−1) and p(Lu | Zk−1) are prior beliefs. The second summation cannot be

evaluated directly because it involves all possible unknown places. Hence, it

is approximated via sampling. The procedure is to sample location models

Lu according to the distribution by which they are generated by the environ-

ment, and to evaluate
∑
u∈M̄

p(Zk | Lu)p(Lu | Zk−1) for the sampled location
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models. In order to do this, some method of sampling location models Lu is

required. An observation Z is sampled and used to create a place model. In

general, this sampling procedure will not create location models according to

their true distribution because models may have been created from multiple

observations of the location [24]. However, it will be a good approximation

when the robot is exploring a new environment, where most location models

will have only a single observation associated with them. Having sampled

a location model, one must evaluate p(Zk | Lu)p(Lu | Zk−1) for the sample.

The prior probability of the sampled space model with respect to history of

observations p(Lu | Zk−1) is assumed to be uniform over samples, and as a

result Eq. 4.6 becomes:

p(Zk | Zk−1) ≈
∑
m∈M

p(Zk | Lm)p(Lm | Zk−1) + p(Lnew | Zk−1)
ns∑
u=1

p(Zk | Lu)
ns

(4.7)

where ns is the number of samples used, and p(Lnew | Zk−1) is prior proba-

bility of being at a new place [24].
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Chapter V

5 Simulation and Experimental Results

In this chapter simulation results that are performed for Chapter 3 and

the experimental results for Chapter 4 are provided, respectively.

5.1 Simulation Results

The performance of the technique which is proposed to improve the accuracy

of vSLAM algorithm is verified with simulation results. Ramp and circular

inputs are used to generate the odometry data. Odometry and camera out-

puts are fused in EKF to estimate states of the mobile robot. Extended

Kalman filter both estimates the mobile robot states and generates the map

of the unknown environment. Inputs for the system are summarized in Ta-

ble 5.1.

In this table xr, yr, θr indicate the reference pose of the mobile robot

and vr, wr denote reference linear and angular velocities of the mobile robot,

respectively. Simulation results for the ramp trajectory is depicted for 120

seconds, and 1/50 is chosen for sampling time both for EKF and the camera.

In Figure 5.1 (a), (b) and (c) robot pose estimation is shown for ramp input.

According to the Figure 5.1 (a) and (b), x and y positions of the mobile

robot increase as time increases. Given the control input that is shown in

Table 1 for ramp input, x position coordinate of the mobile robot increases



Table 5.1: System Inputs

Type of Input Input

Ramp Trajectory vr = 0.3[m/s]
wr = 0[rad/s]
θr = wrt[rad]
xr = vrt[m]

yr = 0.09t+ 0.7[m]
Circular Trajectory vr = 0.3[m/s]

wr = 0.6[rad/s]
θr = wrt[rad]

xr = x0 + 5sin(θr)[m]
yr = y0 − 5cos(θr)[m]

x0 = 2[m]
y0 = 2[m]

more rapidly than y coordinate position. Initial robot pose as well as the

initial camera frame are used as the reference coordinate system and all

estimates are represented with respect to this frame. In Figure 5.1 (c), θ,

heading angle estimation is shown. When mobile robot starts to navigate

in the environment, it has a rotation at the beginning of the movement for

trajectory tracking that is related to the ramp control input. The errors

between reference and estimated pose states are less than 1%.

In Figure 5.2 (a), (b) and (c) pose estimation of the NWMR is shown for

the circular trajectory. The simulation for circular trajectory is performed

for 30 seconds and 1/50 sampling time is chosen again for both EKF and the

camera as in the ramp input. In Figure 5.2 (a) and (b), x and y position

estimates are depicted. Given constant linear and angular velocity inputs,

0.3 [m/s] and 0.6 [rad/s] respectively, mobile robot navigates in circular tra-

jectory in the environment.
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(a) (b)

(c)

Figure 5.1: x, y and θ state (pose) estimations by EKF for ramp input

In the graph which is shown in Figure 5.2 (a), at 800 and 1300 time sam-

ples, there occurs some differences between reference and estimated states.

