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Abstract

Speaker diarization can be summarized as the process of partitioning an audio data

into homogeneous segments according to speaker identity. This thesis investigates

the application of the probabilistic linear discriminant analysis (PLDA) to speaker

diarization of telephone conversations. We introduce a variational Bayes (VB)

approach for inference under a PLDA model for modeling segmental i-vectors in

speaker diarization. Deterministic annealing (DA) algorithm is employed in order

to avoid locally optimal solutions in VB iterations. We compare our proposed

system with a well-known system that applies k-means clustering on principal

component analysis coefficients of segmental i-vectors. We used summed channel

telephone data from the National Institute of Standards and Technology 2008

Speaker Recognition Evaluation as the test set in order to evaluate the performance

of the proposed system. We achieve about 20% relative improvement in diarization

error rate as compared to the baseline system.
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Özet

Konuşmacı bölütleme, ses verisinin konuşmacı kimliğine göre homojen bölütlere

ayrılması süreci olarak özetlenebilir. Bu tezde olasılıksal doğrusal ayırtaç analizi

(ODAA) metodunun telefon konuşmaları üzerinde konuşmacı bölütleme alanına

uygulanması incelenmiştir. Konuşmacı bölütlemede kullanılan bölütsel i-vektörler-

in ODAA modeli altında değişkenli Bayes (DB) yöntemi ile çıkarsaması ilk olarak

bu çalışmada denenmiştir. Değişkenli Bayes iterasyonlarında yerel en uygun sonuç-

lardan kaçınmak için belirleyici tavlama (BT) algoritması kullanılmıştır. Önerilen

sistem, bu alanda bilinen bir sistem olan, bölütsel i-vektörlerin temel bileşenler

analizi katsayıları üzerinde k-ortalama topaklama yönteminin uygulandığı sistem

ile karşılaştırılmıştır. Performans değerlendirmesi Ulusal Standartlar ve Teknoloji

Enstitüsü tarafından 2008 Konuşmacı Tanıma Değerlendirmesi için belirlenen test

veri kümesi üzerinde yapılmıştır. Önerilen sistem, baz alınan sistemin Bölütleme

Hata Oranı’na göre %20 daha iyi performans göstermiştir.
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Chapter 1

Introduction

Along with the recent explosive growth of audio documents, there has been an

increasing interest towards applying speech technologies to automatic searching,

indexing, and retrieval of audio information. Speaker diarization, which gives the

“who spoke when” information without any prior knowledge about speakers, is

an important sub-task to address mentioned problems. To illustrate, for an au-

tomatic speech recognition system such information allows us to determine the

occurrences of specific speaker for a given utterance, which in turn improves tran-

scription performance by speaker adaptation. Moreover, successful diarization of

conversations would also increase the performance of speaker verification systems.

Speaker diarization of audio data has been studied for different domains, such as

meeting, broadcast and telephone recordings [3–5].

Although speaker diarization goes hand-in-hands with speaker recognition in terms

of the methods for distinguishing between speakers they differs in many ways. One

of the major differences is that in the speaker recognition setting prior models

are trained on the data sets of target speakers, whereas for speaker diarization,

there is no prior information regarding any of the speakers in the recording. And

the second main difference is the average length of the test and train data when

distinguishing between speakers which is generally very short in the case of speaker

diarization while for speaker recognition data scarcity occures exceptionally.

1
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Basically speaker diarization consists of three stages. In the first step, speech

activity detection is employed in order to extract speech containing parts from

a given utterance. As the second step, the extracted speech parts are further

divided into segments according to the speaker changes in such a way that each

segment contains the speech of a single speaker. This stage is called speaker

segmentation in the literature. Finally, in the clustering stage, all the segments

are passed over and the ones spoken by the same speaker are labeled identically.

The general schema is illustrated in Figure 1.1. Speaker-based clustering can also

be followed by cluster re-combination, which refines the speaker clusters for more

purity. Among all the components of a speaker diarization system, performance

of clustering stage is crucial for the success of the overall system. Many systems

have been designed and tuned based on Bayesian Information Criterion (BIC).

One such system [1], developed by MIT Lincoln Laboratory, serves as a baseline

for a number of studies.

1.1 Motivation

In many systems speaker diarization is used as a preprocessing stage for example

like in an automatic speech recognition (ASR) system or speaker verification (SV)

system. The motivation of this study is to enable us with a successful speaker

based diarization in order to obtain a meaningful and efficient result for the sys-

tem that utilizes that information. Imagine a call center of a company where all

conversations are recorded for the sake of customer satisfaction. Transcription of

these recordings with an ASR system is crucial for reporting and archiving. By

preprocessing with a speaker diarization system one can improve the accuracy of

the ASR system output by tuning the system with acoustic characteristics of each

customer or representative. Also determining the start and the end time of the

speech for each speaker make the transcripts more readable for human readers.

Another problem is making an audio search in that bulk collection of telephone

data. For a given model of representative for example one can want to make a SV

test by sliding a window throughout each recording in order to determine the ones
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Figure 1.1: General schematic overview of a Speaker Diarization process that
can be divided into three main subtasks: Voice activity detection, change de-

tection, and segmental clustering.

in which specific representative is speaking. However, clearly that sort of testing

approach may decrease the SV performance because of short and impure test data.

By employing a speaker diarization preprocessing over the test data can definitely

provide sufficient data for a better SV test.
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1.2 Contributions

In our proposed study we are inspired from a previous study [5], which exploits

eigenvoice priors for variational Bayes (VB). By our proposed system, we try to

obtain a better modeling for the underlying distribution of the speaker factors of

the i-vector in a probabilistic framework with the probabilistic linear discriminant

analysis (PLDA) model which proved to be very successful in speaker recognition.

In another study [6], PLDA is introduced in speaker diarization to compute the

log-likelihood ratio as a substitute to Bayesian information criterion (BIC) scores

in the clustering stage. However, we use the PLDA model to represent segmental

i-vectors and apply a VB approach for inference in this framework. Moreover, we

introduce a formulation based on the deterministic annealing (DA) variant of VB

by which we overcome the initialization problem handled by a heuristic method

in [5].

1.3 Outline

The rest of the thesis is organized as follows. Chapter 1 provides the overview of

speaker diarization, contribution and outline of the this. Related work is detailed

in Chapter 2. Chapter 3 is devoted to our proposed system. The experimen-

tal setup and results are then described in Chapter 4. Chapter 5 is devoted to

conclusion and future work.



Chapter 2

Related Work

2.1 Agglomerative Clustering based Speaker Di-

arization

The problem of “who spoke when” in an audio document has been explored by var-

ious researchers using a variety of methods. The agglomerative clustering method

which is one of the popular bottom-up clustering methods is initially proposed by

Reynolds et al. [1]. Main components of this type of speaker diarization system

is provided in Figure 2.1.

2.1.1 Bayesian Information Criterion

The Bayesian information criterion (BIC) is initially used in speaker diarization in

[7]. It is a model selection criterion in order to describe a given data set penalized

by the number of parameters in the model. To illustrate, let X = {xi : i = 1, ..., N}

be the data set we are modelling and Λ = {λi : i = 1, ...,M} be the probable

models. We aim at maximizing likelihood function, say L(X , λi) for each model

λi. The BIC score is defined as follows:

5
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Figure 2.1: System diagram of the basic speaker diarization system using
BIC-based agglomerative clustering [1].

