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Abstract 

 

High Efficiency Video Coding (HEVC), a recently developed international standard for 

video compression, offers significantly better video compression efficiency than previous 

international standards. However, this coding gain comes with an increase in computational 

complexity. 

Therefore, in this thesis, we first designed a high performance hardware architecture for 

deblocking filter algorithm used in HEVC standard. Two parallel datapaths are used in the 

hardware to increase its performance. The proposed hardware is implemented in Verilog 

HDL. The Verilog RTL code is mapped to a Xilinx XC6VLX240T FPGA, and it is verified to 

work correctly on a Xilinx ML605 FPGA board which includes a Xilinx XC6VLX240T 

FPGA. The FPGA implementation can work at 108 MHz, and it can code 30 full HD 

(1920x1080) video frames per second. 

 We then proposed an energy reduction technique for Sum of Absolute Transformed 

Difference (SATD) based HEVC intra mode decision algorithm. We designed an efficient 

hardware architecture for SATD based HEVC intra mode decision algorithm including the 

proposed technique. The proposed hardware is implemented in Verilog HDL. The Verilog 

RTL code is mapped to a Xilinx XC6VLX365T FPGA, and it is verified with post place & 

route simulations. The FPGA implementation can work at 116 MHz, and it can code 21 HD 

(1280x720) video frames per second. The proposed technique reduced its energy consumption 

up to 64.6% on this FPGA without any PSNR loss.  
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YVVK VĠDEO SIKIġTIRMA DONANIM TASARIMLARI  

Erdem ÖZCAN 

 

EE, Yüksek Lisans Tezi, 2013 

Tez DanıĢmanı: Doç. Dr. Ġlker HAMZAOĞLU 

 

Anahtar Kelimeler: YVVK, blok giderici filtre, çerçeve içi kip seçimi, hadamard dönüĢümü 

 

ÖZET 

 

Yakın tarihte geliĢtirilmiĢ uluslararası bir standard olan Yüksek Verimlilikli Video 

Kodlama (YVVK), kendinden önceki standartlara göre belirgin Ģekilde daha iyi sıkıĢtırma 

verimi sunmaktadır. Ancak bu kodlama kazancı beraberinde iĢlem miktarında önemli bir artıĢ 

getirmektedir.  

Bu tezde ilk olarak YVVK video standardında kullanılan blok giderici filtre (BGF) 

algoritması için yüksek performanslı bir donanım mimarisi tasarlandı. Donanımın 

performansını artırmak için iki paralel veriyolu kullanıldı. Önerilen donanım Verilog HDL 

kullanılarak gerçeklendi. Verilog RTL kodu Xilinx XC6VLX240T FPGA’ne yerleĢtirildi ve 

Xilinx XC6VLX240T FPGA içeren bir Xilinx ML605 FPGA kartında doğrulandı. FPGA 

gerçeklemesi 108 MHz hızla çalıĢabilmekte ve saniyede 30 tam HD (1920x1080) çerçevesini 

kodlayabilmektedir.  

Daha sonra, Mutlak DönüĢüm Fark Toplamı (MDFT) tabanlı YVVK çerçeve içi kip 

seçimi için özgün bir enerji azaltma tekniği önerildi. Önerilen tekniği de içeren MDFT tabanlı 

YVVK çerçeve içi kip seçimi için verimli bir donanım mimarisi tasarlandı. Önerilen donanım 

Verilog HDL kullanılarak gerçeklendi. Verilog RTL kodu Xilinx XC6VLX365T FPGA’ne 

yerleĢtirildi ve yerleĢtirme sonrası RTL simulasyonları ile doğrulandı. FPGA gerçeklemesi 

116 MHz hızla çalıĢabilmekte ve saniyede 21 HD (1280x720) çerçevesini 

kodlayabilmektedir. Önerilen teknik, donanımın enerji tüketimini bu FPGA’da herhangi bir 

PSNR kaybı olmaksızın %64.6 azaltmıĢtır. 
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Chapter 1 

INTRODUCTION 

1.1    Motivation 

Video compression systems are used in many commercial products, from consumer 

electronic devices such as digital camcorders, cellular phones to video teleconferencing 

systems. These applications make the video compression hardware devices an inevitable part 

of many commercial products. Since better coding efficiency is required for high resolution 

videos, recently, a new international standard for video compression is developed with the 

collaboration of ITU and ISO standardization organizations. This new standard, called High 

Efficiency Video Coding (HEVC), provides 50% bit rate reduction for equal perceptual video 

quality in comparison to H.264/AVC standard [1]. The video compression efficiency achieved 

in HEVC standard is not a result of any single feature but rather a combination of a number of 

encoding tools, and this coding gain comes with an increase in computational complexity. 

Because of its high coding efficiency, HEVC is expected to be widely used in many 

applications such as digital TV, mobile phones, video transmission in wireless networks, and 

video conferencing over the Internet. 

The top-level block diagram of a HEVC Encoder is shown in Figure 1.1.  As shown in 

this figure, HEVC encoder has a forward path and a reconstruction path. The forward path is 

used to encode a video frame by using intra and inter predictions and to create the bit stream. 

The reconstruction path is used to decode the encoded frame and to reconstruct the decoded 

frame. Since a decoder never gets original images, but rather works on the decoded frames, 

reconstruction path in the encoder ensures that both encoder and decoder use identical 

reference frames for intra and inter prediction. This avoids possible encoder – decoder 

mismatches [1, 2]. 
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Figure 1.1: HEVC Encoder Block Diagram 

 

In HEVC there is a quad tree structure which partitions the frame into Largest Coding 

Units (LCUs). LCUs can be recursively split into smaller Coding Units (CUs), which in turn 

can be split into small prediction units (PUs) and transform units (TUs) [3]. LCUs can be as 

large as 64x64 down to 16x16. LCU in HEVC is similar to that of a macroblock (MB) in the 

previous video coding standards. 

Forward path starts with partitioning the input frame into LCUs. LCUs split into CUs. 

Each CU is encoded in intra or inter mode depending on the mode decision. In both intra and 

inter modes, the current CU is predicted from the reconstructed frame. Intra mode generates 

the predicted CU based on spatial redundancy, whereas inter mode, generates the predicted 

CU based on temporal redundancy. Mode decision compares the required amount of bits to 

encode a CU and the quality of the decoded CU for both of these modes and chooses the 

mode with better quality and bit-rate performance. In either case, intra or inter mode, the 

predicted CU is subtracted from the current CU to generate the residual CU. Residual CU is 

split into TUs and transformed using integer transforms. Transformed residual data is 

quantized and quantized transform coefficients are re-ordered in a zig-zag scan order. The 

reordered quantized transform coefficients are entropy encoded. The entropy-encoded 

coefficients together with header information, such as PU prediction mode and quantization 

step size, form the compressed bit stream. 

Reconstruction path begins with inverse quantization and inverse transform operations. 

The quantized transform coefficients are inverse quantized and inverse transformed to 

generate the reconstructed residual data. Since quantization is a lossy process, inverse 

quantized and inverse transformed coefficients are not identical to the original residual data. 

