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ABSTRACT 

 

GENOME EDITING OF THE IL-7 RECEPTOR  

GENE LOCUS USING TALENS 
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Biological Sciences and Bioengineering, MSc. Thesis, 2014 

Thesis supervisor: Batu Erman 

 

Keywords: IL-7R alpha, Glucocorticoid Receptor, 

Transcription activator-like effector, TALEN, Genome Editing 

 

 

IL-7 signaling is key to lymphocyte development and function in the mammalian 

immune system. In the first part of this study, we targeted the IL-7R alpha gene locus, 

encoding the IL-7 receptor protein, to identify its transcriptional control elements. We 

mutated two transcription factor binding sites in an evolutionarily conserved region 

containing a putative transcriptional enhancer by generating transcription activator like 

effector nucleases (TALENs) targeting these sites. We designed and constructed two 

pairs of TALENs targeting the glucocorticoid receptor (GR) and Notch binding sites in 

this region. We also targeted the exon 2 and exon 3 of IL-7R to delete a transcriptional 

control element in intron 2. We expressed these TALENs in the murine RLM11 (IL-7R 

positive) cell line and generated insertion and deletion mutations in the targeted sites. 

We used restriction fragment length polymorphism (RFLP) assays and DNA 

sequencing to detect the induced mutations and assessed their effects on IL-7R gene 

expression. We demonstrate that mutations induced in the GR transcription factor 

binding site do not reduce IL-7R gene expression, while mutations in the Notch binding 

site lower expression. In the second part of the study we directly targeted the gene 

encoding the GR transcription factor. We designed a TALEN pair targeting the 

translation start site to knockout gene expression. We introduced these TALENs into the 

human HCT116 cell line and performed RFLP assays to detect mutations. Our 

experiments demonstrate that TALENs can be used for genome editing to study gene 

transcription regulatory regions. 
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ÖZET 

 

 

IL-7 ALMAÇ GENİNDE  

TALEN PROTEİNLERİ İLE GENOM MÜHENDİSLİĞİ 

 

 

Gülperi Yalçın 

Biyoloji Bilimleri ve Biyomühendislik, Master Tezi, 2014 

Tez Danışmanı: Batu Erman 

 

 

Anahtar Kelimeler: IL-7R alfa, Glukokortikoid Almacı, 

Transcription activator-like effector, TALEN, Genom Mühendisliği 

 

 

IL-7 sinyallemesi memeli bağışıklık sisteminde lenfosit gelişimi ve fonksiyonu için 

anahtar konumundadır. Bu çalışmanın ilk bölümünde IL-7R alfa gen bölgesini 

hedefleyip gen ifadesini kontrol eden faktörleri tespit etmeyi amaçladık. Transcription 

activator-like effector nükleaz (TALEN) proteinleri ile enhancer bölgesindeki iki 

transkripsiyon faktör bağlanma bölgesinde mütasyonlar oluşturduk. Glukokortikoid 

almacı (GR) ve Notch bağlanma bölgelerini hedefleyen iki çift TALEN ile birlikte 2. ve 

3. ekzon bölgelerini hedefleyen TALEN’ler oluşturup aralarındaki intron bölgesindeki 

transkripsiyon kontrol elementlerini genomdan silmeyi planladık. Bu TALEN’leri fare 

RLM11 (IL-7R+) hücre hattında ifade edip RFLP yöntemi ve DNA sekanslaması ile 

oluşturduğumuz mütasyonları tespit ettik. Mutant hücre hatlarının IL-7R ifadelerini 

analiz ederek Notch bağlanma bölgesindeki mütasyonların gen ifadesinde azalmaya yol 

açtığını, fakat GR bağlanma bölgesindeki mütasyonların bu ifade seviyesini 

düşüremediğini gözlemledik. Çalışmanın ikinci bölümünde doğrudan GR transkripsiyon 

faktörünün gen bölgesini hedefledik. Translasyon başlangıç bölgesinde çift sarmallı 

kesik oluşturacak bir TALEN çifti tasarlayıp gen “knockout” yapmayı amaçladık. Bu 

TALEN’leri insan HCT116 hücre hattında ifade edip RFLP ile mütasyonları tespit ettik. 

Deneylerimiz TALEN teknolojisi ile genomun modifiye edilip gen ifadesini kontrol 

eden faktörlerin çalışılabileceğini göstermektedir. 
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1.  INTRODUCTION 

 

 

1.1 Transcription Activator like Effectors 

Gram-negative bacterial plant pathogens of the Xanthomonas genus mostly owe 

their pathogenicity to the Hrp-Type III secretion (T3S) system which translocates 

effector proteins into plant cells. The largest effector family consist of transcription 

activator like (TAL) effectors which functions as transcription activators of plant genes. 

With the help of a nuclear localization signal TALE proteins translocate to the nucleus 

and bind targeted promoters in the host genome to perform a variety of tasks to promote 

bacterial infection, proliferation and dissemination 1.  

 

1.1.1 Structural Features of TAL Effector Proteins 

A typical TALE structure is composed of an N-terminal translocation domain 

(TD), a central DNA binding domain (DBD), two nuclear localization signals (NLS) 

and a transcriptional activation domain (AD) in the C-terminal region. The DNA 

binding domain is made up of several tandem repeats and a final half-repeat as it is 

shown in Figure 1.1. Each repeat module generally is 34 amino acids (aa) in length; the 

last C-terminal half-repeat consists of 20 aa. The repeats are highly conserved; but the 

residues at positions 12 and 13 are polymorphic and called ‘repeat-variable di-residue’ 

(RVD). These two residues are responsible for recognizing and binding the specific 

DNA base pairs.  

 

 

1 
 



Figure 1.1 TALE structure and DNA recognition code. The transcription activator-like 
effector structure has an N-terminal translocation domain (TD), an array of repeats as a 

DBD, two NLS and an activation domain at the C-terminal. Each repeat in the DBD 
consists of the same 34 amino acid sequence with the exception of the 12th and 13th 

aminoacids, called repeat-variable di-residues (RVDs). Each RVD recognizes a 
different base of nucleotides. In the sketch, color coded four common RVDs and the 

target sequence they would bind is shown as an example 2. 
 

 
The number of repeats and their order changes the sequence TAL effectors bind, 

and this is mediated by a code. This code was deciphered by independent groups, and 

commonly found RVDs HD, NG/HG and NI has been proven to bind specifically to 

cytosine, thymine and adenine respectively. There are also other RVDs that are not 

exclusive, NN was found to recognize both adenine and guanine while NS could bind 

all four of the bases. Bioinformatic studies done with a large variety of TAL repeats has 

shown that the order of the repeats do not have a significant pattern and the binding 

specificity of one repeat does not affect the neighboring one 3,4. However, most of the 

natural target sites had a conserved thymine in position zero (the base preceding the first 

base pair recognized by the central DBD) and the presence of T0 was found to be 

necessary for full gene activation 4. Even though the region at the N-terminal of the first 

repeat did not seem to be conserved, later on a study done with the protein sequence of 

this region showed that the secondary structure is conserved to some degree and can 

specifically bind T 5. 
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Even though the predominant length of TAL repeats is 34 amino acids, in 

naturally existing TAL effectors, repeats of different sizes exist, and apart from the 

RVD there are polymorphisms observed in different residue positions. In Xanthomonas 

spp. polymorphisms at positions 4 and 32 are common (Figure 1.2), and in addition to 

these there are other amino acid substitutions which are rarely found. The 

polymorphisms in non-RVD domains do not seem to affect the base preference of the 

repeat and their function is not clear. Also, it is not known whether all types of repeats 

of various lengths and different polymorphisms that are found in nature are functional 1. 

 

  
Figure 1.2 Some of the most frequently seen polymorphisms among 2023 TAL 

repeats of 113 known TAL effectors from Xanthomonas spp. Most TAL repeats consist 
of 34aa, the repeat units are generally conserved with the exception of 12th and 13th 

(RVD) along with 4th and 32nd positions, which do not seem to have an effect on base 
preference 1. The base pairs these repeats recognize are shown with the colors indicated 

in Figure 1.1. 
 

The simplicity of the one repeat-one base system  and the independence of these 

repeats from each other in terms of specificity enables targeting any sequence in the 

genome by designing custom arrays of repeats and it enables the construction of 

artificial transcription factors as well as proteins with various functions by fusing a TAL 

protein to other domains 2. 
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1.1.2 Crystal Structure of TAL Effector Proteins 

 

The crystallization studies done on TAL effectors unraveled many features of 

TALE proteins at the atomic scale. In 2012, Mak et al. crystallized the DNA binding 

domain of the naturally occurring TAL effector protein PthXo1 from the rice pathogen 

X. oryzae as bound to its DNA target (PDB:3UGM) 5. In the same year Deng et al. 

shown the crystal structure of an artificially engineered TAL effector protein, dHax3 in 

both DNA-free and DNA-bound forms (PDB: 3V6P and 3V6T, for DNA-free and 

DNA-bound structures, respectively) 6. These two studies shed light on many questions 

about the sequence-specific recognition of DNA by the TAL repeat structure.  

 

Crystallographic studies of TALEs showed that the DNA binding domain forms 

a right-handed superhelical assembly wrapped around the B-form DNA helix in a way 

which enables specific repeat-nucleotide interactions (Figure 1.3). An array of TAL 

repeats complete a full helical turn around the DNA, the RVD loops form the inner 

most spiral with a pitch of 60 Å per turn. The consecutive bases of the target site are 

intimately engaged in the major groove and all of the repeats in the DNA-bound 

structure form nearly identical two-helix bundles, reflecting the degree of high sequence 

conservation. The consecutive helices are packed left handedly and the shorter one, 

helix a, spans positions 3 to 11 while the longer and bent one, helix b is made up of 

residues 14 to 33. The two helices are connected by a short loop which contains the 

RVD. The kink in the second helix is generated by a proline at position 27 and it 

appears to be critical for the sequential packaging and association of tandem repeats 

with the DNA double helix 5,6. 

 

In both of the studies, the two hypervariable residues in the RVD loops are 

positioned in close proximity to the sense strand in the DNA major groove and the first 

and the second residue appear to have different biochemical roles. While the sequence-

specific contacts are made exclusively by the 13th residue in each RVD, the 12th residue 

does not directly contact DNA. The first residue in the RVD makes direct hydrogen 

bonds to the backbone carbonyl oxygen of the alanine at position 8 in each repeat 

through its side chain, constraining the RVD containing loop. Ala8 is invariant and 

located at the C-terminal end of helix a in each TAL repeat, and appears to have a 

4 
 



critical role in stabilizing the conformation of the RVD loop by binding the 12th residue, 

thus facilitating the sequence recognition for the 13th residue 5,6. 

 

 
Figure 1.3 Crystal structure of the natural TAL Effector protein, PthXo1. a) Side view 
of PthXo1 in its DNA bound form. The protein backbone is indicated in pink and the 

DNA double helix is shown in red. b) Top view of the DNA bound PthXo1  c) Crystal 
structure of a single repeat unit containing an HD RVD, the H residue is shown in red, 

the D residue in green and alpha helices in purple (PDB: 3UGM 5). 
 

All RVDs appear to have different characteristics to bind their corresponding 

bases, but their specificity is determined by the 13th residue. In the HD RVDs, the 

aspartate residue makes van der Waals contacts with the edge of the cytosine base and a 

hydrogen bond to the cytosine N4 atom. The contacts between the cytosine base and the 

charged acidic side chain of Asp13 are both physically and electrostatically specific and 

close out the possibility of binding other bases. In the case of NS, which is a non-

selective RVD that binds all four of the bases, the hydroxyl group of Ser13 donates a 

hydrogen bond to the N7 atom of adenine, which also exists in guanine. Binding of 

cytosine and thymine might require a slightly different conformation of the loop. In the 

case of the NN RVD too, the second asparagine residue is positioned to make a 

hydrogen bond with the N7 nitrogen of the corresponding guanine base. Since the N7 

nitrogen is available in both purines, NN can also bind adenine.  NI RVD which binds 

an adenine base rather specifically demonstrates an exceptional contact pattern. The 

aliphatic side chain of the isoleucine residue was observed to make nonpolar van der 
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Waals contacts to C8 of the adenine purine ring which would normally cause 

desolvation of at least one polar atom in the ring. This might be the reason behind its 

reduced affinity. The contact made between NG and HG repeats and the thymine base is 

also interesting. Instead of making any specific interactions, the placement of Gly at 

position 13 allows sufficient space to contain the 5’ methyl group of thymine. The 

distance between the C of Gly13 and the 5-methyl group of thymine is small (around 

3.4 Å), allowing van der Waals interactions. Substitution of Gly with any other residue 

would likely introduce a steric clash with the 5-methyl group of thymine, explaining the 

specificity of NG and HG binding 5–7. 

 

The PthXo1 structure also revealed two degenerate repeat folds that are at the N-

terminal of the central repeats that appear to cooperate to specify the conserved thymine 

that precedes the targeted sequence by RVDs. Residues 221 to 239 and residues 256 to 

273 in the PthXo1 structure each forms a helix and an adjoining loop that resembles 

helix a and the RVD loop in the repeats of the DNA binding domain. These two N-

terminal regions approach each other near the 5’ thymine base, making a van der Waals 

contact with the methyl group of that base 5. 

 

 

1.1.3 Designing Custom TAL Effector Proteins 

 

Thanks to the simplicity of the DNA recognition code and the modularity of the 

protein, TALEs allow the design of many functional proteins that would modify gene 

sequences and gene expression targeting any site in the genome. In principle, only by 

determining the number and order of the required RVDs, any site can be targeted; and 

by fusing these repeats to different functional domains, TALE proteins can be directed 

to their specific loci to induce the desired modification (Figure 1.4). Fusion of 

regulatory domains to TALE repeats enabled construction of proteins that induce 

activation or repression on the endogenous expression of the targeted genes 8,9. For site 

directed mutagenesis nonspecific nucleases fused to the TALE DNA binding domains 

have been used 10–12. Also, TALEs fused with the catalytic domains of invertase, named 

TALE recombinases, have become another important tool for site-specific modification 

of the genome 13. 
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Figure 1.4 TALE based custom proteins can be used to target DNA. Functional domains 

such as activators, repressors, nucleases and recombinases can be fused to the central 
DNA binding domain of TAL effectors on the C-terminal end for targeted modification 

of genomes. TALE central repeats are color coded according to RVDs as shown in 
Figure 1.1 2. 

 

Assembly of the TALE repeats are generally done with the most common RVDs 

NI, NG, HD and NN which bind adenine, thymine, cytosine and guanine respectively. 

Among these RVDs, NN also recognizes adenine which might be an impediment if 

specific recognition of a target region is desired, because it is possible for the designed 

protein to bind other sites in the genome. For that reason, NK and NH, RVDs that are 

found less common in nature, but more specific in recognizing guanine could be used; 

however, comparison studies have shown that even though these two were more 

specific, the TALE proteins that include these RVDs for guanine recognition had 

significantly lower activities compared to their NN containing counterparts 14,15. 

Therefore, while constructing TALE proteins against targeted loci, both specificities 

and binding efficiencies of the individual RVDs should be taken into account and they 

should be chosen according to the requirements of the experiment.  

 

 

1.1.4 Targeted Genome Modification Using TALENs 

 

 TALE nucleases (TALENs) are generated by the fusion of the DNA binding 

domain of a TALE protein to a nuclease functional domain. Using site specific 

nucleases for genome editing has become a trend in both studies of gene function and 

gene therapy research. Double stranded breaks induced by nucleases can result in gene 

inactivation because of non-specific DNA repair, and desired genome modifications can 

be induced by homology directed repair in specific sites. Before TALENs, zinc finger 
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nucleases (ZFNs) were being used as programmable and sequence specific tools for 

targeting endogenous gene loci and were utilized for therapeutic purposes that had 

proved to be a great success 16. ZFNs were used to directly correct the disease causing 

mutations associated with X-linked severe combined immune deficiency (SCID) using 

homology directed repair 17, to genetically repair Parkinson’s disease-associated 

mutations within the SNCA gene in patient-derived human iPS cells 18; and to knockout 

the CCR5 (C-C chemokine receptor type 5) gene in primary T cells by ZFN induced 

non-homologous end joining (NHEJ) to render these cells resistant to HIV. Since CCR5 

is a co-receptor that takes part in HIV infection, this method holds great potential to 

defeat HIV and currently is being examined under clinical trials 19. 

 

TALENs are second generation genome editing tools. The first genome editing 

tool to be used was ZFN. Among DNA binding motifs, the zinc finger domain is the 

most common type found in eukaryotes. An individual zinc finger consists of 

approximately 30 amino acids in a conserved ββα configuration and several amino acids 

on the surface of the α-helix typically contact 3bp in the major groove of DNA with 

different selectivity levels. After the discovery of a highly conserved linker sequence, 

synthetic arrays that contain more than three zinc finger domains were developed and 

eventually custom zinc-finger proteins that recognize 9-18bp long DNA sequences were 

constructed 20. Generation of a zinc finger module library that contains the domains 

which recognize nearly all of the 64 possible nucleotide triplets led to the modular 

assembly of DNA binding domains that targets unique DNA sequences with relatively 

high specificity. The fusion of this domain to a DNA nuclease made this protein an 

important tool for targeted gene modification. Traditionally targeted gene inactivation, 

replacement, or gene insertion could only be achieved by homologous recombination 

which had too low efficiency in mammalian cells without the induction of double strand 

breaks; however, previously found site-specific nucleases would target multiple sites in 

complex genomes and their cytotoxicity levels were high 21. For that reason, the zinc-

finger motif was fused to the non-sequence-specific DNA cleavage domain of the 

restriction enzyme FokI, which is a type IIS restriction endonuclease that functions as a 

dimer. To induce double strand breaks, ZFNs that target two closely oriented inverted 

half sites should bind each other from their FokI domains at the spacer region in 

between the half sites. Therefore, DNA cleavage is generated only upon the 

heterodimerization of the two nucleases. Using this strategy for targeted genome 
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modification increased the specificity and reduced the off-target activity and cell 

toxicity the other site-specific nucleases induced  16.  