BIC(λi) = logL(X , λi)− α
1

2
#(λi)× log(N) (2.1)

where α is called the BIC weight and #(λi) is the number of parameters that are

need to be estimated in model λi. We can clearly observe from the formula that

we search for a model has a better fit to the data but has fewer free parameters.

2.1.2 Stages of Agglomerative Clustering

Speech detection is the first step for a basic speaker diarization system. Gener-

ally, the input data consists of many non-speech parts such as silence, music, and

background noise. In order to separate speech parts from the other sources gen-

erally Gaussian mixture model (GMM) based voice activity detection is used [1].

However, for an easier problem where the segments consists mostly of just speech

and silence, energy based voice activity detection can be employed [8].
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The next step after the speech detection is change detection which aims at finding

the possible speaker change point. Initially in [7] and later in [1] BIC based change

detection is used. As described in Figure 2.2, the method searches for a change

point within a window using a penalized likelihood ratio (SBIC) between modeling

the probability density function of the window as a single full-covariance Gaussian

and two full-covariance Gaussians [1]. The BIC score for segment z supposed to

consists of two speaker segments namely x and y is defined as follow:

SBIC = log
p(x|λx)p(y|λy)

p(z|λz)
− αP, (2.2)

P =
1

2
(d+

1

2
d(d+ 1)) logN (2.3)

where λx, λy, and λz are corresponding full-covariance Gaussian segment models,

α is the BIC weight (typically set to 1.0 [1]) and P is the BIC penalty for d-

dimensional full-covariance Gaussian model in a window of size N .

Figure 2.2: Illustration of BIC-based speaker change point detection within
a given window. Hypothesis 0: window is modeled by two distributions, that
is, there exists a change point, Hypothesis 1: window is modeled by a single

distribution, that is, no change point found [1].

We can calculate probability density of a segment x, that consists of Nx frames,

for a given full-covariance Gaussian segment model, N (µx,Σx) as follows [1]:
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log p(x|λx) = −1

2
Nx log |Σx| −

1

2
Nx(x− µx)TΣ−1x (x− µx). (2.4)

We decide the existence of possible change point when SBIC is greater then zero

[1]. If a change point is found, the starting point of the window is set to the change

point and the search is restarted. Otherwise, the window is enlarged to the next

break point and the procedure is repeated again.

After change point detection agglomerative clustering part is initialized with the

segments in which presumably one speaker speaks. In clustering stage we aim at

getting the segments together with respect to the same speaker. The outline of

the agglomerative clustering stage can be summarized as follows [1]:

1. Initialize bottom clusters of the segment tree obtained from the change de-

tection stage.

2. Compute pair-wise distances between each cluster.

3. Merge closest clusters and set distances to infinity between these clusters

and the remaining ones.

4. Compute distances between new clusters and the remaining ones.

5. Iterate steps 3-4 until the stopping criterion is met.

Generally BIC based metric is used for distance calculations and stopping criterion,

as in [1]. However for some studies that number of speakers are known a priori,

algorithm is terminated when number of clusters reach to the number of speakers,

as in [5].

In order to reduce computation time for comparing the clusters and each calcula-

tion of cluster mean and covariance, one can use Hotelling’s T 2 statistics [9]. The

method suggests a new likelihood ratio test statistic for the clusters to be com-

pared by using the mean and the covariance of the clusters. At each instance of
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merging two clusters the method gives a way to calculate new mean and covariance

out of previously calculated mean and covariance of the clusters.

After completing the clustering stage, as a final step frame-based Viterbi re-

segmentation is conducted by speaker and non-speech models. This part will be

detailed in Section 4.4. The main purpose of this stage is improving the diarization

result by refining segment boundaries.

2.2 Factor Analysis Based Systems

Upon the recent successes of factor analysis based methods, a new set of such

approaches are applied to speaker diarization. The methods are adapted from

speaker recognition in order to make use of the concept of inter-speaker variabil-

ity for the diarization of telephone conversations. Factor analysis based speaker

diarization was first introduced in [10] using a stream-based approach. In the

study of Kenny et al. [5], they modify Valente’s [11] speaker diarization system

based on the VB method and they incorporate the factor analysis priors defined

by eigenvoices and eigenchannels [12]. Theoretical background will be described

in Section 2.2.1 about these priors. Also, in a recent study [6], PLDA is intro-

duced to the problem of speaker diarization. They use factor analysis to extract

low-dimensional representation of a sequence of acoustic feature vectors, namely

i-vectors [13] which are modelled by PLDA. The approaches i-vector and PLDA

will be described in detail in Section 2.2.2 and Section 3, respectively. As the

metric for clustering, they use log-likelihood ratio of the probability of hypothesis

that two clusters represented by corresponding i-vectors share the same identity

and have distinct identities, rather than BIC-based clustering as used in [1]. The

authors in [14] proposed k-means clustering for i-vector based diarization approach

which constitutes our baseline system detailed in Section 2.2.4. In this thesis we

also extract i-vectors for each segment in a similar way, however we represent i-

vectors with a PLDA model and use a VB approach for inference under the model

[15]. The study on VB approach will be described generally in Section 2.2.3.
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2.2.1 Joint Factor Analysis

The Joint Factor Analysis (JFA) method is initially used in [16] for speaker verifica-

tion in order to compensate inter-session and inter-speaker variabilities. Different

from the classical UBM-MAP adaptation method [17], JFA method achieves a

better model for speaker and channel dependent factors. The theory of JFA can

be outlined as follows:

First we define the Gaussian Mixture Model (GMM) which is also called the

universal background model (UBM) in the context of speaker verification problems.

This is a widely used generative model for speech data. Given a GMM model θ,

consisting C components and a dimension of F feature vectors, the likelihood of

observing a given feature vector y is computed as follows:

p(y|θ) =
∑
c

wcNc(y|mc,Σc) (2.5)

where wc is the mixture components which all sum up to one and Nc(y|mc,Σc)

is a multivariate Gaussian distribution with F dimensional mean vector, mc and

F × F dimensional covariance matrix, Σc defined for each mixture component as

follows:

Nc(y|mc,Σc) =
1

(2π)
F
2 |Σc|

1
2

exp

{
−1

2
(y −mc)

TΣ−1c (y −mc)

}
, (2.6)

note that (.)T stands for transpose for above formulation and throughout the

thesis.

Assume we are given a UBM defined as a large GMM trained to represent the

speaker-independent distribution of features. Then a speaker supervector of di-

mension C · F is adapted from the UBM with a mean supervector of dimension
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CF×1 and a block diagonal covariance matrix of dimension CF×CF . This mean

supervector, and covariance matrix is obtained by concatenating all the Gaussian

component means and covariances.