The reason why these differences occur is the rapid increase in heading angle

and hence decrease in the overlap area in consecutive image frames. Reduc-

tion in the overlapped area between consecutive frames gives rise to decrease
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in stable feature point extraction and consequently higher noise in map build-

ing.

(a) (b)

(c)

Figure 5.2: x, y and θ state (pose) estimations by EKF for circular input

In our vSLAM algorithm the accuracy of the mobile robot localization is

highly dependent on the map building. Errors in these regions are approxi-

mately 8%. However, between 800 and 1300 time samples, the reference and
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the estimated states are very close to each other, i.e. the error rate is be-

low 1%. This promising result is obtained thanks to the stabilized extracted

feature points and validates the performance of our proposed algorithm. In

Figure 5.2 (c), it is seen that heading angle increases continuously with time.

The most prominent result of the proposed technique is the accuracy im-

provement of visual simultaneous localization and map building algorithm

using stabilized feature point extraction. Subsequent video frames are stabi-

lized and Harris corner features are extracted from stabilized video sequences.

In Figure 5.3 (a) and (b), landmark positions for ramp and circular inputs

are shown.

(a) (b)

Figure 5.3: Landmark positions: (a) ramp trajectory, (b) circular trajectory

While mobile robot is travelling in the unknown environment with given

control inputs, naturally located planar landmarks are extracted and used for

measurement update in EKF. In vSLAM algorithms, generating consistent

map is one of the most crucial processes to obtain accurate navigation results.

Acquiring these naturally located features in a consistent way by neglecting

58



unwanted camera motion and jitter, our technique builds a consistent map

and improves the localization correctness as shown in Figures 5.1 and 5.2.

5.2 Experimental Results

We verified our under vehicle perception algorithm with experimental work.

Our proposed solution is implemented using a non-holonomic mobile robot in

a laboratory environment. In our implementations the bottom of the tables

in the laboratory are considered as the under vehicles. A database that

includes eight different under vehicle images is used in this experimental

work. They are attached to the bottom of the tables and the mobile robot

navigates under the tables. All the algorithms are implemented in Microsoft

Visual C++ and OpenCV 2.4.4 that are installed to the on-board computer

mounted to the body of the mobile robot.

In general, the mapping from world points to image pixels is non-linear.

Normally a correction would be needed for the imaging model. Matching of

features in viewpoint change would be quite challenging. The planar motion

assumption eliminates the requirement of correction for the projection. For

example, a lens distortion correction is not used to project the straight lines.

In object recognition algorithm an appearance based method is used. The

features are matched between the catadioptric video sequences and database

perspective images. There is no correction for the catadioptic image map-

ping from world points to image pixels since the appearance based approach

is employed. Moreover, an appearance based mapping approach is exploited

to classify the vehicles. Extracted features from catadioptric images are con-

verted into the bag of words representation. These images are then utilized

in the construction of the topologic map of the environment.

59



5.2.1 Experimental Setup

The mobile robot that is used in our experimental work includes a processor,

an on-board computer, a catadioptric camera system and a rechargeable

lithium polymer battery (Figure 5.4). Working principle of the experimental

setup is depicted in Figure 5.5. The power of both of the processor and the

computer are supplied via 14.8 V lithium polymer batteries. The processor

is inserted to the mobile robot body for sending the control commands to

the wheels of the mobile robot. Philips USB camera with a catadioptric

mirror is connected to the on-board computer. The communication between

the processor of the mobile robot and computer is provided using RS-232

communication protocol. A network is established between the on-board

computer and a laptop and shown with a dashed line in Figure 5.5. The

laptop is used as an external device to display the camera results on the

screen.

