

AN ADAPTIVE LARGE NEIGHBORHOOD SEARCH APPROACH

FOR SOLVING THE ELECTRIC VEHICLE ROUTING PROBLEM

WITH TIME WINDOWS

by

MERVE KESKİN

Submitted to the Graduate School of

Engineering and Natural Sciences

in partial fulfillment of the requirements for the degree of

Master of Science

Sabancı University,

August, 2014

AN ADAPTIVE LARGE NEIGHBORHOOD SEARCH APPROACH

FOR SOLVING THE ELECTRIC VEHICLE ROUTING PROBLEM

WITH TIME WINDOWS

APPROVED BY:

Assoc. Prof. Dr. Bülent Çatay

(Thesis Supervisor)

Assoc. Prof. Dr. Güvenç Şahin

Asst. Prof. Dr. Tevhide Altekin

DATE OF APPROVAL: ...

ACKNOWLEDGEMENTS

Firstly, I would thank to my family for their endless trust, love and patience. They

support and guide me without considering my instability for years.

I thank to Berk Özel for understanding and encouraging me at all time. Besides, he is

the person who helped me improve my coding skills and made programming enjoyable

to me.

I also express my special thanks to Bülent Çatay for his precious guidance not only to

conduct my research and write my thesis but also to select my career path. I hope we

would study for years.

I thank to all my friends for always assisting me.

I am also grateful to my professors for teaching me a lot of new aspects.

Finally, I would like to thank to TÜBİTAK for their financial support during my

graduate education.

© Merve Keskin 2014

All Rights Reserved

i

AN ADAPTIVE LARGE NEIGHBORHOOD SEARCH APPROACH

FOR SOLVING THE ELECTRIC VEHICLE ROUTING PROBLEM

WITH TIME WINDOWS

Merve Keskin

Industrial Engineering, Master’s Thesis, 2014

Thesis Supervisor: Assoc. Prof. Dr. Bülent Çatay

Keywords: Electric vehicle, large neighborhood search, metaheuristics, recharging,

vehicle routing

Abstract

The Electric Vehicle Routing Problem with Time Windows (E-VRPTW) is an extension

to the well-known Vehicle Routing Problem with Time Windows (VRPTW). Different

from VRPTW, the fleet in E-VRPTW consists of electric vehicles (EVs) which have a

limited driving range due to their battery charge capacities. Since the battery charge

level decreases proportional to the distance traveled, an EV may need to visit recharging

stations to have its battery recharged in order to be able to continue servicing the

customers along its route. The recharging may take place at any battery level and after

the recharging the battery is assumed to be full. Recharging time is proportional to the

amount charged. The number of stations is usually small and the stations are dispersed

in distant locations, which increases the difficulty of the problem. In this thesis, we

propose an Adaptive Large Neighborhood Search (ALNS) method to solve this

problem. ALNS is based on the destroy-and-repair framework where at any iteration the

existing feasible solution is destroyed by removing some customers and recharging

stations from their routes and then repaired by inserting the removed customers to the

solution along with the stations when recharging is necessary. Several removal and

insertion algorithms are applied by selecting them dynamically and adaptively based on

their past performances. The new solution is accepted according to the Simulated

Annealing criterion. Our approach combines the removal and insertion mechanisms

from the literature with some new mechanisms designed specifically for E-VRPTW. To

test the performance of the proposed ALNS we use the instances and benchmark results

presented in by Schneider et al (2014). Our computational results show that the

proposed method is effective in finding good solutions in reasonable amount of time.

ii

ZAMAN PENCERELİ ELEKTRİKLİ ARAÇ ROTALAMASI

PROBLEMİ İÇİN BİR UYARLANABİLİR

GENİŞ KOMŞULUK ARAMA YÖNTEMİ

Merve Keskin

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2014

Tez Danışmanı: Doç. Dr. Bülent Çatay

Anahtar Kelimeler: Elektrikli araç, geniş komşuluk arama, metasezgisel, şarj,

araç rotalama

Özet

Zaman Pencereli Elektrikli Araç Rotalama Problemi (E-ZARP), çokça bilinen Zaman

Pencereli Araç Rotalama Problemi (ZARP)’nin genişletilmiş bir biçimidir. ZARP’den

farklı olarak, E-ZARP’de filo, batarya şarj kapasitesinden dolayı sınırlı sürüş menziline

sahip elektrikli araçlardan (EA) oluşmaktadır. Batarya şarj seviyesi, alınan yol ile

orantılı bir şekilde azaldığından dolayı EA, rotasındaki müşterilere hizmet vermeyi

sürdürebilmek için, bataryasını şarj etmek amacıyla rotasının herhangi bir yerinde, şarj

istasyonuna uğramak durumunda kalabilir. Şarj işlemi herhangi şarj seviyesinde

olabilmekte ve şarj işleminden sonra bataryanın tam şarj olduğu kabul edilmektedir.

Şarj süresi, şarj edilen miktar ile doğru orantılıdır. İstasyon sayısı genellikle az olup

istasyonlar uzak noktalarda konumlanmışlardır. Bu da problemin zorluk derecesini

arttırmaktadır. Bu tezde, belirtilen problemi çözmek için bir Uyarlanabilir Geniş

Komşuluk Arama Yöntemi (UGKA) önerilmiştir. UGKA yöntemi, boz-onar sistemine

dayanmaktadır. Olurlu çözüm, bazı müşteri ve istasyonların rotalarından çıkarılmaları

ile bozulmakta, çıkarılan müşterilerin, şarj işlemi de gerekli ise istasyonlar ile beraber

çözüme tekrar eklenmeleri ile onarılmaktadır. Birçok çıkarma ve ekleme algoritması

kullanılmış ve bu algoritmalar yöntem içinde, geçmiş performansları baz alınarak

dinamik ve uyarlanabilir bir şekilde seçilmiştir. Elde edilen yeni çözüm Benzetilmiş

Tavlama kriterine gore kabul edilmiştir. Bizim yaklaşımımız, literatürde var olan

çıkarma ve ekleme algoritmaları ile E-ZARP için özel olarak tasarlanmış yeni

mekanizmaları birleştirmektedir. Önerilen UGKA’nın performansını test etmek için,

Schneider et al. (2014)’de sunulan örnekler ve sonuçlar kullanılmıştır. Sonuçlarımız,

önerilen yöntemin, makul süreler içinde iyi sonuçlar bulmada etkili olduğunu

göstermiştir.

iii

TABLE OF CONTENTS

1. Introduction ... 1

2. Literature Review ... 4

3. Problem Description and Formulation .. 7

3.1. Problem Description ... 7

3.2. 0-1 Mixed Integer Linear Programming Formulation 8

4. Solution Methodology .. 11

4.1. Proposed Adaptive Large Neighborhood Search Approach 11

4.2. Customer Removal & Insertion Mechanism ... 15

4.2.1. Customer Removal Algorithms ... 15

4.2.2. Update Algorithms .. 20

4.2.3. Customer Insertion Algorithms ... 23

4.3. Station Removal & Insertion Mechanism ... 28

4.3.1. Station Removal Algorithms .. 28

4.2.2. Station Insertion Algorithms .. 30

5. Computational Experiments .. 38

5.1. Parameter Tuning ... 39

5.2. Experimental Study on Small Instances .. 40

5.3. Experimental Study on Large Instances .. 40

5.3.1. Hierarchical Objective Function Case ... 40

5.3.1.1. Numerical Results ... 40

5.3.1.2. Analysis of ALNS Algorithms 43

iv

5.3.2. Distance Minimization Case ... 46

5.3.2.1. Numerical Results ... 46

5.3.2.2. Analysis of the ALNS Algorithms 48

6. Conclusion and Future Research .. 49

Bibliography ... 51

Appendix A: Parameter tuning details .. 54

Appendix B: Optimal Solutions of Small Instances of Schneider et al. (2014) 57

Appendix C: The generic structure of the ALNS algorithm for distance minimization

case ... 58

v

LIST OF FIGURES

Figure 3.1 A sample network of 10 customers and the routes at the optimal solution 8

Figure 4.1 An illustration of a customer removal process ... 16

Figure 4.2 Proximity Based Removal .. 18

Figure 4.3 Zone Removal .. 19

Figure 4.4 Multiple Greedy Route Removal ... 20

Figure 4.5 Removing customers and their predecessor stations 22

Figure 4.6 Removing customers and their successor stations. 23

Figure 4.7 Routes in the zones ... 26

Figure 4.8 Simple illustration of a station removal process 30

Figure 4.9 Routes before and after station removal ... 31

Figure 4.10 Improvement after station removal and insertion operations 35

Figure 5.1 Average usage of customer removal algorithms 43

Figure 5.2 Average usage of update algorithms .. 44

Figure 5.3 Average usage of customer insertion algorithms 44

Figure 5.4 Average usage of station removal algorithms .. 45

Figure 5.5 Average usage of station insertion algorithms ... 45

Figure 5.6 Customer removal algorithms usage ... 48

vi

LIST OF TABLES

Table 5.1 ALNS results for hierarchical objective function 41

Table 5.2 ALNS results for distance minimization objective 47

vii

LIST OF ALGORITHMS

Algorithm 1 The Generic Structure of the Customer Removal Procedure 15

Algorithm 2 Remove Customer Only ... 21

Algorithm 3 Remove Customer with Predecessor Station ... 22

Algorithm 4 Greedy Insertion ... 25

Algorithm 5 Worst Charge Usage Station Removal ... 29

Algorithm 6 Greedy Station Insertion... 33

Algorithm 7 ALNS Algorithm for Hierarchical Objective Case 36

1

Chapter 1

Introduction

Transportation systems account for about 20-25% of global energy consumption and

CO2 emissions. Road transport is a major contributor with 75% share. 95% of the

world's transportation energy comes from fossil fuels, mainly gasoline and diesel

(www.epa.gov). Transport accounts for 63% of fuel consumption and 29% of all CO2

emissions in the EU. 45% of the goods are moved by trucks and road transport is

predicted to grow by 33% in 2030 (http://ec.europa.eu). In the US, about 28% of total

greenhouse gas (GHG) emissions are transport related. (www.epa.gov). 75% of the

domestic freight is moved by trucks and the freight volume is expected to grow by 39%

in 2040 (www.bts.gov).

Transportation will continue to be a major and still growing source of GHGs. Hence,

governments are considering new environmental measures and targets for reducing

emissions and fuel resource consumptions. The US Administration aims at cutting the

overall GHG emissions 17% below 2005 levels by 2020 and has recently established the

toughest fuel economy standards for vehicles (http://www.whitehouse.gov). The EU

targets 80–95% reduction of GHGs below 1990 levels by 2050, where a reduction of at

least 60% is expected from the transport sector. The European Commission aims at

reducing the transport-related GHG emissions to around 20% below their 2008 level by

2030. The use of conventionally fuelled cars will be reduced by 50% in urban transport

by 2030 and phased out by 2050. City logistics in major European urban centers will be

CO2-free by 2030 (White Paper on Transport, 2011).

The targets set by governments and the new regulations imposed encourage the usage of

alternative fuel vehicles (AFV) such as solar, electric, biodiesel, LNG, CNG vehicles.

http://ec.europa.eu/
http://www.bts.gov/

2

Many municipalities, government agencies, non-profit organizations and private

companies are converting their fleets to include AFVs, either to reduce their

environmental impact voluntarily or to meet new environmental regulations (Erdoğan

and Miller-Hooks, 2012).

In a world where environmental protection and energy conservation are growing

concerns, the development of electric vehicle (EV) technology has taken on an

accelerated pace to fulfill those needs. Concerning the environment, EVs can provide

emission-free urban transportation. Even taking into account the emissions from the

power plants needed to fuel the vehicles, the use of EVs can still significantly reduce

global air pollution.

EV is a vehicle which moves with electric propulsion. EVs may be classified as battery

electric vehicles (BEV), hybrid electric vehicles (HEV), and fuel-cell electric vehicles

(FCEV) (Chan, 2002). They include electric trains, airplanes, boats, motorcycles,

scooters and spacecrafts. In the thesis, we refer to EV as a road vehicle such as a truck

or van. A fleet of EVs can be used in a variety of transport needs such as public

transportation, home deliveries from grocery stores, postal deliveries and courier

services, distribution operations in different sectors.