The main idea behind the JFA is that the GMM supervector, M can be obtained

by the sum of speaker and channel independent, speaker-dependent, channel-

dependent, and a residual component, as:

M = m+ V y +Ux+Dz (2.7)

wherem is speaker and channel independent CF×1 supervector obtained from the

UBM. V and U are lower dimensional speaker and channel subspaces, so called

eigenvoices and eigenchannels respectively. Moreover, D is diagonal CF × CF

matrix which models the residual variabilities that are not captured by V and U .

Lastly, x, y, and z are the normally distributed hidden vectors that need to be

estimated.

By calculating some sufficient statistics across the speakers we can train V , U ,

and D matrices in given order and in turn estimation of speaker and channel

factor vectors y and x and residual factor vector z can be achieved by using those

trained speaker and channel subspace matrices. Formulation details and proofs

can be found in [18].

2.2.2 Total Variability Approach

Total variability approach to speaker recognition is initially used in [19] and ex-

tended in [13] which propose a simplified solution to the problem at hand in terms

of both theory and implementation. Different from the JFA, this approach repre-

sents all the speaker and channel factors in a single total variability space. The

GMM supervector, M with this approach is defined as follows:
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M = m+ Tφ (2.8)

where m is again speaker and channel independent CF × 1 supervector obtained

by concatenating each mixture mean of the UBM, assume we are given a UBM

with C mixture component and for each mixture c we denote wc, mc, and Σc

as the corresponding mixture weight, mean vector, and covariance matrix. T is

lower dimensional CF × R total variability space, where R � CF and φ is the

normally distributed hidden vector, so called i-vector, stands for the intermediate

vector for its intermediate representation between an acoustic feature vector and a

supervector. The process of training the total variability matrix, T and extracting

the i-vector, φ can be summarized as follows:

In order to continue to the calculations component wise, we can see the model

defined in equation (2.8) as follows:

Figure 2.3: Illustration of the model with supervector M = µ1, ...,µC , UBM
mean supervector m = m1, ...,mC , and total variability matrix T = T 1, ...,TC

stands for all mixture components of the UBM with i-vector φ.
µ1

µ2
...
µC


CF×1

=


m1

m2
...
mC


CF×1

+


. . . T 1 . . .
. . . T 2 . . .

...
. . . T C . . .


CF×R

 φ


R×1

then we can write each equation for the corresponding UBM mixture component

c as follows:

Figure 2.4: Illustration of the model for a mixture c of the UBM. µc


F×1

=

 mc


F×1

+

 . . . T c . . .


F×R

 φ


R×1

µc = mc + T cφ. (2.9)



Chapter 2. Related Work 13

Let we are given an utterance s represented as a sequence of L acoustic feature

vectors x1, ...,xL. The i-vector φ is a latent variable whose posterior distribution

can be calculated using Baum-Welch statistics extracted from the UBM [13]. These

sufficient statistics are defined, as follows:

Nc =
∑
t

γt(c), (2.10)

F c =
∑
t

γt(c)xt, (2.11)

Sc =
∑
t

γt(c)xtx
T
t (2.12)

where c = 1, ..., C is the index of corresponding Gaussian component of the UBM

and γt(c) is the posterior probability that xt is generated by the mixture compo-

nent c, defined as follows:

γt(c) =
wcN (xt;mc,Σc)∑
cwcN (xt;mc,Σc)

. (2.13)

Then for a given utterance x1, ...,xL, we can calculate posterior mean and covari-

ance of the i-vector, φ as follows [20]:

〈φ〉 = Cov(φ,φ)
∑
c

T T
c Σ−1c (F c −Ncmc), (2.14)
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Cov(φ,φ) = (I +
∑
c

NcT
T
c Σ−1c T c)

−1 (2.15)

where I stands for identity matrix.

For estimating the total variability matrix, T c we can use the first and second

order moments of the posterior distribution of φ, 〈φ(s)〉 and 〈φ(s)φ(s)T 〉 for each

utterance s [20] as follows:

T c =

(∑
s

F c(s)〈φT (s)〉

)(∑
s

Nc(s)〈φ(s)φT (s)〉

)−1
(2.16)

where the sum over s is for all utterances in the training set and for each utterance

s zeroth and first order statistics Nc(s) and F c(s) are defined as in equation (2.10)

and (2.11). And also second order moment can be easily calculated as follows:

〈φ(s)φT (s)〉 = Cov(φ(s),φ(s)) + 〈φ(s)〉〈φT (s)〉. (2.17)

Actually, the training procedure for the T matrix is same as the training of V

matrix in equation (2.7) detailed in [18], but differently treat all conversation sides

of all training speakers as belonging to different speakers. Theoretical background,

formulation detail and proofs can be found in [21].

2.2.3 Variational Bayes System

The variational Bayes method of speaker diarization developed by Kenny et al.

[5] is one of the first systems where factor analysis is used. In a previous study

[11] Valente used a fully Bayesian treatment for the problem of estimating speaker
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GMM models, however in this study they use eigenvoice and eigenchannel priors

on GMMs by employing a variational Bayesian framework.

Two speaker telephone conversations are used as a test set and an initial seg-

mentation of uniform one second intervals is applied on segments after removing

silences. The diarization problem is formulated as one of calculating, for each

speaker segment, the posterior probabilities of the events that speaker s is talking

in the segment m, denoted as qms. As well as, two speaker posteriors are calcu-

lated which are multivariate Gaussian distributions on speaker factors with mean

as and precision Λs. The alignment of speech frames with Gaussians in speaker

GMMs is carried out with a UBM such that the sufficient Baum-Welch statistics

is extracted from each of the speaker segments by means of the UBM. Modelling

assumptions on distribution of speaker supervector is as follows:

M = m+ V y (2.18)

where m denotes CF × 1 mean supervector and Σ denotes CF ×CF supervector

sized diagonal covariance matrix for an UBM with C mixtures in an F dimen-

sional space. We assume m and Σ are obtained by concatenating mean vectors

m1,m2, ...,mC and covariance matrices Σ1,Σ2, ...,ΣC , respectively, for each mix-

ture of the UBM. And V denotes CF × R block diagonal eigenvoice matrix and

y denotes R× 1 speaker factor vector with standard normal distribution.

The sufficient statisticsNc, F c, and Sc for a given segment feature vectors x1, ...,xL

are defined as equations (2.10), (2.11), and (2.12). For formulation convenience

centralized first and second order Baum-Welch statistics F̃ c and S̃c are defined as

follows:

F̃ c = F c −Ncmc, (2.19)
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S̃c = Sc − diag(F cm
T
c +mcF

T
c −Ncmcm

T
c ) (2.20)

where mc is the subvector of m which corresponds to the mixture component c of

the UBM. Also, letN be the CF×CF diagonal matrix with diagonal blocks ofNcI

and F̃ be the CF ×1 supervector obtained by concatenating F̃ c for c = 1, 2, ..., C.

The details of training procedure of the variational Bayes system is as follows:

1. Updating the segment posterior qms for segment m and speaker s

qms =
q̃ms∑S

s′=1 q̃ms′
(2.21)

where

log q̃ms = aT
s V

TΣ−1F̃m −
1

2
aT
s V

TNmΣ−1V as

− 1

2
tr (V TNmΣ−1V Λ−1s ) + const

(2.22)

where const stands for speaker independent terms and Nm and F̃m are centralized

Baum-Welch statistics extracted from the segment m.