The reconstructed residual data are added to the predicted pixels in order to create the 



3 

 

reconstructed frame. The reconstructed frame is filtered by three in loop filters to smooth out 

artifacts induced by the block-wise processing and quantization. 

Deblocking filter (DBF) is one of the in loop filters used in HEVC video encoder and 

decoder. In a coding scheme that uses block-based prediction and transform coding, 

discontinuities can occur in the reconstructed signal at block boundaries. Visible 

discontinuities at block boundaries are known as blocking artifacts. A major source of 

blocking artifacts is the block-transform coding of the prediction error followed by coarse 

quantization. Moreover, in the motion compensated prediction process, predictions for 

adjacent blocks in the current picture might not come from adjacent blocks in the previously 

coded pictures, which create discontinuities at the block boundaries of the prediction signal. 

Similarly, when applying intra prediction, the prediction process of adjacent blocks might be 

different causing discontinuities at the block boundaries of the prediction signal [4]. 

The main difficulty when designing a DBF algorithm is to decide whether or not to 

filter a particular block boundary, as well as to decide the strength of the filtering to be 

applied. Excessive filtering may lead to unnecessary smoothing of the picture details whereas 

lack of filtering may leave blocking artifacts which would reduce the subjective quality. 

Deciding whether to filter a block boundary should therefore depend on the characteristics of 

the reconstructed pixel values on both sides of that block boundary, and on coding parameters 

indicating whether it is likely that a blocking artifact has been created by coding process [4].   

HEVC DBF algorithm is designed to improve both subjective and objective quality. 

Different from the H.264/AVC standard where DBF is applied on a 4x4 sample grid basis, 

HEVC applies DBF on an 8x8 sample grid which enables parallel processing by preventing 

cascading interactions between nearby filtering operations [1].  

HEVC intra mode decision algorithm determines the best prediction mode for a block 

by using cost metrics such as Hadamard Transform (HT) based Sum of Absolute Transform 

Difference (SATD). In H.264, there are 9 intra prediction modes for 4x4 luminance (luma) 

blocks, and 4 intra prediction modes for 16x16 luma blocks [5], where as in HEVC, there are 

18 modes for 4x4, 35 modes for 8x8, 35 modes for 16x16, 35 modes for 32x32 and 4 modes 

for 64x64 luma blocks [6]. Therefore, HEVC intra mode decision algorithm has much higher 

computational complexity than H.264/AVC intra mode decision algorithm. 
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1.2 Thesis Contribution 

In this thesis, we first designed a high performance hardware architecture for 

deblocking filter algorithm used in HEVC standard. Two parallel datapaths are used in the 

hardware to increase its performance. The proposed hardware [31] is implemented in Verilog 

HDL. The Verilog RTL code is mapped to a Xilinx XC6VLX240T FPGA, and it is verified to 

work correctly on a Xilinx ML605 FPGA board which includes a Xilinx XC6VLX240T 

FPGA. The FPGA implementation can work at 108 MHz, and it can code 30 full HD 

(1920x1080) video frames per second. 

We then proposed an energy reduction technique for Sum of Absolute Transformed 

Difference (SATD) based HEVC intra mode decision algorithm. We designed an efficient 

hardware architecture for SATD based HEVC intra mode decision algorithm including the 

proposed technique. The proposed hardware is implemented in Verilog HDL. The Verilog 

RTL code is mapped to a Xilinx XC6VLX365T FPGA, and it is verified with post place & 

route simulations. The FPGA implementation can work at 116 MHz, and it can code 21 HD 

(1280x720) video frames per second. The proposed technique reduced its energy consumption 

up to 64.6% on this FPGA without any PSNR loss.  

1.3 Thesis Organization 

The rest of the thesis is organized as follows. 

Chapter 2, first, introduces DBF algorithm used in HEVC standard. Then, it describes 

the proposed HEVC DBF hardware in detail and presents the implementation results. 

Chapter 3, first, introduces intra prediction and intra mode decision algorithms used in 

HEVC standard. Then, it explains the proposed energy reduction technique. Finally, it 

describes the proposed HT based SATD hardware in detail and presents the implementation 

results. 

Chapter 4 presents the conclusions and the future work.   
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Chapter 2 

A HIGH PERFORMANCE DEBLOCKING FILTER HARDWARE FOR HIGH 

EFFICIENCY VIDEO CODING 

 

 

HEVC, same as the previous video compression standards, divides video frames into 

blocks and performs transform and quantization for each block separately. This causes 

correlation loss between blocks and discontinuities on the edges of blocks. Therefore, 

reconstructed frames suffer from blocking artifacts. Deblocking filter (DBF) improves the 

visual quality of decoded frames by reducing visually disturbing blocking artifacts and 

discontinuities in a frame due to coarse quantization. Since the filtered frame is used as a 

reference frame for motion-compensated prediction of future frames, DBF also increases 

coding efficiency resulting in bit rate savings [4, 7, 8, 9]. 

HEVC DBF algorithm is applied to each edge of all luma and chroma blocks in a 

Largest Coding Unit (LCU), a 64x64 pixel array, after inverse quantization and inverse 

transform [4, 6]. In order to decide whether DBF will be applied to an edge or not, the related 

pixels in the current and neighboring 16x16 Coding Units (CU) must be read from memory 

and processed. 

H.264 DBF algorithm has high computational complexity. H.264 DBF algorithm 

accounts for one-third of the computational complexity of an H.264 video decoder [7]. HEVC 

DBF algorithm also has high computational complexity. HEVC has higher computational 

complexity than H.264, and HEVC DBF algorithm accounts for one-fifth of the 

computational complexity of an HEVC video decoder [10]. 

Therefore, in this chapter, we propose the first HEVC DBF hardware in the literature. 

The proposed DBF hardware can be used as part of an HEVC video encoder or an HEVC 

video decoder. The proposed DBF hardware starts filtering the available edges after a new 

64x64 LCU is ready. Two parallel datapaths are used in the hardware to increase its 
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performance. The proposed DBF hardware is implemented in Verilog HDL. The Verilog RTL 

code is verified to work at 108 MHz in a Xilinx Virtex 6 FPGA. The proposed HEVC DBF 

hardware can code 30 full HD (1920x1080) video frames per second. 

The rest of the chapter is organized as follows. Section 2.1 presents a brief overview of 

HEVC DBF algorithm. Section 2.2 describes the proposed HEVC DBF hardware in detail. 

Section 2.3 presents the implementation results. 

2.1 HEVC DBF Algorithm 

 HEVC DBF algorithm for an 8x8 block edge consisting of two segments is shown in 

Fig. 2.1. In HEVC, there is a quadtree structure [6]. Each video frame is divided into 64x64 

LCUs in raster scan order, and each LCU is divided into 16x16 CUs as shown in Fig. 2.2. 

DBF is applied to edges of the 8x8 blocks in all 16x16 CUs. Each edge of an 8x8 block 

consists of 8 consecutive lines which are divided into two independent 4 line segments. Each 

line has 8 pixels along the edge. DBF can update up to 3 pixels in each direction that the 

filtering takes place. 