Although EVs enable emission-free logistics services, operating an EV fleet has several

drawbacks: (i) low energy density of batteries compared to the fuel of combustion

engined vehicles; (ii) EV often have long recharge times compared to the relatively fast

process of refueling a tank; and (iii) the scarcity of public charging stations (Touati-

Moungla and Jost, 2011). Under these limitations, routing an EV fleet arises as a

challenging combinatorial optimization problem among the Vehicle Routing Problems

(VRPs).

In this thesis, we address the Electric Vehicle Routing Problem with Time Windows (E-

VRPTW). The problem was introduced by Schneider et al. (2014) as an extension to the

Green Vehicle Routing Problem (G-VRP) of Erdoğan and Miller-Hooks (2012). G-VRP

concerns “green” vehicles which run with biodiesel, liquid natural gas, or CNG and

have a limited driving range. Hence, the vehicles may need refueling along their route.

Refueling is fast; however, the stations for these fuels are scarce. E-VRPTW is a variant

of the classical VRPTW where the vehicles may need to visit stations to have their

batteries recharged in order to continue their route, as in G-VRP. Recharging operation

3

may take a significant amount of time, especially when compared to relatively short

fueling times of gasoline. Furthermore, unlike gasoline stations recharging stations are

dispersed at distant locations, which significantly affects the route planning.

To solve this challenging problem, we propose an Adaptive Large Neighborhood

Search (ALNS) approach. Our approach combines the ALNS schemes presented in

Ropke and Pisinger (2006a, 2006b), Pisinger and Ropke (2007) and Demir et al. (2012)

with new algorithms specific to E-VRPTW. We address the distance minimization

objective as well as the hierarchical objective approach where minimizing the number

of vehicles (routes) is the primary objective and minimizing total travel distance is the

secondary. Our results show that the ALNS algorithm is effective in finding good

quality solutions and improves some of the best-known solutions in the literature.

The remainder of the thesis is organized as follows: Chapter 2 reviews the related

literature. Chapter 3 describes the problem and gives the mathematical model. The

proposed ALNS is presented in Chapter 4 and the computational study is provided in

Chapter 5. Finally, Chapter 6 concludes the thesis with some remarks and directions for

future research.

4

Chapter 2

Literature Review

There are relatively few publications on optimization problems related to alternative

fuels. Some works concentrate on finding the energy shortest path from a given origin to

a destination. Artmeirer et al. (2010) studied this problem within a graph-theoretic

context and proposes extensions to general shortest path algorithms that address the

problem of energy-optimal routing. They formalize energy-efficient routing in the

presence of rechargeable batteries as a special case of the constrained shortest path

problem and present an adaption of a general shortest path algorithm that respects the

given constraints. Wang and Shen (2007) developed a model that minimizes the number

of tours and total deadhead time hierarchically. There is a constraint which limits the

travel time of every vehicle after being recharged. The recharging durations, time

windows and vehicle capacities are not considered. A multiple ant colony algorithm was

developed to solve the problem.

Wang and Cheu (2012) investigated the operations of an electric taxi fleet. Their model

minimizes total distance travelled under the recharging constraints and maximum route

time. Charge of the battery is consumed with a given rate per traveled distance and can

be replenished at the recharging stations. Recharging times are assumed to be fixed and

after charging the battery becomes full. They construct an initial solution using one of

the nearest-neighbor, sweep and earliest time window insertion heuristics and improve

it using Tabu Search (TS). They also suggested three different charging plans which

provide different driving ranges and compare the results against the full charging

scheme.

5

Omidvar and R. Tavakkoli-Moghaddam (2012) addressed an AFV routing problem with

time-windows and proposed a mathematical model that minimizes total costs associated

with the vehicles, distance travelled, travel time and emissions. The refueling times are

constant and the depot is considered as an alternative fuel station. They developed

Simulated Annealing (SA) and Genetic Algorithm (GA) approaches and compared their

performances.

Conrad and Figliozzi (2011) introduced the Recharging Vehicle Routing Problem

(RVRP), a new variant of the VRP where the EVs are allowed to recharge at the

customer locations they visit. The model has dual objectives: the primary objective

minimizes the number of routes or vehicles whereas the secondary objective minimizes

the total costs associated with the travel distance, service time and vehicle recharging

which is a penalty cost if recharging is performed. Charging is done while servicing the

customer and charging time is taken as a parameter which is a constant value. The

battery level departing from a customer depends on the choice of normal charging or

fast charging. In the fast charging case the battery is charged to a specified level such as

80% of battery capacity.

Worley et al. (2012) addressed the problem of locating charging stations and designing

EV routes simultaneously. The objective is to minimize the sum of the travel costs,

recharging costs, and costs of locating recharging stations. A solution method is not

proposed and left as future work.

Erdoğan and Miller-Hooks (2012) considered the routing of AFVs within the context G-

VRP and formulated the mathematical model. The model aims at minimizing the total

distance travelled where the length of the routes is restricted. Fuel is consumed with a

given rate per traveled distance and can be replenished at the alternative fuel stations

(AFVs). Refueling times are assumed to be fixed and after refueling the tank becomes

full. The model does not involve time windows and vehicle capacity constraints.

Erdoğan and Miller-Hooks (2012) proposed two heuristics to solve the G-VRP. The

first is a Modified Clarke and Wright Savings (MCWS) algorithm which creates routes

by establishing feasibility through the insertion of AFSs, merging feasible routes

according to savings values, and removing redundant AFSs. The second is a Density-

Based Clustering Algorithm (DBCA) based on the cluster-first and route-second

approach. DBCA forms clusters of customers such that every vertex within a given

6

radius contains at least a predefined number of neighbors. Subsequently, the MCWS

algorithm is applied on the identified clusters. To test the performance of these two

heuristics, they designed two sets of problem instances. The first consists of 40 small-

sized instances with 20 customers while the second involves 12 instances with up to 500

customers.

Schneider et al. (2014) introduced the E-VRPTW where the customers are associated

with time windows and the vehicles have capacity and driving range constraints. The

recharging duration is proportional to the battery usage when arriving at the station and

the battery is fully recharged when departing from the station. To solve this problem,

Schneider et al. developed a hybrid metaheuristic that combines the Variable

Neighborhood Search (VNS) algorithm with TS. They tested the performance of the

proposed method on newly designed benchmark instances for E-VRPTW as well as on

test instances of related problems, namely the Green VRP (G-VRP) and the Multi-

Depot VRP with Inter-Depot Routes (MDVRPI).

ALNS was introduced by Ropke and Pisinger (2006a) as an extension of the Large

Neighborhood Search (LNS) framework put forward by Shaw (1998). Ropke and

Pisinger (2006b) developed a unified ALNS heuristic for a large class of VRP with

Backhauls. Pisinger and Ropke (2007) improved this heuristic with additional

algorithms and showed that the proposed framework gives competitive results in

different VRP variants. Different implementations of ALNS include the resource-

constrained project scheduling problem (Muller, 2009), scheduling of technicians and

tasks in a large telecommunication company (Cordeau et al., 2010), lot-sizing problem

with setup times (Muller et al., 2010), and consultation timetabling problem at Danish

high schools (Kristiansen et al., 2013). Within the VRP framework, ALNS is used for

solving, the Pick-up and Delivery Problem (PDP) where requests can be transferred

between vehicles during their trip (Masson et al., 2012), Capacitated Vehicle Routing

Problem (CVRP) which minimizes the sum of arrival times at customers (Ribeiro and

Laporte, 2012) and the Pollution-Routing Problem (PRP) (Demir et al., 2012).

7

Chapter 3

Problem Description and Formulation

In this chapter, we first describe the E-VRPTW and then provide its 0-1 mixed-integer

linear programming model.

3.1. Problem Description

Similar to the classical VRPTW, E-VRPTW concerns a set of customers with known

demands, delivery time windows and service durations. It constructs routes that begin

with the depot and end at the depot. Different from VRPTW, the deliveries are

performed by a homogeneous fleet consisting of EVs with fixed loading capacities and

limited cruising ranges. While the vehicle is traveling, the battery charge level decreases

proportionally with the distance traversed. So, the vehicle may need to visit a recharging

station and have its battery recharged in order to be able to continue servicing customers

along its route. The number of stations is usually small and the stations are dispersed in

distant locations, which complicates the problem. There is one depot and it can also be

used as a recharging station. Recharging may take place at any battery level and after

the recharging the battery is assumed to be full. The recharge duration is proportional to

the recharge quantity. Each vehicle departs from the depot with a full battery and

returns to the depot at the end of its route before the due date.

Figure 3.1 illustrates a sample problem involving 10 customers and 4 stations and

shows the optimal solution. In this figure, D refers to the depot. The customer set is

𝐶 = 𝐶1,𝐶2,𝐶3,𝐶4,𝐶5,𝐶6,𝐶7,𝐶8,𝐶9,𝐶10 and the station set is 𝑆 = 𝑆1, 𝑆2, 𝑆3, 𝑆4 .

S1 is the depot.

8

Figure 3.1: A sample network of 10 customers and the routes at the optimal solution

There are three routes in the optimal solution. EV1 services C1 and C2, returns to the

depot with its initial charge. EV2 visits S2 after servicing C4 and has its battery

recharged before visiting C5 and C3. On the other hand, EV3 is recharged once in S4

and twice in S3, first after servicing C9 and next after servicing C7 on its way back to

D. As it can be seen from this example, a station (S3) can be visited multiple times by

the same or different vehicles and a station is not necessarily visited (S5).

3.2. 0-1 Mixed Integer Linear Programming Formulation

In this section, we provide the mathematical model of E-VRPTW formulated in

Schneider et al. (2014). Let 𝑉 = 1,… ,𝑁 denote the set of customers and 𝐹 denote the

set of recharging stations. Since a recharging station may be visited more than once

depending on the route structure, we must create 𝐹′which is the set of dummy vertices

generated to permit several visits to each vertex in the set 𝐹 . Vertices 0 and 𝑁 + 1

denote the depot and every route starts at 0 and ends at 𝑁 + 1. Let 𝑉 ′ be a set of vertices

with 𝑉 ′ = 𝑉 ∪ 𝐹′. In order to indicate that a set contains the respective instance of the

depot, the set is subscripted with 0 or 𝑁 + 1. Hence 𝑉0
′ = 𝑉 ′ ∪ 0 and 𝑉𝑁+1

′ = 𝑉 ′ ∪

 𝑁 + 1 . Now we can define the problem on a complete directed graph 𝐺 = (𝑉0,𝑁+1
′ ,𝐴)

with the set of arcs 𝐴 = 𝑖, 𝑗 𝑖, 𝑗 ∈ 𝑉0,𝑁+1
′ , 𝑖 ≠ 𝑗 where 𝑉0,𝑁+1

′ = 0 ∪ 𝑉𝑁+1
′ . Each

arc is associated with a distance 𝑑𝑖𝑗 and travel time 𝑡𝑖𝑗 . The battery charge is consumed

at a rate of and every traveled arc consumes × 𝑑𝑖𝑗 of the remaining battery. Each

vertex 𝑖 ∈ 𝑉 ′ has positive demand 𝑞𝑖 , service time 𝑠𝑖 and time window 𝑒𝑖 , 𝑙𝑖 . All EVs

9

have a load capacity of 𝐶 and battery capacity of 𝑄. At a recharging station, the battery

is charged at a recharging rate of 𝑔. The decision variables, 𝜏𝑖 , 𝑢𝑖 and 𝑦𝑖 keep track of

the arrival time, remaining cargo level and remaining charge level at vertex 𝑖 ∈ 𝑉0,𝑁+1
′ ,

respectively. The binary decision variable 𝑥𝑖𝑗 takes value 1 if arc 𝑖, 𝑗 is traversed and

0 otherwise.

