

NEW APPROACHES FOR DETERMINING GREENEST PATHS AND EFFICIENT

VEHICLE ROUTES ON TRANSPORTATION NETWORKS

by

UMMAN MAHİR YILDIRIM

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of
Doctor of Philosophy

Sabancı University
Spring 2014

ii

NEW APPROACHES FOR DETERMINING GREENEST PATHS AND EFFICIENT

VEHICLE ROUTES ON TRANSPORTATION NETWORKS

 APPROVED BY

 Assoc. Prof. Dr. Bülent Çatay ……………………………

 (Thesis Supervisor)

 Assist. Prof. Dr. Hüsnü Yenigün ……………………………

 Assist. Prof. Dr. Maria Battarra ……………………………

 Assist. Prof. Dr. Murat Kaya ……………………………

 Assoc. Prof. Dr. Tonguç Ünlüyurt ……………………………

DATE OF APPROVAL 06.08.2014

© Umman Mahir Yıldırım 2014

All Rights Reserved

iv

NEW APPROACHES FOR DETERMINING GREENEST PATHS AND EFFICIENT

VEHICLE ROUTES ON TRANSPORTATION NETWORKS

Umman Mahir Yıldırım

PhD Thesis, 2014

Assoc. Prof. Bülent Çatay

Keywords: vehicle routing, matheuristic, time-dependent, greenest path, network-

consistent speeds

Abstract

Road transportation has hazardous and threatening impacts on the environment.

However, the traditional logistics models and approaches used in transportation

planning have mainly focused on minimizing the internal costs and lack the

environmental aspect. Therefore, new planning techniques and approaches are needed in

road transport by explicitly accounting for these negative impacts.

In this thesis, we address these issues by first concentrating on solution methods

for the Greenest Path Problem (GPP) where fuel consumption and GHG emission

objectives are incorporated to find the least GHG generating path, namely the greenest

path, and propose a fast and effective heuristic. Taking the strong relation between the

speed and the GHG emission into account, we also address the speed embedded

minimum cost path problem in the most general case where the speed is also a decision

variable as well as the departure time Within this context, we develop a new network-

consistent (which implies spatially and temporally consistent speeds) time-dependent

speed and travel time layer generation scheme since real data is difficult to acquire. In

the second part, we mainly focus on Vehicle Routing Problems (VRP). First, we

propose an Ant Colony Optimization (ACO) approach for solving the Vehicle Routing

v

Problem with Time Windows (VRPTW). Then, we adapt this method to solve the

environment friendly VRP, namely the Green VRP, where the greenest paths between

all customer pairs are used as input. Finally, we extend the ACO algorithm to a parallel

matheuristic approach for solving a class of VRP variants.

vi

ULAŞIM AĞLARI ÜZERİNDE EN YEŞİL YOLUN VE ETKİN ARAÇ

ROTALARININ BULUNMASI İÇİN YENİ YAKLAŞIMLAR

Umman Mahir Yıldırım

Doktor Tezi, 2014

Doç. Dr. Bülent Çatay

Anahtar Kelimeler: araç rotalama, matesezgisel, zaman bağımlı, yeşil yol, ağ tutarlı

hızlar

Özet

Karayolu ulaşımının çevreyi tehdit eden tehlikeli etkileri bulunmaktadır. Ancak, ulaşım

planlamasında kullanılagelen planlama yöntem ve yaklaşımları esas olarak içsel

maliyetleri en aza indirmeye odaklanmakta ve çevresel bir bakış açısı

barındırmamaktadır. Bu nedenle karayolu taşımacılığında, bu olumsuz etkileri dikkate

alan yeni planlama teknikleri ve yaklaşımlarına ihtiyaç vardır.

Bu konuları ele almak için bu tezde, öncelikle en az sera gazı salımı (SGS)

yaratan yolu bulmak amacıyla yakıt tüketimi ve SGS’yi göz önünde bulunduran En

Yeşil Yol Problemi üzerinde yoğunlaşılmış; hızlı ve etkin bir sezgisel yöntem

sunulmuştur. Ayrıca, hız ve SGS arasındaki kuvvetli ilişki dikkate alınarak, en genel

haliyle yola çıkış zamanı yanında hızın da bir karar değişkeni olduğu, hız içeren en az

maliyetli yol problemi ele alınmıştır. Bu kapsamda, gerçek bir ağ için hız verisini elde

etmek zor olduğundan, ağ-tutarlı (konum ve zaman bakımından tutarlı olan hızları

içeren) zaman-bağımlı hız ve yolculuk zamanı katmanı yaratan yeni bir yöntem

geliştirilmiştir. İkinci bölümde, esas olarak Araç Rotalama Problemi (ARP) üzerinde

odaklanılmıştır. Öncelikle Zaman Pencereli Araç Rotalama Problemi (ZPARP) için bir

Karınca Kolonisi Algoritması (KKA) sunulmuştur. Bu algoritma ayrıca, tüm müşteri

çiftleri arasındaki en yeşil yolları girdi olarak kullanan Yeşil ARP’yi çözmek için

vii

uyarlanmıştır. Sunulan KKA son olarak, farklı ARP sınıflarını da çözecek şekilde,

matematiksel model ile sezgisel metodu birleştiren paralel bir matesezgisel yöntem

olarak genişletilmiştir.

viii

To my family

ix

Acknowledgements

I would like to express my gratitude to my advisor, Prof. Bülent Çatay, for his

enthusiastic supervision, invaluable guidance and undeniable help during my graduate

education, teaching assistantship and thesis process. He has always been complaisant

and his support has been vital for the existence of this thesis.

I am also grateful for the help of Prof. Maria Battarra and Prof. Hüsnü Yenigün

who has always been so helpful and encouraging. I also owe thanks to the committee

members Prof. Murat Kaya and Prof. Tonguç Ünlüyurt for their valuable comments.

Moreover, I am thankful to Prof. Ş.İlker Birbil for his cordial attitude on all occasions

and Prof. Kerem Bülbül from whom it was always a pleasure to learn.

Deepest thanks to Gülnur Kocapınar for her unique company, assistance and

generous support. Without her help, this process would be much harder. She

embellished my life with her entity. Moreover, I have always felt the support of my dear

friends Nurşen Aydın with whom we have spent numerous sleepless nights coding,

writing and chatting; Dr. L.Taner Tunç who always made my day with all his joy; and

Dr. İbrahim Muter, a great friend and mentor. I would further like to thank to Sinem Taş

for always being there when in need, Semih Atakan for all his projects, Birce Tezel for

her warm greeting whenever we met, Halil Şen for his technological mentoring and

always supporting me throughout all the office work, Mustafa Şahin for his modest

comments, Eda Bilici for healthy snacks and manufacturing lab guys Utku Olgun,

Alptunç Çomak and Recep Koca for all the laughter we shared. I will always be

thankful to NC2 members Elif Özdemir Polat, Ezgi Yıldız, Gizem Kılıçaslan, Merve

Şeker, Nimet Aksoy Tekmeci, Nükte Şahin and Dr. Semih Yalçındağ at every step of

my life for their perfect personality and support. I give my sincere thanks to Anıl Can,

Arda Şişbot, Belma Yelbay, Birgül Salihoğlu, Burcu Atay, Ceyda Sol, A.Çetin

Suyabatmaz, Emre Özlü, Esma Baytok, Fardin Dashty Saridarq, Figen Öztoprak, Gizem

Çavuşlar, Merve Keskin, Ömer M. Özkırımlı, Özge Arabacı, Özlem Çoban, Selma

Yılmaz, Ümmühan Akbay, Volkan Aran, Yaşar Tüzel, and many other 1021 fellows.

Special thanks go to Serkan Çiftlikli, Ayfer Başar, Ece Erkol, Nihan Özşamlı

and who made my days in Sabanci University so wonderful that I did not hesitate any

minute to go on for a Ph.D., and Kubilay Küpeli who never lost his faith in me.

I am grateful also to my friends Çağrı Koç, Qazi Waheed-Uz-Zaman, Sarah

Leidner, Jun Neoh, Philip Le, Joana C. Viana and Joe Zhao; “Team 4046” in short, and

x

Murat Oğuz. My 5.5 months stay at the Management School at the University of

Southampton, UK, was in every respect wonderful. I also wish to thank Prof. Tolga

Bektaş for his support and supervising and for his patience with me when I could not

work on our project adequately because of the work involved in finishing this thesis.

Last but not least, I would like to express my dearest appreciation to my family

for supporting me in every possible way. They have always made me to feel

comfortable about my decisions.

I would like to also thank to the Scientific and Technological Research Council

of Turkey (TÜBİTAK) for their financial support for my 5.5-month visit to UK as a

researcher and İstanbul Transportation Communication and Security Technologies INC.

(ISBAK) for providing speed data for research purposes.

xi

TABLE OF CONTENTS

Abstract .. iv

Özet .. vi

1 INTRODUCTION ... 1

2 A FAST ALGORITHM FOR FINDING THE GREENEST PATH 5

2.1 Introduction ... 6

2.2 Literature ... 7

2.3 Preliminaries ... 11

2.3.1 FIFO Property and Cost Consistency ... 11

2.3.2 Waiting/Non-waiting cases ... 14

2.3.3 Time-Space Network .. 15

2.4 Problem Description ... 16

2.5 Solution Methods on the TDMCP .. 21

2.5.1 Heuristics .. 21

2.5.1.1 Wen et al. (2014) ... 21

2.5.1.2 The Greenest Path Algorithm .. 22

2.5.2 Exact methods under the discretization scheme ... 25

2.5.2.1 Decreasing Order of Time Algorithm of Chabini (1998) 25

2.5.2.2 Greenest Path Algorithm ... 27

2.6 Computational Study... 29

2.6.1 Synthetic and Real Networks Used in the Study .. 29

2.6.1.1 Synthetic Network Generation .. 29

2.6.1.2 Real Road Network ... 31

2.6.2 Cycles in TDMCP networks ... 31

2.6.3 Effect of Upper Bounds .. 34

2.6.4 Comparing Heuristics ... 36

2.7 Conclusion and Future Research... 41

2.8 References ... 42

3 CREATING NETWORK-CONSISTENT SPEEDS ON TIME-DEPENDENT

NETWORKS .. 45

3.1 Introduction ... 46

3.2 Implications on a Real Road Network and Congestion Circles 46

xii

3.3 A New Network-Consistent Congestion Generation Scheme 51

3.4 Creating Time-Dependency on a Sample Large Scale Real Time-Independent

Network .. 55

3.5 Conclusion and Future Research... 57

3.6 References ... 57

4 EXACT AND HEURISTIC METHODS FOR THE TIME-DEPENDENT

MINIMUM COST PATH PROBLEM WITH SPEED (TDMCP-S) 58

4.1 Introduction ... 59

4.2 Relevant Literature .. 60

4.3 Problem Definition and Formulations for the TDSPP .. 63

4.4 Problem Definition and Formulation for the TDMCP-S .. 67

4.5 Time-space-speed expansion .. 71

4.6 Computational Study... 72

4.6.1 Computational setup ... 73

4.6.2 Comparison of the proposed methods .. 73

4.7 Conclusion and Future Research... 74

4.8 References ... 74

5 A TIME-BASED PHEROMONE APPROACH FOR THE ANT SYSTEM 76

6 GREEN VEHICLE ROUTING ... 97

6.1 Introduction ... 98

6.2 Literature ... 99

6.3 Computational Study... 103

6.4 Conclusion and Future Research... 105

6.5 References ... 105

7 A PARALLEL MATHEURISTIC FOR SOLVING THE VEHICLE ROUTING

PROBLEMS ... 107

8 COMPUTATIONAL RESULTS ON A CLASS OF VRP USING THE PARALLEL

MATHEURISTIC ... 122

8.1 Introduction ... 123

8.2 A brief description of the VRP variants considered ... 123

8.3 The proposed method .. 124

8.4 Computational Study... 126

8.4.1 Comparing with the best known/optimal solutions 127

8.4.1.1 CVRP ... 127

xiii

8.4.1.2 OVRP .. 127

8.4.1.3 MDVRP ... 128

8.4.1.4 HVRP .. 128

8.4.1.5 VRPTW ... 131

8.4.2 Comparison of SP and SC formulations ... 133

8.5 Conclusion and Future Research... 134

8.6 Appendix. New best solutions .. 135

8.7 References ... 136

9 CONCLUSION .. 138

1

1 INTRODUCTION

Transportation activities are a serious threat to the environment due to the pollution and

Greenhouse Gas (GHG) emissions, especially carbon dioxide (CO2) emissions. Besides

having differences from region to region, 21% of the global CO2 emissions are caused

by freight distribution and passenger transportation operations (Gorham, 2002).

According to the European Environment Agency (EEA), transportation is the second-

largest source of GHG particularly in the form of CO2 and nitrous oxide. Among

transportation activities, road transport is the largest emission source with a rate of 92%

(EEA, 2003). In the EU, 44% of goods are transported by trucks. In addition, road

transport is expected to grow 33% in the next 20 years. So, road transportation will be

the fastest growing source of GHG (European Union, 2014). Despite all the

technological advances, these numbers clearly reveal the need to take action against the

adverse effects of road transportation on the environment.

Under the previously mentioned conditions where modern societies are more

concerned with the environment and governments have started adopting new

environmental regulations to reduce emissions and fuel consumptions, companies are

obliged to take into account the external costs of their logistics activities caused by

factors such as the climate change, GHG, environmental pollution, and noise. Therefore,

new planning techniques and approaches for road transportation that take these negative

impacts into consideration are needed. However, traditional logistics models and

approaches used in transportation planning have mainly focused on minimizing thee

effect on the environment. The literature on these problems is scarce and the solution

approaches lacking the environmental perspective fail to solve them.

Motivated by the aforementioned topics and related gaps in the literature, this

thesis tackles these issues by first focusing on solution methods for the GPP (minimum

cost path problem in the most general case). The results of the proposed solution

method are used as data for the environment friendly Vehicle Routing Problem (VRP),

namely the Green VRP. To solve the Green VRP, we use an adaptation of the Ant

Colony Optimization (ACO) approach which we propose for solving the VRP with time

windows. Finally, we extend the ACO algorithm to a parallel matheuristic approach for

solving a class of VRP variants. The thesis is organized as follows.

In Chapter 2, we address the GPP which is an extension of the well-known Time-

Dependent Shortest Path Problem (TDSPP). In TDSPP, the costs of the edges on the

2

network vary with time, which may be predicted based on historical data. In general,

travel time is considered as cost and the objective function becomes finding the fastest

path in this case. However, in the GPP, the objective is to find the minimum fuel

consuming/greenhouse gas (GHG) emitting path. Even though many concepts in

TDSPP minimizing the travel time (fastest path problem) are also applicable to GPP, the

peculiar nature of problem makes the traditional fastest/shortest path methods incapable

of solving it. In this chapter, we first carry out a comprehensive review of the TDSPP

literature and discuss some basic concepts that are also common for the GPP. After

analysing the characteristics of GPP, we propose a fast and effective heuristic method

for determining time-varying the greenest paths. The developed heuristic is applied to

different scenarios to determine potential savings and sustainability benefits and

compared with the current algorithms in the literature.

 Chapter 3 presents a new network-consistent time-dependent speed and travel

time layer generation scheme. In spite of the increasing interest in the literature on the

time-dependent routing and path finding problems, the performances of the algorithms

are usually evaluated on user-created instances due to the lack of a publicly available

real-world road network with time-dependent arc costs and speeds. Most of the studies

either modify the readily available time-independent road network to incorporate time-

dependency by randomly generating travel time data that are not network-consistent or

use limited real data, where available. Here, network consistency implies spatially and

temporally consistent speeds. In addition, the increasing trend in green routing and path

finding literature where the cost is also based on the speed of the travel, justifies the

need for a network- consistent speed layer along with the travel time. Our proposed

scheme can be used as a basis for what-if, scenario and vulnerability analyses using

synthetic and real topological data as well as for routing and path finding problems on

real road networks. We use the proposed method to generate test beds for the models

and algorithms presented in Chapter 2, Chapter 4 and Chapter 6.

 Chapter 4 extends our work in Chapter 2 to the Speed Embedded Time-Dependent

Minimum Cost Path Problem where the departure times from the nodes and the speeds

on the arcs are also decision variables. One of the main factors that affect the objective

function in the GPP and the Green VRP is the speed of the vehicle during its journey.

The carbon emission is a convex function of the speed of the vehicle, i.e. it decreases

with the increasing speed to a certain minimum speed from which it increases

exponentially. Yet, the most common assumption with the current time-dependent

3

routing and path finding algorithms is taking the speed as fixed during the

corresponding time interval. The path is traversed with the maximum speed available

and these values are taken as an input regardless of the emission created by the specific

speed value. However, relaxing this assumption can reduce GHG emissions

significantly. Qian and Eglese (2014) reported that about 6-7% savings in fuel

emissions could be achieved by adjusting the speed values. In this chapter, we first

develop mathematical models for the problem. We further propose a time-space-speed

expansion and compare the performance of the models and the proposed expansion

approach.

 In Chapter 5, we introduce a new ACO approach for solving the VRP variants

involving customers requiring service during specific time-windows. The proposed

method, namely TbAS, is a time-based pheromone approach for the Ant System (AS)

which is the first ACO approach developed for solving the Traveling Salesman Problem

(TSP) (Dorigo et al., 1996). The novelty of the TbAS comes from introducing a new

multi-layer pheromone network structure. The method is tested on the VRP with time

windows (VRPTW), and high quality solutions are obtained. This chapter has been

published as Yildirim and Çatay (2012).

 In Chapter 6, we combine our work in the previous chapters to solve the Green

VRP which aims to generate routes in such a way that the total GHG emission is

minimized while using the 1-to-1 GHG minimizing path information. Here, the term

“green” is independent of the type of the vehicle and hence, does not refer to any kind

of low carbon emitting vehicles such as electric vehicles. We obtain the 1-to-1

minimum GHG generating paths using the algorithm presented in Chapter 2 as an input

and adapt TbAS introduced in Chapter 5 to solve the problem. We also show the

benefits of using time-dependent information on the network.

 Chapter 7 proposes a matheuristic method, namely MathAnt, for solving the

VRPs in a parallel manner. A matheuristic can be defined as any heuristic that utilizes

mathematical programming in one of its solution steps (Bertazzi and Speranza, 2012).

In our study, we combine the ACO metaheuristic (specifically TbAS) with the Set

Partitioning formulation of the VRP and present our results. This chapter has been

presented in the 16th meeting of the Association of European Operational Research

Societies (EURO) Working Group on Transportation and published as Yıldırım and

Çatay (2014). Finally, Chapter 7 extends MathAnt to solve different VRP variants. The

4

approach is promising as it was able to improve some of the best-known solutions from

the literature.

5

2 A FAST ALGORITHM FOR FINDING THE GREENEST PATH

6

2.1 Introduction

Road movements are very important in the freight distribution (collection and delivery)

and passenger transportation operations in both urban and rural areas and have

significant economic and societal impacts. Transportation also has hazardous and

threatening impacts on the environment: resource consumption, land use, toxic effects

on ecosystems and humans, noise, and the effect induced by accidents and GHG

emissions as such. Among these, GHG, especially CO2 emissions are the most

concerning since they have direct consequences on human health, such as pollution, and

indirect ones, such as the depletion of the ozone layer and global warming.

Consequently, new planning techniques and approaches are needed in road transport by

explicitly accounting for these negative impacts because of the growing concerns about

the hazardous effects of transportation on the environment. Research in this direction

has been recently gaining momentum in the developed countries and modern societies.

The shortest path problem (SPP) has been extensively studied in the literature

with numerous extensions and variations (interested reader is referred to Deo and Pang

(1984) and Delling et al. (2009) for a detailed survey on SPP). The dynamic SPP is such

an extension which gained momentum with the improvements in the GIS technology.

There exist two main types of dynamic SPP’s. In the first the network is subject to

instantaneous and unpredictable partial changes; hence, the shortest paths need to be

recomputed (Pallottino and Scutellà, 2003). In the second, namely the time-dependent

SPP (TDSPP), the characteristics of the network may be predicted using past data. In

this study, we focus on the latter case where the objective is to find the minimum cost

paths on a network with time-dependent travel costs, that is, the cost of the travel

depends on the time of the departure. These time-dependent cost functions are also

referred to as delay functions.

Greenest path problem (GPP) further extends TDSPP such that the objective is to

find the minimum fuel consuming/greenhouse gas (GHG) emitting path. Many concepts

in the fastest path problem are also applicable to GPP. Yet, the solution methods for the

fastest/shortest path problem cannot be used to solve the GPP due to the distinctive

properties of the problem.

In a network where the travel speeds (times) are constant, the shortest path

between two nodes can be easily found using the Dijkstra’s Algorithm (DA) (Dijkstra,

1959), a label-setting algorithm which finds the shortest paths from a source node to all

7

other nodes in a network with nonnegative arc lengths. Using the same algorithm, it is

also possible to find the fastest path between two nodes in a transportation network with

variable travel speeds. The fastest path found in the morning rush hours will differ from

the fastest path found in the noon when the traffic density is relatively low. So, the fuel

consumption and GHG emissions will also be different in these two time intervals.

However, it is not possible to find the least fuel consumption or GHG emission yielding

path, namely the greenest path, using DA or any shortest/fastest path algorithm. Thus, a

dynamic network structure and a method that finds the greenest route between the nodes

in this network are required.

With this motivation, we propose a fast heuristic for finding the greenest path on a

time-dependent road network with time varying speeds for which the traditional path

finding algorithms do not work. The rest of the chapter is organized as follows; the next

section provides a comprehensive review of the TDSPP and the GPP. Section 2.3

presents a general overview of some preliminary basic concepts on the time-dependent

networks. After describing the GPP and analyzing the cost structure with different

scenarios in Section 2.4, the implementation details of the current and the proposed

heuristics and exact methods as well as the optimality conditions are provided in

Section 2.5. The computational results are presented in Section 2.6. In Section 2.7, we

finally give the concluding remarks and the future research directions.

2.2 Literature

In this section, we present a comprehensive review of the TDSPP literature and the

relatively scarce GPP literature. Since the label-constrained (where the sequence of the

nodes on the path are subject to constraints (Sherali et al., 2003), quasi-dynamic (where

the arc costs are assumed to change quickly and then remain invariant until next

changes (Tian et al., 2009) and multi-criteria (where pareto optimal solutions are sought

(Disser et al., 2008; Nielsen et al., 2009)) versions of TDSPP are out of the scope of this

study, the related literature is excluded.

Cooke and Halsey (1966) is the first study on TDSPP. They proposed a recursive

formula to find the fastest paths from all nodes to a given destination by modifying

Bellman's label-correcting shortest path algorithm presented in Bellman (1958). They

used a discrete time framework �� = {��, �� + �, �� + 2�, … , �� + ��} with � being a

positive time unit and � being the longest travel time of any arc at any time interval.

8

The travel times on the arcs are defined as multiples of �. Note that most of the studies

evaluating the time as discrete variables use the same approach. Dreyfus (1969)

proposed a label-setting method by generalizing DA. The approach has the same

complexity as the static case if the fastest path between two nodes (1-to-1) for a given

departure time is sought. However, finding the paths from all nodes to a given

destination (all-to-1) for all times requires the same complexity as Cooke and Halsey

(1966). Halpern (1977) extended DA by addressing the issue of limited waiting at nodes

whenever it decreases the total travel time. The delay functions used are nonnegative

and piecewise continuous.

The FIFO property assures that commodities travel along arcs in a First-In-First-

Out manner. A dynamic network is said to be a FIFO network if all the arcs satisfy

FIFO property, and it is non-FIFO otherwise. A detailed analysis of the FIFO property

and its variations are provided in Section 2.3.1.

In the previous studies, FIFO property was assumed to hold implicitly. However,

Kaufman and Smith (1990) showed a counter-example where the method of Dreyfus

(1969) fails to find the least cost path and emphasized the necessity of the FIFO

property for the principle of optimality. Without introducing the term FIFO, they

exemplified the situation where a later departing driver passes the first one, yielding the

violation of the optimality principle. In their subsequent study they proved that if all the

arcs in a network satisfy the non-passing property (NPP), then any classical shortest

path algorithm can successfully be applied to solve the TDSPP in polynomial time

(Kaufman and Smith, 1993). However, their method to transform the network to a FIFO

network via data modification brings an extra computational burden.

Besides the FIFO term, Orda and Rom (1990) and Orda and Rom (1991)

introduced the waiting concept in the time-dependent context and analyzed three

different network settings: (i) waiting is allowed anywhere on the network; (ii) waiting

is only allowed at the origin node; and (iii) waiting is prohibited. Their approach

identifies the optimal waiting durations in the first two cases and yet fails to find the

best path in the latter case. They also demonstrate on a continuous-time instance that a

path might consist of infinite number of arcs. Finally, they show that the computation of

the shortest path on a non-FIFO network is NP-hard. A discrete counterpart of their

approach for the non-waiting case was proposed by Ziliaskopoulos and Mahmassani

(1993) which uses a label-correcting shortest path algorithm. Cai et al. (1997) also

analyzed three waiting conditions; an unrestricted waiting is allowed at all nodes,

9

waiting is prohibited at all nodes and there is a node-dependent upper bound on the

waiting time. They proposed three algorithms and solved the variants to optimality

assuming strictly positive travel times.

The solution methodology in Sung et al. (2000) is basically a modified version of

DA. The novelty comes from the new travel time calculation model, namely Flow

Speed Model (FSM), where the flow speed on each arc depends on the time interval.

FSM preserves the FIFO property. Horn (2000) compared the performance of several

exact and approximation methods that are adapted from the methods in the literature.

Ahuja et al. (2002) handled the problem in a street network regulated by traffic lights

that are subject to periodicity. The total travel and waiting times are minimized. Ahuja et

al. (2003) further extended the previous work by proving new complexity results. Dean

(2004a) surveyed different waiting policies and speed up techniques for dynamic

programming to obtain practical algorithms.

The A*(A-star) algorithm (Hart et al., 1968) is an extension of DA that uses a

heuristic function to estimate the distance and direct the search towards the sink node.

Kanoulas et al. (2006) gave an extension of the A* algorithm and proposed a new lower

bound estimator for the travel time. They clustered the network into non-overlapping

cells and then used the nodes on the boundaries to compute a tighter lower bound on the

heuristic function of the travel time. The new estimator is compared to the Euclidean

distance divided by the maximum speed and proved to outperform from the search

space point of view.

Delling and Wagner (2007) and Nannicini et al. (2008) also adapted ALT, a

variation of A* based on landmarks, to the time-dependent scenario. Emphasizing the

complicated nature of the bi-directional approach on time-dependent networks, they

implement the proposed method in a unidirectional way. They used 24 different transit

times for time-dependency, each representing an hour of the day. The position and

number of the landmarks on the graph greatly affect the size of the search space. Thus,

different heuristics for landmark selection are compared taking into account the trade-

off between the preprocessing time and the quality of the landmark choice.

Dell’Amico et al. (2008) extended Dreyfus (1969) to general travel times and

proposed a new Dijkstra-like algorithm. They handled discontinuities by assigning a

flag to each travel time. These flags are used to distinguish the travel times calculated

by using right or left limits. In addition, by fixing the start times on the nodes and

allowing unrestricted waiting at the intermediate notes they generalized the

10

backtracking procedure of Orda and Rom (1990). Applying a unidirectional search

Delling (2008) presented an exact time-dependent technique that extends their

previously developed algorithm, namely SHARC (Bauer and Delling, 2008). The

generalization allows fast exact shortest path queries on time-dependent networks.

Sanders et al. (2009) analyzed contraction hierarchies. These hierarchies are

simply constructed by contracting the nodes in their importance order, thus creating a

more condensed network. In addition to speeding up the algorithm, this makes

bidirectional approach available at the cost of higher space consumption (Dehne et al.,

2012).

The first approach to use random time-dependent travel times rather than a

deterministic framework was proposed by Hall (1986). They first showed that the

standard shortest path algorithms fail in this setting. Then they combined branch-and-

bound and K-shortest paths techniques to determine the earliest expected arrival time.

Miller et al. (1994) provided an alternative to this approach by focusing on the least

possible time. Wellman et al. (1995) further gave an approximation algorithm which

produces optimal paths under time-dependent uncertain costs.

Many of the above studies solve 1-to-all shortest paths. However, they can be

applied for solving all-to-1 SPP by small modifications or reversing the time (Dean,

2004b). Moreover, Daganzo (2002) showed the reversibility of the TDSPP. Delling and

Wagner (2009) reviewed TDSPP giving the focus to FIFO networks. In addition, we

refer to Dean (2004b) for a starting point on the efficient implementation of TDSPP

algorithms.

Chabini (1998) is the first study which is capable of minimizing a generic cost

function rather than the travel time on a time-dependent network. The study proposes an

exact method under a certain discretization scheme. The time intervals are discretized

into time points and a static network is obtained by using a time-space expansion. To

find the minimum cost all-to-1 paths for all departure times, a backward labeling

algorithm is implemented. The algorithm visits the entire time-space network. Note that

Pallottino and Scutellà (1998) also present a similar chronological algorithmic paradigm

called Chrono-SPT which visits only the non-redundant portion of the network.

However, the objective function is the minimization of the travel time rather than a

generic cost minimization.

To the best of our knowledge, Wen et al. (2014) is the only heuristic approach to

find the minimum cost path on a time-dependent network. They proposed two Dijkstra-

11

based heuristic methods namely Heuristic 1 and Heuristic 2. Heuristic 1 first applies DA

but, on the contrary, keeps all the labels at the intermediate nodes. Next, the potential

labels that are likely to improve the total cost are identified. Then, DA is run starting

from each potential label and the final solution is obtained by selecting the best of the

solutions. Heuristic 2 extends DA by dividing the time horizon into time intervals and

keeping the minimum cost label within each interval. Then, all of the labels

corresponding to each time interval are carried to the adjacent nodes increasing the total

number of labels dramatically. They suggested putting a limit on the total number of

labels at each node to circumvent this computational burden.

The details of the algorithm proposed in Chabini (1998) and Heuristic 2 in Wen et

al. (2014) will be given in Section 2.5. In what follows, we discuss the basic concepts in

TDSPP which are also applicable to GPP.

2.3 Preliminaries

2.3.1 FIFO Property and Cost Consistency

The FIFO property can be formally defined as follows: for each time pair � and �� if

� < �� implies ���(�) + � < ���(��) + �′ , where ���(�) is the travel time of reaching

node � departing from node � at time �, then FIFO is said to be valid on arc (�,�). If all

the arcs on a network satisfy the FIFO property, then the network is said to be a FIFO-

network; and non-FIFO otherwise. Note that alternative terms such as non-passing

property (NPP), non-overtaking property or time-consistency are also used in the

literature.

There is an ambiguity in the literature concerning the definition of the FIFO

property. On a real transportation network, the FIFO property should hold when the arcs

along a single path are taken into account individually. However, multiple paths may

exist between the origin and destination; and a vehicle departing later from the origin

may arrive earlier at the destination node through a different path. This situation is

reasonable and does not violate the FIFO property on the individual arcs. Nevertheless

Orda and Rom (1990) considers this situation described in the example in Table 2.1 as a

violation of the FIFO property.

12

Table 2.1. Examples provided in Sung et al. (2000)

Start Time Path Arrival Time Travel Time
35 � − � − � 60 25
40 � − � 55 15

In this example �, �, and � correspond to the nodes. The vehicle departing from

node � at time 40 arrives at node � earlier than the vehicle departing from the same

node at time 35 but going to node � passing through node �. Although the two vehicles

use different paths, Sung et al. (2000) takes it as a violation of NPP.

In the stochastic framework, Wellman (1990) introduced the concept of

stochastic consistency (SC) inspired from the FIFO property in deterministic case. SC

simply states that one cannot improve the probability of arriving at a given time by

leaving later.

 Table 2.2 groups the deterministic TDSPP literature with respect to the FIFO

property and waiting, the details of which is given in the next section. Some of those

non-FIFO studies did not pay any attention to satisfy the FIFO property whereas others

implicitly violated FIFO by using a frozen link model (Orda and Rom, 1990) which

assumes a constant travel speed during a time interval, thus a fixed cost at the beginning

of the travel.

Table 2.2. Classification of TDSPP literature with respect to the FIFO property and

waiting

PW SoW SuW UW

FIFO

(Cooke and Halsey, 1966),
(Kaufman and Smith,

1990), (Dreyfus, 1969),
(Kaufman and Smith,

1993)
(Horn, 2000), (Kanoulas et
al., 2006), (Delling, 2008),

(Dean, 2004b), (Sung et
al., 2000), (Dell’Amico

et al., 2008), (Dehne et al.,
2012), (Miller et al.,

1994), (Chabini, 1998)

(Cai et al.,

1997)

(Cai et al., 1997),
(Ahuja et al., 2002),
(Ahuja et al., 2003),

(Dean, 2004a),
(Dell’Amico et al.,
2008), (Wellman et

al., 1995)

Non-FIFO

(Orda and Rom, 1990),
(Ziliaskopoulos and
Mahmassani, 1993),

(Halpern, 1977),
(Daganzo, 2002), (Delling
and Wagner, 2009), (Hall,

1986)

(Orda and
Rom, 1990),

(Orda and
Rom, 1991)

(Orda and Rom,
1990), (Orda and

Rom, 1991)

13

Kaufman and Smith (1990) mentioned the possible violation of FIFO in situations

where the speed is a function of the number of vehicles on the arc or the network

includes traffic lights. They pointed out that the effect of the latter case is relatively

small as it is hard to evaluate the exact moment at which the driver arrives at the traffic

lights. On the contrary, the elastic link (Orda and Rom, 1990) or the flow speed (Horn,

2000; Sung et al., 2000; Ahuja et al., 2002; Ahuja et al., 2003; Dean, 2004a; Kanoulas et

al., 2006) models consider the speed variations during a time interval, which leads to a

more realistic approach on real transportation networks.

The cost counterpart of FIFO is referred to as cost consistency (CC) which states

that leaving a node earlier cannot cost more than leaving it later (Pallottino and Scutellà,

1998). Pallottino and Scutellà (1998) separated the CC calculation on FIFO and non-

FIFO arcs. Let ���(��) be the cost of the travel when node � is departed at time �� ,

��(��) be the unit waiting cost at node � at time �� and �� = �� + ���(��), �� = �� +

���(��). A FIFO arc (�,�) is also a CC arc if for any time pair �� < ��:

 ���(��) + ∑ ��(��)(���� − ��)���
��� ≤ ���(��), (1)

whereas for a non-FIFO arc (�,�), the condition to be satisfied is given as:

 ���(��) ≤ ���(��) + ∑ ��(��)(���� − ��)���
��� . (2)

The inequalities (1) and (2) evaluate the costs at the time of latest arrival. That is,

the early arriving vehicle is also subject to waiting with time-dependent cost until the

arrival of the other vehicle. On the other hand, Ziliaskopoulos (1994) evaluates the costs

according to the time of the earliest departure. After the departure of the first vehicle,

the late departing vehicle is subject to waiting cost. The CC condition is given as:

 ���(��) ≤ ���(��) + ∑ ��(��)(���� − ��)���
��� . (3)

In our study the CC concept is independent of the FIFO condition. We solely take

into account the cost at the time of the departure, disregarding any waiting if allowed.

So, an arc is said to be CC if for any time pair �� < ��:

14

 ��(��) + ���(��) ≤ ��(��) + ���(��), (4)

where ��(��) refers to the cumulative cost at node � at time ��.

Pallottino and Scutellà (1998) stated that domination rules can be used on a FIFO-

network which is also CC in order to decrease the labels under consideration. Among

two labels the one with higher time and higher cost is dominated by the other. No such

domination rules hold if the network is either FIFO or CC but not both. However, if the

network on hand is a FIFO-network, than it exhibits several properties that can be

exploited to improve the solution algorithms (Dean, 1999).

Finding the minimum-time path on a non-FIFO network is NP-hard (Orda and

Rom, 1990) whereas the Bellman’s principle of optimality (Bellman, 1958) is valid on a

FIFO network and the fastest path can be found in polynomial time (Kaufman and

Smith, 1993). This optimality principle is also referred to as the concatenation of paths.

A shortest path is concatenated if each of its sub-paths is also a shortest path between

the source and the intermediate nodes for the same starting time (Orda and Rom, 1990).

GPP satisfies the FIFO property but CC may not hold. Thus, we may end up with

nonconcatenated paths. Different examples will be presented in Section 2.4.

The minimum-cost path problem can also be shown to be NP-hard by a reduction

from the constrained SPP even if all arc costs are static but only one has time-dependent

cost (Dean, 2004b). Ahuja et al. (2002) discussed some polynomially solvable realistic

special cases.

2.3.2 Waiting/Non-waiting cases

Waiting (or parking) and delaying the start of the travel may be advantageous from the

(time-dependent) cost point of view. If the cost represents the travel time, waiting may

be preferable only on non-FIFO networks. Same is valid for a generic cost function (not

including waiting time) on non-CC networks. If permissible, visit times (time windows)

for each node are introduced. In that case, waiting can be observed on FIFO or CC

networks as well.