 First, vertical edges are filtered. Then, horizontal edges are filtered. There are several 

conditions that determine whether a segment will be filtered or not. There are additional 

conditions that determine the strength of the filtering for 16x16 CU edges that will be filtered. 

Strong or weak filtering can be applied to an edge depending on these conditions. Boundary 

strength (BS) parameter, quantization parameter (QP), β and tc threshold values and the 

values of the pixels in the edge determine the outcomes of these conditions, and the values of 

up to 3 pixels on both sides of an edge can be changed depending on the outcomes of these 

conditions. 

Every edge is assigned a BS value depending on the coding modes and conditions of 

16x16 CUs. The strength of the filtering done for an edge is proportional to its BS value. BS 

value can be 0, 1, or 2. No filtering is done for the edges with a BS value of 0, whereas 

strongest filtering is done for edges with a BS value of 2. BS decision is critical, since 

excessive filtering may lead to unnecessary smoothing of the picture details whereas lack of 

filtering may leave blocking artifacts which would reduce visual quality. The conditions used 

for determining the BS value for an edge between two neighboring 16x16 CUs are 

summarized in Table 2.1. 
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START

BS

      

BS=0

β

        

BS>0

tc

{ |p2,0-2*p1,0+p0,0|+ 

  |q2,0-2*q1,0+q0,0|+

  |p2,3-2*p1,3+p0,3|+ 

        |q2,3-2*q1,3+q0,3| } < β 

{ |p2,4-2*p1,4+p0,4|+ 

  |q2,4-2*q1,4+q0,4|+

  |p2,7-2*p1,7+p0,7|+ 

        |q2,7-2*q1,7+q0,7| } < β 

      

FALSETRUE FALSETRUE

 { |q2,0-2*q1,0+q0,0|+

   |q2,3-2*q1,3+q0,3| } 

< (β +β>>1)>>3

 { |p2,0-2*p1,0+p0,0|+

   |p2,3-2*p1,3+p0,3| } 

< (β +β>>1)>>3

2*(|p2,0-2*p1,0+p0,0|+

     |q2,0-2*q1,0+q0,0|) < β>>2

(|p3,0-p0,0|+|q0,0-q3,0|)< β>>3

(|p0,0-q0,0|) < (5*tc+1)>>1 

(A) 

2*(|p2,3-2*p1,3+p0,3|+

     |q2,3-2*q1,3+q0,3|)< β>>2

(|p3,3-p0,3|+|q0,3-q3,3|)< β>>3

(|p0,3-q0,3|) < (5*tc+1)>>1

(B)

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

p0'=Clip3(p0-2tc,p0+2tc,(p2+2p1+2p0+2q0+q1+4)>>3)

p1'=Clip3(p1-2tc,p1+2tc,(p2+p1+p0+q0+2)>>2)

p2'=Clip3(p2-2tc,p2+2tc,(2p3-3p2+p1+p0+q0+4)>>3)

q0'=Clip3(q0-2tc,q0+2tc,(p1+2p0+2q0+2q1+q2+4)>>3)

q1'=Clip3(q1-2tc,q1+2tc,(p0+q0+q1+q2+2)>>2)

q2'=Clip3(q2-2tc,q2+2tc,(p0+q0+q1+3q2+2q3+4)>>3)

      

FALSE

      

FALSE

      

FALSE

      

FALSE

      

FALSE

      

FALSE

Delta=(9(q0-p0)-3(q1-p1)+8)>>4

abs(Delta) < 10tc

      

FALSETRUE

Delta=Clip3(-tc,tc,Delta)

p0'=Clip1Y(p0+Delta)

q0'=Clip1Y(q0-Delta)

TRUE

Deltap=Clip3(-(tc>>1),tc>>1,

((p2+p0+1)>>1)-p1+Delta)>>1)

p1'=Clip1Y(p1+Deltap)

TRUE

Deltaq=Clip3(-(tc>>1),tc>>1,

((q2+q0+1)>>1)-q1+Delta)>>1)

q1'=Clip1Y(q1+Deltaq)

      

FALSE

      

FALSE
 { |q2,4-2*q1,4+q0,4|+

   |q2,7-2*q1,7+q0,7| } 

< (β +β>>1)>>3

 { |p2,4-2*p1,4+p0,4|+

   |p2,7-2*p1,7+p0,7| } 

< (β +β>>1)>>3

2*(|p2,4-2*p1,4+p0,4|+

     |q2,4-2*q1,4+q0,4|) < β>>2

(|p3,4-p0,4|+|q0,4-q3,4|)< β>>3

(|p0,4-q0,4|) < (5*tc+1)>>1

(C)

2*(|p2,7-2*p1,7+p0,7|+

     |q2,7-2*q1,7+q0,7|)< β>>2

(|p3,7-p0,7|+|q0,7-q3,7|)< β>>3

(|p0,7-q0,7|) < (5*tc+1)>>1

(D)

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

p0'=Clip3(p0-2tc,p0+2tc,(p2+2p1+2p0+2q0+q1+4)>>3)

p1'=Clip3(p1-2tc,p1+2tc,(p2+p1+p0+q0+2)>>2)

p2'=Clip3(p2-2tc,p2+2tc,(2p3-3p2+p1+p0+q0+4)>>3)

q0'=Clip3(q0-2tc,q0+2tc,(p1+2p0+2q0+2q1+q2+4)>>3)

q1'=Clip3(q1-2tc,q1+2tc,(p0+q0+q1+q2+2)>>2)

q2'=Clip3(q2-2tc,q2+2tc,(p0+q0+q1+3q2+2q3+4)>>3)

      

FALSE

      

FALSE

      

FALSE

      

FALSE

      

FALSE

      

FALSE

Delta=(9(q0-p0)-3(q1-p1)+8)>>4

abs(Delta) < 10tc

      

FALSETRUE

Delta=Clip3(-tc,tc,Delta)

p0'=Clip1Y(p0+Delta)

q0'=Clip1Y(q0-Delta)

TRUE

Deltap=Clip3(-(tc>>1),tc>>1,

((p2+p0+1)>>1)-p1+Delta)>>1)

p1'=Clip1Y(p1+Deltap)

TRUE

Deltaq=Clip3(-(tc>>1),tc>>1,

((q2+q0+1)>>1)-q1+Delta)>>1)

q1'=Clip1Y(q1+Deltaq)

      

FALSE

      

FALSE

Clip3(x,y,z)={ x ; z<x

                      y ; z>y

                      z ; otherwise}

Clip1Y(x)=   { 255 ; x>255

                          0 ; x<0

                          x ; otherwise}

p3,0 p2,0 p1,0 p0,0

p3,1 p2,1 p1,1 p0,1

p3,2 p2,2 p1,2 p0,2

p3,3 p2,3 p1,3 p0,3

p3,4 p2,4 p1,4 p0,4

p3,5 p2,5 p1,5 p0,5

p3,6 p2,6 p1,6 p0,6

p3,7 p2,7 p1,7 p0,7

q0,0 q1,0 q2,0 q3,0

q0,1 q1,1 q2,1 q3,1

q0,2 q1,2 q2,2 q3,2

q0,3 q1,3 q2,3 q3,3

q0,4 q1,4 q2,4 q3,4

q0,5 q1,5 q2,5 q3,5

q0,6 q1,6 q2,6 q3,6

q0,7 q1,7 q2,7 q3,7
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Figure 2.1: HEVC Deblocking Filter Algorithm 
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Figure 2.2: Edge Processing Order 