min 𝑑𝑖𝑗 𝑥𝑖𝑗 (1)𝑖∈𝑉0
′

𝑗 ∈𝑉𝑁+1
′ ,𝑖≠𝑗

 𝑥𝑖𝑗𝑗 ∈𝑉𝑁+1
′ ,𝑖≠𝑗 = 1 ∀𝑖 ∈ 𝑉 (2)

 𝑥𝑖𝑗𝑗 ∈𝑉𝑁+1
′ ,𝑖≠𝑗 ≤ 1 ∀𝑖 ∈ 𝐹′ (3)

 𝑥𝑖𝑗𝑖∈𝑉0
′ ,𝑖≠𝑗 = 𝑥𝑗𝑖𝑖∈𝑉𝑁+1

′ ,𝑖≠𝑗 ∀𝑗 ∈ 𝑉 ′ (4)

𝜏𝑖 + 𝑥𝑖𝑗 𝑡𝑖𝑗 + 𝑠𝑖 − 𝑙0 1 − 𝑥𝑖𝑗 ≤ 𝜏𝑗 ∀𝑖 ∈ 𝑉0,∀𝑗 ∈ 𝑉𝑁+1
′ , 𝑖 ≠ 𝑗 (5)

𝜏𝑖 + 𝑥𝑖𝑗 𝑡𝑖𝑗 + 𝑔 𝑄 − 𝑦𝑖 − 𝑙0 + 𝑔𝑄 1 − 𝑥𝑖𝑗 ≤ 𝜏𝑗 ∀𝑖 ∈ 𝐹′,∀𝑗 ∈ 𝑉𝑁+1
′ , 𝑖 ≠ 𝑗 (6)

𝑒𝑗 ≤ 𝜏𝑗 ≤ 𝑙𝑗 ∀𝑗 ∈ 𝑉0,𝑁+1
′ (7)

0 ≤ 𝑢𝑗 ≤ 𝑢𝑖 − 𝑥𝑖𝑗 𝑞𝑖 + 𝐶 1 − 𝑥𝑖𝑗 ∀𝑖 ∈ 𝑉0
′ ,∀𝑗 ∈ 𝑉𝑁+1

′ , 𝑖 ≠ 𝑗 (8)

0 ≤ 𝑢0 ≤ 𝐶 (9)

0 ≤ 𝑦𝑗 ≤ 𝑦𝑖 − 𝑥𝑖𝑗 𝑑𝑖𝑗 + 𝑄 1 − 𝑥𝑖𝑗 ∀𝑖 ∈ 𝑉,∀𝑗 ∈ 𝑉𝑁+1
′ , 𝑖 ≠ 𝑗 (10)

0 ≤ 𝑦𝑗 ≤ 𝑄 − (𝑑𝑖𝑗)𝑥𝑖𝑗 ∀𝑖 ∈ 𝐹0
′ ,∀𝑗 ∈ 𝑉𝑁+1

′ , 𝑖 ≠ 𝑗 (11)

𝑥𝑖𝑗 ∈ 0,1 ∀𝑖 ∈ 𝑉0
′ ,∀𝑗 ∈ 𝑉𝑁+1

′ , 𝑖 ≠ 𝑗 12

The objective function (1) minimizes total travelled distance. Constraints (2) and (3)

handle the connectivity of customers and visits to recharging stations, respectively. The

flow conservations constraints (4) enforce that the number of outgoing arcs equals to the

number of incoming arcs at each vertex. Constraints (5) and (6) ensure the time

feasibility of arcs leaving the customers (and the depot) and the stations, respectively.

Constraints (7) enforce the time windows of the customers and the depot. In addition,

constraints (5)-(7) eliminate the sub-tours by maintaining the schedule feasibility with

respect to time considerations. Constraints (8) and (9) guarantee that demand of all

10

customers are satisfied and constraints (10) and (11) make sure that the battery level is

never negative. Finally, (12) define the binary decision variables.

If the objective function is to minimize the number of vehicles, it is formulated as

follows:

𝑚𝑖𝑛 𝑥0𝑗

𝑗 ∈𝑉𝑛+1
′

 (1′)

11

Chapter 4

Solution Methodology

In this chapter, we present the details of ALNS proposed for solving E-VRPTW.

4.1. Proposed Adaptive Large Neighborhood Search Approach

The ALNS approach proposed in this study includes the following five types of

algorithms:

 𝐴𝐶𝑅 :𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑚𝑠

 𝐴𝐶𝐼:𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑚𝑠

 𝐴𝑆𝑅 : 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑚𝑠

 𝐴𝑆𝐼 : 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑚𝑠

 𝐴𝑈 :𝑈𝑝𝑑𝑎𝑡𝑒 𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑚𝑠

It combines the strengths of the ALNS heuristics introduced by Ropke and Pisinger

(2006a, 2006b), Pisinger and Ropke (2007), and Demir et al. (2012) by

introducing new removal, insertion and station removal, insertion algorithms specific to

this problem. The main components of the heuristic can be stated as follows:

o General Flow: The algorithm begins with an initial solution and iteratively

improves it by removal and insertion mechanisms. The current feasible solution is

destroyed by removing some customers and stations from their routes and then

repaired by inserting the removed customers and necessary stations to the solution

in an intelligent way. Let 𝑆𝐶 be the current feasible solution at the beginning of a

new iteration. At each iteration a customer removal algorithm 𝑐𝑟𝑎 and an update

algorithm 𝑢𝑎 is selected. Then the customers identified by the customer removal

12

algorithm are removed from 𝑆𝐶 in the update phase. Depending on 𝑢𝑎 some stations

may also be removed from 𝑆𝐶 . At the end of the update phase, we have another

feasible solution 𝑆1. Then a customer insertion algorithm 𝑐𝑖𝑎 is selected and each

removed customer is inserted into 𝑆1 according to the insertion algorithm. Let the

feasible solution after the customer insertion be called 𝑆2. If there have been 𝑁𝑆𝑅

iterations since last station removal-insertion procedure is applied, then it should be

applied again. A station removal algorithm 𝑠𝑟𝑎 is selected and the identified stations

are removed from 𝑆2 and we obtain a solution called 𝑆3 . 𝑆3 may be infeasible in

terms of charge. If this is the case, then a station insertion algorithm 𝑠𝑖𝑎 is selected

and 𝑆3 is made feasible by inserting stations according to the selected algorithm. Let

𝑆4 denote this feasible solution. If there have been 𝑁𝑅𝑅 iterations since the last

execution of the route minimization procedure, then it should be applied again. In

this procedure, only route removal algorithms are used in the customer removal

phase. Then the customers identified by the customer removal algorithm are

removed from 𝑆4. Let us denote this partial feasible solution by 𝑆5. Since all the

customers of a route or routes are removed from the solution we do not need an

update phase which updates the features of the remaining customers and stations in

the routes that are changed after the removal process. Then a customer insertion

algorithm 𝑐𝑖𝑎 is selected and each removed customer is inserted into 𝑆5 according to

the insertion algorithm. Let the feasible solution after the customer insertion be

called 𝑆6 . If there has been 𝑁𝑆𝑅 iterations since last station removal-insertion

procedure is applied, then it should be applied again to the solution 𝑆6. This route

minimization procedure is applied in a loop which lasts for 𝜏 iterations. Then the

algorithm continues with regular customer removal and insertion algorithms. The

whole procedure is repeated until the maximum number of iterations is reached.

If the objective is to minimize the total distance, the general framework remains

same; however, we do not apply the route minimization procedure and slightly

modify some of the insertion algorithms and new solution acceptance criteria.

o Adaptive Scoring: Each algorithm has a score which measures how well the

algorithm has performed recently. High scores correspond to a successful heuristic.

We let the entire search last 𝑁 iterations. Then we divide the entire search into a

number of segments which is a part of the search consisting of a number of

13

iterations. Let 𝜋𝑎 be the score of algorithm a. 𝜋𝑎 value of all algorithms is set to

zero at the beginning of each segment. If a new best solution is found in an iteration

of a segment, then 𝜋𝑎values of corresponding algorithms are increased by 𝜎1 . If

customer removal, update and insertion were carried out in that iteration, then 𝜋𝑎

values of 𝑐𝑟𝑎 , 𝑢𝑎 , 𝑐𝑖𝑎 algorithms are increased. Since we do not know which

algorithm has yielded the improvement, we increase the score of all algorithms used

at that iteration. If station removal and insertion were carried out in that iteration,

then the same procedure is applied to 𝑠𝑟𝑎 , 𝑠𝑖𝑎 algorithms used. Similarly, if route

minimization is operated in that iteration, this procedure is applied to 𝑟𝑟𝑎 and 𝑐𝑖𝑎

algorithms used. If a better solution is found in an iteration of a segment, then

𝜋𝑎 values of corresponding algorithms are increased by 𝜎2 similar as above.

Nevertheless, if a worse solution is found in an iteration of a segment and it is

accepted by SA mechanism, then 𝜋𝑎values are increased by 𝜎3. If a worse solution

is found but not accepted, then only the number of selections of algorithms used in

that iteration are increased by 1. Their scores stay the same since they do not

contribute to an improvement. The same scoring is applied if a solution with the

same objective function is found.

o Adaptive Weight Adjustment: At the end of each segment, new weights of

algorithms are calculated using total score during the last segment. Let 𝑤𝑎 ,𝑗 and 𝜃𝑎 ,𝑗

represent the adaptive weight of the algorithm and the number of times the

algorithm has been selected during segment 𝑗 = 1,2…∆ respectively. Initially all

weights are equal to 1, i.e. 𝑤𝑎 ,1 = 1 ∀𝑎 ∈ 𝐴. At the end of segment j, scores are

updated as in (13):

𝑤𝑎 ,𝑗+1 = 𝑤𝑎 ,𝑗 1 − 𝑟 + 𝑟
𝜋𝑎

𝜃𝑎 ,𝑗

𝑟 ∈ 0,1 is the reaction factor that controls how quickly the weight adjustment

mechanism reacts to changes in the effectiveness of the algorithms. If r is 0, we do

not use update mechanism and weights stay at their initial values. If r is 1, then the

weight of previous segment has no effect on the new weight; only the score decides

the weight of the current segment. Apparently, if an algorithm is not used in the

previous segment, then its 𝜋𝑎 value will be 0 and the new weight is determined by

the first term in the formula.

14

Because there are 2 types of removal-insertion algorithms (customer and station),

their adaptive weight adjustment will also be done at different intervals. Number of

segments is different for station removal and insertion algorithms. Hence, their

weight updates are done with different intervals.

o Adaptive Selection: All algorithms are selected by a roulette-wheel mechanism

independent from each other. Each of them has a selection probability which is

dependent to the adaptive weight of the algorithm. Given k algorithms with 𝑙 =

1…𝑘, let 𝑝𝑎
𝑠 denote the selection probability of algorithm a during segment s. This

is calculated as follows:

 𝑝𝑎
𝑠 =

𝑤𝑎 ,𝑠

 𝑤 𝑙 ,𝑠
𝑘
𝑙=1

o Acceptance and Stopping Criteria: A simple acceptance criterion would be to

accept only solutions that are better than the current solution. However, this may

cause getting trapped in a local minimum. Instead, we use a criterion from

Simulated Annealing that accepts some worse solutions according to a probability.

The probability of accepting a worse solution 𝑆𝑇 is calculated as:

𝑝 = 𝑒
− 𝑓 𝑆𝑇 −𝑓 𝑆𝐶

𝑇

where 𝑆𝐶 is the current solution and 𝑇 > 0 is the temperature. Temperature starts at

𝑇𝑠𝑡𝑎𝑟𝑡 . Similar to Ropke and Pisinger (2006a), 𝑇𝑠𝑡𝑎𝑟𝑡 is dependent on the problem

and it is set in such a way that 𝑆𝑇 is accepted with probability 0.5 if it is 𝜇 (start

temperature control parameter) percent worse than 𝑆𝐶 . The temperature is decreased

every iteration using the expression 𝑇 = 𝑇 × 𝜀 where 0 < 𝜀 < 1 is a parameter

called cooling rate.

If the objective is distance minimization, we always accept the solution with lower

total distance value. If the new solution has the same or worse distance value, then

simulated annealing is applied to determine accepting the new solution or not.