Note that a node on the network may refer to a road junction or a landmark where

the speed changes (including the departure and arrival nodes). Keeping this in mind,

there are four different cases concerning the waiting concept:

- Prohibited waiting (PW): waiting is not allowed.

- Source waiting (SoW): waiting is allowed only at the source node.

15

- Subset waiting (SuW): waiting is allowed only at a subset of the nodes.

- Unrestricted waiting (UW): waiting is allowed at any node.

If waiting is assigned a cost then a solution method that models unrestricted

waiting can be used to solve the other three cases by setting the cost to infinity where

waiting is not allowed.

Along the above mentioned location dependent waiting, the waiting cases can be

further divided into sub-groups according to the duration of the waiting. Waiting in

forms of parking may be restricted to a limited amount of time or may be prohibited in

certain time intervals. Also when modeling, if a parking facility is located on an arc

between two nodes, then the facility is introduced as a new node creating two new arcs

(Halpern, 1977). The classification of the relevant literature is given in Table 2.2.

2.3.3 Time-Space Network

One approach to study the discrete dynamic shortest paths is to use the so-called time-

space network, where the network comprises a node for each node-time unit pair in the

original graph. Arcs are included taking the travel times into account. However, it is also

possible to work directly on the given network by holding multiple cost labels on nodes

(Ahuja et al., 2002). The latter alternative arises from practical issues. The main

drawback of time-space networks is the increase in the input size. The new network is

� + 1 times larger than the original where � + 1 is the number of discrete time points.

This makes the time-space network impractical for large scale road networks (Delling et

al., 2009). A sample network and its corresponding time-space network are given in

Figure 2.1.a and Figure 2.1.b. The travel times on the arcs (A-B), (A-C) and (B-C) are

set to 30, 20 and 10 minutes respectively.

Figure 2.1. A sample network (a) and its corresponding time-space network (b)

A

B

0 10 20 30 40

Time (minutes)

C

Nodes

A

B

C

(a) (b)

16

2.4 Problem Description

The GPP problem can be defined on a time-dependent directed network with additional

time-dependent cost ��(�, �, �, �), where � = {1,2, … �} is the set of nodes, � ⊆ �x�

is the set of arcs, � and � are positive valued functions. Each arc (�, �) ∈ � is

associated with travel time function ���(�) ∈ � and cost function � ��(�) ∈ � which

specify the travel time and the cost of the travel between � and � departing at time �,

respectively, where � is a time variable in a time domain. Although we consider the

greenhouse gas (GHG) emission of a vehicle as the cost of the travel within this context,

the problem can be generalized for any non-negative cost function. Note that both

���(�) and � ��(�) are equal to ∞ (or a sufficiently large number) ∀(�, �) ∉ � or

∀� ∈ (�, ∞) where � is an upper bound on the length of the planning horizon. This is a

reasonable assumption as all the practical problems have an upper bound.

In addition, discontinuities concerning the cost function might be observed in real

life applications. These might arise due to closure or opening of a section of the road in

a certain time interval due to the regulations for the vehicle type or existence of traffic

lights, especially in urban context. These finitely many points can also be modeled by

setting the cost in the relevant non-overlapping intervals to infinity (Dell’Amico et al.,

2008).

The European Environment Agency developed models to estimate the speed

dependent fuel consumption (EMEP/CORINAIR, 2007). These models were used to

obtain the fuel consumption curve for diesel-powered light commercial vehicles as

depicted in Figure 2.2. Due to the structure of the cost function, the principle of

optimality is not valid in GPP. So, the final greenest paths do not form a tree.

Let � denote the source node. A feasible path from � to � is an ordered set of

nodes (�, ��, ��, … , �). GPP seeks for the greenest path on �� from � to a particular

node � ∈ �, assuming that we begin the trip at � ∈ [0, �]. Note that, by setting � equal

to �, the GPP can be reduced to TDSPP which determines the fastest path between

two predetermined nodes on �.

With every arc and time interval is an associated speed value. It may be

advantageous to prefer a slower but more cost efficient speed rather than travelling at

the maximum speed that the network topology permits. This will be further discussed in

Chapter 4.

17

Figure 2.2.The relationship between speed and fuel consumption for a light duty diesel

vehicle (Eglese and Black, 2010)

Another characteristic of the GPP that makes it hard to solve is that there is no

direct correlation between the cumulative travel time and the GHG emission. In other

words, no pattern exists for the greenest path. In the following, we will depict different

scenarios to further analyze these characteristics of the problem. In each figure, the

numbers in parentheses show the arc lengths whereas the numbers in brackets refer to

the speed on an arc in the corresponding time interval. We assume that the GHG

emission quantities at different speeds are as given in Table 2.3.

Table 2.3. GHG emissions at different speeds

Speed 20 30 40 50 60 70 80

GHG emission (g/km) 1.4 1.2 0.9 0.8 0.5 1.7 1.8

The planning horizon is divided into two equal intervals of length 1 time unit,

namely �� = [0,1] , �� = (1,2] . One can assume that �� = (2, ∞) and the GHG

emission corresponding to that time interval is equal to infinity.

Figure 2.3 and Table 2.4 give the details of scenario 1. Two alternative paths lead

to internal node 2: path 1.1 visits node 1 whereas path 1.2 arrives at node 2 earlier but

with a higher cost (GHG emission). However, as path 1.1 arrives later, the travel from

intermediate node 2 to destination node 3 falls into the second time interval where the

travel speed is less efficient. Thus, the path with higher cost and earlier time to node 2

results in less cost and earlier time when the arrival to node 3 is concerned.

F
ue

l
co

n
su

m
p

ti
on

 (
g

/k
m

)

Speed (km/s)

0 20 40 60 80 100

140

130

120

110

100

90

80

70

60

50

18

Figure 2.3. Sample network for scenario 1.

On the contrary, the travel speed in the second time interval on arc (2-4) is more

efficient compared to that in the first interval. This makes the arrival within the second

time interval more attractive. Accordingly, the final cost at the destination node 4 is

lower on path 1.1.b. The path with lower cost yet later time in the previous stage yields

lower cost and later arrival time at the destination.

Table 2.4. Calculations for scenario 1

Path Detail
GHG

emission
Time

1.1 0-1-2 28.0 0.70
1.2 0-2 32.0 0.50
1.1.a 0-1-2-3 69.6 1.80
1.2.a 0-2-3 64.0 1.00
1.1.b 0-1-2-4 38.4 1.07
1.2.b 0-2-4 46.0 1.00

Figure 2.4. Sample network for scenario 2.

Scenario 2 is depicted in Figure 2.4 with calculations in Table 2.5. This scenario is

similar to scenario 1 from the cost point of view. But in this case, path 2.1 arrives at the

0

1

2 4

3

 (10)
[20][60]

 (17.5)
[50][20]

 (40)
[80][20]

 (17.5)
[50][20]

 (40)
[80][60]

0

1

2

3

4

 (25)
[50][20]

 (40)
[80][60]

 (25)
[50][20]

 (40)
[40][20]

 (40)
[80][60]

 (40)
[80][30]

19

intermediate node 2 later than path 2.2 due to its visit to node 1. As the speed in the

second time interval is more efficient on arc (2,3), the cost at the destination node via

path 2.1.a is less than the one via path 2.2.a. In summary, the path with higher cost and

later time in the previous stage results in lower cost and later time at the destination.

Table 2.5. Calculations for scenario 2

Path Detail
GHG

emission
Time

2.1 0-1-2 40.0 1.00

2.2 0-2 32.0 0.50

2.1.a 0-1-2-3 60.0 1.67

2.2.a 0-2-3 64.0 1.00

2.1.b 0-1-2-4 88.0 1.75

2.2.b 0-2-4 64.0 1.00

Moreover, lower cost path at any intermediate node may still have lower cost at

the destination. The destination node 4 has speed values of 80 and 30 in time intervals 1

and 2, respectively. This helps the early arriving path to preserve its lower cost relative

to the other. In this case, the path with lower cost and earlier time in the previous stage

gives lower cost and earlier time at the destination.

Figure 2.5. Sample network for scenario 3.

Scenario 3 in Figure 2.5 further extends the previous scenarios to illustrate that the

gain may not be immediately observed on the following arc. Path 3.2 visits intermediate

node 1 before visiting node 2. Then, both paths visit node 3 before reaching the

destination node 4. The speed efficiency is the same in both intervals on the arc (2,3).

The less efficient speed on the first interval of arc (3,4) causes path 3.1 to have higher

cost, as given in Table 2.6. So, the path with higher cost and later time at two

consecutive intermediate nodes results in lower cost and later time at the destination.

0 3 4

 (30)
[80][60]

2

1

 (10)
[40][20]

 (20)
[80][60]

 (25)
[50][50]

 (10)
[40][20]

20

Table 2.6. Calculations for scenario 3

Path Detail
GHG

emission
Time

3.1 0-1 16.0 0.25

3.2 0-1-2 18.0 0.50

3.1 0-1-2 36.0 0.75

3.2 0-1-2-3 38.0 1.00

3.1 0-1-2-4 59.0 1.16

3.2 0-1-2-3-4 53.0 1.50

Figure 2.6. Sample network for scenario 4.

Finally, scenario 4 in Figure 2.6 and Table 2.7 shows that no pattern is valid in

GPP and no dominance can be obtained between time-cost pairs. Among the three paths,

the one whose cost is the second highest at intermediate node 3 gives the least cost path

to destination node 4.

Table 2.7. Calculations for scenario 4

Path Detail
GHG

emission
Time

4.1 0-3 32.0 0.50

4.2 0-2-3 30.0 1.00

4.3 0-1-3 28.0 0.70

4.1 0-3-4 46.0 1.00

4.2 0-2-3-4 35.0 1.16

4.3 0-1-3-4 38.4 1.07

These scenarios also emphasize the fact that the optimal paths are not necessarily

concatenated. In other words, the optimal paths do not form a tree. For example,

0

1

3

2

4

 (30)
[60][50]

 (10)
[20][60]

 (17.5)
[50][20]

 (40)
[80][60]

 (30)
[60][50]

 (17.5)
[50][20]

21

consider scenario 1.a where the optimal path to node 2 is (0-1-2) while the optimal path

to node 4 is (0-2-4), not (0-1-2-4).

The scenarios are generated to exhibit the cost behavior of different cost-time

combinations. For illustrative purpose, we utilized some extreme cases such as the

speed jumping from 30 to 80 or vice versa from one time interval to another. Although

such jumps can be observed in real life when the time intervals are long, smoother

increments or decrements are more common. For a more realistic model, one may

shorten the duration of the time intervals while using a discrete-time approach.

2.5 Solution Methods on the TDMCP

In this section we first give a brief explanation of Wen et al. (2014). Then, we give

implementation details of our proposed heuristic followed by the exact methods under

the discretization scheme.

2.5.1 Heuristics

2.5.1.1 Wen et al. (2014)

The Heuristic 2 method of Wen et al. (2014) is an extension of DA to the time-

dependent case where the objective is to minimize a generic cost function. They keep

the minimum cost label within each interval analogous to keeping the shortest distance

label at each node in DA. When a node is selected from the queue, all the labels on all

intervals are compared with the current labels on an adjacent node in the corresponding

time interval. If the total cost of the current label carried to the adjacent node is less than

the label at the adjacent node in the same time interval, the label on the adjacent is

replaced. We refer this process as the evaluation of the labels.

Figure 2.7 gives the sample network in Wen et al. (2014) where the minimum cost

path from node A to node E is sought. Evaluated labels are shown near the relevant

nodes and the kept labels are given in bold. The numbers on the arcs represent the cost

and the travel time (in minutes) in different time intervals. Each time interval spans a

length of 60 minutes. That is, the first time interval limits are (0,60], the second time

interval limits are (60,120] and so on. If a node is visited at different time intervals, then

all the corresponding labels are kept at this node, unless the total number of labels has

reached the maximum label limit. Accordingly, node C is visited from node A and B in

intervals 1 and 2 respectively and thus, both of the labels C1 and C2 are kept and

22

Figure 2.7. Example for Heuristic 2 in Wen et al. (2014).

carried to the adjacent node E. However, as the arrival times for both labels C1 and C2

at node E fall into the time interval 2, only the label with minimum cost, namely E1, is

kept. Applying the same approach, only label D1 is kept at node D and carried to node

E. The best solution can be obtained by comparing the costs of the labels on node E.

2.5.1.2 The Greenest Path Algorithm

The Greenest Path Algorithm (GPA), also built upon DA, finds minimum cost paths

from the source node � to all other nodes in a network with nonnegative arc costs.

Similar to Wen et al. (2014), the algorithm maintains a cost label �(�, �), an upper bound

on the minimum cost path length to node � arriving in time interval �, with each node �

for every time interval in [0, T] where node � can be visited.

The main novelty with the algorithm comes from the usage of upper bounds to

direct the search towards the sink node. We decrease the search space using upper

bounds for the intermediate solutions. We implemented two kinds of bounds;

i) On the actual cost (AC): If the cost of an intermediate solution is higher than

the upper bound (����), then the label is fathomed.

ii) On the potential cost (PC): If the sum of the minimum possible cost of

reaching from the current node to the sink node (����) and the actual cost is

higher than the upper bound, then the label is fathomed.

A

No Cost Time Time Interval
A1 0 0 1

B

C E

D
No Cost Time Time Interval Previous
B1 2 50 1 A1

No Cost Time Time Interval Previous
C1 4 50 1 A1
C2 3 70 2 B1

No Cost Time Time Interval Previous
E1 5 80 2 C1
E2 7 120 2 C2
E3 5.5 100 2 D1

No Cost Time Time Interval Previous
D1 4.5 80 2 C1
D2 5 120 2 C2

2 / 50

4 / 50

1 / 20

0.5 / 30
 2 / 50

 1 / 30
 4 / 50

1 / 20

23

The upper bound can be found using a simple heuristic. In addition, to find the

minimum possible cost at an intermediate node, a similar heuristic can be used. First the

shortest path to the sink node is obtained. Then, the green cost of the path is calculated.

As we must use estimation on the speed values, we assume that the entire path is

traversed with the most efficient speed taking the GHG emissions into account.

Figure 2.8. Example for multiple labels in a time interval

In Section 2.4, we show that no pattern exists for the greenest path problem. So,

keeping only the minimum cost label may yield a suboptimal path whereas increasing

the number of labels kept in a single time interval may improve the solution quality. We

give an example in Figure 2.8 which shows a portion of the network in Figure 2.7 with

the new added node F and the corresponding arc (E-F).

If we allow two labels at a node for the sample in Figure 2.8, also label D2 would

be kept and carried to node E, arriving in time interval 3. Among the three labels in

interval 2, label E2 that has the highest cost is eliminated. When we evaluate labels E1,

E3 and E4 for node F, we observe that label E4 yields the optimal solution with cost 7.

In case of keeping only a single label with the minimum cost, we would not obtain this

solution but a suboptimal solution with cost 8. In this example, we adopt keeping the

best two labels to deal with multiple labels in a single time interval. As an alternative,

first two labels (in a FIFO manner) can be kept. In each case, a limit on the number of

labels in a particular time interval can also be implemented to distribute the labels as

smooth as possible over the planning horizon.

E

D

No Cost Time Time Interval Previous
E1 5 80 2 C1
E2 7 120 2 C2
E3 5.5 100 2 D1
E4 6 140 3 D2

No Cost Time Time Interval Previous
D1 4.5 80 2 C1
D2 5 120 2 C2

1 / 20

F

No Cost Time Time Interval Previous
F1 8 120 2 E1
F2 8.5 140 3 E3
F3 7 170 3 E4

4 / 50
3 / 40
1 / 30

24

The pseudo code of the algorithm is given in Figure 2.9. ��
� refers to the label at

node � at time � where ��
�.���� refers to the cost of that label. ��� is the total number of

labels at node �. � is the queue where the labels that are to be evaluated are kept. When

a label is pulled out of the queue, all of the labels on the corresponding node are

evaluated. Thus, to prevent re-evaluation of the labels, we use an index for each node to

keep record of the last evaluated label.

Also it is important to distinguish the terms “time bin” and “time interval”. Time

bin is pertained to a time-dependent instance. It refers to a certain length of time which

differs from others by a different speed value. On the other hand, being a parameter of

the GPA, time interval is used to limit the number of labels that are kept in a certain

length of time. Note that all the time bins and all the time intervals can be either equally

distributed in length or otherwise among themselves.

Algorithm 2.1. Greenest Path
1 ��

�=∅ , ���=0, ∀� ∈ �, ∀� ∈ �, �={��
� },

2 Solve Dijkstra to obtain ����
3 Solve Reverse Dijkstra to obtain ���� [�], � ∈ � array
4 Add ��

� to �
5 while |�|> 0
6 � = � − {��

�} where ��
�.����=min{��

�.����:� ∈ �, � ∈ �}

7 for all (�, �) ∈ �
8 if |���|< �
9 for every label ��

�, ∀� ∈ �
10 Calculate cost at �, ��=��

�.���� + � ��(�)

11 if (�� > ���� or �� + ���� [�] > ����)

12 continue
13 else if (�

�

��� ��(�)
 doesn’t exist)

14 Set �
�

��� ��(�)
 as a new label with cost ��

15 else if (�
�

��� ��(�)
.���� > ��)

16 Replace �
�

��� ��(�)
 with the new label with cost ��

17 endif
18 endfor
19 Endif
20 Endfor
21 Endwhile

Figure 2.9. Greenest path algorithm

25

2.5.2 Exact methods under the discretization scheme

To the best of our knowledge, no optimal solution methodology exists for GPA.

In this section we briefly give details of two approaches that can be considered as exact

methods only under a certain discretization scheme. The first method belongs to

Chabini (1998). As the second method, we discuss optimality of GPA under certain

assumptions.

2.5.2.1 Decreasing Order of Time Algorithm of Chabini (1998)

Chabini (1998) proposed a method based on backward (in time sense) labeling

algorithm to minimize a generic cost function. In his Decreasing Order of Time

Algorithm (DOT), to find the all-to-1 optimal paths for all departure times he

implemented a discrete technique. Thus, to comply with this discrete nature of the

algorithm, a minimum time unit (referred to as MTU from now on) should be defined

and all time values should be a multiple of this unit. To prevent a travel time of zero

(when the travel time is smaller than MTU), the values are rounded up such as;

� = ⌈�/���⌉∗ ���.

The method is mainly proposed for sufficiently small MTU. So, the optimal

solution is valid only under this discretization scheme. There cannot be any time instant

that is not a multiple of MTU. Thus, when we use bigger MTU values, the method

becomes a heuristic. Note that the magnitude of the MTU directly affects the precision

of the travel times hence the solution quality. However, we cannot claim that it is

always inversely proportional to the solution quality. Following are 2 cases where a

bigger MTU results in less and more cost respectively. Table 2.8 shows the calculations.

In the real scenario, the first time bin ends in the 55th second when the speed on

the arc changes. The distance between the nodes is 2 kilometers. Two different MTU

values that are tested are 5 and 50 seconds.

Case 1- Bigger MTU-lower cost: In this scenario the time bin limit remains the same for

MTU=5 as rounding yields no change. Time bin limit is rounded up to 100 seconds for

MTU=50. The speeds in the first and second time bin are 50 and 40 km/h respectively.

When MTU=50, the travel in the first time bin (0-100 seconds) causes 267.53 g

emission. The next time bin with a fuel less efficient speed causes 131.59 g emission

26

Table 2.8. Examining different MTU values

 Case 1 Case 2

* Emission costs
for speed values
of 40 and 50
km/h are 215.32
and 192.63 g/km
respectively.

 MTU=50 MTU=5 MTU=50 MTU=5
Travel in the
1st time bin

Start Time (s) 0.00 0.00 0.00 0.00

Speed (km/h) 50 50 40 40

End Time (s) 100.00 55.00 100.00 55.00

Distance (km) 1.39 0.76 1.11 0.61

Travel Time (s) 100.00 55.00 100.00 55.00

Cost (gr)* 267.53 147.14 239.01 131.35
Travel in the
2nd time bin

Start Time (s) 100.00 55.00 100.00 55.00
Speed (km/h) 40 40 50 50
End Time (s) 155.00 166.25 164.00 155.00
Distance (km) 0.61 1.24 0.89 1.39
Travel Time (s) 55.00 111.25 64.00 100.00
Cost (gr)* 131.59 266.16 171.44 267.75

TOTAL Travel Time (s) 155.00 166.25 164.00 155.00

Cost (g)* 399.12 413.30 410.44 399.10

making a total of 399.12 g. On the other hand when MTU=5, first and second time bin

costs sum up to 413.30 g, 14.18 g higher compared to MTU=50. Rounding the limit of

the first time bin (with a more fuel-efficient speed) up to 100 seconds increases the

travel time and so the distance traveled in the first time bin. Having traveled longer

distance with a more fuel-efficient speed yields a lower cost.

Case 2 - Bigger MTU-higher cost: On the contrary to the first case, the first time bin has

a less fuel-efficient speed with 50 km/h vice versa 40 km/h in the second time bin. As a

result, rounding the time bin limit up to 100 seconds causes traveling longer with a less

fuel-efficient speed. So the total cost when MTU=50 is 11.34 g higher than the total cost

when MTU=5.

As we investigate only a single arc in these examples, we cannot make any

comment on the performance on a path. However, as MTU decision affects the costs, it

is clear that the next node to visit decision will also change. Despite the decreasing

precision, one advantage of using a larger MTU is the less amount of computational

burden. For a planning horizon of 8 hours (28,800 seconds) on a 100-node time-

dependent network, MTU=5 seconds and MTU=1 minute result in 576,000

(28,800/5*100) and 48,000 (28,800/5*100) computations respectively.

Having all-to-1 paths for all departure times at the end of the algorithm may seem

advantageous. Nevertheless, when only the minimum cost path starting from a single

27

node is sought, this information becomes redundant. In addition, on a real network

where the number of nodes may reach up to millions these calculations become

computationally intractable. Wen et al. (2014) showed that for large datasets, DOT is

less accurate and less effective compared to their proposed heuristics. Besides, they

observed that with the increasing size of the network and using a sufficiently small time

unit for discretization, memory problems are inevitable when applying DOT.

2.5.2.2 Greenest Path Algorithm

When the limits on the total number of labels and the number of labels in time intervals

are relaxed, that is, both are set to infinity, GPA becomes an optimal algorithm for the

GPP.

We first define the notation used throughout the proof. A label is a pair (�, �)

where � ∈ � and � = [0, �]. Other notation used is as follows;

� : set of permanent labels

� ̅ : set of temporary labels

�(�, �) : the cost of reaching node � at time � = [0, �], �(�, �) = ∞ ∀� > �

�(�) : adjacency list of node �

�(�, �, �) : arrival time at node � when leaving node � at time �

F(�, �, �) : cost of traveling from node � to node � leaving node � at time �

pred(�, �) : predecessor of node � when reached at time �

Proposition: GPA is optimal without any label limits

Proof: (following DA’s optimality proof) We use inductive arguments to establish the

validity of GPA. At any iteration, the algorithm has partitioned the labels into two sets,

� and �.̅ Our induction hypotheses are as follows: (i) the cost value of each label in � is

optimal, and (ii) the cost value of each label in � ̅is the cost of the minimum cost path

from the source provided that each internal node in the path lies in �. We perform

induction on the cardinality of the set �.

To prove the first inductive hypothesis, recall that at each iteration the algorithm

transfers a label (�, �) in the set � ̅with smallest cost value to the set �. We need to show

that the cost value �(�, �) of label (�, �) is optimal. Notice that by our induction

hypothesis, �(�, �) is the cost of the minimum cost path to node � at time � among all

paths that reach node � at time � and do not contain any label in � ̅as an internal label.

We now show that the cost of any path from the source node � to � that reaches at time �

28

and contains some labels in � ̅as an internal label will be at least �(�, �). Consider any

path � from the source to node � (reaching at time �) that contains at least one label in � ̅

as an internal label. The path � can be decomposed into two segments ��and ��: the

path segment �� does not contain any label in � ̅as an internal label, but terminates at a

label (�, ��), �� < � in � ̅(see Figure 2.10). By the induction hypothesis, the cost of the

path �� is at least �(�, �′) and since label (�, �) is the label with the minimum cost in �,̅

�(�, �′) ≥ �(�, �) . Therefore, the path segment �� has cost at least �(�, �). Furthermore,

since all arc costs are nonnegative, the length of the path segment �� is nonnegative.

Consequently, cost of the path � is at least �(�, �). This result establishes the fact that

�(�, �) is the cost of the minimum cost path of reaching node � at time � from the source

node.

Figure 2.10. Proving GPA is optimal

We next show that the algorithm preserves the second induction hypothesis. After

the algorithm has moved a label (�, �) to set �, the costs of some labels in � −̅ {(�, �)}

might decrease, because label (�, �) could become an internal label in the tentative

minimum cost paths to these nodes. But recall that after moving a label (�, �) to set �,

the algorithm examines each node � ∈ �(�) and if �(�, �(�, �, �)) > �(�, �) + F(�, �, �),

then it sets �(�, �(�, �, �)) = �(�, �) + F(�, �, �) and pred(�, �(�, �, �)) = � . Therefore,

after the cost update operation, by the induction hypothesis the path from node � to the

source node defined by the predecessor indices satisfies the following property: a

directed path � from the source node to node � reaching at time � is a minimum cost

path if and only if �(�, �(�, �, �′)) = �(�, �′) + F(�, �, �′) ∀(�, �) ∈ � where the vector �

represents the optimal path costs. So the cost of each label in � −̅ {(�, �)} is the cost of

�, 0

 �, �

�, �′

��

��

����(�, �)

� � ̅

29

the path subject to the restriction that each internal node in the path must belong to

� ∪ {(�, �)}□.

In the optimal version of GPA, there is a huge memory requirement as the number

of labels a single node may have is not limited. Also the number of labels on a node

increase as one advance along the path to the sink.

2.6 Computational Study

In this section, we first give details of the networks used in this study. Then, we analyze

the effect of cycles and the proposed upper bounds. We next test the effect of keeping

more than one label in a single time interval. Finally, we compare the performance of

the proposed method with Wen et al. (2014). We prohibit waiting at all nodes.

The cost (emission rate in this study) is directly related with the speed. However,

the method is not affected by the type of the cost function. In order to obtain the rate of

emission (�) per kilometer with different speeds, we use the fuel consumption function

of Hickman et al. (1999);

� = 0.0617�� − 7.8227� + 429.51

where � is the rate of emissions (g/km) for an unloaded goods vehicle on a road with a

zero gradient and � is the average speed of the vehicle (km/h).

The algorithms are coded in C# programming language and executed on an Intel

Xeon 3.30 GHz computer with 32.0 GB RAM and 64-bit operating system.

2.6.1 Synthetic and Real Networks Used in the Study

For our computational experiments, we use synthetic grid-type network instances as

well as the real road network of Washington D.C. The details of congestion generation

on both networks will be given in Chapter 3.

2.6.1.1 Synthetic Network Generation

The main parameter in these instances is � which corresponds to the size of the grid. As

a result, the total number of nodes is obtained as ��. A sample unidirectional grid-type

network is given in Figure 2.11.

For the same network structure, the direction of travel can be controlled by the

adjacency lists. For a unidirectional travel between two nodes, say from node � to node

30

�, node � should be included in the adjacency list of node � and not vice versa. Placing

node � in the adjacency list of node � makes the arc � − � bidirectional also enabling

travel from node � to node �. Note that this may lead to cycles. Also, networks with

different density levels can be created using the same node set. Figure 2.12 shows a 4-

node sample network with four different density levels used in this study. The first three

density levels are set in a uni-directional network setting whereas density level 4

Figure 2.11. A sample unidirectional grid-type network

corresponds to a bi-directional network. The total number of arcs are 2�(� − 1) ,

(3� − 1)(� − 1), (4� − 2)(� − 1) and 4�(� − 1) for density levels 1, 2, 3 and 4

respectively.

Figure 2.12. Different density levels on a sample 4-node sample network; level 1 (a),

level 2 (b), level 3 (c) and level 4 (d).

...

...

...
...

...

...

...

...

...

...

�

��

1 2 3 � − 1

(a) (b) (c) (d)

31

The source and destination nodes are set as 1 and ��. The length of each arc is

randomly generated between 100.0 m and 2.0 km. As the size of the network changes,

using a fixed planning horizon is unreasonable. Thus, in order to prevent infeasibility,

the length of the planning horizon (�) is taken as the time to traverse the shortest path

between the source and destination nodes with a speed of 5 km/h.

2.6.1.2 Real Road Network

We also use the undirected Washington DC network data of Topologically Integrated

Geographic Encoding and Referencing (TIGER) as test bed. The data includes 9,559

nodes and 14,909 arcs. The distribution of the nodes are shown in Figure 2.13.

Figure 2.13. The distribution of the nodes of the Washington DC TIGER data

2.6.2 Cycles in TDMCP networks

A real road network has cycles due to the bidirectional arcs. Figure 2.14 shows the road

network of the European side of İstanbul including only the highways. Even with the

reduced network and prohibiting U-turns, we have nine cycles each identified with a

number in parentheses. Note that we can also obtain cycles of larger sizes by taking a

combination of these cycles.

In particular, we analyze the cycle that composes the nodes �, � and � , starts

from node � and the direction of travel is from node � to node �. The length of the

32

cycle is 12.2 km where the length of each arcs is shown in brackets in Figure 2.14. For

ease of computation, we assume that we travel with a fixed speed of 61 km/h and our

time interval length is 12 minutes (i.e. the interval limits are [0,12), [12,24), and so on).

As the total time to traverse the path �- �- � is also 12 minutes, a new label will be

added for each node at each tour. Table 2.9 shows the details of the labels in the first

two cycling tours.

Figure 2.14. Sample network for cycle analysis

Table 2.9. Label details for cycle example

Label
CO2 emission
(kg)

Time
Time
Interval

Previous
Label

A1 0.00 0.00 1 -
B1 0.84 4.52 1 A1
C1 1.47 7.97 1 B1
A2 2.22 12.00 2 C1
B2 3.06 16.52 2 A2
C2 3.69 19.97 2 B2

Even if we keep only a single label in each time interval, all of these labels in

Table 2.9 will be kept. Limiting the total number of labels as in Wen et al. (2014) or

using upper bounds on the total cost as we propose will implicitly eliminate the cycles

after a certain point where the total number of the labels has reached the limit or the

total cost exceeds the upper bound respectively.

It is obvious that when waiting at nodes is allowed, cycling is never advantageous.

Assuming no waiting, cycling may help to traverse the same arc with a more fuel

efficient speed. As an example, suppose that the arc �-� is heavily congested between

(1)

(2)

(3)

(4)

(5)
(6)

(7)

(8)

(9)

A

B

C

D

[3.5]

[4.6]

[4.1]

33

7:00 and 9:00 due to the morning rush hour. Also suppose that the average speed is

fixed at 30 km/h until the end of the rush hour exactly when the average speed starts to

increase while the corresponding GHG emission decreases. A vehicle arriving at node �

at 8:53 and traveling to node � can directly traverse the arc �-� . In addition, it can first

traverse the cycle �-�-�-� in 7.97 minutes (from Table 2.9) and traverse arc �-� with

a more fuel efficient speed. In fact, after every traversal of the cycle �-�-�-�, the speed

on arc �-� increase to a more fuel efficient speed until it reaches the optimum speed

after when the traversal cost of arc �-� starts to increase. Nevertheless, every traversal

of the cycle also increases the total cost. So, it is questionable if cycling ever becomes

advantageous taking the total cost into account.

In the best possible scenario that favors cycling in Figure 2.15, the speed on the

cycle is �∗ which is the least emission generating speed whereas the speed on the first

road segment is � < �∗. After traversing the cycle, the speed on the road segment

increases while the cost of the corresponding speed decreases by ∆�. Thus, cycling is

advantageous only when ��(�∗) < �∆� where �(�) refers to the per km cost of speed

�. In other words, the total cost decrease on direct travel must be larger than the cost of

cycling. Taking real speed and cost functions into account, we set �∗ to 63.31 km/h

which is the optimal speed for the convex cost function of Hickman et al. (1999). We

set the distances � and � as 10 km and 5 km respectively. Analyzing the real data in

Section 2.6.1, we observe that the largest speed increase rate is 5.94 (km/h)/min. Again

for the best possible scenario, we take the speed of direct travel as 20 km/h whereas it

increases to 48.14 km/h until the cycle is traversed. So, the final costs of cycling and

direct travel is 2875.28 g and 2979.50g respectively. This shows that cycling, in theory,

can reduce the total cost.

Figure 2.15. Effect of cycling on single arc

In spite of its theoretical gain, cycling might increase the number of labels kept

without guaranteeing any improvement on the solution. Yet, in order to prevent the

cycles, a specific mechanism should be implemented. One trivial solution is to check

�

�

34

the whole path each time when a node will be added. Taking the size of the real road

networks into account where the number of nodes on a path can easily reach thousands,

this approach is very time consuming and impractical. Instead, a predetermined number

(�) of the previous nodes can be checked to prevent cycles up to a size of �. We test the

effect of the size of � on a sample network with grid size equal to 100 where � varies

between 0 and 200. Here, � = 0 means that no cycle check is implemented. The

average computational time over 30 runs are summarized in Figure 2.16. The

computational time increases with the increasing value of �. We also observed that only

4.14% of the labels include a cycle.

Figure 2.16. Effect of � on computational time

Due to the theoretical gain by cycling, the computational burden to check for the

cycles and the low rate of the cycles that are observed, we do not implement a cycle

check in our algorithm. Also, the usage of upper bounds further decreases the possibility

of cycling indirectly with the help of decreasing number of labels as it will be noted in

the next section.

2.6.3 Effect of Upper Bounds

In this section, we test the two bounds proposed in Section 2.4. � is set to 100 and the

upper bound is calculated using DA. The minimum possible cost at an intermediate

node is found by first solving a reverse DA, and then calculating the green cost of the

path assuming that the entire path is traversed with the most efficient speed.

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200

Computational
Time (ms)

�

35

Table 2.10. Speeding-up the algorithm using upper bounds

 Upper Bound
None AC PC AC & PC

Computational Time (s) 94.8 37.5 6.3 6.1
Emission (g) 14,790.7 14,790.7 14,790.7 14,790.7
Number of labels 7,592,858.3 2,222,351.7 283,153.4 283,153.4

Four different configurations are tested which are summarized in Table 2.10. The

second column gives the average results of 5 runs for the algorithm without using any

bound. Third and the fourth column show the results of the bounds on the actual cost

(AC) and the potential cost (PC) respectively whereas the last column gives the result

when using both of the bounds. To best analyze the effect of the upper bounds, the

number of labels is not limited in this test. Also note that, all settings perform the same

from emissions point of view as no limit exists on the number of labels.

Using AC reduces the computational time by 60.4% and the number of labels by

70.7% while keeping the cost at the same level. On the other hand, using PC

dramatically decreases the number of labels, hence the computational time, by 96.3%

and 93.3% respectively. In addition, using AC along with PC does not further contribute

to the number of labels but slightly decreases the computational time. Thus, we use both

of the bounds.

Figure 2.17. Distribution of the number of labels

Number
of labels

1-10 11-313 314-625 626-937 938-1250

0 1-57 58-114 115-171 172-230

(a) (b)

36

Figure 2.17 shows the distribution of the number of labels on the network without

using any bound and with using both bounds in (a) and (b) respectively. The minimum

cost path from the node at the south-west corner to the node at the north-east corner is

sought in each. Towards the north-east corner, the possible time intervals to visit

increase as it is impossible to visit some nodes early in the horizon. Thus, the number of

the labels increases towards the sink node in a nearly circular way centered at the sink

node. But, when we analyze the distribution of the labels when using PC and AC

bounds together, we see a pattern directed to the sink node. The number of the labels

located near the dashed direct line from the source the sink node (Figure 2.17.b) is

relatively high while labels kept decrease as we move away from the line. No labels are

kept for the nodes in the north-east and south-west region.

It is clear that the usage of a bound decreases the number of labels and prevents

decentralized exploration while directing the search towards the sink node. In addition,

this decrease in the number of labels helps to decrease the computational effort. Thus, in

the remaining experiments, both PC and AC bounds will be used.

2.6.4 Comparing Heuristics

Chen et al. (2007) state that when the graph is sparse (i.e., � = O(�), which is the case

for most of the road networks), implementing DA using a heap that supports only Insert

and Delete-Minimum operations runs significantly faster than any implementation that

also incorporates the Decrease-Key operation. They also note that this performance gap

narrows as the graph becomes denser. Keeping this in mind, we used a basic heap

implementation for our proposed method as well as Wen et al. (2014), both of which are

based on Dijkstra’s method.