 

Table 2.1: Conditions That Determine BS 

 

Coding Modes and Conditions 
BS 

At least one of the blocks is Intra 2 

At least one of the blocks has non-zero coded residual 

coefficient and boundary is a transform boundary 

1

1 

Absolute differences between corresponding spatial motion 

vector components of the two blocks are  >= 1 in units of 

integer pixels 

1

1 

Motion compensated prediction for the two blocks refers to 

different reference pictures or the number of motion vectors is 

different for the two blocks 

1

1 

Otherwise 

0

0 

 

2.2 Proposed HEVC DBF Hardware 

The proposed DBF hardware architecture is shown in Fig. 2.3. It includes two parallel 

datapaths, a control unit, a transpose memory, two input buffers to store the pixels in 

segment1 and segment2 of a CU, two dual port and four single port internal SRAMs to store 

partially filtered pixels, and two output buffers to store the filtered output pixels. In order to 
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process full HD video frames in real time, proposed DBF hardware reads 16 pixels in one 

clock cycle from external memory. Therefore, it fills the input pixel memory in 4 clock 

cycles. Since the decision process needs the first and fourth lines of each segment, input pixel 

memory is loaded with the pixels along the edge for subsequent filtering process. 

DBF hardware starts filtering as soon as 64x64 LCU is ready. The two datapaths filter 

two segments, segment1 and segment2, in parallel. Transpose memory is used to transpose 

the filtered pixels before they are stored to intermediate or output SRAMs. This allows 

accessing 16 pixels in one clock cycle from transpose memory and simplifies reading the 

pixels from intermediate SRAMs. 
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 Figure 2.3: Proposed HEVC DBF Hardware 

    

 If an LCU is located in the left frame boundary, its left edges are not filtered. This 

causes an irregularity, and therefore increases the complexity of the control unit. In order to 

avoid this irregularity and therefore simplify the control unit, frame is extended at left 

boundary for 4 pixels as shown in Fig. 2.4. We assigned zero to these pixels and assigned zero 

to the BS values of these edges in order to avoid filtering these edges without causing an 

irregularity in the control unit. 
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Top and left memories are used to store the pixels in the leftmost and topmost edges of an 

LCU as shown in Fig. 2.4. In the MxN frame shown in Fig. 2.4, squares represent 64x64 

LCUs and each LCU has sixteen 16x16 CUs. In order to filter an LCU, its top and left 

neighboring 4x64 and 64x4 blocks, shown as shaded small squares in Fig. 2.4, should be 

available. In order to reduce the amount of off-chip memory accesses and therefore reduce 

power consumption of the DBF hardware, top 64x4 blocks of all LCUs in a row of a frame, 

shown as lightly shaded small squares in Fig. 2.4, and left 4x64 blocks of the current LCU, 

shown as darkly shaded small squares in Fig. 2.4, are stored in on-chip SRAM memories. For 

full HD video frames, 1920x32/2 = 960x32 size 2 SRAM memories are used for storing top 

blocks, and 64x32/2 = 32x32 size 2 SRAM memories are used for storing left blocks. 

Extended 

4x64 blocks 

around left 

frame 

boundary

Left 4x64

blocks

Upper 64x4 

blocks

Currently 

Processed

64x64 LCU

M

N

64x4 blocks 
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width

 

Figure 2.4: Pixels Stored in Top and Left Memories 

 

The proposed DBF datapath is shown in Fig. 2.5. It can process 4 pixels, which are 

selected by the first four multiplexers, in parallel to increase the performance. The proposed 

datapath implements both the decision and filtering parts of HEVC DBF algorithm. 

Comparator1 is used for implementing the decision part. Comparator2 is used for 

implementing Clip3 function. Comparator3 and Comparator4 are used for implementing 

Clip1Y function. The filtered pixels are stored in outreg register. 
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Figure 2.5: Proposed HEVC DBF Datapath 
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2.3 Implementation Results 

The proposed HEVC DBF hardware is implemented in Verilog HDL. The 

implementation is verified with the RTL simulations using Mentor Graphics Modelsim SE. 

RTL simulation results matched the results of a software model of the HEVC DBF algorithm. 

The Verilog RTL code is synthesized and mapped to a XC6VLX130T-ff1156 Xilinx Virtex 6 

FPGA with speed grade 3. The resulting netlist is placed and routed to the same FPGA using 

Xilinx ISE 11.5.  

The FPGA implementation uses 5236 LUTs (6%), 1547 DFFs (1%) and 8 BRAMs 

(3%). BRAMs are implemented as dual-port block SelectRAMs. The FPGA implementation 

works at 108 MHz. It takes 7680 clock cycles in the worst-case to process an LCU. The 

FPGA implementation can process a full HD (1920x1080) video frame in 33.9 ms (480 LCUs 

x 7680 clock cycles per LCU x 9.2 ns clock cycle = 33.9 ms). Therefore, it can process 

1000/33.9 = 30 full HD frames per second.  

The FPGA implementation is verified to work correctly on a ML605 FPGA board 

which includes a Virtex 6 XC6VLX240T FPGA, 512 MB DDR RAM and 32 MB Flash 

memory, and interfaces such as UART and DVI. A software running on MicroBlaze 

processor is developed to transfer the inputs of the HEVC DBF hardware from a host 

computer in an appropriate order and to gather the outputs of the hardware for sending them 

back to the host computer and displaying the resulting frame on a monitor. HEVC DBF 

hardware is added as a peripheral to a bus where the MicroBlaze processor is the master. For 

this purpose HEVC DBF hardware is modified to be a slave peripheral for this data bus and 

16 software accessible registers are added to the hardware. 11 of these registers are used by 

the software running on MicroBlaze for writing the inputs to the hardware and the other 5 are 

used for gathering the outputs and the status information from the hardware.  

The software gets 1 blocky input frame from the host computer using the UART 

interface and writes it to a DDR RAM. Then, it loads the BRAMs of HEVC DBF hardware 

with the input pixels. After HEVC DBF hardware generates the done signal, the software 

reads the deblocked pixels by HEVC DBF hardware and writes them to the DDR RAM. This 

process is repeated for all the LCUs. After all the LCUs are processed, the deblocked frame is 

displayed on a monitor using the DVI interface of the FPGA board as shown in Fig. 2.6. 
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Figure 2.6: HEVC DBF Hardware FPGA Board Implementation 

 

Since HEVC DBF algorithm is highly adaptive, amounts of strong and weak filtering 

operations performed for block edges differ from frame to frame. The amounts of strong and 

weak filtering operations performed for five different video sequences are shown in Fig. 2.7. 