15

When we solve the problem with the hierarchical objective function, we accept the

new solution if:

 It uses less number of vehicles than the previous solution or,

 It uses the same number of vehicles with the previous solution but the

total distance traveled is shorter.

We do not accept the solution if it requires more vehicles than the previous solution.

We apply the SA procedure if the new solution uses the same number of vehicles

but its total distance is longer.

4.2. Customer Removal & Insertion Mechanism

4.2.1. Customer Removal Algorithms

In the first step of the algorithm, the current solution is destroyed by removing 𝑞

customers from the solution according to different rules and adding them in a removal

list ℒ. 𝑞 is determined randomly using a uniform distribution and the removal rule 𝑐𝑟𝑎 is

selected in an adaptive manner from the set of algorithms; 𝐴𝐶𝑅 . The generic structure of

a customer removal procedure is given in Algorithm 1.

Firstly, the number of customers which will be removed is determined. It is dependent

to total number of customers and selected randomly between 𝑛𝑐 and 𝑛𝑐 . Then, the

selected rule is applied to the current feasible solution and 𝑞 customers are selected and

added to the removal list ℒ. In Figure 4.1a we see a feasible route. In Figure 4.1b C6 is

removed from the route and in Figure 4.1c, C4 is also removed from the solution.

16

Figure 4.1: An illustration of a customer removal process.

We use 10 customer removal algorithms. The first eight are adapted from Ropke and

Pisinger (2006a, 2006b), Pisinger and Ropke (2007), and Demir et al. (2012) and the

last two are inspired from Emeç et al. (2013).

1. Random Removal: This algorithm simply selects q customers randomly. This

random selection helps diversifying the search.

2. Worst Distance Removal: This algorithm calculates the cost of a customer as

𝑔𝑗 = 𝑑𝑖𝑗 + 𝑑𝑗𝑘 where 𝑑𝑖𝑗 is the distance between 𝑗 and 𝑖 ∈ 𝑁 which is the

preceding node of 𝑗 and 𝑑𝑗𝑘 is the distance between j and k which is the successing

node of 𝑗 in the corresponding route. If 𝑈 is the ordered list of customers in this

way, then the algorithm selects the customer 𝑗∗ = 𝑈 𝜆𝜅 from 𝑆𝐶 where 𝜆 ∈ 0,1

is a random number and 𝜅 ≥ 1 is a parameter called worst removal determinism

factor which introduces randomness in the selection of customers in order to avoid

choosing the same customers over and over again. This selection continues until q

customers are chosen. This algorithm aims to make as much distance saving as

possible with removal of customers with high deviation.

3. Worst Time Removal: This algorithm calculates time deviations of customers as

𝑔𝑗 = 𝜏𝑗 − 𝑒𝑗 where 𝜏𝑗 is the service start time and 𝑒𝑗 is the early time window of

customer j. Customers are ordered in non-increasing order of their time deviation. If

𝑂 is the ordered list of customers in this way, then the algorithm selects the

customer 𝑗∗ = 𝑂 𝜆𝜅 from 𝑆𝐶 . Selecting in this way continues until q customers

are chosen. The idea behind this algorithm is to prevent long waits before going to a

customer or delayed service starts by removing customers with high deviation.

17

4. Shaw Removal: The logic behind this algorithm which was introduced by Shaw

(1998) is to remove customers that are similar to each other and therefore easy to

change hence generating better solutions. If we choose customers which are

different from each other, then we may gain worse solutions because we may only

be able to insert the customers at their original positions or at some worse positions

due to not finding any other proper positions to insert. The similarity of two

customers i and j is defined with the relatedness measure

𝑅 𝑖, 𝑗 = 𝜙1𝑐𝑖𝑗 + 𝜙2 𝜏𝑖 − 𝜏𝑗 + 𝜙3𝜔𝑖𝑗 + 𝜙4 𝑞𝑖 − 𝑞𝑗

Where 𝜙1 − 𝜙4 are Shaw parameters.

The similarity of customers increases when 𝑅 𝑖, 𝑗 decreases. The algorithm firstly

selects a customer randomly and adds it to the list. Then, other customers are sorted

in non-decreasing order of their relatedness measures with the previous selected

customer. If O is the ordered list, then algorithm selects the customer 𝑗 =

𝑂 𝜆𝜂 𝑂 where 𝜆 ∈ 0,1 is a random number and 𝜂 ≥ 1 is a determinism

parameter which introduces some randomness in the selection of the customers, i.e.

low value of 𝜂 corresponds to much randomness. This procedure is repeated until 𝑛𝑐

customers are selected.

5. Proximity Based Removal: This algorithm is a special case of Shaw Removal

which selects customers that are related in terms of the distance between them. Only

difference is the parameter values which are taken as 𝜙1 = 1, 𝜙2 = 𝜙3 = 𝜙4 = 0.

Figure 4.2 illustrates the mechanism of this algorithm.

18

Figure 4.2: Proximity Based Removal. a) Feasible solution before removal,

b) Partial solution after removal

6. Time Based Removal: This algorithm is another special case of Shaw Removal and

selects customers which are similar in terms of their service beginning times. Only

difference is the parameter values which are taken as 𝜙2 = 1, 𝜙1 = 𝜙3 = 𝜙4 = 0.

7. Demand Based Removal: This algorithm is again a special case of Shaw Removal

and chooses customers which are similar in terms of their demands. Only difference

is the parameter values which are taken as 𝜙4 = 1, 𝜙1 = 𝜙2 = 𝜙3 = 0.

8. Zone Removal: This algorithm is based on removal of nodes in a predefined area in

the Cartesian coordinate system in which nodes are located (Demir et al., 2012).

Firstly, the corner points of the area are specified by the maximum and minimum x

and y coordinates of the customers, stations and the depot. Then the whole region is

horizontally split up into smaller areas which are zones, according to the number of

zones which is a parameter. At the end, each customer and station belong to a zone.

The algorithm chooses a zone randomly and selects all customers in this zone. If

that zone does not contain any customer, then another zone is selected randomly.

Let ℤ = 𝑍1,𝑍2,…𝑍𝑘 be the set of randomly selected zones and 𝑛𝑐
𝑍 = 𝑛𝑐

𝑍1 +

𝑛𝑐
𝑍2 + ⋯+ 𝑛𝑐

𝑍𝑘 be the number of customers in these zones where 𝑍𝑘 represents the

𝑘𝑡 randomly selected zone for which 𝑛𝑐
𝑍 becomes firstly greater than or equal to

𝑛𝑐 . The algorithm selects all customers in the zones 𝑍 ∈ ℤ \ 𝑍𝑘 . Furthermore, if the

number of customers in zone 𝑍𝑘 is greater than the remaining number of customers

to be removed, it means all customers from that zone cannot be selected. Then the

customers which belong to zone 𝑍𝑘 are sorted in non-decreasing order of their

distance to the center of zone 𝑍𝑘 . Then 𝑛𝑐 − 𝑛𝑐
𝑖𝑘−1

𝑖=1 many closest customers are

selected. Figure 4.3a illustrates the zones and the distribution of customers in the

zones and Figure 4.3b shows the destroyed solution which will be obtained in the

19

update step of ALNS with zone removal algorithm. Here the customers in zone 5 are

removed from the feasible solution. After the removal, the routes 2 and 3 (with

dense dashed and dashed lines, respectively) are changed.

Figure 4.3: Zone Removal. a) Feasible solution before removal, b) Partial solution

after removal

9. Multiple Random Route Removal: This operator randomly chooses 𝑟 routes and

removes all the customers in those routes. 𝑟 is a parameter and depends on the

number of routes in the current solution. It is determined randomly between 10%

and 𝑚𝑟% of total number of routes.

10. Multiple Greedy Route Removal: This operator removes some routes in a greedy

way. 𝑟 is determined in the same way with Multiple Random Route Removal. The

number of customers in each route is identified and then the route which has the

least number of customers is removed from the solution. This continues until 𝑟

routes are removed. This operator helps to distribute the customers in shorter routes

into other routes in an attempt to reduce the total distance traveled. The process is

illustrated in the Figure 4.4. Let us assume that 𝑟 is 2, then firstly the customers in

the route whose arcs are shown with dense dashed line will be removed because that

route has the least number of customers. Then the customers in the route whose arcs

are shown with dashed line will be removed due to having fewer customers than the

other route.

20

Figure 4.4: Multiple Greedy Route Removal. a) Feasible solution before

removal, b) Partial solution after removal

4.2.2. Update Algorithms

After identifying the customers to be removed from the current feasible solution, those

customers should be removed and the corresponding routes must be updated because at

some nodes, the arrival charge, time and capacity features of some nodes will change

with the removal of some customers. Those operations are done in the update

procedure. Unlike the classical VRPTW, there may be stations in some routes due to

charge constraint. Hence, in some cases, it might be useful to remove not only the

customer but also the predecessor or successor station of the customer. We introduce

three update procedures which are Remove Customer Only (RCO), Remove Customer

with Predecessor Station (RCwPS), Remove Customer with Successor Station

(RCwSS). Since route removal algorithms remove all customers and stations from the

selected routes, update phase is not necessary when those algorithms are used at the

removal step.

1. Remove Customer Only: RCO removes only the customers in the removal list

from their routes. However, if the predecessor and successor of a customer are the

same stations, then after the removal of that customer, two identical stations become

successive in the route which is an unnecessary situation. Hence, this is checked in

the update operation and if such a case occurs, one of those stations is also removed

from the solution. Additionally, if the depot is used as a station in a route, after

removal of intermediary customers, the depot which the vehicle begins or ends its

route with and the depot which is used as a station become successive likewise. In

21

this situation, the depot which is used as station is removed from the solution. After

the removal operation, the arrival time, arrival charge, capacity, departure time and

departure charge of the customers and stations in the route are recalculated

according to the new sequence. In order to decrease computational time by

eliminating unnecessary operations, only customers and stations which come after

the position of removed customer are considered since other nodes are not affected

by the removal operation and the features of the vehicle at those nodes stay the

same. In some cases, after removal of customers, the destroyed route may become

infeasible in terms of charge. We need to make this route feasible again because in

the next step the removed customers will be inserted to the routes and if the route

stays infeasible, then during the insertion of customers, we need to insert additional

stations which will increase the cost. Hence, Best Station Insertion algorithm is

applied to make it feasible. The pseudo code of this algorithm is given in

Algorithm2.

2. Remove Customer with Predecessor Station: RCwPS does not only remove the

customer in the removal list but it also removes the preceding station if any. The

idea behind this removal is that the station which precedes the removed customer

may be relevant to the customer. In other words, the station before the removed

customer may have been located there in order to make the vehicle enough charged

to go to the removed customer. Hence, with the removal of that customer, the station

may become redundant because there would be enough charge to connect other

customers. Under this assumption, if there is a station before the removed customer,

22

the algorithm removes it and then recalculates the arrival time, arrival charge,

capacity, departure time and departure charge of the customers and stations at the

nodes according to the new sequence. Like in previous procedure, only the nodes

after the removed customer or station –if there is- are considered in order to

eliminate unnecessary operations. Figure 4.5 shows a route before and after

removing the customer C4 and the station before C4 from the route.

Figure 4.5: Removing customers and their predecessor stations. a) Feasible

solution before removal, b) Partial solution after removal

Like in the Algorithm 2, if a route becomes infeasible after removal of some

customers and stations, then we will call Best Station Insertion algorithm to make it

feasible. The pseudo code of this algorithm is given in Algorithm 3.

23

3. Remove Customer with Successor Station: RCwSS removes the customer in the

removal list along with the succeeding station, if any. The idea is similar to RCwPS.

The station after the removed customer may have been located there in order to

make the vehicle enough charged to go from the removed customer. However, with

the removal of that customer, the station may become redundant because there

would be enough charge to connect other customers. After the removal process,

arrival time, arrival charge, capacity, departure time and departure charge of the

customers and stations in the route are recalculated according to the new sequence.

Also in this algorithm, only the nodes after the removed customer are considered in

order to eliminate unnecessary operations. Figure 4.6 illustrates the removal

operation of customer C3 and the station after C3.