We set �=100 and test four different density schemes given in Section 2.6.1.1. In

other words, all the instances have 10,000 nodes whereas the total numbers of arcs are

19,800, 29,601, 39,402 and 39,600 for density levels 1, 2, 3 and 4 respectively. For the

number of labels, we use 1, 10, 100 and 1,000. The lengths of the time intervals are set

to 30, 60 and 600 seconds. Although using multiple labels in a single time interval can

yield better solutions in theory (Figure 2.8), we did not observe such a pattern in our

preliminary tests. Thus, we keep a single label in each time interval.

37

Table 2.11. Comparison for instances with density = 1.

Time
Interval
Length

Label limit
1 10 100 1000

WÇE GPA WÇE GPA WÇE GPA WÇE GPA
30 OF 26.890 25.393 26.451 25.261 25.871 24.736 24.818 24.637

CT 3.4 3.2 4.5 3.5 14.8 8.8 78.5 13.1
60 OF 26.890 25.393 26.186 25.164 25.230 24.667 24.637 24.637

CT 1.5 1.7 2.5 2.3 8.5 4.2 28.8 4.7
600 OF 26.890 25.393 24.940 24.659 24.637 24.637 24.637 24.637
 CT 0.2 0.2 0.5 0.3 1.1 0.3 1.0 0.3

Table 2.11, Table 2.12, Table 2.13 and Table 2.14 compare the objective function

(OF) in kg and computational time (CT) in seconds of Wen et al. (2014) (WÇE) and

GPA for instances with density 1, 2, 3 and 4 respectively. The objective function

increases with the increasing shortest path distance, though they are not always directly

proportional. The best average objective function value obtained for instances with

density=1 is 24,637 whereas it is 14,820 for instances with density=2 where shorter

paths can be obtained through the diagonal arcs.

Table 2.12. Comparison for instances with density = 2.

Time
Interval
Length

Label limit
1 10 100 1000

WÇE GPA WÇE GPA WÇE GPA WÇE GPA
30 OF 16.596 15.129 16.406 15.129 15.867 14.931 15.083 14.820

CT 2.0 1.8 2.8 2.0 9.9 5.7 64.6 7.6
60 OF 16.596 15.129 16.379 15.048 15.696 14.820 14.820 14.820

CT 0.8 1.0 1.4 1.0 6.4 3.0 34.9 2.8
600 OF 16.596 15.129 15.095 14.820 14.820 14.820 14.820 14.820
 CT 0.1 0.1 0.5 0.3 2.1 0.2 2.0 0.2

In all instances, the computational time decreases with the increasing time interval

length and decreasing label limit. When the label limit is set to 1, both algorithms

become insensitive to the changing values of time interval length.

Table 2.13. Comparison for instances with density = 3.

Time
Interval
Length

Label limit
1 10 100 1000

WÇE GPA WÇE GPA WÇE GPA WÇE GPA
30 OF 16.371 14.571 16.074 14.571 15.118 13.818 14.155 13.795

CT 1.8 1.9 2.4 1.9 9.5 8.7 82.1 13.2
60 OF 16.371 14.571 15.797 14.527 14.535 13.795 13.795 13.795

CT 0.9 0.8 1.2 1.2 6.6 3.9 52.9 4.2
600 OF 16.371 14.571 13.825 13.795 13.795 13.795 13.795 13.795
 CT 0.1 0.1 0.5 0.3 2.8 0.3 2.7 0.3

38

GPA performs better or matches the performance of WÇE in all four density

settings taking the objective function into account except when density=1, time interval

length=30, label limit=10; density=4, time interval length=30, label limit=1 and time

interval length=600, label limit=10. From the computational effort point of view, GPA

performs better with the increasing label limit. Nevertheless, WÇE can generate a

solution in shorter time in some cases, especially when density=4. When time

interval=30 and label limit=100, WÇE and GPA evaluates 1 million and 844,827 labels

respectively. In this case, the gain obtained from the elimination of labels using upper

bounds is surpassed by the computational effort used for checking the cost of the labels

against the upper bounds. When the label limit is increased to 1,000, WÇE uses nearly

all the label capacity (10 millions) whereas the total number of labels found by GPA

increase only by 18%, hence the lower computational times.

Table 2.14. Comparison for instances with density = 4.

Time
Interval
Length

Label limit
1 10 100 1000

WÇE GPA WÇE GPA WÇE GPA WÇE GPA
30 OF 27.257 27.303 27.206 27.206 26.382 25.514 25.670 25.165

CT 3.3 3.9 4.6 4.5 17.0 24.8 180.0 82.7
60 OF 27.257 27.303 26.750 26.585 26.007 25.240 25.475 25.165

CT 1.6 1.9 2.5 2.7 11.3 14.3 107.8 24.2
600 OF 27.257 27.303 25.166 25.192 25.165 25.165 25.165 25.165
 CT 0.2 0.2 0.6 0.9 6.2 1.3 8.2 1.0

The shortest path obtained by DA and the greenest path obtained by GPA for

different source-sink pairs are depicted in Figure 2.18 and Figure 2.19. Three different

congestion levels are shown with congestion level 3 being the highest level. The

shortest path goes through the highly congested region. However, the path obtained by

the GPA travels around the congested area to escape the arcs that are congested with 2

and 3 congestion levels. Nevertheless, in a setting where the free flow speed is set to 90

km/h, escaping congestion completely may also cause higher emission costs. Thus, the

greenest paths in these figures are also exposed to congestion with level 1 where more

fuel efficient speeds are used.

39

Figure 2.18. An illustration comparing GPA path and the shortest path on two synthetic

data samples 1 and 2

Figure 2.19. An illustration comparing GPA path and the shortest path on two synthetic

data samples 3 and 4

GPA path

The shortest path Congestion level 1

Congestion level 2

Congestion level 3

GPA path

The shortest path Congestion level 1

Congestion level 2

Congestion level 3

40

We also conducted experiments on the real road network of Washington, DC. The

results are summarized in Table 2.15. The performances of GPA and WÇE with the

changing values of the time interval length and label limit are in parallel with their

performances on the synthetic instances. Only when label limit is equal to 1 and the

time interval length is equal to 30, WÇE finds a better result compared to GPA.

Table 2.15. Comparison for Washington DC data.

Time
Interval
Length

Label limit
1 10 100 1000

WÇE GPA WÇE GPA WÇE GPA WÇE GPA
30 OF 6.277 6.259 6.243 6.251 6.232 6.232 6.232 6.232

CT 0.8 0.8 1.3 1.2 6.7 3.1 37.1 2.8
60 OF 6.277 6.259 6.251 6.232 6.232 6.232 6.232 6.232

CT 0.4 0.3 1.2 0.6 4.9 1.2 14.5 1.4
600 OF 6.277 6.259 6.232 6.232 6.232 6.232 6.232 6.232
 CT 0.1 0.1 0.5 0.1 1.2 0.1 1.2 0.1

In parallel with the observations on the synthetic data, the greenest paths obtained

on the Washington DC data travels around the congested area whereas the shortest path

goes through the congested center. Figure 2.20 visualizes the expansion of the

congestion and the corresponding shortest and the greenest paths. Higher level of

congestion in Figure 2.20 (b) and Figure 2.20 (c) causes the greenest path to change

towards to the western side of the city.

Figure 2.20. GPA path and the shortest path comparison on real data for three different

congestion levels

(a) (b) (c)

41

Figure 2.21 depicts the greenest and the shortest paths for eight different

geographically dispersed node pairs. The congestion levels for these networks are equal

to the congestion level in Figure 2.20 (b).

Figure 2.21. Illustration of greenest and shortest paths for 8 different node pairs

2.7 Conclusion and Future Research

With the growing concerns about the hazardous effects of transportation, sustainable

logistics operations require new ways of doing business and planning approaches to

decrease the negative impacts on the environment. Yet, finding the greenest path differs

from the traditional path finding algorithms in having no pattern towards the optimal

solution of the problem, which makes GPP a complicated optimization problem.

In this chapter, we discussed the properties of the GPP and showed the cases

where traditional algorithms fail to find the greenest path after conducting a

comprehensive literature survey. We next proposed a fast greenest path heuristic that

makes use of bounds on the solution quality. Testing the proposed method on synthetic

and real networks, we showed that GPA provides promising results. It achieved better

average results in faster time compared to the only currently available heuristic method

of Wen et al. (2014). We also showed visually how the green objective affects the

routes to escape the congestion area whenever the network topology permits. Testing

42

the sensitivity of the algorithm to the changing values of time interval length and label

limit, we reported the trade-off between the solution quality and the computational

effort.

We did not observe for any setting on any instance that the upper bound path

(shortest path) was equal to the greenest path. However, it is important to note that this

depends on the type of the instance. For an instance where the speeds on the arcs are

distributed between 50 km/h and 70 km/h and the optimal speed is 60 km/h, it is more

likely that the shortest path will be equal to the greenest path.

In this study, we did not allow waiting at any node though we presented a

classification of the literature from different waiting policies point of view. Further

research will address incorporating these different waiting policies into the GPA. In

spite of their theoretical gain, we did not observe any advantage of using cycles or

rarely observed where a label with larger time yielded a better solution in our tests on

the real network. However, to better test the effect of these concepts on the GHG

emissions in real life, we will test GPA on other real networks.

2.8 References

Ahuja, R. K., J. B. Orlin, S. Pallottino and M. G. Scutella (2002). "Minimum Time and
Minimum Cost-Path Problems in Street Networks with Periodic Traffic Lights."
Transportation Science 36(3): 326-336.

Ahuja, R. K., J. B. Orlin, S. Pallottino and M. G. Scutella (2003). "Dynamic Shortest
Paths Minimizing Travel Times and Costs." Networks 41(4): 197-205.

Bauer, R. and D. Delling (2008). SHARC: Fast and Robust Unidirectional Routing.
2008 Proceedings of the Tenth Workshop on Algorithm Engineering and
Experiments (ALENEX): 13-26.

Bellman, R. (1958). "On a Routing Problem." Quarterly of Applied Mathematics 16:
87-90.

Cai, X., T. Kloks and C. K. Wong (1997). "Time-varying shortest path problems with
constraints." Networks 29(3): 141-150.

Chabini, I. (1998). "Discrete dynamic shortest path problems in transportation
applications: Complexity and algorithms with optimal run time." Transportation
Research Record 1645: 170-175.

Chen, M., R. A. Chowdhury, V. Ramachandran, D. L. Roche and L. Tong (2007).
Priority Queues and Dijkstra’s Algorithm. Technical Report, University of Texas,
Austin.

Cooke, K. L. and E. Halsey (1966). "The shortest route through a network with time-
dependent internodal transit times." Journal of Mathematical Analysis and
Applications 14(3): 493-498.

Daganzo, C. F. (2002). "Reversibility of the time-dependent shortest path problem."
Transportation Research Part B: Methodological 36(7): 665-668.

Dean, B. C. (1999). Continuous-Time Dynamic Shortest Path Algorithms. Technical
Report, Massachusetts Institute of Technology, Cambridge.

43

Dean, B. C. (2004a). "Algorithms for minimum-cost paths in time-dependent networks
with waiting policies." Networks 44(1): 41-46.

Dean, B. C. (2004b). Shortest Paths in FIFO Time-Dependent Networks: Theory and
Algorithms. Technical Report, Massachusetts Institute of Technology, Cambridge.

Dehne, F., M. Omran and J.-R. Sack (2012). "Shortest Paths in Time-Dependent FIFO
Networks." Algorithmica 62(1-2): 416-435.

Dell’Amico, M., M. Iori and D. Pretolani (2008). "Shortest paths in piecewise
continuous time-dependent networks." Operations Research Letters 36(6): 688-691.

Delling, D. (2008). Time-Dependent SHARC-Routing. Algorithms - ESA 2008. D.
Halperin and K. Mehlhorn, Springer Berlin Heidelberg. 5193: 332-343.

Delling, D., P. Sanders, D. Schultes and D. Wagner (2009). Engineering Route Planning
Algorithms. Algorithmics of Large and Complex Networks. J. Lerner, D. Wagner
and K. Zweig, Springer Berlin Heidelberg. 5515: 117-139.

Delling, D. and D. Wagner (2007). Landmark-Based Routing in Dynamic Graphs.
Experimental Algorithms. C. Demetrescu, Springer Berlin Heidelberg. 4525: 52-65.

Delling, D. and D. Wagner (2009). Time-Dependent Route Planning. Robust and
Online Large-Scale Optimization. R. Ahuja, R. Möhring and C. Zaroliagis, Springer
Berlin Heidelberg. 5868: 207-230.

Deo, N. and C.-Y. Pang (1984). "Shortest-path algorithms: Taxonomy and annotation."
Networks 14(2): 275-323.

Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs."
Numerische Mathematik 1(1): 269-271.

Disser, Y., M. Müller–Hannemann and M. Schnee (2008). Multi-criteria Shortest Paths
in Time-Dependent Train Networks. Experimental Algorithms. C. McGeoch,
Springer Berlin Heidelberg. 5038: 347-361.

Dreyfus, S. E. (1969). "An Appraisal of Some Shortest-Path Algorithms." Operations
Research 17(3): 395-412.

Eglese, R. W. and D. Black (2010). Optimizing the Routing of Vehicles. Green
Logistics: Improving the Environmental Sustainability of Logistics. A. McKinnon, S.
Cullinane, M. Browne and S. Whiteing. London, Kogan Page: 215-228.

EMEP/CORINAIR (2007). EMEP/CORINAIR Emission Inventory Guidebook: Group
7 road transport.

Hall, R. (1986). "The fastest path through a network with random time-dependent travel
times." Transportation Science 20(3): 182-186.

Halpern, J. (1977). "Shortest route with time dependent length of edges and limited
delay possibilities in nodes." Zeitschrift für Operations Research 21(3): 117-124.

Hart, P. E., N. J. Nilsson and B. Raphael (1968). "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths." Systems Science and Cybernetics, IEEE
Transactions on 4(2): 100-107.

Hickman, J., C. Hassel, R. Joumard, Z. Samaras and S. Sorenson (1999). MEET
Methodology for Calculating Transport Emissions and Energy Consumption.
Technical Report.

Horn, M. E. T. (2000). "Efficient modeling of travel in networks with time-varying link
speeds." Networks 36(2): 80-90.

Kanoulas, E., D. Yang, X. Tian and Z. Donghui (2006). Finding Fastest Paths on A
Road Network with Speed Patterns. Data Engineering, 2006. ICDE '06. Proceedings
of the 22nd International Conference on.

Kaufman, D. E. and R. Smith (1990). Minimum travel time paths in dynamic networks
with application to intelligent vehicle-highway systems. Ann Arbor, Mich.,
University of Michigan, Transportation Research Institute.

44

Kaufman, D. E. and R. Smith (1993). "Fastest Paths in Time-Dependent Networks for
Intelligent Vehicle-Highway Systems Application." Journal of Intelligent
Transportation Systems 1(1): 1-11.

Miller, E. D., H. S. Mahmassani and A. Ziliaskopoulos (1994). Path search techniques
for transportation networks with time-dependent, stochastic arc costs IEEE
International Conference on Systems, Man and Cybernetics.

Nannicini, G., D. Delling, L. Liberti and D. Schultes (2008). Bidirectional A  ∗  Search
for Time-Dependent Fast Paths. Experimental Algorithms. C. McGeoch, Springer
Berlin Heidelberg. 5038: 334-346.

Nielsen, L., D. Pretolani and K. Andersen (2009). Bicriterion Shortest Paths in
Stochastic Time-Dependent Networks. Multiobjective Programming and Goal
Programming. V. Barichard, M. Ehrgott, X. Gandibleux and V. T'Kindt, Springer
Berlin Heidelberg. 618: 57-67.

Orda, A. and R. Rom (1990). "Shortest-path and minimum-delay algorithms in
networks with time-dependent edge-length." J. ACM 37(3): 607-625.

Orda, A. and R. Rom (1991). "Minimum weight paths in time-dependent networks."
Networks 21(3): 295-319.

Pallottino, S. and M. G. Scutellà (1998). Shortest Path Algorithms In Transportation
Models: Classical and Innovative Aspects. Equilibrium and Advanced Transportation
Modelling. P. Marcotte and S. Nguyen, Springer US: 245-281.

Pallottino, S. and M. G. Scutellà (2003). "A new algorithm for reoptimizing shortest
paths when the arc costs change." Operations Research Letters 31(2): 149-160.

Sanders, P., C. Vetter, D. Delling and G. V. Batz (2009). Time-Dependent Contraction
Hierarchies. 2009 Proceedings of the Eleventh Workshop on Algorithm Engineering
and Experiments (ALENEX): 97-105.

Sherali, H. D., A. G. Hobeika and S. Kangwalklai (2003). "Time-Dependent, Label-
Constrained Shortest Path Problems with Applications." Transportation Science
37(3): 278-293.

Sung, K., M. G. H. Bell, M. Seong and S. Park (2000). "Shortest paths in a network
with time-dependent flow speeds." European Journal of Operational Research
121(1): 32-39.

Tian, Y., K. C. K. Lee and W.-c. Lee (2009). Monitoring Minimum Cost Paths on Road
Networks With Time-Dependent Edge Availabilities. Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems GIS ’09.

Wellman, M. P. (1990). "Fundamental concepts of qualitative probabilistic networks."
Artificial Intelligence 44(3): 257-303.

Wellman, M. P., M. Ford and K. Larson (1995). Path planning under time-dependent
uncertainty. Proceedings of the Eleventh conference on Uncertainty in artificial
intelligence. Montrel, Quebec, Canada, Morgan Kaufmann Publishers Inc.: 532-539.

Wen, L., B. Çatay and R. Eglese (2014). "Finding a minimum cost path between a pair
of nodes in a time-varying road network with a congestion charge." European
Journal of Operational Research 236(3): 915-923.

Ziliaskopoulos, A. (1994). Optimum path algorithms on multidimensional networks:
Analysis, design, implementation and computational experience, Technical Report,
University of Texas, Austin.

Ziliaskopoulos, A. K. and H. S. Mahmassani (1993). "Time-Dependent , Shortest-Path
Algorithm for Real-Time Intelligent Vehicle Uighway System Applications."
Transportation Research Record 1408: 94-100.

45

3 CREATING NETWORK-CONSISTENT SPEEDS ON TIME-DEPENDENT

NETWORKS

46

3.1 Introduction

To the best of our knowledge, only Lecluyse et al. (2013) proposed a systematic

approach for creating network-consistent time-dependent travel time. Their method is

best fitted for synthetic network data for routing optimization problems. However, there

is still a gap in the literature to generate network-consistent travel time data on real road

networks that takes into account the realistic features such as the connectivity of the

arcs, travel direction and side road and main road differentiation. The main contribution

of this section is to fill this gap.

In Section 3.2 we analyze a real road network with time-dependent speeds in

order to deduce some existing patterns taking the expansion of the congestion into

account. We also discuss the practicability of Lecluyse et al. (2013) on real road

networks. Note that Lecluyse et al. (2013) propose their method for creating time-

dependency on VRP instances and do not claim to be applicable for real networks after

all. In Section 3.3, we propose our new network-consistent congestion generation

scheme and the implementation details followed by a sample implementation on a real

network in Section 3.4. Conclusions and future research directions follow in Section

3.5.

3.2 Implications on a Real Road Network and Congestion Circles

To achieve a much larger degree of realism, we first analyze a real road network and the

corresponding speed data. The data in consideration belongs to the European side of

İstanbul and is obtained from İstanbul Transportation Communication and Security

Technologies INC. (ISBAK). A total number of 159 sensors are used to collect data that

covers 4 weeks with intervals of 2 or 5 minutes depending on the type of the sensor.

They also differ in measuring capability. Some sensors can gather bidirectional data

whereas some can only measure a single direction on a specific road segment. The

locations of the sensors are shown in Figure 3.1.

İstanbul is a transcontinental city with a distinctive congestion structure. During

the rush hours, there is relatively high congestion on the roads that are connected

directly to the bridges between the European and Asian sides. Nevertheless, we can still

observe some patterns.

47

Figure 3.1. The locations of the sensors used to gather data

The first observation is on the expansion of the congestion. Figure 3.2 gives the

distribution of normalized speed levels for a sample set of three sensors that are

enclosed with a rectangle in Figure 3.1. The sensor at the east end is labeled as sensor 1

whereas the sensor on the west end is labeled as sensor 3. Congestion sets on the road

segment corresponding to the sensor 1 after 6:30. Next road segment of sensor 2 is

affected by the congestion after 7:00. The congestion finally reaches the road segment

of sensor 3 after 8:30.

Figure 3.2. Distribution of speed on a small segment of İstanbul

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Normalised
Speed

Time

Sensor 1

Sensor 2

Sensor 3

48

The second observation is on the rate of the decrease in speed. Figure 3.3 shows

the decreasing speed values of the sensor 1 between 06:00 and 07:26 when the

congestion reaches its peak value. At 06:00, the measured speed is 73.39 km/h. It takes

64 minutes for the average speed to decrease to 68.46 km/h. After 14 minutes, the speed

decreases to 62.04 km/h and it takes only 5 minutes to further decrease to 56.24 km/h.

That is, the rate of speed decrease increases after congestion onset. Although a uniform

decrease pattern also exists for some road segments, we find it more convenient to

follow the first pattern for congestion generation.

Keeping these findings in mind, we show why the congestion circles of Lecluyse

et al. (2013) are not suitable for real road networks. We will first visually show how

congestion circles work. Figure 3.4 shows a small part of the İstanbul network. The road

on the north with orange color is a toll road where the road on the south with yellow

color is a toll-free road. These roads are not connected to each other at any point in the

given map section.

Figure 3.3. Distribution of speed on a small segment of İstanbul

Figure 3.4. A sample congestion circle

50.00

55.00

60.00

65.00

70.00

75.00

80.00

06:00 06:20 06:40 07:00 07:20

Speed

Time

49

Let there be congestion on the toll-free road. The exact place of the congestion is

shown with a black dot. The congestion expands by a circle namely a congestion circle.

Each circle corresponds to an instant in time and shows the affected regions at that time.

The circles are darker where the level of congestion is higher. Congestion circles

expand, preserve their maximum radius for a while, shrink and disappear. Figure 3.5

zooms to the region in black rectangle in Figure 3.4.

Figure 3.5. A sample congestion circle in detail.

The first shortcoming of Lecluyse et al. (2013) is that it does not take direct

connectivity between arcs into consideration. So, the congestion in toll-free road affects

the toll-road in the model although these roads are not connected. But in reality,

congestion will not affect a nearby road if there is not a linking road between them.

Similarly, congestion on this part of toll-free road where the direction of travel is from

left to right may not create congestion on the opposite travel direction (neglecting those

drivers who slow down to have a look in case of an accident).

Secondly, the direction of travel is not taken into account in Lecluyse et al. (2013)

As mentioned above with the real data, no congestion is created beyond the exact spot

of the congestion. So the expansion of the congestion should be as given in Figure

3.5.b; in the reverse direction of the traffic flow and on the connected road segments

only.

A strong assumption in Lecluyse et al. (2013) is that the rate of travel time

increase or decrease is fixed which is not the case in real networks as we observed in

İstanbul data. To ensure a fixed increase or decrease rate in travel time, they implicitly

assume a single jump in speed values as shown in Figure 3.6.a. However, the travel time

(a) (b)

50

can be modelled more accurately as the speed increase or decrease is represented in

more detail as shown in Figure 3.6.b-c.

Last but not the least, Lecluyse et al. (2013) uses a projection of the original graph onto

the Euclidean space. The geometric congestion circle calculations are based on the

assumption that the link between each node pair consists of a single straight line. They

operate directly on inter-node distances and do not consider the underlying road

network. They point out this as an advantage as only inter-node distances are given for

most of the VRP instances. Nevertheless, this structure prevents it from directly being

applied to the real road networks successfully. An extreme case is depicted in Figure

3.7. The congestion circle centered at point � intersect with the direct link between

nodes � and �, thus affecting the travel time. However, the congestion circle does not

intersect with the real link.

Figure 3.6. Speed and travel time functions with different accuracy levels

Figure 3.7. Congestion circles do not consider the underlying road network

(a) (b) (c)

�

�

�

51

The proposed method in the following section utilizes the implications of this

section as a basis.

3.3 A New Network-Consistent Congestion Generation Scheme

In our method, we handle the temporal and spatial congestion using congestion arcs

which correspond to the road segments where the congestion sets first. Taking the

direction of the travel on this specific arc into account, the congestion expands through

the arcs that are directly connected to the congestion arc. This prevents any arc that is

geographically close but not connected to the congestion arc from being congested.

Figure 3.8 shows a sample congestion generation where the width of the arc

represents the current congestion level. As congestion increases, the arc becomes

thicker. Congestion is created on the arc (A-B) from south to north in Figure 3.8.a. In

Figure 3.8.b, congestion is only seen onsets on an arc from south to north. After a

predetermined time those arcs that are connected directly are affected taking the

direction of the travel on arcs into consideration. The time between the states Figure

3.8.b and Figure 3.8.c is longer compared to the time between the states Figure 3.8.c

and Figure 3.8.d. In other words, the speed is decreased in an increasing rate in

accordance with the previous observations on real data.

The assumption in this approach is that the whole arc is affected by the congestion

uniformly. However, this assumption can be justified when the arc lengths are small.

Also, artificial nodes can be introduced to divide the arc into smaller arc segments in

case of arcs with long distances.

The main input of the proposed method is �, an array of congestion arcs where

congestions set. Associated with each congestion arc �� ∈ � is a list of parameters that

are summarized in Table 3.1. For ease of notation and completeness, we follow the

same parameter names in Lecluyse et al. (2013) for congestion generation where

available. The pseudo-code of the algorithm is given in Algorithm 3.1 and Algorithm

3.2.

52

Figure 3.8. Sample congestion generation.

Table 3.1. Parameters of a congestion arc

Parameter Name Description
From Start node of arc ��
To End node of arc ��
Con Time of congestion onset
Fc Time of full congestion
Cof Time of congestion offset
Ff Time of free flow conditions
Noe Number of expansions
Sd Speed decrease percentage per expansion
Td Time decrease between expansions

(a) (b)

(c) (d)

B

A

B

A

B

A

B

A

53

Algorithm 3.1. Main
Input: forward star and backward star lists (�� and ��), congestion arc array (�)
1
2
3
4
5
6
7
8
9

for all �� ∈ �
 Calculate time between expansions (��) and contractions (��)
 numberOfExpansions[c�] = c�.numberOfExpansions
 Create congestion(��, ��, ��, ��, numberOfExpansions[��])
 FifoArcList = FifoArcList ∪ ��
 while |FifoArcList| > 0
 parentArc = FifoArcList[0]
 FifoArcList = FifoArcList / parentArc
 for all Node � ∈ ��(parentArc.From)

10
11
12
13

14
15
16
17
18
19
20

 childArc.From = �
 childArc.To = parentArc.From
 numberOfExpansions[childArc] = numberOfExpansions[parentArc] – 1
 Create congestion(childArc,��, ��, ��,
 numberOfExpansions[childArc],speedDecreasePercentage)
 if FifoArcList does not contain childArc
 FifoArcList = FifoArcList ∪ childArc
 endif
 endfor
 endwhile
endfor
Finalize

Figure 3.9. Main congestion generation algorithm

In the main algorithm (Figure 3.9), time between expansions and contractions are

calculated first. The number of expansions (and contractions) refers to the maximum

level of arcs that will be affected by the current arc in a tree fashion. Thus, when the

number of expansions is 1, the congestion will only affect the congestion arc. To

exemplify, Figure 3.8.a, b and c may refer to the cases where the number of expansions

are 1, 2 and 3 respectively. After creating congestion on the congestion arc and adding it

to the arc list which works in a FIFO basis, congestion is created on the child arcs that

are connected to the parent arc, the arc that is pulled from the arc list. The number of

expansions for a child arc is 1 less than that of the parent arc.

The create congestion algorithm (Figure 3.10) works arc by arc and adds an

instant in time and the corresponding speed multiplier for every expansion and

contraction. After generating all speed and time information for all affected arcs, a final

step is required to convert the speed multipliers to the real speed values.

Table 3.2 gives a sample speed multiplier and time information and the final

output for a congestion arc where the horizon starts at 6:00 and ends at 11:00.

54

Algorithm 3.2. Create Congestion (arc, congestionArc, timeBetweenExpansion
(TBE), timeBetweenContraction (TBC), numberOfExpansions (NOE),
speedDecreasePercentage (SDP))
1
2
3
4
5
6
7
8
9

SpeedTimeInfo[arc].Add(time=congestionArc.con, speedCoefficient=1)
for i = 1 to NOE
 SpeedTimeInfo[arc].Add(time=congestionArc.con + i* TBE,

speedCoefficient=(1- SDP)
endfor
SpeedTimeInfo[arc].Add(time=congestionArc.cof, speedCoefficient=1)
for i = 1 to NOE
 SpeedTimeInfo[arc].Add(time=congestionArc.cof + i* TBC,

speedCoefficient=1/(1- SDP))
10 endfor

Figure 3.10. Congestion generation algorithm on a single arc

Congestion onset and offset are realised at 7:00 and 9:00 respectively. The number of

expansions is 3, time between expansions is 20 minutes and time between contractions

is 25 minutes. Speed decrease percentage is 10% and the free flow speed is 90 km/h.

Table 3.2. A sample speed generation

Time 6:00 7:00 7:20 7:40 8:00 9:00 9:25 9:50 10:15 11:00
Speed
Multiplier

- 1.00 0.90 0.90 0.90 1.00 1.11 1.11 1.11 1.00

Speed 90.0 90.0 81.0 72.9 65.6 65.6 72.9 81.0 90.0 90.0

The time-dependent routing or path finding literature includes speed-based

calculations. The stepwise speed model of Ichoua et al. (2003) which guarantees FIFO

property is widely used for this purpose. They stated that, although the travel speeds

also change continuously over time, it is more reasonable to use a step function for the

travel speeds rather than for the travel time itself. Thus, as a post-process, we include a

finalization step to create a stepwise speed model using predetermined time duration.

Figure 3.11.a shows the corresponding speeds for the example in Table 3.2 assuming a

linear increase or decrease whereas Figure 3.11.b shows a stepwise model where the

step lengths are 15 minutes.

55

Figure 3.11. Continuous (a) and corresponding step-wise (b) speed functions

3.4 Creating Time-Dependency on a Sample Large Scale Real Time-Independent

Network

We test our approach for creating network-consistent speeds on the real data of

Washington D.C. which includes 9,559 nodes and 14,909 arcs. Taking Summary of

State Speed Laws Report of NHTSA (2012) as a basis, we define four types of roads

that are primary highway with limited access/freeway rural (e.g. interstates), primary

road without limited access/freeway urban (e.g. us highways), secondary and

connecting road/undivided rural (e.g. state highways) and local, neighborhood, and rural

road/residential. The underlying road structure is given in Figure 3.12. The

corresponding speed values and representative colors are 70 mi/h (112.65 km/h) and

blue, 60 mi/h (96.56 km/h) and brown, 55 mi/h (88.51km/h) and black and 35 mi/h

(56.33 km/h) and gray respectively. Please note that this is not restrictive as one can

change the speed limits or introduce new road types.

In Figure 3.13, we create congestion in the center of the city. The number of

expansions is 30. The green color refers to the freeflow speed. Dark red colored links

have the highest level of congestion. Figure 3.13.a shows the early phase of the

congestion where only the close vicinity of the center is affected by congestion. After

expanding through the connected arcs (Figure 3.13.b), the network reaches its

maximum congestion level (Figure 3.13.c). Note that, any number of congestions with

any parameters can be defined on the network. Figure 3.14 shows a two congestion arc

example.

S
pe

ed
 (

km
/h

)

S
pe

ed
 (

k
m

/h
)

Time Time

(a) (b)

56

Figure 3.12. Different road types for real data

Figure 3.13.Three phases of a single congestion area on real data

Figure 3.14.Three phases of multiple congestion areas on real data

(a) (b) (c)

(a) (b) (c)

57

3.5 Conclusion and Future Research

In this chapter we proposed a new method for generating network-consistent time-

dependent speed and travel time layer on a given time-dependent network, either real or

synthetic. To the best of our knowledge, this is the first such study proposed for real

networks that also takes the realistic features such as the connectivity of the arcs,

direction of the travel or side road and main road differentiation into account.

The slope on the road also affects real emissions and fuel consumption. As a

future research direction, we plan to incorporate the road slope into the algorithm in a

similar manner to the congestion generation. Instead of selecting arcs to create

congestion, nodes to increase elevation will be selected this time. Similar to congestion

generation, after setting an elevation level for a selected node, the elevation level of the

nodes that are directly connected will be increased. One can either select single node to

create a hill (Figure 3.15.a) or a group of nodes to create a high but flat surface (Figure

3.15.b).

Figure 3.15. Sample slope generation.

3.6 References

Ichoua, S., M. Gendreau and J.-Y. Potvin (2003). "Vehicle dispatching with time-
dependent travel times." European Journal of Operational Research 144(2): 379-396.

Lecluyse, C., K. Sorensen and H. Peremans (2013). "A network-consistent time-
dependent travel time layer for routing optimization problems." European Journal of
Operational Research 226(3): 395-413.

Yıldırım, U. M. (2014). "Speed Generator." from http://myweb.sabanciuniv.edu
/mahiryldrm/speedGenerator.

(a) (b)

58

4 EXACT AND HEURISTIC METHODS FOR THE TIME-DEPENDENT

MINIMUM COST PATH PROBLEM WITH SPEED (TDMCP-S)

59

4.1 Introduction

Most of the studies in the Time-Dependent Shortest Path Problem (TDSPP) literature

assume that the speed is fixed during any time interval. The corresponding emission

value of a speed is often disregarded and the path is traversed with the maximum

available speed. However, a significant amount of GHG emission reduction can be

obtained by altering the speed as the carbon emission function is strongly related with

the speed of the vehicle. Figliozzi (2011) pointed out that the emissions could be

reduced indirectly even by reducing the speed limits to a speed that is optimal from an

emissions perspective. The speed values are fixed and are not a decision variable in this

case. Moreover, Qian and Eglese (2014) reported that about 6-7% savings in fuel

emissions could be achieved by adjusting the speed values. Note that, this reduction is

on top of the 7%, reported by Maden et al. (2010), that can be achieved by taking the

time-dependent speeds into account.

Taking the human behaviour into account, it may be questionable whether a driver

can be motivated to reduce the speed of the vehicle to a certain value to decrease the

total emission cost. Nevertheless, self-driving cars are not a far future. Google has

already been testing their developed technology and its software powered autonomous

cars along with their Google Self-Driving Car project (Wikipedia, 2014). In United

States, three states, namely Nevada, Florida and California, have legalized the use of

self-driven cars for testing purposes. Germany, Netherlands and Spain have also

allowed testing robotic cars in traffic and Finland is planning on passing a law before

2015. With the use of self-driven cars, it would be legitimate to take the speed as a

decision variable.

In this chapter, we develop a mathematical model where the speeds on the arcs are

also decision variables as well as the departure times and further propose a time-space-

speed expansion. The remainder of this chapter is organized as follows: Section 4.1

provides a brief review of the relevant literature. Section 4.2 gives the problem

definition and mathematical formulations for the TDSPP and its extension to the Time-

Dependent Minimum Cost Path Problem. The problem definition and formulation for

the Speed Embedded Time-Dependent Minimum Cost Path Problem (hereafter called

TDMCP-S for brevity) is given in Section 4.3. Section 4.4 briefly introduces the time-

space-speed expansion as an alternative modelling technique for the TDMCP-S. Section

4.5 presents a computational study to test the performance of the models and the time-

60

space-speed expansion and reports the results. Finally, concluding remarks and future

research directions are given in Section 4.6.

4.2 Relevant Literature

It has become more common lately in the routing and path finding literature to adjust

the speed values. Most of these studies that take the speed as a decision variable use a

post-processing step to decide the speeds after the routes/paths are generated. The speed

optimization procedure in most of these studies are built upon Norstad et al. (2011) and

Hvattum et al. (2013) which are specifically designed speed-optimization procedures

(SOP). They calculate the optimal speeds for a given path with a single time window

and zero service time at each node.

In spite of the increasing momentum in the speed optimization literature, there are

only a few studies that try to optimize speed in a time-dependent environment. In the

first study, Figliozzi (2010) proposed a model for an extension of the vehicle routing

problem (VRP), namely the emissions VRP. Yet, they did not attempt to solve the

model directly. Their proposed method is composed of two stages. They first minimize

the number of vehicles using a time-dependent VRP algorithm. Taking the fleet size

into account, they then optimize the departure times and further improve the emission

costs by changing the routes.

Jabali et al. (2012) used Tabu Search to solve the emissions-based time-dependent

VRP where the speed is also a decision variable. They modelled the travel times by

introducing two different regions in the planning horizon. The first is a peak period with

congestion where the vehicle speed is fixed. They assumed that this fixed speed value is

imposed by traffic conditions. In the second period, the free flow speed is a decision

variable. They applied local search procedures to update the free flow speed.