5.2.2 Results for Object Recognition

While the mobile robot navigates under the tables it starts to monitor under

vehicle images that are attached to the bottom of the tables. In a certain

image, we attach a test object which is one of the database images in the

mobile robot and make the mobile robot detect the object. In this imple-

mentation we use the SURF features for extraction and matching between

the object and the video frames, and Random Sample Consensus (RANSAC)

algorithm to neglect the matches that are found as outliers. If the mobile

robot detects the object in a catadioptric image it is shown using a line as

in Figure 5.6.
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Figure 5.4: Experimental setup

5.2.3 Results for Vehicle Classification

In the first experiment, to show the accuracy of the FAB-MAP algorithm

we use a hand-held perspective camera with taking under frame images of

the vehicles. Seven different under frame images of the vehicles are used to

calculate the resultant confusion matrix shown in Figure 5.7. When a new

place is seen, the relevant diagonal element of the matrix is assigned with

a high probability value and this element is depicted bright in the matrix.

Regarding the loop closure detection, off-diagonal elements of the matrix are

used and indicated bright on the off-diagonal region.

In Figure 5.7, it is seen that all of the diagonal elements of the matrix are

bright and it is understood that all of the visited places are new and there is
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Figure 5.5: Working principle of the experimental setup

Figure 5.6: Detected objects

no loop closure detection. Namely each of these images belongs to different

under vehicles and they can be classified in seven groups. The probability

of being a new vehicle under frame for the third one is 0.995 whilst the fifth

one is 0.996968.

Once we obtain this resultant confusion matrix we try a different set of

images to show the loop closure detection. The relevant loop closure detec-

tions are shown in Figure 5.8. In Figure 5.8 (a) and (b), two different images

of the same vehicle under frame for the first and ninth places are shown whilst

in Figure 5.8 (c) and (d) the same under vehicle images are depicted for the

third and tenth places (see Figure 5.9). While the loop closure probability

for the ninth and first images is 0.961524, the probability of being a new

place for the ninth image is 0.0150896. Similarly, loop closure probability for

the third and tenth images is 0.954927 and assigned probability for being a
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Figure 5.7: Confusion matrix: all visited places are seen first

new place for the tenth image is 0.00117. These ten vehicles can be classi-

fied under eight groups because of detecting two loop closures in the ninth

and tenth steps. These loop closure results allow us to classify the vehicles

merely using their under frames. In the experiment we use Open FAB-MAP

software released by Glover et al. [64].

In the second experiment, we take six different under frame images of

the vehicles using our proposed catadioptric camera system mounted to the

body of the mobile robot. Some example images are shown in Figure 5.10.

As it is seen from Figure 5.10, a different place is assigned for each different

vehicle under frame. Firstly, we capture the omnidirectional images of the six

consecutive different under vehicles and related confusion matrix is depicted

in Figure 5.11. Because of the fact that all images are different, the diag-

onal elements of the matrix are indicated bright with high probability that

explains the related visited place is newly seen. For example, the probability

of being a new under frame for third place is 0.996 and for the sixth place is

0.997.
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(a) (b)

(c) (d)

Figure 5.8: Loop closure detections: between (a) and (b) for the ninth and
first places and between (c) and (d) for the tenth and third places

Figure 5.9: Confusion matrix: loop closures between the ninth and first
places, and between the tenth and third places
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Figure 5.10: Omnidirectional images of under vehicles

Then, we deliberately enlarge the database by two additional images that

belong to the same under vehicles in the database. This time, the resultant

confusion matrix is shown in Figure 5.12 that explains the loop closures

between the fourth and seventh places and first and eighth places.

Figure 5.11: Confusion matrix for omnidirectional images: all visited places
are seen first

While the loop closure probability for the forth and seventh images is

0.9742, the probability of being a new place for the seventh image is 0.01296.
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Similarly, loop closure probability for the first and eighth images is 0.96289

and assigned probability for being a new place for the eighth image is 0.0023.