Figure 4.6: Removing customers and their successor stations. a) Feasible

solution before removal, b) Partial solution after removal

Also in this algorithm, if a route becomes infeasible after removal of some

customers and stations, then we will apply Best Station Insertion algorithm to make

it feasible.

4.2.3. Customer Insertion Algorithms

After removing some customers from the current feasible solution, we need to repair the

solution by reinserting the customers in the removal list to the partial feasible solution.

The first four algorithms, Greedy Insertion, Zone Insertion, Regret-2 Insertion and

Regret-3 Insertion are adopted from Ropke and Pisinger (2006a), Pisinger and Ropke

(2007), and Demir et al. (2012). The last one, Time Based Insertion is newly proposed.

1. Greedy Insertion: This algorithm simply inserts customers to their best position in

the fleet and the customer which has the least cost is chosen among others and

24

inserted first. The cost criteria 𝑐𝑖 is determined for all customers in the removal list

as follows: Customer i is inserted to a position j in route k and if this insertion does

not violate time windows of any customer, the increase of the total distance of that

route is calculated as 𝑓𝑖𝑗𝑘 . If that insertion is feasible in time but infeasible in charge

then a station should also be inserted into that route. If this is the case, the Greedy

Station Insertion algorithm is used to find a station which will make the route

feasible. After inserting a station, the cost of this insertion is calculated as the

increase of the total distance after the insertion of that customer and corresponding

station. After trial of all positions in the route, the position which has the minimum

distance increase is determined and a cost 𝑓𝑖 ,𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗 𝑓𝑖𝑗𝑘 is assigned to

customer i for route k. If the customer cannot be inserted into route k, then we set

𝑓𝑖 ,𝑘 = ∞ . After analyzing all routes, the cost of opening a new route for that

customer is also considered because that customer may not be inserted to any

position in the existing routes. The cost of opening a new vehicle is just the multiple

of the distance from depot to the customer if a vehicle can service that customer

without visiting a station. If a station is needed to complete the route, then the whole

distance including the station is considered as the new route opening cost. The

position which increases the objective function the least is the one that has 𝑐𝑖 =

𝑚𝑖𝑛𝑘 𝑓𝑖 ,𝑘 for customer i. After analyzing all customers, the customer which has

the 𝑚𝑖𝑛𝑖 𝑐𝑖 is selected to be inserted to its minimum cost position. If this insertion

requires a station insertion, then the corresponding station is also inserted to the

predetermined position in the route. Moreover, if the position which has 𝑚𝑖𝑛 𝑐𝑖 is

in a new route, then a new vehicle is opened and added to the fleet. After the

insertion is performed, that customer is removed from the removed customers list

and arrival time, arrival charge, capacity, departure time and departure charge of the

vehicle in which the insertion is performed are recalculated according to the new

sequence. On the other hand, only the nodes after the removed customer are

considered in order to eliminate unnecessary operations. Then, 𝑓𝑖 ,𝑘 values of

remaining customers for the selected route are recalculated because the route is

changed due to the insertion of the previous customer. Thus, the insertion costs and

insertion places would be different. Furthermore, if a new route is opened in the

previous iteration, then insertion costs 𝑓𝑖 ,𝑘 where k is the new route are calculated

for remaining customers. After updating the costs of remaining customers, the

25

customer which has the minimum 𝑐𝑖 is selected to be inserted to its minimum cost

position again and until all removed customers are inserted, this procedure is

repeated. Pseudo code of the Greedy Insertion is given in Algorithm 4.

2. Regret-k Insertion: Greedy heuristic often postpones the placement of customers

which are expensive to insert to the last iterations because it always selects the

customer with the least cost. The regret heuristics try to circumvent this problem by

incorporating a kind of look-ahead information when selecting the customer to

insert (Ropke and Pisinger, 2007a). Let ∆𝑓𝑖
𝑘 denote the change in the objective

function value incurred by inserting customer i into its 𝑘𝑡 best position in all

routes. For example, ∆𝑓𝑖
2 corresponds to the change in the objective function value

26

incurred by inserting customer i into its second best position. If an insertion requires

a station insertion due to charge infeasibility, then the increase in the objective

function is calculated with the station insertion like in the greedy insertion. After

calculating ∆𝑓𝑖
𝑘 values for all customer in the removal list, the heuristic chooses the

customer i which has 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 ∆𝑓𝑖
𝑘 − ∆𝑓𝑖

1 . Then the customer is inserted to its

minimum cost position. After an insertion is performed, the route to which a

customer is inserted is updated by means of time, capacity and charge. Only the

nodes after the removed customer are considered in order to eliminate unnecessary

operations. Then, ∆𝑓𝑖
𝑘 − ∆𝑓𝑖

1 values of remaining customers for the changed route

are recalculated because the route is changed due to the insertion of the customer.

Thus, the insertion costs and insertion places would be different. Furthermore, if a

new route is opened, then insertion costs to the new route are calculated and

considered in the recalculation of ∆𝑓𝑖
𝑘 − ∆𝑓𝑖

1 values for the remaining customers.

Finally, the procedure is repeated for remaining customers in the removal list until

all customers are inserted to the solution.

3. Zone Insertion: This algorithm inserts customers in a time based manner. The logic

behind this algorithm is leaving enough space for future insertions by selecting the

insertions according to time windows instead of distance. Firstly, the routes which

pass through each zone are determined. For instance, the route 1 in the Figure 4.7

(with solid arcs) passes through zones 1, 2, 3 and 4 whereas the route 2 (with dense

dashed arcs) passes through zones 4, 5, ... 𝑛𝑍 . Moreover, zone 1, 2 and 3 only have

the route 1 whereas zone 4 has routes 1, 2 and 3 (with dashed arcs).

Figure 4.7: Routes in the zones

27

After determining route distribution among the zones, a customer is selected

randomly from the removal list. Then it is inserted to the positions in the routes

which pass through the zone in which that customer is located and the customer

which has the least insertion cost is chosen among others and is inserted first. For

instance, if the first customer of the red route is selected, insertions to all routes will

be considered. However, if the first customer of brown route is selected, then

insertions to red and brown routes will be considered. The cost criteria 𝑐𝑖 is

determined for all customers as follows: When customer i is inserted to a position j

in route k and if this insertion does not violate time windows of any customer, the

time delay of the inserted customer is calculated as 𝑓𝑖𝑗𝑘 = 𝑚𝑎𝑥 0, (𝜏𝑖 − 𝑒𝑖) . This

expression stands for the waiting time of customer i when it is inserted to the

position j in the route k. If that insertion is feasible in time but infeasible in charge

then a station should also be inserted to that route. If this is the case, Greedy Station

Insertion algorithm is used to find a station which will make the route feasible. After

inserting a station, cost of this insertion is calculated as mentioned above. After trial

of all positions in the route, the position which has the minimum waiting time is

determined and a cost 𝑓𝑖 ,𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗 𝑓𝑖𝑗𝑘 is assigned to customer i for route k. If

the customer cannot be inserted route k, then we set 𝑓𝑖 ,𝑘 = ∞ . Then the position

which yields least waiting time is determined as having 𝑐𝑖 = 𝑚𝑖𝑛𝑘 𝑓𝑖 ,𝑘 and

customer i is inserted to that position. If this insertion requires a station insertion,

then the corresponding station is also inserted to the predetermined position in the

route. In some cases, any position may not be found for those routes. For such

customers, Greedy Insertion algorithm is applied instead of Zone Insertion. After the

insertion is performed, that customer is removed from the removed customers list

and arrival time, arrival charge, capacity, departure time and departure charge of the

customers and stations in the route are recalculated according to the new sequence.

Again, only the nodes after the removed customer are updated in order to eliminate

unnecessary operations.

After the insertion, route k may pass through a new zone. Hence, if the updated

route passes through a new zone, new route distribution is determined for those

zones. Then another customer from the list is selected randomly and the above

procedure is repeated until all removed customers are inserted.

28

4. Time Based Insertion: This algorithm combines greedy insertion with the logic of

zone insertion. It inserts customers to their best position in the fleet and the

customer which has the least cost is chosen among others and inserted first. Here,

the cost criteria 𝑐𝑖 is the waiting time of the customer 𝑖 as in Zone Insertion. All

other steps of the algorithm are the same as those in the Greedy Insertion.

In customer insertion algorithms, assigning a customer to a new route costs the total of

distance from depot to that customer and the distance from that customer to the depot.

This is valid for distance minimization objective. If we solve the problem with

hierarchical objective function, then we need to assign a big cost to the new route in

order to motivate decreasing number of vehicles.

4.3. Station Removal & Insertion Mechanism

After customer removal and insertion, the first part of the ALNS framework is

completed. In the second part, we will destroy the current feasible solution by removing

recharging stations because stations are the crucial part of this problem. Hence,

changing their positions in the visit sequence of a route may also improve the solution.

Between a pre-determined number of iterations, a station removal and insertion

procedure is applied. The number of stations to be removed 𝑛𝑠 is determined in a

similar fashion to q. Firstly, the total number of stations in the current solution is

calculated. Then 𝑛𝑠 is selected randomly between 10% and 40% of total number of

stations. There are three types of station removal algorithms which are Worst Distance,

Worst Charge Usage and Random Station Removal.

4.3.1. Station Removal Algorithms

1. Random Station Removal: This algorithm simply selects 𝑛𝑠 stations randomly and

removes them from the current feasible solution. This random selection contributes

diversification of the search.

2. Worst Charge Usage Station Removal: The main idea of this algorithm is to

increase the efficiency of usage of the stations. We want the number of stations to

be as small as possible because going to a station causes an increase in distance.

Hence, a vehicle should go to a station at its minimum charge level. In other words,

a vehicle should go to a station if it does not have enough charge to travel any other

29

customer. From this point of view, it would be reasonable if we remove those

stations to which a vehicle goes with high charge level. Firstly, the arrival charge of

the vehicle for each station in the fleet is examined and added to a list, i.e. List1.

After analyzing all stations, List1 is ordered in non-increasing order of charge levels

which are found as indicated above. Then the algorithm removes the station which

has the first value in the List1. If the number of stations in the whole fleet is smaller

than or equal to 𝑛𝑠, then all the stations in the solution are removed. For the other

case, the above procedure is repeated until 𝑛𝑠 stations are selected and removed

from the current solution. With this algorithm, it is expected that a new station

which causes less distance increase is inserted to the route. Hence, the utilization of

stations increases while distance decreases. Pseudo code of this removal operation is

given in Algorithm 5.

3. Worst Distance Station Removal: This algorithm is similar to the worst distance

customer removal. Costs of the stations are calculated as 𝑔𝑗 = 𝑑𝑖𝑗 + 𝑑𝑗𝑘 where 𝑑𝑖𝑗

is the distance between 𝑗 and 𝑖 ∈ 𝑁 which is the preceding node of 𝑗 and 𝑑𝑗𝑘 is the

distance between j and k which is the successing node of 𝑗 in the corresponding

30

route and added to a list, i.e. List1. Then List1 is sorted in non-decreasing order and

the station which has the highest cost 𝑗∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗∈𝑁 𝑔𝑗 is removed from the

solution. This process is repeated until 𝑛𝑠 stations are removed. This algorithm aims

to decrease total distance by removing stations with high distance deviation.

4.3.2. Station Insertion Algorithms

After removing some stations, the solution may become charge infeasible. In order to

make infeasible routes feasible, station insertion algorithms are used. These algorithms

insert stations to the infeasible routes. The difference with customer insertion

algorithms is that the algorithm does not necessarily insert the stations which are

removed in the station removal phase. Because stations are always available and

assumed to be infinitely many, any station can be inserted throughout the algorithm.

There are three station insertion mechanisms.

At the beginning of all station insertion algorithms, feasibility of destroyed routes is

checked. A destroyed route may have become infeasible in terms of charge, time or

both of them. We can explain these situations through the following figures:

D C1S2 C2 C3S2 D

D C1 C2 C3S2 D

Feasible route before station removal

Time infeasible route after station removal

Figure 4.8: Simple illustration of a station removal process.