Franceschetti et al. (2013) extended SOP and proposed a departure time and speed

optimization procedure by considering the departure time in addition to speed in the

time-dependent pollution routing problem context. They considered the special case

with only a single vehicle and a fixed sequence of customers. Thus, similar to Figliozzi

(2010), the proposed procedure of Franceschetti et al. (2013) is also not fitted for

deciding the path/route and the speeds on each arc simultaneously. They also proposed

an integer linear programming formulation for an environment with three time intervals

which are composed of all congestion, transient and free-flow regions. They presented

the analytical results on a single-arc time-dependent pollution routing problem instance.

61

In the most current study of Qian and Eglese (2014), a two-stage time-increment

based dynamic programming approach is proposed. After computing the optimal fuel

emissions between every node pair on a given sequence of customers with all

combinations of starting time and finishing times, they calculate the optimal fuel

emissions for the complete route. Pointing out the irrelevant calculations of the DP, they

proposed an approach called the adaptive searching method. By setting different

artificial speed restrictions in a similar way to the claim of Figliozzi (2011) and

assuming that the vehicle travels at the artificial speed limits, they generated promising

fastest routes with each artificial speed limit setting. Next, they developed an

approximate dynamic programming algorithm in the speed adjustment process to

modify the speeds along the candidate routes and reach the final minimum fuel emission

generating route and speeds. Please note that even that they treat the speed as a decision

variable as well as the arcs to be traversed, they evaluate them sequentially rather than

simultaneously.

None of the previous studies guarantee optimality. Figliozzi (2010) and

Franceschetti et al. (2013) sequentially find the route/path and optimize the speed values

selection whereas Jabali et al. (2012) use a metaheuristic. Although the proposed

algorithm in Qian and Eglese (2014) is shown to generate promising routes, there is also

no optimality guarantee.

In Figure 4.1, we give a sample network on which Qian and Eglese (2014) misses

the optimal route. The numbers in parentheses and brackets refer to the distance and the

speed of the corresponding arc, respectively. The objective is to find the least emission

generating path that starts from node 1 and ends at node 4. It can easily be seen that

there exist three paths that are 1-3-4, 1-2-4 and 1-2-3-4. The costs of these paths are

Figure 4.1. A sample network to test post speed optimization process

1

2

4

3

(1.00)
[50-70]

(2.50)
[90-120]

(2.50)
[90-120]

(1.00)
[50-70]

(1.75)
[40-60]

(�)
[�� − ��]

:
:
distance in km
speed limits in km/h

62

1132.42 gr, 1132.42 gr and 687.47 gr respectively. As for the cost calculation, we use

the cost function of Hickman et al. (1999).

Table 4.1. Adjusted speeds and travel times

Artificial
Speed Limit

(km/h)

 Adjusted Speed (km/h) Travel Time (min)

(1-2) (1-3) (2-3) (2-4) (3-4) (1-2) (1-3) (2-3) (2-4) (3-4)
120 70 120 70 70 70 0.86 1.25 1.75 1.25 0.86
110 70 110 70 70 70 0.86 1.36 1.75 1.36 0.86
100 70 100 70 70 70 0.86 1.50 1.75 1.50 0.86
90 70 90 70 70 70 0.86 1.67 1.75 1.67 0.86
80 70 80 70 70 70 0.86 1.88 1.75 1.88 0.86
70 70 70 70 70 70 0.86 2.14 1.75 2.14 0.86
60 60 60 60 60 60 1.00 2.50 1.75 2.50 1.00
50 50 50 50 50 50 1.20 3.00 2.10 3.00 1.20
40 40 40 40 40 40 1.50 3.75 2.63 3.75 1.50
30 30 30 30 30 30 2.00 5.00 3.50 5.00 2.00
20 20 20 20 20 20 3.00 7.50 5.25 7.50 3.00
10 10 10 10 10 10 6.00 15.00 10.50 15.00 6.00

Table 4.1 summarizes the adjusted speed values and the corresponding travel

times. The first column gives the artificial speed limits in km/h. We take the same

artificial limits that are used in Qian and Eglese (2014). Columns [2-6] give the adjusted

speed in km/h whereas the following columns give the travel time in minutes for each

arc separately. The AS method of Qian and Eglese (2014) calculates the fastest path for

each artificial speed setting in order to generate suitable potential candidates for the

original problem.

Table 4.2. Travel time of alternative paths under different artificial speed limits

Artificial
Speed Limit

(km/h)

 Travel Time (min)

(1-3-4) (1-2-4) (1-2-3-4)
120 2.52 3.46 2.52
110 2.52 3.46 2.52
100 2.52 3.46 2.52
90 2.52 3.46 2.52
80 2.73 3.46 2.73
70 3.00 3.46 3.00
60 3.50 3.75 3.50
50 4.20 4.50 4.20
40 5.25 5.63 5.25
30 7.00 7.50 7.00
20 10.50 11.25 10.50
10 21.00 22.50 21.00

Table 4.2 gives the travel time of each path for each artificial speed limit. Note

that path 1-2-3-4, the minimum cost path with 687.47 g, is also the slowest path for each

63

speed setting. Thus, it is never selected as a candidate route. Even after the speed

adjustment process, the cost of the paths 1-3-4 and 1-2-4 will be higher compared to the

optimal path 1-2-3-4.

With this motivation, we first develop and solve the mathematical formulation of

the TDMCP-S in a more general context. Our model is more generic than Franceschetti

et al. (2013) who state their modelling framework to best fit for routing problems which

must be executed in the first half of the day. Next, we propose a discrete time-space-

speed expansion model for solving TDMCP-S on a discrete network.

4.3 Problem Definition and Formulations for the TDSPP

A time dependent directed network is defined as �(�, �, �) where � = {1,2, … �} is

the set of nodes, � ⊆ �x� is the set of arcs and � is a positive valued function. For

every arc (�, �) ∈ �, there is a function ���(�) ∈ � where � is a time variable in a time

domain �. A travel time function ���(�) specifies the travel time of the travel between �

and � departing at time �. The total travel time of a path P visiting nodes � ∈ �� ⊆ � is

given by ∑ � ������
(��)

|��|��
��� where �� and �� denote the ith node in the path and the

departure time from that node respectively. The departure times are calculated as

���� = �� + � ������
(��). In this study, we assume that the first node �� is left at time 0.

In other words, we set �� = 0.

The TDSPP seeks for the fastest path between two predetermined nodes on �. In

this section, we first give alternative mathematical programming models for solving the

TDSPP. After giving the definition of the more generic time-dependent minimum cost

problem, we show that, prior to some modifications, the models for the TDSPP can be

used to solve the generic model.

Table 4.3. Notation used in this section.

Variable Description
�, � : Source and destination nodes
��� : Binary flow variable for arc (�, �)

���
� : Binary flow variable for arc (�, �) departing at time �

�� : Arrival time at node �
��(�) : �|(�, �) ∈ �
��(�) : �|(�, �) ∈ �
�����

� : Time of the kth breakpoint for arc (�, �)

������
� : Value of the kth breakpoint for arc (�, �)

���
� : Binary variables to select which piece of the piecewise linear function

is active for a given departure time �� from node �

64

The set of common variables and parameters that will be used in this section in

addition to these in the problem definition are summarized in Table 3. We will use

index t to represent time and so define the source and destination pair with symbols S

and D unlike the traditional symbols s and t to prevent disambiguation.

To the best of our knowledge, Nannicini (2009) is the only work that solves

TDSPP using mixed integer linear programming (MILP). Stating that it is hard to solve

large problems to optimality, they define their aim as to compare the traditional

branching rules with the proposed methods rather than solving network problems. Their

model for minimizing time on a time-dependent network is given as follows;

Model 1:

minimize �� (1)

s.t. � ���

�∈��(�)

− � ���

�∈��(�)

= �
−1,

0,
1,

� = �
� ∈ � ∖ {�, � }

� = �
 (2)

 �� ≤ �� ∀� ∈ � (3)

 ��� ��� + � ���
� �

�� − �����
�

�����
��� − �����

�
�������

��� − ������
� � + ������

� �

|�|��

���

� ≤ �� ∀(�, �) ∈ � (4)

 � ���
� �����

� + ���
|�|

�

|�|��

���

≥ �� ∀(�, �) ∈ � (5)

 � ���
� �����

���

|�|

���

≤ �� ∀(�, �) ∈ � (6)

 � ���
�

|�|

���

= 1 ∀(�, �) ∈ � (7)

 ��� ∈ {0,1} ∀(�, �) ∈ � (8)

 ���
� ∈ {0,1} ∀(�, �) ∈ �, � ∈ � (9)

�� ≥ 0 ∀� ∈ � (10)

where � refers to the set of breakpoints related with the arc (�,�). Note that although

different time limits and hence breakpoints can be associated with each arc (introducing

ℎ��), we assume all of the breakpoints in time to be equal for all arcs without loss of

generality.

Although Nannicini (2009) define a generic model where waiting times are

allowed, we currently prohibit waiting (i.e. �� = �� ∀� ∈ �). As a result, (3) becomes

�� ≤ �� ∀� ∈ � and thus can be neglected. We also omitted the fixed static cost in (4)

without loss of generality.

A time-dependent directed network with additional time-dependent cost is defined

as ��(�, �, �, �) where positive valued cost functions � ��(�) ∈ � are introduced for

65

every arc (�, �) ∈ � and � ∈ �. The cost function � ��(�) specifies the cost of traveling

from � to � departing at time �. The total cost of a path P visiting nodes �� ∈ �� ⊆ � is

given by ∑ � ����
(��)

|��|��
��� .

The time-dependent minimum cost path problem (TDMCP) seeks for the

minimum cost path between two predetermined nodes on �� where the objective is

different than the travel time minimization. Note that, by setting � equal to � , the

TDMCP can be reduced to TDSPP.

In order to minimize a generic cost function rather than the travel time, we define

a new variable �� which corresponds to the total (cumulative) cost of traveling from the

source node � to � . We replace �� in (1) with �� and add the following constraint;

 ��� ��� + � ���
� �

�� − �����
�

�����
��� − �����

�
�������

��� − ������
� � + ������

� �

|�|��

���

� ≤ �� ∀(�, �) ∈ � (11)

where ������
� refers to the value of the kth cost breakpoint for the cost function between

� and � . Note that the breakpoints of ���(�) and ���(�) overlap with each other. An

illustration is given in Figure 4.2 for a single arc with a length of 60 km. Therefore, we

do not define a new breakpoint position variable for cost function. We refer the

modified model as Model 1.

Figure 4.2. Overlapping of travel time and cost functions breakpoints. The arc length is

60 km. Cost values for the corresponding speeds are calculated using (Hickman et al.,

1999).

� (hours)

60

40

2 4
� (hours)

1.5

1

1 2

speed
(km/h)

���(�)

(hour)

���(�)

(CO2 (kg))

10.94

12.92

66

Alternatively, we give the following model (Model 2) where the time domain � is

discretized into time intervals �� = �� where �� ∈ � refers to the mth time interval

and � is the smallest time unit used for discretization. In other words, the travel can only

start at a time that is a multiple of �. Also ���(�) ∈ � are rounded up to the nearest

integer that is multiple of �. The total number of intervals is denoted with |�| in this

context.

Model 2:

minimize � � ���
� ���(�)

�∈�

(�,�)∈�

 (12)

s.t. � � ���
�

�∈��∈��(�)

− � � ���
�

�∈��∈��(�)

= �
−1,

0,
1,

� = �
� ∈ � ∖ {�, � }

� = �
 (13)

� � �� + ���(�)� ���
�

�∈��∈��(�)

 = �� ∀� ∈ � ∖ {�} (14)

 �(�� − �)���
�

�∈�

= 0 ∀(�, �) ∈ � (15)

���
� ∈ {0,1} ∀(�, �) ∈ �, � ∈ � (16)

�� ≥ 0 ∀� ∈ � (17)

Both Model 1 and Model 2 have nonlinear terms. In Model 1, (4) involves a

product between a binary variable and a continuous variable, and between two binary

variables and a continuous variable. In Model 2, (15) violates linearity involving a

product between a binary variable and a continuous variable. Next, we show the

linearization of (15) following Liberti et al. (2009). The nonlinearities in other models

can be handled in a similar manner. We introduce a new continuous variable

���
� , ∀(�, �) ∈ �, � ∈ � and replace (15) with the following set of constraints to obtain

Model 3:

� ���
�

�∈�

= � ����
�

�∈�

 ∀(�, �) ∈ � (18)

���
� = |�|���

� ∀(�, �) ∈ �, � ∈ � (19)

���
� ≥ 0 ∀(�, �) ∈ �, � ∈ � (20)

 ���
� ≤ �� ∀(�, �) ∈ �, � ∈ � (21)

 ���
� ≥ �� − �1 − ���

� �|�| ∀(�, �) ∈ �, � ∈ � (22)

In their computational study Fleischmann et al. (2004) conduct tests with travel time

data obtained from a traffic information system in the city of Berlin. They divide

planning horizon into time slots and reports that with only five time slots, a rather good

67

approximation of the true travel times is reached, which is not significantly improved

with 10 time slots. Taking this observation into account, Model 1 is better where the

travel time function is modelled using breakpoints. The number of time periods in time

discretization is very high compared to using breakpoints. This also justifies Model 1.

Yet, we think that Model 2, Model 3 and variations can be used for evaluating the

performance of heuristic and/or dynamic programming approaches where the time is

also discretized or can somehow be integrated with any of these models.

Note that in TDSPP model, the objective function will prohibit any cycles as it is

never advantageous in a time minimization setting. However, as shown in Section 2.6.4,

cycling can reduce the total cost in TDMCP networks. As a result, the solution of a

TDMCP model or its variation can include cycles.

4.4 Problem Definition and Formulation for the TDMCP-S

The network ��(�, �, �, �) with the time-dependent travel time function ���(�) ∈ �

inherently comprises distance and time-dependent speed information although they are

not involved in the network definition explicitly. However, only a single speed value is

applicable at each time instant � ∈ � . When lower and upper speed limits are also

introduced, we obtain a new time-dependent directed network with time-dependent

speed limits which is defined as �����, �, � , �, �, �� where � , �, �, and � are positive

valued functions. Functions � �� ∈ � , ���(�) ∈ � and � ��(�) ∈ � where � ∈ ��, with ��

being the set of speed breakpoints in time for arc (� ,�), are defined for every arc

(�, �) ∈ �. A speed lower limit function � ��(�) and a speed upper limit function ���(�)

specify the lower and upper speed limits respectively for traveling from � to � departing

in time interval � . We assume equal time interval lengths again without loss of

generality. The distance of an arc (�, �) is given by a distance function � �� whereas the

travel time is calculated implicitly using � �� and the selected travel speed � ��. A cost

function �(� ��) gives the per km cost of traveling from � to � with speed � ��, regardless

of the departure time. The total cost of the travel between � and � is simply given by

� ���(� ��).

Note that the so called speed limits in this study do not correspond only to the

limit of speed allowed by law but also those incurred by congestion. Therefore, the

lower and upper speed limits on a congested highway can be 20 km/h and 60km/h

respectively whereas the uncongested lower and upper limits speed limits are 40 km/h

68

and 90 km/h. The lower limit in the latter uncongested case is set to maintain the

reasonable flow of traffic. We take these limits as given and do not try to optimise them

for cost minimization.

The time-dependent minimum cost path problem with speed as a decision variable

(TDMCP-S) seeks for the minimum cost path between two predetermined nodes on ���

while deciding which arcs to traverse as well as the speed to traverse these arcs.

When the speed upper limit is higher than the optimal speed (in terms of

emission), one greedy approach is to select the optimal speed. Although the latter seems

promising from cost point of view, it is myopic and may yield higher cost. Figure 4.3

illustrates such an example. The cost information for the corresponding network is

given in Table 4.4.

Figure 4.3. Speed decision example

Table 4.4. GHG emissions for varying speeds

Speed (km/s) 80 70 60 50 40 30 20

GHG (unit/km) 0.8 0.7 0.5 0.8 0.9 1.2 1.4

The planning horizon is divided into three equal intervals of length 1, namely

�� = [0,1), �� = [1,2) and �� = [2,3). On the first arc (0-1), a vehicle (V1) departing

at � = 0 and traveling with the maximum speed of 80 km/h reaches node 1 at time 0.75

with a GHG value of 48 whereas another vehicle (V2) traveling with the most efficient

speed of 60 km/h reaches node 1 at time 1.00 with a GHG value of 30. On the second

arc (1-2), V1 travels with 60 km/h and 20 km/h for 0.25 hours for each and reaches a

GHG value of 62.5. Traveling in the second time interval V2 reaches node 3 at time

2.00 with a cumulative GHG of 58. On the last arc (2-3), V1 finishes its travel in the

second time interval with a total GHG value of 89.5, yet V2 starts and finishes its travel

in the third time interval and yields GHG value of 94, 4.5 more than V1. In other words,

traveling with the optimal speed on the current arc yielded a higher cost on the

0 1 2

(60)

[80][60][60]

(20)

[60][20][30]
3

(30)

[50][40][30]

69

following arcs. Keeping this in mind, we will develop a mathematical model to solve

the TDMCP-S to optimality.

One approach for the formulation of the TDMCP-S is to add a new index for the

flow variables (e.g. ���
��). A discrete speed set ����(�) is associated with every arc (�, �)

and every discrete point � ∈ � to specify the potential speeds available. Here, ����(�) =

{� ��(�), � ��(�) + �, � ��(�) + 2�, … , ���(�)} where � represents the speed increment to

create discrete speeds for the corresponding arc and travel time. Note that the difference

between the speeds is assumed to be equal for the notational brevity. As the speed limits

are embedded in the discrete speed set ����(�), the model does not include additional

constraints for the speed limits. Though trivial, this approach makes the model harder to

solve as the model already has a large number of variables. We refer to this trivial

model as Model 4.

Model 4:

min � � � ���
�����(�)

�∈����(�)�∈�

(�,�)∈�

 (23)

s.t. � � � ���
��

�∈����(�)�∈��∈��(�)

− � � � ���
��

�∈����(�)�∈��∈��(�)

= �
−1,

0,
1,

� = �
� ∈ � ∖ {�, � }

� = �
 (24)

� � � �� +
���

�
� ���

��

�∈����(�)�∈��∈��(�)

 = �� ∀� ∈ � ∖ {�} (25)

 � � (�� − �)���
��

�∈����(�)�∈�

= 0 ∀(�, �) ∈ � (26)

���
�� ∈ {0,1} ∀(�, �) ∈ �, � ∈ �, � ∈ ����(�) (27)

�� ≥ 0 ∀� ∈ � (28)

We now propose a new formulation (Model 5) for the TDMCP-S as follows

which does not require the discretization of the speed and thus, needs additional lower

and upper speed limit constraints that are given by the inequalities (32) and (33)

respectively.

70

Model 5:

min � ������������
(�,�)∈�

 (29)

s.t. � ���

�∈��(�)

− � ���

�∈��(�)

= �
−1,

0,
1,

� = �
� ∈ � ∖ {�, � }

� = �
 (30)

 � ��� +
���

���
� ���

�∈��(�)

= �� ∀� ∈ � (31)

 � ���
� ���(�)

|�|

���

≥ ��� ∀(�, �) ∈ � (32)

 � ���
� � ��(�)

|�|

���

≤ ��� ∀(�, �) ∈ � (33)

 � ���
� �����

� + ���
|�|

�

|�|��

���

≥ �� ∀(�, �) ∈ � (34)

 � ���
� �����

���

|�|

���

≤ �� ∀(�, �) ∈ � (35)

 � ���
�

|�|

���

= 1 ∀(�, �) ∈ � (36)

��� ∈ {0,1} ∀(�, �) ∈ � (37)

���
� ∈ {0,1} ∀(�, �) ∈ �, ∀� ∈ � (38)

��� ≥ 0 ∀(�, �) ∈ � (39)

�� ≥ 0 ∀� ∈ � (40)

where � refers to a large number. As � is used as an upper bound on the arrival times

�� , � ∈ � , it can be set to the horizon length. Similar to the time-increment based

dynamic programming model of Qian and Eglese (2014), we assume that each vehicle

travels at a constant speed along each arc. On the contrary, the starting time of the travel

on the arc is considered as the determining factor.

Constraints (31) ensure that the arrival times at nodes are consistent with each

other taking the selected speeds into account. Alternatively, a departure time ��� can be

defined for the travel from node � to node �. We replace the constraints (31), (34) and

(35) for the modified model and refer it as Model 6, which is given as follows;

71

Model 6:

min � ���������
(�,�)∈�

 (41)

s.t. � ���

�∈��(�)

− � ���

�∈��(�)

= �
−1,

0,
1,

� = �
� ∈ � ∖ {�, � }

� = �
 (42)

 � ���

�∈��(�)

− � ���

�∈��(�)

= � �
���

���
� ���

�∈��(�)

 ∀� ∈ �\{�, � } (43)

� − � ���

�∈��(�)

≥ � �
���

���
� ���

�∈��(�)

 � = � (44)

��� = 0 ∀� ∈ ��(�) (45)

 ��� ≤ ���� ∀(�, �) ∈ �, � ≠ � (46)

 ��� ≤ ���� ∀(�, �) ∈ � (47)

 � ���
� ���(�)

|�|

���

≥ ��� ∀(�, �) ∈ � (48)

 � ���
� � ��(�)

|�|

���

≤ ��� ∀(�, �) ∈ � (49)

 � ���
� �����

� + ���
|�|

�

|�|��

���

≥ �� ∀(�, �) ∈ �, � ≠ � (50)

 � ���
� �����

���

|�|

���

≤ �� ∀(�, �) ∈ �, � ≠ � (51)

 � ���
�

|�|

���

= 1 ∀(�, �) ∈ � (52)

��� ∈ {0,1} ∀(�, �) ∈ � (53)

���
� ∈ {0,1} ∀(�, �) ∈ �, ∀� ∈ � (54)

���, ��� ≥ 0 ∀(�, �) ∈ � (55)

�� ≥ 0 ∀� ∈ � (56)

where � refers to the length of the horizon.

4.5 Time-space-speed expansion

This section briefly introduces the concept of time-space-speed network which is based

on the time-space network with embedded speed. Note that the speed optimization can

be embedded without increasing the number of nodes but introducing a new arc for each

different speed value.

We discretize the speed as well as the travel time values due to the inherent

structure of the time-space expansion. Then, the set of arcs in the time-space-speed is

defined as �� = {(��, ���)|(�, �) ∈ �, � + ���
�� = ��, � ≤ ��, �, �� ∈ �, � ∈ ���} where �and

���, (�, �) ∈ � refer to the discrete time and speed domains respectively. The time and

72

speed dependent variable ���
�� refers to the travel time between nodes � and � departing

node � at time � and traveling with speed �.

The speed and travel time information for a sample arc is given Table 4.5. The

direction of the travel is from node A to node B and the distance of the arc is 2 km. The

lower and the upper speed limits are 10 km/h and 40 km/h respectively.

Table 4.5. Speed and travel time information for a sample arc

Speed
(km/h)

Travel time
(minute)

10 12
20 6
30 4
40 3

The corresponding time-space-speed network of the sample arc is given in Figure

4.4. These networks are used either explicitly or implicitly in time-dependent context.

As the shortest path problem (SPP) can be solved very efficiently even for large

instances, a maximum number of |�|x|�| SPP’s can be solved to solve the TDMCP_S

(much less in the sample network as many departure times are eliminated beforehand

for illustrative purposes).

Figure 4.4. Time-space-speed network of the sample arc.

4.6 Computational Study

In this section, we test the performance of Model 2 and Model 4 and the time-space-

speed network approach by testing them on different sized networks. Note that, Model 2

and the time-space-speed network approach uses a discretized network whereas Model

4 works on the continuous network.

A

B

0 1 2 3 4 5 6 7 8

Nodes

Time (minutes)

9 10 11 12

73

4.6.1 Computational setup

The models are tested on unidirectional grid-type networks. Three different base speed

values are created randomly on each arc; 40 km/h, 60km/h, and 80 km/h. And then,

adding 50% decreased and increased speeds, the discrete available speeds are obtained

for each arc. Note that the discretization may prevent the discrete methods to travel with

the optimal speed. Also, three different density schemes namely density=1, density=2

and density=4, given in Section 2.6.1.1, are used.

The MILP models are solved using IBM CPLEX 12.6 on an Intel Core2 Quad

2.33 GHz computer with 8.0 GB RAM and 64-bit operating system. For the MINLP

models, GAMS 24.2.3 is used as the modelling environment and the models are solved

on the Network-Enabled Optimization System (NEOS) Server.

4.6.2 Comparison of the proposed methods

The performances of the proposed approaches are compared in Table 4.6. OF

corresponds to the objective function value, CO2 emission in grams, whereas CT

represents the computational time in milliseconds.

Table 4.6. Performance comparison for the proposed approaches

Network
Size

Density
Level

Time-space-speed
network approach MILP (Model 2) MINLP (Model 4)

OF (gr)
CT

(ms) OF (gr)
CT

(ms) OF (gr)
CT

(ms)
4 1 3936.9 ~0 3936.9 51 3922.6 ~0

2 1312.3 ~0 1312.3 70 1307.5 ~0
4 6561.6 ~0 6561.6 90 6542.7 1

9 1 5601.5 5 5601.5 1437 5230.1 1
2 9538.5 7 9538.5 4198 9152.0 *
4 15149.6 5 15149.6 2536 14388.0 1

16 1 9538.5 18 9538.5 11808 9183.3 ~0
2 12636.0 24 12636.0 18059 - **
4 19802.4 15 19802.3 12889 19613.0 *

25 1 17060.3 46 17060.3 27652 - **
2 10733.4 45 10733.4 46163 - **
4 24688.1 38 24688.1 135468 - **

* Best possible, ** Node limit exceeded.

74

With the increasing size of the network and the density, the computational effort

for solving the MILP model increase dramatically. Nevertheless, the time-space-speed

approach can obtain the same solution in under a second whereas the computational

time for solving MILP can reach up to 135.5 seconds. Although the MINLP model can

also generate solutions in short time, we could not obtain any solution when the network

size of the instance is 25. Note that, the objective function of the MINLP model is lower

than the two other methods due to the discretization of speed used in time-space-speed

approach and MILP model.

4.7 Conclusion and Future Research

Many of the time-dependent methods in the routing and path finding literature assume a

constant travel speed which is equal to the speed limit of the corresponding road

section. In this chapter, we relaxed this assumption and showed that traveling at a

different speed than the speed limit can generate better solutions from the GHG point of

view.

We showed that, in spite of being developed by taking the speed as a decision

variable, the currently available heuristic methods may fail to obtain the optimal

solution. Thus, we first discussed the currently available mathematical formulations for

the TDSPP and developed a mathematical model for the TDMCP-S where the speeds on

the arcs are also decision variables as well as the departure times.

We further proposed a time-space-speed expansion method which, under a certain

speed and time discretization scheme, can obtain the optimal solution. Yet, as the

computational study proves, this discretization has an important effect on the solution

quality and may cause to miss the optimal solution.

For future research, we will test the relative performance of the proposed

approaches compared to Qian and Eglese (2014) who also uses a discretized speed

scheme. Also we plan to apply a Lagrangian relaxation and analyze the strength of the

bounds that will be proposed. Also the performance of the relaxation as well as the

solution quality and computational performance will be tested.

4.8 References

Figliozzi, M. A. (2010). "Vehicle Routing Problem for Emissions Minimization."
Transportation Research Record: Journal of the Transportation Research Board 2197:
1-7.

75

Figliozzi, M. A. (2011). "The impacts of congestion on time-definitive urban freight
distribution networks CO2 emission levels: Results from a case study in Portland,
Oregon." Transportation Research Part C: Emerging Technologies 19(5): 766-778.

Fleischmann, B., M. Gietz and S. Gnutzmann (2004). "Time-Varying Travel Times in
Vehicle Routing." Transportation Science 38(2): 160-173.

Franceschetti, A., D. Honhon, T. Van Woensel, T. Bektaş and G. Laporte (2013). "The
time-dependent pollution-routing problem." Transportation Research Part B:
Methodological 56(0): 265-293.

Hickman, J., C. Hassel, R. Joumard, Z. Samaras and S. Sorenson (1999). MEET
Methodology for Calculating Transport Emissions and Energy Consumption.
Technical Report.

Hvattum, L. M., I. Norstad, K. Fagerholt and G. Laporte (2013). "Analysis of an exact
algorithm for the vessel speed optimization problem." Networks 62(2): 132-135.

Jabali, O., T. Van Woensel and A. G. de Kok (2012). "Analysis of Travel Times and
CO2 Emissions in Time-Dependent Vehicle Routing." Production and Operations
Management 21(6): 1060-1074.

Liberti, L., S. Cafieri and F. Tarissan (2009). Reformulations in Mathematical
Programming: A Computational Approach. Foundations of Computational
Intelligence Volume 3. A. Abraham, A.-E. Hassanien, P. Siarry and A. Engelbrecht,
Springer Berlin Heidelberg. 203: 153-234.

Maden, W., R. Eglese and D. Black (2010). "Vehicle Routing and Scheduling with
Time Varying Data: A Case Study." Journal of the Operational Research Society
61(3): 515-522.

Nannicini, G. (2009). Point-to-Point Shortest Paths on Dynamic Time-Dependent Road
Networks. PhD, Ecole Polytechnique, Palaiseau.

Norstad, I., K. Fagerholt and G. Laporte (2011). "Tramp ship routing and scheduling
with speed optimization." Transportation Research Part C: Emerging Technologies
19(5): 853-865.

Qian, J. and R. Eglese (2014). "Finding least fuel emission paths in a network with
time-varying speeds." Networks 63(1): 96-106.

Wikipedia. (2014). "Google driverless car." Retrieved June 01, 2014, from
http://en.wikipedia.org/wiki/Google_driverless_car.

76

5 A TIME-BASED PHEROMONE APPROACH FOR THE ANT SYSTEM

77

A Time-based Pheromone Approach for the Ant System

Umman Mahir Yıldırım, Bülent Çatay

Abstract

The ant system (AS) is a metaheuristic approach originally developed for solving the traveling salesman

problem. AS has been successfully applied to various hard combinatorial optimization problems and

different variants have been proposed in the literature. In this study, we introduce a time-based

pheromone approach for AS (TbAS). Due to this nature, TbAS is applicable to routing problems

involving time-windows. The novelty in TbAS is the multi-layer pheromone network structure which

implicitly utilizes the service time information associated with the customers as a heuristic information.

To investigate the performance of TbAS, we use the well-known vehicle routing problem with time-

windows as our test bed and we conduct an extensive computational study using the Solomon (1987)

instances. Our results reveal that the proposed time-based pheromone approach is effective in obtaining

good quality solutions.

Keywords Ant systems, Vehicle routing, Time windows, Metaheuristics, Ant colony optimization

1. Introduction

Ant colony optimization (ACO) is a population-based metaheuristic inspired from the

foraging behaviour of ants. It simulates this natural behaviour of real ants to solve

combinatorial optimization problems by using artificial ants. To apply ACO, the

optimization problem is transformed into the problem of finding the best path on a

weighted graph. The artificial ants incrementally build solutions by moving on the

graph using a stochastic construction process guided by artificial pheromone and

heuristic information known as visibility (Dorigo, 2010). The ant system (AS) is the

first ACO approach developed for solving the traveling salesman problem (TSP)

(Dorigo et al., 1996). Some early applications include the elitist strategy for AS (EAS)

(Dorigo et al., 1996), rank-based version of AS (ASrank) (Bullnheimer et al., 1999a;

Bullnheimer et al., 1999b), MAX-MIN AS (MMAS) (Stützle and Hoos, 1997), and ant

colony system (ACS) (Dorigo and Gambardella, 1997). Although the ant algorithms are

designed as constructive methods, Zufferey (2011) has recently shown that the ants can

also be efficiently used in a local search setting.

In this chapter, we propose a new AS which uses a time-based pheromone

approach, namely TbAS. TbAS takes into account the time-window nature of the

routing problem in the visibility mechanism of AS. Basically, it may not be time-wise

78

desirable to travel from one customer to the next after at a certain point in the

scheduling horizon. However, the traditional AS assigns the same probability for

visiting a customer after another at any time, which may lead to unnecessary waiting

times and poorer solutions. Using this motivation, we introduce a multi-layer

pheromone network structure in an attempt to distinguish the pheromone levels

belonging to different time intervals and utilize the timing of the visit as an implicit

heuristic information in the route construction phase. To the best of our knowledge, this

is the first AS approach that utilizes “time” as the heuristic information.

Due to its time-based pheromone nature, TbAS is applicable to vehicle routing

problems involving time-windows. In this study, we investigate the performance of

TbAS using the vehicle routing problem with time windows (VRPTW). VRPTW is a

well-known vehicle routing problem (VRP) which has been extensively studied in the

literature. It determines a set of routes that belongs to a homogeneous fleet of �

vehicles with capacity �, to serve � geographically dispersed customers. Each customer

� has a demand (��), a service time (��) and a service time window ([��, ��]) in which the

customer must be served. Although some models allow early or late servicing with a

penalty cost (soft time windows), the time window is assumed to be strict in this study

(hard time windows). Thus, any vehicle arriving at customer � before �� must wait until

��. The vehicles reside in a depot denoted with 0 which also has its own time windows;

[��, ��]. This time window implies that any vehicle must leave the depot after �� and

must return to the depot before ��. The demands of the customers must be satisfied such

that each customer is serviced exactly once by exactly one vehicle, each route originates

and terminates at the depot, and total demand of the customers assigned to each route

must not exceed the vehicle capacity. The interested reader is referred to Toth and Vigo

(2002) for more details and the formulation of the problem.

VRPTW has been extensively studied over the last three decades and different

exact and heuristic methods have been proposed in the literature. While the exact

methods aim at minimizing the total travel distance almost all heuristic methods employ

the hierarchical objective approach where minimizing the number of vehicles (routes) is

the primary objective and minimizing total travel distance is the secondary. However,

research on heuristic methods focusing on the second objective has recently gained

momentum. Alvarenga et al. (2007) emphasized the lack of heuristic approaches using

only the second objective and justified the need for research effort in this direction by

providing different real-life examples from Brazil where the minimization of the travel

79

distance is appropriate. We have faced similar situations in different business

environments in our country as well. Many companies outsource the collection of the

raw materials and components and the delivery of the products to third party logistics

(3PL) service providers or contractors. They either make annual or longer term

contracts usually requiring a fleet dedicated to their operations or hire trucks from small

businesses or the spot market where individually owned trucks are available. In the

former case, they are charged with a fixed cost depending on the fleet size and type and

a variable cost per kilometer basis. Then, the minimization of the total distance is the

appropriate objective when the total capacity of the fleet is larger than the items to be

collected or delivered. In the latter case, hired trucks are paid on a kilometer basis. In

any case, minimizing the total travel distance arises as the primary and sole objective,

which constitutes the motivation of this study.

The remainder of the chapter is organized as follows: Section 2 provides a brief

review of the relevant literature. Section 3 describes the mechanisms of TbAS. Section

4 presents an extensive computational study to test its performance and reports detailed

results. Finally, concluding remarks and future research directions are given in Section

5.

2. Relevant Literature

Since the hierarchical objective approach is out of the scope of this study, we review the

literature related with the distance minimization objective and refer the interested reader

to Toth and Vigo (2002), Bräysy and Gendreau (2005a), and Bräysy and Gendreau

(2005b) for an extensive review of route construction, local search (LS), and

metaheuristic approaches proposed for solving the hierarchical objective problem.

The edge exchange procedures mainly developed for TSP were implemented for

VRPTW first (Savelsbergh, 1992). Rousseau et al. (2002) proposed a variable

neighbourhood search (VNS) approach while Tan et al. (2001) compared the

performances of four different approaches, namely λ-interchange local search,

simulated annealing (SA), tabu search (TS), and genetic algorithm (GA). Utilizing the

insertion heuristic 1 of Solomon (1987) and applying a local-post optimization, Jung

and Moon (2002) developed a hybrid GA and reported very good results with

considerably little computational effort. Pisinger and Ropke (2007) proposed an

adaptive LNS framework an extension of the large neighbourhood search (LNS) of

Shaw (1998). Ombuki et al. (2006) addressed VRPTW as a dual-objective problem and

80

proposed a GA approach using Pareto ranking technique. Alvarenga et al. (2007)

proposed a two-phase column generation heuristic (CGH) that comprised an efficient

GA and a set partitioning formulation. In Brandão de Oliveira and Vasconcelos (2010) a

hybrid solution approach consisting of SA, hill climbing (HC), and random restart

procedures was developed.

Recently, Muter et al. (2010) presented an algorithmic framework (MetaOpt) that

combines metaheuristics with exact algorithms. In this framework, the metaheuristic

searches for new solutions and the newly found columns are introduced into the exact

algorithm The information extracted from the exact algorithm is fed back to the

metaheuristic as a guiding mechanism to better search the solution space. More recently,

Garcia-Najera and Bullinaria (2011) has proposed an evolutionary algorithm (EA) to

optimize the total distance and total number of vehicles simultaneously. They designed

a bi-objective EA to obtain pareto optimal solutions by the help of similarity measures.