2. Updating speaker posteriors for speaker s

Λs = I + V TΣ−1

(∑
m

qmsNm

)
V , (2.23)
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as = Λ−1s V
TΣ−1

(∑
m

qmsF̃m

)
. (2.24)

3. The speaker and segment posteriors are updated alternately until the variational

lower bound, L converges

L =
∑
m

∑
s

qms log q̃ms +
1

2

{
RS −

∑
s

(
log |Λs|+ tr (Λ−1s + asa

T
s )
)}

−
∑
m

∑
s

qmslog qms

(2.25)

where qms and q̃ms are given as equation (2.21) and equation (2.22) and Λs and

as are given as equation (2.23) and equation (2.24). On convergence, diarization

is performed by assigning each segment m to the speaker given by argmax
s

qms.

Theoretical background, formulation detail and proofs can be found in technical

report written by P. Kenny [22].

Initializing the Variational Bayes algorithm by assigning random values to the

segment posteriors is found to be ineffective for recordings where one speaker

dominates the conversation. In order to prevent the variational Bayes algorithm

from modelling the dominant speaker, some sort of heuristic initialization method

is applied [5].

After variational iterations completed, in order to refine initial segmentation bound-

aries Viterbi re-segmentatiton and Baum-Welch soft speaker clustering is applied

at the accoustic feature level. For each speaker a Gaussian mixture model is

trained by the data determined by the previous steps. Then, by using the Baum-

Welch statistics the posterior probabilities of each speaker are calculated given

each feature frame.
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Speaker change points and speaker assignments found by Viterbi re-segmentation

are used to initialize a second run of Variational Bayes. This procedure is called

second-pass which aims to provide further refinement in speaker boundaries.

2.2.4 K-means Clustering System

This system is one of the factor analysis based systems proposed by S. Shum

[14]. In this study, the total variability space is used in order to represent the

speaker segments. The method is detailed in Section 2.2.2 which has achieved

considerable performance in the task of speaker verification [13]. Starting with

an initial segmentation, i-vector extraction is obtained from each speech segment.

The main focus of the work is to concentrate on intra-session variability rather

than inter-session variability. Because the work is performed on summed-channel

telephone data and the diarization process includes to detect speaker changes in

a conversation different from the speaker verification task which assumes that a

given utterance contains speech from only one speaker.

Two types of initial segmentation is applied in order to detect speech parts, one

is a harmonicity and modulation frequency based voice activity detector (VAD)

described in [23] and the other is the use of reference boundaries as the initial

speech/non-speech segmentation. After voice activity detection, in order to have

a better identification of speaker i-vector directions the principle component anal-

ysis (PCA) is applied to the segment i-vectors within the total variability space.

PCA-based projection is applied in a way that p proportion of eigenvalue mass

determines the number of principle components. That is, minimum number of n

largest eigenvalues are chosen as follows:

min
n

∑n
i=1 λi∑D
j=1 λj

≥ p (2.26)
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where D is i-vector dimension and λ’s are eigenvalues indexed with decreasing

order.

Then, in order to align segments with speakers, PCA-projected i-vectors are sub-

jected to k-means clustering algorithm based on the cosine distance. At the end,

a re-segmentation stage is applied like the end of the variational Bayes system

detailed in Section 2.2.3 in order to refine speaker boundaries.



Chapter 3

PLDA-based Speaker Diarization

System

PLDA is originally used for the face recognition task [24]. Later, it is successfully

applied to the speaker detection task as well [25, 26]. In our study, PLDA is

adapted to the speaker diarization problem by proposing a special generative story

for segment i-vectors. This is the first study, to the best of our knowledge, where

PLDA is used for modelling the extracted segment i-vectors and inference under

the model is realized by VB for speaker diarization.

Our speaker diarization system is composed of mainly three parts. Speaker change

point detection, alignment of segments over speakers, and re-segmentation. The

implementation details of the first and the last parts are similar with the earlier

study in [1] which are detailed in Section 2.1.2. For the second part, where we

assign segments to speakers, we follow a VB approach with different initialization

methods and a DA variant of VB [27].

20
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3.1 LDA-based Dimensionality Reduction

Assuming that we are given an initial segmentation and thus can extract an i-vector

for each segment as detailed in Section 2.2.2. In order to improve our discrimi-

nation performance between speakers of i-vectors we apply Linear Discriminant

Analysis (LDA) technique by projecting i-vectors into an orthogonal basis. In the

below formal definition of PLDA, the classes and feature vectors for each class can

be considered as speakers and corresponding i-vectors, respectively.

Given a set of features belonging to different classes, this dimensionality reduction

method tries to find a mapping in order to represent the features that enables

better discrimination between different classes by maximizing between-class vari-

ance and minimizing within class variance. We can find that sort of orthogonal

basis by defining a mapping (projection matrix) A composed of the eigenvectors

associated with the greatest eigenvalues of the generalized eigenvalue equation:

Sbv = λSwv (3.1)

where λ’s are the eigenvalues and v’s are corresponding eigenvectors. The matrices

Sb and Sw are between-class and within-class covariance matrices, respectively.

For a given training set containing S speakers with ns utterances per speaker,

these covariance matrices are estimated as follows:

Sb =
S∑

s=1

(φs − φ̄)(φs − φ̄)T , (3.2)

Sw =
S∑

s=1

1

ns

ns∑
n=1

(φ(n)
s − φs)(φ

(n)
s − φs)

T (3.3)
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where φ(n)
s is the nth element of class s and class mean φs and global mean φ̄ can

be calculated as follows:

φs =
1

ns

ns∑
n=1

φ(n)
s , (3.4)

φ̄ =
1

S

S∑
n=1

φs. (3.5)

The LDA-projected i-vectors φLDA can be calculated by using the projection ma-

trixA, whose columns are the eigenvectors corresponding to the largest eigenvalues

of generalized eigenvalue equation (3.1), as follows:

φLDA = ATφ. (3.6)

In speaker recognition literature LDA is mainly used for compensating channel and

session differences. Channel and session independent representation of i-vectors

can be obtained by reducing the intra-class variability. As declared in the study [2],

in the problem of summed channel telephone diarization compensation of inter-

session variability may be unnecessary because there is exactly one session in

nature of the problem. However, the meaning of the LDA-projection depends

mainly on the choice of the LDA model training set. For a speaker recognition

problem training set consists of various recordings of different speakers which are

recorded by different microphones for each session. However, creating a training set
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by letting each class including one recording of a specific speaker and various non-

overlapping random cuts extracted from that recording may convert the meaning

of reducing intra-class variability into the compensating intra-speaker variations.

Classes of LDA and PLDA models training set can be illustrated as in Figure

3.1(a) and 3.1(b) for a general speaker recognition problem and our proposed

speaker diarization system.

(a)

(b)

Figure 3.1: (a) Classes of LDA and PLDA models training set for a speaker
recognition task. (b) Classes of LDA and PLDA model training set for our

proposed speaker diarization system.

All i-vectors used in modelling and formulation of the system are considered as

LDA-projected throughout the chapter.