Consider the route shown in Figure 4.8. After the removal of station S2 which is before

C1, arrival times of C1 and C2 will either be the same (if arrival time of C1 is earlier

than its early arrival time) or earlier than the former case due to elimination of charging

and traveling time of the station. However, the arrival charge of the vehicle at S2 which

is after C2 will be smaller because the vehicle did not visit a station like before. That

means charging will be longer and arrival time to C3 will be later. If that time is later

than the late arrive time of C3, then the vehicle is late for C3 which means the route is

infeasible in time. In order to accomplish this situation, we need to insert a station or

stations before the node of which arrival time is later than its late arrive time.

31

Figure 4.9: Routes before and after station removal

Figure 4.9 illustrates how the charge infeasibility may occur after the station removal.

Features of C1 and C2 will be the same after the removal. However, departure charge

at C2 may not be enough to travel from C2 to C3. Or it may arrive to C3 but not have

enough charge to return Depot. In order to overcome this situation, we need to insert a

station or stations before the node of which arrival charge is smaller than 0.

At the beginning of the station insertion, we need to discard time infeasibility. Firstly,

we identify the node whose arrival time is greater than its early arrive time. Then we

insert the stations beginning from the position just before that node. We insert the

stations beginning with the nearest station for the corresponding position. If the nearest

station does not make the route feasible, then we continue trying with further stations

until we obtain feasibility. If any station for the position between C1 and C2 still does

not make the route feasible, we repeat the same operations for the preceding positions

until feasibility is satisfied.

1. Greedy Station Insertion: This station insertion algorithm inserts stations in a

greedy manner. Firstly, the algorithm identifies the node which has the first negative

arrival charge in the route. Then it inserts the nearest station to the position just

before the negative node. If the arrival charge of the node which has the first

negative arrival charge becomes positive and time window feasibility of all nodes in

the route does not violated, then this station is inserted to that position. If that station

does not make the arrival charge of that node positive or violates time windows,

then the previous positions are investigated until a proper station is found. We are

looking at the positions between the negative node and the first station before that

node. If there is no station before that node, we look at the positions between that

32

node and the depot at the beginning of the route. We restrict the positions in this

way because we can make the arrival charge of that node positive by inserting only

to the previous positions. And because vehicles are fully charged at a station, it is

useless to look at the positions before a station; the vehicle will leave that station

fully charged anyway. In addition, since we did not check the route feasibility while

analyzing the stations, that insertion may not make the whole route feasible. If there

are any nodes which have negative arrival charge, then the procedure is repeated for

the new negative charged node until the whole route become charge feasible. The

pseudo code of this algorithm is given in Algorithm 6.

2. Best Station Insertion: This algorithm tries to insert the best station in terms of

distance in order to make the arrival charge of the first negative charged node

positive. Firstly, the algorithm inserts the nearest station to the position just before

the first negative charged node. If this insertion makes the arrival charge of the

negative charged node positive and does not violate time window feasibility of all

nodes in the route, then the increase of the total distance of the route is added to a

list i.e. List1. This distance increase is kept for comparing the stations and selecting

the best one. Then the previous position is analyzed likewise and this backward

investigation continues until we reach a station.

Then List1 is sorted in non-decreasing order and the insertion which has the smallest

distance increase, first in List1, is performed. After the insertion, arrival time and

charge, departure time and charge information of the station inserted and the

customers which are after the insertion position are updated accordingly. Since we

did not check the route feasibility while analyzing the stations, that insertion may

not make the whole route feasible. Thus, if it is the case, the node which has the first

negative charge is again identified and the algorithm is reoperated in the same

manner until all nodes have positive arrival charge.

33

34

3. Greedy Station Insertion with Comparison: This algorithm is a more forward

looking version of the greedy station insertion. While greedy station insertion

performs insertion to the first position of which a feasible station is found, this

algorithm also analyzes the previous position of that position. Firstly, the nearest

station for the position just before the negative arrival charged node is inserted to

that position. If the arrival charge of the node which has the first negative arrival

charge becomes positive and time window feasibility of all nodes in the route is not

violated, the distance increase of this insertion is kept. Then the same procedure is

applied to the previous position. After that, those two stations are compared in terms

of distance increase and the better one is selected for insertion. After the insertion,

arrival time and charge, departure time and charge information of the station

inserted and the customers which are after the insertion position are updated

accordingly. Since we did not check the route feasibility while analyzing the

stations, that insertion may not make the whole route feasible. Thus, if it is the case,

the node which has the negative charge is again identified and the algorithm is

reoperated in the same manner until all nodes have positive arrival charge.

This algorithm works like above if the stations for the first and second positions are

feasible. In other words, if the nearest station for the first position is not feasible,

then we assume that the cost of inserting a station in the first position ∞. Hence, the

nearest station of the previous position will have less cost compared to ∞ and it will

be inserted. The same rule is valid when the station of the first position is feasible

and the station of the previous position is not. Then insertion cost in the second

position will be ∞ and the station of the first position will be inserted.

Consequently, in those cases, this algorithm works like greedy station insertion.

In some cases, those station insertion algorithms are not able to make the whole route

feasible. It may occur because the route might have destroyed too much and algorithms

cannot find a feasible station because instead of looking all stations in the station list,

we look the nearest stations for each position. Hence, a proper sequence may not have

been found by those stations. If this is the case, we cancel the removal process for this

route and reinsert the stations which are removed in the station removal step.

35

Figure 4.10 illustrates a possible improvement after the station removal and insertion in

a route.

C1 C2

C3

C4

C5

C6

S1

a) Feasible solution b) Improved feasible solution

D
S2

C1 C2

C3

C4

C5

C6

S1

D
S2

Figure 4.10: Improvement after station removal and insertion operations

The generic structure of the algorithm for the hierarchical objective is given in

Algorithm 7. The algorithm for distance minimization objective is very similar and is

provided in Appendix C.

36

37

38

Chapter 5

Computational Experiments

In this chapter, we perform computational experiments to validate the performance of

the proposed ALNS approach. We first tune the parameters using a subset of instances

and determine their values separately for the distance minimization and hierarchical

objectives. Then we test the performance of the proposed ALNS using the 36 small and

56 large instances generated by Schneider et al. (2014) based on the well-known

VRPTW instances of Solomon. The large set involves three main problem classes

where 100 customers and 21 recharging stations are clustered (C), randomly distributed

(R), and both clustered and randomly distributed (RC) over a 100×100 grid. Each set

has also two subsets, type 1 and type 2, which differ by the length of the time windows

and the vehicle capacity. The small set includes three subsets of 12 problems with 5, 10

and 15 customers in each subset, respectively.

The battery capacity is set to the maximum of the following two values: (i) the charge

needed to travel 60% of the average route length of the best known solution to the

corresponding VRPTW instance; and (ii) twice the amount of battery charge required to

travel the longest arc between a customer and a station. This procedure ensures that

instances with geographically disperse and remote customers stay feasible. Furthermore,

the instances guarantee that recharging stations have to be used. For the sake of

simplicity, the consumption rate is assumed 1.0 and the recharging rate g is set so that a

complete recharge requires three times the average customer service time of the

respective instance.

39

The algorithm is coded on Java programming language and all experiments are

performed on an Intel Core i7 processor with 3.40 GHz speed and 16 GB RAM, and 64-

bit Windows 7 operating system.

5.1. Parameter Tuning

We adopted a tuning methodology similar to that of Ropke and Pisinger (2006a). We

selected six large problems and performed ten runs for each parameter by considering

the initial values as described in Ropke and Pisinger (2006a, 2006b), Pisinger and

Ropke (2007), and Demir et al. (2012). For the new parameters, we determined a

selection of reasonable values inspiring from Ropke and Pisinger (2006a). We omitted

C1 and C2 problem classes since they usually converge to same solutions for different

parameter values and do not provide much information about the contribution of the

parameter value on the solution quality. Consequently, we selected the instances R107,

RC101, RC104, RC105, R205 and RC205 for parameter tuning.

At each step, we allow one parameter to take a number of predefined values while the

rest of the parameters are kept fixed. For each parameter, we run the heuristic ten times

on the tuning instances and we select the value that gives the least average deviation

from the best achieved solution. After a parameter value is determined, its value is fixed

and this procedure is repeated for the remaining parameters until all parameters have

been tuned. The details of the parameter setting, tuning sequence, deviations and final

values are given in Appendix A.

Although many parameters take different values we observe that the score of the worse

solution (𝜎3) is greater than the score of the better solution (𝜎2) which allows

diversification by rewarding non-improved solutions as in Ropke and Pisinger (2006a)

and Demir et al. (2012).

Ropke and Pisinger (2006a) set the number of iterations to 25,000 and noted that

additional runtime had minor contribution to the solution quality. Our convergence

analysis showed similar results. So, we also performed 25,000 iterations.

In addition, 𝑛𝑐 and 𝑛𝑐 are taken as 0.1 𝑁 and 0.4 𝑁 in Ropke and Pisinger (2006a).

We also use those values, did not include them in the parameter tuning.

40

5.2. Experimental Study on Small Instances

We solve all small instances to optimality by CPLEX. ALNS is run for 25 times for

each instance and it was able to find the optimal solutions. We give the optimal results

for distance minimization case in the Appendix B. Results for hierarchical objective

case given in Schneider et al. (2014) include optimal solutions and upper bounds

obtained in 7200 seconds. However, we solved all of them optimally and proved that

those upper bounds are optimal. ALNS also successfully found those results.

5.3. Experimental Study on Large Instances

5.3.1. Hierarchical Objective Function Case

5.3.1.1. Numerical Results

We compare our solutions on large instances with the results reported by Schneider et al

(2014) in Table 5.1. Schneider et al. (2014) presented the best solution found using (i)

the hybrid VNS and TS with an SA acceptance criterion (denoted as VNS/TS), (ii)

VNS/TS only accepting improving solutions, (iii) pure TS as well as the best known

solution they observed throughout all computational study including the parameter

tuning. The first column denotes the instance. The second and third columns report the

best solutions, i.e. the number of vehicles (#Veh) and total distance (TD), found by

Schneider et al. (2014) throughout all experiments they performed while the results

achieved by ALNS for the hierarchical objective denoted by ALNS (Hier) are given in

the following columns. The column “#Rech” reports the total number of recharges in

the best solution found. The column “∆TD” shows the percentage difference between

the distance in Schneider et al. (2014) and that found by ALNS (a negative value

implies improvement). The following four columns compare the best solutions found by

VNS/TS (the best method among the three algorithms) to those of ALNS after all the

parameters of the two approaches were tuned. Note that Schneider et al. (2014)

performed 10 runs while ALNS was run 25 times with fixed parameters. The last

column gives the average computational time in minutes. Finally, “#Better” and

“#Better or Same” at the bottom of the table denote the number of instances in which

ALNS showed better performance and better than or same performance, respectively,

compared to Schneider et al (2014).