  

Even though ZFNs have been used for modifying the genome of diverse model 

organisms for various purposes, the presence of off-target activity and ZFN-associated 

genotoxicity is still a major issue for therapeutic studies. Crosstalk between the 

individual zinc finger motifs causes each motif to affect the specificity of an adjacent 

motif and some of the domains themselves are able to recognize multiple triplets, 

making design of sequence-specific ZFNs very challenging. The imperfect target-site 

recognition by the zinc-finger DNA binding domains requires many optimization 

experiments before application 22. 

 

 
 

Figure 1.5 TALEN structure for genome editing. TALEs fused to the FokI DNA 
cleavage domain are used as pairs since the FokI enzyme requires dimerization for its 

DNA cleavage activity. Each TALE central repeat domain is designed to target the 
corresponding sequence. Once TALEs bind the DNA, FokI assembles on the spacer to 
cleave this region. TALEN enzymes have a modified structure compared to naturally 

occurring TALE proteins. The NLS is located at the N-terminus; the FokI domain 
(brown) is fused to the C-terminus. Each unit in the central repeat is color coded to 

indicate the RVD-DNA binding code 11,23. 
 

 

Generation of custom transcription activator like effector nucleases (TALENs) 

for targeted genome modification attracted much attention due to the simplicity and 

manipulability of its one RVD - one base targeting mechanism. As in ZFNs, the FokI 

DNA cleavage domain is fused to the DNA binding domain of the TALE protein and it 

functions as a heterodimer, increasing target specificity. The FokI domain is at the C-
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terminal end of the proteins and as the DBD of the second monomer binds the reverse 

strand of the DNA leaving a short distance in between, the FokI domains of the two 

proteins assemble on the spacer region and generate a double strand break (Figure 1.5) 
11.  

 

TALEN technology was successfully used for targeted genome editing in yeasts 
24, C. elegans 25, plants as model organisms or crops 26,27, Drosophila melanogaster 28, 

zebrafish 29, frogs 30, mouse 31,32, rat 33, and livestock 34. With the experiments done so 

far, the TALEN efficiency varies usually from 10 to >50% with an average around 22% 

cells mutated 35,36. In studies that are done to compare TALENs with ZFNs, along with 

the simplicity of its design and assembly, TALENs were found to be significantly more 

mutagenic and efficient 35 while the toxicity caused by off-target cleavage of the 

genome was much less frequent 37, rendering TALENs more preferable over ZFNs.   

 

 

1.1.5 Types of Genome Modification 

 

The basis of targeted genome modification through site-specific nucleases is to 

induce double strand breaks at the targeted site and to trigger cellular repair mechanisms. 

The double stranded break is either repaired by non-homologous end joining (NHEJ) or 

by homologous recombination (HR) in case a homologous donor DNA is supplied 

(Figure 1.6). After TALEN pairs induce a double strand break on the targeted site, 

NHEJ-mediated repair leads to the introduction of small insertions or deletions 

(INDELs) on the targeted site resulting in the disruption of the region, two-thirds of 

which causing frame-shift mutations that would knock-out the gene.  TALENs were 

successfully used to knock out various genes without the introduction of exogenous 

DNA 34. Apart from random mutations, homologous recombination can result in gene 

deletions, gene insertions or gene replacements can be induced at the target site by co-

delivering TALEN pairs with a donor plasmid that has locus-specific homologous arms 

along with the desired sequence. With this method, specific genes can be integrated into 

the genome or an epitope tag can be inserted to label the protein of interest, a defective 

gene can be repaired or a large sequence can be removed from the genome. Along with 

plasmids, linear DNA sequences and single-stranded oligonucleotides can be used as 

effective donors 16. It was also shown that by the transfection of multiple TALEN pairs 
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simultaneously, deletion or inversion of large chromosomal segments were possible. In 

cases where different chromosomes were targeted, translocations could be induced 38. In 

addition, by synchronizing TALEN mediated DNA cleavage of the donor DNA with the 

chromosome, large expression cassettes (~15kb) could be inserted into the genome 

through NHEJ-mediated ligation 39.  

 

 

 
Figure 1.6 TALEN induced genome editing. Genome editing after DSB generation is 
done either by non-homologous end joining (NHEJ) or by homologous recombination 

(HR). a) In the case genome editing using one TALEN pair, NHEJ results in small 
insertions and deletions (INDELs) at the site of the DSBs. HR can be used for gene 

deletion, gene insertion (for example an epitope tag) or gene replacement (for example a 
fluorescent reporter gene such as GFP) depending on the donor template used. b) If two 
TALEN pairs create DSBs on the same chromosome simultaneously, NHEJ mediated 

repair may result in chromosomal deletion or inversion. If DSBs are generated on 
different chromosomes, translocations may occur 2,23. 
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1.1.6 Applications of Genome Editing Using TALENs 

 

Targeted genome modification by TALENs have been used in various model 

organisms. First studies typically used NHEJ-mediated mutagenesis to knock out genes 

or to nullify a phenotype 35,36. TALEN pairs along with double strand donor DNA were 

used to insert expression cassettes into targeted regions in human cells 40 or induce 

specific modifications in the targeted site of zebrafish embryos by homologous 

recombination 41.  Similarly, homology directed repair could successfully be induced 

with single strand oligonucleotide donors that have ~50bp long homology arms leading 

to precise modifications in zebrafish and mouse models 32,42. This method can be used 

for fusion of endogenous genes to sequences encoding epitope tags or fluorescent 

reporter proteins such as GFP to track protein expression, distribution and interaction 

with other proteins (Figure 1.6) 38. Simultaneous transfection of two TALEN pairs 

generated heritable large chromosomal deletions in silkworm 43 and livestock genomes 
34. All of these studies have shown that the TALENs are applicable for many means of 

gene editing. One of the most important approaches of genome modification studies is 

to develop knock-out model organisms and a widely used and successful way to do it is 

the microinjection of in vitro synthesized mRNAs encoding a custom TALEN pair into 

a zygote. With this method, zebrafish, livestock, rat and mouse disease models were 

generated   32–34,41,42,44. 

 

In this study we used TALENs to disrupt two of the transcription factor binding 

sites in the enhancer region of the IL7R gene using NHEJ-mediated INDEL 

mutagenesis. In addition, we introduced two TALEN pairs simultaneously to delete an 

entire intronic region in the same gene. We also used TALENs against the translation 

start site of the GR gene to knock out gene expression and we designed a donor plasmid 

homologous to the same site with a Venus-YFP insert to fuse it with GR.  
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1.2 Interleukin-7 signaling 

 

 

1.2.1 Interleukin-7 and Interleukin-7 Receptor 

 

Interleukin-7 (IL-7) is a cytokine which plays an essential non-redundant role in 

the development, differentiation and survival of lymphocytes.  IL-7 was first discovered 

in 1988 as a factor that promoted the growth of the murine B cell precursors in a bone 

marrow culture system 45. Then it was shown that injecting mice with IL-7 increased 

both T and B lymphocyte numbers dramatically while the studies with IL-7 and IL-7 

receptor (IL-7R) defective models demonstrated significant reductions in the number of 

lymphocytes 46. These studies and the following ones confirmed IL-7’s role in 

lymphocyte development and proliferation. In addition to these, IL-7 has a role in 

homeostasis of T lymphocytes; as well as in the early and late stages of the T cell 

development, it promotes cell survival in naïve and memory T cells of the peripheral 

immune system 47. 

 

The human IL-7 gene is 72kb long and it is located on chromosome 8, encoding 

a protein of 20kD; whereas murine IL-7 gene is 41 kb long, located on chromosome 3 

and encodes a protein of 18kD. Due to post-translational glycosylation, the active form 

of human IL-7 is 25kD in size and it is a single chain protein consisting of four α helices 

with a hydrophobic core. IL-7 is produced by non-lymphoid cells in lymphoid organs 

such as bone marrow stromal cells and epithelial cells of the thymus; and in humans it is 

also expressed in epithelial cells of the skin and intestine 48,49. In the thymus, 

lymphocytes in the earliest stages require IL-7 for survival, proliferation and 

rearrangement of the TCR (T cell receptor) genes. Mature T cells after leaving the 

thymus also require IL-7 for survival and homeostatic proliferation. While murine B 

lymphocytes also require IL-7 for development, human B cells do not 49. 

 

IL-7 signals lymphocytes by binding to its specific receptor, IL-7R.  The 

receptor is expressed on the membrane and it is composed of a heterodimer of two 

transmembrane proteins. The α chain is specific (IL-7Rα, also known as CD127) and it 

is dimerized by a common cytokine receptor γ chain (γc), which is also shared by the 
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receptors of IL-2, IL-4, IL-9 and IL-15. Each of these chains is expressed on the cell 

surface independently of each other, although the two chains could pre-associate. The 

subunits as momomers or as homodimers are not sufficient to bind IL-7; both of these 

subunits are essential for efficient signaling 49.  

 

The human IL-7Rα gene is mapped on chromosome 5 with a size of ~20kb 

while the murine IL-7Rα gene is on chromosome 15 with a size of ~22kb. Both human 

and murine genes contain eight exons and seven introns. IL-7R is composed of 439 

amino acids in its mature form with a molecular weight of 49.5 kD. IL-7Rα is mainly 

expressed in cells of the lymphoid lineage, such as T lymphocytes, progenitor B-

lymphocytes, NK cells, dentritic precursors, and bone marrow-derived macrophages. 

Although their role in non-lymphoid cells is not well known, IL-7Rα is also expressed 

in normal human intestinal epithelial cells, endothelial cells, colorectal cancer cells, 

breast cancer cells and some other malignant cell lines 49,50. 

 

 

1.2.2 IL-7 Receptor Signaling Pathways 

 

The components of the IL-7 receptor, IL-7Rα chain and common γ chain 

dimerize upon IL-7 extracellular cytokine binding. Dimerization activates kinases 

bound to γc and IL-7Rα on the intracellular domains, JAK3 and JAK1. The 

phosphorylation of IL-7Rα intracellular domain by JAK1 triggers recruitment of PI3K 

and STAT proteins. JAK protein phosphorylates STAT proteins, which results in their 

dimerization and translocation to cell nucleus in order to bind transcription activation 

sites of genes such as Bcl-2, SOCS-1, cyclinD1 and c-myc to promote cell 

differentiation and survival. Also, recruitment of PI3K to the IL-7Rα intracellular 

domain activates this kinase and results in phosphorylation of the Akt, which promotes 

cell survival by causing the degradation of pro-apoptotic proteins such as Bad and Bax 

(Figure 1.7) 51. 
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Figure 1.7 The IL-7 receptor signaling pathway 51. 

 

 

1.2.3 Importance of the IL-7R Signaling for Lymphopoiesis 

 

B cell development mainly takes place in the bone marrow and it can be 

subdivided into various stages depending on the expression of different intracellular and 

cell surface markers, the rearrangement status of the heavy and light immunoglobulin 

chains, and their cell cycle status 52. The most important stages of B cell development in 

the bone marrow and their IL-7R expression pattern are shown in Figure 1.8.  

 

The block of transition from the pro-B cell to pre-B cell stages in IL-7R 

deficient mice indicates that IL-7 signaling has an essential role in B lymphocyte 

development 53. Later on it was reported that IL-7Rα regulates access to 

immunoglobulin heavy chain coding gene segments during somatic recombination, 

which is a critical step for the diversity of antibodies 54. In the pre-B cell stage, IL-7R 

signaling is stopped before the rearrangement of the light chain gene locus by the 

upregulation of the IRF-4 transcription factor 55. The transition from the pro-B stages to 
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later ones is regulated by transcription factors such as EBF, which is upregulated by IL-

7R signaling 56. 

 
Figure 1.8 IL-7R expression by lymphocytes 57. B lymphocytes of the bone marrow and 

T lymphocytes of the thymus express IL-7R on the cell surface at different stages of 
development. The expression of IL-7R is dynamically regulated during development. 

 
 

IL-7 signaling is essential for T lymphocytes throughout their life cycle; it has 

roles in T cell maturation, differentiation and mature T cell survival in peripheral 

lymphoid tissues. IL-7R expression is strictly regulated over the course of T cell 

development. It is expressed on double-negative thymocytes, its expression is turned off 

in the double positive stage and it is re-expressed in single-positive stage (Figure 1.8). 

IL-7 signaling first occurs at the double negative (DN) stage which can be subdivided 

into four groups from DN1 to DN4, determined by the surface expression of CD44 and 

CD25. IL-7Rα expression starts at the DN2 stage and the signaling occurs at the DN3 

stage, where TCRβ selection of the DN thymocytes occurs. IL-7R signaling is critical 

for the survival and proliferation of these selected cells. IL-7 deficient cells are 

normally found to be developmentally arrested at the DN3 stage and overexpression of 

anti-apoptotic molecules such as Bcl-2 or deletion of pro-apoptotic factors such as Bim 

and Bax can compensate for the lack of IL-7 signaling which shows that in this stage 

IL-7 is responsible of providing survival signals (reviewed in 58). IL-7R expression is 

downregulated in the DN4 stage and terminated in immature CD4+CD8+ double 

16 
 



positive (DP) thymocytes. This termination is also important since IL-7 signaling 

inhibits expression of the transcription factors TCF-1 and LEF-1, which are essential for 

DP cell differentiation 59. DP thymocytes are metabolically inactive and pre-

programmed for cell death. As a result of positive selection, post DP intermediate cells 

(CD4+CD8low) start to express IL-7R again, and CD8 coreceptor transcription is 

downregulated. Persisting TCR signaling differentiates intermediate cells into CD4 SP 

cells, whereas intermediate cells that no longer receive TCR signals differentiate into 

CD8 SP cells due to IL-7 signaling 60.  

 
IL-7 is also a central regulator of peripheral T-cell homeostasis and survival for 

both naive and memory CD4 and CD8 T cells. IL-7R is only down-regulated upon T 

cell activation and memory cell differentiation when other γ chain cytokines such as IL-

2 and IL-15 take over survival signaling. After differentiation is complete IL-7R is re-

expressed in memory T cells 61.  

 
 

1.2.4 Regulation of the IL-7R alpha Gene 

 

During the development of both B and T lymphocytes IL-7Rα is expressed 

differentially and its expression is strictly regulated throughout their life cycle. The 

expression in different stages is controlled by various transcription factors. 

Bioinformatically identified transcription factor binding sites on the IL-7Rα gene locus 

are shown in Figure 1.9.   

 

 
Figure 1.9 IL-7R gene locus with various transcription factor binding sites. 
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In the gene locus there are three evolutionarily conserved regions (ECR); one in 

between the second and the third exons, one in the promoter region, and one in the 

upstream region. In the IL-7Rα promoter there is a GGAA motif region which is a 

binding site for the PU.1 transcription factor. PU.1 is an ETS family transcription factor 

and was demonstrated to take role in IL-7R expression of developing B cells 62. In T 

cells this site is bound by GGAA binding protein (GABP), which is also an ETS family 

transcription factor. In the absence of PU.1 GABP can promote IL-7R expression in 

commited B cells too, but not in early B cell progenitors 63. Another transcription factor 

that binds the IL-7R promoter region is Runx1. The deficiency of Runx1 in CD4 T cells 

was shown to result in reduced IL-7R expression levels and a shorter survival period. 

This indicated that Runx1 transcription factor was necessary for the positive selection 

and maturation of CD4 SP cells by IL-7 mediated survival signaling 64.  

 

About 3 kb upstream of the IL-7Rα transcription initiation site there is another 

evolutionarily conserved region which contains the binding sites for transcription 

factors Gata, NFkB, glucocorticoid receptor (GR) and Foxo. GATA-3 is a zinc-finger 

transcription factor that is essential for the generation of the earliest T cell progenitors 

and it was shown that GATA-3 expression was required for the generation of IL-7R 

positive thymus derived NK cells while bone marrow derived NK cells could develop in 

its absence 65. Foxo1 is a transcription factor that has various roles in cell regulation. In 

T cells it was shown that Foxo1 deficiency resulted in severe defect in IL-7Rα 

expression. Other factors that have roles in the regulation of naïve T cell homeostasis 

and life-span were also shown to be affected by Foxo1 66. NFkB, which is another 

transcription factor that has a binding site in the IL-7R enhancer region, is an important 

regulator for the activation, proliferation and survival of thymocytes. It was recently 

shown that IL-7 stimulation on NFkB deficient T cells did not enhance their viability 

and those cells appeared to have reduced IL-7R levels both for the protein and mRNA; 

demonstrating the role of NFkB in the regulation of IL-7R expression 67.  