3.2 Two Covariance PLDA Model

The i-vector features, contain information relevant to factors like channel, mi-

crophone, speaking style, language in addition to speaker identity. In speaker

verification, PLDA model is used to extract speaker identity related factors from
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i-vectors. A variant of PLDA, known as two covariance PLDA [28], assumes that

the i-vectors are generated by addition of two terms; a speaker vector y unique

to a speaker and a residual vector ε unique to the utterance. The speaker vector

y is assumed to be sampled from a Gaussian distribution with mean µ and co-

variance Λ−1, and the residual vector is assumed to be sampled from a Gaussian

with zero mean and covariance P−1. These model parameters namely mean µ and

covariance matrices Λ−1 and P−1 are estimated during the PLDA model training

stage.

3.3 Modelling Assumptions

We assume that we have a two covariance PLDA model trained on a separate

training set at hand. We assume that we are given a conversation involving S

speakers and the speaker change points are specified. Let us denote the set of

segment i-vectors by Φ = {φ1, ..., φM}. For each segment m = 1, ...,M , we define

an S× 1 indicator vector im whose components are defined as ims = 1 if speaker s

is talking in the segment m and ims = 0 otherwise. Let I = {i1, ..., iM} be the set

of all indicator vectors belonging to the given utterance. We also assign a prior

probability to the event that a speaker s is talking in a given segment; we denote

and set by πs = 1
S

. The generative story for our PLDA based diarization model is

as follows:

• For each speaker s sample ys, from N (y;µ,Λ−1).

• For each segment:

– Sample im from the multinomial distribution Mult(i; Π) where Π =

{π1, ..., πS}. Let s be the index for which ims = 1, with all the other

entries of im being 0.

– Sample εm from N (ε; 0,P−1).

– The observed segment i-vector is obtained as φm = ys + εm.
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Graphical model for the proposed generative story of our PLDA based diarization

model is illustrated in Figure 3.2. With those asserted generative story, we assume

that speaker identity and intra-speaker accoustic subspaces span the entire i-vector

space.

y

i

ε

φ

M

S

Figure 3.2: Graphical model for the proposed generative story of our PLDA
based diarization system. Shaded node represents the observed variable while
other nodes represent the latent variables. Outer plate representations denotes

a set of M and S repeated occurences.

Let Y = {y1, ...,yS} be the set of all speaker vectors of the speakers talking in the

given utterance. Using this model, we can summarize the diarization problem as

of calculating the posterior probability of the speaker talking in a given segment.

With these assumptions, obtaining the posterior probability, P (Y , I|Φ) produce

intractable integrals. Therefore we resort to the approximate inference methods,

namely mean-field VB, in order to approximate P (Y|Φ) and P (I|Φ).

3.4 Variational Bayes for PLDA based i-vectors

Supposing above probabilistic model we are given that observed variable Φ is

generated with two hidden variables I and Y . Lets denote hidden variables as

θ = (I,Y). Our generative story specifies the joint distribution P (Φ, θ), and our

goal is to find an approximation for the posterior distribution P (θ|Φ) and for the

model evidence P (Φ). We can define log marginal probability as,
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logP (Φ) = L(Q) +KL(Q‖P ) (3.7)

where we have defined variational lower bound of approximate posterior distribu-

tion and Kullback-Liebler (KL) divergence between true and approximate poste-

rior distributions as follows:

L(Q) =

∫
Q(θ) log

{
P (Φ, θ)

Q(θ)

}
dθ, (3.8)

KL(Q‖P ) = −
∫
Q(θ) log

{
P (θ|Φ)

Q(θ)

}
dθ. (3.9)

In order to minimize KL divergence we can maximize the lower bound L(Q) by

optimization with respect to Q(θ). The maximum of the lower bound occurs

when the KL divergence vanishes, which occurs when Q(θ) equals the posterior

distribution P (θ|Φ). However, we propose a probabilistic model such that the true

posterior distribution is intractable. In order to obtain both tractability and better

approximation to the true posterior, we consider a restricted family of distributions

for Q(θ) remember that θ = (I,Y).

The basic assumption for mean-field variational methods is that the approximate

posterior factorizes as:

Q(Y , I) = Q(Y)Q(I). (3.10)

This factorized form of variational inference refers to an approximation framework
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developed in physics called mean field theory [15].

Approximate segment and speaker posteriors, Q(I) and Q(Y), are defined as:

Q(I) =
M∏

m=1

S∏
s=1

qims
ms , (3.11)

Q(Y) =
S∏

s=1

N (ys|µs,C
−1
s ). (3.12)

In equation (3.11), we define qms as the posterior probability of speaker s talking

in segment m and in equation (3.12), it turns out that approximate segment and

speaker posteriors factorize in the same way as marginal distribution of segment

and speaker distributions. Notice that approximate segment posterior distribu-

tions are multinomial with probability qms and approximate speaker posterior

distributions are Gaussian with mean µs and precision Cs. Actually, we do not

assume approximate segment and speaker posteriors to be in this form, but rather

we derive this result by assuming a factorization for approximate posterior as in

equation (3.10), details can be found in Appendix A.

We can summarize update formulas of approximate segment and speaker posteriors

for the VB approach as follows:

1. Update rule for segment posteriors:

qms =
q̃ms∑S

s′=1 q̃ms′
(3.13)

where
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log q̃ms = µT
s Pφm −

1

2
tr (P(C−1s + µsµ

T
s ))

+ const

(3.14)

where const stands for speaker independent terms.

2. Update rule for speaker posteriors:

Cs = Λ +
M∑

m=1

qmsP , (3.15)

µs = C−1s (Λµ+
M∑

m=1

qmsPφm). (3.16)

The speaker and segment posteriors are updated alternately throughout the varia-

tional e-step. Formulation details of the update formulas can be found in Appendix

A. On convergence, diarization is performed by assigning each segment m to the

speaker given by argmax
s

qms [5].

Initializing the VB algorithm by just assigning random values to the segment

posteriors qms is proved to be ineffective especially for the recordings that one

speaker dominates the conversation [5]. For that recordings, two speaker posteriors

found by the VB algorithm only model the dominant speaker, and the diarization

error rate may be very high corresponding to the average. In order to overcome

this problem we try various initialization heuristics for a better start up for the

VB iterations and also use a DA variant of the variational algorithm to avoid local

optimal results for speaker posteriors.



Chapter 3. PLDA-based Speaker Diarization System 29

3.5 Initialization of VB Iterations

Firstly, we adopt a heuristic approach in order to initialize segment posteriors

similar to the study in [5]. In this setup, instead of starting with two speakers, we

randomly initialize the segment posteriors with three speakers. After running the

VB algorithm, we compute the pairwise distances among the speakers using their

corresponding mean vectors and take the most distant two speakers. Moreover, we

iterate this procedure ten times and choose the final speaker pair among the most

distant speakers of each iteration. Speaker pair which yields the furthest distant

is chosen to be our starting point. We continue to the VB e-step iterations with

these two speaker posteriors. As a distance metric we use cosine similarity and

likelihood ratio scoring with the PLDA model [24, 28].