All video sequences are intra coded and quantization parameter (QP) is 42. An example 

unfiltered video frame and the same frame filtered by HEVC DBF algorithm are shown in 

Fig. 2.8 and Fig. 2.9. As it can be seen from Fig. 2.9, some of the blocking artifacts are 

reduced and some of them are totally removed. 
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Figure 2.7: Strong and Weak Filter Amounts 

          

Figure 2.8: Unfiltered Tennis (1920x1080) Video Frame 
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Figure 2.9: The Same Frame Filtered by HEVC DBF Algorithm 

 

The power and energy consumptions of the FPGA implementation for several full HD 

(1920x1080) video frames are given in Table 2.2. The power consumption results are 

estimated using Xilinx XPower Analyzer tool. Post place & route timing simulations are 

performed for one frame of each video sequence at 50 MHz, and signal activities are stored in 

VCD files. These VCD files are used for estimating the power consumption of the FPGA 

implementation using Xilinx XPower Analyzer tool. 

The Verilog RTL code of the proposed HEVC DBF hardware is also synthesized to 

Synopsys 90nm standard cell library using Synopsys Design Compiler and the resulting 

netlist is place & routed using Cadence SoC Encounter tool. The resulting ASIC layout is 

shown in Fig. 2.10. Gate count of the resulting ASIC implementation is calculated as 16.4k, 

excluding on-chip memories, based on NAND (2x1) gate area.  
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Table 2.2: Power and Energy Consumption Results 

 

Category 

Video Sequences 

Basketball 

Drive 
Cactus Terrace Tennis Kimono1 

Clock (mW) 7.63 7.61 7.63 7.62 7.62 

Logic (mW) 11.44 11.72 11.55 11.15 11.86 

Signal (mW) 25.44 26.26 25.83 25.03 26.72 

BRAM (mW) 12.19 12.22 12.24 12.19 12.23 

Total Power (mW) 56.70 57.81 57.25 55.99 58.43 

Total Time  

(sec) 
0.072 0.069 0.067 0.073 0.072 

Energy (mJ) 4.082 3.988 3.835 4.087 4.206 

 

 

 

Figure 2.10: HEVC DBF ASIC Layout  

 

In HEVC DBF algorithm, the pixels in the neighboring edges of 8x8 blocks do not 

overlap. Since the pixels in the neighboring edges can be filtered in parallel, depending on the 

application requirements, large number of parallel datapaths can be used in an HEVC DBF 



17 

 

hardware. The impact of parallel filtering on the proposed HEVC DBF hardware is shown in 

Table 2.3. The clock frequency for all cases is 108 MHz. As the number of parallel datapaths 

in HEVC DBF hardware increases, its performance increases significantly. However, this 

increases its gate count and on-chip memory usage. 640 byte on-chip memory is used for 

processing 16x16 CUs, and each parallel datapath uses 32 byte on-chip transpose memory. 

 

Table 2.3: HEVC DBF Hardware Scalability Results 

 

 

Since this is the first HEVC DBF hardware in the literature, we compared it with the 

H.264 DBF hardware in the literature. In order to make a fair comparison, we give its 

implementation results for processing 16x16 CUs. The comparison results are given in Table 

2.4. However, this comparison is not perfect because of the following differences between 

HEVC and H.264 DBF algorithms.   

Since the block sizes, conditions used to determine whether an edge will be filtered or 

not, conditions used to determine the strength of the filtering that will be applied to an edge, 

and the amount of computations performed in filtering operations are different, the amount of 

computations performed by HEVC DBF hardware and H.264 DBF hardware will be different 

for the same video frames. In HEVC DBF algorithm, 53% of the operations are performed in 

the decision part, and because of the data dependencies most of these operations are 

performed sequentially. However, this is not the case for H.264 DBF algorithm. Since the 

pixels in neighboring edges can be filtered in parallel in HEVC DBF algorithm, HEVC DBF 

hardware can use large number of parallel datapaths. However, this is not the case for H.264 

DBF hardware. Because, the pixels in the neighboring edges of 4x4 blocks overlap in H.264 

DBF algorithm. 

 

 

 

 

Parallel 

Datapaths 

Cycles/CU 

(worst case) 

Throughput 

(CU/sec) 

1920x1080 

fps 

On-Chip 

Memory 

(Byte) 

Gate Count 

2 480 230k 30 640+64 16.4k 

3  320 345k 43 640+96 21.5k 

4 240 460k 57 640+128 26.6k 

5 192 575k 72 640+160 31.7k 

6 160 690k 86 640+192 36.8k 
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Table 2.4: DBF Hardware Comparison 

 

DBF 

Hardware 
Technology 

Memory 

Type 

Cycles/MB 

(worst 

case) 

Frequency 

(MHz) 

Throughput 

(MB/sec) 

Throughput 

(fps) 

On-Chip 

Memory 

(Byte) 

Gate 

Count 

Proposed 

HEVC 

DBF 

Hardware 

Xilinx 

Virtex 6 

FPGA 

dual port 

SRAM 
480 108 230k 

1920x1080 

30 fps 

640 + 64 

= 704 

16.4k 

(ASIC) 

Huang 

[11] 

0.25 um 

CMOS 

ASIC 

two port 

SRAM 
614 100 163k 

1920x1080 

20 fps 
640 20.6k 

Huang 

[11] 

0.25 um 

CMOS 

ASIC 

single 

port 

SRAM 

878 100 114k 
1920x1080 

14 fps 
640 18.9k 

Sheng 

[12] 

0.25 um 

CMOS 

ASIC 

dual port 

SRAM 
446 100 224k 

1920x1080 

28 fps 

64x32 + 

2x96x32  

= 1024 

24k 

Parlak 

[13] 

Xilinx 

Virtex 2 

FPGA 

dual port 

SRAM 
5544 72 13k 

352x288 

33 fps 
1792 5.3k 

Shih [14] 

0.25um 

CMOS 

ASIC 

two port 

SRAM 
646 100 154k 

1920x1080 

19 fps 

160x32 + 32  

= 672 
18.7k 

Liu [15] 

0.18um 

CMOS 

ASIC 

single 

port 

SRAM 

250 100 400k 
1920x1080 

49 fps 

96x32 + 

2Nx32 
19.6k 

Chao [16] 

0.18um 

CMOS 

ASIC 

two port 

SRAM 
228 100 369k 

2048xl536  

30 fps 

144x32 + 

2x16x32 

= 704 

16.6k 

Shih [17] 

0.18um 

CMOS 

ASIC 

single 

port 

SRAM 

246 100 406k 
1920x1080 

50 fps 
512 + 12N 20.9k 
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Chapter 3 

A COMPUTATION AND ENERGY REDUCTION TECHNIQUE FOR HEVC INTRA 

MODE DECISION 

HEVC intra mode decision algorithm has a huge computational complexity. HEVC 

intra prediction algorithm predicts the pixels in prediction units (PU) of a coding unit (CU), 

which is similar to macroblock (MB) in H.264, from the pixels of its already coded and 

reconstructed neighboring PUs. In H.264, there are 9 intra prediction modes for 4x4 

luminance blocks, and 4 intra prediction modes for 16x16 luminance blocks [5]. In HEVC, 

there are 18 modes for 4x4, 35 modes for 8x8, 35 modes for 16x16, 35 modes for 32x32 and 4 

modes for 64x64 luminance PUs [6, 18]. The number of HEVC intra prediction modes for a 

64x64 luminance CU is approximately 3.2 times larger than H.264. In order to determine the 

best HEVC intra prediction mode for the luminance component of a 64x64 CU, predictions 

for 7552 intra prediction modes should be calculated. 