 

1.2.4.1 Notch Transcription Factor 

 

The Notch pathway regulates cell proliferation, cell fate, differentiation, and cell 

death in all metazoans. Notch is a cell-surface receptor that sends short-range signals by 

interacting with transmembrane ligands such as Delta (Delta-like in humans) and 
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Serrate (Jagged in humans) on neighboring cells. Upon ligand binding, the ligand-

receptor complex unfolds a juxtamembrane negative control region which allows access 

of ADAM10 protease to site 2 (S2) to cleave the Notch extracellular domain. Then γ-

secretase induces the second cleavage at site 3 (S3) to release the Notch intracellular 

domain (NICD) from the membrane. NICD then travels to nucleus to bind 

transcriptional complexes containing a DNA binding protein CBF1/RBPjK/Su(H)/Lag1 

(CSL) and its co-activator Mastermind-like (MAML) to regulate target gene expression 

(Figure 1.10) 68.   

 

 
Figure 1.10 Notch signaling 68. The Notch intracellular domain (NICD) is released from 

the membrane upon ligand binding induced cleavage of the Notch receptor on the 
plasma membrane. Cleaved NICD translocates into the nucleus, binds a preexisting 

CSL (RBP-Jk) transcription factor complex, helps recruit of the adaptor protein 
Mastermind-like (MAML) and promotes transcriptional activation. 

 

The studies done with mice have shown that the loss of Notch1 could cause a 

reduction in thymus size and deficiency in thymocyte development. In addition, while 

Notch1-deficient bone marrow can contribute to the development of all hematopoietic 

cells normally, T cell development was blocked at an early stage, before the expression 
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of T cell lineage markers 69. Also in another study Notch1 was found to bind CSL 

binding motif (RBP-Jk) IL-7R in vivo and in early thymic precursors Notch1 ectopic 

expression consistently resulted in the generation of DP thymocytes with up-regulated 

IL-7R while defective Notch1 signaling impaired their IL-7R expression, resulting in a 

developmental arrest that could be rescued by ectopic expression of IL-7R 70. These 

findings suggest that Notch1 has an essential and selective role in T cell maturation. 

 
 
 

1.2.4.2 Glucocorticoid Receptor (GR) 

 

Activated lymphocytes or macrophages secrete inflammatory cytokines such as 

TNF-α and IL-1β to activate components of the inflammatory system. As a result of an 

endocrine feedback loop, the release of these cytokines subsequently stimulate the cells 

of the adrenal cortex and they secrete glucocorticoids (GC) to induce anti-inflammatory 

effects on immune cells through interruption of proinflammatory cytokine-mediated 

signaling pathways or by apoptosis 71. Along with these, GCs are shown to have various 

effects on the growth, differentiation and function of lymphocytes 72.  

 

Due to their lipophilic nature, GCs can readily diffuse through the plasma 

membrane and bind to the glucocorticoid receptor (GR) in the cytoplasm. GR in its 

inactive form is in a complex consisting of heat shock proteins (such as hsp90) and a 

low weight molecular protein p23. GR is activated upon binding its ligand, and it 

dissociates from its chaperone proteins. Once released, its nuclear localization signals 

become exposed and it translocates to the nucleus to stimulate or inhibit the activation 

of its target genes (Figure 1.12). Apart from binding the DNA directly, GR can also 

induce transcription regulation by binding other factors 71. GR was shown to bind the 

IL-7Rα upstream enhancer region and activate the IL-7R expression in mouse early 

stage thymocytes 73. Also, treatment with dexamethasone, which is a synthetic 

glucocorticoid, was shown to increase IL-7Rα expression at both the mRNA and protein 

levels in mouse and human cells 74,75.   
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Figure 1.12 Glucocorticoid receptor signaling. Inactive GR is bound by the chaperones 

Hsp90 and p23 in the cytoplasm until encountering a ligand. Glucocorticoids are 
hydrophobic and freely diffuse into the cell, and upon binding GR it causes its 
activation. Active GR dissociates from its chaperones, is phosphorylated and 
translocates into the nucleus to bind DNA. GR can activate genes that have 

glucocorticoid response elements (GRE) in their promoter and inhibit genes that have 
negative GRE (nGRE) 71.  
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2.  AIM OF THE STUDY 

 

 

Transcription activator-like effector (TALE) proteins from the plant pathogen 

Xanthomonas consist of highly conserved repeat units in their central DNA binding 

domain (DBD). Binding specificity of the each repeat is determined by the polymorphic 

amino acid residues at positions 12 and 13, named as repeat variable di-residues 

(RVDs). The simplicity of one RVD - one base code and the modular structure of the 

DBD enable the assembly of proteins that can target any site in the genome with high 

specificity and various functions. TALE nucleases (TALENs), which are generated by 

the fusion of the non-sequence specific DNA cleavage domain of FokI to the TALE 

DNA binding domain, have become an important tool for targeted gene modification. 

TALENs induce double strand breaks (DSBs) at the targeted site and cellular repair of 

the disruption occurs either by non-homologous end joining (NHEJ) or by homologous 

recombination (HR) which results in site directed mutagenesis. We used TALENs to 

modify the genome of mouse cells. 

  

In the first part of the study, we targeted the IL-7Rα gene and aimed to mutate 

two of the transcription factor binding sites in the upstream enhancer region to observe 

the effects of these mutations on IL-7R expression. We also targeted the exon 2 and 

exon 3 of IL-7R to delete a transcriptional control element in intron 2. We designed and 

constructed TALEN pairs targeting the binding sites of glucocorticoid receptor (GR) 

and Notch transcription factors, along with the exon targeting ones and expressed them 

in the murine RLM11 cells. We used the restriction fragment length polymorphism 

(RFLP) assay and DNA sequencing to detect mutations and we monitored IL-7R 

expression by flow cytometry. In the second part of the study we targeted the gene 

encoding the GR transcription factor and designed a TALEN pair against the translation 

start site to knockout the gene. Also, we designed a donor plasmid homologous to the 

same site with a Venus-YFP gene insertion to fuse endogenous GR with Venus through 

homologous recombination. With the knockout experiment, we aimed to observe the 

effects of GR gene deficiency and with homologous recombination we aimed to 

generate a model that would enable tracking GR activities within the cell.   
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3.  MATERIALS AND METHODS 

 

 

3.1 Materials 

 

3.1.1 Chemicals 

All the chemicals used in this project are listed in the Appendix A. 

 

3.1.2 Equipment 

All the equipment used in this project are listed in the Appendix B. 

  

3.1.3 Buffers and Solutions 

Standard buffers and solutions used in this project were prepared according to 

the protocols in Sambrook et al., 2001. 

 

Calcium Chloride (CaCl2) solution: 60 mM CaCl2, 15% glycerol and 10mM 

PIPES at pH 7.00 were mixed and the solution was filter-sterilized and stored at 4°C for 

competent cell preparation. 

 

5X Tris-Borate-EDTA (TBE) Buffer: 54 g Tris base, 27.5 g Boric acid and 

20mL of 0.5 M EDTA at pH 8.00 were dissolved in 1L of dH2O and stored at RT. 

 

1% (w/v) Agarose gel: 1 g of agarose was dissolved in 100 mL of 0.5X TBE 

buffer by heating in a microwave oven. 0.001 % (v/v) of ethidium bromide was added 

to the solution for visualization of nucleic acids. 
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Phosphate-buffered saline (PBS): 1 tablet of PBS was dissolved in 200 mL of 

dH2O. The solution was filter-sterilized for use in mammalian cell culture and stored at 

4°C. 

Polyethylenimine (PEI) (1μg/μL): 50 mg PEI was dissolved in 50 mL dH2O 

that has been heated to ~80°C and cooled to room temperature. After neutralizing to pH 

7.00, the solution was filter-sterilized, aliquoted and stored at -20°C. 

 

FACS buffer: 0.5 g Bovine serum albumin (BSA) and 0.5 g sodium azide were 

dissolved in 500 mL 1X HBSS and stored at 4°C. 

 

3.1.4 Growth Media 

 

3.1.4.1 Bacterial growth media 

 

Liquid media: 20 g Luria-Broth (LB) was dissolved in 1 L of dH2O and 

autoclaved at 121°C for 15 min. For selection, ampicillin with a final concentration of 

100 μg/mL and spectinomycin with a final concentration of 50μg/mL were added to 

liquid medium after autoclave. 

 

Solid media: 35 g LB agar was dissolved in 1 L of dH2O and autoclaved at 

121°C for 15 min. For selection, antibiotics with previously indicated concentrations 

were added to autoclaved medium after cooling down to 50°C. Autoclaved and 

antibiotic added medium was poured onto sterile Petri dishes. Solid agar plates were 

stored at 4°C. 

 

3.1.4.2 Mammalian cell culture growth media 

 

The adherent cell line HCT116 was grown in DMEM cell culture medium that 

was supplemented with 10% heat inactivated fetal bovine serum (FBS), 2 mM L-

glutamine, 100 unit/mL penicillin and 100 unit/mL streptomycin. 

 

The suspension cell line RLM11 was grown in RPMI 1640 cell culture medium 

that was supplemented with 10% heat inactivated fetal bovine serum (FBS), 2 mM L-
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Glutamine, 100 unit/mL, 100 unit/mL streptomycin, non-essential amino acids, vitamin 

and 50 μM 2-mercaptoethanol. 

Both adherent and suspension cell lines were frozen in fetal bovine serum (FBS) 

containing DMSO at a final concentration of 10% (v/v). Freezing medium was stored at 

4°C. 

 

3.1.5 Cell Types 

 

E. coli DH-5α competent cells were used for bacterial transformation of 

plasmids. RLM11, a radiation-induced BALB/c murine CD4 single positive thymoma T 

cell line, was used for transfection and analysis of IL7R expression level with FACS 76. 

HCT116, a human colonic carcinoma cell line that is generally used for tumorigenicity 

studies, was the only adherent cell line in this study and was used for GR TALEN 

project.  

 

3.1.6 Commercial Molecular Biology Kits 

 

• QIAGEN Plasmid Midi Kit, 12145, QIAGEN, Germany 

• QIAquick Gel Extraction Kit, 28704, QIAGEN, Germany 

• GenElute Mammalian Genomic DNA Miniprep Kit, G1N350, SIGMA, 

Germany 

• GenElute PCR Clean-Up Kit, NA1020, SIGMA, Germany 

• CloneJETTM
 PCR Cloning Kit, K1232, Thermo Fisher Scientific. 

• InsTAclone PCR Cloning Kit, K1214, Thermo Fisher Scientific 

• Gibson Assembly® Master Mix, New England BioLabs, UK 

 

3.1.7 Enzymes 

 

All enzymes and their corresponding buffers used in this project are from NEB 

and Fermentas. 
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3.1.8 Vectors and Primers 

 

Vectors and primers used in this project are listed in Table 3.1 and Table 3.2. 

 

Vector Name Purpose Bacterial Resistance 

pcDNA-GFP Transfection efficiency control Ampicillin 

pUC19 Transformation efficiency control Ampicillin 

pHD1-pHD10 

pNG1-pNG10 

pNH1-pNH10 

pNN1-pNN10 

pNI1-pNI10 

 

Module plasmids for 

TALE / TALEN construction 

 

 

Tetracycline 

 

pLR-HD 

pLR-NG 

pLR-NH 

pLR-NN 

pLR-NI 

 

Last repeat plasmids for 

TALE / TALEN construction 

 

 

Tetracycline 

 

pFUS_A 

pFUS_B1- pFUSB10 

Array plasmids for 

TALE / TALEN construction 

Spectinomycin 

pC-Goldy TALEN Backbone plasmid for 

TALEN construction 

Ampicillin 

 

pJET1.2/blunt Cloning of PCR products Ampicillin 

pTZ57R/T Cloning of PCR products Ampicillin 

hAAVS-SA2A-1 Donor plasmid for Puromycin 

resistance gene 

Ampicillin 

mVenus-C1 Donor plasmid for Venus-YFP gene Kanamycin 

Table 3.1 List of vectors used in this project 
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Primer Name Sequence Purpose 

 

Notch for 

BamHI 

 

ATAGGATCCATTGAAACCATAACCACCCTC 

 

Notch TALEN 

Target site 

amplification 

 

Notch rev  

Bgl2 

 
GCGAGATCTCCCTTCTCTCTAATTCTGTT 

 

Notch TALEN 

target site 

amplification 

 

Kpl11 For 
 

CCAAGGAATAAACCCAAGGA 

 

IL7R upstream 

region 

amplification 

 

Kpl12 Rev 
 

AGAAGCACGCTTGTATGTGC 

 

IL7R upstream 

region 

amplification 

 

hGRTalenFwd 

 

AGCTTATGATGTTTTCCCCCCGTTTTTG 

hGR TALEN 

target site 

amplification 

 

hGRTalenRev 

 

AGTCCATCACATCTCCCCTCTCCT 

hGR TALEN 

target site 

amplification 

 

nfkb TALEN 

for 

 

CTTCCCGCACTCTATTTAGAT 

IL7R-GR 

TALEN target 

site amplification 

 

nfkb TALEN 

rev 

 

CTTTCATGGGCTATCACTCC 

IL7R-GR 

TALEN target 

site amplification 

 

Int2R1 Fwd 

 

CCTTCATGTCTGCCACTCAA 

IL7R Exon 2 

TALEN target 

site amplification 

 

Int2R1 Rev 

 

CATATTTGAAATTCCAGATTAGCTGT 

IL7R Exon 2 

TALEN target 

site amplification 

 

Int2R2 Fwd 

 

 

TGGGGCTCTTTTACGAGTG 

IL7R Exon 3 

TALEN target 

site amplification 
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Int2R2 Rev 

 

 

GCAAAAATAGTTGCTCATGTTTATT 

IL7R Exon 3 

TALEN target 

site amplification 

 

pCR8_F1 
 

TTGATGCCTGGCAGTTCCCT 

Colony PCR of 

Golden GATE 

reaction #1 

 

pCR8_R1 
 

CGAACCGAACAGGCTTATGT 

Colony PCR of 

Golden GATE 

reaction #1 

 

TAL_F1 
 

TTGGCGTCGGCAAACAGTGG 

 

Colony PCR of 

Golden GATE 

reaction #2 

 

TAL_R2 
 

GGCGACGAGGTGGTCGTTGG 

 

Colony PCR of 

Golden GATE 

reaction #2 

 

SeqTALEN_5-1 

 

CATCGCGCAATGCACTGAC 

Sequencing of 

final 

TALEN construct 

pJET1.2 

forward 

sequencing 

primer 

 

CGACTCACTATAGGGAGAGCGCC 

Colony PCR and 

sequencing of 

cloned PCR 

products 

 

pJET1.2 reverse 

sequencing 

primer 

 

TTCTTGTAGCTAAAAGGTACCGTC 

 

Colony PCR and 

sequencing of 

cloned PCR 

products 

 

hGRLeftArm 

Fwd 

 

TGGCTAGCGTCTGTCGGAAGATAAGCAGA

TCAGCATTGTTTA 

hGR homologous 

recombination 

donor construct 

 

hGRLeftArm 

Rev 

 

CAGTGAATATCAACTACAAAACAAAAAAC

AAAAACGGG 

hGR homologous 

recombination 

donor construct 

 

hgrPuro 

Fwd 

 

TTGTAGTTGATATTCACTGATGACCGAGTA

CAAGCCCACGGTGC 

hGR homologous 

recombination 

donor construct 
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hgrPuro_P2A 

Rev 

 

ACGTCTCCTGCTTGCTTTAACAGAGAGAAG

TTCGTGGCGGCACCGGGCTTGCGGGTC 

hGR homologous 

recombination 

donor construct 

 

hgrP2A_Venus 

fwd 

TAAAGCAAGCAGGAGACGTGGAAGAAAAC

CCCGGTCCCATGGTGAGCAAGGGCGAGGA

GCT 

hGR homologous 

recombination 

donor construct 

 

hgrVenus 

Rev 

 

AGCTCGAGATCTGAGTCCGGACTTGTACAG 

hGR homologous 

recombination 

donor construct 

 

hGRRightArm 

Fwd 

 

CTCAGATCTCGAGCTATGGACTCCAAAGAA

TCATTAACTCCTGGTAGAG 

hGR homologous 

recombination 

donor construct 

 

hGRRightArm 

Rev 

 

GTGGATCCGACTCCAAATCCTGCAAAATGT

CAAAGGTGC 

hGR homologous 

recombination 

donor construct 

Table 3.2 List of primers used in this project 

 

3.1.9 DNA Molecular Weight Marker 

DNA molecular weight marker used in this project is given in Appendix C. 

 

3.1.10 DNA sequencing 

DNA sequencing was commercially performed by McLab, CA, USA. 

(http://www.mclab.com/home.php) 

 

 

3.1.11 Software and Computer Based Programs 

 

The software and computer based programs used in this project: 

Program Name Website/ Company Purpose 

CLC 

Main Workbench 

6.1.1 

 

http://www.clcbio.com/ 

Primer design, molecular 

cloning, sequence data 

management 

FlowJo 7.6.5 http://www.flowjo.com/ FACS data analysis 
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TAL Effector 

Nucleotide 

Targeter 2.0 

 

https://tale-nt.cac.cornell.edu/ 

 

 

TALE / TALEN 

design tool 

Quantity One Bio – Rad Gel image analysis 

Visual Molecular 

Dynamics 

(VMD) 

 

http://www.ks.uiuc.edu/Research/vmd/ 

Crystal structure 

display and 

analysis 

Table 3.3 List of software and computer based programs used in this study 

 

 

 

3.2 Methods 

 

 

3.2.1 Bacterial Cell Culture 

 

3.2.1.1 Bacterial culture growth 

 

E.coli DH5α bacterial cells were grown overnight (~16 h) at 37°C shaking at 

250 rpm in Luria Broth (LB). Bacterial cells were either spread or streaked on LB Agar 

plates to obtain single colonies and grown overnight (~16 h) at 37°C. Antibiotics were 

added to growth media depending on the application. For long-term storage of bacterial 

cells, glycerol was added to the overnight grown culture to a final concentration of 15% 

in 1 mL. Bacterial glycerol stocks were stored at -80°C. 