The distance (time) minimization objective has also been considered in various VRPTW

variants, within the context of soft time windows (e.g. (Koskosidis et al., 1992; Badeau

et al., 1997)) and time-dependent travel times (e.g. (Fleischmann et al., 2004; Eglese et

al., 2006)) as such.

The first ACO approach developed for VRPTW is the multiple ACS (MACS-

VRPTW) of Gambardella et al. (1999). MACS-VRPTW is designed for solving

VRPTW with hierarchical objective by using the coordination of two ant colonies

simultaneously. The first colony, ACS-VEI, reduces the number of vehicles while the

second, ACS-TIME, optimizes the travel times of the feasible solutions found by ACS-

VEI. However, the two colonies utilize independent pheromone trails. Ellabib et al.

(2002) proposed another ACO approach for the same problem where the basic idea is to

let the ACS perform its search in the space of local minima rather than in the search

space of all feasible tours. The VRPTW is transformed to TSP as in MACS-VRPTW.

3. Time-based ant system (TbAS)

Ants in nature deposit an aromatic chemical called as pheromone on the path they walk.

Pheromone is a communication mechanism among the ants and there is a positive

correlation between the probability of a path being selected and the amount of

pheromone on the path. In other words, the more pheromone on the path, the more ants

follow that path, which further increases the pheromone level. The amount of the

pheromone deposited depends on the quality of the food source as well. In time, all ants

81

are expected to follow the shortest path between the food source and their nest (Dorigo,

2010).

AS uses artificial ants to solve combinatorial optimization problems by simulating

the above mentioned behaviour. The solution quality of the problem is analogous to the

quality of the food source. Artificial ants incrementally build solutions utilizing a

common memory. Imitating the trails in the real model, this memory can be read and

modified by any of these ants (Pardalos and Resende, 2002). AS has two main

components: pheromone trail intensity (���) and the visibility (���) between � and �,

where � and � denote the customers in VRP (cities in TSP). ��� is the common memory

of artificial ants whereas ��� is a heuristic information representing the desirability of

visiting customer � after customer � and is set to the inverse of the distance between �

and �.

In the route construction phase, � ants, which move in parallel, are initially placed

at the � nearest customers to the depot. Each ant at a specific customer selects the next

customer using the following random proportional rule:

k
i

Nl

ilil

ijijk
ij Njp

k
i

 if ,

 (1)

 where ��
� denotes the set of not yet visited cities and the probability of selecting a city

outside ��
� is 0. � and � are non-negative parameters to control the relative weight of

pheromone information ��� and heuristic information ���.

Usually a local search procedure is applied to further improve the routes obtained

after each ant has constructed its tour. In the final phase, the pheromone trails are

updated through the pheromone evaporation and pheromone reinforcement processes.

The pheromone evaporation refers to uniformly decreasing the pheromone values on all

arcs. The aim is to prevent the rapid convergence of the algorithm to a local optimal

solution by reducing the probability of repeatedly selecting certain cities. The

pheromone reinforcement process, on the other hand, allows each ant to deposit a

certain amount of pheromone on the arcs belonging to its tour. The aim is to increase

the probability of selecting the arcs frequently used by the ants that construct short

tours. The pheromone update procedure is performed as follows:

82

 ji
K

k

k
ijijij , , 1

1

 (2)

where � (0< � ≤1) is the pheromone evaporation parameter, and (�, �) refers to the arc

between cities � and �. k
ij is the amount of pheromone deposited on arc (�, �) by ant �

and is computed as:

otherwise , 0

 touritson , arc uses ant if ,
1

jik
Lkk

ij (3)

where �� is the length of tour constructed by ant �.

This selection mechanism in equation (1) does not involve any information

associated with the time of the visit. It may not be time-wise desirable to visit customer

� after customer � after at a certain point in the scheduling horizon. However equation

(1) assigns the same probability for visiting � after � at any time, which may lead to

unnecessary waiting times. Using this motivation we introduce a multi-layer pheromone

network structure which takes the time window characteristics of the problem into

consideration. First, the scheduling horizon is divided into � time intervals ��, ��, … ,

�� and the pheromone network is constructed accordingly. In other words, a third

dimension is added to the pheromone information. Now, the implicit heuristic

information that depends on the service time windows of the customers is included in

the pheromone trail between customer � and � in the “time interval �”.

An illustrative example consisting of 25 customers is given in Figure 1. The

horizon is discretized into three time intervals
3 1 szT , with a different pheromone

network (layer) associated with each interval (Figure 1.a). In this example, the length of

each time interval is found by dividing the time window length of the depot by the

number of intervals; however, the lengths of the time intervals are not necessarily

equal in general and can be determined according to the specific environment. When

an ant leaves customer � at time zi Tt the pheromone information on the

corresponding layer � is utilized to select the next customer it will visit. It can be

observed that on the first layer at the bottom the arcs directed from the depot to the

customers have higher pheromone levels whereas on the third layer at the top the

pheromone levels on the arcs directed from the customers to the depot are higher. In the

83

Figure 1. A three-layer pheromone network and the final route assignments

second network in the middle, pheromone is accumulated only on the arcs which are

traversed in the second time interval. In Figure 1.b we see that the final routes strictly

overlap with the pheromone trails.

Figure 2. Illustration of the multi-layer pheromone network (a) Layer 1, (b) Layer 2, and

(c) Layer 3

The mechanism of the proposed multi-layer pheromone network approach is

depicted in Figure 2. Consider the vehicle route 0-23-22-4-0 in Figure 1. 0 indicates the

depot and 23, 22, and 4 are the customers that the vehicle services in the given order

where their time-windows are [10:00, 16:00], [12:00, 18:00], and [13:00, 16:00],

respectively. Let the three time intervals be �� = [9:00, 12:00), �� = [12:00, 15:00), and

�� = [15:00, 18:00) and assume a 30-minute service time for all customers. To select the

(a) (b)

(a) (b) (c)

84

first customer to visit, the ant uses the pheromone information on layer 1 since its starts

its tour from the depot at 9:00. Suppose customer 23 is selected and arc (0, 23) is

traversed in 2 hours 40 minutes. Then, the arrival time to customer 23 is 11:40 and the

departure time is 12:10. Next, suppose the ant selects customer 22 followed by customer

4 using the pheromone trails on layer 2 and traverses arc (23, 22) during 12:10-13:20

and arc (22, 4) during 13:50-14:50. Finally, after servicing customer 4 the ant returns to

the depot by traversing arc (4, 0) from 15:20 to 17:30 and the route terminates.

The above described multi-layer network structure makes use of the implicit

information on the most suitable time interval for the travel between each customer pair.

To better analyze the gain obtained by this new structure, we do not utilize any explicit

heuristic information. Thus, the visibility parameter (�) is set to 0 and without loss of

generality the pheromone parameter is set to 1. The random selection rule (1) is then

applied as follows:

k
i

Nl

ilz

ijzk
ijz Njp

k
i

 if ,

 (4)

where ���� denotes the pheromone trail on layer (time interval) � . When � = 1 the

algorithm reduces to AS.

Similar to most AS approaches TbAS has three main phases: route construction,

local search, and pheromone update. The route construction is performed using equation

(4). To put a limit on the exploration and to speed up the algorithm, we use a candidate

list which consists of the nearest CL (candidate list size) feasible neighbours of a

customer. Neighbouring customers that satisfy the following conditions are included in

the candidate list: (i) the vehicle departing from customer � arrives at the candidate

customer before its latest possible arrival time (also referred to as due date); (ii) the

remaining capacity of the vehicle can accommodate the demand of the candidate

customer; and (iii) after visiting the candidate customer the vehicle can return to the

depot before the depot’s due date. If the candidate list is empty, the vehicle completes

its tour and returns to the depot. A new vehicle starts its tour at time 0 from the feasible

customer that has the largest pheromone value from the depot.

After a solution is obtained we utilize “1-exchange” and “1-move” local search

procedures to further reduce the total distance travelled. 1-exchange procedure

exchanges two customers in a single route (intra-route) or between routes (inter-route)

85

whereas the 1-move procedure attempts to improve the solution by removing a customer

and inserting it between two other customers, intra-route or inter-route.

The pheromone update is performed in a similar way as in Bullnheimer et al.

(1999b); however, its implementation is slightly different due to the multi-layer nature

of the pheromone network: first we evaporate the pheromone trails on all arcs on all

networks; then we allow the ant to deposit pheromone between a customer pair only in

the time interval when it has passed through. The procedure is as follows:

 jiwkw bs
ijz

w

k

k
ijzijzijz , ,)(1

1

1

 (5)

where k
ijz is the amount of pheromone deposited on arc (�, �) on layer � by ant �, � is

the number of elite (best-performing) ants that are allowed to deposit pheromone, and

superscript bs represents the best-so-far ant. The amount of the pheromone deposited is

computed in the same way as in (3):

otherwise , 0

 touritson interval in time , arc uses ant if ,
1

zjik

Lkk
ijz

(6)

where �� (���) is the length of tour constructed by ant � (best-so-far ant bs). Note that

the best-so-far ant is allowed to deposit pheromone after P iterations (referred to as

preliminary iterations) to avoid a quick stagnation.

4. Computational study

The computational study aims at investigating the role of the multi-pheromone network

structure and the effect of the parameters on the solution quality as well as on the

computational effort. As the main contribution of TbAS comes from the multi-layer

pheromone network, the main parameter to be determined is the number of layers. The

number of ants whose solutions are further improved through LS (referred to as

#LS_ants) is also a key parameter. So, we focus on the sensitivity of the solution quality

to the value of these two parameters.

We use the well-known Solomon instances (Solomon, 1987) using real numbers.

These instances comprise three main problem sets where the customers are clustered

(C), randomly distributed (R), and both clustered and randomly distributed (RC) over a

100x100 grid. Each set has also two subsets, type 1 and type 2, which differ not only by

the length of the time windows but also by the vehicle capacity. There are a total of 56

86

instances grouped in 6 problem classes (namely C1, C2, R1, R2, RC1, and RC2), which

all involve n = 100 customers.

Table 1. Values used for parameter tuning

Parameter Value
Evaporation (�) 0.05, 0.10, 0.15
Number of elite ants (w) 6, 12, 18
Candidate list size (CL) 25, 50, 100
Number of iterations 100, 200
Preliminary iterations (P) 25, 50, 75

For parameter tuning, we performed a series of preliminary tests using the values

given in Table 1 and determined the values shown in bold as the best-fitting values. The

lengths of the time intervals are equal and are determined as the ratio of the length of

the depot’s time-window to the number of layers. The algorithm is coded in C#

programming language and executed on a Pentium 2.33 GHz processor. To observe the

robustness of the algorithm, we performed 30 runs for each instance.

4.1. Analysis of the number of layers

In this experiment we investigate the sensitivity of the solution quality and the

computational effort to changing number of layers. To make a better analysis, we

consider both small and large #LS_ants values in the LS phase, i.e. n/20 (5) and n (100)

ants, respectively. Table 2 reports the average of the best distances for each class

implementing 1 to 5 layers. The layer 1 case corresponds to the standard single-layer

pheromone network. “TD” is the total distance, “NV” is the number of vehicles, “CT” is

the computation time, and “Avg” refers to the average. The values in bold show the best

layer option for each problem class and #LS_ants configuration.

We observe that on the average multi-layer approach provides better distances

than the traditional single-layer approach, for both 5 and 100 #LS_ants cases. Among

the multiple layers, the three-layer pheromone network outperforms the others. If we

examine the individual classes, we see that the three-layer network is the best performer

except RC classes, for which it lags by a very small margin. Overall, we observe that

the multi-layer approach is capable of finding better routes compared to the single-layer

approach.

To better analyze each class, we take the average of the distances for 5 and 100

#LS_ants cases and report the normalized values in Figure 3. The normalization is

87

Table 2. Average of the best total distance values, number of vehicles, and the average

computation times (in minutes)

Number of layers

 #LS_ants = 5 #LS_ants = 100

 1 2 3 4 5 1 2 3 4 5

C1 TD 828.38 828.38 828.38 828.38 828.38 828.38 828.38 828.38 828.38 828.38
 NV 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
 CT 0.33 0.32 0.34 0.34 0.33 5.15 5.23 5.52 5.48 5.19
C2 TD 589.93 589.93 590.27 589.86 590.27 589.86 589.86 589.86 589.86 589.86
 NV 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
 CT 0.60 0.59 0.61 0.62 0.60 12.54 13.08 13.80 13.71 13.03
R1 TD 1191.93 1189.58 1189.29 1190.04 1190.43 1183.55 1182.94 1181.88 1184.42 1183.33
 NV 13.58 13.50 13.50 13.50 13.42 13.42 13.33 13.33 13.33 13.33
 CT 0.37 0.36 0.37 0.38 0.37 5.18 5.12 5.18 5.17 4.90
R2 TD 911.56 907.47 899.65 899.20 902.15 903.40 898.66 892.37 893.78 894.98
 NV 5.73 5.36 5.36 5.64 5.36 5.82 5.73 5.36 5.45 5.45
 CT 1.62 1.62 1.61 1.63 1.61 30.68 31.06 31.53 31.24 30.24
RC1 TD 1369.34 1368.10 1367.06 1367.73 1371.06 1349.04 1347.85 1349.61 1351.47 1349.22
 NV 13.38 13.38 13.25 13.25 13.38 13.00 13.00 13.13 13.25 13.13
 CT 0.42 0.40 0.42 0.43 0.41 4.79 4.78 4.83 4.86 4.71
RC2 TD 1044.62 1033.08 1032.66 1036.16 1035.01 1025.25 1017.19 1018.15 1017.82 1021.62
 NV 6.25 6.38 6.00 6.13 5.88 6.63 6.13 5.88 6.25 6.25
 CT 1.20 1.20 1.21 1.21 1.19 22.15 22.69 22.68 22.72 21.75

Avg TD 996.73 993.60 991.84 992.45 993.48 987.65 985.27 984.20 985.24 985.46
 NV 8.88 8.80 8.73 8.80 8.71 8.86 8.75 8.66 8.75 8.73
 CT 0.77 0.76 0.77 0.78 0.76 13.60 13.83 14.09 14.02 13.47

performed by dividing each class average with respect to the number of networks by the

minimum distance. These results show that the multi-layer approach outperforms the

single-layer approach in all the classes but C1 where all the settings perform the same.

In addition, we see that when the scheduling horizon is longer and the time-windows are

larger (i.e. type 2 problems), our multi-layer approach performs better as a result of the

usage of the implicit time information, particularly in R2 and RC2 classes.

Figure 3. Normalized total distances

The only difference between the time complexity of the traditional AS approach

and the proposed approach lies in Z. As Z is not expected to be large the additional

88

computation time that the pheromone update procedure requires is marginal. The results

in Table 2 show that the multi-layer approach does not require any additional

computational effort as the average run times are similar for all problem classes. On the

other hand, we notice that the increase in #LS_ants has a significant effect on the

computation time regardless of the number of layers: The average computational time

using 100 ants is nearly 20 times the time needed in 5 ants. However, the average

improvement in the total distance using 100 vs. 5 #LS_ants is only 1.53%. We will

further investigate the impact of #LS_ants on both the solution quality and the

computational effort in the next section.

4.2. Analysis of the number of ants used in the local search

#LS_ants can be static or dynamic throughout the solution process. Furthermore, the

ants can be selected randomly or based on their performance. In this experimental study

we investigate the performance of TbAS for #LS_ants values of n/20, n/10, n/5, n/2, and

n (i.e. 5, 10, 20, 50, and 100 ants, respectively). The number of layers is fixed to three in

accordance with the previous experiment. The results are reported in Table 3.

Table 3. Comparison of the number of the ants by distance

#LS_ants

5 10 20 50 100

C1 TD 830.40 828.88 828.57 828.41 828.38
 NV 10.00 10.00 10.00 10.00 10.00
 CT 0.36 0.56 0.99 2.39 5.11

C2 TD 593.21 590.99 590.50 590.34 590.24
 NV 3.03 3.01 3.00 3.00 3.00
 CT 0.62 1.17 2.30 5.99 13.06

R1 TD 1205.30 1198.49 1194.00 1190.88 1189.47
 NV 13.80 13.80 13.79 13.78 13.74
 CT 0.34 0.54 0.95 2.29 4.89

R2 TD 928.81 922.10 916.76 913.52 910.89
 NV 5.72 5.78 5.78 5.84 5.84
 CT 1.46 2.73 5.38 14.02 30.56

RC1 TD 1394.41 1387.02 1379.56 1372.49 1368.45
 NV 13.68 13.65 13.61 13.55 13.54
 CT 0.33 0.51 0.91 2.19 4.68

RC2 TD 1067.02 1057.42 1048.97 1043.36 1039.72
 NV 6.33 6.52 6.50 6.55 6.56
 CT 1.05 1.96 3.86 10.06 21.93

 Average TD 1010.56 1004.79 1000.39 997.22 995.29
 NV 8.98 9.01 9.00 9.01 9.00
 CT 0.70 1.26 2.43 6.23 13.54

We observe that using more ants in the LS phase results in better exploration of

the solution space and yields better solutions. The average distance in each class tends

to decrease with the increasing value of #LS_ants. On the other hand, the improvement

on the overall average distance is only 0.19% for 50 ants compared to 100 ants. While

89

increasing #LS_ants enhances the solution quality, the trade-off is the significant

increase in the computational effort. Using the best 5 ants in LS as compared to all 100

ants deteriorates the average solution quality by 1.53% whereas the computational time

reduces by 95%. Decreasing #LS_ants from 100 to even 50 leads to a 54% reduction in

the average computational time at the expense of only 0.19% decline in the average

total distance.

Figure 4. Percentages of computation times spent for different phases of TbAS

Although different numbers of pheromone networks do not affect the computation

times, the above observation reveals that increasing the number of ants utilized in LS

leads to substantially higher computational effort. So, in Figure 4 we compare the time

spent to the main AS mechanisms, namely route construction and pheromone update

phases, to that of the LS phase. We observe that when 5 ants are utilized LS takes 79%

of the total computation time whereas it takes 99% of the time when 100 ants are

utilized. We note that in the former case, the route construction and pheromone update

procedures consume 20.6% and 0.4% of the total time, respectively. While LS

consumes a significant amount of time, nevertheless, ACO is more efficient equipped

with a LS mechanism, in parallel with the observation in the literature. From a practical

point of view, #LS_ants can be rationally determined to obtain fairly good solutions in

reasonable time.

4.3. Analysis of the best and first improvement approaches in local search

State-of-the-art ACO algorithms are combined with LS for an enhanced performance

(Floudas and Pardalos, 2009). The probability that a solution constructed by an ant will

0.79
0.89 0.94 0.98 0.99

0%

20%

40%

60%

80%

100%

5 10 20 50 100

P
e

rc
e

n
ta

ge
 o

f
co

m
p

u
ta

ti
o

n
al

ti

m
e

#LS_Ants

Construction &
Pheromone
Update

90

be improved by an adequate LS is quite high as the neighbourhood structures of ACO

and LS are different. Besides, the probabilistic, adaptive solution generation process of

ACO provides proper initial solutions for LS which alone suffers from finding these

solutions (Dorigo and Stützle, 2004). The proposed TbAS is not exceptional and similar

to most best performing ACO algorithms it benefits from the LS to be able to achieve

high quality solutions.

In the experiments so far, we implemented the best improvement LS approach

where all possible neighbours are investigated and the one that leads to the largest

improvement is performed. In this experiment, we also test the performance of TbAS

using the first improvement (greedy) approach, i.e. as soon as an improving neighbour

is found it is realized as the next solution. We noted earlier that the three-layer network

approach performed best with respect to the average of best solutions. However, we

observed that the average results obtained by the four-layer network approach are also

competitive. Hence, in this experiment we compare both three- and four-layer settings

implementing best and first improvement local search approaches. The average results

are reported in Table 4. In this table, the rows “Best” (“Avg”) refers to the set average

of the best distances (of the average distances) and “CV” denotes the coefficient of

variation (the ratio of the standard deviation to the mean). “TbAS(3)/(4)” and

“Best/First” columns indicate the configuration as described above.

Although these results do not show any superiority of one number of layers to the other,

we observe that four-layer network structure tends to provide better solutions in type 2

problems whereas three-layer network structure is slightly better in type 1 problems,

particularly when best neighbour approach is used in the LS procedure. This may be due

to the fact that more number of layers provides better time-wise discriminated

pheromone trails for type 2 problems with longer scheduling horizon and larger time-

windows. In terms of the LS technique, the greedy approach performs slightly better

than the best improvement approach. Although this may seem non-intuitive, note that

LS is performed after the routes are constructed with the ant system and the post-

optimization with the greedy approach may better explore the solution space. Besides,

the difference is marginal. Finally, the small CV values show the robustness of the

algorithm.

91

Table 4. Average distances, number of vehicles and the coefficient of variation for best

and first improvement LS approaches

Problem Set

TbAS(3) TbAS(4)

Best First Best First

TD NV TD NV TD NV TD NV

C1

Best 828.38 10.00 828.38 10.00 828.38 10.00 828.38 10.00

Avg 828.38 10.00 828.41 10.00 828.39 10.00 828.45 10.00

CV 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0002 0.0000

C2

Best 589.86 3.00 589.86 3.00 589.86 3.00 589.86 3.00

Avg 590.24 3.00 590.16 3.00 590.61 3.00 590.28 3.00

CV 0.0009 0.0000 0.0004 0.0000 0.0023 0.0075 0.0021 0.0075

R1

Best 1181.88 13.33 1180.91 13.25 1184.42 13.33 1183.26 13.25

Avg 1189.47 13.74 1189.59 13.65 1190.05 13.77 1189.46 13.63

CV 0.0028 0.0160 0.0033 0.0205 0.0023 0.0153 0.0031 0.0212

R2

Best 892.37 5.36 893.32 5.18 893.78 5.45 890.45 5.36

Avg 910.89 5.84 906.80 5.58 911.21 5.82 905.24 5.55

CV 0.0102 0.0949 0.0076 0.0909 0.0103 0.1012 0.0079 0.0958

RC1

Best 1349.61 13.13 1344.65 13.00 1351.47 13.25 1343.96 13.00

Avg 1368.45 13.54 1362.63 13.35 1366.08 13.48 1360.99 13.33

CV 0.0074 0.0249 0.0069 0.0256 0.0070 0.0233 0.0068 0.0181

RC2

Best 1018.15 5.88 1018.81 6.13 1017.82 6.25 1022.73 6.38

Avg 1039.72 6.56 1036.37 6.29 1038.01 6.50 1036.44 6.28

CV 0.0106 0.0911 0.0081 0.0689 0.0110 0.0821 0.0074 0.0776

Overall

Best 984.20 8.66 983.56 8.63 985.24 8.75 983.96 8.70

Avg 995.29 9.00 993.20 9.49 994.95 8.98 992.66 8.85

CV 0.0053 0.0378 0.0044 0.0343 0.0055 0.0382 0.0046 0.0367

Table 5. Comparison with the best-known distances from the literature for type 1

problems

Best-known

TbAS(3) TbAS(4)

 Best First Best First
Inst TD NV TD NV TD NV TD NV TD NV

C101 828.94 [RT] 10 828.94 10 828.94 10 828.94 10 828.94 10
C102 828.94 [RT] 10 828.94 10 828.94 10 828.94 10 828.94 10
C103 828.06 [RT] 10 828.06 10 828.06 10 828.06 10 828.06 10
C104 824.78 [RT] 10 824.78 10 824.78 10 824.78 10 824.78 10
C105 828.94 [RT] 10 828.94 10 828.94 10 828.94 10 828.94 10
C106 828.94 [RT] 10 828.94 10 828.94 10 828.94 10 828.94 10
C107 828.94 [RT] 10 828.94 10 828.94 10 828.94 10 828.94 10
C108 828.94 [RT] 10 828.94 10 828.94 10 828.94 10 828.94 10
C109 828.94 [RT] 10 828.94 10 828.94 10 828.94 10 828.94 10

R101 1642.87 [AMT] 20 1642.88 20 1642.88 20 1642.88 20 1642.88 20
R102 1472.62 [AMT] 18 1472.81 18 1472.81 18 1472.82 18 1472.81 18
R103 1213.62 [JM] 14 1213.62 14 1213.62 14 1218.61 14 1213.62 14
R104 976.61[JM] 11 977.55 11 984.34 11 995.17 11 991.09 11
R105 1360.78 [JM] 15 1365.85 15 1360.78 15 1368.91 16 1363.74 15
R106 1240.41 [GB] 13 1240.55 13 1241.35 13 1241.55 13 1240.26 13
R107 1073.34 [JM] 11 1085.56 12 1073.01 11 1080.43 11 1074.32 11
R108 947.55 [JM] 10 946.42 10 944.44 10 949.38 10 946.42 10
R109 1151.84 [JM] 13 1151.84 13 1151.84 13 1151.84 13 1151.84 13
R110 1072.41 [JM] 12 1072.42 12 1072.41 12 1072.42 12 1082.22 12
R111 1053.50 [JM] 12 1053.50 12 1053.80 12 1053.50 12 1053.50 12
R112 953.63 [RT] 10 959.58 10 959.58 10 965.49 10 966.39 10

RC101 1623.58 [RT] 15 1657.91 17 1642.48 16 1644.78 17 1638.00 16
RC102 1461.23 [JM] 14 1477.87 14 1464.35 14 1477.20 14 1461.44 14
RC103 1261.67 [S] 11 1276.05 12 1277.08 12 1262.68 11 1277.08 12
RC104 1135.48 [C] 10 1148.83 10 1141.66 10 1147.34 10 1143.56 10
RC105 1518.58 [JM] 16 1518.58 16 1518.58 16 1518.58 16 1518.58 16
RC106 1377.35 [AMT] 13 1377.35 13 1376.99 13 1393.96 14 1381.58 13
RC107 1212.83 [JM] 12 1212.95 12 1212.83 12 1238.69 13 1213.89 12
RC108 1117.53 [JM] 11 1127.38 11 1123.26 11 1128.57 11 1117.53 11

AMT: (Alvarenga et al., 2007), C: (Cordeau et al., 2001), GB: (Garcia-Najera and
Bullinaria, 2011), JM: (Jung and Moon, 2002), RT: (Rochat and Taillard, 1995), S: (Shaw,
1998),

92

4.4. Comparison with the best-known distances

Table 5 and Table 6 compare the best solutions found by TbAS to the best distances

published in the literature for type 1 and type 2 problems, respectively. We use the same

configurations as in Section 5.3. For all clustered problems (C1 and C2 problem sets)

TbAS finds the best-known distances using any of the layer/LS configurations. For the

other problems, we observe that TbAS is able to find relatively good solutions. The

average gap between the best-known distances and our best distances is only 0.06% for

type 1 problems and 0.75% for type 2 problems. In 4 instances the best-known distances

are improved: R106, R107, R108, and RC106. The solutions of these problems are

provided in the Appendix. The numbers in bold show the distances that are better than

or same as the best-known distances. The new best distances are italicized. The

convergence graphs of these instances are depicted in Figure 5.

Table 6. Comparison with the best-known distances from the literature for type 2

problems

Best-known

TbAS(3) TbAS(4)

Best First Best First
Inst TD NV TD NV TD NV TD NV TD NV

C201 591.56 [RT] 3 591.56 3 591.56 3 591.56 3 591.56 3
C202 591.56 [RT] 3 591.56 3 591.56 3 591.56 3 591.56 3
C203 591.17 [RT] 3 591.17 3 591.17 3 591.17 3 591.17 3
C204 590.60 [RT] 3 590.60 3 590.60 3 590.60 3 590.60 3
C205 588.88 [RT] 3 588.88 3 588.88 3 588.88 3 588.88 3
C206 588.49 [RT] 3 588.49 3 588.49 3 588.49 3 588.49 3
C207 588.29 [RT] 3 588.29 3 588.29 3 588.29 3 588.29 3
C208 588.32 [RT] 3 588.32 3 588.32 3 588.32 3 588.32 3
R201 1147.80 [BV] 8 1162.59 8 1157.65 9 1157.86 9 1155.80 8
R202 1034.35 [JM] 8 1036.60 7 1037.08 7 1042.05 7 1038.41 8
R203 874.87 [JM] 6 880.61 6 877.48 6 882.15 6 875.62 6
R204 735.80 [BV] 3 748.52 4 746.98 5 749.05 4 750.50 5
R205 954.16 [ORH] 5 972.87 5 972.55 5 964.64 5 973.81 5
R206 879.89 [JM] 5 899.76 6 900.76 4 902.82 6 892.95 5
R207 797.99 [BV] 4 823.50 5 820.49 4 829.55 4 805.70 4
R208 705.45 [JM] 4 717.78 4 719.42 3 722.22 3 711.37 3
R209 859.39 [JM] 5 876.33 5 892.31 5 879.14 6 888.29 5
R210 910.70 [JM] 5 923.50 5 915.49 5 928.59 6 918.79 6
R211 755.82 [BV] 4 774.06 4 786.31 4 773.51 4 783.71 4
RC201 1265.56 [JM] 9 1275.66 9 1278.14 8 1272.63 9 1278.09 8
RC202 1095.64 [JM] 8 1104.92 7 1104.92 7 1112.85 8 1111.16 8
RC203 926.89 [BV] 5 944.54 5 938.19 6 942.09 5 938.19 6
RC204 786.38 [JM] 4 806.85 4 802.10 4 800.48 4 802.95 4
RC205 1157.55 [JM] 7 1157.55 7 1159.06 7 1157.55 7 1157.55 7
RC206 1054.61 [JM] 7 1079.12 6 1072.78 6 1072.08 6 1084.71 7
RC207 966.08 [JM] 6 972.74 5 980.30 6 992.21 6 990.89 6
RC208 779.31 [JM] 4 803.83 4 815.00 5 792.65 5 818.28 5

BV: (Brandão de Oliveira and Vasconcelos, 2010), JM: (Jung and Moon, 2002), ORH:
(Ombuki et al., 2006), RT: (Rochat and Taillard, 1995)

93

Figure 5. Convergence graphs for the instances with an improved best-known distance

5. Conclusion

In this study, we presented TbAS, a new AS algorithm that utilizes a multi-layer

pheromone network approach for solving VRPs involving time-windows and conducted

an extensive computational study to test its performance. Our tests on VRPTW

instances showed that the multi-layer pheromone network approach outperformed the

classical single-layer counterpart. We observed that equipped with LS, TbAS is capable

of obtaining good solutions by implicitly using the service time information, especially

in problems with longer scheduling horizon and wider time windows. We also

compared the distances obtained by TbAS to those published in the literature. The

results reveal that TbAS is effective in finding short distances.

Further research on this topic may focus on developing an efficient visibility

function and/or investigating other neighbourhood structures in the local search phase to

further enhance the solution quality. In addition, TbAS may be easily adapted to other

VRPTW variants. Summarizing, TbAS may be promising approach for solving hard

combinatorial optimization problems which involve time information.

94

A. Appendix

We report here the new best solutions we obtained for problems R106, R107, R108,

and RC106. The values in parentheses show the total distance achieved.

Route Distance

R106 (1240.257)
 1 0-92-37-14-44-38-86-43-100-98-93-0 128.497
 2 0-50-33-65-71-66-20-32-70-1-0 127.242
 3 0-48-47-36-19-49-46-82-7-52-0 126.937
 4 0-94-59-42-15-57-87-97-95-13-0 77.475
 5 0-69-30-51-81-9-35-34-3-77-0 104.238
 6 0-83-45-8-84-17-5-60-0 86.185
 7 0-27-62-88-18-89-0 62.646
 8 0-73-41-22-75-56-74-2-58-0 79.698
 9 0-21-72-39-23-67-55-4-25-26-0 127.228
 10 0-12-29-78-79-68-54-24-80-0 106.17
 11 0-96-85-91-16-61-99-6-0 61.638
 12 0-28-76-40-53-0 46.174
 13 0-63-64-11-90-10-31-0 106.129

R107 (1073.009)
 1 0-28-76-79-78-29-24-68-80-12-0 82.1
 2 0-2-57-15-41-22-75-56-74-4-21-58-0 104.11
 3 0-33-81-65-71-9-35-34-3-77-0 126.471
 4 0-42-43-14-44-38-86-16-91-100-37-98-0 114.781
 5 0-60-83-45-46-8-84-5-17-61-85-93-0 113.47
 6 0-48-47-36-64-49-19-82-18-89-0 126
 7 0-53-40-0 22.361
 8 0-52-7-62-11-63-90-32-66-20-51-50-0 114.944
 9 0-27-69-30-88-31-10-70-1-0 86.165
 10 0-73-72-39-23-67-55-25-54-26-0 114.799
 11 0-94-96-92-59-99-6-87-97-95-13-0 67.808

R108 (944.441)
 1 0-53-0 8.944
 2 0-6-96-99-5-84-17-61-85-93-59-94-0 71.661
 3 0-2-57-15-43-42-87-41-22-74-73-21-40-0 105.753
 4 0-31-88-62-11-64-49-36-47-19-7-52-0 119.19
 5 0-27-69-1-51-9-35-34-78-81-33-50-0 93.684
 6 0-95-92-98-44-14-38-86-16-91-100-37-97-0 101.858
 7 0-89-18-82-48-46-8-45-83-60-13-58-0 101.594
 8 0-10-63-90-32-66-65-71-20-30-70-0 127.919
 9 0-72-75-56-23-67-39-55-4-25-54-0 125.951
 10 0-26-12-76-3-79-29-24-80-68-77-28-0 87.887

95

Route Distance

RC106 (1376.993)
 1 0-83-64-19-23-21-18-48-25-77-0 131.07
 2 0-65-52-87-59-75-97-58-74-0 133.8
 3 0-92-67-31-29-30-32-89-0 143.69
 4 0-72-38-39-40-36-35-37-54-0 102.292
 5 0-61-42-44-43-41-70-68-0 93.345
 6 0-82-99-86-57-22-49-20-24-0 103.77
 7 0-2-45-5-8-7-6-46-4-3-1-100-0 109.751
 8 0-62-33-28-26-27-34-50-91-80-0 128.16
 9 0-95-63-85-76-51-84-56-66-0 104.989
 10 0-81-71-94-93-96-0 66.456
 11 0-11-12-14-47-15-16-9-10-13-17-0 126.269
 12 0-88-78-73-79-60-55-0 91.352
 13 0-69-98-53-90-0 42.049

References

Alvarenga, G. B., G. R. Mateus and G. de Tomi (2007). "A genetic and set partitioning
two-phase approach for the vehicle routing problem with time windows." Computers
& Operations Research 34(6): 1561-1584.

Badeau, P., F. Guertin, M. Gendreau, J.-Y. Potvin and E. Taillard (1997). "A parallel
tabu search heuristic for the vehicle routing problem with time windows."
Transportation Research Part C: Emerging Technologies 5(2): 109-122.

Brandão de Oliveira, H. and G. Vasconcelos (2010). "A hybrid search method for the
vehicle routing problem with time windows." Annals of Operations Research 180(1):
125-144.

Bräysy, O. and M. Gendreau (2005a). "Vehicle Routing Problem with Time Windows,
Part I: Route Construction and Local Search Algorithms." Transportation Science
39(1): 104-118.

Bräysy, O. and M. Gendreau (2005b). "Vehicle Routing Problem with Time Windows,
Part II: Metaheuristics." Transportation Science 39(1): 119-139.

Bullnheimer, B., R. F. Hartl and C. Strauss (1999a). "An improved Ant System
algorithm for theVehicle Routing Problem." Annals of Operations Research 89: 319-
328.

Bullnheimer, B., R. F. Hartl and C. Strauss (1999b). "A new rank-based version of the
ant system: A computational study." Central European Journal of Operations
Research 7(1): 25-38.

Cordeau, J. F., G. Laporte and A. Mercier (2001). "A unified tabu search heuristic for
vehicle routing problems with time windows." Journal of the Operational Research
Society 52(8): 928-936.

Dorigo, M. (2010). "Ant colony optimization." Scholarpedia 2(3): 1461-1461.
Dorigo, M. and L. M. Gambardella (1997). "Ant colony system: a cooperative learning

approach to the traveling salesman problem." IEEE Transactions on Evolutionary
Computation 1(1): 53-66.

Dorigo, M., V. Maniezzo and A. Colorni (1996). "Ant system: optimization by a colony
of cooperating agents." IEEE transactions on systems, man, and cybernetics. Part B,
Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
26(1): 29-41.

Dorigo, M. and T. Stützle (2004). Ant Colony Optimization. London, The MIT Press.

96

Eglese, R., W. Maden and A. Slater (2006). "A Road Timetable to aid vehicle routing
and scheduling." Computers & Operations Research 33(12): 3508-3519.

Ellabib, I., O. A. Basir and P. Calamai (2002). "An Experimental Study of a Simple Ant
Colony System for the Vehicle Routing Problem with Time Windows." Ant
Algorithms Lecture Notes in Computer Science 2463: 53-64.