The intra mode decision algorithm implemented in HEVC HM reference software 

encoder [19] uses Sum of Absolute Transformed Difference (SATD) based cost function. Fig. 

3.1 shows the amount of addition operations performed by SATD calculations in HEVC and 

H.264 intra mode decisions. Because of the larger PU sizes and more intra prediction modes, 

24 times more addition operations are performed for SATD calculation in HEVC intra mode 

decision than SATD calculation in H.264 intra mode decision. Therefore, in this thesis, we 

proposed a computation and energy reduction technique for SATD calculation in HEVC intra 

mode decision. 
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Figure 3.1: Addition Amounts in HEVC and H.264 SATD Calculations 

 

The proposed technique reduces the number of additions performed by SATD 

calculations in HEVC intra mode decision algorithm used in HEVC HM reference software 

encoder [19] for 4x4 and 8x8 luminance intra prediction modes by 54% and 70% respectively 

without any PSNR loss. Since 94% of intra predicted blocks are predicted by 4x4 and 8x8 PU 

sizes [21], we showed the impact of the proposed technique for 4x4 and 8x8 PUs. But, it can 

also be used for 16x16, 32x32 and 64x64 PUs. 

We designed efficient hardware architectures for both the original HEVC SATD 

calculation and HEVC SATD calculation with the proposed technique for 4x4 and 8x8 PUs. 

The proposed hardware architectures are implemented in Verilog HDL. The proposed 

technique reduced the energy consumption of the original HEVC SATD calculation hardware 

up to 64.6%.  

A similar energy reduction technique is proposed for H.264 intra mode decision in [22]. 

However, the proposed technique is applied to HEVC intra mode decision and it includes an 

additional optimization to further reduce the energy consumption. There are several H.264 

intra prediction and intra mode decision hardware implementations in the literature [23, 24, 

25, 26]. There are a few HEVC intra prediction hardware implementations in the literature 

[21, 28]. A HEVC intra mode decision hardware only for 4x4 PU size is presented in [27]. 

However, no energy reduction technique is used in this hardware, and its power consumption 

is not reported. 
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3.1 HEVC Intra Prediction and Mode Decision Algorithms 

HEVC intra prediction algorithm predicts the pixels in PUs of a CU using the pixels in 

the available neighboring PUs. For the luminance component of a frame, 4x4, 8x8, 16x16, 

32x32 and 64x64 PU sizes are available. There are 16 angular prediction modes for 4x4 PU 

size, 33 angular prediction modes for 8x8, 16x16 and 32x32 PU sizes, and 2 angular 

prediction modes for 64x64 PU size. In addition to angular prediction modes shown in Fig. 

3.2, there are DC and planar prediction modes for all PU sizes [6]. Fig. 3.2 shows the intra 

prediction angles and intra prediction modes corresponding to these intra prediction angles. 

Angles 0, 5, 13, 21 and 32 are used to predict 4x4 PUs. Angles 0, 2, 5, 9, 13, 17, 21, 26 and 

32 are used to predict 8x8, 16x16 and 32x32 PUs. 64x64 PUs are predicted only with angle 0.  

 

 

Figure 3.2: HEVC Intra Prediction Mode Directions 
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HEVC intra mode decision algorithm implemented in HEVC HM reference software 

encoder is shown in Fig. 3.3 [29]. This mode decision algorithm uses two cost functions; Sum 

of Absolute Transformed Difference (SATD) based Hadamard cost function shown in (3.1), 

and Sum of Squared Difference (SSD) based Rate Distortion (RD) cost function shown in 

(3.2). Hadamard cost function estimates distortion as SATD and rate as the number of bits 

used for encoding the prediction mode. RD cost function calculates the actual distortion after 

coding based on SSD and the actual bit rate used after coding. λ is calculated based on 

Quantization Parameter (QP). 

 

 

                                                                                                                                             (3.1) 

                                                                                                                                           (3.2) 

 

 

This mode decision algorithm determines the best PU size, transform unit (TU) size and 

intra prediction mode of a CU as follows. First, SATD values for each intra prediction mode 

of each PU for the largest PU size are calculated as follows. Find residue block by subtracting 

intra predicted block from current block, apply Hadamard Transform (HT) to the residue 

block, and add the absolute values of the transformed residues. Then, 8 candidate modes for 

4x4 and 8x8 PUs and 3 candidate modes for 16x16, 32x32 and 64x64 PUs with minimum 

Hadamard cost function value are selected as candidate modes for each PU. After that, for 

each PU, the most selected candidate modes for neighboring PUs are compared with the 

candidate modes selected for the current PU and up to 3 additional modes from neighboring 

PUs are added to the candidate modes of the current PU. Then, RD costs of each candidate 

mode of each PU are calculated using the cost function in (3.2) and the best mode with 

minimum RD cost is selected. After that, for each PU, RD cost of its best mode is calculated 

with TU sizes from 4x4 to 32x32 and best TU size with minimum RD cost is also selected. 

This process is repeated for each PU size of the CU from largest to smallest, and the best PU 

size, TU size and intra prediction mode for the CU with minimum RD cost are selected. 
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Figure 3.3: Intra Mode Decision Algorithm in HEVC HM Software Encoder 
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3.2  Proposed Computation and Energy Reduction Technique  

HT is a linear operation and it can be applied before subtraction operation as shown in 

(3.3). H, C and P shown in (3.3) are Hadamard matrix, current block, and predicted block, 

respectively. 8x8 Hadamard matrix is shown in (3.4). Instead of applying HT after subtraction 

operation, we applied HT before subtraction operation. Applying HT before subtraction 

requires performing two HTs instead of one. However, this decreases the computational 

complexity of SATD based HEVC intra mode decision. Since the intra predicted blocks have 

regular patterns, HTs of the predicted blocks (H*P*H') can be calculated with a small amount 

of computation. In addition, since HT of the current block (H*C*H') is common to all intra 

prediction modes, it can be calculated only once. 

 

 

                              (   )     (      )  (      )                       (3.3) 
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                             (3.4) 

 

 

The predicted block pattern of horizontal mode and the result of performing HT for this 

predicted block pattern are shown in Fig. 3.4 for 8x8 PU size. SATD of an 8x8 block 

including HT can be calculated with 959 additions. However, SATD of an 8x8 block 

predicted by horizontal mode including HT can be calculated with 95 additions and 8 shifts as 

shown in Fig. 3.4. Similarly, SATD of an 8x8 block predicted by vertical mode and all angle 

2 modes including HT can be calculated with 95 additions and 8 shifts. Therefore, the 

proposed technique significantly reduces the number of additions performed by SATD 

calculation. 
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Figure 3.4: Hadamard Transform of Horizontal Mode 

 

We applied the proposed technique to all 4x4 intra prediction modes except planar and 

DC modes, and all 8x8 intra prediction modes of angles 2, 5, 13, 17 and vertical and 

horizontal modes. Therefore, we applied the proposed technique to 16 4x4 modes and 18 8x8 

modes. Since the other modes have relatively irregular prediction patterns, the proposed 

technique achieves small amount of computation reduction for these modes. In order to have a 

less complex and smaller SATD calculation hardware, we did not apply the proposed 

technique to these prediction modes. Instead, for these prediction modes, we used the original 

HT operation which is applying HT after subtraction operation. 