 

3.2.1.2 Competent cell preparation and transformation 

 

E. coli DH5α competent cells were prepared using stock of previously prepared 

competent cells. 50μL from previously prepared competent cells were grown in 50 mL 

LB without selective antibiotic overnight at 37°C shaking at 250 rpm. Next day, 4 mL 

from the overnight culture was diluted within 400 mL LB and incubated under same 

growth conditions until the OD590 reaches to 0.375. Then, previously prepared ice-cold 

CaCl2 solution was used for resuspension of bacterial cell pellet after successive 

centrifugation steps and for final preparation. 200μL aliquots of competent cells 
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prepared were frozen immediately in liquid nitrogen and then stored at -80°C. 

Competency of prepared cells was tested by transforming varying concentrations of 

pUC19 plasmid. 

 

For transformation of competent cells, CaCl2 treated chemically competent 

bacterial cells were taken from -80°C and ~100 pg of plasmid DNA was added before 

cells were completely thawed. After 30 min of incubation on ice, the cells were 

heatshocked at 42°C for 90 seconds and transferred back to ice rapidly to chill for 60 

seconds. 800μL of sterile LB without antibiotics added and cultures were incubated for 

45 minutes at 37°C for recovery of cells and expression of antibiotic resistance gene 

encoded by the plasmid. Transformed cells were spread onto LB agar plates containing 

appropriate antibiotic for selection using sterile glass beads. Then, the plates were 

incubated overnight at 37°C. 

 

3.2.1.3 Plasmid DNA isolation 

 

Plasmid DNA isolation was performed either by the alkaline lysis protocol or by 

QIAGEN Plasmid Midi Kits. For plasmid isolation, either a single colony of E.coli from 

LB agar plates or a stab of the glycerol stock was grown overnight at 37°C shaking at 

250 rpm in liquid medium containing selective antibiotics with appropriate 

concentrations. The concentration and purity of kit-isolated plasmid DNA were 

determined using Nanodrop. 

 

 

 

3.2.2 Vector Construction 

 

3.2.2.1 The General Methods Used in Vector Construction 

 

Restriction Enzyme Digestion: Digestion reactions containing template DNA, 

enzyme and its compatible buffer were incubated at the optimum temperature of the 

enzyme used for 2 hours. ~ 300 ng of template DNA was used for diagnostic digestions 

whereas the amount of template DNA used for gel extraction and cloning purposes was 

at least 1 μg. 
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Agarose Gel Electrophoresis and Gel Extraction: Agarose gels to observe DNA 

samples and digestion products were prepared in varying concentrations from 1% to 2% 

depending on the size of DNA fragments to be separated. Agarose gel was prepared by 

dissolving an appropriate amount of agarose powder in 0.5X TBE, heating for 3-5 min 

in a microwave. After cooling-down of the solution to room temperature, ethidium 

bromide was added at a final concentration of 0.001% (v/v) and the gel was poured onto 

the gel apparatus for solidification. 0.5X TBE was also used as running buffer. DNA 

samples were mixed with 6X DNA loading dye before loading to the gel.  

Electrophoresis was performed at 100-135 V for 45-75 minutes and the bands were 

observed under UV light. Gel extraction of DNA samples was performed using a 

QIAGEN Gel Extraction Kit. 

 

Dephosphorylation of Vector Ends: 5’ phosphate groups of linearized vector 

DNA were dephosphorylated using Calf Intestinal Alkaline Phosphatase (CIAP) prior to 

insert ligation, to prevent vector re-ligation. 

 

Ligation: Ligation was performed using T4 DNA Ligase (Fermentas), in 1:3 and 

1:6 molar vector to insert ratio using 100ng vector. In addition, ligation reaction mixture 

without insert was prepared as negative control for each ligation. The ligation reaction 

was incubated at 16°C for 16 hours in a final volume of 20μL. Then, half of the ligation 

mixture was transformed into chemically competent bacteria. 

 

 

3.2.2.2 Vector Construction for Homologous Recombination  

 

 Homologous sites to the targeted region as well as insertion sites that were 

obtained from other plasmids were separately PCR amplified before being fused with 

other PCR products and cloned into their final vector. In order to fuse PCR products 

with each other in the desired order, primers were designed to have homologous 

overhangs at their 5’ ends. After PCR, the correct bands were gel extracted and purified 

from their respective primers; and two or more of these PCR amplicons were used as a 

template in another polymerase chain reaction. In the second PCR amplification with 

multiple templates only the primers in the 5’ and 3’ end of the first two PCR amplicons 
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were used. Because such reactions often generate more than one band, the correct band 

was gel extracted again before further use. The primers at the either end had restriction 

enzyme cut sites instead of a homologous overhang to enable restriction digestion and 

ligation of the final product into a destination vector.  

 

This method was used to fuse exon 2 and exon 3 of IL7R gene to use it as a 

donor 77 and also to construct hGR gene homologous plasmid with Venus-YFP and 

puromycin resistance insertions . The strategies used for these are summarized in Figure 

3.1 and Figure 3.2 in the respective order. The PCR conditions for the hGR donor 

plasmid construction are given in Table 3.4, Table 3.5 and Table 3.6. After obtaining 

the desired construct the gel extracted DNA was either digested on both ends and 

cloned into a plasmid that had the same restriction enzyme cut sites or it was cloned into 

the pJET1.2/blunt plasmid without any digestion using the CloneJETTM
 PCR Cloning 

Kit (Thermo Scientific).  

 

 

 
 

Figure 3.1 The strategy for fusion of exon 2 and exon 3 of IL7R gene. 
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Figure 3.2 The strategy for construction of puromycin resistance and Venus-YFP 

inserted hGR gene homologous plasmid. 
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 Component   Amount 

Template genomic DNA  

or template Plasmid/Vector (10ng/μl) 

 

1.0μL 

5X Phusion high fidelity buffer 5.0μL 

10mM dNTP each 0.4μL 

Forward primer (10mM) 1.0μL 

Reverse primer (10mM) 1.0μL 

Phusion Hot Start II DNA polymerase (2U/μl) 0.2μL 

dH2O 16.4μL 

Total 25μL 

Table 3.4 The components and the amounts they were used for separate PCR 

reactions that were done in hGR donor plasmid construction.  

PCR was performed according to the following cycle: 

For Left Arm and Right Arm: 

98°C/4 min + 30X (98°C/30 s + 62°C/30 s + 72°C/60 s) + 72°C/10 min  

For Venus: 

98°C/4 min + 30X (98°C/30 s + 63°C/30 s + 72°C/60 s) + 72°C/10 min 

For Puromycin resistance:  

98°C/4 min + 30X (98°C/30 s + 72°C/60 s) + 72°C/10 min (2-step) 

 

 Component   Amount 

Gel extracted PCR product (10ng/μl) 1.0μL each 

5X Phusion high fidelity buffer 5.0μL 

10mM dNTP each 0.5μL 

Forward primer (10mM) 1.0μL 

Reverse primer (10mM) 1.0μL 

Phusion Hot Start II DNA polymerase (2U/μl) 0.2μL 

dH2O 15.3μL 

Total 25μL 

Table 3.5 Optimized PCR conditions for Venus-Right Arm fusion. 

The PCR was performed according to following cycle:  

98°C/4 min + 30X (98°C/30 s + 55°C/30 s + 72°C/2min) + 72°C/10 min 
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 Component   Amount 

Gel extracted PCR product (10ng/μl) 1.0μL each 

5X Phusion high fidelity buffer 5.0μL 

10mM dNTP each 0.5μL 

Forward primer (10mM) 2.0μL 

Reverse primer (10mM) 2.0μL 

Phusion Hot Start II DNA polymerase (2U/μl) 0.2μL 

dH2O 13.3μL 

Total 25μL 

Table 3.6 Optimized PCR conditions for Left Arm - Puromycin resistance gene fusion.  

PCR was performed according to following cycle: 

98°C/4 min + 31X (98°C/30 s + 50°C/30 s + 72°C/2min) + 72°C/10 min 

 

 

Gibson Assembly: Another approach for fusing PCR products that have 

homologous ends is Gibson Assembly (NEB). In the Gibson Assembly Master Mix 

there are 5’ exonuclease, DNA polymerase and DNA ligase that can function at the 

same temperature. After 5’ exonuclease cleaves a portion of the DNA single stranded 

flanks can anneal with their complementary sequence in another PCR product; DNA 

polymerase fills in the remaining gaps while DNA ligase seals the nicks. In this project 

after left homologous arm of hGR gene got fused to puromycin resistance gene and the 

right homologous arm got fused to Venus-YFP via conventional PCR methods, the final 

product that combines all four of them was done using Gibson Assembly Master Mix; 

following the instructions in the kit. Figure 3.3 explains Gibson Assembly’s working 

principle.  
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Figure 3.3 Gibson Assembly working principle for PCR products with homologous 

ends. 

 

3.2.3 Construction of TALEN Expression Vectors 

 

3.2.3.1 Identification TALEN target sites 

 

The software used for design of transcription activator like effectors (TALE) and 

transcription activator like effector nucleases (TALEN) is available for use as an online 

tool (TAL Effector Targeter and TALEN Targeter (old version with design guidelines), 

TALE-NT; https://tale-nt.cac.cornell.edu/). DNA sequence entered is scanned for 

potential TALEN recognition sites based on either preset design guidelines defined by 

four different articles or user-provided spacer and RVD lengths. The software gives 

coordinates and sequences of recognition sites for right and left TALEN monomers and 

the spacer sequence. In addition, RVD sequences necessary for construction of custom 

TALENs were also provided as software output. Binding sites of TALEN pair and 

spacer sequences are given in Table 3.7. 
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Left TALEN binding 

sequence 
Spacer 

Right TALEN 

binding sequence 

hGR 

TALEN2 

 

CATTAACTCCTGGTA 

 

gagaagaaaacccca 

 

GCAGTGTGCTTGCTC 

Notch 
TALEN AGGGTCACCCTCATA gactcctgggagttttc ATTGCCCTTGTTTCT 

IL7R GR 
TALEN2 

ATTATGTCTTAACTT tgttcttttacatct TCACAACTAAAGGAA 

IL7R GR 
TALEN3 

ATGTCTTAACTTTGTT cttttacatcttcaca ACTAAAGGAAAGAGAT 

IL7R 
Exon2 

CACTCCTTCTGGTGCC acagccagttggaag TGGATGGAAGTCAACATTT 

IL7R 
Exon3 

ATATATTTTATAAAGAC atcagaattcttact GATTGGTAGCAGCAATAT 

Table 3.7 Binding sites of TALEN pair and spacer sequences on the 5’-3’ coding strand. 

 

 

3.2.3.2 Assembly of custom TALEN constructs using Golden Gate  

TALEN kit 

 

TAL effector DNA binding domain is composed of tandem repeat modules. 12th 

and 13th
 amino acids within each repeat module, called repeat-variable di-residues 

(RVDs), are responsible for nucleotide recognition. NI, NN, NG and HD are the four 

most common RVDs, each preferentially bind to nucleotides A, G, T, and C, 

respectively. For some of the TALEN constructs in these experiments modules with NH 

RVD was used instead of NN to bind nucleotide G. Design of custom TALE and 

TALENs were performed using TALEN Golden Gate Kit, which was obtained from 

Addgene. The Golden Gate TALEN kit was reported by Cermak et al (2011) and 

contains a set of module plasmids with each individual RVDs, array plasmids for 

intermediate cloning and backbone expression plasmids to make final TALEN 

expression constructs 11 .  
 

The custom TALEN or TAL effector construct is assembled by using successive 

rounds of Golden Gate cloning, in which digestion by Type IIS restriction 

endonucleases such as BsaI and Esp3I is performed to create unique 4 bp overhangs on 

DNA fragments. These unique overhangs flanking each RVD were designed such that 

up to 10 RVD-encoding repeat module plasmids can be ligated in a single reaction. 

38 
 



Assembly of repeat modules into array plasmids is followed by assembly of array 

plasmids into final expression vectors (Figure 3.4). Construction of TAL effector or 

TALEN construct was achieved in 5 days (Figure 3.5). 

 
Figure 3.4 Golden Gate assembly of custom TALE and TALEN constructs. 

 

 
Figure 3.5 Timeline for TALEN construction using TALEN Golden Gate kit 11. 
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Day 1: After identification of possible TALEN target sites and determination of 

the RVD sequence, two separate array plasmids were assembled for “n” RVD repeat 

module containing TALEN expression plasmids. First 10 module plasmids were 

selected according to the order of RVD sequence, and were cloned into array plasmid 

pFUS_A. Then, modules selected for remaining RVDs, the ones from 11 to (n-1) were 

cloned into the array plasmid pFUS_B#n-11. RVD encoding modules for second array 

were selected starting with plasmid #1. Last RVD (#n) was not included in this reaction 

as it was provided by a different, “last repeat” plasmid and included in the second step 

of Golden Gate cloning. 

Golden gate reaction #1 was set according to Table 3.8 for each intermediary 

array plasmid, called as reaction A for first array plasmid and reaction B for the second 

one. For example a TALEN encoding plasmid with 16 repeats was generated by cloning 

10 repeats into the pFUS-A plasmid and 5 repeats into the pFUS-B5 plasmid. The 

contents of these plasmids were transferred in later days of the procedure into the 

pCGoldy-TALEN destination expression plasmid along with the contents of last repeat 

plasmids, in a four plasmid reaction. 

  

Components Used amount 

Each of module vectors 150 ng 

pFUS vector 150 ng 

BsaI (NEB) 1 μL 

BSA (2 mg/ ml) 1μL 

T4 DNA ligase (NEB) 1 μL 

10X DNA ligase buffer 2 μL 

dH2O Up to 20μL 

Total 20μL 

Table 3.8 Components and amounts for Golden Gate reaction #1. 

 

Reactions were incubated in a thermo cycler for following cycle: 

10 X (37°C/5 min + 16°C/10 min) + 50°C/5 min + 80°C/5min 
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In order to degrade unligated linear dsDNA fragments of incomplete ligation 

products, and linearized vectors, 1μL of exonuclease V (RecBCD) (NEB) and 1μL of 

10mM ATP were added to reaction and incubated at 37°C for 30min. After completing 

this procedure, 3.85 μL 100mM EDTA solution was added and the reaction volume was 

completed to 30 μL with water before performing 70°C incubation for 30min to 

inactivate exonuclease V and any remaining active enzymes.  

Chemically competent DH5α E.coli cells were transformed with 2 μL of the 

reaction and plated on LB agar containing 50μg/mL spectinomycin, with X-gal and 

IPTG for blue/white screening of colonies. 

 

Day 2: Correct assembly of TALEN RVD repeat modules into intermediary 

arrays was controlled first by performing colony PCR with 5 white colonies picked 

from each plate. A PCR master mix was prepared according to colony PCR conditions 

shown in Table 3.9 using pCR8_F1 and pCR8_R1 as forward and reverse primers, 

respectively, individual colonies were resuspended in this solution. 

Component Volume 

10X standard Taq buffer(Mg free) 2.5μL 

25 mM MgCl2 2μL 

10mM dNTP each 0.5μL 

Forward primer 0.2μL 

Reverse primer 0.2μL 

Taq polymerase (5U/μl) 0.125μL 

dH2O 19.475μL 

Total 25μL 

Table 3.9 Optimized colony PCR conditions. 

 

PCR was performed according to following cycle; 

95°C/4 min + 30X (95°C/30 s + 55°C/30 s + 72°C/135 s) + 72°C/10 min 

 

Depending on the colony PCR results, two correct clones were inoculated into 3mL LB 

containing 50μg/mL spectinomycin and incubated overnight at 37°C shaking at 200 rpm. 
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Day 3: Plasmid DNA was isolated from overnight cultures of pFUS_A and 

pFUS_B plasmids containing repeats. Correct assembly of array was controlled by 

restriction enzyme digestion with AflII and XbaI and agarose gel electrophoresis. 

Double digestion with these enzymes releases the repeat arrays and size of fragments 

produced was 1048 bp for pFUS_A containing 10 RVDs whereas size of fragments 

varied for pFUS_B plasmids. Correctly assembled intermediary arrays and sequence 

encoding the nth repeat were assembled into the final expression backbone vector. In 

these experiments mammalian expression vector pC-Goldy TALEN was used. For 

Golden Gate reaction# 2, digestion and ligation were performed in 2 steps due to BsmBI 

restriction enzyme working at 55°C which inhibited the activity of T4 DNA ligase. The 

first part of the reaction was set according to Table 3.10. 

 

Components Amount 

Reaction A 150 ng 

Reaction B 150 ng 

pLR vector 150ng 

Expression backbone vector 75ng 

NEB Buffer 4 (10X) 1.5 μL 

BsmBI (NEB) 0.5 μL 

dH2O Up to 15μL 

Total 15μL 

Table 3.10 Components for the first part of Golden Gate reaction #2. 

 

After incubation of the first part of the reaction at 55°C for 10 minutes, the second part 

of the reaction was set according to Table 3.11. 