Fleischmann, B., M. Gietz and S. Gnutzmann (2004). "Time-Varying Travel Times in
Vehicle Routing." Transportation Science 38(2): 160-173.

Floudas, C. A. and P. M. Pardalos (2009). Encyclopedia of Optimization. New York,
Springer.

Gambardella, L. M., É. Taillard and G. Agazzi (1999). MACS-VRPTW: a multiple ant
colony system for vehicle routing problems with time windows. D. Corne, M. Dorigo
and F. Glover. London, McGraw-Hill: 63-76.

Garcia-Najera, A. and J. A. Bullinaria (2011). "An improved multi-objective
evolutionary algorithm for the vehicle routing problem with time windows."
Computers & Operations Research 38(1): 287-300.

Jung, S. and B. R. Moon (2002). "A Hybrid Genetic Algorithm For The Vehicle
Routing Problem With Time Windows." 1309-1316.

Koskosidis, Y. A., W. B. Powell and M. M. Solomon (1992). "An Optimization-Based
Heuristic for Vehicle Routing and Scheduling with Soft Time Window Constraints."

Muter, İ., Ş. İ. Birbil and G. Şahin (2010). "Combination of Metaheuristic and Exact
Algorithms for Solving Set Covering-Type Optimization Problems." INFORMS
Journal on Computing 22(4): 603-619.

Ombuki, B., B. J. Ross and F. Hanshar (2006). "Multi-Objective Genetic Algorithms for
Vehicle Routing Problem with Time Windows." Applied Intelligence 24(1): 17-30.

Pardalos, P. M. and M. G. C. Resende (2002). Handbook of Applied Optimization. New
York, New York, USA, Oxford University Press.

Pisinger, D. and S. Ropke (2007). "A general heuristic for vehicle routing problems."
Computers & Operations Research 34(8): 2403-2435.

Rochat, Y. and É. D. Taillard (1995). "Probabilistic diversification and intensification in
local search for vehicle routing." Journal of Heuristics 1(1): 147-167.

Rousseau, L.-M., M. Gendreau and G. Pesant (2002). "Using Constraint-Based
Operators to Solve the Vehicle Routing Problem with Time Windows." Journal of
Heuristics 8(1): 43-58.

Savelsbergh, M. W. P. (1992). "The Vehicle Routing Problem with Time Windows:
Minimizing Route Duration." ORSA Journal on Computing 4(2): 146-154.

Shaw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems. M. Maher and J. F. Puget. Berlin, Springer: 417-431.

Solomon, M. M. (1987). "Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraints." Operations Research 35(2): 254-265.

Stützle, T. and H. Hoos (1997). MAX-MIN Ant System and local search for the
traveling salesman problem, IEEE.

Tan, K. C., L. H. Lee, Q. L. Zhu and K. Ou (2001). "Heuristic methods for vehicle
routing problem with time windows." Artificial Intelligence in Engineering 15(3):
281-295.

Toth, P. and D. Vigo (2002). The vehicle routing problem. Philadelphia, PA, SIAM
Monographs on Discrete Mathematics and Applications.

Zufferey, N. (2011). "Optimization by ant algorithms: possible roles for an individual
ant." Optimization Letters 6(5): 963-973.

97

6 GREEN VEHICLE ROUTING

98

6.1 Introduction

Green route planning on a time-dependent network where the travel speeds are subject

to fluctuations throughout the day requires the greenest path between every pair of

nodes to be determined first. Given these data, a fuel consumption/GHG matrix between

the customers and between the depot(s) and the customers can be established for any

instance.

The aforementioned facts in Section 2.1 show that bringing up the environmental

costs and other issues that are related to the sustainable logistics requires new ways of

doing business and planning approaches. Thus, ensuring an effective and efficient road

transport will also play a major role in reducing the negative environmental effects of

the logistics. For example, if all the vehicles collecting and distributing goods serve

with full capacity and their routes are determined by considering the GHG factor, the

threat on the environment by these activities will be greatly reduced. Also, better

loading of the vehicles, preventing the empty vehicle circulation and reducing the

distance traveled, in other words an effective route and schedule planning will constitute

a relief on the traffic density and congestion yielding a decrease on the GHG indirectly.

Route planning forms the basis of the distribution and collecting activities for the

road transport. The classical vehicle routing problem (VRP) aims to find routes that

start and end at a central depot and serve certain pickup and delivery points. The

demand at each point is known and each point is visited only once. All the vehicles are

identical with a certain capacity and each vehicle serves only on a single route. The

main objective is to minimize the total distance traveled (travel time). The VRP and its

extensions with different objectives and constraints have been extensively studied in the

literature for almost 50 years, especially after 90’s. However, the environmental factors

are often disregarded.

A detailed network structure is depicted in Figure 6.1. In this example, 0 denotes

the depot while the customers are denoted by nodes 3, 5, 12, 16, 20 and 27. The speeds

on each arc may differ from each other. So, the greenest path between node pairs will

differ by considering different departure times. In Figure 6.1(a), the vehicle that departs

at t=0 and heads east (right) will follow the route 0 3 5 12 0 whereas the

vehicle that heads west (left) will follow the route 0 16 27 20 0. In Figure

6.1 (b), the orders of the customer visits are the same with the previous case for both of

the vehicles which depart at t=1. However, the vehicle on the east route heading for the

99

first customer follows the arcs (0,2)-(2,3) instead of the arcs (0,2)-(2,1)-(1,3) and the

vehicle on the west route heading for the depot from the last customer follows the arcs

(20,19)-(19,17)-(17,0) instead of the arcs (20,19)-(19,18)-(18,21)-(21,0). In Figure 6.1

(c) where the vehicles depart at t=2, the route of the vehicle on east route is changed to

0 5 3 12 0 which also changes the arcs followed.

6.2 Literature

The time-dependent (TDVRP) is an extension of the VRP where the travel times

between the customers are not only a function of the distance but also subject to

variation due to weather and traffic conditions, accidents and similar random events and

the characteristic features of the road such as the structure and the number of the lanes.

In addition, the hourly, daily, weekly and even seasonal cycles in the vehicle volume on

the road also cause temporary fluctuations in the travel time (Malandraki and Daskin,

1992). Despite the relatively scarce number of studies in the literature compared to the

other types of VRP, research on the TDVRP has recently gained momentum with the

increasing focus on green logistics and green supply chain concepts. These studies aim

to obtain a least cost distribution plan by taking advantage of time-dependent travel

times. The necessity and importance of examining the VRP models taking into

consideration the environmental and social impact of transportation as well as the

economic costs are emphasized by McKinnon (2007) and Sbihi and Eglese (2010); the

studies that considers the fuel consumption and carbon emissions within the concept of

green framework have recently begun to appear in the literature.

As the above example indicates, the greenest path between each node pair on the

network and for each possible departure time should be found. For the solution of the

VRP problems in this chapter, we will use the paths and GHG/fuel consumption amount

data found via the GPA proposed in Chapter 2.

In the TDVRP literature time-dependency is taken into consideration in two ways:

stochastic travel times and deterministic travel times. The first study where the time-

dependency is built upon deterministic setting belongs to Ahn and Shin (1991). In this

study, the important non-passing or first-in-first-out (FIFO) property was introduced

and good results were obtained using the basic routing heuristics in the literature.

Malandraki and Daskin (1992) examined mixed integer linear programming

formulations for the VRP as well as for the TSP and presented several nearest neighbor

100

(a) Routes followed when the departure time is 0

(b) Routes followed when the departure time is 1

(c) Routes followed when the departure time is 2

Figure 6.1. A network structure example where the routes followed change with the
changing times of the departure (departure times: (a) t=0, (a) t=1, (a) t=2)

1. vehicle: 0→16→27→20→0 2. vehicle: 0→3→5→12→0

1. vehicle: 0→16→27→20→0 2. vehicle: 0→3→5→12→0

1. vehicle: 0→16→27→20→0 2. vehicle: 0→5→3→12→0

101

heuristic based algorithms. Hill and Benton (1992) proposed a time-dependent travel

speed based model for the VRP. However the FIFO property is disregarded in both

Malandraki and Daskin (1992) and Hill and Benton (1992). In Park and Song (1997),

the model of Hill and Benton (1992) was modified and savings, proximity priority

searching and insertion techniques were utilized. In that study the travel times are

defined as a function of different passing areas and discrete time intervals which were

also introduced in this study. In a similar study (Park, 2000), an algorithm called BC-

savings was introduced to minimize two conflicting objectives, which are the operation

time and the total weighted tardiness. Taking the rush hours into account, Ichoua et al.

(2003) divided the scheduling horizon into three time intervals and considered three

types of roads which also affect the travel time. They implemented a parallel tabu

search approach and tested its performance both in dynamic and static environments.

Furthermore, Zheng and Liu (2006) employed a hybrid intelligent algorithm to

minimize the total distance traveled by regarding the travel time as a fuzzy variable.

Donati et al. (2008) used ant colony optimization in a multi-colony setting where the

first colony was utilized to minimize the total number of vehicles whereas the second

colony was utilized to minimize the total distance traveled. A speed distribution related

with the road length accounted for the time dependency.

Stochastic travel times in VRP were first introduced in Laporte et al. (1992). They

presented three mathematical programming models and used a branch-and-cut

approach. Kenyon and Morton (2003) examined the same problem by developing two

models. The first model aimed at minimizing the expected completion time whereas the

objective of the second model was maximizing the probability that the operation is

completed without exceeding a preset target time. The actual travel times of the routes

regarding the random travel times were computed after the route construction phase.

The stochastic nature of the travel times in Potvin et al. (2006) arises from the short

term bias factor that depends on a random variable distributed uniformly. Woensel et al.

(2007) incorporated the traffic congestion into their model through a queuing approach

by modeling the behavior of the traffic flows. They used the mean of the speed

distributions as the expected total travel time. Solving the best neighbor choice sub-

problem using dynamic programming, Hashimoto et al. (2008) handled the travel times

and costs as a function of time and used iterated local search to obtain the overall

solution. For the time-dependent travel times, the three different time zones and three

different road types approach was adopted in Ichoua et al. (2003). Kuo et al. (2009)

102

improved the initial solutions that are obtained by the nearest neighbor and sweep

algorithms using the tabu search algorithm. In addition, the proposed method was also

tested on a real life problem. Different from the previously mentioned studies, Soler et

al. (2009) proposed an approach to obtain the optimal solution for the TDVRP by

converting it to the asymmetric capacitated VRP.

Another study that belongs to the second group and also aims to minimize the fuel

consumption is Kuo (2010). This study focused on the load of the vehicles and used

simulated annealing to obtain a least fuel consuming plan. Kara et al. (2007) addressed

energy minimizing VRP by using a weighted load function (load x distance) instead of

only the total distance. A weight-based objective function that is based on the basic

rules of physics was introduced. However, other factors such as speed, vehicle weight,

friction and air resistance were not considered. In a similar study, Hsu et al. (2007)

addressed the distribution of perishable food where the commodity is subject to quality

changes due to the time-varying temperatures and time-dependent travel times. Besides

the transportation costs, they tried to minimize the inventory, energy and penalty costs

related to late deliveries. Analyzing a distribution problem in England as a case study

Maden et al. (2010) observed that CO2 emission could be decreased by 7% by using a

heuristic approach. In a similar problem, Jabali et al. (2012) defined the emission

amount as a nonlinear function of travel speed and aimed to find the optimal speeds

using iterative tabu search methods.

Although these studies use time-dependent routing approach, the environmental

effects and carbon emission are treated indirectly or the fuel consumption is considered

based on the load carried. Instead of directly obtaining the route that yields minimum

fuel consumption/GHG, it is assumed that these amounts are related to the length of the

road, the load, and speed. One of the most recent studies in this subject belongs to

Bektaş and Laporte (2011). This study analyzes how the solutions differ under four

different objective functions that are (i) distance traveled, (ii) the load of the vehicle

under constant speed, (iii) energy consumption under variable speed, and (iv) carbon

emission, driver cost and fuel consumption. The optimal solutions are sought using

small instances. In addition, Demir et al. (2012) tried to solve larger instances using

adaptive large neighborhood search. Nevertheless, neither of these studies which

emphasized the need for sustainable routing approaches used a time-dependent

transportation network but assumed that the path between any customer pair is constant.

103

6.3 Computational Study

In this chapter, we use TbAS, proposed in Chapter 5, with slight modifications in order

to handle the time-dependent characteristics of the problem. We conduct tests on real

data set of Washington D.C. We create an instance with a single depot and 25

customers.

Table 6.1. Customer details of the instance

Node ID Demand Node ID Demand Node ID Demand
9328 - 5562 27 9441 5
9524 13 6184 13 9028 17

378 29 3270 16 8539 14
9454 17 3661 15 9488 25

179 30 3728 10 9358 17
1577 11 4166 17 8251 12
2742 10 4803 22 9420 24
2172 12 6476 14 5092 21
5479 17 6250 21

The details of the customers are given in Table 6.1. Note that, the Node ID

column refers to the original ID values of the nodes in the real data. We use node ID

and customer ID interchangeably. The first node with ID 9328 refers to the depot. The

demand values are distributed between 5 and 30 units. The capacity of a single vehicle

is 80 units. The distribution of the customers is shown in Figure 6.2. The depot is shown

with a yellow square and the customers are shown with blue circles.

Figure 6.2. VRP instance based on Washington DC data

9524

378
9454

179

1577

2742

2172

5479

5562
6184

3270
3661

3728

4166

4803

6476

6250
9441

9028
8539

9488

9358

8251

9420

5092

9328

104

We have two different solutions where the time-dependent, GHG minimizing

Green VRP is compared with the time-independent version. The results are summarized

in Table 6.2. The second and the third columns give the distance values of each solution

in detail. The fourth and the fifth columns give the corresponding GHG emission values

in grams. The total distance of the Green VRP is 2.78% higher whereas it generates

5.31% less GHG emission.

Table 6.2. Comparison of time independent and time-dependent VRP solutions

 Distance (km) GHG emission (g)

Time-Independent

VRP
Green
VRP

 Time-Independent
VRP

Green
VRP

Route 1 17.25 17.59 3,591.76 3,213.33
Route 2 20.31 22.56 4,284.10 4,157.88
Route 3 21.00 22.09 4,242.79 4,094.42
Route 4 20.34 20.34 3,717.50 3,717.50
Route 5 29.99 30.20 6,524.00 5,686.15
Route 6 31.06 31.06 5,708.90 5,708.90

TOTAL 139.95 143.85 28,069.04 26,578.17

Figure 6.3. Solving VRP using (a) time-independent and (b) time-dependent

information.

Route 1

Route 2

Route 3

Route 4

Route 5

Route 6

(a) (b)

105

The routes generated are shown in Figure 6.3. Both methods yield six routes, two

of them, namely route 4 and 6, being exactly the same. In the Green VRP case,

customer 9454 is served by the first route instead of route 2, decreasing the total GHG

emission by 504.65 grams. Although the third route serves the same set of customers in

both of the solutions, the order of the customers are different. The congestion between

the customers 5479 and 5562 causes the customer 5562 to be visited last in the route in

Green VRP. Similarly, the highly congested link between the customers 9028 and 9488

is not preferred in the Green VRP which helps to decrease the GHG emission of route 5

by 837.85 grams.

6.4 Conclusion and Future Research

In this section, we compare the effects of the time-independent and time-dependent

green objective on the GHG emissions. We observe that, building the routes by taking

the congestion and the time-dependent travel times into account yields a decrease in the

emission values as expected. This gain not only comes from using different links and

routes but also from visiting the same customers in a different order.

For the future research, we will solve the Green VRP with time-windows for

which we anticipate the gain to be less compared to the case where there are no time-

windows. We expect the limitation on the visit times to force the vehicle to travel in the

congestion even if just occasionally.

6.5 References

Ahn, B.-H. and J.-Y. Shin (1991). "Vehicle-routeing with Time Windows and Time-
varying Congestion." J Oper Res Soc 42(5): 393-400.

Bektaş, T. and G. Laporte (2011). "The Pollution-Routing Problem." Transportation
Research Part B: Methodological 45(8): 1232-1250.

Demir, E., T. Bektaş and G. Laporte (2012). "An adaptive large neighborhood search
heuristic for the Pollution-Routing Problem." European Journal of Operational
Research 223(2): 346-359.

Donati, A. V., R. Montemanni, N. Casagrande, A. E. Rizzoli and L. M. Gambardella
(2008). "Time dependent vehicle routing problem with a multi ant colony system."
European Journal of Operational Research 185(3): 1174-1191.

Hashimoto, H., M. Yagiura and T. Ibaraki (2008). "An iterated local search algorithm
for the time-dependent vehicle routing problem with time windows." Discrete
Optimization 5(2): 434-456.

Hill, A. V. and W. C. Benton (1992). "Modelling Intra-City Time-Dependent Travel
Speeds for Vehicle Scheduling Problems." The Journal of the Operational Research
Society 43(4): 343-351.

106

Hsu, C.-I., S.-F. Hung and H.-C. Li (2007). "Vehicle routing problem with time-
windows for perishable food delivery." Journal of Food Engineering 80(2): 465-475.

Ichoua, S., M. Gendreau and J.-Y. Potvin (2003). "Vehicle dispatching with time-
dependent travel times." European Journal of Operational Research 144(2): 379-396.

Jabali, O., T. Van Woensel and A. G. de Kok (2012). "Analysis of Travel Times and
CO2 Emissions in Time-Dependent Vehicle Routing." Production and Operations
Management 21(6): 1060-1074.

Kara, İ., B. Kara and M. K. Yetis (2007). Energy Minimizing Vehicle Routing Problem.
Combinatorial Optimization and Applications. A. Dress, Y. Xu and B. Zhu, Springer
Berlin Heidelberg. 4616: 62-71.

Kenyon, A. S. and D. P. Morton (2003). "Stochastic vehicle routing with random travel
times." Transportation Science 37(1): 69-82.

Kuo, Y. (2010). "Using simulated annealing to minimize fuel consumption for the time-
dependent vehicle routing problem." Computers & Industrial Engineering 59(1):
157-165.

Kuo, Y., C.-C. Wang and P.-Y. Chuang (2009). "Optimizing goods assignment and the
vehicle routing problem with time-dependent travel speeds." Computers & Industrial
Engineering 57(4): 1385-1392.

Laporte, G., F. Louveaux and H. Mercure (1992). "The vehicle routing problem with
stochastic travel times." Transportation Science 26(3): 161-170.

Maden, W., R. Eglese and D. Black (2010). "Vehicle Routing and Scheduling with
Time Varying Data: A Case Study." Journal of the Operational Research Society
61(3): 515-522.

Malandraki, C. and M. S. Daskin (1992). "Time Dependent Vehicle Routing Problems:
Formulations, Properties and Heuristic Algorithms." Transportation Science 26(3):
185-200.

McKinnon, A. (2007). CO2 Emissions from Freight Transport in the UK. Technical
Report, London, UK, Commission for Integrated Transport.

Park, Y.-B. (2000). "A solution of the bicriteria vehicle scheduling problems with time
and area-dependent travel speeds." Computers and Industrial Engineering 38(1): 173-
187.

Park, Y.-B. and S.-H. Song (1997). "Vehicle scheduling problems with time-varying
speed." Computers & Industrial Engineering 33(3–4): 853-856.

Potvin, J., Y. Xu and I. Benyahia (2006). "Vehicle routing and scheduling with dynamic
travel times." Computers & Operations Research 33: 1129-1137.

Sbihi, A. and R. Eglese (2010). "Combinatorial optimization and Green Logistics."
Annals of Operations Research 175(1): 159-175.

Soler, D., J. Albiach and E. Martínez (2009). "A way to optimally solve a time-
dependent Vehicle Routing Problem with Time Windows." Operations Research
Letters 37(1): 37-42.

Woensel, T., L. Kerbache, H. Peremans and N. Vandaele (2007). "A Queueing
Framework for Routing Problems with Time-dependent Travel Times." Journal of
Mathematical Modelling and Algorithms 6(1): 151-173.

Zheng, Y. and B. Liu (2006). "Fuzzy vehicle routing model with credibility measure
and its hybrid intelligent algorithm." Applied Mathematics and Computation 176(2):
673-683.

107

7 A PARALLEL MATHEURISTIC FOR SOLVING THE VEHICLE

ROUTING PROBLEMS

108

A parallel matheuristic for solving the vehicle routing problems

Umman Mahir Yıldırım, Bülent Çatay

Abstract

In this chapter, we present a matheuristic approach for solving the Vehicle Routing Problems (VRP). Our

approach couples the Ant Colony Optimization (ACO) algorithm with solving the Set Partitioning (SP)

formulation of the VRP. As the ACO algorithm, we use a rank-based ant system approach where an agent

level-based parallelization is implemented. The interim solutions which correspond to single vehicle

routes are collected in a solution pool. To prevent duplicate routes, we present an elimination rule based

on an identification key that is used to differentiate the routes. After a pre-determined number of

iterations, the routes accumulated in the solution pool are used to solve the SP formulation of the problem

to find a complete optimal solution. Once the optimal solution is obtained it is fed back to ACO as an elite

solution that can be used in the pheromone reinforcement procedure. Our experimental study using the

well-known VRP with Time-Windows benchmark instances of Solomon shows that the proposed

methodology provides promising results.

Keywords Vehicle routing problem, matheuristic, ant colony optimization.

1. Introduction

This chapter deals with one of the most widely known combinatorial optimization

problems, namely the Vehicle Routing Problem (VRP). The basic VRP aims to serve a

set of geographically dispersed customers with known demands, using a homogeneous

fleet of capacitated vehicles located at a central depot. The objective is to determine the

best set of routes that minimizes either the total distance travelled or the number of

routes while complying with the following constraints: (i) every route starts and ends at

the central depot, (ii) each customer is assigned to a single route, and (iii) the vehicle

capacity is not exceeded. In the vast literature on the VRP and its variants, exact

methods, heuristics and metaheuristics are widely used. In addition, hybridization of

these heuristics/metaheuristics as well as the exact methods has received notable

attention. Yet, articles presenting matheuristic approaches for solving the VRPs are

recently gaining momentum.

Matheuristics may be considered as a special case of hybrid heuristics. Boschetti

et al. (2009) claim that the interoperation of metaheuristics and mathematical

programming techniques yields the matheuristics and the features derived by the

mathematical model of the problem are further exploited by the metaheuristic. On the

109

other hand, Bertazzi and Speranza (2012) define a matheuristic as any heuristic that

utilizes mathematical programming in one of its solution steps. In this notion, the

mathematical model can be embedded in the solution procedure in several ways such as

solving sub-problems, solving parts of an instance, restricting the search space and

exploring neighborhoods. Some recent matheuristic approaches and applications can be

found in Maniezzo et al. (2010).

Doerner and Schmid (2010) classify the matheuristics for the VRP under three

categories based on local branching, decomposition and set-partitioning/set-covering

formulations. Our approach falls within the last category. In this category, first a

heuristic/metaheuristic method generates preferably high quality solutions. Also, giving

more importance to the solution diversification could be preferred as it may help to

escape local optima and also generate a high quality solution. Then, these solutions are

fed as columns for the set-partitioning/set-covering formulation of the problem. This

approach has been adopted for solving different VRPs such as the capacitated VRP

(Kelly and Xu, 1999; Groër et al., 2010), the VRP with time-windows (VRPTW)

(Alvarenga et al., 2007), the periodic VRPTW (Pirkwieser and Raidl, 2009) and the

stochastic VRP (Mendoza and Villegas, 2013).

For the split delivery VRP Archetti et al. (2008) implemented a Tabu Search (TS)

approach. They identified the promising parts of the solution space with the TS and

further explored them using the integer programming (IP). Gulczynski et al. (2011)

developed an IP-based heuristic for the periodic VRP. In their parallel algorithm, Groër

et al. (2011) combined a local search heuristic with IP for solving the VRP. Recently,

Subramanian et al. (2012) and Subramanian et al. (2013) have coupled iterated local

search (ILS) with mixed IP (MIP) in a matheuristic environment.

Matheuristic approaches have been implemented for many other routing problem

variants such as the truck and trailer routing problem (Villegas et al., 2013), the dial-a-

ride problem (Wolfler Calvo and Touati-Moungla, 2011), the traveling salesman

problem (Rodríguez-Martín and Salazar-González, 2011) and the technician routing and

scheduling problem (Pillac et al., 2013).

In this study, we present a parallel matheuristic approach, namely MathAnt, for

solving the VRP. Our approach couples the ACO approach with solving the SP

formulation of the VRP. To the best of our knowledge, this is the first attempt to

integrate these two methods to solve a combinatorial optimization problem.

110

The remainder of this chapter is structured as follows. The next section contains a

general description of our algorithmic approach. Section 3 proposes an elimination

method to handle duplicate routes. The computational results are presented in Section 4.

In Section 5, we give the concluding remarks and the future research directions.

2. A parallel matheuristic method: MathAnt

The proposed method is based on the idea that the solutions generated by an algorithm

may contain a subset of partial solutions which, when combined, can yield a better

solution. Nevertheless, to generate such a promising subset, the solution method itself

should be able to produce both distinct and good partial solutions. One such method is

the ACO which is a constructive algorithm that builds diverse solutions at each iteration

by using the foraging behaviour of ants. For the VRP, the algorithm has the potential to

find high quality partial solutions, i.e. vehicle routes that can be combined to obtain

improved complete solutions. Building upon this potential, MathAnt integrates the ACO

with IP in an attempt to efficiently solve the VRPs. It basically solves the SP

formulation of the VRP at certain iterations of the ACO using the routes constructed by

ant colonies. Gendreau and Potvin (2005) claim that running several threads

concurrently in a parallel exploration context seem to be very promising compared with

the various implementations reported in the literature. In addition, the foraging

behaviour of the ants in the ACO is suitable for parallelization. So, to further enhance

the performance of the algorithm, even if not in terms of the solution quality, we

implemented an agent level-based parallelization.

The general scheme of the algorithm is given in Figure 1. In our implementation,

we use IBM ILOG CPLEX for solving the SP formulation. In the ACO phase, we use

the Time-based Ant System (TbAS) presented in Yildirim and Çatay (2012). TbAS may

only be applied to the VRP with time-windows since it uses the time-window nature of

the problem in the visibility mechanism. It has a multi-layer pheromone network

structure to distinguish the pheromone levels belonging to different time intervals and

utilizes the timing of the visit as implicit heuristic information in the route construction

phase. Basically, it takes into account time-wise desirability to travel from one customer

to the next with-in the random selection rule. In TbAS, each foraging individual ant of

the colony moves independently until reaching the food source, which stands for a

complete solution. In the pheromone update procedure only the best-so-far ant and the

elite ants are allowed to deposit pheromone. The amount of the pheromone deposited is

111

inversely proportional to the rank of the ant in the colony in terms of solution quality. In

other words, for the �-1 elite ants and the best-so-far ant, the pheromone amounts of the

�th elite ant and the best-so-far ant (bs) are (�-�)/�� and �/��� respectively. Here, ��

and ��� denote the total length of the complete solution of the �th elite ant and bs. We

refer the interested reader to (Yildirim and Çatay, 2012) for the details of the TbAS

approach.

Figure 1. Flow chart of MathAnt

In the MathAnt implementation, in addition to the best-so-far ant and the elite ants

(referred to as ACO-ants) the optimal solution obtained by solving the SP formulation is

also used to further enhance the pheromone trails. The optimal solution is achieved by

the so-called CPLEX-ant. When the CPLEX-ant is used to update the pheromone

network, it is given a weight proportional to the weight of bs. Hence, to intensify the

search near the CPLEX-ant, one can amplify its relative weight with respect to that of bs

since it corresponds to the highest quality solution.

3. Handling duplicate routes

In the ACO, the ants in the colony do not necessarily construct distinct routes within the

same iteration or in different iterations. The same route can be found multiple times by

different ants, particularly when the algorithm is converging or stagnating. These

duplicate routes can be handled in two ways. One alternative is to eliminate them while

the pool of routes is being updated at the end of each iteration by comparing a newly

constructed route against the existing ones in the pool. In this case, the whole route

information should be recorded to make a full comparison. This will obviously be very

time consuming; however, the SP problem will be solved using only unique routes,

which may reduce the presolve processing time of CPLEX significantly. The other

Pheromone
Update

Local
Search

Construct
solution

in parallel

SP
(CPLEX)

Solution
Pool

Parallel TbAS

112

alternative is to add the constructed routes to the pool without any comparison and let

CPLEX perform the elimination using its presolve process. In this case, the CPLEX

presolve process may be more efficient in CPU time, nevertheless, keeping the duplicate

routes will increase the size of the pool, which may require significant additional

memory.

In the former case, each route should be assigned a unique value (referred to as

identification key), if possible. The goal is to minimize the number of false

eliminations, i.e. counting two different routes as the same. Matching each customer

number with a unique prime number and multiplying the corresponding prime numbers

of the customers in the route will perfectly and uniquely represent any route and will

prevent false eliminations. However, as the number of customers in the route increases,

this multiplication becomes intractable. The multiplication of the first 20 prime numbers

only yields a value of 5.58E+26, which is far larger than the maximum value that can be

stored in any programming language. Using any single characteristic of the route such

as the total distance, total time, the number of customers, etc. as the discrimination

criterion may yield many false eliminations. So, we considered and analyzed four

different criteria as summarized in Table 1.

Table 1. Criteria used in eliminating duplicate routes

Criteria Description
I1 314D + 313FC + 312LC + 31NC
I2 314D + 313FC + 312LC + 31NC + TT
S1 DS + '-' + FCS + '-' + LCS + '-' + NCS
S2 DS + '-' + FCS + '-' + LCS + '-' + NCS + '-' + TT

As illustrated in Table 1, we utilized five integer representative discriminative

characteristics, namely the total distance (D), first customer ID number (FC), last

customer ID number (LC), total number of customers (NC), and total tour time (TT).

Any characteristic with a subscript S denotes its string counterpart. Using these

characteristics in the given order, we have mainly 2 criteria groups based on integer (I)

and string (S) values. In the integer subgroup, the criterion values are multiplied with a

certain power of a prime number. Using a prime number in hashing is traditional. Here,

we used 31 as the prime number. In addition to being an odd prime, 31 has a nice

property that the multiplication can be replaced by a shift and subtraction for better

performance (Blosch, 2008). So, the coefficients of D, FC, LC, NC and TT are set to

314, 313, 312, 31 and 1 respectively. In the string subgroup, the criterion values are

113

concatenated with a hyphen. The hyphen is used as a separator to differentiate routes

such as “0-1-23-0” and “0-12-3-0”, where 0 denotes the depot and the remaining

numbers are the customer ID numbers which show the sequence of their visits. The

performances of these four criteria are tested in Section 4.1.

Table 2. Elimination criteria: false elimination

D FC LC NC TT
Identification

Key I1
Identification

Key I2
183 5 9 3 362 169162040 169162402
182 35 40 5 300 169162102 169162402

It is noteworthy to remark that the inclusion of each additional criterion most

often decreases false eliminations, if not always. In other words, including an additional

information does not always help to differentiate two routes. The example given in

Table 2 shows how the inclusion of the tour time as additional information prevents

distinguishing two different routes. The second and the third rows in this table provide

information related with two distinct vehicle routes: 0-5-12-9-0 and 0-35-42-45-33-40-

0. The identification keys for these two routes according to I1 yields different values as

shown in the sixth column. On the other hand, the identification keys according to I2

returns the same value for both routes, which will result in a false elimination.

4. Computational Analysis

We have tested the performance of the proposed approach on the well-known VRPTW

instances of Solomon (1987). These instances have three main sets which differ by the

distribution of the customers over a 100x100 grid. The customers are clustered (C),

randomly distributed (R) or both clustered and randomly distributed (RC). Each set is

also divided into two subsets as type 1 and type 2 which have different time window

lengths and vehicle capacities. The parameters of TbAS have been set as described in

Yildirim and Çatay (2012). We have used an Intel Core2 Quad 2.33 GHz computer with

8.0 GB RAM and 64-bit operating system. The IP-solver is IBM ILOG CPLEX version

12.2.

4.1. Comparing the elimination methods for duplicate routes

To evaluate the four criteria described in Section 3 we performed a single run using the

first and the last instances of each subset of Solomon data C1, C2, R1, R2, RC1 and

114

RC2. To better observe how the elimination methods reduce the pool size, we set the

iteration limit to 300 to accumulate a large number of routes. The results are

summarized in Table 3. The first column shows the instance. The second and third

columns report the total number of routes in the pool and the total number of unique

routes, respectively. The last four columns correspond to the number of routes in the

reduced pool after applying the four elimination criteria.

Table 3. Comparing elimination criteria

Instance
Number of

routes

Number of
unique
routes

Number of
routes using

I1

Number of
routes using

I2

Number of
routes using

S1

Number of
routes using

S2

C101 1,458,513 154,676 133,329 148,605 135,726 148,876
C109 972,487 492,785 427,913 464,680 436,073 465,016
R101 2,075,507 50,698 45,860 48,329 46,594 48,556
R112 1,005,643 644,038 480,661 563,178 516,548 546,686
RC101 1,735,879 91,973 79,206 89,300 81,502 89,459
RC108 1,136,336 537,137 405,375 473,012 434,536 474,441
Type 1
Average

1,397,394 328,551 262,057 297,851 275,163 295,506

C201 936,673 393,816 346,336 381,549 354,753 382,534
C208 602,936 402,030 383,520 400,883 386,667 400,972
R201 961,235 492,038 440,795 486,130 448,121 486,361
R211 428,969 392,145 376,448 390,833 379,762 390,913
RC201 1,002,893 460,026 409,595 452,793 420,498 453,093
RC208 481,032 405,270 386,936 400,252 389,806 400,323
Type 2
Average

735,623 424,221 390,605 418,740 396,601 419,033

Total
Average 1,091,961 372,706 321,387 353,646 331,211 352,518

We first analyze the average number of routes by taking all 12 instances into

consideration. We observe that on the average 1.091 million routes are obtained, out of

which 372 thousand (35%) are unique. The number of all routes found in type 1 in-

stances (C1, R1 and RC1) is nearly twice the number of routes found in type 2 in-

stances (C2, R2 and RC2): 1.397 million routes compared to 735 thousand routes,

respectively. This is basically the result of longer routes involving more customers

typically obtained in type 2 problems. On the other hand, the total number of unique

routes found in type 1 and type 2 instances are 329 thousand and 424 thousand,

respectively. So, we see that wider time windows in type 2 instances extend the size of

the solution space, as expected.

Applying any of the elimination criteria decreases the size of the pool but at the

expense of eliminating unique routes as well. Integer criteria I1 and I2 eliminate 12.2%

and 4.1% of the unique routes, respectively. On the other hand, the false eliminations by

115

using string criteria S1 and S2 are 10.0% and 4.2%, respectively. So, we observe that

the number of different discrimination criteria plays a more important role compared to

the main group of the criteria (integer or string). Both I2 and S2 involving 5 different

characteristics are able to keep more than 95% of the unique routes. Nevertheless, as the

number of nodes increases, a single string representation of a node uses more memory

compared to that of integer (4 bytes). Thus, taking the memory usage into account we

decided to implement I2 criterion.

4.2. Elimination of routes: Elimination method vs CPLEX presolve process

In this section, we analyze how to eliminate the duplicate routes, either via the proposed

elimination method or CPLEX presolve. All the tests in this section are conducted using

the 39 instances in R1, R2, RC1 and RC2 sets of Solomon. Since the optimal solutions

can be easily obtained for the clustered instances of C1 and C2 sets, they are omitted as

their sensitivity to parametric changes cannot be evaluated.

The detailed computational time analysis is given in Table 4. All time units are in

seconds. The number of CPLEX calls directly affects the solution quality (analyzed in

detail in Section 4.3) and the computational time. Thus, we tested 3 different CPLEX

call frequency settings in a run with 100 iterations: 1, 2, and 5. Note that CPLEX is run

only once at the end of the ACO procedure when CPLEX Call Frequency=1 whereas

CPLEX Call Frequency=5 represents that optimization using CPLEX is performed 5

times, after every 20 iterations.

We observe that the computational time of the algorithm using duplicate route

elimination is 2.96% longer compared to the elimination through CPLEX presolve.

Taking into consideration this small margin one can question the benefit of

implementing the duplicate route elimination method. However, when the size of the

solution pool increases, the memory requirement and the time spent by CPLEX also

increase and leaving the route elimination procedure to CPLEX may not be favorable.

On a sample run with instance R101, when the number of the routes in the solution pool

reached up to 8.5 million, CPLEX failed to solve the SP problem because of excessive

memory requirements. Nonetheless, applying the elimination criteria beforehand kept

the size of the solution pool at most 24,049 routes, which in turn allowed finding the

optimal solution in seconds.