3.6 Deterministic Annealing variant of Variational

Bayes

DA is introduced to the VB method in order to avoid trapping in poor local optimal

solutions without using any heuristic approach as in Section 3.5. This process

simply consists of introducing a temperature parameter, β to the free energy for

controlling the annealing process deterministically [27]. The DA variant of update

formulation in Section 3.4 can be adapted as follows:

log q̃ms = β(µT
s Pφm −

1

2
tr (P(C−1s + µsµ

T
s )))

+ const,

(3.17)

Cs = β(Λ +
M∑

m=1

qmsP), (3.18)
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µs = C−1s (Λµ+
M∑

m=1

qmsPφm) (3.19)

where the temperature parameter, β is initialized to be much smaller than one

and increased during iterations until to be equal one.

By introducing the temperature parameter, β to the formulation, we attain a

control on the convergence of the VB algorithm by decreasing the precision Cs

(increasing the covariance C−1s ) of the speaker posterior distribution as seen in

equation (3.18), notice that µs does not changed, details of the formulation can

be found in Appendix B.
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Experimental Setup and Results

We use 20 dimensional static MFCC features. We use telephone part of the NIST

2004/2005/2006 SRE corpora in order to train gender-independent universal back-

ground model (UBM) of 1024 Gaussians. We train gender-independent i-vector

model of rank 600 on the same dataset. We extract 600-dimensional i-vectors by

using the sufficient statistics collected from the UBM in each segment. Details

about the model training sets can be found in Table 4.1.

4.1 Segmentation

After extraction of MFCC features, we use BIC based penalized likelihood ratio

test, following the recipe in Section 2.1.1, in order to detect speaker change points.

We check whether the data in the two sides of a candidate change point is bet-

ter modeled with a single distribution or two. We use full covariance Gaussian

distribution for modelling. This is the most widely used approach to speaker di-

arization for segmentation. Readers may refer to [1] for detailed formulation and

configurations.

31
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4.2 K-means clustering i-vector System

As a baseline system we choose a system which applies k-means clustering on

principal component analysis coefficients of segmental i-vectors[14]. This system

is chosen because of the fact that it was reported to have superior results with

respect to the earlier studies [1, 5]. According to the comparative DER results

in [14], the benchmark study has a DER of 0.9% as opposed to the study [5]

and [1] with DER of 3.5% and 1.0%, respectively on NIST SRE 2008 summed

channel telephone data. The benchmark system has also other advantages such

that it has a similar system architecture with our proposed system and it is easy

to implement.

This system is based on the work described in [14]. After extracting an i-vector for

each speech segment in a given utterance, we apply principle component analysis

(PCA) based projection. We choose the dimension of PCA-projected vectors for

each utterance separately, so that 50% of the energy is preserved. Then, we apply

k-means (K = 2) clustering to the projected i-vectors based on the cosine distance.

4.3 i-vector PLDA System

In our proposed system, we apply linear discriminant analysis (LDA) to the seg-

ment i-vectors. After LDA, we apply whitening and unit length normalization

before training the PLDA model. We use the same dataset with UBM training

for training LDA and PLDA models. In speaker verification, a major source of

intra-speaker variability is microphone and channel variations between utterances.

For speaker diarization, we have a single session, and phonetic content variabili-

ties are one of the major sources of variation between segment i-vectors of a given

speaker. Hence, to obtain a better LDA and PLDA model for our task, we take

a single utterance from every speaker in the training set. We use the i-vectors

extracted from this full utterance, as well as from random cuts between 2 and

20 seconds extracted from it (≈ 12 in total per utterance), in LDA and PLDA
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training. We observe a minor improvement compared to training on multi-session

full utterances. Details about the model training sets can be found in Table 4.1.

Table 4.1: Number of speakers and utterances used for training UBM/i-vector
models and LDA/PLDA models.

#speakers #utterances
UBM/i-vector 1628 22419
LDA/PLDA 1218 15744

4.4 Viterbi re-segmentation

After we complete the initial clustering step by using the VB algorithm, we con-

duct a frame-based Viterbi re-segmentation to improve the diarization result. By

applying this process in frame level we obtain an opportunity to recover the speaker

error present in individual segments. We use the labels obtained from the initial

clustering step to train 32-mixture GMMs for each speaker. We run the Viterbi al-

gorithm, by fixed self-transition probability, over all speech frames, with emission

probabilities of frame likelihoods given two GMMs, to obtain final alignments.

Overall system diagram of our proposed speaker diarization system can be seen in

Figure 4.1.

4.5 Evaluation Protocol

The performance measurement of speaker diarization system is evaluated using

diarization error rate (DER). This performance metric is calculated as alignment

of reference diarization output with a system diarization output by summing up

time weighted combination of: Miss (M) - classifying speech as non-speech, False

Alarm (FA) - classifying non-speech as speech and Speaker Error (E) - confusing

one speakers speech as from another [29]. Each type of error is illustrated in Figure

4.2. The evaluation code ignores errors of less than 250ms in the locations of

segment boundaries. We take the reference speech activity boundaries as given by
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Figure 4.1: Main components of the proposed speaker diarization system.

using time marks from the speech recognition transcripts produced on each channel

separately. Clearly, miss and false alarm errors are mainly caused by a mismatch

of the reference speech activity detector and the diarization system output. For a

more efficient metric in order to evaluate the effectiveness of our speaker diarization

system based on the use of reference speech/non-speech boundaries, we set both

miss and false alarm error rates to zero as in the studies [5, 14].

Figure 4.2: Illustration of each type of diarization error with reference and
hypothesized system output [2].
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4.6 Results

4.6.1 DER Results

We use NIST SRE 2008 summed channel telephone data as test set. The dataset

consists of 2215 conversations. Each conversation is approximately five minutes

in duration (≈ 200 hours in total) and involving just two speakers. In the ex-

periments, we use 600-dimensional i-vectors to which we apply a dimensionality

reduction procedure as described in Section 3.1. Various experiments are con-

ducted on a development set with different LDA projection dimensions. Results

can be seen in Table 4.2.

Table 4.2: Results of our proposed system with various LDA projection di-
mensions on a development set.

100 150 200 300
mean DER (%) 2.69 2.61 2.67 2.89
σ (%) 5.54 5.21 5.57 6.10

Analyzing the effect of applying LDA projection to the i-vectors, diarization per-

formance increase constantly to some point by decreased dimension. As described

in Section 3.1, LDA training set is structured in a way that intra-speaker acoustic

variations are compensated and inter-speaker variations are become much more

distinctive. Therefore, for our system 150-dimensional LDA projection is employed

and for the baseline system, we use utterance specific PCA projection keeping 50%

of the eigenvalue mass which is considered ideal for k-means clustering [2].

Table 4.3 shows the results of the baseline system (KM-PCA) as well as the results

of our proposed system (VB-PLDA) which is initialized with two speakers and ran-

domly generated segment posteriors. Our results for (KM-PCA) has higher DER

than reported in [14] since we implemented a simplified version of the algorithm

without multiple iteration of Viterbi resegmentation part and second pass of whole

algorithm. In Table 4.3, we can see the effect of random initialization of speaker

segments which clearly decreased the performance of proposed system as oppose

to the baseline system.
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Table 4.3: Comparative results of baseline and proposed system. We randomly
initialize qms with two speakers for VB iterations.