Components Used amount 

ATP (10 mM) 2 μL 

NEB Buffer 4 (10X) 0.5 μL 

T4 DNA ligase 1 μL 

DTT (0.2M) 1μL 

Water 0.5 μL 

Total 20 μL 

Table 3.11 Components for second part of Golden Gate reaction #2. 
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Reactions were incubated in a thermo-cycler using the following cycle: 

16°C /15min + 55°C / 15 min + 80°C / 5 min 

 

Chemically competent DH5α E.coli cells were transformed with 2 μL of the reaction 

and plated on LB agar containing 100 μg/mL ampicillin, with X-gal and IPTG for 

blue/white screening of colonies. 

 

Day 4: Colony PCR was performed to check the assembly of intermediary arrays 

into the final expression plasmid and 5 white colonies were picked from the plate. The 

colony PCR mix was prepared according to Table 3, using TAL_F1 and TAL_R2 as 

forward and reverse primers. After resuspending individual colonies in a reaction 

mixture, colony PCR was performed according to the following cycle; 

95°C/4 min + 30X (95°C/30 s + 55°C/30 s + 72°C/3 min) + 72°C/10 min 

Depending on colony PCR results, two correct clones were inoculated into 3mL LB 

containing 100μg/mL ampicillin and incubated overnight at 37°C shaking at 200 rpm. 

 

Day 5: Plasmid DNA was isolated from overnight cultures and correct assembly 

of the final full-length repeat array was verified by restriction enzyme digestion with 

AatII and StuI and agarose gel electrophoresis. In addition, BspEI control digest, which 

cut only in HD modules of 2-10, was performed to determine final array integrity. DNA 

midipreps were prepared from correctly assembled TALEN plasmids, and sequenced 

using the SeqTALEN 5-1 and TAL_R2 primers.  

 

To express TALEN pairs in mammalian cells TALEN constructs should be cloned into 

a destination plasmid that contains promoter for mammalian expression. In these 

experiments six different TALEN pairs were designed using Golden Gate TALEN kit; 

TALEN pairs targeting Notch binding site 78 and GR binding site of IL7R gene 

promoter region, TALEN pairs targeting the 2nd and 3rd exons of IL7R gene and finally 

a TALEN pair targeting the start region of human GR gene. After assembling repeat 

monomers in array plasmids of pFUS_A and pFUS_B, as destination vector pC-Goldy 

TALEN backbone was used.  
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3.2.4 Mammalian Cell Culture 

 

3.2.4.1 Maintenance of mammalian cell lines 

 

In this project a suspension cell line RLM11 was mainly used and it was grown in 

RPMI 1640 cell culture medium that is supplemented with 10% heat inactivated fetal 

bovine serum (FBS), 2 mM L-Glutamine, 100 unit/mL, 100 unit/mL streptomycin, non-

essential amino acids, vitamin and 50 μM 2-mercaptoethanol in tissue culture flasks. 

Additionally adherent cell line HCT116 was used, and it was grown in DMEM cell 

culture medium that is supplemented with 10% heat inactivated fetal bovine serum 

(FBS), 2 mM L-glutamine, 100 unit/mL penicillin and 100 unit/mL streptomycin in 10 

cm tissue culture dishes. All cultures were maintained in a humidified incubator 

supplied with 5% CO2 at 37°C and split into fresh medium when they reach to ~80% 

confluency. TALEN transfected cells were incubated in a humidified incubator supplied 

with 5% CO2 at 32°C after transfection for 72 hours. 

 

For preparation of frozen stocks of both adherent and suspension cell lines, cells at 

exponential growth phase were resuspended in ice-cold freezing medium. They were 

stored at -80°C for 24-48 hours and then transferred to liquid nitrogen tank for longterm 

storage. After thawing, cells were immediately washed with growth medium to remove 

any residual DMSO. 

 

3.2.4.2 Transient transfection of suspension cells 

Transient transfection of suspension cell line, RLM11, was done by using Neon 

electroporation system (Invitrogen). One day before transfection, cells were split 1:10 

ratio. 107
 cells were washed twice with filter sterilized 1X PBS. After removal of 

supernatant, 10 μg DNA was added onto pellet and cells were resuspended in 100μL of 

HBS. Mixture was taken into 100μL Neon golden tips and placed in electroporation 

cuvette. Optimum transfection condition for delivery of DNA into cells is 1500 V with a 

single pulse in 20 milliseconds. Then, cells were transferred to tissue culture flasks 

containing pre-warmed RPMI supplemented with 10% FBS, 2 mM L-Glutamine, 100 

unit/mL, 100 unit/mL streptomycin, non-essential amino acids, vitamin and 50 μM 2- 

 mercaptoethanol. TALEN transfected RLM11 cells were incubated at 32°C-incubator 

supplied with 5% CO2 for 72 hours and harvested for further TALEN genotyping assays. 
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3.2.4.3 Transient transfection of adherent cells with PEI 

 

Transient transfection of adherent cell lines was achieved using 

polyethylenimine (PEI). PEI is a cationic polymer, which forms complex with 

negatively charged DNA and bind to cell surface. DNA is taken into the cell via 

endosomal vesicles and osmotic swelling release plasmid DNA to the cytoplasm 79. One 

day before transfection, 2.0 x 105
 adherent cells (for each well) were split onto 6 well 

tissue culture plates. On the day of transfection, 3 μg of total DNA was diluted in 200 

μL serum-free DMEM without phenol red in a sterile tube. PEI (1μg/μL) was added to 

diluted DNA based on 3:1 ratio of PEI (μg) to total plasmid DNA (μg) and mixed 

immediately by vortexing. After 15 minutes of incubation at room temperature, 

DNA/PEI mixture was added drop by drop on cells in tissue culture dishes. HCT116 

cells transfected with TALENs were incubated at 32°C-incubator supplied with 5% CO2 

for 72 hours and harvested for further TALEN genotyping assays. 

 

 

3.2.4.4 Flow cytometric analysis 

 

106
 cells were used for each flow cytometric analysis. Flow cytometric analysis 

of cells was performed using BD FACSCanto. For analysis of cells expressing 

fluorescent protein GFP, the cells were washed twice with FACS buffer and 

resuspended in 500μL of FACS buffer for analysis. GFP expression levels were 

detected with FITC channel. For analysis of IL7R expression, cells were washed twice 

with FACS buffer and incubated with CD127-Biotin antibody against mouse IL7Rα –

Biotin at 4°C for 30 min in dark. After washing twice with FACS buffer to remove 

unbound antibody, cells were incubated with SA-Alexa647 at 4°C for 30 min in the 

dark. Cells were washed twice with FACS buffer and resuspended 500μL of FACS 

buffer for analysis. IL7R expression levels were detected with Alexa-647 channel. 
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3.2.5 TALEN Induced Mutation Screening 

 

General strategy for detection of mutation at TALEN target site is given in 

Figure 3.6. In this study, mutation in TALEN target site was detected by the loss of 

restriction enzyme cut site, via restriction fragment length polymorphism (RFLP) assay. 

 

 

 

Figure 3.6 General strategy for detection of TALEN induced mutation at target the site. 
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3.2.5.1 Genomic DNA extraction 

72 hours after transfection with TALENs, genomic DNA of the cells was 

isolated by using GenElute Mammalian Genomic DNA Miniprep Kit (SIGMA). 

 

3.2.5.2 Restriction Fragment Length Polymorphism (RFLP) analysis 

Isolated genomic DNA was amplified via PCR reaction before performing 

digestion. (Optimized PCR conditions given in Table 3.12 using primers for TALEN 

target site amplification.) 

 

 Component   Amount 

Template genomic DNA 1.0μL 

Taq Polymerase Buffer 10X  2.5μL 

10mM dNTP each 0.4μL 

Forward primer (10mM) 1.0μL 

Reverse primer (10mM) 1.0μL 

Taq Polymerase (5U/μl) 0.2μL 

dH2O 18.9μL 

Total 25μL 

Table 3.12 Optimized PCR conditions for TALEN target site amplification 

 

PCR was performed according to following cycle for the respective region: 

GR binding site (also NFkB site): 

95°C/4 min + 30X (95°C/30 s + 54°C/30 s + 72°C/60 s) + 72°C/10 min 

Notch binding site; 

95°C/4 min + 30X (95°C/30 s + 64°C/30 s + 72°C/60 s) + 72°C/10 min 

Exon 2 and Exon 3; 

95°C/4 min + 30X (95°C/30 s + 60°C/30 s + 72°C/60 s) + 72°C/10 min 

hGR TALEN binding site: 

95°C/4 min + 30X (95°C/30 s + 62°C/30 s + 72°C/60 s) + 72°C/10 min 

 

PCR products were digested with the enzyme in spacer region and run on 

agarose gel to detect whether any undigested band is left indicating presence of 

mutation at TALEN target site. 
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3.2.5.3 Single Cell Analysis 

 

TALEN expression in mammalian cells induces random and different mutations 

and most of the cells remain intact after transfection. For that reason single cell analysis 

was done to amplify one type of mutation and observe its effects on a batch of cells that 

has the same specific change in their sequence. While growing single cell colonies there 

are two strategies that can be followed. In the first one after the cells were counted serial 

dilutions were done in their respective growth medium and when the total number of 

cells that were desired reached (less than 90 cells for one plate), the medium was 

divided to 96-well plates. After 7-10 days single cells had enough confluency to transfer 

to a larger volume. In the second one, certain amount of cells were put into the first lane 

of the 96-well plate and serial dilutions were done in the 96-well plate itself. Only the 

cells that were grown right before the empty wells were chosen to do further 

experiments. Figure 3.7 explains the dilution methods.  

 

 
Figure 3.7: Methods for obtaining single cell colonies. 

 

After growing single cell colonies mutants are detected either by RFLP analysis 

after genomic DNA isolation or by FACS analysis by comparing their IL7R expression 

levels to the WT (only for the experiments done with RLM11 cell line).  
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In order to sequence suspected mutants gel extraction was performed for the 

band in size of the undigested PCR product (in case there is still a band that can be 

digested) and cloned using CloneJETTM
 PCR Cloning Kit (Thermo Scientific) or InsTA 

Clone PCR Cloning Kit (Thermo Scientific). Uncut bands were cloned to pJET1.2/blunt 

or pTZ57R/T vector and colony PCR was performed to ensure presence of insert in 

selected colonies according to conditions provided by the kit. Plasmid DNA was 

isolated from 3-ml overnight cultures of true colonies and sequenced to evaluate 

mutations generated at the cleavage site. 
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RESULTS 

 

  

 4.1.Targeting IL-7R Gene 

 

4.1.1. Targeting Transcription Factor Binding Sites of the IL-7R Gene 

 

 In this study we used TALEN genome editing tools to mutate two of the 

transcription factor binding sites in the IL-7R enhancer region, the glucocorticoid 

receptor (GR) binding site and the Notch binding site (Figure 4.1). First, we constructed 

two pairs of different TALEN proteins targeting the GR binding site of the IL-7R gene 

using the Golden Gate TALEN Assembly procedure as explained in the Methods 

section. The TALEN pair targeting the Notch binding site was designed by Şeyda 

Temiz 78. Using the same method we expressed both Notch TALENs and GR TALENs 

in the IL-7R positive murine cell line RLM11 to observe the effects of mutations 

occurring in these regions on the expression of the IL7R gene. We hypothesized that if 

the binding of one of these transcription factors to their corresponding sites had a 

positive critical role in the expression of the IL-7R protein, the introduced mutations 

would decrease the IL-7R expression levels in these cells.  
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Figure 4.1 Schematic representation of the mouse IL7Rα gene locus. The IL7Rα gene 

contains eight exons and three evolutionarily conserved regions (ECR). ECR3 has 
binding sites for Gata, NFkB, GR and Foxo. Notch binds upstream of the ECR2. Two 
transcription factor binding sites targeted in this study were the GR and Notch binding 

sites. 
 

 

4.1.1.1. TALENs Targeting GR Binding Site of IL-7R 

 

 We designed and constructed two pairs of TALENs for this experiment; one of 

the pairs, named as GR TALEN2 directly targeting the GR binding site, and the other 

pair, GR TALEN3 targeting a slightly shifted region, placing an MboII restriction 

enzyme recognition site in the middle. Since we use the restriction fragment length 

polymorphism (RFLP) assay to detect mutations as summarized in Figure 3.6, we 

assumed selecting mutated colonies would be easier in case the TALEN3 pair was used, 

while the TALEN2 pair would be more successful in mutating the GR binding site. 

Their binding sites and the targeted region are shown in Figure 4.2. 

 

While designing the TALEN pairs, we paid attention to having 15 to 16 bp long 

spacers in between the pairs since it has been shown that longer or shorter spacer length 

results in reduced functional activity. In addition, having a 5’T base preceding the 

TALEN pair binding sites is important for their binding efficiency; therefore, all of the 

TALENs we designed have a T nucleotide right before the first base they bind. Since 

the right TALENs, or reverse TALENs, bind the complementary strand, in Figure 4.2 
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the preceding base appears to be adenine. Both monomers of the TALEN2 pair binds a 

region that is 15 nucleotides long while the TALEN3 pair binds a region that is 16 

nucleotides long.  

 

 
Figure 4.2 Binding sites for the TALENs targeting the GR binding site. The yellow 

arrow indicates the GR transcription factor binding site, pink and purple ones indicate 
the left and right TALEN pairs that were numbered as 2 and 3. Light pink arrow shows 

an MboII restriction enzyme recognition site, and it cuts a site 7 nucleotides away. 
Green arrows indicate the neighboring transcription factor binding sites and the black 

arrows show the primers used to amplify this region. 
 

 

4.1.1.1.1. Assembly of GR Site Targeting TALENs 

  

 In order to construct the TALENs targeting the GR binding site, we used the 

Golden Gate TALEN Assembly kit as described in the Methods section (Figure 3.4). 

TALEN assembly takes 5 days and involves two main reactions for the assembly of 

individual repeat modules into array plasmids and assembly of array plasmids into a 

final mammalian expression plasmid. We used NI, HD and NG RVD modules to 

recognize and bind A, C and T nucleotides respectively and as G nucleotide recognizing 

RVD we used NH, differing from the previously designed TALENs in our lab (as was  
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the case for the Notch site RVDs). This modification was because of recent experiments 

that showed that NH RVDs are more specific in binding G than NN 15. 

  

 
Figure 4.3 Plasmid maps showing GR TALEN2 Left and Right TALEN pair repeats in 

pFUS_A and pFUS_B4 intermediary plasmids after Golden Gate Reaction #1. 
 

For the construction of four different TALENs with 15 and 16 repeats we cloned 

first 10 repeats in pFUS_A plasmids and the remaining ones except the last ones were 

cloned into pFUS_B4 and pFUS_B5 (Golden Gate Reaction #1).  Therefore, we set up 

two Golden Gate reactions (reaction A and B) for each monomer of the TALEN pair. 

We transformed the Golden Gate reaction #1 into E. coli, plated the reactions on agar 

plates with spectinomycin and used IPTG/X-gal for blue-white screening. We 

performed colony PCR on white colonies using the primers pCR8_F1 and pCR8_R1. 

For repeats in the pFUS_A plasmids, we detected bands around 1200 bp, whereas for 

the pFUS_B4 and pFUS_B5 plasmids, we obtained bands around 600 bp and 700 bp 

respectively. In addition to the band of expected size, a smear and ladder of bands were 

also detected which results from the presence of repeats in clones. After isolation of 

plasmid DNA from two different correct colonies, we performed an AflII-XbaI 

53 
 



diagnostic digest which should generate bands reflecting the number of repeats such 

that a 1048bp-band was obtained for a pFUS_A plasmid with 10 repeats. Similarly the 

band sizes were 430bp and 523 bp for the pFUS_B4 and pFUS_B5 plasmids with four 

and five repeats. Figure 4.3 and Figure 4.4 show plasmid maps related to reactions A 

and B of the GR TALEN2 and GR TALEN3 left and right pairs. Figure 4.5 shows 

agarose gel images after colony PCR with pCR8_F1 and pCR8_R1 primers and 

confirmation of those colonies with AflII-XbaI double digests. 

 

 
 

 

Figure 4.4 Plasmid maps showing GR TALEN3 Left and Right TALEN pair repeats in 
pFUS_A and pFUS_B4 intermediary plasmids after Golden Gate Reaction #1. 
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Figure 4.5 Agarose gel images showing colony PCR results and control digests done to 
find correctly assembled array plasmids for both TALEN2 and TALEN3 pairs after 

Golden Gate Reaction #1. 
 

 

After the construction of intermediary array of repeats were complete, we joined 

repeats coming from reactions A and B, the last repeat plasmids and the final backbone 

plasmid pC-GoldyTALEN in Golden Gate reaction #2. This time after transformation 

the colonies were grown on ampicillin agar plates and we performed colony PCR using 

primers TAL_F1 and TAL_R2, which gives bands around 1740bp for plasmids with 15 

repeats and 1840bp bands for plasmids with 16 repeats. Along with the correct bands a 

ladder effect and a smear is expected. Consistent with this, we found that the colonies 

that give a single band were not correctly assembled. After isolating plasmid DNAs of 

correct colonies we performed a confirmation digest with the AatII and StuI enzymes, 
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which generate bands sized 1724bp for plasmids with 15 repeats and 1826bp for 16 

repeats. Figure 4.6 and Figure 4.7 shows plasmid maps of the GR binding site TALEN 

pairs GR TALEN2 and GR TALEN3 in their final plasmid pC-GoldyTALEN. Figure 

4.8 shows agarose gel images after colony PCR with TAL_F1 and TAL_R2 primers and 

control digests with AatII-StuI. 