116

Table 4. Elimination of duplicate routes

CPLEX
Call
Frequency

 Duplicate Route
Elimination

CPLEX Presolve

Set

Number
of Routes

Average
CPU Time

(sec)

Number of
Routes

Average
CPU Time

(sec)

5

R1 37,991.60 165.45 147,806.18 148.25
R2 59,170.24 545.20 72,515.71 525.72
RC1 36,755.78 118.40 146,083.93 122.40
RC2 55,443.15 361.48 79,038.03 355.21
Average 47,291.36 303.12 112,110.84 291.87

2

R1 39,730.20 122.92 148,734.05 117.82
R2 57,823.65 466.97 73,009.76 463.39
RC1 37,311.23 100.65 146,683.90 94.38
RC2 55,988.98 336.80 78,833.80 321.22
Average 47,672.42 259.26 112,616.86 252.2

1

R1 37,266.07 110.56 149,681.03 105.75
R2 57,569.75 445.76 73,347.18 438.98
RC1 35,964.50 92.71 146,624.80 84.34
RC2 54,822.25 321.16 78,938.78 314.19
Average 46,327.03 244.64 113,012.82 238.10

4.3. Effect of parameters on the solution quality

The frequency of the CPLEX calls and the pheromone reinforcement weight of the SP-

ant affect the solution quality. Table 5 reports the average solution quality of 5 runs for

different parameter combinations. The average solution quality does not show a

significant difference across different parameter settings. Nevertheless, the best

solutions are obtained when δ=5. Intensifying the search near the CPLEX solution in the

solution space generates better solutions compared to equally exploring the solution

space near the ACO and CPLEX solutions. Among different CPLEX frequency call

values 5 yields the best results. The increasing frequency of the CPLEX calls helps

better improve the solution, as expected. This comes at the expense of an increase in the

computational effort. Calling CPLEX every 20 iterations increases the computational

time by 23% compared to a single call at the end of the algorithm. In light of these

results, we set δ=5 and CPLEX call frequency=5 in the following experiments.

Table 5. Solution quality for different parameter combinations

δ
CPLEX Call Frequency
5 2 1

1 1097.91 1098.51 1099.47
2 1098.80 1099.01 1099.72
5 1097.06 1098.28 1099.04

117

4.4. Performance against the best heuristic solutions

In this section, we compare the performance of MathAnt against the best performing

heuristics and metaheuristics in the literature as well as TbAS of Yildirim and Çatay

(2012) to investigate the benefit of hybridizing TbAS with IP. Table 6 and Table 7

summarize the results for type 1 and type 2 problems, respectively. Note that Yildirim

and Çatay (2012) reported the results of 4 different implementations of their algorithm.

In these tables, we consider the best results achieved.

Table 6. Comparison of results for type 1 problems

Instance BKS Ref* TbAS MathAnt
Gap (%)

(BKS)
Gap (%)
(TbAS)

R101 1642.87 [AMT] 1642.88 1642.88 0.00 0.00
R102 1472.62 [AMT] 1472.81 1472.82 0.01 0.00
R103 1213.62 [JM] 1213.62 1213.62 0.00 0.00
R104 976.61 [JM] 977.55 976.61 0.00 -0.10
R105 1360.78 [JM] 1360.78 1360.78 0.00 0.00
R106 1240.26 [YÇ] 1240.26 1239.37 -0.07 -0.07
R107 1073.01 [YÇ] 1073.01 1075.14 0.20 0.20
R108 944.44 [YÇ] 944.44 938.20 -0.66 -0.66
R109 1151.84 [JM] 1151.84 1151.84 0.00 0.00
R110 1072.41 [JM] 1072.41 1072.42 0.00 0.00
R111 1053.50 [JM] 1053.50 1053.50 0.00 0.00
R112 953.63 [RT] 959.58 955.68 0.21 -0.41

R1 Average 1179.63 1180.22 1179.40 -0.03 -0.09

RC101 1623.58 [RT] 1638.00 1623.59 0.00 -0.88
RC102 1461.23 [JM] 1461.44 1461.23 0.00 -0.01
RC103 1261.67 [S] 1262.68 1261.67 0.00 -0.08
RC104 1135.48 [C] 1141.66 1135.83 0.03 -0.51
RC105 1518.58 [JM] 1518.58 1518.58 0.00 0.00
RC106 1376.99 [YÇ] 1376.99 1376.99 0.00 0.00
RC107 1212.83 [JM] 1212.83 1211.11 -0.14 -0.14
RC108 1117.53 [JM] 1117.53 1117.53 0.00 0.00

RC1 Average 1338.49 1341.21 1338.32 -0.01 -0.20

Total Average 1243.17 1244.62 1242.97 -0.02 -0.13
* AMT: (Alvarenga et al., 2007), JM: (Jung and Moon, 2002), YÇ: (Yildirim and Çatay,
2012), RT: (Rochat and Taillard, 1995), S: (Shaw, 1998), C: (Cordeau et al., 2001)

In both tables, the first column identifies the problem and the fifth column shows

the results achieved by MathAnt. The second and the third columns give the best-known

solutions (BKS) from the literature and the corresponding articles, respectively. The

best results found by TbAS are given in the fourth column. Column six and seven report

the percentage gaps between MathAnt and best-known solutions and TbAS results,

respectively. A negative number shows an improvement. In general, we observe that the

118

Table 7. Comparison of results for type 2 problems

Instance BKS Ref* TbAS MathAnt
Gap (%)

(BKS)
Gap (%)
(TbAS)

R201 1147.8 [BV] 1155.8 1149.39 0.14 -0.55
R202 1034.35 [JM] 1036.6 1034.58 0.02 -0.20
R203 874.87 [JM] 875.62 877.23 0.27 0.18
R204 735.8 [BV] 746.98 740.98 0.70 -0.80
R205 954.16 [ORH] 964.64 957.33 0.33 -0.76
R206 879.89 [JM] 892.95 883.92 0.46 -1.01
R207 797.99 [BV] 805.7 810.91 1.62 0.65
R208 705.45 [JM] 711.37 712.93 1.06 0.22
R209 859.39 [JM] 876.33 859.39 0.00 -1.93
R210 910.7 [JM] 915.49 915.48 0.52 0,00
R211 755.82 [BV] 773.51 765.04 1.22 -1.09

R2 Average 877.84 886.82 882.47 0.58 -0.48

RC201 1265.56 [JM] 1272.63 1267.16 0.13 -0.43
RC202 1095.64 [JM] 1104.92 1096.75 0.10 -0.74
RC203 926.89 [BV] 938.19 937.76 1.17 -0.05
RC204 786.38 [JM] 800.48 789.26 0.37 -1.40
RC205 1157.55 [JM] 1157.55 1157.55 0.00 0.00
RC206 1054.61 [JM] 1072.08 1055.77 0.11 -1.52
RC207 966.08 [JM] 972.74 967.07 0.10 -0.58
RC208 779.31 [JM] 792.65 783.93 0.59 -1.10

RC2 Average 1004 1013.91 1006.91 0.32 -0.73

Total Average 930.96 940.33 934.86 0.47 -0.59
* BV: (Brandão de Oliveira and Vasconcelos, 2010), JM: (Jung and Moon,
2002), ORH: (Ombuki et al., 2006), RT: (Rochat and Taillard, 1995)

proposed MathAnt method is able to generate good solutions. Combining TbAS with

IP improves the solutions of type 1 and type 2 problems by 0.13% and 0.59%,

respectively, compared to using TbAS alone. The average improvement of the MathAnt

matheuristic over TbAS is 0.35%. When we compare MathAnt results against the best-

known results from the literature, we see that the performance of MathAnt is better in

type 1 problems as this was the case for TbAS as well. The average gap for type 2

problems is 0.47% whereas it is -0.02% for type 1 problems. The average results on

type 1 problems reveal that MathAnt is the best performing method in the literature.

Note that MathAnt improved the best-known solutions of R106, R108 and RC107

instances (as shown in bold-italic in Table 6) and matched the best-known results in 10

instances (as shown in bold in Table 6). In type 2 problems, MathAnt could match the

best-known result in only 2 instances (as shown in bold in Table 7).

5. Conclusions

In this chapter we presented MathAnt, a parallel matheuristic that combines the ACO

and the IP, for solving the VRP and its variants. We used TbAS (Yildirim and Çatay,

119

2012) as the ACO approach and CPLEX as the IP solver. An agent level parallelization

was implemented and the pheromone reinforcement procedure was adapted so as to

incorporate the CPLEX solution in TbAS. After determining the frequency of CPLEX

calls we conducted experiments on the VRPTW instances to test the performance of

MathAnt. The comparison results against the published best solutions in the literature

show that MathAnt is capable of generating good solutions. MathAnt had superior

performance on type 1 instances in particular where the time-window lengths are

narrow and it improved three best-known results in the literature. Furthermore, an

elimination method was investigated to cope with the duplicate routes generated by

TbAS. We observed that our elimination method effectively decreases false

eliminations and keeps the size of the pool of routes minimum. Although the

computational time of MathAnt equipped with our elimination method is longer

compared to leaving the elimination to CPLEX, the elimination method becomes

advantageous especially when the solution pool size increases and CPLEX fails to

generate a solution.

MathAnt can be easily implemented to solve any VRP variant using any ACO

approach. In this study, we only considered the VRPTW. Further research will address

the other VRP variants. Russell and Chiang (2006) state that using the set covering

formulation instead of the set partitioning model in a VRP context may lead to an

improved solution. We will investigate the impact of this relaxation on the performance

of our algorithm as well. Moreover, we utilized parallelism for only reducing the

computational time. However, a parallel implementation by devising multiple ant

colonies evolving on different processors may lead to improved performance with

respect to the solution quality as well as processor load balance.

References

Alvarenga, G. B., G. R. Mateus and G. de Tomi (2007). "A genetic and set partitioning
two-phase approach for the vehicle routing problem with time windows." Computers
& Operations Research 34(6): 1561-1584.

Archetti, C., M. G. Speranza and M. W. P. Savelsbergh (2008). "An Optimization-
Based Heuristic for the Split Delivery Vehicle Routing Problem." Transportation
Science 42(1): 22-31.

Bertazzi, L. and M. G. Speranza (2012). Matheuristics for Inventory Routing Problems.
Hybrid Algorithms for Service, Computing and Manufacturing Systems: Routing and
Scheduling Solutions. J. R. Montoya-Torres, A. A. Juan, L. H. Huatuco, J. Faulin
and G. L. Rodriguez-Verjan. Hershey, PA, IGI Global: 1-14.

Blosch, J. (2008). Effective Java. Boston, Addison-Wesley.

120

Boschetti, M., V. Maniezzo, M. Roffilli and A. Bolufé Röhler (2009). Matheuristics:
Optimization, Simulation and Control. Hybrid Metaheuristics. M. Blesa, C. Blum, L.
Gaspero et al., Springer Berlin Heidelberg. 5818: 171-177.

Brandão de Oliveira, H. and G. Vasconcelos (2010). "A hybrid search method for the
vehicle routing problem with time windows." Annals of Operations Research 180(1):
125-144.

Cordeau, J. F., G. Laporte and A. Mercier (2001). "A unified tabu search heuristic for
vehicle routing problems with time windows." Journal of the Operational Research
Society 52(8): 928-936.

Doerner, K. and V. Schmid (2010). Survey: Matheuristics for Rich Vehicle Routing
Problems. Hybrid Metaheuristics. M. Blesa, C. Blum, G. Raidl, A. Roli and M.
Sampels, Springer Berlin Heidelberg. 6373: 206-221.

Gendreau, M. and J.-Y. Potvin (2005). "Metaheuristics in Combinatorial Optimization."
Annals of Operations Research 140(1): 189-213.

Groër, C., B. Golden and E. Wasil (2010). "A library of local search heuristics for the
vehicle routing problem." Mathematical Programming Computation 2(2): 79-101.

Groër, C., B. Golden and E. Wasil (2011). "A Parallel Algorithm for the Vehicle
Routing Problem." INFORMS J. on Computing 23(2): 315-330.

Gulczynski, D., B. Golden and E. Wasil (2011). "The period vehicle routing problem:
New heuristics and real-world variants." Transportation Research Part E: Logistics
and Transportation Review 47(5): 648-668.

Jung, S. and B. R. Moon (2002). "A Hybrid Genetic Algorithm For The Vehicle
Routing Problem With Time Windows." 1309-1316.

Kelly, J. P. and J. Xu (1999). "A Set-Partitioning-Based Heuristic for the Vehicle
Routing Problem." INFORMS J. on Computing 11(2): 161-172.

Maniezzo, V., T. Stützle and S. Voß (2010). Matheuristics: hybridizing metaheuristics
and mathematical programming. New York, Springer.

Mendoza, J. and J. Villegas (2013). "A multi-space sampling heuristic for the vehicle
routing problem with stochastic demands." Optimization Letters 7(7): 1503-1516.

Ombuki, B., B. J. Ross and F. Hanshar (2006). "Multi-Objective Genetic Algorithms for
Vehicle Routing Problem with Time Windows." Applied Intelligence 24(1): 17-30.

Pillac, V., C. Guéret and A. L. Medaglia (2013). "A parallel matheuristic for the
technician routing and scheduling problem." Optimization Letters 7(7): 1525-1535.

Pirkwieser, S. and G. Raidl (2009). Multiple Variable Neighborhood Search Enriched
with ILP Techniques for the Periodic Vehicle Routing Problem with Time Windows.
Hybrid Metaheuristics. M. Blesa, C. Blum, L. Gaspero et al., Springer Berlin
Heidelberg. 5818: 45-59.

Rochat, Y. and É. D. Taillard (1995). "Probabilistic diversification and intensification in
local search for vehicle routing." Journal of Heuristics 1(1): 147-167.

Rodríguez-Martín, I. and J. Salazar-González (2011). The Multi-Commodity One-to-
One Pickup-and-Delivery Traveling Salesman Problem: A Matheuristic. Network
Optimization. J. Pahl, T. Reiners and S. Voß, Springer Berlin Heidelberg. 6701: 401-
405.

Russell, R. A. and W.-C. Chiang (2006). "Scatter search for the vehicle routing problem
with time windows." European Journal of Operational Research 169(2): 606-622.

Shaw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems. M. Maher and J. F. Puget. Berlin, Springer: 417-431.

Solomon, M. M. (1987). "Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraints." Operations Research 35(2): 254-265.

121

Subramanian, A., P. H. V. Penna, E. Uchoa and L. S. Ochi (2012). "A hybrid algorithm
for the Heterogeneous Fleet Vehicle Routing Problem." European Journal of
Operational Research 221(2): 285-295.

Subramanian, A., E. Uchoa and L. S. Ochi (2013). "A hybrid algorithm for a class of
vehicle routing problems." Computers & Operations Research 40(10): 2519-2531.

Villegas, J. G., C. Prins, C. Prodhon, A. L. Medaglia and N. Velasco (2013). "A
matheuristic for the truck and trailer routing problem." European Journal of
Operational Research 230(2): 231-244.

Wolfler Calvo, R. and N. Touati-Moungla (2011). A Matheuristic for the Dial-a-Ride
Problem. Network Optimization. J. Pahl, T. Reiners and S. Voß, Springer Berlin
Heidelberg. 6701: 450-463.

Yildirim, U. M. and B. Çatay (2012). "A time-based pheromone approach for the ant
system." Optimization Letters 6(6): 1081-1099.

122

8 COMPUTATIONAL RESULTS ON A CLASS OF VRP USING THE

PARALLEL MATHEURISTIC

123

8.1 Introduction

In this chapter, we extend our work in Yıldırım and Çatay (2014) by taking the

addressed future research directions into account. We discuss the effect of incorporating

set covering (SC) formulation instead of the set partitioning (SP) model. We test the

proposed method on other VRP variants, namely the basic Capacitated VRP (CVRP),

Open VRP (OVRP), Heterogeneous VRP (HVRP) and Multi-Depot VRP (MDVRP), as

well as the VRPTW. The implementation details of the proposed method are given in

Section 7.1.

8.2 A brief description of the VRP variants considered

The classical version of the VRP is the CVRP which aims to serve a set of

geographically dispersed customers with known demands, using a homogeneous fleet of

capacitated vehicles located at a central depot. The objective is to determine the best set

of routes that minimizes either the total distance travelled or the number of routes while

complying with the following constraints: (i) every route starts and ends at the central

depot, (ii) each customer is assigned to a single route, and (iii) the vehicle capacity is

not exceeded.

The OVRP differs from CVRP as the vehicle does not have to return to the depot

after the last visited customer. This problem can be observed in real life where a third

party logistic company and a distance-based payment scheme are in use.

The VRPTW extends the CVRP by introducing the earliest and latest possible

visiting times, namely time windows, for each customer. In the hard time windows case,

a vehicle is not allowed to visit the customers out of these intervals whereas they can be

visited early or late with a penalty if soft time windows are applied. In this study, we

consider hard time windows for the VRPTW.

The HVRP extends the CVRP by introducing a fleet with a limited number of

vehicles with different capacities. In addition, a fixed and a variable cost are also

introduced for each vehicle. The problem is referred to as fleet size mix problem (FSM)

when the fleet size is not limited.

When we have more than one depot available to serve the customers, then the

problem is called the MDVRP. The number of customers that each depot can serve is

not limited.

124

8.3 The proposed method

First, an initial solution for the ACO is obtained using the nearest neighbour heuristic.

After initializing the global pheromone network, the members of the ant colony

constructs different solutions in parallel. At the end of each iteration, the global

pheromone network is updated. After updating the ant with the best solution found so

far (the best-so-far ant), the routes are sent to the solution pool. This step includes

duplicate check procedure. After predetermined number iterations, the SP model is

solved and used to update the pheromone network with the optimal solution. We refer

the reader to Yıldırım and Çatay (2014) for more details.

As for the proposed method in this study, both SP and SC models are solved at the

end of the total number of iterations. Note that, the SC model may result in multiple

visits for a customer. Thus, the algorithm includes a post-processing step to eliminate

the revisited customers if any. In the post-processing phase, the visit with the highest

cost is removed from the solution. The flow chart of the proposed method for a single

run is given in Figure 8.1. For the sake of simplicity, some processes such as

determining the Best-so-far Ant and pheromone update of the Best-so-far Ant are not

shown in the figure.

Our matheuristic also differs from the one proposed in Yıldırım and Çatay (2014)

for the HVRP and MDVRP problems. In the following, we give the details of the

implementations for both HVRP and MDVRP problems.

Figure 8.2. Solving the HVRP problem for each vehicle type separately

Figure 8.2 shows a sample network with a single depot and seven customers each which

are shown with a square and circles respectively. The numbers in the circles represent

the demands for the corresponding customer. Suppose that we are trying to solve a

30

15

10

40
70

5

25

30

15

10

40
70

5

25

30

15

10

40
70

5

25

(a) (b) (c)

125

Figure 8.2. An agent based parallelization. GCF: global CPLEX frequency, NI: number

of iterations.

HVRP problem with three different types of vehicles with capacities of 80, 30 and 20.

The first type of vehicle is big enough to accommodate each customer separately. So,

we can directly solve a homogeneous VRP on the network (Figure 8.2.a) with the first

vehicle. However, the second type of vehicle cannot fit the demands of 70 and 40. So,

Start

Generate initial solution

Initialize global pheromone network

Set i = 0

Ant 1 Ant |N|

Update the best-so-far ant

Update the global
pheromone network

Add routes to the pool

Is i a multiple
of GCF ?

Set i = i + 1

Is i < NI
?

Yes

No

Solve SP (SC)

Update the
best-so-far ant

Update the global
pheromone network

No

Construct routes using

ACO in parallel
&

Apply local search

Yes

Solve SP and SC

End

Post-process for SC solution

126

the network is reduced to Figure 8.2.b to obtain a feasible homogeneous VRP for the

second vehicle. Furthermore, the customers with a demand value higher than the

capacity of the third vehicle are eliminated to obtain the last network in Figure 8.2.c.

Now, 3 different homogeneous VRP problems are solved disregarding the fleet size

limits. After collecting all the solutions found for the different type of vehicles, the

combined pool is fed into the SP and SC models with the original fleet size limits

Figure 8.3. Solving the MDVRP problem for each depot type separately

A similar implementation is valid for the MDVRP problem where a sub problem

is solved for each depot type. A sample network is given in Figure 8.3.a which three

different depot locations. The network is modified by keeping only a single depot each

time obtaining the networks in Figure 8.3.b, Figure 8.3.c and Figure 8.3.d. The idea

behind is the same with the approach for solving the HVRP problem. After collecting

all the solutions of the sub problems in a single pool, SP and SC models are solved to

obtain a solution for the original problem.

8.4 Computational Study

In this section we compare the performance of the proposed method on VRP variants in

Section 8.1 with the best known/optimal solutions. All the problems are solved by using

both SP and SC formulations. For comparing with the best known/optimal solutions, we

use the best of the results of SC and SP formulations. A comparison of SC and SP

formulations is presented separately.

We coded our algorithm in C#. We have used an Intel Core i7 4770 3.40 GHz

computer with 16.0 GB RAM and 64-bit operating system. The IP-solver is IBM ILOG

CPLEX version 12.6 where we limit the solving time to 300 seconds in each call. For

(a) (b) (c) (d)

127

all the problems, we used the parameters in Yıldırım and Çatay (2014). The total

number of runs is set to 30.

8.4.1 Comparing with the best known/optimal solutions

8.4.1.1 CVRP

The tests in this section are conducted on 14 instances of Christofides et al. (1979).

Table 8.1 presents a comparison against the best heuristic solutions where BKS and CT

refer to the best known solution value and the computational time in seconds

respectively. The average gap is 0.25% where 9 best known solutions out of 14

problems are obtained. The gap for problems cmt05 and cmt10 with 199 customers are

2.21% and 0.64% respectively. For the remaining 12 problems with a maximum number

of 150 customers, the average gap decreases to 0.06%.

Table 8.1. Comparison of results for CVRP

Instance BKS MathAnt Gap (%)

cmt01 524.61 524.61 0.00
cmt02 835.26 835.26 0.00
cmt03 826.14 827.39 0.15
cmt04 1028.42 1031.82 0.33
cmt05 1291.29 1319.89 2.21
cmt06 555.43 555.43 0.00
cmt07 909.68 909.68 0.00
cmt08 865.94 865.94 0.00
cmt09 1162.55 1162.55 0.00
cmt10 1395.85 1404.72 0.64
cmt11 1042.11 1042.12 0.00
cmt12 819.56 819.56 0.00
cmt13 1541.14 1543.79 0.17
cmt14 866.37 866.37 0.00

Total
Average

976.03 979.22 0.25

8.4.1.2 OVRP

As the CVRP, OVRP problem is also tested on the 14 instances of Christofides et al.

(1979). The average gap is 0.08% where the highest gap is 0.88% which is observed in

cmt01, the smallest instance in size. 5 of the best-so-far solutions are obtained and 3

best known solutions (cmt08, cmt10 and cmt13) are improved by 0.12% on the average.

The detailed routes for the new best results are given in Appendix.

128

Table 8.2. Comparison of results for OVRP

Instance BKD MathAnt Gap (%)

cmt01 412.95 416.58 0.88
cmt02 564.06 564.06 0.00
cmt03 639.25 639.74 0.08
cmt04 733.13 733.13 0.00
cmt05 868.44 869.19 0.09
cmt06 412.95 412.96 0.00
cmt07 566.93 566.94 0.00
cmt08 642.11 641.55 -0.09
cmt09 741.44 741.44 0.00
cmt10 871.58 869.80 -0.20
cmt11 678.54 682.12 0.53
cmt12 534.24 534.24 0.00
cmt13 836.55 835.90 -0.08
cmt14 552.64 552.64 0.00

Total
Average

646.77 647.20 0.08

8.4.1.3 MDVRP

We use test instances of (Cordeau et al., 1997) for testing the performance of the

algorithm on the MDVRP. The average gap over 7 problems is 1.97%. The MDVRP

implementation that solves a single depot VRP for each depot obtains solutions below

3.01% gap range, yet, is incapable of obtaining the best known solutions.

Table 8.12. Summary for MDVRP

Instance BKS MathAnt Gap (%)

p01 576.87 584.99 1.41

p02 473.53 482.34 1.86

p03 641.19 657.61 2.56

p04 1001.04 1008.6 0.76

p05 750.03 772.63 3.01

p06 876.50 888.93 1.42

p07 881.97 906.44 2.77

Average 743.01 757.37 1.97

8.4.1.4 HVRP

In this section we give results for the HVRP. As in (Subramanian et al., 2012), we

consider the cases where the fleet is limited (HVRP) as well as the cases where the fleet

is unlimited (Fleet Size and Mix – FSM). More specifically, we tackle the following

variants:

HVRPFV, limited fleet, with fixed and variable costs.

HVRPV, limited fleet, with variable costs but without fixed costs,

129

FSMFV, unlimited fleet, with fixed and variable costs.

FSMF, unlimited fleet, with fixed costs but without variable costs,

FSMV, unlimited fleet, with variable costs but without fixed costs”

Table 8.7. Summary for HVRPFV

Instance BKS MathAnt Gap (%)

HVRPFV_c050_13mix 3185.09 3185.09 0.00

HVRPFV_c050_14mix 10107.53 10109.17 0.02

HVRPFV_c050_15mix 3065.29 3067.72 0.08

HVRPFV_c050_16mix 3265.41 3270.54 0.16

HVRPFV_c075_17mix 2076.96 2083.50 0.31

HVRPFV_c075_18mix 3743.58 3748.58 0.13

HVRPFV_c100_19mix 10420.34 10563.59 1.37

HVRPFV_c100_20mix 4788.49 4940.84 3.18
Average 5081.59 5120.42 0.66

The results for HVRPFV, HVRPV, FSMFV, FSMF and FSMV problems with

solving only SP are given in Table 8.7-8.11 respectively. The average gap values are

below 1.0% except HVRPV where the average gap is 1.34%. In fact, the method

performs very bad on a particular instance, namely HVRPV_c100_19mix. Other than

that, the results are satisfactory.

Table 8.8. Summary for HVRPV

Instance BKS MathAnt Gap (%)

HVRPV_c050_13mix 1517.84 1517.84 0.00

HVRPV_c050_14mix 607.53 607.53 0.00

HVRPV_c050_15mix 1015.29 1015.29 0.00

HVRPV_c050_16mix 1144.94 1144.94 0.00

HVRPV_c075_17mix 1061.96 1064.07 0.20

HVRPV_c075_18mix 1823.58 1828.68 0.28

HVRPV_c100_19mix 1117.51 1205.94 7.91

HVRPV_c100_20mix 1534.17 1569.43 2.30
Average 1227.85 1248.10 1.34

130

Table 8.9. Summary for FSMFV

Instance BKS Best (SP) Gap (%)

FSMFV_c020_03mix 1144.22 1144.22 0.00

FSMFV_c020_04mix 6437.33 6437.33 0.00

FSMFV_c050_13mix 2964.65 2964.65 0.00

FSMFV_c050_14mix 9126.9 9143.40 0.18

FSMFV_c050_15mix 2634.96 2634.96 0.00

FSMFV_c050_16mix 3168.92 3168.92 0.00

FSMFV_c075_17mix 2004.48 2004.48 0.00

FSMFV_c075_18mix 3147.99 3147.99 0.00

FSMFV_c100_19mix 8661.81 8756.58 1.09

FSMFV_c100_20mix 4153.02 4170.56 0.42
Average 4344.43 4357.31 0.17

Table 8.10. Summary for FSMF

Instance BKS MathAnt Gap (%)

FSMF_c020_03mix 961.03 961.03 0.00

FSMF_c020_04mix 6437.33 6437.33 0.00

FSMF_c050_13mix 2406.36 2406.36 0.00

FSMF_c050_14mix 9119.03 9125.20 0.07

FSMF_c050_15mix 2586.37 2586.37 0.00

FSMF_c050_16mix 2720.43 2720.43 0.00

FSMF_c075_17mix 1734.53 1743.70 0.53

FSMF_c075_18mix 2369.65 2372.01 0.10

FSMF_c100_19mix 8661.81 8805.36 1.66

FSMF_c100_20mix 4037.9 4058.69 0.51
Average 4103.44 4121.65 0.29

Table 8.11. Summary for FSMV

Instance BKS MathAnt Gap (%)

FSMV_c020_03mix 623.22 623.22 0.00

FSMV_c020_04mix 387.18 387.18 0.00

FSMV_c050_13mix 1491.86 1491.86 0.00

FSMV_c050_14mix 602.21 603.21 0.17

FSMV_c050_15mix 999.82 999.90 0.01

FSMV_c050_16mix 1131.00 1131.00 0.00

FSMV_c075_17mix 1038.60 1039.46 0.08

FSMV_c075_18mix 1800.80 1803.19 0.13

FSMV_c100_19mix 1105.44 1180.53 6.79

FSMV_c100_20mix 1530.43 1557.90 1.80

Average 1071.06 1081.75 0.90

131

8.4.1.5 VRPTW

All the tests in this section are conducted using the 39 instances in R1, R2, RC1 and

RC2 sets of Solomon (1987). Since the optimal solutions can be easily obtained for the

clustered instances of C1 and C2 sets, they are omitted. The algorithm is compared with

the best known results for real valued distances and optimal results for truncated

distance values.

Table 8.3. Comparison of results for type 1 problems for real valued distances

Instance BKS Ref* MathAnt Gap (%)

R101 1642.87 AMT 1642.88 0.00
R102 1472.62 AMT 1472.82 0.01
R103 1213.62 JM 1213.62 0.00
R104 976.61 JM 976.61 0.00
R105 1360.78 JM 1360.78 0.00
R106 1239.37 YÇ.b 1239.37 0.00
R107 1073.01 YÇ.a 1072.12 -0.08
R108 938.20 YÇ.b 938.20 0.00
R109 1151.84 JM 1151.84 0.00
R110 1072.41 JM 1072.42 0.00
R111 1053.50 JM 1053.50 0.00
R112 953.63 RT 953.63 0.00

R1 Average 1179.04 1178.98 -0.01

RC101 1623.58 RT 1623.59 0.00
RC102 1461.23 JM 1461.23 0.00
RC103 1261.67 S 1261.67 0.00
RC104 1135.48 CLM 1135.52 0.00
RC105 1518.58 JM 1518.58 0.00
RC106 1376.99 YÇ.a 1376.99 0.00
RC107 1211.11 YÇ.b 1211.11 0.00
RC108 1117.53 JM 1117.53 0.00

RC1 Average 1338.27 1338.28 0.00

Total Average 1242.73 1242.70 0.00

* AMT: (Alvarenga et al., 2007), JM: (Jung and Moon, 2002),
YÇ.a: (Yildirim and Çatay, 2012), YÇ.b: (Yıldırım and Çatay,
2014), RT: (Rochat and Taillard, 1995), S: (Shaw, 1998), CLM:
(Cordeau et al., 2001)

The results using real distances for type 1 and type 2 problems are given in Table

8.3 and Table 8.4 respectively. Our method performs better on type 1 problems where

the average gap values are 0.00% and 0.10% respectively. We reached all of the best-

known values for type 1 problems with R102 being the only exception with a gap of

only 0.01%. We also obtained a new best value for the instance R107. For type 2

problems the performance of the method is relatively worse. Nevertheless, we obtained

new best results also for R210 and RC208 problems. The detailed routes for the new

best results are given in Appendix.

132

Table 8.4. Comparison of results for type 2 problems for real valued distances

Instance BKS Ref* MathAnt Gap (%)

R201 1147.80 BV 1147.80 0.00
R202 1034.35 JM 1034.35 0.00
R203 874.87 JM 874.87 0.00
R204 735.80 BV 735.80 0.00
R205 954.16 ORH 955.82 0.17
R206 879.89 JM 880.12 0.03
R207 797.99 BV 802.24 0.53
R208 705.45 JM 707.99 0.36
R209 859.39 JM 859.39 0.00
R210 910.70 JM 906.19 -0.50
R211 755.82 BV 757.05 0.16
R2 Average 877.84 878.33 0.07

RC201 1265.56 JM 1265.56 0.00
RC202 1095.64 JM 1095.64 0.00
RC203 926.89 BV 937.45 1.14
RC204 786.38 JM 786.70 0.04
RC205 1157.55 JM 1157.55 0.00
RC206 1054.61 JM 1054.61 0.00
RC207 966.08 JM 966.08 0.00
RC208 779.31 JM 778.93 -0.05

RC1 Average 1004.00 1005.31 0.14

Total Average 930.96 931.80 0.10

* BV: (Brandão de Oliveira and Vasconcelos, 2010), JM: (Jung and Moon,
2002), ORH: (Ombuki et al., 2006), RT: (Rochat and Taillard, 1995)

Table 8.5. Comparison of results for type 1 problems for truncated distances

Instance Optimal MathAnt Gap (%)

R101 1637.7 1637.7 0.00
R102 1466.6 1466.6 0.00
R103 1208.7 1208.7 0.00
R104 971.5 971.5 0.00
R105 1355.3 1355.3 0.00
R106 1234.6 1234.6 0.00
R107 1064.6 1064.6 0.00
R108 932.1 932.1 0.00
R109 1146.9 1146.9 0.00
R110 1068.0 1068.0 0.00
R111 1048.7 1048.7 0.00
R112 948.6 948.6 0.00

R1 Average 1173.61 1173.61 0.00

RC101 1619.8 1619.8 0.00
RC102 1457.4 1457.4 0.00
RC103 1258.0 1258.0 0.00
RC104 1132.3 1132.3 0.00
RC105 1513.7 1513.7 0.00
RC106 1372.7 1373.5 0.06
RC107 1207.8 1207.8 0.00
RC108 1114.2 1114.2 0.00

RC1 Average 1334.49 1334.59 0.01

Total Average 1237.96 1238.00 0.00

133

Table 8.6. Comparison of results for type 2 problems for truncated distances

Instance Optimal MathAnt Gap (%)

R201 1143.2 1143.2 0.00
R202 1029.6 1029.6 0.00
R203 870.8 870.8 0.00
R204 731.3 731.3 0.00
R205 949.8 951.3 0.16
R206 875.9 879.3 0.39
R207 794.0 803.4 1.18
R208 701.2 703.6 0.34
R209 854.8 854.8 0.00
R210 900.5 902.6 0.23
R211 746.7 752.3 0.75
R1 Average 872.53 874.75 0.28

RC201 1261.8 1261.8 0.00
RC202 1092.3 1092.3 0.00
RC203 923.7 929.5 0.63
RC204 783.5 787.4 0.50
RC205 1154.0 1154.0 0.00
RC206 1051.1 1051.1 0.00
RC207 962.9 963.3 0.04
RC208 776.1 776.1 0.00

RC1 Average 1000.68 1001.94 0.15

Total Average 926.48 928.30 0.22

The results using truncated distances for type 1 and type 2 problems are given in

Table 8.5 and Table 8.6, respectively. The same pattern in instances with real valued

distances is also observed for the instances with truncated distances. The average gaps

for type 1 and type 2 problems are 0.00% and 0.22% respectively. For type 1 problems,

we find the optimal solutions for all the problems, but RC106. For type 2 problems, we

only succeed to find 9 of the optimal solutions.

8.4.2 Comparison of SP and SC formulations

In Table 8.13, we report the average performance of SC and SP formulations on the

VRP variants. We observe similar performance except OVRP where the average gap of

SP and SC formulations are 0.83% and 0.41% respectively.

134

Table 8.13. The average results comparison of SP and SC formulations on VRP variants

VRP Type
SP

Average Gap (%)
SC

Average Gap (%)

CVRP 0.69 0.66

OVRP 0.83 0.41

MDVRP 2.35 2.27

HVRPFV 0.82 0.80

HVRPV 2.41 2.34

FSMFV 0.25 0.25

FSMF 0.41 0.39

FSMV 1.35 1.31

VRPTW (real) 0.35 0.34

VRPTW (truncated) 0.12 0.11

8.5 Conclusion and Future Research

Extending Yıldırım and Çatay (2014), we tested the algorithm on different variants. We

show that the proposed method performs well on a range of routing problems. The

summary of the results is given in Table 8.14. Best known results are obtained in 59%

of all instances and six best known results in the literature are improved. We observe

relatively poor performance on HVRP and MDVRP variants in spite of the

modifications tailored for the problem types.

Table 8.14. Summary of the performance of proposed method on different VRP variants

Problem
type

Number
of
instances

Average gap with
the best-known
solutions (%)

Number of instances
where the best known
solution is obtained

Number of
improved
solutions

CVRP 14 0.25 8 -
OVRP 14 0.08 5 3
MDVRP 7 1.97 - -
HVRPFV 8 0.63 - -
HVRPV 8 1.72 3 -
FSMFV 10 0.17 7 -
FSMF 10 0.29 5 -
FSMV 10 0.90 4 -
VRPTW
(real)

39 0.00 28 3

VRPTW
(truncated)

39 0.11 29 -

135

 We also tested the claim of Russell and Chiang (2006) and compared using set

covering with using set partitioning, but we could not observe a significant gain using

set covering rather than set partitioning. Moreover, we utilized parallelism for only

reducing the computational time. However, a parallel implementation by devising

multiple ant colonies evolving on different processors may lead to improved

performance with respect to the solution quality as well as processor load balance.