41

 Table 5.1: ALNS results for hierarchical objective function

Best in All Computational Tests

Best with Fixed Parameters

Schneider et al. ALNS (Hier) ∆TD

(%)

VNS/TS ALNS (Hier) ∆TD

(%) Problem #Veh TD #Veh TD #Rech #Veh TD #Veh TD t (min)

c101 12 1053.83 12 1053.83 8 0.00 12 1053.83 12 1053.83 0.00 1.28

c102 11 1056.47 11 1056.12 9 -0.03 11 1057.16 11 1056.12 -0.10 2.28

c103 10 1041.55 11 1001.81 7 - 10 1041.55 11 1002.60 - 4.18

c104 10 979.51 10 951.57 7 -2.85 10 980.82 11 969.46 - 7.02

c105 11 1075.37 11 1075.37 9 0.00 11 1075.37 11 1080.85 0.51 1.51

c106 11 1057.87 11 1057.65 9 -0.02 11 1057.87 11 1057.65 -0.02 1.71

c107 11 1031.56 11 1031.56 9 0.00 11 1031.56 11 1031.56 0.00 1.80

c108 10 1100.32 11 1015.68 8 - 10 1100.32 11 1015.68 - 2.17

c109 10 1036.64 11 993.77 9 - 10 1051.84 11 1004.36 - 2.97

c201 4 645.16 4 645.16 4 0.00 4 645.16 4 645.16 0.00 3.12

c202 4 645.16 4 645.16 4 0.00 4 645.16 4 645.16 0.00 16.61

c203 4 644.98 4 644.98 4 0.00 4 644.98 4 644.98 0.00 38.18

c204 4 636.43 4 636.43 4 0.00 4 636.43 4 636.43 0.00 74.21

c205 4 641.13 4 641.13 3 0.00 4 641.13 4 641.13 0.00 8.42

c206 4 638.17 4 638.17 4 0.00 4 638.17 4 638.17 0.00 18.42

c207 4 638.17 4 638.17 4 0.00 4 638.17 4 638.17 0.00 21.63

c208 4 638.17 4 638.17 4 0.00 4 638.17 4 638.17 0.00 27.41

r101 18 1670.80 18 1679.06 23 0.49 18 1672.55 19 1659.47 - 2.42

r102 16 1495.31 17 1480.10 19 - 16 1535.81 17 1480.10 - 3.00

r103 13 1299.17 14 1269.20 17 - 13 1299.64 14 1269.20 - 3.45

r104 11 1088.43 12 1071.89 11 - 11 1088.43 12 1073.75 - 4.29

r105 14 1461.25 15 1383.29 19 - 14 1473.59 15 1428.10 - 2.65

r106 13 1344.66 14 1276.33 18 - 13 1344.66 14 1276.33 - 3.13

r107 12 1154.52 12 1148.43 14 -0.53 12 1154.52 12 1148.62 -0.51 3.48

r108 11 1050.04 11 1051.59 13 0.15 11 1065.89 11 1067.32 0.13 4.88

r109 12 1294.05 13 1214.72 14 - 12 1294.05 13 1246.65 - 3.87

r110 11 1126.74 12 1097.89 12 - 11 1143.52 12 1104.72 - 2.51

r111 12 1106.19 12 1109.14 15 0.27 12 1124.06 12 1111.86 -1.09 2.49

r112 11 1026.52 11 1038.74 14 1.19 11 1026.52 12 1045.42 - 3.20

r201 3 1264.82 3 1265.67 7 0.07 3 1264.82 3 1325.90 4.83 10.36

r202 3 1052.32 3 1052.32 3 0.00 3 1052.32 3 1055.48 0.30 25.83

r203 3 895.91 3 895.54 4 -0.04 3 912.86 3 895.54 -1.90 40.78

r204 2 790.57 2 780.98 3 -1.21 2 790.57 3 720.51 - 65.74

r205 3 988.67 3 987.36 3 -0.13 3 988.67 3 987.36 -0.13 17.39

r206 3 925.20 3 922.70 3 -0.27 3 925.20 3 925.37 0.02 27.79

r207 2 848.53 2 850.80 2 0.27 2 852.73 2 851.75 -0.11 38.98

r208 2 736.60 2 736.12 2 -0.07 2 736.60 2 736.12 -0.07 160.85

r209 3 872.36 3 871.22 4 -0.13 3 872.36 3 876.54 0.48 27.82

r210 3 847.06 3 843.65 3 -0.40 3 847.06 3 846.96 -0.01 43.03

r211 2 847.45 3 761.56 1 - 2 866.21 3 761.56 - 46.81

rc101 16 1731.07 16 1731.07 17 0.00 16 1731.07 16 1757.09 1.50 1.26

rc102 15 1554.61 15 1551.69 17 -0.19 15 1554.61 15 1552.58 -0.13 1.77

rc103 13 1351.15 13 1351.73 14 0.04 13 1353.55 13 1365.91 0.91 2.12

rc104 11 1238.56 11 1232.45 13 -0.49 11 1249.23 12 1232.91 - 2.90

rc105 14 1475.31 14 1473.24 16 -0.14 14 1483.38 14 1499.42 1.08 1.65

rc106 13 1437.96 14 1414.99 15 - 13 1440.19 14 1425.64 - 1.75

rc107 12 1279.08 12 1283.05 14 0.31 12 1275.89 12 1304.89 2.27 2.33

rc108 11 1209.61 11 1209.11 14 -0.04 11 1238.81 12 1231.89 - 2.80

rc201 4 1444.94 4 1446.84 4 0.13 4 1447.20 4 1453.87 0.46 5.52

rc202 3 1412.91 3 1450.34 6 2.65 3 1412.91 4 1243.55 - 12.08

rc203 3 1073.98 3 1069.27 5 -0.44 3 1078.28 3 1082.04 0.35 23.76

rc204 3 885.35 3 887.76 4 0.27 3 889.22 3 892.15 0.33 79.69

rc205 3 1321.75 3 1277.60 6 -3.34 3 1321.75 4 1158.72 - 13.12

rc206 3 1190.75 3 1221.07 4 2.55 3 1191.13 3 1223.10 2.68 12.86

rc207 3 995.52 3 1001.33 4 0.58 3 995.52 3 1003.01 0.75 32.44

rc208 3 837.82 3 841.34 5 0.42 3 838.03 3 844.23 0.74 44.24

#Better

17

10

 #Better or Same

30

20

42

The results in Table 5.1 show that ALNS performs better in type 2 problems where the

time windows are wider and vehicle capacities are larger. In these problems, the number

of routes is small and each vehicle visits many customers along its route. In addition,

the run times of type 1 problems are significantly shorter. These problems involve

narrow time windows and the feasible region is smaller; hence, converging to a solution

is faster. However, ALNS fails to reach the number of vehicles found by VNS/TS in

many instances, in particular in r1 problems. Overall, ALNS improves the BKS of 17

problems. In these problems, the number of vehicles is usually same as in Schneider et

al. (2014) and the improvement is in the distance. Better solutions are shown as bold

and underlined while the same solutions are shown as bold in the table. Schneider et al.

(2014) did not give any details of the computational effort and only reported an overall

average run time of 15.34 minutes on an Intel Core i5 processor with 2.67 GHz speed

and 4 GB RAM, operating Windows 7 Professional. The computation time of ALNS is

18 minutes on the average.

Table 5.1 also shows that on the average each vehicle visits a station for recharging. In

addition, recharging is more frequent in r- and rc- type problems compared to the c-

type problems where the average number of recharges is less than 1 (0.75 in c1 and 0.97

in c2 problems). There is no significant difference between type-1 and type-2 problems

in terms of the number of recharges; nevertheless, the recharges are slightly more

frequent in type-2 problems where the time windows are wider.

43

5.3.1.2. Analysis of the ALNS Algorithms

In this section, we investigate the utilization of the removal and insertion algorithms.

We record the number of times that the algorithms are selected in a run and take the

average of 25 runs for 56 large instances. This average value indicates the number of

times that an algorithm is selected throughout the search. Figure 5.1 shows the

percentage usage of customer removal algorithms compared to each other.

Figure 5.1: Average usage of customer removal algorithms

We see that route removal algorithms are used much more than others. There may be

two reasons of this situation. Firstly, only route removal algorithms are used during the

route minimization procedure which is performed for 4 times (4,000 iterations)

throughout the search. Secondly, route removal algorithms are more likely to contribute

decreasing the number of vehicles. Hence, they are awarded more than others meaning

that their scores will be higher and their selection probabilities will be greater. On the

other hand, demand based removal is used least among removal algorithms.

Random
8.35%

WorstTime,
7.94%

Shaw,
8.37%

WorstDistance
8.31%

ProximityBased,
8.34%

TimeBased
8.37%

DemandBased,
6.01%

MultipleRouteGreedy
16.51%

MultipleRouteRandom
18.95%

Zone,
8.86%

Customer Removal Algorithms Usage

44

Figure 5.2: Average usage of update algorithms

Figure 5.3: Average usage of customer insertion algorithms

Figure 5.2 shows that all three of the update algorithms are frequently utilized with

ROC slightly more than the other two. According to Figure 5.3, regret2 and regret3

insertions correspond to 75% of the algorithms used for reinsertion of removed

customers to the solution whereas zone and time based insertions are rarely utilized.

OnlyCustomers
40.49%

PredecessorStatio
n29.01%

SuccessorStation
30.50%

Update Algorithms Usage

Greedy
19.96%

Regret2
36.28%

Regret3
38.94%

Zone
3.53%

TimeBased
1.29%

Customer Insertion Algorithms Usage

45

Figure 5.4: Average usage of station removal algorithms

Figure 5.5: Average usage of station insertion algorithms

The results regarding the station removal usage statistics reported in Figure 5.4 show

that the worst distance station removal algorithm is most commonly used with a 58%

share whereas the random removal is not very effective (less than 5% utilization). On

the other hand, Figure 5.5 illustrates that all three station insertion algorithms are

equally used throughout the search.

Random,
4.46%

WorstDistance,
58.07%

WorstCharge,
37.47%

Station Removal Algorithms Usage

BestWithComp
33.40%

Best, 34.54%

Greedy
32.06%

Station Insertion Algorithms Usage

46

5.3.2. Distance Minimization Case

5.3.2.1. Numerical Results

Table 5.2 shows the results of proposed ALNS for each instance. The notation is similar

to that used in Table 5.1. ALNS (Dist) refers to the ALNS implementation minimizing

the distance traveled. As in the previous case, we performed 25 runs with fixed

parameters. We also provide the best results of hierarchical objective case for

comparison.

The values in Table 5.2 show that the total distances are usually shorter than the

distances observed in the hierarchical objective case while the numbers of vehicles used

are greater (see the values in bold). This is an expected result considering the objective

functions addressed in the two ALNS implementations and is an indicator of their

effectiveness. On the other hand, in the four instances (see the values underlined) we

observe that the distance minimizing ALNS found solution with longer distance and

greater number of vehicles. This is an unexpected result which, we think, shows that a

solution with a shorter travel distance is only achievable if the number of vehicles is

reduced. This phenomenon also differentiates the E-VRPTW from the VRPTW. In

addition, we see that the numbers of vehicles used are significantly more in the r2 and

rc2 problem sets as expected due to wider time windows.

47

Table 5.2: ALNS results of distance minimization objective

Best in All Computational Tests Best with Fixed Parameters

Problem ALNS (Dist) ALNS (Hier) ALNS (Dist) ALNS (Hier)