 

 
 

Figure 4.6 Plasmid maps showing fully assembled GR TALEN2 Left and Right TALEN 
pair in pC-GoldyTALEN backbone. 
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Figure 4.7 Plasmid maps showing fully assembled GR TALEN3 Left and Right TALEN 
pair in pC-GoldyTALEN backbone. 
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Figure 4.8 Agarose gel images showing colony PCR and control digest results of GR 

TALEN2 and GR TALEN3 pairs after Golden Gate reaction #2. 
 

 

4.1.1.1.2. Expression of the Constructed GR TALEN Pair in RLM11 cells and 

Detection of Site Specific Mutations 

 

After we completed the construction of two different TALEN pairs targeting the 

GR binding site of the IL-7R gene, we wanted to confirm their functionality. We used 

the RLM11 cell line, a mouse thymoma cell line which has a high level of IL-7R 

expression on its surface. We assumed that any damage induced on the gene control 

elements would easily be observed on the expression phenotype of the cell surface 

protein.  We first transfected RLM11 cells with the GR TALEN3 pair using the Neon 

electroporation system. Because this TALEN target site had an MboII restriction 

enzyme binding site in its spacer region, we expected to find mutations induced easier 

than the second TALEN pair whose activity cannot be assessed using RFLP. After the 

cells were transfected, we incubated the cells in 32oC for 72 hours and at the end of this 

period we analyzed the cells by flow cytometry (Figure 4.9). We have observed that 
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even though IL-7R levels dropped for GR TALEN transfected cells, the cells we 

transfected with pcDNA-GFP plasmid for transfection efficiency control had lower 

IL7R levels as well. We observed this result probably because the cells could not regain 

their health after electroporation and 32oC incubation. Therefore we could not relate this 

result to TALEN function. 

 
Figure 4.9 IL-7R expression levels of pcDNA-GFP and GR TALEN3 transfected 

RLM11 cells compared to untransfected cells. Histogram for Alexa-647 represents 
surface IL-7Rα expression. 

 

Since IL-7R levels only could not indicate the existence of a mutation, we 

extracted the genomes of both untranfected and TALEN transfected samples and 

performed the RFLP assay (as explained in Figure 3.6). We PCR amplified the region 

with the indicated primers in Figure 4.2 and digested the amplicons with the MboII 

restriction enzyme. We have observed an uncut band in TALEN transfected samples, 

indicating that a large portion of the cells were mutated (Figure 4.10). 

 

 
Figure 4.10 RFLP analysis on the GR TALEN transfected and untransfected 

RLM11 cells. The uncut band the red arrow indicates the presence of mutation. 
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4.1.1.1.3. Single Cell Screening of GR TALEN transfected RLM11 cells and 

Detection of Mutants 

 

 Since we could not detect any significant changes in the phenotype of the 

TALEN transfected pool of cells, and assuming that the presence of unmutated cells in 

the pool could be preventing the detection of mutated cells, we decided to grow single 

cell colonies from this pool and screen for cells that have mutations, preferably on both 

chromosomes. The strategy to obtain single cell colonies is explained in Figure 3.7. 

After a portion of the single cells we plated grow, we analyzed their mutation status by 

RFLP and separated the ones that had uncut bands (Figure 4.11). 

 

 
Figure 4.11 RFLP results for GR TALEN transfected single cell colonies. Red arrows 
show the uncut bands caused by the presence of a mutation in the restriction enzyme 

recognition site. UT stands for untransfected. 
 

After repeating the experiment to ensure that all of the colonies we selected are mutants, 

(Figure 4.12) we gel extracted the uncut bands and cloned them into the pTZ57R/T 

plasmid using the InsTAclone PCR cloning kit to send them to MCLAB Inc. (San 

Francisco, CA, USA) for sequencing.  

 

 
Figure 4.12 Selected RLM11 single cell colonies to send sequencing. 
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Sequencing results of the selected mutant colonies demonstrated the presence of several 

types of mutations (Figure 4.13). All of the mutations had disrupted the GR binding site, 

however, the 2nd, 9th and 15th colonies still had an intact wild type sequence along with a 

mutated allele.  

 

 
 

Figure 4.13 Sequencing results of single cell colonies that had uncut bands in the RFLP 
assay. Yellow highlighted sequences indicate TALEN binding sites, green letters 

indicate the GR binding region, underlined sequence is the MboII restriction enzyme 
binding site and red letters show the insertion sequence. 

 

4.1.1.1.4. IL-7R Expression in GR binding site Mutant RLM11 cells 

 

After selecting the mutant single cell colonies that had their GR binding site 

disrupted at least in one of their chromosomes, we wanted to compare their IL-7R 

expression levels to wild type RLM11 cells. While one of the single cell colonies, the 

10th colony, had shown lower levels of IL7R expression compared to wild type 

consistently, the rest of the colonies had IL7R expression around the same levels as the 

wild type, and some of them had even significantly higher expression levels in repeated 

experiments. An example FACS analysis from each colony is shown in Figure 4.14.   
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Figure 4.14 FACS analysis showing IL7R expressions of mutant RLM11 single cell 

colonies. Histogram for Alexa-647 represents surface IL-7Rα expression. 
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4.1.1.2 TALENs Targeting Notch Binding Site of IL-7R gene 

 

In a previous study done in our lab IL7R Notch binding site targeting TALENs 

were assembled and different mutations caused by imprecise repair of double strand 

breaks induced by these TALENs were analyzed in Neuro-2a and RLM11 cell lines 78. 

The experiments were performed in a pool of cells that contained a majority of wild 

type cells along with the cells with various mutations induced by TALEN transfection, 

which made them unsuitable for IL7R expression experiments. In this study, we wanted 

to continue this project by growing single cell colonies from these TALEN transfected 

pools and observe the effect of specific Notch site mutations on IL7R expression levels. 

The Notch TALEN pair binding sites and the targeted region is shown in Figure 4.15. 

 

 
 

Figure 4.15 The binding sites for IL-7R Notch site targeting TALEN pair. Yellow arrow 
indicates the RBPJk-Notch binding site, the flag in between shows the sequence 

restriction enzyme BstNI cuts, the black arrows indicate the primers that were used to 
amplify this region. 
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4.1.1.2.1 Expression of a previously designed Notch TALEN pair in RLM11 cells 

and mutation screening via expression of IL-7R in single cell colonies 

 

We transfected the RLM11 cell line with the expression constructs encoding 

Notch TALEN pair and compared the IL-7R expression levels of untransfected and 

transfected cells by FACS analysis and observed that even though Notch TALEN 

transfected cells had lower expression, it was not significant (Figure 4.16). 

 
Figure 4.16 IL-7R expression levels of Notch TALEN transfected RLM11 cells 

compared to untransfected cells. Histogram for Alexa-647 represents surface IL-7Rα 
expression. Red histogram shows WT expression while blue histogram shows the IL7R 

expression on transfected cells. 
 

 
Figure 4.17 RFLP analysis on the Notch TALEN transfected and untransfected RLM11 

cells. The uncut band which is pointed by a red arrow indicates the presence of a 
targeted mutation. 

 

Along with FACS analysis we checked the presence of a mutation by using the 

RFLP assay (Figure 4.17) and even though we observed an uncut band the percentage 
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was too low compared to our GR TALEN transfected cells. For that reason while 

screening for mutant colonies among single cells instead of extracting genomic DNA 

from hundreds of colonies and performing the RFLP assay we followed a different 

approach. We expected that the Notch binding site mutated cells would have lower 

expression of the IL-7R protein if Notch had a positive role in the expression of IL7R. 

Therefore, we screened only colonies that had lower IL7R expression levels. We 

predicted that this approach would increase our chance of finding mutated colonies. 

Single cell colonies were grown as explained in Figure 3.7 using the first method and 

after about two weeks we performed FACS analysis on 91 single cell colonies. We 

selected colonies that had significantly lower IL-7R expression to continue with further 

experiments (Figure 4.18). 

 

 
Figure 4.18 IL-7R expression levels of Notch TALEN transfected RLM11 single cell 
colonies that have lower expression levels compared to WT expression. Histogram for 
Alexa-647 represents surface IL-7Rα expression. Red histograms show the expression 
on untransfected cells while blue histograms show the expression levels on colonies 

being examined. 
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4.1.1.1.2. Detection of mutation in suspected Notch TALEN transfected single cell 

colonies 

 

After eliminating a large portion of the candidate mutant single cell colonies due 

to their existing IL-7R expression we predicted that it would be easier to find mutated 

single colonies by performing the RFLP assay. We extracted genomic DNA from these 

colonies and digested with the BstNI enzyme which had a cut site in the middle of 

Notch binding sequence. According to RFLP, from around 20 colonies only two 

appeared to be mutated; 35th and 49th (Figure 4.19). 

 

 
Figure 4.19 RFLP assay for Notch TALEN transfected RLM11 single cell colonies. The 

restriction digestion was done with the BstNI enzyme and the red arrows show the 
uncut bands which indicate the presence of mutations. 

 

 
Figure 4.20 IL-7R expression levels for Notch binding site mutated RLM11 cells.  

Histograms for Alexa-647 represents surface IL-7Rα expression. 
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The single cell colonies that were confirmed to be mutated through RFLP 

analysis had significantly lower IL-7R expression compared to IL-7R expression on WT 

RLM11 cells (Figure 4.20). However, the single colonies #30 and #74 showed the 

lowest expression levels. We examined the type of mutations that disrupted the Notch 

binding site of the colonies with uncut bands in the RFLP assay. It is possible that some 

colonies contained mutations that we could not detect by RFLP. Therefore, we cloned 

PCR products that contained the mutation region into the pJET1.2/blunt plasmid using 

the CloneJET PCR kit and sent 8 different colonies for sequencing. Sequencing analysis 

showed that the 35th colony had two types of mutation, a deletion and an insertion; 

along with an intact WT binding site. The 30th and the 74th colonies appeared to be all 

WT and 49th colony despite having an uncut band, had only PCR products with the 

undisrupted binding site cloned (Figure 4.21). 

 

 
Figure 4.21 The sequencing results for Notch site mutated single cell colonies #35, #49, 
#30 and #74. The green letters indicate the Notch binding site, yellow highlighted letters 

show the regions TALEN pair binds, underlined letters are the recognition site for 
BstNI restriction enzyme.  

 

Among the single cell colonies that had lower IL-7R levels compared to WT 

expression the 74th colony was the lowest one, and in contrast to others it was the only 

one that had a complete down-regulation profile. For that reason, we hypothesized that 

this could be due to a much larger deletion in the genome than we could amplify with 

our Notch primers. We performed PCR with primers that were used to amplify ECRs 

(shown in Figure 4.22) along with the Notch primers to see if any of the sites included 
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one of the Notch primers were deleted, however the 74th colony still gave the same band 

as the WT (Figure 4.23). If the deletion still exists and both of the Notch primers are 

deleted, these experiments would not give the results we expected to see.  

 

 
Figure 4.22 The IL7R gene ECR2-ECR3 locus. Blue arrows show ECR2 and ECR3 of 
the IL7R gene, the Notch binding site is in between these regions indicated by a yellow 
arrow, red arrows at the left and right sides are TALEN binding sites. Primers that are 

used to amplify the Notch site are shown with black and primers that are used to 
amplify ECR2 and ECR3 are shown with green arrows. 

 

 
Figure 4.23 PCR amplification of the 74th colony with different primers. Kpl11 forward 

and Notch reverse primers give bands around 2360bp and Notch forward and Kpl12 
reverse primers gives band around 2020bp in WT genome. The binding sites of the 

primers are shown in Figure 4.22. 
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4.1.2. Use of TALENs to Delete an Entire Intronic Region of IL-7R gene 

 

 One of the evolutionarily conserved regions of the IL-7R gene, ECR1, is in 

between the second and the third exons. Along with the transcription activator binding 

sites in the upstream enhancer region of this gene we wanted to target this ECR site also, 

but differing from the previous experiments instead of targeting one specific binding 

site, we planned to delete the whole intron in between the 2nd and the 3rd exons using 

two TALEN pairs simultaneously. We designed the TALEN pairs to target the exons 

directly, assuming that if both pairs cut the DNA at the same time, the site in between 

them would be removed. To ensure that the exons remained intact while the intron site 

is removed, we used a donor DNA which had exon 2 and 3 fused to each other so that 

when the double strand breaks were induced by the TALEN pairs at the same time, the 

region would be repaired according to the donor DNA by homologous recombination. 

The strategy to remove intron 2 of the IL7R gene by TALENs is explained in Figure 

4.24.  

 

 
Figure 4.24 The strategy to delete the ECR1 region of the IL-7R gene using two 

TALEN pairs and a homologous donor DNA. 
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4.1.2.1. Assembly of TALENs targeting Exon 2 and Exon 3 of the IL-7R gene  

  

In order to remove the region in between exon 2 and 3 we designed two separate 

TALEN pairs to target random sites in the middle of the exons. As we did with the 

previous designs we had 5’T nucleotides preceding the TALEN binding site, 15 

nucleotide long spacer regions, and a restriction enzyme cut site in the middle to 

perform RFLP assays for detecting potential mutations. Exon 2 (E2) TALEN left and 

right pair have 16 and 19 repeats while Exon 3 (E3) TALEN left and right pair have 17 

and 18 repeats respectively. Figure 4.25 and Figure 4.26 shows the Exon 2 and Exon 3 

regions, the TALEN pair binding sites and the primers that were used to amplify those 

regions.  

 

 
 

Figure 4.25 Binding sites of TALENs targeting Exon 2 of IL-7R gene. Magenta arrows 
indicate TALEN binding sites, black arrows show the primers that were used to amplify 

this region, the flag in the spacer region of TALEN pair shows the restriction enzyme 
BsrI cut site. 

70 
 



 
Figure 4.26 Binding sites of TALENs targeting Exon 3 of IL-7R gene. Purple arrows 

indicate TALEN binding sites, black arrows show the primers that were used to amplify 
this region, the flag in the spacer region of TALEN pair shows the restriction enzyme 

EcoRI cut site. 

 
Figure 4.27 Plasmids maps of the Exon 2 targeting TALEN pair in pFUS_A and 

pFUS_B intermediary plasmids after Golden Gate reaction #1 
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 We assembled the TALEN pairs using the Golden Gate Assembly kit. First 10 

repeat modules were cloned into the pFUS_A plasmid and the remaining repeats except 

the last repeat were cloned into the pFUS_B plasmid of the respective number in 

Golden Gate reaction #1. After the transformation of the ligated array of repeats in the 

intermediary plasmids along with IPTG/X-gal blue-white screening, we chose the white 

colonies to perform colony PCR using the pCR8_F1 and PCR8_R1 primers. We 

expected to see bands sized 1200bp for pFUS_A that has 10 repeats and bands sized 

700bp, 800bp, 900bp and 1000bp for pFUS_B5, pFUS_B6, pFUS_B7 and pFUS_B8 

respectively. Along with the correct sized band a smear and a ladder effect caused by 

the repeats is also observed, consistent with the Golden Gate protocol. After choosing 

the correct colonies we isolated their DNA to do a confirmation digest with AflII and 

XbaI. The 10 repeats in pFUS_A gives a 1048bp band while B5, B6, B7 and B8 give 

bands sized 523bp, 622bp, 720bp, and 820bp respectively. The plasmids maps for Exon 

2 and Exon 3 TALEN pairs are shown in Figure 4.27 and Figure 4.28 and agarose gel 

images of colony PCR and control digest results for both pairs are shown in Figure 4.29.   

 

 
Figure 4.28 Plasmids maps of Exon 3 targeting TALEN pair in pFUS_A and pFUS_B 

intermediary plasmids after Golden Gate reaction #1 
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Figure 4.29 Agarose gel images showing colony PCR and control digest results of Exon 

2 and Exon 3 targeting TALENs after Golden Gate reaction #1 
 

 
Figure 4.30 Plasmid maps for fully assembled Exon 2 targeting TALEN pair in their 

final expression vector pC-GoldyTALEN. 
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Figure 4.31 Plasmid maps for fully assembled Exon 3 targeting TALEN pair in their 

final expression vector pC-GoldyTALEN. 
 

After the intermediary plasmids for TALEN repeats were assembled, we joined 

the pFUSA and pFUS_B plasmids together with the plasmid of the last repeat to the 

final expression plasmid named pC-GoldyTALEN in Golden Gate reaction #2. After 

transformation we searched for correct colonies performing colony PCR with the 

TAL_F1 and TAL_R2 primers, expecting to see bands around 1800bp-2000bp along 

with a smear and a ladder effect. After choosing 2 of the colonies that seemed to be 

correct, we isolated their DNA to perform a double digest with StuI and AatII. E2 Left 

TALEN should give a band sized 1826bp; E2 right 2132bp, E3 left 1928bp and lastly 

E3 right should be 2030bp.  Figure 4.30 and Figure 4.31 show the plasmid maps for 

TALEN pairs in their final expression plasmid and Figure 4.32 shows the agarose 

images for colony PCR and control digest results for the final constructs after Golden 

Gate reaction #2.  
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Figure 4.32 Agarose gel images of colony PCR and control digest results of both Exon 

2 and Exon 3 targeting TALENs after Golden Gate reaction #2. 
 