We determined the computation reductions achieved by the proposed technique and 

presented the results in Table 3.1. The columns labeled I show the amount of computations 

performed by the original HT operation and the columns labeled II show the amount of 

computations performed by the HT operation using the proposed technique. The proposed 

technique reduced the number of additions performed by HT operation for 4x4 and 8x8 

luminance intra prediction modes by 54% and 70% respectively without any PSNR loss. The 

results show that the proposed technique significantly reduces the computational complexity 

of SATD based HEVC intra mode decision.  

The proposed technique reduces the amount of computations because of two reasons. 

First, as shown in Fig. 3.4, most of the values in HT of intra predicted blocks are zero. 

Therefore, there is no need to calculate these values. Second, since intra predicted blocks have 

regular patterns, some of the values in HT of intra predicted blocks are the same. Therefore, 

these values are calculated only once. For example, the values in sixth row of HT of an 8x8 

block predicted by an 8x8 intra prediction mode of angle 17 is shown in Fig 3.5. The first line 

gives the first value in the row, and so on. Since some of the values are the same, they are 

calculated only once.   
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Table 3.1: Computation Reductions for Intra Prediction Modes 

 

 Prediction 

Angles 

Hadamard Transform Residue 

Addition Shift Subtraction 

I II I II I II 

In
tr

a
 4

x
4

 

5(4 modes) 444 108 0 16 64 64 

13(4 modes) 444 188 0 128 64 64 

21(4 modes) 444 332 0 64 64 64 

32(2 modes) 222 134 0 44 32 32 

Vertical 111 27 0 4 16 16 

Horizontal 111 27 0 4 16 16 

Total 1776 816 0 260 256 256 

In
tr

a
 8

x
8

 

2(4 modes) 3836 160 0 32 256 32 

5(4 modes) 3836 628 0 128 256 256 

13(4 modes) 3836 1740 0 688 256 256 

17(4 modes) 3836 2372 0 680 256 256 

Vertical 959 95 0 32 64 64 

Horizontal 959 95 0 32 64 64 

Total 17262 5090 0 1592 1152 928 

 

 

 

 

 

Figure 3.5: Sixth Row of HT of 8x8 Intra Predicted Block 
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3.3  Proposed Hardware Architecture  

We designed two different hardware architectures for SATD calculation in HEVC intra 

mode decision for 4x4 and 8x8 PU sizes. The first hardware implements the original SATD 

calculation. Therefore, it first subtracts predicted block from current block, and then performs 

HT. The second hardware implements the SATD calculation with the proposed technique. 

Therefore, it first performs HT for predicted block and current block, and then performs 

subtraction.  

The hardware architecture implementing the original SATD calculation has two 8 

parallel datapaths in order to increase its throughput. The hardware architecture with one 8 

parallel datapaths is shown in Fig. 3.6. One of these datapaths is shown in Fig. 3.7. Input 

pixels are stored in IBUF input buffer. First, predicted block pixels are subtracted from 

current block pixels. Then, addition or subtraction operation is performed depending on HT 

matrix. Since HT matrix is multiplied with the residue block both from left and right side as 

shown in (3.3), the results of the left side multiplication are stored in transpose registers as 

shown in Fig. 3.6. For 8x8 PU size, in each clock cycle, the values in one column of H*(C-P) 

are calculated by 8 parallel datapaths. Therefore, H*(C-P) is calculated in 8 clock cycles. 

Then, right side multiplication is performed. In each clock cycle, the values in one row of 

H*(C-P)*H´ are calculated by the same 8 parallel datapaths. Therefore, H*(C-P)*H´ is 

calculated in 8 clock cycles using the same 8 parallel datapaths. Then, absolute values are 

calculated and stored in transpose memory. Finally, SATD value is calculated by adding the 

absolute values using the last datapath. The original SATD calculation hardware calculates 

SATD values of all 4x4 and 8x8 intra prediction modes in 879 clock cycles. 
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Figure 3.6: Original SATD Calculation Hardware 

 

 

Figure 3.7: Datapath for Original SATD Calculation Hardware 
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The hardware architecture implementing the SATD calculation with the proposed 

technique is shown in Fig. 3.8. Parallel processing elements (PEs) are used in the hardware in 

order to increase its throughput. As it is shown in Fig. 3.9, each PE only has 3 adders and 4 

multiplexers. HTs for 4x4 intra prediction modes are calculated using 4 PEs. HTs for 8x8 

intra prediction modes of angles 2, 5 and vertical and horizontal modes are calculated using 

one PE. HTs for 8x8 intra prediction modes of angles 13 and 17 are calculated using 4 PEs. 

Since the proposed technique is not applied to some intra prediction modes, as it is shown in 

Fig. 3.8, the hardware also includes original SATD calculation hardware with 8 parallel 

datapaths in order to calculate the SATDs for these intra prediction modes.  

Architecture of 4 PEs is shown in Fig. 3.10. Since there is no matrix multiplication in 

the proposed technique, there is no transpose memory in this hardware. First, predicted pixels 

are stored in IBUF input buffer. Then, each PE reads 4 pixels from IBUF and performs 

operations of HT. The outputs of PEs are stored either in SPAD for performing further 

operations of HT or in OBUF output buffer. IBUF, SPAD and OBUF are implemented as 

BlockRAMs.  

  

 

 

Figure 3.8: SATD Calculation Hardware with Proposed Technique 
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Figure 3.9: Processing Element (PE) Architecture 

 

 

Figure 3.10: Architecture of 4 PEs 

 

4 PEs used for performing HTs of 4x4 intra predicted blocks perform HTs of four 4x4 

blocks in an 8x8 block sequentially. These 4 PEs are divided into two groups. Each group has 

2 PEs and the PEs in a group perform HTs of 4x4 blocks predicted by the same intra 

prediction modes. HTs of 4x4 and 8x8 current blocks are calculated once in 8 parallel original 

SATD calculation hardware and stored. Then, SATD values are calculated by subtracting HT 

of intra predicted blocks from HT of current block and adding absolute values of the results 

using the adder tree shown in Fig. 3.11. Since 56 of 64 values in the HT of 8x8 blocks 

predicted by 8x8 intra prediction modes of angle 2 and horizontal mode are zero, these zero 

values are not subtracted from HT of current block in order to reduce the power consumption. 
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Figure 3.11: Adder Tree Architecture 

 