These ten vehicles can be classified under six groups because of detecting two

loop closures in the seventh and eighth steps.

Figure 5.12: Confusion matrix for omnidirectional images: loop closures in
the seventh and eighth places
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Chapter VI

6 Conclusion and Future Work

We have provided a detailed analysis of SLAM for the navigation of

an autonomous mobile robot. Firstly, we described the probabilistic formu-

lation of the SLAM problem. We then reviewed different kinds of SLAM

algorithms. In particular, fusion of different sensors in EKF for the SLAM

problem usually provides consistent map building and localization. Appear-

ance based mapping algorithm was then elaborated for large scale SLAM

problems. With feature extraction, matching and tracking, we developed a

good insight into the vSLAM problem.

We proposed an improvement technique for the accuracy of the metric

based vSLAM algorithm. We incorporated video stabilization into vSLAM

for feature extraction, and consequently for map building and localization.

In vSLAM, the performance of the algorithm depends on both the accuracy

of the map and localization of the robot. It has been shown that consistent

feature extraction technique both improves the accuracy of map building and

localization of the mobile robot by neglecting unwanted sensor motion and

the noises that are caused by the external factors.

We then described under vehicle surveillance for high level safety measures

using a catadioptric camera system. We used object detection algorithm to

recognize hidden objects mounted to the under frames of the vehicles and



exploited FAB-MAP algorithm to classify the vehicles. The imaging model of

the catadioptric system is developed to indicate its advantages over standard

perspective cameras. A vehicle equipped with a catadioptric system can

see not only the frontal direction but also the right, left and back sides

thanks to the large field of view. The number of extracted features from

single catadioptric image is higher than a perspective image and so matching

between two consecutive images taken from catadioptric cameras gives rise to

much more consistent results in terms of object recognition and classification,

localization and mapping.

In MATLAB/Simulink simulations, we verified the accuracy of the pro-

posed solution for the improvement of the vSLAM problem. Ramp and

circular control inputs were used to generate the odometry data. When a

mobile robot navigates through an unknown environment with given control

inputs, naturally located planar landmarks are extracted and used for mea-

surement update in EKF. Landmark positions for ramp and circular inputs

are shown in the simulation results. Odometry and camera outputs are fused

in EKF to estimate states of the mobile robot. Also, the estimation results

of the robot pose are shown separately for the ramp and circular inputs.

In both cases, it is shown that errors between reference and estimated pose

states are less than 1%.

In experimental work, we presented the feasibility of the proposed method

in a laboratory environment using a non-holonomic wheeled mobile robot

equipped with a catadioptric camera. In our implementations the bottom of

the tables in the laboratory are considered as under vehicles. Algorithms are

implemented in Microsoft Visual C++ and OpenCV 2.4.4 that are installed

to the on-board computer mounted to the body of the mobile robot. To
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demonstrate the object recognition, we attached a test object which was one

of the database images in the mobile robot and made the mobile robot detect

the object. In this implementation we used the SURF features for extraction

and matching between the object and the video frames, and Random Sample

Consensus (RANSAC) algorithm to neglect the matches that are found as

outliers. To verify the classification of the vehicles, a hand-held perspective

camera is utilized in the first experiment. Seven different under frame images

of the vehicles were used to calculate the confusion matrices which show the

loop closures are detected or not. Once the classification results were verified

by a perspective camera, in a separate experiment, we took six different under

frame images of the vehicles using our proposed catadioptric camera system

mounted to the body of the mobile robot and the classification results were

reported.

Because of having a small under vehicle image database, in this thesis

we showed the feasibility of the proposed under vehicle perception method

for relatively small scale perception tasks. As a future work, the proposed

method can be extended to large scale under vehicle perception missions. A

more extended under vehicle image database should be used for the classifica-

tion of the vehicles and detection of the hidden objects. Also, a vision-based

control can be applied to the wheeled mobile robot utilizing extracted fea-

tures from the environment.
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