 

4.1.2.2. Expression of Exon2 and Exon3 TALEN pairs in RLM11 cells and 

detection of mutations 

 

After the TALENs were assembled, we first transfected RLM11 cells with the 

Exon 2 and Exon 3 TALEN pairs separately to see if they function on their own, before 

starting with the contransfection experiments. After the transfection and TALEN 

expression were complete, we performed FACS analysis, expecting to see a decrease in 

IL-7R expression even in the pools, considering the fact that we directly targeted exons 

this time. Although we expected IL-7R levels of TALEN transfected cells to be 

significantly lower, it was possible that this effect would be partially due to 

electroporation and 32oC incubation. (Figure 4.33) To confirm these results we 
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performed the RFLP assay on the transfected cell pools and observed a clear uncut band 

for both; indicating that a quite large portion of the cells in the population were mutated 

(Figure 4.34). 

 

 
Figure 4.33 FACS analysis of Exon 2 and Exon 3 TALEN transfected RLM11 

cells. Histogram for Alexa-647 represents surface IL-7Rα expression. Red histogram 
represents WT while the blue ones represent transfected cells. 

 
 

 
 

Figure 4.34 RFLP assay of the Exon 2 and Exon 3 TALEN transfected RLM11 cells. 
Exon 2 and Exon 3 were amplified using the primers shown in Figure 4.25 and Figure 

4.26. Exon 2 PCR products were digested with BsrI enzyme while Exon 3 PCR 
products were digested with EcoRI. Pool#1 and Pool#2 stands for the pool of cells taken 

from the transfected samples at two different times; #1 right after 72h incubation 
including the dead cells after electroporation and #2 only the live cells that were grown 
after a few splits. Red arrows show the uncut bands caused by the presence of mutation. 
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4.1.2.3. A map of the donor plasmid targeting the ECR1 region between Exon 2 

and 3 by homologous recombination 

 

The donor plasmid to repair the IL-7R gene with homologous recombination 

after double strand breaks were induced by the E2 and E3 TALENs was previously 

generated by Gamze Günal in the Erman laboratory 77. If homologous recombination is 

successful, this donor DNA will replace the Exon2-Intron2-Exon3 region of the IL7R 

gene and result in a new allele that has no Intron 2 and a fused Exon2 and Exon3. The 

protein encoded by this allele will be identical to the wild type IL7R protein. Exon 2 

and Exon 3 PCR products were fused to each other using the strategy that was explained 

in Figure 3.1 of the Methods section and this amplicon was cloned into the 

pJET1.2/blunt plasmid using a CloneJET PCR cloning kit. After growing colonies from 

a glycerol stock and performing control digest with the XhoI-XbaI enzymes to make 

sure that the 600bp insert is still in this plasmid, we extracted the digested bands. Figure 

4.35 shows the plasmid map of the construct and the control digests that were done to 

confirm the presence of Exon 2 and Exon 3 fusion PCR product. 

 

 
Figure 4.35 The plasmid map for the E2-E3 fusion product and the agarose gel image of 

the control digest. 
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4.1.2.4. Simultaneous transfection of the Exon2, Exon3 TALENs and the donor 

dsDNA in RLM11 cells 

 

After confirming the activity of TALENs, we co-transfected RLM11 cells with 

both TALEN pairs and the homologous dsDNA donor.  We used a 1:1 molar ratio for 

the total amount of TALENs and the donor dsDNA. Along with the main experiment 

we set up control experiments that we put the same amount of TALEN pairs with the 

co-transfection and complete the rest with mock DNA. After a 72h incubation at 32oC 

we isolated genomic DNA and performed the RFLP assay (Figure 4.36).  In the RFLP 

assay, with cells transfected with only one of the pairs we detected uncut bands, 

indicating that these TALENs could mutate a significant proportion of the cells. Cells 

co-transfected with both TALEN constructs (4 plasmid in total) appeared to have 

slightly fainter uncut bands, which might indicate that both TALENs worked at the 

same time and removed the region in between. We also performed a PCR using forward 

primer of exon 2 and the reverse primer of exon 3 on the co-transfected sample and saw 

a band which corresponds to fused exon 2 and exon 3, however the sample only went 

through a dense medium split after the transfection and probably still contained the free 

donor DNA; we did not see this band in the pool after two more splits.  

 

 
Figure 4.36 RFLP assay for Exon 2 and Exon 3 TALEN pair co-transfection. Exon 2 
and Exon 3 were amplified using the primers shown in Figure 4.25 and Figure 4.26. 
Exon 2 PCR products were digested with BsrI enzyme while Exon 3 PCR products 

were digested with EcoRI. The last lane was PCR amplified by the Exon 2 forward and 
Exon 3 reverse primers. Red arrows show the uncut bands caused by the presence of 

mutation. 
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After a few splits and making sure that the cells recovered their health after 

transfection, we performed FACS analysis on the samples to compare their IL-7R 

expression levels to WT expression. All of the transfected cells, the ones with Exon2 

TALEN pair only, Exon3 TALEN pair only and the co-transfected ones had lower IL-

7R expression compared to untransfected samples (Figure 4.37). All of these results 

were obtained from a pool of cells that still had wild type cells in majority. Experiments 

are continuing with the single cell colony screening.  

 

 
Figure 4.37 FACS analysis of Exon 2 and Exon 3 TALEN transfection and co-

transfection in RLM11 cells. Histogram for Alexa-647 represents surface IL-7Rα 
expression. Red histogram represents WT while the blue ones represent transfected cells. 
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4.2. Targeting GR gene 

 

4.2.1. TALENs Targeting human GR gene to induce Knock-In and 

      Knock-Outs 

 

As we worked on the project that targets the transcription factor GR binding site 

of the IL-7R gene, we also approached the project from another side; we designed a 

TALEN pair against the glucocorticoid receptor gene itself to knock out the gene to see 

which genes would be affected from its absence; and by using the same TALEN pair 

and a homologous donor plasmid we designed, we aimed to insert Venus-YFP gene at 

the same site to make it fused to GR gene so that when they were expressed we could 

track GR protein’s location within the cell when exposed to certain conditions. 

 

 To knock out the hGR gene, we designed TALENs that target a region near to 

translation start codon so that in case the cell fails to repair the gene after the TALEN 

pair induces a double strand break, non-homologous end joining would generate 

insertions or deletions that would cause frameshifts in the coding strand that would end 

up with a non-functional transcript. In case we provide a donor plasmid that is partly 

homologous to the region we induce mutation, through homologous recombination the 

changes we had done in the donor gene would transfer to the genome. For this 

experiment we designed a plasmid that has homologous sites to the genome on the left 

and right sides, and we aimed to insert puromycin resistance and Venus-YFP genes in 

the middle with no stop codons in between. Puromycin resistance would enable us to do 

selection among the ones that has the insert, and P2A sequence in between venus and 

puromycin genes would permit the translation of the transcript without detachment of 

the ribosome in between but have puromycin cleaved off from the venus-hGR complex 

right after the translation occurs so that the puromycin resistance in the cell would not 

interfere with their activity. The strategy to construct this donor plasmid is explained in 

Figure 3.2 of the Methods section and the strategy to knock-out or induce knock-ins in 

hGR is shown in Figure 4.38. 
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Figure 4.38 The strategy to knock out human glucocorticoid receptor using TALENs 
and insert Venus and puromycin resistance genes using homologous recombination. 

 

4.2.2. Assembly of TALENs targeting translation start site of the hGR gene 

  

 We designed TALENs targeting hGR gene using the same methods and paying 

attention to similar things with the ones that was explained in section 4.1.1. The 

TALEN pair has 15 nucleotide spacer length in between, they are preceded by a 5’T 

nucleotide and there is a restriction enzyme recognition site in between to enable usage 

of RFLP assay to select mutants. The binding sites of the TALEN pair, the spacer 

region, and the start codon is shown on Figure 4.39. 

 

Both left and right TALENs have 15 repeats, therefore in the Golden Gate 

reaction #1 we cloned first 10 repeats into pFUS_A array plasmid and four remaining 

ones in pFUS_B4. We had done IPTG/X-gal blue-white screening and had done colony 

PCR to the white colonies using pCR8_F1 and pCR8_R1 primers. The correct colonies 

gave 1200bp bands for 10 repeats and 600bp for 4 repeats. The plasmid maps and 

agarose gel images of the colony PCR products can be seen in Figure 4.40 and Figure 

4.41. 
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Figure 4.39 The binding sites of the hGR TALEN pair on the hGR gene start region. 

Purple arrows indicate TALEN binding sites, black arrows indicate the primers that was 
used to amplify this region, red arrow shows MboII recognition site, note that it cuts a 
different region than the recognition site. The letters show the translated codons, first 

green methionine indicates the start codon. 
 

 
Figure 4.40 The plasmid maps for hGR right and left TALENs in pFUS_A and pFUS_B 

intermediary plasmids after Golden Gate reaction #1 
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Figure 4.41 Agarose gel images of the colony PCR results of hGR TALENs after 
Golden Gate reaction #1 

 

 

We joined the repeats in pFUS_A and pFUS_B plasmids along with the last 

repeats in pC-GoldyTALEN backbone with Golden Gate reaction #2. Using TAL_F1 

and TAL_R2 primers we performed colony PCR expecting to see 1744bp bands along 

with a smear and ladder effect. Control digests were done with StuI and AatII, resulting 

in 1724bp band in between the ~1000bp and ~5000bp bands coming from pC-

GoldyTALEN expression vector. The plasmid maps of fully assembled hGR TALEN 

pair is shown in Figure 4.42 and agarose gel images after colony PCR and their 

confirmation with AatII-StuI double digest is shown in Figure 4.43. 
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Figure 4.42: Plasmid maps of hGR left and right TALEN pair in pC-GoldyTALEN 

backbone. 
 

 
 

Figure 4.43: Colony PCR and double digest control for hGR TALEN pair after Golden 
Gate reaction #2. 
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4.2.3. Expression of hGR TALEN pair in HCT116 cells and detection of mutation 

 

After the assembly of the TALEN pair was complete, we transfected adherent 

human colonic carcinoma cell line HCT116 with them using PEI transfection method. 

We incubated them at 32oC for 72 hours and extracted their genomic DNA to perform 

RFLP assay. As shown in Figure 4.44 there is a faint uncut band in transfected sample, 

indicating that the TALEN pair had induced mutation.  

 
Figure 4.44 RFLP assay for hGR TALEN transfected HCT116 WT cells. Red arrow 

show the uncut band caused by the presence of mutation. 
 

 

4.2.4. Construction of homologous donor plasmid to insert Venus gene into hGR 

endogenously 

 

 In order to induce gene knock-in at the translation start site of the glucocorticoid 

receptor gene we designed a donor plasmid that is homologous to the gene at both ends, 

and the middle part included the insert. Overall, there were four main different PCR 

products that were supposed to be joined; the left homologous arm, puromycin 

resistance gene, Venus-YFP gene and the right homologous arm. The strategy to 

assemble this product is explained in Figure 3.2 of the Methods section. Venus gene and 

the puromycin resistance gene have around 600bp long sequences therefore while 

designing left and right homologous arms we arranged them to have at least similar 

lengths to promote more accurate homologous recombination. Left arm was designed to 

have the whole promoter region before the start codon of the hGR gene so that when the 

two other genes were integrated into the genome at that point the start codon of the 

puromycin resistance gene would be the new start point of the translation. In order to 

have the expressed region of the hGR fused to the Venus gene the right homologous 

arm began with the start codon of the hGR, being planned to be attached right at the end 

of the Venus gene. The positions of the left and the right homologous arms on the hGR 
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gene are shown in Figure 4.45 and Figure 4.46. The forward primer of the left arm had 

NheI restriction enzyme cut site and the reverse primer of the right arm had BamHI cut 

site added on their 5’ ends to ligate them to a plasmid when the whole product was 

assembled. We PCR amplified both regions with Phusion Polymerase enzyme for high 

fidelity and to avoid overhang ends. The agarose gel images of the PCR results are 

shown in Figure 4.47. 

 

 
 

Figure 4.45 Left homologous arm PCR site on hGR gene locus. Gray arrows indicate 
the primers that are used to amplify the left homologous arm which is 627bp long. Light 

green arrow show the 2nd exon and the yellow arrow indicate the start codon. TALEN 
pair which are shown by purple arrows are at the downstream of the start codon. 
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Figure 4.46 Right homologous arm PCR site on hGR gene locus. Dark green arrows 

indicate the primers that are used to amplify the right homologous arm which is 594bp 
long. Light green arrow show the 2nd exon and the yellow arrow indicate the start codon. 
TALEN pair which are shown by purple arrows are at the downstream of the start codon. 

 
 
 

 
 

Figure 4.47 The optimized PCR results of left and right homologous arms of hGR gene. 
The regions were amplified from HCT116 genomic DNA extract. 

 

We amplified the puromycin resistance gene from hAAVS-SA2A which was a 

donor plasmid used in another study 40. We added a ~20bp homologous site to the left 

arm’s 3’ end on the 5’ end of the puromycin forward primer, and P2A sequence on the 
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5’end of the puromycin reverse primer. P2A is a self-cleaving peptide that has a ~60bp 

sequence which enables preceding and following genes’ translation occur without 

ribosome detaching from the mRNA but as soon as the translation is complete the 

product is cleaved from this site, separating the two proteins from each other 80. We did 

not include the stop codon to the reverse primer of the puromycin resistance gene so 

that the translation would continue with the Venus gene without interruption but we put 

P2A sequence in between so that they would not be joined with Venus fluorescent 

protein. We amplified the Venus gene from mVenusC1, a plasmid modified from a YFP 

expressing vector 81 and has no stop codon so that it could be attached to a protein that 

follows it. The venus forward primer had P2A sequence on its 5’ end as the 

puromycin’s reverse primer. The reverse primer of the venus gene was homologous to 

the right homologous arm’s forward primer on its 5’end. The plasmid maps and the 

optimized PCR results for puromycin resistance gene and the venus gene are shown in 

Figure 4.48 and Figure 4.49.  

 

 
Figure 4.48 The plasmid map and optimized PCR result for puromycin resistance gene 

40. Forward primer is homologous to the left homologous arm’s reverse primer on the 5’ 
end and the reverse primer includes P2A sequence on its 5’ end. 
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Figure 4.49 The plasmid map and optimized PCR result for Venus gene 81. The forward 
primer includes P2A sequence on the 5’end and the reverse primer is homologous to the 

forward primer of the right arm on the 5’end. 
 

After the PCR amplification for all four regions were complete we gel extracted 

them for purifying them from their primers and using the respective products as 

template we joined left arm and the puromycin resistance gene using left arm’s forward 

primer and puromycin’s reverse primer only; and we joined venus and right arm by 

using venus’ forward primer and right arms reverse primer in a second PCR reaction. 

(Figure 4.50a) After gel extracting the correct bands we performed restriction digestion 

to the fused PCR products with Kpn2I enzyme; expecting to see bands around 750bp 

and 550bp for left arm-puromycin fusion, and around 750 and 650bp for venus-right 

arm fusion. (Figure 4.50b) Since we could not join the two products in a final PCR 

reaction instead we used Gibson Assembly protocol which was explained in Figure 3.3 

to assemble the final product. (Figure 4.50c) Even though the ligation of the four PCR 

products are complete we could not yet clone it to a final plasmid, however the final 

design we aimed to construct is shown in Figure 4.51.  
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Figure 4.50 The experiments done to fuse PCR products of the hGR donor plasmid. The 

correct bands are shown with red arrows. 
 

 

 
 

Figure 4.51 The plasmid map for the hGR donor construct. The gray arrow shows left 
homologous arm, the blue arrow shows puromycin resistance gene, the orange site that 
follows it is the P2A sequence, the yellow arrow indicates the venus gene and the green 

arrow is the right homologous arm, which is the second exon of the hGR gene. 
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       5.  DISCUSSION 

 

 

Transcription activator-like effector (TALE) proteins from the plant pathogen 

Xanthomonas are recently discovered DNA binding proteins that are composed of 

highly conserved repeat modules in their DNA binding central domain. Each repeat 

module is consists of 34 amino acids and they are polymorphic on the 12th and 13th 

amino acid residues which are called repeat variable di-residues (RVDs). The 

specificity of the DNA binding domain (DBD) is determined by a simple one RVD - 

one base code and modularity of this protein structure allows assembly of domains that 

can target any site in the genome. TALE nucleases (TALENs) were developed by the 

fusion of the catalytic domain of the FokI restriction enzyme to DBD of the TALE 

protein and now they are being used as tools for efficient genome modification 1,2. 

 

Interleukin-7 signaling is crucial for development, differentiation and survival of 

lymphocytes. The expression of IL-7 receptor in lymphocytes changes during 

development. Upstream promoter and enhancer regions of the IL-7Rα gene locus 

contain binding sites for transcription factors that have roles in regulating this 

expression 63,65,66,70. Also, the gene locus contains an evolutionarily conserved region 

with a potential silencer at the intronic region in between the 2nd and the 3rd exons. We 

mutated the binding sites of two transcription factors, glucocorticoid receptor (GR) and 

Notch, and we aimed to delete the entire 2nd intron to understand the roles of these sites 

in the regulation of IL-7Rα gene expression in T lymphocytes. Glucocorticoids are 

immunosuppressive and anti-inflammatory agents that signal through glucocorticoid 

receptor and have various effects on growth, differentiation and function of 

lymphocytes 72. For this reason, along with the GR binding site in the IL-7R gene locus 

we targeted the translation start site of the glucocorticoid receptor gene itself, both for 

generating knockout cells that we could conduct experiments in the deficiency of GR 

91 
 



and to generate fluorescent GR proteins that could be visually tracked within the cell by 

inserting a Venus-YFP gene at the same locus and promoting their co-expression.  