Since, only one adder tree is used to reduce hardware area, the adder tree operations are 

scheduled to use this adder tree hardware efficiently. HT flow and adder tree scheduling for 

an 8x8 PU for 4x4 intra prediction modes and 8x8 intra prediction modes of angles 2, 5, 13, 

17 and vertical and horizontal modes are shown in Fig. 3.12. Adder tree calculates SATD 

value for each 4x4 intra prediction mode and 8x8 intra prediction mode in 5 and 9 clock 

cycles respectively. Therefore, it takes 330 clock cycles to calculate SATD values of 4x4 and 

8x8 intra prediction modes for which the proposed technique is applied. It takes 400 clock 

cycles to calculate SATD values of the intra prediction modes for which the proposed 

technique is not applied. Therefore, SATD calculation hardware with the proposed technique 

calculates SATD values of all 4x4 and 8x8 intra prediction modes in 400 clock cycles. Since 

PEs and adder tree has to wait for 70 clock cycles before processing the next 8x8 block, they 

are clock gated in order to reduce power consumption.  
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3.4  Implementation Results  

Both the original HEVC SATD calculation hardware and HEVC SATD calculation 

hardware with the proposed technique are implemented in Verilog HDL. The 

implementations are verified with RTL simulations using Mentor Graphics Questa. RTL 

simulation results matched the SATD values calculated by HEVC HM reference software 

encoder 7.0. The Verilog RTL codes are synthesized to a XC6VLX365T-ff1759 Xilinx Virtex 

6 FPGA with speed grade 3. The resulting netlists are placed and routed to the same FPGA 

using Xilinx ISE 13.4. Both FPGA implementations are verified with post place&route 

simulations as well. 

Both FPGA implementations work at 116 MHz. There are 14080 8x8 blocks in an HD 

(1280x720) frame. FPGA implementation of the original HEVC SATD calculation hardware 

can process one HD frame (1280x720) in 106.4 msec. (14080 8x8 blocks x 879 clock cycles 

per 8x8 block x 8.6 ns clock cycle = 106.4 msec). Therefore, it can process 1000/106.4 = 9 

HD frames per second. HEVC SATD calculation hardware with the proposed technique 

calculates SATD values of all 4x4 and 8x8 intra prediction modes in 400 clock cycles. Its 

FPGA implementation can process one HD (1280x720) frame in 48.4 msec. (14080 8x8 

blocks x 400 clock cycles per 8x8 block x 8.6 ns clock cycle = 48.4 msec). Therefore, it can 

process 1000/48.4 = 21 HD frames per second. Therefore, the proposed technique 

significantly increases the performance of SATD calculation hardware. 
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Figure 3.12: HT Flow and Adder Tree Scheduling 

 

 

FPGA implementation of the original HEVC SATD calculation hardware uses 6909 

Slices (12%), 20473 LUTs (8%), 3504 DFFs (1%) and 8 BRAMs (1%). FPGA 

implementation of the HEVC SATD calculation hardware with the proposed technique uses 

6247 Slices (10%), 19227 LUTs (8%), 2184 DFFs (1%) and 40 BRAMs (9%). BRAMs are 

implemented as dual-port block SelectRAMs. Therefore, the proposed technique reduces the 

FPGA resources used by SATD calculation hardware except BRAMs. 
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As shown in Table 3.2, in order to increase the performance of the original HEVC 

SATD calculation hardware, the number of parallel datapaths can be increased at the expense 

of using more FPGA resources. For example, 48 parallel datapaths can be used to process 27 

HD frames per second. 

The power consumptions of both FPGA implementations on a Xilinx Virtex 6 FPGA 

are estimated using Xilinx XPower Analyzer tool. Post place&route timing simulations are 

performed for Vidyo1 (1280x720), Vidyo3 (1280x720), Johnny (1280x720), and 

KristenAndSara (1280x720) video sequences [30] at 100 MHz and signal activities are stored 

in VCD files. These VCD files are used for estimating the power consumptions of both FPGA 

implementations using Xilinx XPower Analyzer tool. The power and energy consumption 

results for one frame of each video sequence are shown in Table 3.3. The results show that the 

proposed technique reduced the power and energy consumptions of the original SATD 

calculation hardware up to 24.2% and 64.6% respectively. Since HEVC SATD calculation 

hardware is used as part of a HEVC video encoder, only internal power consumption is 

considered and input and output power consumptions are ignored. Therefore, power 

consumption of HEVC SATD hardware can be divided into four main categories; clock 

power, logic power, signal power and BRAM power. 

 

 

Table 3.2: Performance and Area Results 

 
LUTs FlipFlops Slices BRAMs 

Performance 

(HD fps) 

Original 

16 Parallel 
20473 3504 6909 8 9 

Original 

32 Parallel 
40946 7008 13818 16 18 

Original 

48 Parallel 
61419 10512 20727 24 27 

Proposed  

Technique 
19227 2184 6247 40 21 

 

 

 



35 

 

 

Table 3.3: Energy Consumption Reductions for 1280x720 Video Frames 

Frames 

Vidyo1 Vidyo3 Johnny KristenAndSara 

Org. 
Low  

Energy 
Org. 

Low  

Energy 
Org. 

Low  

Energy 
Org. 

Low  

Energy 

Time (ms) 132 61.6 132 61.6 132 61.6 132 61.6 

Clock (mW) 50 45 50 45 50 45 50 45 

Logic (mW) 157 43 158 41 157 43 157 38 

Signal (mW) 273 154 273 145 273 154 272 131 

BRAM (mW) 17 163 17 162 17 163 17 162 

Total 

Power (mW) 
497 405 498 393 497 405 496 376 

Energy (uJ) 65604 24948 65736 24208 65604 24948 65472 23161 

Power Red. 18.5% 21.0% 18.5% 24.2% 

Energy Red. 61.2% 63.1% 61.2% 64.6% 
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Chapter 4 

CONCLUSION AND FUTURE WORK 

In this thesis, we first designed a high performance hardware architecture for 

deblocking filter algorithm used in HEVC standard. Two parallel datapaths are used in the 

hardware to increase its performance. The proposed hardware is implemented in Verilog 

HDL. The Verilog RTL code is mapped to a Xilinx XC6VLX240T FPGA, and it is verified to 

work correctly on a Xilinx ML605 FPGA board which includes a Xilinx XC6VLX240T 

FPGA. The FPGA implementation can work at 108 MHz, and it can code 30 full HD 

(1920x1080) video frames per second. 

We then proposed an energy reduction technique for Sum of Absolute Transformed 

Difference (SATD) based HEVC intra mode decision algorithm. We designed an efficient 

hardware architecture for SATD based HEVC intra mode decision algorithm including the 

proposed technique. The proposed hardware is implemented in Verilog HDL. The Verilog 

RTL code is mapped to a Xilinx XC6VLX365T FPGA, and it is verified with post place & 

route simulations. The FPGA implementation can work at 116 MHz, and it can code 21 HD 

(1280x720) video frames per second. The proposed technique reduced its energy consumption 

up to 64.6% on this FPGA without any PSNR loss.  

As future work, a complete HEVC video encoder hardware can be designed and it can 

be implemented on the Xilinx ML605 FPGA board. 
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