#Veh TD #Veh TD #Veh TD #Veh TD

c101 12 1053.83 12 1053.83 12 1053.83 12 1053.83

c102 12 1022.58 11 1056.12 12 1022.58 11 1056.12

c103 11 1001.81 11 1001.81 11 1002.60 11 1002.60

c104 10 951.57 10 951.57 11 969.46 11 969.46

c105 12 1033.93 11 1075.37 12 1033.93 11 1080.85

c106 12 1027.25 11 1057.65 12 1027.25 11 1057.65

c107 12 1025.63 11 1031.56 12 1025.63 11 1031.56

c108 11 1015.68 11 1015.68 11 1019.45 11 1015.68

c109 11 993.77 11 993.77 11 1000.75 11 1004.36

c201 4 645.16 4 645.16 4 645.16 4 645.16

c202 4 645.16 4 645.16 4 645.16 4 645.16

c203 4 644.98 4 644.98 4 644.98 4 644.98

c204 4 636.43 4 636.43 4 636.43 4 636.43

c205 4 641.13 4 641.13 4 641.13 4 641.13

c206 4 638.17 4 638.17 4 638.17 4 638.17

c207 4 638.17 4 638.17 4 638.17 4 638.17

c208 4 638.17 4 638.17 4 638.17 4 638.17

r101 20 1646.07 18 1679.06 20 1657.92 19 1659.47

r102 19 1466.94 16 1505.53 19 1466.94 17 1480.10

r103 14 1266.45 13 1320.65 15 1270.21 14 1269.20

r104 12 1071.89 12 1071.89 12 1073.19 12 1073.75

r105 15 1383.29 15 1383.29 17 1394.63 15 1428.10

r106 14 1276.33 14 1276.33 15 1290.81 14 1276.33

r107 12 1148.43 12 1148.43 13 1160.75 12 1148.62

r108 11 1051.59 11 1051.59 12 1053.92 11 1067.32

r109 14 1223.17 11 1233.28 14 1223.17 13 1246.65

r110 12 1097.89 12 1097.89 12 1108.43 12 1104.72

r111 12 1109.14 12 1109.14 12 1122.76 12 1111.86

r112 11 1038.74 11 1038.74 12 1045.42 12 1045.42

r201 7 1100.27 3 1265.67 7 1105.14 3 1325.90

r202 6 994.35 3 1052.32 6 994.35 3 1055.48

r203 5 864.32 3 895.54 5 864.32 3 895.54

r204 3 720.82 2 780.98 3 720.82 3 720.51

r205 6 950.45 3 987.36 4 955.17 3 987.36

r206 5 896.61 3 922.70 5 896.61 3 925.37

r207 4 800.48 2 850.80 4 800.48 2 851.75

r208 3 706.81 2 736.12 3 706.81 2 736.12

r209 4 856.13 3 871.22 4 856.13 3 876.54

r210 5 833.08 3 843.65 5 833.08 3 846.96

r211 3 761.56 3 761.56 4 765.60 3 761.56

rc101 17 1730.26 16 1731.07 17 1733.61 16 1757.09

rc102 16 1551.61 15 1551.69 16 1551.61 15 1552.58

rc103 13 1351.43 13 1351.43 14 1353.68 13 1365.91

rc104 12 1227.05 11 1232.45 12 1232.91 12 1232.91

rc105 14 1473.24 14 1473.24 15 1493.03 14 1499.42

rc106 14 1414.99 14 1414.99 14 1423.27 14 1425.64

rc107 12 1283.05 12 1283.05 12 1300.10 12 1304.89

rc108 12 1208.31 11 1209.11 12 1208.31 12 1231.89

rc201 9 1257.83 4 1446.84 9 1257.83 4 1453.87

rc202 7 1142.15 3 1450.34 7 1142.15 4 1243.55

rc203 6 956.78 3 1069.27 6 956.78 3 1082.04

rc204 5 829.72 3 887.76 5 829.72 3 892.15

rc205 6 1071.62 3 1277.60 6 1071.62 4 1158.72

rc206 6 1073.33 3 1221.07 6 1073.33 3 1223.10

rc207 6 928.52 3 1001.33 6 928.52 3 1003.01

rc208 5 799.75 3 841.34 5 799.75 3 844.23

48

5.3.2.1. Analysis of the Algorithms

Figure 5.6 shows that the Proximity based, Shaw, random, time based and worst time

removal algorithms are the most preferred customer removal algorithms while multiple

route removal algorithms are the least chosen algorithms by the search. Different from

the hierarchical objective case, usage of the multiple route removal algorithms are not

frequently utilized in the distance minimization case as the reduction of the number of

vehicles is not the primary objective. Since the other figures show similar behavior to

the ones illustrated in the previous sections, we omitted them here.

Figure 5.6: Customer Removal Algorithms Usage

Random
11.98%

WorstTime
11.64%

Shaw
11.98%

WorstDistance,
10.28%

ProximityBased
12.00%

TimeBased,
11.94%

DemandBased
7.44%

MultipleRouteGreedy
6.41%

MultipleRouteRandom
5.91%

Zone
10.42%

Customer Removal Algorithms Usage

49

Chapter 6

Conclusion and Future Research

In this thesis, we proposed an ALNS framework for solving E-VRPTW. We addressed

the problem using both the hierarchical and distance minimization objectives. Some of

the existing mechanisms are adopted from the literature whereas new mechanisms

specific to E-VRPTW were developed to handle the visits to recharging stations.

Furthermore, we proposed new mechanisms for customer removal and insertion. The

general framework of the ALNS is same for both objective cases. However, new

procedures were attempted to decrease the number of vehicles.

We used the instances generated by Schneider et al. (2014) to validate the performance

of the proposed ALNS. We first solve the small instances by CPLEX. For hierarchical

objective, we cannot obtain the optimal solutions of some instances in 7200 seconds.

For those we make the comparison with the best integer results of 7200 seconds. Then

we observe that our algorithm is also able to find the optimal solutions for distance

minimization objective. For hierarchical objective, we obtained all optimal and best

integer solutions of 7200 seconds with ALNS. For large instances, we benchmarked our

results with those of Schneider et al. (2014) and reported new best known solutions in

19 instances. Since the results for the distance minimization objective are not

comparable, we reported our results as benchmarks for future studies.

In this study, we assumed that the battery of the vehicle is fully charged at the

recharging station. This assumption might be unnecessarily restrictive in real-world. For

instance, when the vehicle visits a station near the end of its route, full charge may not

be needed for the vehicle to return to the depot. A similar situation may exist between

two recharges. Saving from recharging time may allow the vehicle to catch the time

50

window of otherwise unvisited customer, thus, may improve the solution. So, further

research on this topic may focus on considering different recharging schemes such as

quick charge, medium charge, full charge options as well as allowing the variable

recharge, i.e. recharge as you need. The latter case is more general; however, solving

the new problem may be significantly more difficult as it will involve determining the

charge amount at each station as well.

51

Bibliography

Artmeier, A., Haselmayr, J., Leucker, M. and Sachenbacher, M. (2010) The optimal

routing problem in the context of battery-powered electric vehicles, 2
nd

 International

Workshop on Constraint Reasoning and Optimization for Computational Sustainability,

Bologna, Italy.

Bramel, J., Simchi-Levi, D., (1995) A location based heuristic for general routing

problems. Operations Research, 43(4): 649-660.

Braysy, O., Gendreau, M. (2005) Vehicle routing problem with time windows, Part I:

Route construction and local search algorithms. Transportation Science, 39(1): 104-118

Chan, C. C., (2002) The state of the art of electric and hybrid vehicles, Proceedings of

the IEEE, 90(2), February 2002: 247-275.

Chen, J. F., Wu, T. H., (2006) Vehicle routing problem with simultaneous deliveries

and pickups. The Journal of the Operational Research Society, 57(5): 579-587.

Conrad, R. G. and Figliozzi, M. A. (2011). The recharging vehicle routing problem. In:

Doolen, T. and Van Aken, E. (eds.) Proceedings of the 2011 Industrial Engineering

Research Conference.

Demir, E., Bektaş, T., Laporte, G. (2012) An adaptive large neighborhood search

heuristic for the pollution-routing problem. European Journal of Operational Research

223(2): 346-359.

Emeç, U. (2013) Vehicle routing problem with vendor selection, intermediate pick-ups

and deliveries. (Master’s thesis).

Erdogan, S. and Miller-Hooks, E. (2012). A green vehicle routing problem,

Transportation Research Part E: Logistics and Transportation Review 48(1): 100–114.

52

Ioannou, M., Kritikos, M., Prastacos, G. (2001). A greedy look-ahead heuristic for the

vehicle routing problem with time windows, The Journal of the Operational Research

Society 52(5): 523-537.

Laporte, G., Gendreau, M., Potvin, J. Y., Semet, F. (2000) Classical and modern

heuristics for the vehicle routing problem. International Transactions in Operational

Research 7: 285-300.

Muller, L.F. (2009) An adaptive large neighborhood search algorithm for the resource-

constrained project scheduling problem. Proceedings of the VIII Metaheuristics

International Conference (MIC) 2009 (Hamburg, Germany).

Muller, L.F., Spoorendonk, S., Pisinger, D. (2012) A hybrid adaptive large

neighborhood search heuristic for lot-sizing with setup times. European Journal of

Operational Research 218(3): 614-623.

Omidvar, A. and Tavakkoli-Moghaddam, R. (2012). Sustainable vehicle routing:

Strategies for congestion management and refueling scheduling. In IEEE International

Energy Conference and Exhibition, Florence, 1089–1094

Pisinger, D., Ropke, S. (2007) A general heuristic for vehicle routing problems.

Computers & Operations Research 34(8): 2403-2435.

Pisinger, D., Ropke, S. (2010) Large neighborhood search. In: Gendreau M, Potvin J-Y,

(eds.) Handbook of Metaheuristics 146: 399-419.

Ribeiro, G.M., Laporte, G. (2012) An adaptive large neighborhood search heuristic for

the cumulative capacitated vehicle routing problem. Computers & Operations Research

39(3): 728-735.

Ropke, S., Pisinger, D. (2006a) An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transportation Science 40(4): 455-

472.

Ropke, S., Pisinger, D. (2006b) A unified heuristic for a large class of vehicle routing

problems with backhauls. European Journal of Operational Research 171(3): 750-775.

Schneider, M. Stenger, A., and Goeke, D. (2014). The electric vehicle routing problem

with time windows and recharging stations. Transportation Science (to appear).

53

Shaw, P. (1998) Using constraint programming and local search methods to solve

vehicle routing problems. Proceedings of the 4th International Conference on

Principles and Practice of Constraint Programming, Springer, New York: 417-431.

Solomon, M. M., (1987) Algorithms for the vehicle routing and scheduling problems

with time window constraints. Operations Research, 35(2): 254-265.

Toth, P., Vigo, D. (2002) An overview of vehicle routing problems. In: Toth P, Vigo D,

(eds.) The Vehicle Routing Problem, SIAM, Philadelphia: 1-26.

Wang, H., Shen, J. (2007) Heuristic approaches for solving transit vehicle scheduling

problem with route and fueling time constraints. Applied Mathematics and Computation

190: 1237-1249

Wang, H. and Cheu, R. L. (2012). Operations of a taxi fleet for advance reservations

using electric vehicles and charging stations, Journal of the Transportation Research

Board 2352: 1-10

Worley, O., Klabjan, D. (2012) Simultaneous vehicle routing and charging station siting

for commercial electric vehicles. In IEEE International Electric Vehicle Conference,

Greenville, SC: 1-3.

54

Appendix A: Parameter tuning details

In this part, we provide tuning sequence of the parameters which are used in the

proposed ALNS algorithms.

For the hierarchical objective (distance minimization) case, for each parameter value,

we take the average of the number of routes (total distances) of 10 runs for each

instance which are selected for parameter tuning. Then we take the average of those

instance specific values and determine the deviation from the best solution for that

parameter value. The value which has the lowest deviation is selected and fixed.

The first column in Table A.1 (Table A.2) shows the parameters tuned in the

hierarchical objective (distance minimization) case. The second column gives the initial

value of the parameter and the corresponding deviation whereas the following columns

provide the range of parameter values and the observed deviations. The sequence from

top to bottom in the tables is the tuning sequence.

55

Table A.1: Parameter tuning details for hierarchical objective case

56

Table A.2: Parameter tuning details for distance minimization case

57

Appendix B: Optimal Solutions of Small Instances of Schneider et al. (2014)

In Table B.1, results of 25 runs for small instances are given for distance minimization

case. “#Veh” and “TD” denote the number of vehicles and total distance traveled,

respectively.

Table B.1: Results for small instances

Instance #Veh TD Instance

#Veh TD Instance

#Veh TD

c101-5 3 247.15 c101-10 3 393.76 c103-15 4 371.7

c103-5 2 165.67 c104-10 2 273.93 c106-15 3 275.13

c206-5 2 236.58 c202-10 2 243.2 c202-15 3 376.79

c208-5 1 158.48 c205-10 2 228.28 c208-15 2 300.55

r104-5 2 136.69 r102-10 3 249.19 r102-15 5 413.93

r105-5 2 156.08 r103-10 3 202.85 r105-15 4 336.15

r202-5 1 128.78 r201-10 3 217.67 r202-15 2 358.00

r203-5 1 179.06 r203-10 1 218.21 r209-15 2 293.20

rc105-5 3 238.05 rc102-10 4 423.51 rc103-15 4 397.67

rc108-5 2 253.93 rc108-10 3 345.92 rc108-15 3 370.25

rc204-5 1 176.39 rc201-10 3 310.06 rc202-15 2 394.39

rc208-5 1 167.98 rc205-10 2 325.98 rc204-15 2 310.58

58

Appendix C: The generic structure of the ALNS algorithm for distance

minimization case

59