8.6 Appendix. New best solutions

VRPTW

Route Distance

R107 (1072.118)
 1 0-72-0-28-76-79-78-29-24-68-80-12-0 82.100
 2 0-53-0-26-39-23-67-55-4-25-54-0 127.042
 3 0-62-0-52-7-62-11-63-90-32-66-20-51-50-0 114.944
 4 0-71-0-2-57-43-15-41-22-75-56-74-72-73-21-0 103.079
 5 0-159-0-53-40-58-0 24.359
 6 0-33-0-48-47-36-64-49-19-82-18-89-0 126.000
 7 0-49-0-60-83-45-46-8-84-5-17-61-85-93-0 113.470
 8 0-71-0-94-96-92-59-99-6-87-13-0 62.747
 9 0-19-0-95-97-42-14-44-38-86-16-91-100-37-98-0 105.742
 10 0-90-0-27-69-30-88-31-10-70-1-0 86.165
 11 0-63-0-33-81-65-71-9-35-34-3-77-0 126.471

R210 (906.187)
 1 0-95-92-42-15-23-67-39-75-72-73-21-40-53-0 125.795
 2 0-6-94-96-99-59-87-97-13-58-0 57.818
 3 0-18-83-45-61-16-86-44-38-14-43-57-2-41-22-74-56-4-55-25-54-26-0 198.200
 4 0-28-12-76-3-79-29-78-81-9-20-66-32-90-63-10-70-31-0 150.767
 5 0-52-7-82-48-47-36-19-88-62-11-64-49-46-8-84-17-85-98-37-100-91-93-

5-60-89-0
219.950

 6 0-27-69-1-30-51-33-71-65-35-34-24-80-68-77-50-0 153.657

RC208 (778.926)
 1 0-94-92-95-67-62-50-34-31-29-27-26-28-30-32-33-76-89-63-85-51-84-

56-91-80-0
198.990

 2 0-61-42-44-39-38-36-35-37-40-43-41-72-71-93-96-54-81-0 133.001
 3 0-69-98-88-2-6-7-79-73-78-12-14-47-17-16-15-13-9-11-10-53-60-8-46-4-

45-5-3-1-70-100-55-68-0
227.168

 4 0-90-65-82-99-52-83-64-49-19-18-48-21-23-25-77-58-75-97-59-87-74-
86-57-24-22-20-66-0

219.767

136

OVRP

Route Distance

CMT08 (641.553)
 1 0-13-94-95-97-87-2-57-15-43-42-14-44-38 88.268
 2 0-53-58-40-21-73-72-74-22-41-75-56-23 57.123
 3 0-89-18-83-60-5-99-59-92-98-37-100-91-16-86 65.099
 4 0-6-96-93-85-61-84-17-45-8-46-36-49-64 98.449
 5 0-28-76-77-3-79-78-34-35-71-66-65 76.914
 6 0-27-69-1-50-33-81-9-51-20-30-70-10-62 80.560
 7 0-26-12-80-68-29-24-54-4-55-25-39-67 92.894
 8 0-52-31-88-7-82-48-47-19-11-63-90-32 82.246

CMT10 (869.800)
 1 0-152-58-137-2-115-178-144-57-15-43 46.222
 2 0-180-198-110-155-4-139-187-39-56-186-23 50.974
 3 0-111-50-102-157-33-185-78-34-164-135-35-136-65 62.935
 4 0-166-83-199-114-8-174-46-124-168-47-36-143-49 68.318
 5 0-105-26-149-195-179-54-130-165-55-25-170-67 56.202
 6 0-53-40-21-73-171-74-72-197-75-133-22-41-145 50.509
 7 0-156-147-60-118-5-84-173-113-17-45-125 51.228
 8 0-27-176-1-122-51-81-120-9-103-161-71 57.898
 9 0-112-183-6-96-104-99-59-93-85-61 31.261
 10 0-94-95-97-87-172-42-142-14-192-119-44-140-38 59.145
 11 0-154-138-12-109-177-80-150-68-134-163-24 39.199
 12 0-146-52-153-106-194-7-182-88-148-62-159 39.253
 13 0-167-127-190-31-10-189-108-90-126-63-181 46.939
 14 0-132-69-162-101-70-30-32-131-160-128-20-188-66 60.569
 15 0-28-184-76-196-116-77-3-158-79-129-169-121-29 43.132
 16 0-89-18-82-48-123-19-107-175-11-64 60.559
 17 0-13-117-92-151-37-98-100-193-91-191-141-16-86 45.456

CMT13 (835.898)
 1 0-120 7.071
 2 0-107-67-69-70-71-74-72-75-78-77-76-73 76.693
 3 0-2-1-3-4-5-6-7-9-10-11-15-14 71.582
 4 0-109-21-20-23-26-28-31-34-36-35-32-29 106.217
 5 0-104-103-68-79-80-56-58-55-53-52-54-57 111.563
 6 0-40-43-45-59-65-61-62-64-60-63-66 135.274
 7 0-88-82-111-86-87-92-89-91-90-114-18-118-108 30.117
 8 0-119-81-112-85-84-117-113-83 30.704
 9 0-105-106-102-101-99-100-116 20.850
 10 0-95-96-93-94-97-115-110-98 30.261
 11 0-13-8-12-17-16-19-25-22-24-27-30-33 105.085
 12 0-37-38-39-42-41-44-46-49-47-48-50-51 110.481

8.7 References

Alvarenga, G. B., G. R. Mateus and G. de Tomi (2007). "A genetic and set partitioning
two-phase approach for the vehicle routing problem with time windows." Computers
& Operations Research 34(6): 1561-1584.

Brandão de Oliveira, H. and G. Vasconcelos (2010). "A hybrid search method for the
vehicle routing problem with time windows." Annals of Operations Research 180(1):
125-144.

137

Christofides, N., A. Mingozzi and P. Toth (1979). The vehicle routing problem.
Combinatorial optimization. N. Chrisofides, A. Mingozzi, P. Toth and C. Sandi.
Chichester, UK, Wiley: 315–338.

Cordeau, J.-F., M. Gendreau and G. Laporte (1997). "A tabu search heuristic for
periodic and multi-depot vehicle routing problems." Networks 30(2): 105-119.

Cordeau, J. F., G. Laporte and A. Mercier (2001). "A unified tabu search heuristic for
vehicle routing problems with time windows." Journal of the Operational Research
Society 52(8): 928-936.

Jung, S. and B. R. Moon (2002). "A Hybrid Genetic Algorithm For The Vehicle
Routing Problem With Time Windows." 1309-1316.

Ombuki, B., B. J. Ross and F. Hanshar (2006). "Multi-Objective Genetic Algorithms for
Vehicle Routing Problem with Time Windows." Applied Intelligence 24(1): 17-30.

Rochat, Y. and É. D. Taillard (1995). "Probabilistic diversification and intensification in
local search for vehicle routing." Journal of Heuristics 1(1): 147-167.

Shaw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems. M. Maher and J. F. Puget. Berlin, Springer: 417-431.

Solomon, M. M. (1987). "Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraints." Operations Research 35(2): 254-265.

Subramanian, A., P. H. V. Penna, E. Uchoa and L. S. Ochi (2012). "A hybrid algorithm
for the Heterogeneous Fleet Vehicle Routing Problem." European Journal of
Operational Research 221(2): 285-295.

Yildirim, U. M. and B. Çatay (2012). "A time-based pheromone approach for the ant
system." Optimization Letters 6(6): 1081-1099.

Yıldırım, U. M. and B. Çatay (2014). A Parallel Matheuristic for Solving the Vehicle
Routing Problems. Computer-based Modelling and Optimization in Transportation.
J. F. Sousa and R. Rossi, Springer International Publishing. 262: 477-489.

138

9 CONCLUSION

In this thesis we developed efficient methods for solving path finding and vehicle

routing problems on road transportation, with a particular emphasis on environmental

objectives. In this context, we first concentrated on the environmental aspect of the

well-known shortest/fastest path problem and introduced the Greenest Path Problem

(GPP) which aims at finding the least greenhouse gas (GHG) generating path on a time-

dependent road network subject to varying traffic conditions. With the recent

environmental concerns and new government regulations, this problem has the potential

to arise in many applications. Then, we addressed Vehicle Routing Problems (VRPs)

using metaheuristic and matheuristic approaches based on Ant Colony Optimization

(ACO) and extended our work to the case with the environmental concerns. We referred

to this problem as the Green VRP (GVRP) where the objective is to minimize the

emissions rather than financial costs.

In the first part, we discussed the peculiar characteristics of the GPP that makes it

a complicated optimization problem. We reviewed the current solution methods in the

literature and observed why they would fail to solve the GPP on real road networks.

Then, we proposed a new heuristic, namely the Greenest Path Algorithm (GPA), which

was proven to be both fast and effective. Using upper bounds on the objective function,

the method is able to obtain good quality solutions with little computational effort.

Visualizing the solutions, we illustrated how the shortest and the greenest path differed

under congestion. We also extended the GPP by modelling the case where the travel

speed was considered as a decision variable.

In spite of the increasing interest in the time-dependent path finding and routing

literature, the literature lacks a systematic methodology that mimics the characteristics

of real road networks to generate realistic instances . So, we proposed a time-dependent

and network-consistent speed generation scheme to fill this gap. The proposed method

was successfully used to create synthetic data for our experimental studies.

In the second part, we first introduced a the Time-based Ant System (TbAS), a

new ACO approach for solving the VRP with Time Windows and showed that it is

capable of obtaining efficient routes when the distance is minimized. We also tested

TbAS on the GVRP to show how taking the time dependency into account can

significantly improve the solution quality. Note that, any route obtained by a time-

independent method can cause significant burden in practice such as delayed deliveries

139

or overtime cost of the drivers. We further proposed a parallel matheuristic for solving

the VRPs using an agent based parallelization. Testing it on VRPTW and extending to

solve other VRP variants, we obtained promising results. In fact, for some problems

types, the algorithm was shown to be the best performing algorithm in the literature.

We think that the proposed GPA can easily be applied to problems that have

different objectives. One can find the most pedestrian friendly path by assigning

weights to the structure of the pavement, the pollution on the path or the sight, and solve

the problem with these weights as costs.

It would be interesting to test the proposed methods in practice. Keeping in mind

that these algorithms are developed from a single user point of view, multiple users with

the solutions of these algorithms on hand could create additional congestion on the

roads. One possible, but utopic for sure, approach could be to guide the drivers to the

paths with a centralized decision support/intelligent transport management system and

making sure that the paths are strictly followed. Nevertheless, with the increasing

number of self-driven cars, the approach may be tested on a small pilot area in the near

future.

Other practical issues that have not been considered in this study are the road

gradient, vehicle loads the, acceleration and deceleration of the vehicles, particularly

during frequent starts and stops which significantly increase the GHG. We are planning

to develop new methodologies that account for these cases as well as the case where the

speed is a decision variable in our future studies.

140

REFERENCES

Ahn, B.-H. and J.-Y. Shin (1991). "Vehicle-routeing with Time Windows and Time-
varying Congestion." J Oper Res Soc 42(5): 393-400.

Ahuja, R. K., J. B. Orlin, S. Pallottino and M. G. Scutella (2002). "Minimum Time and
Minimum Cost-Path Problems in Street Networks with Periodic Traffic Lights."
Transportation Science 36(3): 326-336.

Ahuja, R. K., J. B. Orlin, S. Pallottino and M. G. Scutella (2003). "Dynamic Shortest
Paths Minimizing Travel Times and Costs." Networks 41(4): 197-205.

Alvarenga, G. B., G. R. Mateus and G. de Tomi (2007). "A genetic and set partitioning
two-phase approach for the vehicle routing problem with time windows." Computers
& Operations Research 34(6): 1561-1584.

Archetti, C., M. G. Speranza and M. W. P. Savelsbergh (2008). "An Optimization-
Based Heuristic for the Split Delivery Vehicle Routing Problem." Transportation
Science 42(1): 22-31.

Badeau, P., F. Guertin, M. Gendreau, J.-Y. Potvin and E. Taillard (1997). "A parallel
tabu search heuristic for the vehicle routing problem with time windows."
Transportation Research Part C: Emerging Technologies 5(2): 109-122.

Bauer, R. and D. Delling (2008). SHARC: Fast and Robust Unidirectional Routing.
2008 Proceedings of the Tenth Workshop on Algorithm Engineering and
Experiments (ALENEX): 13-26.

Bektaş, T. and G. Laporte (2011). "The Pollution-Routing Problem." Transportation
Research Part B: Methodological 45(8): 1232-1250.

Bellman, R. (1958). "On a Routing Problem." Quarterly of Applied Mathematics 16:
87-90.

Bertazzi, L. and M. G. Speranza (2012). Matheuristics for Inventory Routing Problems.
Hybrid Algorithms for Service, Computing and Manufacturing Systems: Routing and
Scheduling Solutions. J. R. Montoya-Torres, A. A. Juan, L. H. Huatuco, J. Faulin
and G. L. Rodriguez-Verjan. Hershey, PA, IGI Global: 1-14.

Blosch, J. (2008). Effective Java. Boston, Addison-Wesley.
Boschetti, M., V. Maniezzo, M. Roffilli and A. Bolufé Röhler (2009). Matheuristics:

Optimization, Simulation and Control. Hybrid Metaheuristics. M. Blesa, C. Blum, L.
Gaspero et al., Springer Berlin Heidelberg. 5818: 171-177.

Brandão de Oliveira, H. and G. Vasconcelos (2010). "A hybrid search method for the
vehicle routing problem with time windows." Annals of Operations Research 180(1):
125-144.

Bräysy, O. and M. Gendreau (2005a). "Vehicle Routing Problem with Time Windows,
Part I: Route Construction and Local Search Algorithms." Transportation Science
39(1): 104-118.

Bräysy, O. and M. Gendreau (2005b). "Vehicle Routing Problem with Time Windows,
Part II: Metaheuristics." Transportation Science 39(1): 119-139.

Bullnheimer, B., R. F. Hartl and C. Strauss (1999a). "An improved Ant System
algorithm for theVehicle Routing Problem." Annals of Operations Research 89: 319-
328.

Bullnheimer, B., R. F. Hartl and C. Strauss (1999b). "A new rank-based version of the
ant system: A computational study." Central European Journal of Operations
Research 7(1): 25-38.

Cai, X., T. Kloks and C. K. Wong (1997). "Time-varying shortest path problems with
constraints." Networks 29(3): 141-150.

141

Chabini, I. (1998). "Discrete dynamic shortest path problems in transportation
applications: Complexity and algorithms with optimal run time." Transportation
Research Record 1645: 170-175.

Chen, M., R. A. Chowdhury, V. Ramachandran, D. L. Roche and L. Tong (2007).
Priority Queues and Dijkstra’s Algorithm. Technical Report, University of Texas,
Austin.

Christofides, N., A. Mingozzi and P. Toth (1979). The vehicle routing problem.
Combinatorial optimization. N. Chrisofides, A. Mingozzi, P. Toth and C. Sandi.
Chichester, UK, Wiley: 315–338.

Cooke, K. L. and E. Halsey (1966). "The shortest route through a network with time-
dependent internodal transit times." Journal of Mathematical Analysis and
Applications 14(3): 493-498.

Cordeau, J.-F., M. Gendreau and G. Laporte (1997). "A tabu search heuristic for
periodic and multi-depot vehicle routing problems." Networks 30(2): 105-119.

Cordeau, J. F., G. Laporte and A. Mercier (2001). "A unified tabu search heuristic for
vehicle routing problems with time windows." Journal of the Operational Research
Society 52(8): 928-936.

Daganzo, C. F. (2002). "Reversibility of the time-dependent shortest path problem."
Transportation Research Part B: Methodological 36(7): 665-668.

Dean, B. C. (1999). Continuous-Time Dynamic Shortest Path Algorithms. Technical
Report, Massachusetts Institute of Technology, Cambridge.

Dean, B. C. (2004a). "Algorithms for minimum-cost paths in time-dependent networks
with waiting policies." Networks 44(1): 41-46.

Dean, B. C. (2004b). Shortest Paths in FIFO Time-Dependent Networks: Theory and
Algorithms. Technical Report, Massachusetts Institute of Technology, Cambridge.

Dehne, F., M. Omran and J.-R. Sack (2012). "Shortest Paths in Time-Dependent FIFO
Networks." Algorithmica 62(1-2): 416-435.

Dell’Amico, M., M. Iori and D. Pretolani (2008). "Shortest paths in piecewise
continuous time-dependent networks." Operations Research Letters 36(6): 688-691.

Delling, D. (2008). Time-Dependent SHARC-Routing. Algorithms - ESA 2008. D.
Halperin and K. Mehlhorn, Springer Berlin Heidelberg. 5193: 332-343.

Delling, D., P. Sanders, D. Schultes and D. Wagner (2009). Engineering Route Planning
Algorithms. Algorithmics of Large and Complex Networks. J. Lerner, D. Wagner
and K. Zweig, Springer Berlin Heidelberg. 5515: 117-139.

Delling, D. and D. Wagner (2007). Landmark-Based Routing in Dynamic Graphs.
Experimental Algorithms. C. Demetrescu, Springer Berlin Heidelberg. 4525: 52-65.

Delling, D. and D. Wagner (2009). Time-Dependent Route Planning. Robust and
Online Large-Scale Optimization. R. Ahuja, R. Möhring and C. Zaroliagis, Springer
Berlin Heidelberg. 5868: 207-230.

Demir, E., T. Bektaş and G. Laporte (2012). "An adaptive large neighborhood search
heuristic for the Pollution-Routing Problem." European Journal of Operational
Research 223(2): 346-359.

Deo, N. and C.-Y. Pang (1984). "Shortest-path algorithms: Taxonomy and annotation."
Networks 14(2): 275-323.

Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs."
Numerische Mathematik 1(1): 269-271.

Disser, Y., M. Müller–Hannemann and M. Schnee (2008). Multi-criteria Shortest Paths
in Time-Dependent Train Networks. Experimental Algorithms. C. McGeoch,
Springer Berlin Heidelberg. 5038: 347-361.

142

Doerner, K. and V. Schmid (2010). Survey: Matheuristics for Rich Vehicle Routing
Problems. Hybrid Metaheuristics. M. Blesa, C. Blum, G. Raidl, A. Roli and M.
Sampels, Springer Berlin Heidelberg. 6373: 206-221.

Donati, A. V., R. Montemanni, N. Casagrande, A. E. Rizzoli and L. M. Gambardella
(2008). "Time dependent vehicle routing problem with a multi ant colony system."
European Journal of Operational Research 185(3): 1174-1191.

Dorigo, M. (2010). "Ant colony optimization." Scholarpedia 2(3): 1461-1461.
Dorigo, M. and L. M. Gambardella (1997). "Ant colony system: a cooperative learning

approach to the traveling salesman problem." IEEE Transactions on Evolutionary
Computation 1(1): 53-66.

Dorigo, M., V. Maniezzo and A. Colorni (1996). "Ant system: optimization by a colony
of cooperating agents." IEEE transactions on systems, man, and cybernetics. Part B,
Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
26(1): 29-41.

Dorigo, M. and T. Stützle (2004). Ant Colony Optimization. London, The MIT Press.
Dreyfus, S. E. (1969). "An Appraisal of Some Shortest-Path Algorithms." Operations

Research 17(3): 395-412.
Eglese, R., W. Maden and A. Slater (2006). "A Road Timetable to aid vehicle routing

and scheduling." Computers & Operations Research 33(12): 3508-3519.
Eglese, R. W. and D. Black (2010). Optimizing the Routing of Vehicles. Green

Logistics: Improving the Environmental Sustainability of Logistics. A. McKinnon, S.
Cullinane, M. Browne and S. Whiteing. London, Kogan Page: 215-228.

Ellabib, I., O. A. Basir and P. Calamai (2002). "An Experimental Study of a Simple Ant
Colony System for the Vehicle Routing Problem with Time Windows." Ant
Algorithms Lecture Notes in Computer Science 2463: 53-64.

EMEP/CORINAIR (2007). EMEP/CORINAIR Emission Inventory Guidebook: Group
7 road transport.

Figliozzi, M. A. (2010). "Vehicle Routing Problem for Emissions Minimization."
Transportation Research Record: Journal of the Transportation Research Board 2197:
1-7.

Figliozzi, M. A. (2011). "The impacts of congestion on time-definitive urban freight
distribution networks CO2 emission levels: Results from a case study in Portland,
Oregon." Transportation Research Part C: Emerging Technologies 19(5): 766-778.

Fleischmann, B., M. Gietz and S. Gnutzmann (2004). "Time-Varying Travel Times in
Vehicle Routing." Transportation Science 38(2): 160-173.

Floudas, C. A. and P. M. Pardalos (2009). Encyclopedia of Optimization. New York,
Springer.

Franceschetti, A., D. Honhon, T. Van Woensel, T. Bektaş and G. Laporte (2013). "The
time-dependent pollution-routing problem." Transportation Research Part B:
Methodological 56(0): 265-293.

Gambardella, L. M., É. Taillard and G. Agazzi (1999). MACS-VRPTW: a multiple ant
colony system for vehicle routing problems with time windows. D. Corne, M. Dorigo
and F. Glover. London, McGraw-Hill: 63-76.

Garcia-Najera, A. and J. A. Bullinaria (2011). "An improved multi-objective
evolutionary algorithm for the vehicle routing problem with time windows."
Computers & Operations Research 38(1): 287-300.

Gendreau, M. and J.-Y. Potvin (2005). "Metaheuristics in Combinatorial Optimization."
Annals of Operations Research 140(1): 189-213.

Groër, C., B. Golden and E. Wasil (2010). "A library of local search heuristics for the
vehicle routing problem." Mathematical Programming Computation 2(2): 79-101.

143

Groër, C., B. Golden and E. Wasil (2011). "A Parallel Algorithm for the Vehicle
Routing Problem." INFORMS J. on Computing 23(2): 315-330.

Gulczynski, D., B. Golden and E. Wasil (2011). "The period vehicle routing problem:
New heuristics and real-world variants." Transportation Research Part E: Logistics
and Transportation Review 47(5): 648-668.

Hall, R. (1986). "The fastest path through a network with random time-dependent travel
times." Transportation Science 20(3): 182-186.

Halpern, J. (1977). "Shortest route with time dependent length of edges and limited
delay possibilities in nodes." Zeitschrift für Operations Research 21(3): 117-124.

Hart, P. E., N. J. Nilsson and B. Raphael (1968). "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths." Systems Science and Cybernetics, IEEE
Transactions on 4(2): 100-107.

Hashimoto, H., M. Yagiura and T. Ibaraki (2008). "An iterated local search algorithm
for the time-dependent vehicle routing problem with time windows." Discrete
Optimization 5(2): 434-456.

Hickman, J., C. Hassel, R. Joumard, Z. Samaras and S. Sorenson (1999). MEET
Methodology for Calculating Transport Emissions and Energy Consumption.
Technical Report.

Hill, A. V. and W. C. Benton (1992). "Modelling Intra-City Time-Dependent Travel
Speeds for Vehicle Scheduling Problems." The Journal of the Operational Research
Society 43(4): 343-351.

Horn, M. E. T. (2000). "Efficient modeling of travel in networks with time-varying link
speeds." Networks 36(2): 80-90.

Hsu, C.-I., S.-F. Hung and H.-C. Li (2007). "Vehicle routing problem with time-
windows for perishable food delivery." Journal of Food Engineering 80(2): 465-475.

Hvattum, L. M., I. Norstad, K. Fagerholt and G. Laporte (2013). "Analysis of an exact
algorithm for the vessel speed optimization problem." Networks 62(2): 132-135.

Ichoua, S., M. Gendreau and J.-Y. Potvin (2003). "Vehicle dispatching with time-
dependent travel times." European Journal of Operational Research 144(2): 379-396.

Jabali, O., T. Van Woensel and A. G. de Kok (2012). "Analysis of Travel Times and
CO2 Emissions in Time-Dependent Vehicle Routing." Production and Operations
Management 21(6): 1060-1074.

Jung, S. and B. R. Moon (2002). "A Hybrid Genetic Algorithm For The Vehicle
Routing Problem With Time Windows." 1309-1316.

Kanoulas, E., D. Yang, X. Tian and Z. Donghui (2006). Finding Fastest Paths on A
Road Network with Speed Patterns. Data Engineering, 2006. ICDE '06. Proceedings
of the 22nd International Conference on.

Kara, İ., B. Kara and M. K. Yetis (2007). Energy Minimizing Vehicle Routing Problem.
Combinatorial Optimization and Applications. A. Dress, Y. Xu and B. Zhu, Springer
Berlin Heidelberg. 4616: 62-71.

Kaufman, D. E. and R. Smith (1990). Minimum travel time paths in dynamic networks
with application to intelligent vehicle-highway systems. Ann Arbor, Mich.,
University of Michigan, Transportation Research Institute.

Kaufman, D. E. and R. Smith (1993). "Fastest Paths in Time-Dependent Networks for
Intelligent Vehicle-Highway Systems Application." Journal of Intelligent
Transportation Systems 1(1): 1-11.

Kelly, J. P. and J. Xu (1999). "A Set-Partitioning-Based Heuristic for the Vehicle
Routing Problem." INFORMS J. on Computing 11(2): 161-172.

Kenyon, A. S. and D. P. Morton (2003). "Stochastic vehicle routing with random travel
times." Transportation Science 37(1): 69-82.

144

Koskosidis, Y. A., W. B. Powell and M. M. Solomon (1992). "An Optimization-Based
Heuristic for Vehicle Routing and Scheduling with Soft Time Window Constraints."

Kuo, Y. (2010). "Using simulated annealing to minimize fuel consumption for the time-
dependent vehicle routing problem." Computers & Industrial Engineering 59(1):
157-165.

Kuo, Y., C.-C. Wang and P.-Y. Chuang (2009). "Optimizing goods assignment and the
vehicle routing problem with time-dependent travel speeds." Computers & Industrial
Engineering 57(4): 1385-1392.

Laporte, G., F. Louveaux and H. Mercure (1992). "The vehicle routing problem with
stochastic travel times." Transportation Science 26(3): 161-170.

Lecluyse, C., K. Sorensen and H. Peremans (2013). "A network-consistent time-
dependent travel time layer for routing optimization problems." European Journal of
Operational Research 226(3): 395-413.

Liberti, L., S. Cafieri and F. Tarissan (2009). Reformulations in Mathematical
Programming: A Computational Approach. Foundations of Computational
Intelligence Volume 3. A. Abraham, A.-E. Hassanien, P. Siarry and A. Engelbrecht,
Springer Berlin Heidelberg. 203: 153-234.

Maden, W., R. Eglese and D. Black (2010). "Vehicle Routing and Scheduling with
Time Varying Data: A Case Study." Journal of the Operational Research Society
61(3): 515-522.

Malandraki, C. and M. S. Daskin (1992). "Time Dependent Vehicle Routing Problems:
Formulations, Properties and Heuristic Algorithms." Transportation Science 26(3):
185-200.

Maniezzo, V., T. Stützle and S. Voß (2010). Matheuristics: hybridizing metaheuristics
and mathematical programming. New York, Springer.

McKinnon, A. (2007). CO2 Emissions from Freight Transport in the UK. Technical
Report, London, UK, Commission for Integrated Transport.

Mendoza, J. and J. Villegas (2013). "A multi-space sampling heuristic for the vehicle
routing problem with stochastic demands." Optimization Letters 7(7): 1503-1516.

Miller, E. D., H. S. Mahmassani and A. Ziliaskopoulos (1994). Path search techniques
for transportation networks with time-dependent, stochastic arc costs IEEE
International Conference on Systems, Man and Cybernetics.

Muter, İ., Ş. İ. Birbil and G. Şahin (2010). "Combination of Metaheuristic and Exact
Algorithms for Solving Set Covering-Type Optimization Problems." INFORMS
Journal on Computing 22(4): 603-619.

Nannicini, G. (2009). Point-to-Point Shortest Paths on Dynamic Time-Dependent Road
Networks. PhD, Ecole Polytechnique, Palaiseau.

Nannicini, G., D. Delling, L. Liberti and D. Schultes (2008). Bidirectional A  ∗  Search
for Time-Dependent Fast Paths. Experimental Algorithms. C. McGeoch, Springer
Berlin Heidelberg. 5038: 334-346.

Nielsen, L., D. Pretolani and K. Andersen (2009). Bicriterion Shortest Paths in
Stochastic Time-Dependent Networks. Multiobjective Programming and Goal
Programming. V. Barichard, M. Ehrgott, X. Gandibleux and V. T'Kindt, Springer
Berlin Heidelberg. 618: 57-67.

Norstad, I., K. Fagerholt and G. Laporte (2011). "Tramp ship routing and scheduling
with speed optimization." Transportation Research Part C: Emerging Technologies
19(5): 853-865.

Ombuki, B., B. J. Ross and F. Hanshar (2006). "Multi-Objective Genetic Algorithms for
Vehicle Routing Problem with Time Windows." Applied Intelligence 24(1): 17-30.

145

Orda, A. and R. Rom (1990). "Shortest-path and minimum-delay algorithms in
networks with time-dependent edge-length." J. ACM 37(3): 607-625.

Orda, A. and R. Rom (1991). "Minimum weight paths in time-dependent networks."
Networks 21(3): 295-319.

Pallottino, S. and M. G. Scutellà (1998). Shortest Path Algorithms In Transportation
Models: Classical and Innovative Aspects. Equilibrium and Advanced Transportation
Modelling. P. Marcotte and S. Nguyen, Springer US: 245-281.

Pallottino, S. and M. G. Scutellà (2003). "A new algorithm for reoptimizing shortest
paths when the arc costs change." Operations Research Letters 31(2): 149-160.

Pardalos, P. M. and M. G. C. Resende (2002). Handbook of Applied Optimization. New
York, New York, USA, Oxford University Press.

Park, Y.-B. (2000). "A solution of the bicriteria vehicle scheduling problems with time
and area-dependent travel speeds." Computers and Industrial Engineering 38(1): 173-
187.

Park, Y.-B. and S.-H. Song (1997). "Vehicle scheduling problems with time-varying
speed." Computers & Industrial Engineering 33(3–4): 853-856.

Pillac, V., C. Guéret and A. L. Medaglia (2013). "A parallel matheuristic for the
technician routing and scheduling problem." Optimization Letters 7(7): 1525-1535.

Pirkwieser, S. and G. Raidl (2009). Multiple Variable Neighborhood Search Enriched
with ILP Techniques for the Periodic Vehicle Routing Problem with Time Windows.
Hybrid Metaheuristics. M. Blesa, C. Blum, L. Gaspero et al., Springer Berlin
Heidelberg. 5818: 45-59.

Pisinger, D. and S. Ropke (2007). "A general heuristic for vehicle routing problems."
Computers & Operations Research 34(8): 2403-2435.

Potvin, J., Y. Xu and I. Benyahia (2006). "Vehicle routing and scheduling with dynamic
travel times." Computers & Operations Research 33: 1129-1137.

Qian, J. and R. Eglese (2014). "Finding least fuel emission paths in a network with
time-varying speeds." Networks 63(1): 96-106.

Rochat, Y. and É. D. Taillard (1995). "Probabilistic diversification and intensification in
local search for vehicle routing." Journal of Heuristics 1(1): 147-167.

Rodríguez-Martín, I. and J. Salazar-González (2011). The Multi-Commodity One-to-
One Pickup-and-Delivery Traveling Salesman Problem: A Matheuristic. Network
Optimization. J. Pahl, T. Reiners and S. Voß, Springer Berlin Heidelberg. 6701: 401-
405.

Rousseau, L.-M., M. Gendreau and G. Pesant (2002). "Using Constraint-Based
Operators to Solve the Vehicle Routing Problem with Time Windows." Journal of
Heuristics 8(1): 43-58.

Russell, R. A. and W.-C. Chiang (2006). "Scatter search for the vehicle routing problem
with time windows." European Journal of Operational Research 169(2): 606-622.

Sanders, P., C. Vetter, D. Delling and G. V. Batz (2009). Time-Dependent Contraction
Hierarchies. 2009 Proceedings of the Eleventh Workshop on Algorithm Engineering
and Experiments (ALENEX): 97-105.

Savelsbergh, M. W. P. (1992). "The Vehicle Routing Problem with Time Windows:
Minimizing Route Duration." ORSA Journal on Computing 4(2): 146-154.

Sbihi, A. and R. Eglese (2010). "Combinatorial optimization and Green Logistics."
Annals of Operations Research 175(1): 159-175.

Shaw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems. M. Maher and J. F. Puget. Berlin, Springer: 417-431.

146

Sherali, H. D., A. G. Hobeika and S. Kangwalklai (2003). "Time-Dependent, Label-
Constrained Shortest Path Problems with Applications." Transportation Science
37(3): 278-293.

Soler, D., J. Albiach and E. Martínez (2009). "A way to optimally solve a time-
dependent Vehicle Routing Problem with Time Windows." Operations Research
Letters 37(1): 37-42.

Solomon, M. M. (1987). "Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraints." Operations Research 35(2): 254-265.

Stützle, T. and H. Hoos (1997). MAX-MIN Ant System and local search for the
traveling salesman problem, IEEE.

Subramanian, A., P. H. V. Penna, E. Uchoa and L. S. Ochi (2012). "A hybrid algorithm
for the Heterogeneous Fleet Vehicle Routing Problem." European Journal of
Operational Research 221(2): 285-295.

Subramanian, A., E. Uchoa and L. S. Ochi (2013). "A hybrid algorithm for a class of
vehicle routing problems." Computers & Operations Research 40(10): 2519-2531.

Sung, K., M. G. H. Bell, M. Seong and S. Park (2000). "Shortest paths in a network
with time-dependent flow speeds." European Journal of Operational Research
121(1): 32-39.

Tan, K. C., L. H. Lee, Q. L. Zhu and K. Ou (2001). "Heuristic methods for vehicle
routing problem with time windows." Artificial Intelligence in Engineering 15(3):
281-295.

Tian, Y., K. C. K. Lee and W.-c. Lee (2009). Monitoring Minimum Cost Paths on Road
Networks With Time-Dependent Edge Availabilities. Proceedings of the 17th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems GIS ’09.

Toth, P. and D. Vigo (2002). The vehicle routing problem. Philadelphia, PA, SIAM
Monographs on Discrete Mathematics and Applications.

Villegas, J. G., C. Prins, C. Prodhon, A. L. Medaglia and N. Velasco (2013). "A
matheuristic for the truck and trailer routing problem." European Journal of
Operational Research 230(2): 231-244.

Wellman, M. P. (1990). "Fundamental concepts of qualitative probabilistic networks."
Artificial Intelligence 44(3): 257-303.

Wellman, M. P., M. Ford and K. Larson (1995). Path planning under time-dependent
uncertainty. Proceedings of the Eleventh conference on Uncertainty in artificial
intelligence. Montrel, Quebec, Canada, Morgan Kaufmann Publishers Inc.: 532-539.

Wen, L., B. Çatay and R. Eglese (2014). "Finding a minimum cost path between a pair
of nodes in a time-varying road network with a congestion charge." European
Journal of Operational Research 236(3): 915-923.

Wikipedia. (2014). "Google driverless car." Retrieved June 01, 2014, from
http://en.wikipedia.org/wiki/Google_driverless_car.

Woensel, T., L. Kerbache, H. Peremans and N. Vandaele (2007). "A Queueing
Framework for Routing Problems with Time-dependent Travel Times." Journal of
Mathematical Modelling and Algorithms 6(1): 151-173.

Wolfler Calvo, R. and N. Touati-Moungla (2011). A Matheuristic for the Dial-a-Ride
Problem. Network Optimization. J. Pahl, T. Reiners and S. Voß, Springer Berlin
Heidelberg. 6701: 450-463.

Yıldırım, U. M. (2014). "Speed Generator." from http://myweb.sabanciuniv.edu/
mahiryldrm/speedGenerator.

Yildirim, U. M. and B. Çatay (2012). "A time-based pheromone approach for the ant
system." Optimization Letters 6(6): 1081-1099.

147

Yıldırım, U. M. and B. Çatay (2014). A Parallel Matheuristic for Solving the Vehicle
Routing Problems. Computer-based Modelling and Optimization in Transportation.
J. F. Sousa and R. Rossi, Springer International Publishing. 262: 477-489.

Zheng, Y. and B. Liu (2006). "Fuzzy vehicle routing model with credibility measure
and its hybrid intelligent algorithm." Applied Mathematics and Computation 176(2):
673-683.

Ziliaskopoulos, A. (1994). Optimum path algorithms on multidimensional networks:
Analysis, design, implementation and computational experience, Technical Report,
University of Texas, Austin.

Ziliaskopoulos, A. K. and H. S. Mahmassani (1993). "Time-Dependent , Shortest-Path
Algorithm for Real-Time Intelligent Vehicle Uighway System Applications."
Transportation Research Record 1408: 94-100.

Zufferey, N. (2011). "Optimization by ant algorithms: possible roles for an individual
ant." Optimization Letters 6(5): 963-973.