 

 For our experiments we designed and constructed 5 pairs of TALENs and in all 

of them we paid attention to similar points, aiming to assemble the pairs that would bind 

the target with high specificity and would function efficiently. To avoid TALENs’ off-

target effects, they should only be expressed in the cells transiently; the presence of 

TALENs are no longer necessary after the double strand break (DSB) is induced and 

their continuous activity would not only increase the risk of other sites in the genome 

being targeted, but also would be deleterious to the mutations induced in the targeted 

site, preventing the generation of a stable mutant genotype. For this reason we cloned 

the TALEN repeats to eukaryotic expression plasmids and expressed these TALENs 

ectopically. Previous studies showed that the amino acid sequences flanking the DNA 

binding domain could affect the binding efficiency of the protein and the distance 

between the DBD and FokI cleavage domain in the C-terminal could be an important 

factor in their dimerization and catalytic activity. Goldy TALEN backbone was 

generated to optimize TALEN activity with truncations in the N and C terminal regions 

and was shown to be very efficient 34,42. Therefore, we used Goldy TALENs as our 

expression plasmids in all of the constructs. As RVDs, we used NI, NG, HD for adenine, 

thymine, and cytosine base recognition respectively. In Notch TALEN experiments NN 

was used for binding the G nucleotide due to its high binding efficiency compared to 

other guanine binding RVDs. However, to avoid possible off-target effects we switched 

to NH RVD for TALEN constructions that were generated later on since NH was 

reported to be more specific than NN even though it is less efficient in binding 9,15. The 

length of the spacer region in between two TALEN binding sites is another factor that 

affects the dimerization and catalytic activity of the FokI domain, and recent studies 

show that a 15-16 bp long spacer is the optimum spacer length for most efficient 

TALEN activity 82. While constructing the TALENs in these experiments we took these 

parameters into account.  

 

Detection of the TALEN induced mutations was challenging. After we obtained 

a TALEN introduced pool of cells, we performed restriction fragment length 

polymorphism (RFLP) assays to determine the efficiency of TALEN activity. The 

principle of this strategy is to have a restriction enzyme cut site in the targeted region. 
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Induced deletions and insertions (INDELs) disrupt the region, destroy the restriction 

enzyme (RE) recognition sequence and block REs from digesting this target from 

amplified PCR products, appearing as an uncut band. However, not all of the targeted 

sites conveniently had restriction enzyme cut sites right in the middle, and considering 

that most of the mutations induced would span a small site, it is very likely that some of 

the mutations could not be detected because they did not affect the RE recognition site. 

For instance, we could only detect a very faint uncut band in hGR TALEN transfected 

HCT116 cells (Figure 4.44). The recognition site for the MboII enzyme only spanned a 

region on the left side of the spacer; therefore, we could not detect INDELs appearing 

on the right side (Figure 4.39). These kinds of parameters make it difficult to determine 

the efficiency of TALEN activity and detect the presence of mutations.  

 

We used RLM11 cells, a CD4 single positive thymoma cell line which has high 

IL-7R expression levels on their membranes for observing the effects of induced 

mutations, assuming that it could easily be detected by the changes on the expression 

phenotype. However, the IL-7R expression level comparison of TALEN induced cell 

pools did not yield reliable results because it took a long time for the cells to recover 

after electroporation and 32°C incubation for three days. We subjected cells to transient 

hypothermia (32°C incubation) after TALEN transfection because it was shown that this 

could increase the mutation efficiency both by zinc finger nucleases and TALENs 10,83 

probably by increasing the folding efficiency of the proteins and slowing down the 

progression of the cell cycle. Another problem was the difficulty of sorting the small 

populations of cells due to the low efficiency of genomic mutations. When we 

compared IL-7R expression levels by flow cytometry right after the transfection and 

32°C incubation we saw that GFP control plasmid transfected cells also had much lower 

IL-7R levels in most of the experiments (Figure 4.9). When we waited for a few splits 

for cells to recover and eliminate the effects of transfection, we observed that the 

transfected pools did not have any significant difference in their IL-7R expression levels 

compared to wild type cells.  It was likely that we lost various types of mutations during 

the splits, and in case the mutant cells had any disadvantage of growing, the WT cells 

within the pool could take over the population. For this reason, we decided to grow 

single cell colonies from both GR and Notch binding site targeting TALEN introduced 

pools so that we could detect their specific mutations and directly correlate a mutation 

with a phenotype.  
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 We screened for GR transcription factor binding site mutated RLM11 single cell 

colonies by the RFLP assay and we found 5 colonies that give an uncut band upon 

digestion. We analyzed their mutations by DNA sequencing and confirmed that all the 

mutations had occurred in the GR binding site (Figure 4.13). When we compared their 

IL-7R expression levels to WT cells we realized that most of the cells had higher 

expression levels than the WT in repeated experiments except for the 10th colony 

(Figure 4.14). These results were unexpected because glucocorticoid treatment is used 

to induce IL-7R expression and GR was shown to bind to this location to positively 

regulate the IL-7R expression in cells that do not express IL-7R 73. It is possible that GR 

signaling does not have a role in the regulation of IL-7R gene expression in late stage 

thymocytes that express IL-7R stably and maybe even has suppressing effects even 

though we cannot confirm this only with the present results.  The 10th colony on the 

other hand probably has lower IL-7R levels because it had a large deletion (19bp) in the 

targeted site, which is likely to disrupt a neighboring TF binding site of a positive 

regulator. We repeated this experiment with 3B4 cells which do not normally express 

IL-7R, but can be stimulated by glucocorticoid treatment; however, we had to 

discontinue the experiments due to the low efficiency of transfections. We think that 

disruptions induced on the GR binding site we targeted would prevent the complete 

activation of IL-7R expression in these cells.  

 

 It was more challenging to screen for Notch transcription binding site mutated 

single cell colonies than the GR mutated ones. If we take uncut bands in their RFLP 

analysis results as an indicator of mutation rate, around 20-25% of the GR binding sites 

in the pool genome were mutated while this percentage was only around 5% for the 

Notch TALENs. For that reason while screening for mutated single cells we eliminated 

a portion of them by flow cytometric analysis selecting only colonies with lower IL-7R 

expression levels compared to WT cells (Figure 4.18). We assumed that the mutated 

colonies would be among these IL-7Rlow cells. We performed an RFLP assay on the 

selected colonies and found only two of these to be mutated (Figure 4.19). While doing 

these experiments we realized that growing colonies from a single cell reduces their 

health and recovery takes a long time. Most of the cells we selected at first probably had 

lower expression only due to the growth conditions. Upon further culturing, most clones 

recovered their IL-7R expression. However, a few clones still had significantly lower 

IL7R expression levels than the WT pool. We analyzed the mutation status of these 
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clones by DNA sequencing. We predicted that these clones might have a mutation that 

could not be detected by RFLP. However, only the 35th colony had mutations in the 

Notch binding site and all the others, including the ones with lowest IL-7R expressions 

(clone 30th and 74th) had intact GR binding sites (Figure 4.21). The 74th colony was the 

most interesting one among the colonies because it had a knock-out phenotype; 

however, both RFLP and the sequencing results indicated that it had no mutations. We 

hypothesized that this could result from a very large deletion in the locus that prevents 

the amplification of the region by PCR. Therefore, we also PCR amplified the region 

with primers that span a larger area in the locus. However, we still observed only the 

WT bands (Figure 4.23). We do not yet know the reason for the loss of expression in 

these cells. The phenotype we observe might be due to an even larger deletion that we 

could not detect or it could be because of an off-target activity of the TALEN pair, 

resulting in the disruption of an alternative locus important for IL7R expression. With 

these experiments, we show that the Notch site mutated colony #35 and #49 have 

significantly reduced IL7R expression levels compared to WT cells, yet we do not know 

why IL-7R expression in the other few cells had decreased or whether there were any 

mutants among the ones that had normal IL-7R levels. 

 

Another problem about the interpretation of the results we obtained with both 

the GR and Notch binding site targeting experiments was the unknown ploidy of the 

RLM11 cancer cells. Even though we grew single cells to eliminate the WT phenotype, 

most of the mutations induced seemed to be monoalleic and even clones with two types 

of mutations also contained an intact WT. The GR binding site mutated cell colony #15 

had two types of deletions (Figure 4.13) and even though it was barely visible in RFLP 

results there we also observed a WT sequence, which was confirmed by sequencing 

analysis. In a similar way, colony #35 from Notch binding site targeted cells had one 

insertion and one deletion (Figure 4.21). Yet, a third WT sequence appeared in both the 

RFLP and sequencing analyses. This could be due to a low frequency WT population in 

the clone; a WT cell that possibly arising from adhered to the mutant cell when single 

cells were separated into different wells. This WT contaminant might have started to 

divide much later and still might be appearing as a small portion of the clone. 

Alternatively, these results could be due to presence of at least three alleles, which will 

be confirmed by SKY karyotype analysis. If the latter is the case, then the mutant 

colonies with one type of mutation have at least two of their alleles intact, and due to 
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this reason their phenotype might not be getting affected by the mutation. Nonetheless, 

at least two of the alleles in colonies #11 and #15 of the GR site experiments were 

mutated. The same situation is valid for the 35th colony of Notch experiments.  

 

 For the experiments where we targeted the 2nd intron of the IL-7R gene, we 

showed that even with co-expression of two TALEN pairs we could induce double 

strand breaks. However, in that cell pool it is likely that these mutations were not 

induced in the same cells or it is also possible that even when they were in the same 

cells, one pair might have induced the DSB after the other was repaired and sealed back. 

Nonetheless, we observed by the RFLP assay that in comparison to control experiments 

performed with only one of the TALEN pairs, the uncut band was fainter for the co-

transfection experiments (Figure 4.36). This might either indicate that a small portion of 

the mutated cells contained DSBs induced simultaneously and that the locus in between 

the two target sites was deleted, or that the DSBs were repaired by homologous 

recombination due to the presence of donor DNA. We performed PCR with the forward 

primer of the exon 2 and the reverse primer of the exon 3 in order to detect if the 

truncated product. Even though we observed the band one split after the incubation of 

the cells, it most likely belonged to the donor DNA; a few splits later we did not 

observe any bands in the pool. We have also grown single cell colonies from the first 

pool and currently screening for the correct mutations.  

 

 For the last part of the study we aimed to insert a Venus-YFP gene to the 

translation start site of the glucocorticoid receptor in order to promote their co-

expression endogenously and create a model that we could track GR protein activities 

within the cell visually. Even though the homologous recombination rate is smaller than 

NHEJ, when TALENs are used with selectable markers such as antibiotic resistance, the 

detection of mutation becomes much simpler. There are examples of studies using 

reporter systems in which a selectable marker is expressed only when mutations are 

generated at the TALEN target site 40,84. For that reason, while designing the donor 

plasmid we also included a puromycin resistance gene in between the left homology 

arm and the Venus gene so that when the donor DNA is integrated into the genome 

through homology directed repair, the first translation start codon would belong to the 

puromycin resistance gene. Because there were no stop codons in between them, Venus 

and GR would be translated along with the puromycin gene. We inserted a small P2A 
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sequence in between the Venus and puromycin genes which would permit the 

translation of the mRNA without detachment of the ribosome in the middle, but would 

have puromycin polypeptide cleaved off from the Venus-hGR fusion protein 

immediately after the translation. So far, we confirmed that the TALEN pair targeting 

the site is functional (Figure 4.44). However, even though we constructed the final 

donor product, it is yet to be cloned into a plasmid for transfection experiments.  
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6.  CONCLUSION 

 

In this study, we aimed to induce various types of mutations in the IL-7Rα and 

GR gene loci using TALEN technology. Firstly, we targeted the IL-7R gene enhancer 

and intronic sites in order to understand the functional role of two transcription factor 

sites in the enhancer region and a possible silencer site in the intronic region. The 

literature indicates that the enhancer of the IL-7R is bound by several transcription 

factors. We targeted two of these sites, GR and Notch. We constructed TALEN proteins 

that target the binding sites of these transcription factors in the IL-7R enhancer and 

examined the effects on gene expression. We generated single cell clones that contain at 

least one mutated IL-7R allele in the murine RLM11 cell line. We found that targeting 

the Notch site downregulated IL-7R expression. On the other hand, targeting the GR 

binding site did not significantly downregulate IL-7R expression in this cell line. In 

addition to these transcription factor binding sites, we targeted an evolutionarily 

conserved region in intron 2 of the IL-7R gene. For this purpose, we constructed 

TALEN pairs against exon 2 and exon 3 of the gene to induce simultaneous double 

strand breaks at these sites. We demonsrated that these TALENs can actively generate 

mutations in these sites. However, we have not yet completed the generation of a 

mutant IL-7R allele that has deleted the ECR in intron 2.  

 

 In the second part of the study, we targeted the GR gene itself. In order to knock 

out the activity of this gene, we constructed TALEN pairs targeting the translation 

initiation site. These TALENs can effectively generate INDEL mutations in this locus, 

resulting in frameshift mutations. We also targeted the same locus by homology 

directed repair to insert a Venus fluorescent protein gene in frame with the GR cDNA. 

Targeting of this gene locus is not yet complete. However, a Venus-YFP-GR fusion 

protein encoded by the endogenous GR gene locus will generate a model that will allow 

us to track GR activity visually. In conclusion we generated 10 different constructs 
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encoding five different TALEN pairs targeting either the coding region or enhancer 

sequences of two immunologically important genes. These TALENs are functional and 

can efficiently introduce INDEL mutations in the genomes of tissue culture cell lines. In 

this thesis we demonstrate that TALEN induced genome editing is an effective tool to 

study the functional significance of cis regulatory regions in the genomes of tissue 

culture cell lines.  
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APPENDIX A: Chemicals Used in the Study 

 

Chemicals Supplier Company 

Acetic Acid Sigma, Germany 

Agarose Sigma, Germany 

Ampicillin sodium salt Cellgro, USA 

Boric acid  Molekula, UK 

Calcium chloride  Sigma, Germany 

Distilled water  Milipore, France 

DMEM  Gibco, USA 

DMSO  Sigma, Germany 

EDTA  Sigma, Germany 

Ethanol  Sigma, Germany 

Ethidium bromide  Sigma, Germany 

Fetal Bovine Serum (FBS) Lonza, Switzerland 

Glycerol  Sigma, Germany 

HBSS  Gibco, USA 

Hydrochloric Acid  Sigma, Germany 

Isopropanol  Sigma, Germany 

LB Agar  BD, USA 

LB Broth  Sigma, Germany 

L-glutamine  Hyclone, USA 

Liquid nitrogen  Karbogaz, Turkey 

2-mercaptoethanol  Sigma, Germany 

Penicillin-Streptomycin  Sigma, Germany 

PIPES  Sigma, Germany 
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PBS  Sigma, Germany 

RNase A  Roche, Germany 

RPMI 1640  Gibco, USA 

SDS  Sigma, Germany 

Sodium Azide  Amresco,USA 

Spectinomycin  Sigma, Germany 

Tris base  Sigma, Germany 

Trypan Blue  Fluca, Germany 

Trypsin-EDTA  Gibco, USA 
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APPENDIX B: Equipment Used In the Study 

 

 

Equipment  Company 

Autoclave  Priorclave, UK 

Balance  Sartorius, BP221S, Germany 

 Schimadzu, Libror EB-3200 HU, Japan 

Centrifuge Hitachi, Sorvall RC5C Plus, USA 

 Eppendorf, 5415D, Germany 

 Eppendorf, 5418R, Germany 

 Beckman Coulter, Allegra®X-15R, USA 

CO2 Incubator Binder,Germany 

Deepfreeze  -80°C, Forma,Thermo ElectronCorp.,USA 

 -20°C,Bosch,Germany 

Distilled Water Millipore, Elix-S, France 

Electrophoresis Apparatus Biorad Inc., USA 

 VWR, USA 

Electroporator Invitrogen, Neon Transfection Systems, USA 

Flow Cytometer BD FACS Canto,USA 

Gel Documentation Biorad, UV-Transilluminator 2000, USA 

Heater Thermomixer Comfort, Eppendorf, Germany 

Hematocytometer Hausser Scientific,Blue Bell Pa.,USA 

Ice Machine Scotsman Inc., AF80, USA 

Incubator Memmert, Modell 300, Germany 

Laminar Flow Kendro Lab. Prod., Heraeus, HeraSafe HS12, 

Germany 

Liquid Nitrogen Tank Taylor-Wharton,3000RS,USA 

Magnetic Stirrer StuartTM,SB162, UK 
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Microliter Pipettes Gilson, Pipetman, France 

Microscope Olympus IX70, Japan 

 Olympus CK40, Japan 

Microwave Oven Bosch, Germany 

pH meter Mettler Toledo, S220 SevenCompactTM
 

 pH/Ion, USA 

Refrigerator Bosch,Germany 

Shaker Incubator New Brunswick Sci., Innova 4330, USA 

Spectrophotometer Amersham Biosciences, UK 

Thermocycler Eppendorf, Mastercycler Gradient, 

Germany 

Vortex Velp Scientifica,Italy 
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APPENDIX C: DNA Molecular Weight Marker 

 

 

Gene RulerTM
 DNA Ladder Mix 

Fermentas, Germany 
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