KM-PCA VB-PLDA
mean DER (%) 2.72 4.14
σ (%) 5.83 9.16

Table 4.6 shows the results obtained from our proposed system with two different

heuristic initializations, a DA variant of VB, and lastly again a VB system ini-

tialized with k-means algorithm. We use two metrics for initialization with cosine

similarity (VB-COS) and PLDA log-likelihood ratio (VB-LLR) described in Sec-

tion 3.5 for heuristic methods. We apply four VB iterations in order to determine

best two speaker models out of three for each ten attempts. For obtaining the

results of DA variant of VB (DA-VB) system detailed in Section 3.6, we set initial

value of temperature parameter as, βinit = 0.2 and update as, βnew = βcurrent×1.05

and continue to the VB iterations as long as βnew < 1. In order to obtain optimal

values for the initial value of temperature parameter and the rate of increment

for each iteration a variety of experiments are conducted on a development set of

about, in total, one hour of telephone speech results can be seen in Table 4.4 and

4.5.

Table 4.4: Comparative results of DA-VB system with various initial value
for temperature parameter with a fixed increment of 1.05 for each iteration on

an ≈ 1h devset.

0.001 0.01 0.2 0.8
mean DER (%) 3.58 3.55 1.34 1.36
σ (%) 11.37 11.37 1.96 1.97

Table 4.5: Comparative results of DA-VB system with various increment rate
for each iteration with a fixed initial value of 0.2 for temperature parameter on

an ≈ 1h devset.

1.01 1.05 1.1 1.2
mean DER (%) 1.35 1.34 1.35 3.26
σ (%) 1.96 1.96 1.96 7.31

Analyzing the determination of optimal parameters of the DA algorithm, it is clear

that DA algorithm improve performance according more to the initial value of the
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temperature parameter than the increment rate. As described in Section 3.6, a

relatively low value of initial temperature parameter decrease the precision which

in turn increase the variance of the speaker posterior. This control of uncertainty

on speaker space prevent VB algorithm from modelling the wrong speaker for the

recordings that one speaker dominates the conversation.

Table 4.6: Comparative results of proposed systems with two different VB
initializations, the DA variant of VB, and k-means initialized VB.

VB-COS VB-LLR DA-VB KM-VB
mean DER (%) 2.18 2.19 2.28 2.17
σ (%) 5.55 5.42 5.73 5.32

By using DA, we obtain comparable performance to the cumbersome heuristic

initialization methods. And as a last attempt we try a further initialization with

k-means clustering as described in Section 2.2.4 and then apply VB iterations

(KM-VB). This last result can be considered as the fusion of baseline and proposed

systems.

4.6.2 Error Analysis

Throughout the experiments we realized that about 50 test conversations have very

high diarization error rate as opposed to remaining test conversations. When ana-

lyzing the properties of these utterances we observe that about 70% proportion is

female-to-female conversations and 20% proportion is male-to-male conversations

and the rest are female-to-male conversations. About 60% of the conversations

are from far east countries, particularly tonal languages and the rest have gener-

ally very short speaker turns, background noise, and overlapping speaker parts in

common. Actually, asserted properties of conversations make diarization problem

very difficult to figure out such that even human ear can hardly determine which

speaker is speaking at a particular time.
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4.6.3 Run Time Performance

As for run time performance of the systems, we can divide overall diarization

process into two main parts. The first part is segmental feature extraction part

which is the part where segmental i-vectors are extracted. The first part is com-

mon to the benchmark study and our study. The second part is the segmental

clustering part which includes the rest of the operations for obtaining the segment

alignments over speakers. In Table 4.7, we present average run time performance

of the segmental clustering part of the systems as a real time factor (RTF) for

an approximately 5-minute conversation. RTF is a well-known metric in order

to evaluate run time performance of a speech processing procedure, calculated as

processing duration divided by input audio duration. Segmental feature extraction

part has RTF of 0.1407 for all systems, however segmental clustering part differs

in run time performance for benchmark and proposed systems.

Table 4.7: Comparative run time performance results of proposed systems
and benchmark system in real time factor (RTF), with two different VB ini-
tializations and the DA variant of proposed VB system, baseline system and

k-means initialized VB system.

VB-COS VB-LLR DA-VB KM-PCA KM-VB
RTF 0.0042 0.0070 0.0032 0.0053 0.0095

It is clear that the feature extraction part dominates the speaker diarization pro-

cess of a given utterance. It is approximately 30 times computationally more

complex than the clustering part. Analyzing the clustering part of the systems,

we can say that heuristic initializations detrimentally effect the computational

complexity of the clustering part and also k-means algorithm takes longer time as

opposed to the DA variant of VB which has the most effective performance of all.

And clearly, the last attempt of k-means initialized VB system has the worst run

time performance, yet it has the best diarization performance in terms of DER.
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Conclusion And Future Work

5.1 Conclusion

In this thesis, speaker based diarization of the telephone conversations which is one

of the basic problems of the area of speech processing is discussed. Throughout

the thesis, many methods were described and a VB diarization system is proposed

with a novel initialization scheme using the DA method. As a starting point, in

order to determine speaker change points a method [1] based on BIC is utilized.

Then, general story behind the JFA and TVS are presented. Moreover, motivated

by a previous study which utilizes factor analysis with a VB method [5], we develop

a system that uses PLDA modelling with a VB method for inference in the speaker

diarization problem. Also, a special preparation of training set proposed for the

LDA and PLDA model in order to obtain best representation of speakers for the

diarization of telephone conversations. At the final step, we successfully apply

DA method to avoid the suboptimal heuristic initialization in VB. We obtain

competitive performance as far as the study in [14] is concerned in our experiments.

39
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5.2 Future Work

Actually, besides striving for a better system for improving the diarization per-

formance, one can work on the detecting and excluding the overlapped speech

segments in which two or more speakers speak at the same time [30, 31]. Since in

this thesis we did not consider such analysis the overlapped segments assigned to

the dominant speaker by contributing diarization error rate as speaker error.

In spite of the fact that the proposed system is tested on a database consisting

two speaker telephone conversations, the formulation gives the system a chance to

work for the databases consisting greater than two speakers. As a future work we

assess the performance of our system on meeting and broadcast data involving,

constantly, n number of speakers where n > 2.

Also, by going one step further our future efforts will continue to apply proposed

system to meeting and broadcast data involving an unknown number of speakers.

We are planning to apply a Bayesian nonparametric approach in order to estimate

the number of speakers present in a given utterance like in the study [32] Fox et

al. suggested.



Appendix A

PLDA-based Diarization System

Variational Formulation

By assuming a factorized distribution for approximate posterior distributions as in

equation (3.10) and by using the lower bound equation (3.8), which is a functional

of the approximate posterior Q(θ), we can calculate the general variational mean-

field update formulas for the approximate posteriors Q(I) and Q(Y). We would

like to remind the reader that Φ denotes the observed variables (extracted i-vectors

for segments) and I and Y are the hidden variables to be estimated, corresponding

to the indicator variables for speakers at segments and the set of speaker vectors

respectively. First we write L(Q) in terms of Q(I) by keeping Q(Y) constant, as

follows [15]:

L(Q) =

∫
Q(θ) {logP (Φ, θ)− logQ(θ)} dθ

=

∫
Q(I)

{∫
logP (Φ, I,Y)Q(Y)dY

}
dI

−
∫
Q(I) logQ(I)dI + const

=

∫
Q(I) log P̃ (Φ, I)dI −

∫
Q(I) logQ(I)dI + const

(A.1)

where we define a new distribution by setting

41
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log P̃ (Φ, I) = EY [logP (Φ, I,Y)] + const. (A.2)

Here EY [ . ] denotes the expectation with respect to the Q(Y) so that

EY [logP (Φ, I,Y)] =

∫
logP (Φ, I,Y)Q(Y)dY . (A.3)

As described in Section 3.4 our goal is to maximize L(Q) in order to find a better

approximate posterior distribution. Note that we first suppose Q(Y) is fixed and

we would like to maximize L(Q) as calculated in equation (A.1) with respect to

Q(I). This can be achieved by recognizing that L(Q) is equal to the negative

KL divergence between Q(I) and P (Φ, I,Y) as can be seen at the last step of the

equation (A.1). Thus maximizing L(Q) is equivalent to minimizing KL divergence,

and the minimum occurs when Q(I) = P̃ (Φ, I). Hence we obtain a general

expression for the optimal solution as follows:

logQ(I) = EY [logP (Φ, I,Y)] + const (A.4)

we can calculate Q(Y) in a similar manner by fixing Q(I) and maximizing L(Q)

with respect to Q(Y),

logQ(Y) = EI [logP (Φ, I,Y)] + const (A.5)
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where constants are chosen so as to ensure that the total probability of distri-

butions sum up to one. Now, in order to calculate approximate posteriors in

particular we have to calculate joint probability as a first step.

Since we assume that hidden variables I and Y are independent from each other

we can write joint probility distribution as follows:

P (Φ, I,Y) = P (Φ|I,Y)P (Y)P (I). (A.6)

We define the marginal probabilities of hidden variables as in the generative story

in Section 3.3 as follows:

P (I) =
∏
m

∏
s

πims
s (A.7)

P (Y) =
∏
s

P (ys) (A.8)

where πs be the prior probability of the speaker and ims is the indicator vector

for a given segment as defined in Section 3.3 and also we can define conditional

probability of P (Φ|I,Y) as follows:

P (Φ|I,Y) =
∏
m

∏
s

P (φm|ys)
ims . (A.9)

Since ys and εm Gaussian with ys ∼ N (µ,Λ−1) and εm ∼ N (0,P−1) we can

conclude by generative model in Section 3.3 that P (φm|ys) is Gaussian with:
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P (φm|ys) ∼ N (ys,P−1). (A.10)

Then by using the definition of multivariate Gaussian distribution [15] and equa-

tions (A.6), (A.7), (A.8), (A.9), and (A.10) we can calculate log-joint probability,

logP (Φ, I,Y) as:

logP (Φ, I,Y) =− 1

2

∑
m

∑
s

ims

{
− log |P |+ tr(Pφmφ

T
m)− 2yTs Pφm + tr(Pysy

T
s )
}

− 1

2

∑
s

{
− log |Λ|+ tr(Λysy

T
s )− 2µTΛys + µTΛµ

}
+
∑
m

∑
s

ims log πs + const.

(A.11)

Now we can calculate the update formula for Q(I) by using the equation (A.4) as

follows, note that we ignore the terms independent of I throughout the calcula-

tions:

logQ(I) = EY [logP (Φ|I,Y)] + logP (I)

=
∑
m

∑
s

ims

{
1

2
log |P | − 1

2
tr(Pφmφ

T
m) + Eys

[yT
s ]Pφm

− 1

2
tr(PEys

[ysy
T
s ]) + log πs + const

} (A.12)

We obtain that posterior distribution has the same form as the prior distribution.

By this observation, we define unnormalized segment posterior, q̃ms as:
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log q̃ms =
1

2
log |P | − 1

2
tr(Pφmφ

T
m) + Eys

[yT
s ]Pφm

− 1

2
tr(PEys

[ysy
T
s ]) + log πs + const.

(A.13)

Normalizing so that segment posteriors sum to one, gives:

Q(I) =
∏
m

∏
s

qims
ms (A.14)

where qms is defined as equation (3.13).

We can also calculate the update formula for Q(Y) by using the equation (A.5) as

follows, note that we ignore the terms independent of Y throughout the calcula-

tions:

logQ(Y) = EI [logP (Φ|I,Y)] + logP (I)

=− 1

2

∑
m

∑
s

EI [ims]
{
− log |P |+ tr(Pφmφ

T
m)− 2yT

s Pφm + tr(Pysy
T
s )
}

− 1

2

∑
s

{
− log |P |+ tr(Λysy

T
s )− 2µTΛys + µTΛµ

}
+ const

(A.15)

Now we will write approximate log-posterior of ys for each speaker by knowing

that EI [ims] = qms as in A.16, note that we ignore the terms independent of ys

throughout the calculations:
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logQ(ys) =
∑
m

{
qms

(
yT
s Pφm −

1

2
yT
s Pys

)}
− 1

2
yT
s Λys + ysΛµ+ const.

(A.16)

We observe that the right-hand side of this expression is a quadratic function

of ys, so we can identify the distribution as Gaussian. Hence we obtain that

posterior distribution has the same form as the prior distribution. Now by using

the completing the square trick [15], we can equate the right-hand side of the

equation to the form

−1

2
yT
sCsys + ysCsµs. (A.17)

By following necessary calculations the approximate posterior mean, µs and pre-

cision, Cs of ys can be calculated as follows:

Cs = Λ +
M∑

m=1

qmsP , (A.18)

µs = C−1s (Λµ+
M∑

m=1

qmsPφm). (A.19)

After obtaining approximate posterior mean and covariance we can calculate the

posterior expectations in equation (A.12) as:

Eys
[ys] = µs, (A.20)

Eys
[ysy

T
s ] = C−1s + µsµ

T
s . (A.21)
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Deterministic Annealing Variant

of Variational Bayes Formulation

In deterministic annealing (DA) variant of VB formulation, by introducing a tem-

perature parameter, β to the free energy, approximate segment and speaker pos-

terior distribution equations (A.4) and (A.5) take the form as follows [27]:

logQ(I) = EY [β logP (Φ, I,Y)] + const, (B.1)

logQ(Y) = EI [β logP (Φ, I,Y)] + const. (B.2)

After following same steps as in Appendix A one can deduce the update formulas

for segment and speaker posteriors as follows:

log q̃ms = β(µT
s Pφm −

1

2
tr (P(C−1s + µsµ

T
s )))

+ const,

(B.3)
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Cs = β(Λ +
M∑

m=1

qmsP), (B.4)

µs = C−1s (Λµ+
M∑

m=1

qmsPφm) (B.5)

notice that in equation (B.5) β is canceled out with the one in the inverse of

speaker precision equation (B.4).
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